task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Euphoria
Euphoria
function selection_sort(sequence s) object tmp integer m for i = 1 to length(s) do m = i for j = i+1 to length(s) do if compare(s[j],s[m]) < 0 then m = j end if end for tmp = s[i] s[i] = s[m] s[m] = tmp end for return s end function   include misc.e constant s = {4, 15, "delta", 2, -31, 0, "alfa", 19, "gamma", 2, 13, "beta", 782, 1}   puts(1,"Before: ") pretty_print(1,s,{2}) puts(1,"\nAfter: ") pretty_print(1,selection_sort(s),{2})
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#FutureBasic
FutureBasic
include "NSLog.incl"   local fn SoundexCode( charCode as unsigned char ) as unsigned char select charCode case _"B", _"F", _"P", _"V" charCode = _"1" case _"C", _"G", _"J", _"K", _"Q", _"S", _"X", _"Z" charCode = _"2" case _"D", _"T" charCode = _"3" case _"L" charCode = _"4" case _"M", _"N" charCode = _"5" case _"R" charCode = _"6" case else charCode = 0 end select end fn = charCode   local fn SoundexCodeForWord( codeWord as CFStringRef ) as CFStringRef NSUInteger i unsigned char charCode, lastCode CFStringRef outputStr = @"0000" CFMutableStringRef tempStr   if ( len(codeWord) == 0 ) then exit fn   tempStr = fn MutableStringWithCapacity(0) codeWord = ucase(fn StringByApplyingTransform( codeWord, NSStringTransformStripDiacritics, NO ))   MutableStringAppendString( tempStr, left(codeWord,1) ) charCode = fn StringCharacterAtIndex( codeWord, 0 ) charCode = fn SoundexCode( charCode ) lastCode = charCode i = 0 while i < len(codeWord) - 1 i++ charCode = fn StringCharacterAtIndex( codeWord, i ) charCode = fn SoundexCode( charCode ) if ( charCode > 0 and lastCode != charCode ) MutableStringAppendString( tempStr, fn StringWithFormat( @"%c",charCode ) ) if ( len(tempStr) == 4 ) then break end if lastCode = charCode wend   while ( len(tempStr) < 4 ) MutableStringAppendString( tempStr, @"0" ) wend   outputStr = fn StringWithString( tempStr ) end fn = outputStr   CFArrayRef names CFStringRef name   names = @[ @"Smith",@"Johnson",@"Williams",@"Jones",@"Brown",@"Davis",@"Miller",@"Wilson",@"Moore",@"Taylor", @"Anderson",@"Thomas",@"Jackson",@"White",@"Harris",@"Martin",@"Thompson",@"Garcia",@"Martinez",@"Robinson", @"Clark",@"Rodriguez",@"Lewis",@"Lee",@"Walker",@"Hall",@"Allen",@"Young",@"Hernandez",@"King", @"Wright",@"Lopez",@"Hill",@"Scott",@"Green",@"Adams",@"Baker",@"Gonzalez",@"Nelson",@"Carter", @"Mitchell",@"Perez",@"Roberts",@"Turner",@"Phillips",@"Campbell",@"Parker",@"Evans",@"Edwards",@"Collins", @"Stewart",@"Sanchez",@"Morris",@"Rogers",@"Reed",@"Cook",@"Morgan",@"Bell",@"Murphy",@"Bailey", @"Rivera",@"Cooper",@"Richardson",@"Cox",@"Howard",@"Ward",@"Torres",@"Peterson",@"Gray",@"Ramirez", @"James",@"Watson",@"Brooks",@"Kelly",@"Sanders",@"Price",@"Bennett",@"Wood",@"Barnes",@"Ross", @"Henderson",@"Coleman",@"Jenkins",@"Perry",@"Powell",@"Long",@"Patterson",@"Hughes",@"Flores",@"Washington", @"Butler",@"Simmons",@"Foster",@"Gonzales",@"Bryant",@"Alexander",@"Russell",@"Griffin",@"Diaz",@"Hayes" ]   NSLogSetTabInterval( 80 ) NSLog( @"Soundex codes for %ld popular American surnames:",fn ArrayCount(names) ) for name in names NSLog( @"%@\t= %@",name,fn SoundexCodeForWord(name) ) next   NSLog(@"")   NSLog( @"Soundex codes for similar sounding names:" ) NSLog( @"Stuart\t= %@" , fn SoundexCodeForWord( @"Stuart" ) ) NSLog( @"Stewart\t= %@", fn SoundexCodeForWord( @"Stewart" ) ) NSLog( @"Steward\t= %@", fn SoundexCodeForWord( @"Steward" ) ) NSLog( @"Seward\t= %@" , fn SoundexCodeForWord( @"Seward" ) )   HandleEvents
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Lisaac
Lisaac
Section Header   + name := SHELL_SORT;   - external := `#include <time.h>`;   Section Public   - main <- ( + a : ARRAY[INTEGER];   a := ARRAY[INTEGER].create 0 to 100; `srand(time(NULL))`; 0.to 100 do { i : INTEGER; a.put `rand()`:INTEGER to i; };   shell a;   a.foreach { item : INTEGER; item.print; '\n'.print; }; );   - shell a : ARRAY[INTEGER] <- ( + lower, length, increment, temp : INTEGER;   lower := a.lower; length := a.upper - lower + 1; increment := length; { increment := increment / 2; increment > 0 }.while_do { increment.to (length - 1) do { i : INTEGER; + j : INTEGER; temp := a.item(lower + i); j := i - increment; { (j >= 0) && { a.item(lower + j) > temp } }.while_do { a.put (a.item(lower + j)) to (lower + j + increment); j := j - increment; }; a.put temp to (lower + j + increment); }; }; );
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Lua
Lua
function shellsort( a ) local inc = math.ceil( #a / 2 ) while inc > 0 do for i = inc, #a do local tmp = a[i] local j = i while j > inc and a[j-inc] > tmp do a[j] = a[j-inc] j = j - inc end a[j] = tmp end inc = math.floor( 0.5 + inc / 2.2 ) end   return a end   a = { -12, 3, 0, 4, 7, 4, 8, -5, 9 } a = shellsort( a )   for _, i in pairs(a) do print(i) end
http://rosettacode.org/wiki/Stable_marriage_problem
Stable marriage problem
Solve the Stable marriage problem using the Gale/Shapley algorithm. Problem description Given an equal number of men and women to be paired for marriage, each man ranks all the women in order of his preference and each woman ranks all the men in order of her preference. A stable set of engagements for marriage is one where no man prefers a woman over the one he is engaged to, where that other woman also prefers that man over the one she is engaged to. I.e. with consulting marriages, there would be no reason for the engagements between the people to change. Gale and Shapley proved that there is a stable set of engagements for any set of preferences and the first link above gives their algorithm for finding a set of stable engagements. Task Specifics Given ten males: abe, bob, col, dan, ed, fred, gav, hal, ian, jon And ten females: abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan And a complete list of ranked preferences, where the most liked is to the left: abe: abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay bob: cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay col: hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan dan: ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi ed: jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay fred: bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay gav: gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay hal: abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee ian: hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve jon: abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope abi: bob, fred, jon, gav, ian, abe, dan, ed, col, hal bea: bob, abe, col, fred, gav, dan, ian, ed, jon, hal cath: fred, bob, ed, gav, hal, col, ian, abe, dan, jon dee: fred, jon, col, abe, ian, hal, gav, dan, bob, ed eve: jon, hal, fred, dan, abe, gav, col, ed, ian, bob fay: bob, abe, ed, ian, jon, dan, fred, gav, col, hal gay: jon, gav, hal, fred, bob, abe, col, ed, dan, ian hope: gav, jon, bob, abe, ian, dan, hal, ed, col, fred ivy: ian, col, hal, gav, fred, bob, abe, ed, jon, dan jan: ed, hal, gav, abe, bob, jon, col, ian, fred, dan Use the Gale Shapley algorithm to find a stable set of engagements Perturb this set of engagements to form an unstable set of engagements then check this new set for stability. References The Stable Marriage Problem. (Eloquent description and background information). Gale-Shapley Algorithm Demonstration. Another Gale-Shapley Algorithm Demonstration. Stable Marriage Problem - Numberphile (Video). Stable Marriage Problem (the math bit) (Video). The Stable Marriage Problem and School Choice. (Excellent exposition)
#XSLT_2.0
XSLT 2.0
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:fn="http://www.w3.org/2005/xpath-functions" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:m="http://rosettacode.org/wiki/Stable_marriage_problem" xmlns:t="http://rosettacode.org/wiki/Stable_marriage_problem/temp" exclude-result-prefixes="xsl xs fn t m"> <xsl:output indent="yes" encoding="UTF-8" omit-xml-declaration="yes" /> <xsl:strip-space elements="*" />   <xsl:template match="*"> <xsl:copy> <xsl:apply-templates select="@*,node()" /> </xsl:copy> </xsl:template>   <xsl:template match="@*|comment()|processing-instruction()"> <xsl:copy /> </xsl:template>   <xsl:template match="m:interest" mode="match-making"> <m:engagement> <m:dude name="{../@name}" /><m:maid name="{.}" /> </m:engagement> </xsl:template>   <xsl:template match="m:dude" mode="match-making"> <!-- 3. Reject suitors cross-off the maids that spurned them. --> <xsl:param name="eliminations" select="()" /> <m:dude name="{@name}"> <xsl:copy-of select="for $b in @name return m:interest[not(. = $eliminations[m:dude/@name=$b]/m:maid/@name)]" /> </m:dude> </xsl:template>   <xsl:template match="*" mode="perturbation"> <xsl:copy> <xsl:apply-templates select="@*,node()" mode="perturbation"/> </xsl:copy> </xsl:template>   <xsl:template match="@*" mode="perturbation"> <xsl:copy /> </xsl:template>   <xsl:template match="m:engagement[position() lt 3]/m:maid/@name" mode="perturbation"> <!-- Swap maids 1 and 2. --> <xsl:copy-of select="for $c in count(../../preceding-sibling::m:engagement) return ../../../m:engagement[2 - $c]/m:maid/@name" /> </xsl:template>   <xsl:template match="m:stable-marriage-problem"> <xsl:variable name="population" select="m:dude|m:maid" /> <xsl:variable name="solution"> <xsl:call-template name="solve-it"> <xsl:with-param name="dudes" select="m:dude" /> <xsl:with-param name="maids" select="m:maid" tunnel="yes" /> </xsl:call-template> </xsl:variable> <xsl:variable name="perturbed"> <xsl:apply-templates select="$solution/*" mode="perturbation" /> </xsl:variable> <m:stable-marriage-problem-result> <m:solution is-stable="{t:is-stable( $population, $solution/*)}"> <xsl:copy-of select="$solution/*" /> </m:solution> <m:message>Perturbing the matches! Swapping <xsl:value-of select="$solution/*[1]/m:maid/@name" /> for <xsl:value-of select="$solution/*[2]/m:maid/@name" /></m:message> <m:message><xsl:choose> <xsl:when test="t:is-stable( $population, $perturbed/*)"> <xsl:text>The perturbed configuration is stable.</xsl:text> </xsl:when> <xsl:otherwise>The perturbed configuration is unstable.</xsl:otherwise> </xsl:choose></m:message> </m:stable-marriage-problem-result> </xsl:template>   <xsl:template name="solve-it"> <xsl:param name="dudes" as="element()*" /> <!-- Sequence of m:dude --> <xsl:param name="maids" as="element()*" tunnel="yes" /> <!-- Sequence of m:maid --> <xsl:param name="engagements" as="element()*" select="()" /> <!-- Sequence of m:engagement -->   <!-- 1. For each dude not yet engaged, and has a preference, propose to his top preference. --> <xsl:variable name="fresh-proposals"> <xsl:apply-templates select="$dudes[not(@name = $engagements/m:dude/@name)]/m:interest[1]" mode="match-making" /> </xsl:variable> <xsl:variable name="proposals" select="$engagements | $fresh-proposals/m:engagement" />   <!-- 2. For each maid with conflicting suitors, reject all but the most attractive (for her) proposal. --> <xsl:variable name="acceptable" select="$proposals[ for $g in m:maid/@name, $b in m:dude/@name, $this-interest in $maids[@name=$g]/m:interest[.=$b] return every $interest in for $other-b in $proposals[m:maid[@name=$g]]/m:dude/@name[. ne $b] return $maids[@name=$g]/m:interest[.=$other-b] satisfies $interest >> $this-interest ]" />   <!-- 3. Reject suitors cross-off the maids that spurned them. --> <xsl:variable name="new-dudes"> <xsl:apply-templates select="$dudes" mode="match-making"> <xsl:with-param name="eliminations" select="$fresh-proposals/m:engagement" /> </xsl:apply-templates> </xsl:variable>   <!-- 4. Test for finish. If not, loop back for another round of proposals. --> <xsl:choose> <xsl:when test="$dudes[not(for $b in @name return $acceptable[m:dude/@name=$b])]"> <xsl:call-template name="solve-it"> <xsl:with-param name="dudes" select="$new-dudes/m:dude" /> <xsl:with-param name="engagements" select="$acceptable" /> </xsl:call-template> </xsl:when> <xsl:otherwise> <xsl:copy-of select="$acceptable" /> </xsl:otherwise> </xsl:choose> </xsl:template>   <xsl:function name="t:is-stable" as="xs:boolean"> <xsl:param name="population" as="element()*" /> <xsl:param name="engagements" as="element()*" /> <xsl:sequence select=" every $e in $engagements, $b in string($e/m:dude/@name), $g in string($e/m:maid/@name), $desired-g in $population/self::m:dude[@name=$b]/m:interest[$g=following-sibling::m:interest], $desired-maid in $population/self::m:maid[@name=$desired-g] satisfies not( $desired-maid/m:interest[.=$b] &lt;&lt; $desired-maid/m:interest[.=$engagements[m:maid[@name=$desired-g]]/m:dude/@name]) " /> </xsl:function>   </xsl:stylesheet>
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Lua
Lua
stack = {} table.insert(stack,3) print(table.remove(stack)) --> 3
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Nim
Nim
import sequtils, strutils   proc `$`(m: seq[seq[int]]): string = for r in m: let lg = result.len for c in r: result.addSep(" ", lg) result.add align($c, 2) result.add '\n'   proc spiral(n: Positive): seq[seq[int]] = result = newSeqWith(n, repeat(-1, n)) var dx = 1 var dy, x, y = 0 for i in 0 ..< (n * n): result[y][x] = i let (nx, ny) = (x+dx, y+dy) if nx in 0 ..< n and ny in 0 ..< n and result[ny][nx] == -1: x = nx y = ny else: swap dx, dy dx = -dx x += dx y += dy   echo spiral(5)
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Perl
Perl
#!/usr/bin/perl use warnings; use strict;   sub radix { my @tab = ([@_]);   my $max_length = 0; length > $max_length and $max_length = length for @_; $_ = sprintf "%0${max_length}d", $_ for @{ $tab[0] }; # Add zeros.   for my $pos (reverse -$max_length .. -1) { my @newtab; for my $bucket (@tab) { for my $n (@$bucket) { my $char = substr $n, $pos, 1; $char = -1 if '-' eq $char; $char++; push @{ $newtab[$char] }, $n; } } @tab = @newtab; }   my @return; my $negative = shift @tab; # Negative bucket must be reversed. push @return, reverse @$negative; for my $bucket (@tab) { push @return, @{ $bucket // [] }; } $_ = 0 + $_ for @return; # Remove zeros. return @return; }
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#AWK
AWK
  # the following qsort implementation extracted from: # # ftp://ftp.armory.com/pub/lib/awk/qsort # # Copyleft GPLv2 John DuBois # # @(#) qsort 1.2.1 2005-10-21 # 1990 john h. dubois iii ([email protected]) # # qsortArbIndByValue(): Sort an array according to the values of its elements. # # Input variables: # # Arr[] is an array of values with arbitrary (associative) indices. # # Output variables: # # k[] is returned with numeric indices 1..n. The values assigned to these # indices are the indices of Arr[], ordered so that if Arr[] is stepped # through in the order Arr[k[1]] .. Arr[k[n]], it will be stepped through in # order of the values of its elements. # # Return value: The number of elements in the arrays (n). # # NOTES: # # Full example for accessing results: # # foolist["second"] = 2; # foolist["zero"] = 0; # foolist["third"] = 3; # foolist["first"] = 1; # # outlist[1] = 0; # n = qsortArbIndByValue(foolist, outlist) # # for (i = 1; i <= n; i++) { # printf("item at %s has value %d\n", outlist[i], foolist[outlist[i]]); # } # delete outlist; # function qsortArbIndByValue(Arr, k, ArrInd, ElNum) { ElNum = 0; for (ArrInd in Arr) { k[++ElNum] = ArrInd; } qsortSegment(Arr, k, 1, ElNum); return ElNum; } # # qsortSegment(): Sort a segment of an array. # # Input variables: # # Arr[] contains data with arbitrary indices. # # k[] has indices 1..nelem, with the indices of Arr[] as values. # # Output variables: # # k[] is modified by this function. The elements of Arr[] that are pointed to # by k[start..end] are sorted, with the values of elements of k[] swapped # so that when this function returns, Arr[k[start..end]] will be in order. # # Return value: None. # function qsortSegment(Arr, k, start, end, left, right, sepval, tmp, tmpe, tmps) { if ((end - start) < 1) { # 0 or 1 elements return; } # handle two-element case explicitly for a tiny speedup if ((end - start) == 1) { if (Arr[tmps = k[start]] > Arr[tmpe = k[end]]) { k[start] = tmpe; k[end] = tmps; } return; } # Make sure comparisons act on these as numbers left = start + 0; right = end + 0; sepval = Arr[k[int((left + right) / 2)]]; # Make every element <= sepval be to the left of every element > sepval while (left < right) { while (Arr[k[left]] < sepval) { left++; } while (Arr[k[right]] > sepval) { right--; } if (left < right) { tmp = k[left]; k[left++] = k[right]; k[right--] = tmp; } } if (left == right) if (Arr[k[left]] < sepval) { left++; } else { right--; } if (start < right) { qsortSegment(Arr, k, start, right); } if (left < end) { qsortSegment(Arr, k, left, end); } }  
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#jq
jq
def patienceSort: length as $size | if $size < 2 then . else reduce .[] as $e ( {piles: []}; .outer = false | first( range(0; .piles|length) as $ipile | if .piles[$ipile][-1] < $e then .piles[$ipile] += [$e] | .outer = true else empty end ) // . | if (.outer|not) then .piles += [[$e]] else . end ) | reduce range(0; $size) as $i (.; .min = .piles[0][0] | .minPileIndex = 0 | reduce range(1; .piles|length) as $j (.; if .piles[$j][0] < .min then .min = .piles[$j][0] | .minPileIndex = $j else . end ) | .a += [.min] | .minPileIndex as $mpx | .piles[$mpx] |= .[1:] | if (.piles[$mpx] == []) then .piles |= .[:$mpx] + .[$mpx + 1:] else . end) end | .a ;     [4, 65, 2, -31, 0, 99, 83, 782, 1], ["n", "o", "n", "z", "e", "r", "o", "s", "u", "m"], ["dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu"] | patienceSort
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#ARM_Assembly
ARM Assembly
  /* ARM assembly Raspberry PI */ /* program insertionSort.s */ /* look Pseudocode begin this task */   /************************************/ /* Constantes */ /************************************/ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall /*********************************/ /* Initialized data */ /*********************************/ .data szMessSortOk: .asciz "Table sorted.\n" szMessSortNok: .asciz "Table not sorted !!!!!.\n" sMessResult: .ascii "Value  : " sMessValeur: .fill 11, 1, ' ' @ size => 11 szCarriageReturn: .asciz "\n"   .align 4 iGraine: .int 123456 .equ NBELEMENTS, 10 #TableNumber: .int 1,3,6,2,5,9,10,8,4,7 TableNumber: .int 10,9,8,7,6,5,4,3,2,1 /*********************************/ /* UnInitialized data */ /*********************************/ .bss /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program   1: ldr r0,iAdrTableNumber @ address number table mov r1,#0 mov r2,#NBELEMENTS @ number of élements bl insertionSort ldr r0,iAdrTableNumber @ address number table bl displayTable   ldr r0,iAdrTableNumber @ address number table mov r1,#NBELEMENTS @ number of élements bl isSorted @ control sort cmp r0,#1 @ sorted ? beq 2f ldr r0,iAdrszMessSortNok @ no !! error sort bl affichageMess b 100f 2: @ yes ldr r0,iAdrszMessSortOk bl affichageMess 100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc #0 @ perform the system call   iAdrsMessValeur: .int sMessValeur iAdrszCarriageReturn: .int szCarriageReturn iAdrsMessResult: .int sMessResult iAdrTableNumber: .int TableNumber iAdrszMessSortOk: .int szMessSortOk iAdrszMessSortNok: .int szMessSortNok /******************************************************************/ /* control sorted table */ /******************************************************************/ /* r0 contains the address of table */ /* r1 contains the number of elements > 0 */ /* r0 return 0 if not sorted 1 if sorted */ isSorted: push {r2-r4,lr} @ save registers mov r2,#0 ldr r4,[r0,r2,lsl #2] 1: add r2,#1 cmp r2,r1 movge r0,#1 bge 100f ldr r3,[r0,r2, lsl #2] cmp r3,r4 movlt r0,#0 blt 100f mov r4,r3 b 1b 100: pop {r2-r4,lr} bx lr @ return /******************************************************************/ /* insertion sort */ /******************************************************************/ /* r0 contains the address of table */ /* r1 contains the first element */ /* r2 contains the number of element */ insertionSort: push {r2,r3,r4,lr} @ save registers add r3,r1,#1 @ start index i 1: @ start loop ldr r4,[r0,r3,lsl #2] @ load value A[i] sub r5,r3,#1 @ index j 2: ldr r6,[r0,r5,lsl #2] @ load value A[j] cmp r6,r4 @ compare value ble 3f add r5,#1 @ increment index j str r6,[r0,r5,lsl #2] @ store value A[j+1] sub r5,#2 @ j = j - 1 cmp r5,r1 bge 2b @ loop if j >= first item 3: add r5,#1 @ increment index j str r4,[r0,r5,lsl #2] @ store value A[i] in A[j+1] add r3,#1 @ increment index i cmp r3,r2 @ end ? blt 1b @ no -> loop   100: pop {r2,r3,r4,lr} bx lr @ return   /******************************************************************/ /* Display table elements */ /******************************************************************/ /* r0 contains the address of table */ displayTable: push {r0-r3,lr} @ save registers mov r2,r0 @ table address mov r3,#0 1: @ loop display table ldr r0,[r2,r3,lsl #2] ldr r1,iAdrsMessValeur @ display value bl conversion10 @ call function ldr r0,iAdrsMessResult bl affichageMess @ display message add r3,#1 cmp r3,#NBELEMENTS - 1 ble 1b ldr r0,iAdrszCarriageReturn bl affichageMess 100: pop {r0-r3,lr} bx lr /******************************************************************/ /* display text with size calculation */ /******************************************************************/ /* r0 contains the address of the message */ affichageMess: push {r0,r1,r2,r7,lr} @ save registres mov r2,#0 @ counter length 1: @ loop length calculation ldrb r1,[r0,r2] @ read octet start position + index cmp r1,#0 @ if 0 its over addne r2,r2,#1 @ else add 1 in the length bne 1b @ and loop @ so here r2 contains the length of the message mov r1,r0 @ address message in r1 mov r0,#STDOUT @ code to write to the standard output Linux mov r7, #WRITE @ code call system "write" svc #0 @ call systeme pop {r0,r1,r2,r7,lr} @ restaur des 2 registres */ bx lr @ return /******************************************************************/ /* Converting a register to a decimal unsigned */ /******************************************************************/ /* r0 contains value and r1 address area */ /* r0 return size of result (no zero final in area) */ /* area size => 11 bytes */ .equ LGZONECAL, 10 conversion10: push {r1-r4,lr} @ save registers mov r3,r1 mov r2,#LGZONECAL   1: @ start loop bl divisionpar10U @ unsigned r0 <- dividende. quotient ->r0 reste -> r1 add r1,#48 @ digit strb r1,[r3,r2] @ store digit on area cmp r0,#0 @ stop if quotient = 0 subne r2,#1 @ else previous position bne 1b @ and loop @ and move digit from left of area mov r4,#0 2: ldrb r1,[r3,r2] strb r1,[r3,r4] add r2,#1 add r4,#1 cmp r2,#LGZONECAL ble 2b @ and move spaces in end on area mov r0,r4 @ result length mov r1,#' ' @ space 3: strb r1,[r3,r4] @ store space in area add r4,#1 @ next position cmp r4,#LGZONECAL ble 3b @ loop if r4 <= area size   100: pop {r1-r4,lr} @ restaur registres bx lr @return   /***************************************************/ /* division par 10 unsigned */ /***************************************************/ /* r0 dividende */ /* r0 quotient */ /* r1 remainder */ divisionpar10U: push {r2,r3,r4, lr} mov r4,r0 @ save value //mov r3,#0xCCCD @ r3 <- magic_number lower raspberry 3 //movt r3,#0xCCCC @ r3 <- magic_number higter raspberry 3 ldr r3,iMagicNumber @ r3 <- magic_number raspberry 1 2 umull r1, r2, r3, r0 @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0) mov r0, r2, LSR #3 @ r2 <- r2 >> shift 3 add r2,r0,r0, lsl #2 @ r2 <- r0 * 5 sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) pop {r2,r3,r4,lr} bx lr @ leave function iMagicNumber: .int 0xCCCCCCCD  
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#PicoLisp
PicoLisp
(de permutationSort (Lst) (let L Lst (recur (L) # Permute (if (cdr L) (do (length L) (T (recurse (cdr L)) Lst) (rot L) NIL ) (apply <= Lst) ) ) ) )
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#PowerShell
PowerShell
Function PermutationSort( [Object[]] $indata, $index = 0, $k = 0 ) { $data = $indata.Clone() $datal = $data.length - 1 if( $datal -gt 0 ) { for( $j = $index; $j -lt $datal; $j++ ) { $sorted = ( PermutationSort $data ( $index + 1 ) $j )[0] if( -not $sorted ) { $temp = $data[ $index ] $data[ $index ] = $data[ $j + 1 ] $data[ $j + 1 ] = $temp } } if( $index -lt ( $datal - 1 ) ) { PermutationSort $data ( $index + 1 ) $j } else { $sorted = $true for( $i = 0; ( $i -lt $datal ) -and $sorted; $i++ ) { $sorted = ( $data[ $i ] -le $data[ $i + 1 ] ) } $sorted $data } } }   0..4 | ForEach-Object { $a = $_; 0..4 | Where-Object { -not ( $_ -match "$a" ) } | ForEach-Object { $b = $_; 0..4 | Where-Object { -not ( $_ -match "$a|$b" ) } | ForEach-Object { $c = $_; 0..4 | Where-Object { -not ( $_ -match "$a|$b|$c" ) } | ForEach-Object { $d = $_; 0..4 | Where-Object { -not ( $_ -match "$a|$b|$c|$d" ) } | ForEach-Object { $e=$_; "$( PermutationSort ( $a, $b, $c, $d, $e ) )" } } } } } $l = 8; PermutationSort ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( 0, $l - 1 ) } )
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#11l
11l
F siftdown(&lst, start, end) V root = start L V child = root * 2 + 1 I child > end L.break I child + 1 <= end & lst[child] < lst[child + 1] child++ I lst[root] < lst[child] swap(&lst[root], &lst[child]) root = child E L.break   F heapsort(&lst) L(start) ((lst.len - 2) I/ 2 .. 0).step(-1) siftdown(&lst, start, lst.len - 1)   L(end) (lst.len - 1 .< 0).step(-1) swap(&lst[end], &lst[0]) siftdown(&lst, 0, end - 1)   V arr = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0] heapsort(&arr) print(arr)
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#360_Assembly
360 Assembly
* Merge sort 19/06/2016 MAIN CSECT STM R14,R12,12(R13) save caller's registers LR R12,R15 set R12 as base register USING MAIN,R12 notify assembler LA R11,SAVEXA get the address of my savearea ST R13,4(R11) save caller's save area pointer ST R11,8(R13) save my save area pointer LR R13,R11 set R13 to point to my save area LA R1,1 1 LA R2,NN hbound(a) BAL R14,SPLIT call split(1,hbound(a)) LA RPGI,PG pgi=0 LA RI,1 i=1 DO WHILE=(C,RI,LE,=A(NN)) do i=1 to hbound(a) LR R1,RI i SLA R1,2 . L R2,A-4(R1) a(i) XDECO R2,XDEC edit a(i) MVC 0(4,RPGI),XDEC+8 output a(i) LA RPGI,4(RPGI) pgi=pgi+4 LA RI,1(RI) i=i+1 ENDDO , end do XPRNT PG,80 print buffer L R13,SAVEXA+4 restore caller's savearea address LM R14,R12,12(R13) restore caller's registers XR R15,R15 set return code to 0 BR R14 return to caller * split(istart,iend) ------recursive--------------------- SPLIT STM R14,R12,12(R13) save all registers LR R9,R1 save R1 LA R1,72 amount of storage required GETMAIN RU,LV=(R1) allocate storage for stack USING STACK,R10 make storage addressable LR R10,R1 establish stack addressability LA R11,SAVEXB get the address of my savearea ST R13,4(R11) save caller's save area pointer ST R11,8(R13) save my save area pointer LR R13,R11 set R13 to point to my save area LR R1,R9 restore R1 LR RSTART,R1 istart=R1 LR REND,R2 iend=R2 IF CR,REND,EQ,RSTART THEN if iend=istart B RETURN return ENDIF , end if BCTR R2,0 iend-1 IF C,R2,EQ,RSTART THEN if iend-istart=1 LR R1,REND iend SLA R1,2 . L R2,A-4(R1) a(iend) LR R1,RSTART istart SLA R1,2 . L R3,A-4(R1) a(istart) IF CR,R2,LT,R3 THEN if a(iend)<a(istart) LR R1,RSTART istart SLA R1,2 . LA R2,A-4(R1) @a(istart) LR R1,REND iend SLA R1,2 . LA R3,A-4(R1) @a(iend) MVC TEMP,0(R2) temp=a(istart) MVC 0(4,R2),0(R3) a(istart)=a(iend) MVC 0(4,R3),TEMP a(iend)=temp ENDIF , end if B RETURN return ENDIF , end if LR RMIDDL,REND iend SR RMIDDL,RSTART iend-istart SRA RMIDDL,1 (iend-istart)/2 AR RMIDDL,RSTART imiddl=istart+(iend-istart)/2 LR R1,RSTART istart LR R2,RMIDDL imiddl BAL R14,SPLIT call split(istart,imiddl) LA R1,1(RMIDDL) imiddl+1 LR R2,REND iend BAL R14,SPLIT call split(imiddl+1,iend) LR R1,RSTART istart LR R2,RMIDDL imiddl LR R3,REND iend BAL R14,MERGE call merge(istart,imiddl,iend) RETURN L R13,SAVEXB+4 restore caller's savearea address XR R15,R15 set return code to 0 LA R0,72 amount of storage to free FREEMAIN A=(R10),LV=(R0) free allocated storage L R14,12(R13) restore caller's return address LM R2,R12,28(R13) restore registers R2 to R12 BR R14 return to caller DROP R10 base no longer needed * merge(jstart,jmiddl,jend) ------------------------------------ MERGE STM R1,R3,JSTART jstart=r1,jmiddl=r2,jend=r3 SR R2,R1 jmiddl-jstart LA RBS,2(R2) bs=jmiddl-jstart+2 LA RI,1 i=1 LR R3,RBS bs BCTR R3,0 bs-1 DO WHILE=(CR,RI,LE,R3) do i=0 to bs-1 L R2,JSTART jstart AR R2,RI jstart+i SLA R2,2 . L R2,A-8(R2) a(jstart+i-1) LR R1,RI i SLA R1,2 . ST R2,B-4(R1) b(i)=a(jstart+i-1) LA RI,1(RI) i=i+1 ENDDO , end do LA RI,1 i=1 L RJ,JMIDDL j=jmiddl LA RJ,1(RJ) j=jmiddl+1 L RK,JSTART k=jstart DO UNTIL=(CR,RI,EQ,RBS,OR, do until i=bs or X C,RJ,GT,JEND) j>jend LR R1,RI i SLA R1,2 . L R4,B-4(R1) r4=b(i) LR R1,RJ j SLA R1,2 . L R3,A-4(R1) r3=a(j) LR R9,RK k SLA R9,2 r9 for a(k) IF CR,R4,LE,R3 THEN if b(i)<=a(j) ST R4,A-4(R9) a(k)=b(i) LA RI,1(RI) i=i+1 ELSE , else ST R3,A-4(R9) a(k)=a(j) LA RJ,1(RJ) j=j+1 ENDIF , end if LA RK,1(RK) k=k+1 ENDDO , end do DO WHILE=(CR,RI,LT,RBS) do while i<bs LR R1,RI i SLA R1,2 . L R2,B-4(R1) b(i) LR R1,RK k SLA R1,2 . ST R2,A-4(R1) a(k)=b(i) LA RI,1(RI) i=i+1 LA RK,1(RK) k=k+1 ENDDO , end do BR R14 return to caller * ------- ------------------ ------------------------------------ LTORG SAVEXA DS 18F savearea of main NN EQU ((B-A)/L'A) number of items A DC F'4',F'65',F'2',F'-31',F'0',F'99',F'2',F'83',F'782',F'1' DC F'45',F'82',F'69',F'82',F'104',F'58',F'88',F'112',F'89',F'74' B DS (NN/2+1)F merge sort static storage TEMP DS F for swap JSTART DS F jstart JMIDDL DS F jmiddl JEND DS F jend PG DC CL80' ' buffer XDEC DS CL12 for edit STACK DSECT dynamic area SAVEXB DS 18F " savearea of mergsort (72 bytes) YREGS RI EQU 6 i RJ EQU 7 j RK EQU 8 k RSTART EQU 6 istart REND EQU 7 i RMIDDL EQU 8 i RPGI EQU 3 pgi RBS EQU 0 bs END MAIN
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Go
Go
package main   import "fmt"   func main() { list := pancake{31, 41, 59, 26, 53, 58, 97, 93, 23, 84} fmt.Println("unsorted:", list)   list.sort() fmt.Println("sorted! ", list) }   type pancake []int   func (a pancake) sort() { for uns := len(a) - 1; uns > 0; uns-- { // find largest in unsorted range lx, lg := 0, a[0] for i := 1; i <= uns; i++ { if a[i] > lg { lx, lg = i, a[i] } } // move to final position in two flips a.flip(lx) a.flip(uns) } }   func (a pancake) flip(r int) { for l := 0; l < r; l, r = l+1, r-1 { a[l], a[r] = a[r], a[l] } }
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Oz
Oz
declare proc {StoogeSort Arr} proc {Swap I J} Tmp = Arr.I in Arr.I := Arr.J Arr.J := Tmp end   proc {Sort I J} Size = J-I+1 in if Arr.J < Arr.I then {Swap I J} end if Size >= 3 then Third = Size div 3 in {Sort I J-Third} {Sort I+Third J} {Sort I J-Third} end end in {Sort {Array.low Arr} {Array.high Arr}} end   Arr = {Tuple.toArray unit(1 4 5 3 ~6 3 7 10 ~2 ~5 7 5 9 ~3 7)} in {System.printInfo "\nUnsorted: "} for I in {Array.low Arr}..{Array.high Arr} do {System.printInfo Arr.I#", "} end   {StoogeSort Arr}   {System.printInfo "\nSorted  : "} for I in {Array.low Arr}..{Array.high Arr} do {System.printInfo Arr.I#", "} end
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#UNIX_Shell
UNIX Shell
f() { sleep "$1" echo "$1" } while [ -n "$1" ] do f "$1" & shift done wait
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#Wren
Wren
import "timer" for Timer import "io" for Stdout import "os" for Process   var args = Process.arguments var n = args.count if (n < 2) Fiber.abort("There must be at least two arguments passed.") var list = args.map{ |a| Num.fromString(a) }.toList if (list.any { |i| i == null || !i.isInteger || i < 0 } ) { Fiber.abort("All arguments must be non-negative integers.") } var max = list.reduce { |acc, i| acc = (i > acc) ? i : acc } var fibers = List.filled(max+1, null) System.print("Before: %(list.join(" "))") for (i in list) { var sleepSort = Fiber.new { |i| Timer.sleep(1000) Fiber.yield(i) } fibers[i] = sleepSort } System.write("After : ") for (i in 0..max) { var fib = fibers[i] if (fib) { System.write("%(fib.call(i)) ") Stdout.flush() } } System.print()
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#F.23
F#
  let rec ssort = function [] -> [] | x::xs -> let min, rest = List.fold (fun (min,acc) x -> if h<min then (h, min::acc) else (min, h::acc)) (x, []) xs in min::ssort rest  
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Go
Go
package main   import ( "errors" "fmt" "unicode" )   var code = []byte("01230127022455012623017202")   func soundex(s string) (string, error) { var sx [4]byte var sxi int var cx, lastCode byte for i, c := range s { switch { case !unicode.IsLetter(c): if c < ' ' || c == 127 { return "", errors.New("ASCII control characters disallowed") } if i == 0 { return "", errors.New("initial character must be a letter") } lastCode = '0' continue case c >= 'A' && c <= 'Z': cx = byte(c - 'A') case c >= 'a' && c <= 'z': cx = byte(c - 'a') default: return "", errors.New("non-ASCII letters unsupported") } // cx is valid letter index at this point if i == 0 { sx[0] = cx + 'A' sxi = 1 continue } switch x := code[cx]; x { case '7', lastCode: case '0': lastCode = '0' default: sx[sxi] = x if sxi == 3 { return string(sx[:]), nil } sxi++ lastCode = x } } if sxi == 0 { return "", errors.New("no letters present") } for ; sxi < 4; sxi++ { sx[sxi] = '0' } return string(sx[:]), nil }   func main() { for _, s := range []string{ "Robert", // WP test case = R163 "Rupert", // WP test case = R163 "Rubin", // WP test case = R150 "ashcroft", // WP test case = A261 "ashcraft", // s and c combine across h, t not needed "moses", // s's don't combine across e "O'Mally", // apostrophe allowed, adjacent ll's combine "d jay", // spaces allowed "R2-D2", // digits, hyphen allowed "12p2", // just not in leading position "naïve", // non ASCII disallowed "", // empty string disallowed "bump\t", // ASCII control characters disallowed } { if x, err := soundex(s); err == nil { fmt.Println("soundex", s, "=", x) } else { fmt.Printf("\"%s\" fail. %s\n", s, err) } } }
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#M2000_Interpreter
M2000 Interpreter
  Module ShellSortExample { Module shellsort(&a()) { DEf h%, i%, j%, k, n% n%=LEN(a()) h% = n% WHILE h% { IF h% = 2 THEN {h% = 1 }ELSE h%= h% DIV 2.2 FOR i% = h% TO n% - 1 k = a(i%) j% = i% WHILE j% >= h% AND k < a(ABS(j% - h%)) { a(j%) = a(j% - h%) j% -= h% } a(j%) = k NEXT i% } }   Dim numbers(10) numbers(0)=4, 65, 2, -31, 0, 99, 2, 83, 782, 1 shellsort &numbers() Print numbers() } ShellSortExample  
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Maple
Maple
shellsort := proc(arr) local n, gap, i, val, j; n := numelems(arr): gap := trunc(n/2): while (gap > 0) do #notice by 1 error for i from gap to n by 1 do val := arr[i]; j := i; while (j > gap and arr[j-gap] > val) do arr[j] := arr[j-gap]; j -= gap; end do; arr[j] := val; end do; gap := trunc(gap/2); end do; end proc; arr := Array([17,3,72,0,36,2,3,8,40,0]); shellsort(arr); arr;
http://rosettacode.org/wiki/Stable_marriage_problem
Stable marriage problem
Solve the Stable marriage problem using the Gale/Shapley algorithm. Problem description Given an equal number of men and women to be paired for marriage, each man ranks all the women in order of his preference and each woman ranks all the men in order of her preference. A stable set of engagements for marriage is one where no man prefers a woman over the one he is engaged to, where that other woman also prefers that man over the one she is engaged to. I.e. with consulting marriages, there would be no reason for the engagements between the people to change. Gale and Shapley proved that there is a stable set of engagements for any set of preferences and the first link above gives their algorithm for finding a set of stable engagements. Task Specifics Given ten males: abe, bob, col, dan, ed, fred, gav, hal, ian, jon And ten females: abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan And a complete list of ranked preferences, where the most liked is to the left: abe: abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay bob: cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay col: hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan dan: ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi ed: jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay fred: bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay gav: gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay hal: abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee ian: hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve jon: abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope abi: bob, fred, jon, gav, ian, abe, dan, ed, col, hal bea: bob, abe, col, fred, gav, dan, ian, ed, jon, hal cath: fred, bob, ed, gav, hal, col, ian, abe, dan, jon dee: fred, jon, col, abe, ian, hal, gav, dan, bob, ed eve: jon, hal, fred, dan, abe, gav, col, ed, ian, bob fay: bob, abe, ed, ian, jon, dan, fred, gav, col, hal gay: jon, gav, hal, fred, bob, abe, col, ed, dan, ian hope: gav, jon, bob, abe, ian, dan, hal, ed, col, fred ivy: ian, col, hal, gav, fred, bob, abe, ed, jon, dan jan: ed, hal, gav, abe, bob, jon, col, ian, fred, dan Use the Gale Shapley algorithm to find a stable set of engagements Perturb this set of engagements to form an unstable set of engagements then check this new set for stability. References The Stable Marriage Problem. (Eloquent description and background information). Gale-Shapley Algorithm Demonstration. Another Gale-Shapley Algorithm Demonstration. Stable Marriage Problem - Numberphile (Video). Stable Marriage Problem (the math bit) (Video). The Stable Marriage Problem and School Choice. (Excellent exposition)
#zkl
zkl
var Boys=Dictionary( "abe", "abi eve cath ivy jan dee fay bea hope gay".split(), "bob", "cath hope abi dee eve fay bea jan ivy gay".split(), "col", "hope eve abi dee bea fay ivy gay cath jan".split(), "dan", "ivy fay dee gay hope eve jan bea cath abi".split(), "ed", "jan dee bea cath fay eve abi ivy hope gay".split(), "fred","bea abi dee gay eve ivy cath jan hope fay".split(), "gav", "gay eve ivy bea cath abi dee hope jan fay".split(), "hal", "abi eve hope fay ivy cath jan bea gay dee".split(), "ian", "hope cath dee gay bea abi fay ivy jan eve".split(), "jon", "abi fay jan gay eve bea dee cath ivy hope".split(), ), Girls=Dictionary( "abi", "bob fred jon gav ian abe dan ed col hal".split(), "bea", "bob abe col fred gav dan ian ed jon hal".split(), "cath","fred bob ed gav hal col ian abe dan jon".split(), "dee", "fred jon col abe ian hal gav dan bob ed".split(), "eve", "jon hal fred dan abe gav col ed ian bob".split(), "fay", "bob abe ed ian jon dan fred gav col hal".split(), "gay", "jon gav hal fred bob abe col ed dan ian".split(), "hope","gav jon bob abe ian dan hal ed col fred".split(), "ivy", "ian col hal gav fred bob abe ed jon dan".split(), "jan", "ed hal gav abe bob jon col ian fred dan".split(), ), Couples=List(); // ( (boy,girl),(boy,girl),...)   Boyz:=Boys.pump(Dictionary(),fcn([(b,gs)]){ return(b,gs.copy()) }); // make writable copy while( bgs:=Boyz.filter1( 'wrap([(Boy,gs)]){ // while unattached boy gs and (not Couples.filter1("holds",Boy)) }) ) { Boy,Girl:=bgs; Girl=Girl.pop(0); Pair:=Couples.filter1("holds",Girl); // is Girl part of a couple? if(not Pair) Couples.append(List(Boy,Girl)); # no, Girl was free else{ // yes, Girl is engaged to Pair[0] bsf,nBoy,nB:=Girls[Girl].index, bsf(Boy),bsf(Pair[0]); if(nBoy<nB) Pair[0]=Boy; # Girl prefers Boy, change Couples } } foreach Boy,Girl in (Couples){ println(Girl," is engaged to ",Boy) }   fcn checkCouples(Couples){ Couples.filter(fcn([(Boy,Girl)]){ Girls[Girl].filter1('wrap(B){ // is B before Boy in Girls preferences? bsf,nBoy,nB:=Girls[Girl].index, bsf(Boy),bsf(B); // Does B prefer Girl (over his partner)? _,G:=Couples.filter1("holds",B); // (B,G) gsf,nGirl,nG:=Boys[B].index, gsf(Girl),gsf(G); ( nB<nBoy and nGirl<nG and println(Girl," likes ",B," better than ",Boy," and ", B," likes ",Girl," better than ",G) ) }) }) or println("All marriages are stable"); }   checkCouples(Couples); println();   println("Engage fred with abi and jon with bea"); Couples.filter1("holds","fred")[1]="abi"; Couples.filter1("holds","jon") [1]="bea"; checkCouples(Couples);
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#M2000_Interpreter
M2000 Interpreter
  Module Checkit { a=Stack Stack a { Push 100, 200, 300 } Print StackItem(a, 1)=300 Stack a { Print StackItem(1)=300 While not empty { Read N Print N } } } Checkit  
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#OCaml
OCaml
let next_dir = function | 1, 0 -> 0, -1 | 0, 1 -> 1, 0 | -1, 0 -> 0, 1 | 0, -1 -> -1, 0 | _ -> assert false   let next_pos ~pos:(x,y) ~dir:(nx,ny) = (x+nx, y+ny)   let next_cell ar ~pos:(x,y) ~dir:(nx,ny) = try ar.(x+nx).(y+ny) with _ -> -2   let for_loop n init fn = let rec aux i v = if i < n then aux (i+1) (fn i v) in aux 0 init   let spiral ~n = let ar = Array.make_matrix n n (-1) in let pos = 0, 0 in let dir = 0, 1 in let set (x, y) i = ar.(x).(y) <- i in let step (pos, dir) = match next_cell ar pos dir with | -1 -> (next_pos pos dir, dir) | _ -> let dir = next_dir dir in (next_pos pos dir, dir) in for_loop (n*n) (pos, dir) (fun i (pos, dir) -> set pos i; step (pos, dir)); (ar)   let print = Array.iter (fun line -> Array.iter (Printf.printf " %2d") line; print_newline())   let () = print(spiral 5)
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Phix
Phix
with javascript_semantics function radixSortn(sequence s, integer n) sequence buckets = repeat({},10), res = {} for i=1 to length(s) do integer digit = remainder(floor(s[i]/power(10,n-1)),10)+1 buckets[digit] = append(buckets[digit],s[i]) end for for i=1 to length(buckets) do integer len = length(buckets[i]) if len!=0 then if len=1 or n=1 then res &= buckets[i] else res &= radixSortn(buckets[i],n-1) end if end if end for return res end function function split_by_sign(sequence s) sequence buckets = {{},{}} for i=1 to length(s) do integer si = s[i] if si<0 then buckets[1] = append(buckets[1],-si) else buckets[2] = append(buckets[2],si) end if end for return buckets end function function radixSort(sequence s) integer mins = min(s), passes = max(max(s),abs(mins)) passes = floor(log10(passes))+1 if mins<0 then sequence buckets = split_by_sign(s) s = reverse(sq_uminus(radixSortn(buckets[1],passes))) & radixSortn(buckets[2],passes) else s = radixSortn(s,passes) end if return s end function ?radixSort({1, 3, 8, 9, 0, 0, 8, 7, 1, 6}) ?radixSort({170, 45, 75, 90, 2, 24, 802, 66}) ?radixSort({170, 45, 75, 90, 2, 24, -802, -66}) ?radixSort({100000, -10000, 400, 23, 10000})
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#BASIC
BASIC
DECLARE SUB quicksort (arr() AS INTEGER, leftN AS INTEGER, rightN AS INTEGER)   DIM q(99) AS INTEGER DIM n AS INTEGER   RANDOMIZE TIMER   FOR n = 0 TO 99 q(n) = INT(RND * 9999) NEXT   OPEN "output.txt" FOR OUTPUT AS 1 FOR n = 0 TO 99 PRINT #1, q(n), NEXT PRINT #1, quicksort q(), 0, 99 FOR n = 0 TO 99 PRINT #1, q(n), NEXT CLOSE   SUB quicksort (arr() AS INTEGER, leftN AS INTEGER, rightN AS INTEGER) DIM pivot AS INTEGER, leftNIdx AS INTEGER, rightNIdx AS INTEGER leftNIdx = leftN rightNIdx = rightN IF (rightN - leftN) > 0 THEN pivot = (leftN + rightN) / 2 WHILE (leftNIdx <= pivot) AND (rightNIdx >= pivot) WHILE (arr(leftNIdx) < arr(pivot)) AND (leftNIdx <= pivot) leftNIdx = leftNIdx + 1 WEND WHILE (arr(rightNIdx) > arr(pivot)) AND (rightNIdx >= pivot) rightNIdx = rightNIdx - 1 WEND SWAP arr(leftNIdx), arr(rightNIdx) leftNIdx = leftNIdx + 1 rightNIdx = rightNIdx - 1 IF (leftNIdx - 1) = pivot THEN rightNIdx = rightNIdx + 1 pivot = rightNIdx ELSEIF (rightNIdx + 1) = pivot THEN leftNIdx = leftNIdx - 1 pivot = leftNIdx END IF WEND quicksort arr(), leftN, pivot - 1 quicksort arr(), pivot + 1, rightN END IF END SUB
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Julia
Julia
function patiencesort(list::Vector{T}) where T piles = Vector{Vector{T}}() for n in list if isempty(piles) || (i = findfirst(pile -> n <= pile[end], piles)) == nothing push!(piles, [n]) else push!(piles[i], n) end end mergesorted(piles) end   function mergesorted(vecvec) lengths = map(length, vecvec) allsum = sum(lengths) sorted = similar(vecvec[1], allsum) for i in 1:allsum (val, idx) = findmin(map(x -> x[end], vecvec)) sorted[i] = pop!(vecvec[idx]) if isempty(vecvec[idx]) deleteat!(vecvec, idx) end end sorted end   println(patiencesort(rand(collect(1:1000), 12)))  
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Arturo
Arturo
insertionSort: function [items][ arr: new items loop 1..(size items)-1 'i [ value: arr\[i] j: i - 1   while [and? -> j >= 0 -> value < arr\[j]] [ arr\[j+1]: arr\[j] j: j - 1 ] arr\[j+1]: value ] return arr ]   print insertionSort [3 1 2 8 5 7 9 4 6]
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Prolog
Prolog
permutation_sort(L,S) :- permutation(L,S), sorted(S).   sorted([]). sorted([_]). sorted([X,Y|ZS]) :- X =< Y, sorted([Y|ZS]).   permutation([],[]). permutation([X|XS],YS) :- permutation(XS,ZS), select(X,YS,ZS).
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#PureBasic
PureBasic
Macro reverse(firstIndex, lastIndex) first = firstIndex last = lastIndex While first < last Swap cur(first), cur(last) first + 1 last - 1 Wend EndMacro   Procedure nextPermutation(Array cur(1)) Protected first, last, elementCount = ArraySize(cur()) If elementCount < 2 ProcedureReturn #False ;nothing to permute EndIf   ;Find the lowest position pos such that [pos] < [pos+1] Protected pos = elementCount - 1 While cur(pos) >= cur(pos + 1) pos - 1 If pos < 0 reverse(0, elementCount) ProcedureReturn #False ;no higher lexicographic permutations left, return lowest one instead EndIf Wend   ;Swap [pos] with the highest positional value that is larger than [pos] last = elementCount While cur(last) <= cur(pos) last - 1 Wend Swap cur(pos), cur(last)   ;Reverse the order of the elements in the higher positions reverse(pos + 1, elementCount) ProcedureReturn #True ;next lexicographic permutation found EndProcedure   Procedure display(Array a(1)) Protected i, fin = ArraySize(a()) For i = 0 To fin Print(Str(a(i))) If i = fin: Continue: EndIf Print(", ") Next PrintN("") EndProcedure   If OpenConsole() Dim a(9) a(0) = 8: a(1) = 3: a(2) = 10: a(3) = 6: a(4) = 1: a(5) = 9: a(6) = 7: a(7) = -4: a(8) = 5: a(9) = 3 display(a()) While nextPermutation(a()): Wend display(a())   Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input() CloseConsole() EndIf
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#360_Assembly
360 Assembly
* Heap sort 22/06/2016 HEAPS CSECT USING HEAPS,R13 base register B 72(R15) skip savearea DC 17F'0' savearea STM R14,R12,12(R13) prolog ST R13,4(R15) " ST R15,8(R13) " LR R13,R15 " L R1,N n BAL R14,HEAPSORT call heapsort(n) LA R3,PG pgi=0 LA R6,1 i=1 DO WHILE=(C,R6,LE,N) for i=1 to n LR R1,R6 i SLA R1,2 . L R2,A-4(R1) a(i) XDECO R2,XDEC edit a(i) MVC 0(4,R3),XDEC+8 output a(i) LA R3,4(R3) pgi=pgi+4 LA R6,1(R6) i=i+1 ENDDO , end for XPRNT PG,80 print buffer L R13,4(0,R13) epilog LM R14,R12,12(R13) " XR R15,R15 " BR R14 exit PG DC CL80' ' local data XDEC DS CL12 " *------- heapsort(icount)---------------------------------------------- HEAPSORT ST R14,SAVEHPSR save return addr ST R1,ICOUNT icount BAL R14,HEAPIFY call heapify(icount) MVC IEND,ICOUNT iend=icount DO WHILE=(CLC,IEND,GT,=F'1') while iend>1 L R1,IEND iend LA R2,1 1 BAL R14,SWAP call swap(iend,1) LA R1,1 1 L R2,IEND iend BCTR R2,0 -1 ST R2,IEND iend=iend-1 BAL R14,SIFTDOWN call siftdown(1,iend) ENDDO , end while L R14,SAVEHPSR restore return addr BR R14 return to caller SAVEHPSR DS A local data ICOUNT DS F " IEND DS F " *------- heapify(count)------------------------------------------------ HEAPIFY ST R14,SAVEHPFY save return addr ST R1,COUNT count SRA R1,1 /2 ST R1,ISTART istart=count/2 DO WHILE=(C,R1,GE,=F'1') while istart>=1 L R1,ISTART istart L R2,COUNT count BAL R14,SIFTDOWN call siftdown(istart,count) L R1,ISTART istart BCTR R1,0 -1 ST R1,ISTART istart=istart-1 ENDDO , end while L R14,SAVEHPFY restore return addr BR R14 return to caller SAVEHPFY DS A local data COUNT DS F " ISTART DS F " *------- siftdown(jstart,jend)----------------------------------------- SIFTDOWN ST R14,SAVESFDW save return addr ST R1,JSTART jstart ST R2,JEND jend ST R1,ROOT root=jstart LR R3,R1 root SLA R3,1 root*2 DO WHILE=(C,R3,LE,JEND) while root*2<=jend ST R3,CHILD child=root*2 MVC SW,ROOT sw=root L R1,SW sw SLA R1,2 . L R2,A-4(R1) a(sw) L R1,CHILD child SLA R1,2 . L R3,A-4(R1) a(child) IF CR,R2,LT,R3 THEN if a(sw)<a(child) then MVC SW,CHILD sw=child ENDIF , end if L R2,CHILD child LA R2,1(R2) +1 L R1,SW sw SLA R1,2 . L R3,A-4(R1) a(sw) L R1,CHILD child LA R1,1(R1) +1 SLA R1,2 . L R4,A-4(R1) a(child+1) IF C,R2,LE,JEND,AND, if child+1<=jend and X CR,R3,LT,R4 THEN a(sw)<a(child+1) then L R2,CHILD child LA R2,1(R2) +1 ST R2,SW sw=child+1 ENDIF , end if IF CLC,SW,NE,ROOT THEN if sw^=root then L R1,ROOT root L R2,SW sw BAL R14,SWAP call swap(root,sw) MVC ROOT,SW root=sw ELSE , else B RETSFDW return ENDIF , end if L R3,ROOT root SLA R3,1 root*2 ENDDO , end while RETSFDW L R14,SAVESFDW restore return addr BR R14 return to caller SAVESFDW DS A local data JSTART DS F " ROOT DS F " JEND DS F " CHILD DS F " SW DS F " *------- swap(x,y)----------------------------------------------------- SWAP SLA R1,2 x LA R1,A-4(R1) @a(x) SLA R2,2 y LA R2,A-4(R2) @a(y) L R3,0(R1) temp=a(x) MVC 0(4,R1),0(R2) a(x)=a(y) ST R3,0(R2) a(y)=temp BR R14 return to caller *------- ------ ------------------------------------------------------- A DC F'4',F'65',F'2',F'-31',F'0',F'99',F'2',F'83',F'782',F'1' DC F'45',F'82',F'69',F'82',F'104',F'58',F'88',F'112',F'89',F'74' N DC A((N-A)/L'A) number of items YREGS END HEAPS
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program mergeSort64.s */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeConstantesARM64.inc"   /*********************************/ /* Initialized data */ /*********************************/ .data szMessSortOk: .asciz "Table sorted.\n" szMessSortNok: .asciz "Table not sorted !!!!!.\n" sMessResult: .asciz "Value  : @ \n" szCarriageReturn: .asciz "\n"   .align 4 TableNumber: .quad 1,3,11,6,2,5,9,10,8,4,7 #TableNumber: .quad 10,9,8,7,6,-5,4,3,2,1 .equ NBELEMENTS, (. - TableNumber) / 8 /*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program ldr x0,qAdrTableNumber // address number table mov x1,0 // first element mov x2,NBELEMENTS // number of élements bl mergeSort ldr x0,qAdrTableNumber // address number table bl displayTable   ldr x0,qAdrTableNumber // address number table mov x1,NBELEMENTS // number of élements bl isSorted // control sort cmp x0,1 // sorted ? beq 1f ldr x0,qAdrszMessSortNok // no !! error sort bl affichageMess b 100f 1: // yes ldr x0,qAdrszMessSortOk bl affichageMess 100: // standard end of the program mov x0,0 // return code mov x8,EXIT // request to exit program svc 0 // perform the system call   qAdrsZoneConv: .quad sZoneConv qAdrszCarriageReturn: .quad szCarriageReturn qAdrsMessResult: .quad sMessResult qAdrTableNumber: .quad TableNumber qAdrszMessSortOk: .quad szMessSortOk qAdrszMessSortNok: .quad szMessSortNok /******************************************************************/ /* control sorted table */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the number of elements > 0 */ /* x0 return 0 if not sorted 1 if sorted */ isSorted: stp x2,lr,[sp,-16]! // save registers stp x3,x4,[sp,-16]! // save registers mov x2,0 ldr x4,[x0,x2,lsl 3] 1: add x2,x2,1 cmp x2,x1 bge 99f ldr x3,[x0,x2, lsl 3] cmp x3,x4 blt 98f mov x4,x3 b 1b 98: mov x0,0 // not sorted b 100f 99: mov x0,1 // sorted 100: ldp x3,x4,[sp],16 // restaur 2 registers ldp x2,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* merge */ /******************************************************************/ /* r0 contains the address of table */ /* r1 contains first start index /* r2 contains second start index */ /* r3 contains the last index */ merge: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers stp x6,x7,[sp,-16]! // save registers str x8,[sp,-16]! mov x5,x2 // init index x2->x5 1: // begin loop first section ldr x6,[x0,x1,lsl 3] // load value first section index r1 ldr x7,[x0,x5,lsl 3] // load value second section index r5 cmp x6,x7 ble 4f // <= -> location first section OK str x7,[x0,x1,lsl 3] // store value second section in first section add x8,x5,1 cmp x8,x3 // end second section ? ble 2f str x6,[x0,x5,lsl 3] b 4f // loop 2: // loop insert element part 1 into part 2 sub x4,x8,1 ldr x7,[x0,x8,lsl 3] // load value 2 cmp x6,x7 // value < bge 3f str x6,[x0,x4,lsl 3] // store value b 4f // loop 3: str x7,[x0,x4,lsl 3] // store value 2 add x8,x8,1 cmp x8,x3 // end second section ? ble 2b // no loop sub x8,x8,1 str x6,[x0,x8,lsl 3] // store value 1 4: add x1,x1,1 cmp x1,x2 // end first section ? blt 1b   100: ldr x8,[sp],16 // restaur 1 register ldp x6,x7,[sp],16 // restaur 2 registers ldp x4,x5,[sp],16 // restaur 2 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* merge sort */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the index of first element */ /* x2 contains the number of element */ mergeSort: stp x3,lr,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers stp x6,x7,[sp,-16]! // save registers cmp x2,2 // end ? blt 100f lsr x4,x2,1 // number of element of each subset add x5,x4,1 tst x2,#1 // odd ? csel x4,x5,x4,ne mov x5,x1 // save first element mov x6,x2 // save number of element mov x7,x4 // save number of element of each subset mov x2,x4 bl mergeSort mov x1,x7 // restaur number of element of each subset mov x2,x6 // restaur number of element sub x2,x2,x1 mov x3,x5 // restaur first element add x1,x1,x3 // + 1 bl mergeSort // sort first subset mov x1,x5 // restaur first element mov x2,x7 // restaur number of element of each subset add x2,x2,x1 mov x3,x6 // restaur number of element add x3,x3,x1 sub x3,x3,1 // last index bl merge 100: ldp x6,x7,[sp],16 // restaur 2 registers ldp x4,x5,[sp],16 // restaur 2 registers ldp x3,lr,[sp],16 // restaur 2 registers ret // return to address lr x30   /******************************************************************/ /* Display table elements */ /******************************************************************/ /* x0 contains the address of table */ displayTable: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers mov x2,x0 // table address mov x3,0 1: // loop display table ldr x0,[x2,x3,lsl 3] ldr x1,qAdrsZoneConv bl conversion10S // décimal conversion ldr x0,qAdrsMessResult ldr x1,qAdrsZoneConv bl strInsertAtCharInc // insert result at // character bl affichageMess // display message add x3,x3,1 cmp x3,NBELEMENTS - 1 ble 1b ldr x0,qAdrszCarriageReturn bl affichageMess mov x0,x2 100: ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Groovy
Groovy
def makeSwap = { a, i, j = i+1 -> print "."; a[[j,i]] = a[[i,j]] }   def flip = { list, n -> (0..<((n+1)/2)).each { makeSwap(list, it, n-it) } }   def pancakeSort = { list -> def n = list.size() (1..<n).reverse().each { i -> def max = list[0..i].max() def flipPoint = (i..0).find{ list[it] == max } if (flipPoint != i) { flip(list, flipPoint) flip(list, i) } } list }
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#PARI.2FGP
PARI/GP
stoogeSort(v)={ local(v=v); \\ Give children access to v ss(1,#v); \\ Sort v }   ss(i,j)={ my(t); if(v[j]<v[i], t=v[i]; v[i]=v[j]; v[j]=t ); if(j-i > 1, t=(1+j-i)\3; ss(i,j-t); ss(i+t,j); ss(i,j-t) ) };
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#zkl
zkl
vm.arglist.apply(fcn(n){ Atomic.sleep(n); print(n) }.launch); Atomic.waitFor(fcn{ vm.numThreads == 1 }); Atomic.sleep(2); println();
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Factor
Factor
USING: kernel math sequences sequences.extras ;   : select ( m n seq -- ) [ dup ] 2dip [ <slice> [ ] infimum-by* drop over + ] [ exchange ] bi ;   : selection-sort! ( seq -- seq' ) [ ] [ length dup ] [ ] tri [ select ] 2curry each-integer ;
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Forth
Forth
defer less? ' < is less?   : least ( start end -- least ) over cell+ do i @ over @ less? if drop i then cell +loop ; : selection ( array len -- ) cells over + tuck ( end start end ) cell- swap do ( end ) i over least ( end least ) i @ over @ i ! swap ! cell +loop drop ;   create array 8 , 1 , 4 , 2 , 10 , 3 , 7 , 9 , 6 , 5 ,   array 10 selection array 10 cells dump
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Groovy
Groovy
  def soundex(s) { def code = "" def lookup = [ B : 1, F : 1, P : 1, V : 1, C : 2, G : 2, J : 2, K : 2, Q : 2, S : 2, X : 2, Z : 2, D : 3, T : 3, L : 4, M : 5, N : 5, R : 6 ] s[1..-1].toUpperCase().inject(7) { lastCode, letter -> def letterCode = lookup[letter] if(letterCode && letterCode != lastCode) { code += letterCode } } return "${s[0]}${code}0000"[0..3] }   println(soundex("Soundex")) println(soundex("Sownteks")) println(soundex("Example")) println(soundex("Ekzampul"))  
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
shellSort[ lst_ ] := Module[ {list = lst, incr, temp, i, j}, incr = Round[Length[list]/2]; While[incr > 0,   For[i = incr + 1, i <= Length[list], i++,   temp = list[[i]]; j = i;   While[(j >= (incr + 1)) && (list[[j - incr]] > temp) , list[[j]] = list[[j - incr]]; j = j-incr; ];   list[[j]] = temp;]; If[incr == 2, incr = 1, incr = Round[incr/2.2]] ]; list ]
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#MATLAB_.2F_Octave
MATLAB / Octave
function list = shellSort(list)   N = numel(list); increment = round(N/2);   while increment > 0   for i = (increment+1:N) temp = list(i); j = i; while (j >= increment+1) && (list(j-increment) > temp) list(j) = list(j-increment); j = j - increment; end   list(j) = temp;   end %for   if increment == 2 %This case causes shell sort to become insertion sort increment = 1; else increment = round(increment/2.2); end end %while end %shellSort
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Maple
Maple
with(stack): # load the package, to allow use of short command names   s := stack:-new(a, b):   push(c, s):   # The following statements terminate with a semicolon and print output. top(s); pop(s); pop(s); empty(s); pop(s); empty(s);
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Octave
Octave
function a = spiral(n) a = ones(n*n, 1); u = -(i = n) * (v = ones(n, 1)); for k = n-1:-1:1 j = 1:k; a(j+i) = u(j) = -u(j); a(j+(i+k)) = v(j) = -v(j); i += 2*k; endfor a(cumsum(a)) = 1:n*n; a = reshape(a, n, n)'-1; endfunction   >> spiral(5) ans =   0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#PicoLisp
PicoLisp
(de radixSort (Lst) (let Mask 1 (while (let (Pos (list NIL NIL) Neg (list NIL NIL) Flg) (for N Lst (queue (if2 (ge0 N) (bit? Mask N) (cdr Pos) Pos Neg (cdr Neg) ) N ) (and (>= (abs N) Mask) (on Flg)) ) (setq Lst (conc (apply conc Neg) (apply conc Pos)) Mask (* 2 Mask) ) Flg ) ) ) Lst )
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#PureBasic
PureBasic
Structure bucket List i.i() EndStructure   DataSection ;sets specify the size (1 based) followed by each integer set1: Data.i 10 ;size Data.i 1, 3, 8, 9, 0, 0, 8, 7, 1, 6 ;data set2: Data.i 8 Data.i 170, 45, 75, 90, 2, 24, 802, 66 set3: Data.i 8 Data.i 170, 45, 75, 90, 2, 24, -802, -66 EndDataSection   Procedure setIntegerArray(Array x(1), *setPtr) Protected i, count count = PeekI(*setPtr) - 1 ;convert to zero based count *setPtr + SizeOf(Integer) ;move pointer forward to data Dim x(count) For i = 0 To count x(i) = PeekI(*setPtr + i * SizeOf(Integer)) Next EndProcedure   Procedure displayArray(Array x(1)) Protected i, Size = ArraySize(x()) For i = 0 To Size Print(Str(x(i))) If i < Size: Print(", "): EndIf Next PrintN("") EndProcedure   Procedure radixSort(Array x(1), Base = 10) Protected count = ArraySize(x()) If Base < 1 Or count < 1: ProcedureReturn: EndIf ;exit due to invalid values   Protected i, pv, digit, digitCount, maxAbs, pass, index ;find element with largest number of digits For i = 0 To count If Abs(x(i)) > maxAbs maxAbs = Abs(x(i)) EndIf Next   digitCount = Int(Log(maxAbs)/Log(Base)) + 1   For pass = 1 To digitCount Dim sortBuckets.bucket(Base * 2 - 1) pv = Pow(Base, pass - 1)   ;place elements in buckets according to the current place-value's digit For index = 0 To count digit = Int(x(index)/pv) % Base + Base AddElement(sortBuckets(digit)\i()) sortBuckets(digit)\i() = x(index) Next   ;transfer contents of buckets back into array index = 0 For digit = 1 To (Base * 2) - 1 ForEach sortBuckets(digit)\i() x(index) = sortBuckets(digit)\i() index + 1 Next Next Next EndProcedure   If OpenConsole() Dim x(0) setIntegerArray(x(), ?set1) radixSort(x()): displayArray(x())   setIntegerArray(x(), ?set2) radixSort(x()): displayArray(x())   setIntegerArray(x(), ?set3) radixSort(x(), 2): displayArray(x())   Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input() CloseConsole() EndIf
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#BCPL
BCPL
// This can be run using Cintcode BCPL freely available from www.cl.cam.ac.uk/users/mr10.   GET "libhdr.h"   LET quicksort(v, n) BE qsort(v+1, v+n)   AND qsort(l, r) BE { WHILE l+8<r DO { LET midpt = (l+r)/2 // Select a good(ish) median value. LET val = middle(!l, !midpt, !r) LET i = partition(val, l, r) // Only use recursion on the smaller partition. TEST i>midpt THEN { qsort(i, r); r := i-1 } ELSE { qsort(l, i-1); l := i } }   FOR p = l+1 TO r DO // Now perform insertion sort. FOR q = p-1 TO l BY -1 TEST q!0<=q!1 THEN BREAK ELSE { LET t = q!0 q!0 := q!1 q!1 := t } }   AND middle(a, b, c) = a<b -> b<c -> b, a<c -> c, a, b<c -> a<c -> a, c, b   AND partition(median, p, q) = VALOF { LET t = ? WHILE !p < median DO p := p+1 WHILE !q > median DO q := q-1 IF p>=q RESULTIS p t  := !p  !p := !q  !q := t p, q := p+1, q-1 } REPEAT   LET start() = VALOF { LET v = VEC 1000 FOR i = 1 TO 1000 DO v!i := randno(1_000_000) quicksort(v, 1000) FOR i = 1 TO 1000 DO { IF i MOD 10 = 0 DO newline() writef(" %i6", v!i) } newline() }
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Kotlin
Kotlin
// version 1.1.2   fun <T : Comparable<T>> patienceSort(arr: Array<T>) { if (arr.size < 2) return val piles = mutableListOf<MutableList<T>>() outer@ for (el in arr) { for (pile in piles) { if (pile.last() > el) { pile.add(el) continue@outer } } piles.add(mutableListOf(el)) }   for (i in 0 until arr.size) { var min = piles[0].last() var minPileIndex = 0 for (j in 1 until piles.size) { if (piles[j].last() < min) { min = piles[j].last() minPileIndex = j } } arr[i] = min val minPile = piles[minPileIndex] minPile.removeAt(minPile.lastIndex) if (minPile.size == 0) piles.removeAt(minPileIndex) } }   fun main(args: Array<String>) { val iArr = arrayOf(4, 65, 2, -31, 0, 99, 83, 782, 1) patienceSort(iArr) println(iArr.contentToString()) val cArr = arrayOf('n', 'o', 'n', 'z', 'e', 'r', 'o', 's', 'u','m') patienceSort(cArr) println(cArr.contentToString()) val sArr = arrayOf("dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu") patienceSort(sArr) println(sArr.contentToString()) }
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#AutoHotkey
AutoHotkey
MsgBox % InsertionSort("") MsgBox % InsertionSort("xxx") MsgBox % InsertionSort("3,2,1") MsgBox % InsertionSort("dog,000000,xx,cat,pile,abcde,1,cat,zz,xx,z")   InsertionSort(var) { ; SORT COMMA SEPARATED LIST StringSplit a, var, `, ; make array, size = a0 Loop % a0-1 { i := A_Index+1, v := a%i%, j := i-1 While j>0 and a%j%>v u := j+1, a%u% := a%j%, j-- u := j+1, a%u% := v } Loop % a0 ; construct string from sorted array sorted .= "," . a%A_Index% Return SubStr(sorted,2) ; drop leading comma }
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Python
Python
from itertools import permutations   in_order = lambda s: all(x <= s[i+1] for i,x in enumerate(s[:-1])) perm_sort = lambda s: (p for p in permutations(s) if in_order(p)).next()
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Quackery
Quackery
[ 1 swap times [ i 1+ * ] ] is ! ( n --> n )   [ [] unrot 1 - times [ i 1+ ! /mod dip join ] drop ] is factoradic ( n n --> [ )   [ [] unrot witheach [ pluck rot swap nested join swap ] join ] is inversion ( [ [ --> [ )   [ over size factoradic inversion ] is nperm ( [ n --> [ )   [ true swap behead swap witheach [ tuck > if [ dip not conclude ] ] drop ] is sorted ( [ --> b )   [ 0 [ 2dup nperm dup sorted not while drop 1+ again ] unrot 2drop ] is sort ( [ --> [ )   $ "beings" sort echo$
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program heapSort64.s */ /* look Pseudocode begin this task */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeConstantesARM64.inc"   /*********************************/ /* Initialized data */ /*********************************/ .data szMessSortOk: .asciz "Table sorted.\n" szMessSortNok: .asciz "Table not sorted !!!!!.\n" sMessResult: .asciz "Value  : @ \n" szCarriageReturn: .asciz "\n"   .align 4 //TableNumber: .quad 1,3,6,2,5,9,10,8,4,7 TableNumber: .quad 10,9,8,7,6,-5,4,3,2,1 .equ NBELEMENTS, (. - TableNumber) / 8 /*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program   1: ldr x0,qAdrTableNumber // address number table mov x1,#NBELEMENTS // number of élements bl heapSort ldr x0,qAdrTableNumber // address number table bl displayTable   ldr x0,qAdrTableNumber // address number table mov x1,#NBELEMENTS // number of élements bl isSorted // control sort cmp x0,#1 // sorted ? beq 2f ldr x0,qAdrszMessSortNok // no !! error sort bl affichageMess b 100f 2: // yes ldr x0,qAdrszMessSortOk bl affichageMess 100: // standard end of the program mov x0, #0 // return code mov x8, #EXIT // request to exit program svc #0 // perform the system call   qAdrszCarriageReturn: .quad szCarriageReturn qAdrsMessResult: .quad sMessResult qAdrTableNumber: .quad TableNumber qAdrszMessSortOk: .quad szMessSortOk qAdrszMessSortNok: .quad szMessSortNok /******************************************************************/ /* control sorted table */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the number of elements > 0 */ /* x0 return 0 if not sorted 1 if sorted */ isSorted: stp x2,lr,[sp,-16]! // save registers stp x3,x4,[sp,-16]! // save registers mov x2,#0 ldr x4,[x0,x2,lsl 3] 1: add x2,x2,1 cmp x2,x1 bge 99f ldr x3,[x0,x2, lsl 3] cmp x3,x4 blt 98f mov x4,x3 b 1b 98: mov x0,0 // not sorted b 100f 99: mov x0,1 // sorted 100: ldp x3,x4,[sp],16 // restaur 2 registers ldp x2,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* heap sort */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the number of element */ heapSort: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers bl heapify // first place table in max-heap order sub x3,x1,1 1: cmp x3,0 ble 100f mov x1,0 // swap the root(maximum value) of the heap with the last element of the heap) mov x2,x3 bl swapElement sub x3,x3,1 mov x1,0 mov x2,x3 // put the heap back in max-heap order bl siftDown b 1b   100: ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* place table in max-heap order */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the number of element */ heapify: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers str x4,[sp,-16]! // save registers mov x4,x1 sub x3,x1,2 lsr x3,x3,1 1: cmp x3,0 blt 100f mov x1,x3 sub x2,x4,1 bl siftDown sub x3,x3,1 b 1b 100: ldr x4,[sp],16 // restaur 1 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* swap two elements of table */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the first index */ /* x2 contains the second index */ swapElement: stp x2,lr,[sp,-16]! // save registers stp x3,x4,[sp,-16]! // save registers ldr x3,[x0,x1,lsl #3] // swap number on the table ldr x4,[x0,x2,lsl #3] str x4,[x0,x1,lsl #3] str x3,[x0,x2,lsl #3] 100: ldp x3,x4,[sp],16 // restaur 2 registers ldp x2,lr,[sp],16 // restaur 2 registers ret // return to address lr x30   /******************************************************************/ /* put the heap back in max-heap order */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the first index */ /* x2 contains the last index */ siftDown: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers stp x6,x7,[sp,-16]! // save registers // x1 = root = start mov x3,x2 // save last index 1: lsl x4,x1,1 add x4,x4,1 cmp x4,x3 bgt 100f add x5,x4,1 cmp x5,x3 bgt 2f ldr x6,[x0,x4,lsl 3] // compare elements on the table ldr x7,[x0,x5,lsl 3] cmp x6,x7 csel x4,x5,x4,lt //movlt x4,x5 2: ldr x7,[x0,x4,lsl 3] // compare elements on the table ldr x6,[x0,x1,lsl 3] // root cmp x6,x7 bge 100f mov x2,x4 // and x1 is root bl swapElement mov x1,x4 // root = child b 1b   100: ldp x6,x7,[sp],16 // restaur 2 registers ldp x4,x5,[sp],16 // restaur 2 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30   /******************************************************************/ /* Display table elements */ /******************************************************************/ /* x0 contains the address of table */ displayTable: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers mov x2,x0 // table address mov x3,0 1: // loop display table ldr x0,[x2,x3,lsl 3] ldr x1,qAdrsZoneConv bl conversion10S // décimal conversion ldr x0,qAdrsMessResult ldr x1,qAdrsZoneConv bl strInsertAtCharInc // insert result at @ character bl affichageMess // display message add x3,x3,1 cmp x3,NBELEMENTS - 1 ble 1b ldr x0,qAdrszCarriageReturn bl affichageMess mov x0,x2 100: ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 qAdrsZoneConv: .quad sZoneConv /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#ACL2
ACL2
(defun split (xys) (if (endp (rest xys)) (mv xys nil) (mv-let (xs ys) (split (rest (rest xys))) (mv (cons (first xys) xs) (cons (second xys) ys)))))   (defun mrg (xs ys) (declare (xargs :measure (+ (len xs) (len ys)))) (cond ((endp xs) ys) ((endp ys) xs) ((< (first xs) (first ys)) (cons (first xs) (mrg (rest xs) ys))) (t (cons (first ys) (mrg xs (rest ys))))))   (defthm split-shortens (implies (consp (rest xs)) (mv-let (ys zs) (split xs) (and (< (len ys) (len xs)) (< (len zs) (len xs))))))   (defun msort (xs) (declare (xargs :measure (len xs) :hints (("Goal" :use ((:instance split-shortens)))))) (if (endp (rest xs)) xs (mv-let (ys zs) (split xs) (mrg (msort ys) (msort zs)))))
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Haskell
Haskell
import Data.List import Control.Arrow import Control.Monad import Data.Maybe   dblflipIt :: (Ord a) => [a] -> [a] dblflipIt = uncurry ((reverse.).(++)). first reverse . ap (flip splitAt) (succ. fromJust. (elemIndex =<< maximum))   dopancakeSort :: (Ord a) => [a] -> [a] dopancakeSort xs = dopcs (xs,[]) where dopcs ([],rs) = rs dopcs ([x],rs) = x:rs dopcs (xs,rs) = dopcs $ (init &&& (:rs).last ) $ dblflipIt xs
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Pascal
Pascal
program StoogeSortDemo;   type TIntArray = array of integer;   procedure stoogeSort(var m: TIntArray; i, j: integer); var t, temp: integer; begin if m[j] < m[i] then begin temp := m[j]; m[j] := m[i]; m[i] := temp; end; if j - i > 1 then begin t := (j - i + 1) div 3; stoogesort(m, i, j-t); stoogesort(m, i+t, j); stoogesort(m, i, j-t); end; end;   var data: TIntArray; i: integer;   begin setlength(data, 8); Randomize; writeln('The data before sorting:'); for i := low(data) to high(data) do begin data[i] := Random(high(data)); write(data[i]:4); end; writeln; stoogeSort(data, low(data), high(data)); writeln('The data after sorting:'); for i := low(data) to high(data) do begin write(data[i]:4); end; writeln; end.
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Fortran
Fortran
PROGRAM SELECTION   IMPLICIT NONE   INTEGER :: intArray(10) = (/ 4, 9, 3, -2, 0, 7, -5, 1, 6, 8 /)   WRITE(*,"(A,10I5)") "Unsorted array:", intArray CALL Selection_sort(intArray) WRITE(*,"(A,10I5)") "Sorted array  :", intArray   CONTAINS   SUBROUTINE Selection_sort(a) INTEGER, INTENT(IN OUT) :: a(:) INTEGER :: i, minIndex, temp   DO i = 1, SIZE(a)-1 minIndex = MINLOC(a(i:), 1) + i - 1 IF (a(i) > a(minIndex)) THEN temp = a(i) a(i) = a(minIndex) a(minIndex) = temp END IF END DO END SUBROUTINE Selection_sort   END PROGRAM SELECTION
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Haskell
Haskell
import Text.PhoneticCode.Soundex   main :: IO () main = mapM_ print $ ((,) <*> soundexSimple) <$> ["Soundex", "Example", "Sownteks", "Ekzampul"]
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#NetRexx
NetRexx
/* NetRexx */ options replace format comments java crossref savelog symbols binary   placesList = [String - "UK London", "US New York", "US Boston", "US Washington" - , "UK Washington", "US Birmingham", "UK Birmingham", "UK Boston" - ] sortedList = shellSort(String[] Arrays.copyOf(placesList, placesList.length))   lists = [placesList, sortedList] loop ln = 0 to lists.length - 1 cl = lists[ln] loop ct = 0 to cl.length - 1 say cl[ct] end ct say end ln   return   method shellSort(a = String[]) public constant binary returns String[]   n = a.length inc = int Math.round(double n / 2.0) loop label inc while inc > 0 loop i_ = inc to n - 1 temp = a[i_] j_ = i_ loop label j_ while j_ >= inc if \(a[j_ - inc].compareTo(temp) > 0) then leave j_ a[j_] = a[j_ - inc] j_ = j_ - inc end j_ a[j_] = temp end i_ inc = int Math.round(double inc / 2.2) end inc   return a   method isTrue public constant binary returns boolean return 1 == 1   method isFalse public constant binary returns boolean return \isTrue  
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
EmptyQ[a_] := If[Length[a] == 0, True, False] SetAttributes[Push, HoldAll];[a_, elem_] := AppendTo[a, elem] SetAttributes[Pop, HoldAllComplete]; Pop[a_] := If[EmptyQ[a], False, b = Last[a]; Set[a, Most[a]]; b] Peek[a_] := If[EmptyQ[a], False, Last[a]]   Example use: stack = {};Push[stack, 1]; Push[stack, 2]; Push[stack, 3]; Push[stack, 4]; Peek[stack] ->4 Pop[stack] ->4 Peek[stack] ->3
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#ooRexx
ooRexx
  call printArray generateArray(3) say call printArray generateArray(4) say call printArray generateArray(5)   ::routine generateArray use arg dimension -- the output array array = .array~new(dimension, dimension)   -- get the number of squares, including the center one if -- the dimension is odd squares = dimension % 2 + dimension // 2 -- length of a side for the current square sidelength = dimension current = 0 loop i = 1 to squares -- do each side of the current square -- top side loop j = 0 to sidelength - 1 array[i, i + j] = current current += 1 end -- down the right side loop j = 1 to sidelength - 1 array[i + j, dimension - i + 1] = current current += 1 end -- across the bottom loop j = sidelength - 2 to 0 by -1 array[dimension - i + 1, i + j] = current current += 1 end -- and up the left side loop j = sidelength - 2 to 1 by -1 array[i + j, i] = current current += 1 end -- reduce the length of the side by two rows sidelength -= 2 end return array   ::routine printArray use arg array dimension = array~dimension(1) loop i = 1 to dimension line = "|" loop j = 1 to dimension line = line array[i, j]~right(2) end line = line "|" say line end  
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Python
Python
#python2.6 < from math import log   def getDigit(num, base, digit_num): # pulls the selected digit return (num // base ** digit_num) % base   def makeBlanks(size): # create a list of empty lists to hold the split by digit return [ [] for i in range(size) ]   def split(a_list, base, digit_num): buckets = makeBlanks(base) for num in a_list: # append the number to the list selected by the digit buckets[getDigit(num, base, digit_num)].append(num) return buckets   # concatenate the lists back in order for the next step def merge(a_list): new_list = [] for sublist in a_list: new_list.extend(sublist) return new_list   def maxAbs(a_list): # largest abs value element of a list return max(abs(num) for num in a_list)   def split_by_sign(a_list): # splits values by sign - negative values go to the first bucket, # non-negative ones into the second buckets = [[], []] for num in a_list: if num < 0: buckets[0].append(num) else: buckets[1].append(num) return buckets   def radixSort(a_list, base): # there are as many passes as there are digits in the longest number passes = int(round(log(maxAbs(a_list), base)) + 1) new_list = list(a_list) for digit_num in range(passes): new_list = merge(split(new_list, base, digit_num)) return merge(split_by_sign(new_list))  
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Beads
Beads
beads 1 program Quicksort   calc main_init var arr = [1, 3, 5, 1, 7, 9, 8, 6, 4, 2] var arr2 = arr quicksort(arr, 1, tree_count(arr)) var tempStr : str loop across:arr index:ix tempStr = tempStr & ' ' & to_str(arr[ix]) log tempStr   calc quicksort( arr:array of num startIndex highIndex ) if (startIndex < highIndex) var partitionIndex = partition(arr, startIndex, highIndex) quicksort(arr, startIndex, partitionIndex - 1) quicksort(arr, partitionIndex+1, highIndex)   calc partition( arr:array of num startIndex highIndex ):num var pivot = arr[highIndex] var i = startIndex - 1 var j = startIndex loop while:(j <= highIndex - 1) if arr[j] < pivot inc i swap arr[i] <=> arr[j] inc j swap arr[i+1] <=> arr[highIndex] return (i+1)  
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Mercury
Mercury
:- module patience_sort_task.   :- interface. :- import_module io. :- pred main(io::di, io::uo) is det.   :- implementation. :- import_module array. :- import_module int. :- import_module list. :- import_module string.   %%%------------------------------------------------------------------- %%% %%% patience_sort/5 -- sorts Array[Ifirst..Ilast] out of place, %%% returning indices in Sorted[0..Ilast-Ifirst]. %%%   :- pred patience_sort(pred(T, T), int, int, array(T), array(int)). :- mode patience_sort(pred(in, in) is semidet, in, in, in, out) is det. patience_sort(Less, Ifirst, Ilast, Array, Sorted) :- deal(Less, Ifirst, Ilast, Array, Num_piles, Piles, Links), k_way_merge(Less, Ifirst, Ilast, Array, Num_piles, Piles, Links, Sorted).   %%%------------------------------------------------------------------- %%% %%% deal/7 -- deals array elements into piles. %%%   :- pred deal(pred(T, T), int, int, array(T), int, array(int), array(int)). :- mode deal(pred(in, in) is semidet, in, in, in, out, array_uo, array_uo). deal(Less, Ifirst, Ilast, Array, Num_piles, Piles, Links) :- Piles_last = Ilast - Ifirst + 1,  %% I do not use index zero of arrays, so must allocate one extra  %% entry per array. init(Piles_last + 1, 0, Piles0), init(Piles_last + 1, 0, Links0), deal_loop(Less, Ifirst, Ilast, Array, 1, 0, Num_piles, Piles0, Piles, Links0, Links).   :- pred deal_loop(pred(T, T), int, int, array(T), int, int, int, array(int), array(int), array(int), array(int)). :- mode deal_loop(pred(in, in) is semidet, in, in, in, in, in, out, array_di, array_uo, array_di, array_uo) is det. deal_loop(Less, Ifirst, Ilast, Array, Q,  !Num_piles, !Piles, !Links) :- Piles_last = Ilast - Ifirst + 1, (if (Q =< Piles_last) then (find_pile(Less, Ifirst, Array, !.Num_piles, !.Piles, Q) = I, (!.Piles^elem(I)) = L1, (!.Piles^elem(I) := Q) = !:Piles, (!.Links^elem(Q) := L1) = !:Links, max(!.Num_piles, I) = !:Num_piles, deal_loop(Less, Ifirst, Ilast, Array, Q + 1,  !Num_piles, !Piles, !Links)) else true).   :- func find_pile(pred(T, T), int, array(T), int, array(int), int) = int. :- mode find_pile(pred(in, in) is semidet, in, in, in, in, in) = out is det. find_pile(Less, Ifirst, Array, Num_piles, Piles, Q) = Index :-  %%  %% Bottenbruch search for the leftmost pile whose top is greater  %% than or equal to x. Return an index such that:  %%  %% * if x is greater than the top element at the far right, then  %% the index returned will be num-piles.  %%  %% * otherwise, x is greater than every top element to the left of  %% index, and less than or equal to the top elements at index  %% and to the right of index.  %%  %% References:  %%  %% * H. Bottenbruch, "Structure and use of ALGOL 60", Journal of  %% the ACM, Volume 9, Issue 2, April 1962, pp.161-221.  %% https://doi.org/10.1145/321119.321120  %%  %% The general algorithm is described on pages 214 and 215.  %%  %% * https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure  %%  %% Note:  %%  %% * There is a binary search in the array module of the standard  %% library, but our search algorithm is known to work in other  %% programming languages and is written specifically for the  %% situation.  %% (if (Num_piles = 0) then (Index = 1) else (find_pile_loop(Less, Ifirst, Array, Piles, Q, 0, Num_piles - 1, J), (if (J = Num_piles - 1) then (I1 = Piles^elem(J + 1) + Ifirst - 1, I2 = Q + Ifirst - 1, (if Less(Array^elem(I1), Array^elem(I2)) then (Index = J + 2) else (Index = J + 1))) else (Index = J + 1)))).   :- pred find_pile_loop(pred(T, T), int, array(T), array(int), int, int, int, int). :- mode find_pile_loop(pred(in, in) is semidet, in, in, in, in, in, in, out) is det. find_pile_loop(Less, Ifirst, Array, Piles, Q, J, K, J1) :- (if (J = K) then (J1 = J) else ((J + K) // 2 = I, I1 = Piles^elem(J + 1) + Ifirst - 1, I2 = Q + Ifirst - 1, (if Less(Array^elem(I1), Array^elem(I2)) then find_pile_loop(Less, Ifirst, Array, Piles, Q, I + 1, K, J1) else find_pile_loop(Less, Ifirst, Array, Piles, Q, J, I, J1)))).   %%%------------------------------------------------------------------- %%% %%% k_way_merge/8 -- %%% %%% k-way merge by tournament tree (specific to this patience sort). %%% %%% See Knuth, volume 3, and also %%% https://en.wikipedia.org/w/index.php?title=K-way_merge_algorithm&oldid=1047851465#Tournament_Tree %%% %%% However, I store a winners tree instead of the recommended losers %%% tree. If the tree were stored as linked nodes, it would probably %%% be more efficient to store a losers tree. However, I am storing %%% the tree as an array, and one can find an opponent quickly by %%% simply toggling the least significant bit of a competitor's array %%% index. %%%   :- pred k_way_merge(pred(T, T), int, int, array(T), int, array(int), array(int), array(int)). :- mode k_way_merge(pred(in, in) is semidet, in, in, in, in, array_di, in, out) is det. %% Contrary to the arrays used internally, the Sorted array is indexed %% starting at zero. k_way_merge(Less, Ifirst, Ilast, Array, Num_piles, Piles, Links, Sorted) :- init(Ilast - Ifirst + 1, 0, Sorted0), build_tree(Less, Ifirst, Array, Num_piles, Links, Piles, Piles1, Total_external_nodes, Winners_values, Winners_indices), k_way_merge_(Less, Ifirst, Array, Piles1, Links, Total_external_nodes, Winners_values, Winners_indices, 0, Sorted0, Sorted).   :- pred k_way_merge_(pred(T, T), int, array(T), array(int), array(int), int, array(int), array(int), int, array(int), array(int)). :- mode k_way_merge_(pred(in, in) is semidet, in, in, array_di, in, in, array_di, array_di, in, array_di, array_uo) is det. %% Contrary to the arrays used internally, the Sorted array is indexed %% starting at zero. k_way_merge_(Less, Ifirst, Array, Piles, Links, Total_external_nodes, Winners_values, Winners_indices, Isorted, !Sorted) :- Total_nodes = (2 * Total_external_nodes) - 1, (Winners_values^elem(1)) = Value, (if (Value = 0) then true else (set(Isorted, Value + Ifirst - 1, !Sorted), (Winners_indices^elem(1)) = Index, (Piles^elem(Index)) = Next, % The next top of pile Index. (if (Next \= 0)  % Drop that top of pile. then (Links^elem(Next) = Link, set(Index, Link, Piles, Piles1)) else (Piles = Piles1)), (Total_nodes // 2) + Index = I, (Winners_values^elem(I) := Next) = Winners_values1, replay_games(Less, Ifirst, Array, I, Winners_values1, Winners_values2, Winners_indices, Winners_indices1), k_way_merge_(Less, Ifirst, Array, Piles1, Links, Total_external_nodes, Winners_values2, Winners_indices1, Isorted + 1, !Sorted))).   :- pred build_tree(pred(T, T), int, array(T), int, array(int), array(int), array(int), int, array(int), array(int)). :- mode build_tree(pred(in, in) is semidet, in, in, in, in, array_di, array_uo, out, out, out) is det. build_tree(Less, Ifirst, Array, Num_piles, Links, !Piles, Total_external_nodes, Winners_values, Winners_indices) :- Total_external_nodes = next_power_of_two(Num_piles), Total_nodes = (2 * Total_external_nodes) - 1,  %% I do not use index zero of arrays, so must allocate one extra  %% entry per array. init(Total_nodes + 1, 0, Winners_values0), init(Total_nodes + 1, 0, Winners_indices0), init_winners_pile_indices(Total_external_nodes, 1, Winners_indices0, Winners_indices1), init_starting_competitors(Total_external_nodes, Num_piles, (!.Piles), 1, Winners_values0, Winners_values1), discard_initial_tops_of_piles(Num_piles, Links, 1, !Piles), play_initial_games(Less, Ifirst, Array, Total_external_nodes, Winners_values1, Winners_values, Winners_indices1, Winners_indices).   :- pred init_winners_pile_indices(int::in, int::in, array(int)::array_di, array(int)::array_uo) is det. init_winners_pile_indices(Total_external_nodes, I,  !Winners_indices) :- (if (I = Total_external_nodes + 1) then true else (set(Total_external_nodes - 1 + I, I, !Winners_indices), init_winners_pile_indices(Total_external_nodes, I + 1,  !Winners_indices))).   :- pred init_starting_competitors(int::in, int::in, array(int)::in, int::in, array(int)::array_di, array(int)::array_uo) is det. init_starting_competitors(Total_external_nodes, Num_piles, Piles, I, !Winners_values) :- (if (I = Num_piles + 1) then true else (Piles^elem(I) = Value, set(Total_external_nodes - 1 + I, Value, !Winners_values), init_starting_competitors(Total_external_nodes, Num_piles, Piles, I + 1, !Winners_values))).   :- pred discard_initial_tops_of_piles(int::in, array(int)::in, int::in, array(int)::array_di, array(int)::array_uo) is det. discard_initial_tops_of_piles(Num_piles, Links, I, !Piles) :- (if (I = Num_piles + 1) then true else ((!.Piles^elem(I)) = Old_value, Links^elem(Old_value) = New_value, set(I, New_value, !Piles), discard_initial_tops_of_piles(Num_piles, Links, I + 1,  !Piles))).   :- pred play_initial_games(pred(T, T), int, array(T), int, array(int), array(int), array(int), array(int)). :- mode play_initial_games(pred(in, in) is semidet, in, in, in, array_di, array_uo, array_di, array_uo) is det. play_initial_games(Less, Ifirst, Array, Istart,  !Winners_values, !Winners_indices) :- (if (Istart = 1) then true else (play_an_initial_round(Less, Ifirst, Array, Istart, Istart,  !Winners_values, !Winners_indices), play_initial_games(Less, Ifirst, Array, Istart // 2,  !Winners_values, !Winners_indices))).   :- pred play_an_initial_round(pred(T, T), int, array(T), int, int, array(int), array(int), array(int), array(int)). :- mode play_an_initial_round(pred(in, in) is semidet, in, in, in, in, array_di, array_uo, array_di, array_uo) is det. play_an_initial_round(Less, Ifirst, Array, Istart, I,  !Winners_values, !Winners_indices) :- (if ((2 * Istart) - 1 < I) then true else (play_game(Less, Ifirst, Array,  !.Winners_values, I) = Iwinner, (!.Winners_values^elem(Iwinner)) = Value, (!.Winners_indices^elem(Iwinner)) = Index, I // 2 = Iparent, set(Iparent, Value, !Winners_values), set(Iparent, Index, !Winners_indices), play_an_initial_round(Less, Ifirst, Array, Istart, I + 2,  !Winners_values, !Winners_indices))).   :- pred replay_games(pred(T, T), int, array(T), int, array(int), array(int), array(int), array(int)). :- mode replay_games(pred(in, in) is semidet, in, in, in, array_di, array_uo, array_di, array_uo) is det. replay_games(Less, Ifirst, Array, I,  !Winners_values, !Winners_indices) :- (if (I = 1) then true else (Iwinner = play_game(Less, Ifirst, Array,  !.Winners_values, I), (!.Winners_values^elem(Iwinner)) = Value, (!.Winners_indices^elem(Iwinner)) = Index, I // 2 = Iparent, set(Iparent, Value, !Winners_values), set(Iparent, Index, !Winners_indices), replay_games(Less, Ifirst, Array, Iparent,  !Winners_values, !Winners_indices))).   :- func play_game(pred(T, T), int, array(T), array(int), int) = int. :- mode play_game(pred(in, in) is semidet, in, in, in, in) = out is det. play_game(Less, Ifirst, Array, Winners_values, I) = Iwinner :- J = xor(I, 1),  % Find an opponent. Winners_values^elem(I) = Value_I, (if (Value_I = 0) then (Iwinner = J) else (Winners_values^elem(J) = Value_J, (if (Value_J = 0) then (Iwinner = I) else (AJ = Array^elem(Value_J + Ifirst - 1), AI = Array^elem(Value_I + Ifirst - 1), (if Less(AJ, AI) then (Iwinner = J) else (Iwinner = I)))))).   %%%-------------------------------------------------------------------   :- func next_power_of_two(int) = int. %% This need not be a fast implemention. next_power_of_two(N) = next_power_of_two_(N, 1).   :- func next_power_of_two_(int, int) = int. next_power_of_two_(N, I) = Pow2 :- if (I < N) then (Pow2 = next_power_of_two_(N, I + I)) else (Pow2 = I).   %%%-------------------------------------------------------------------   :- func example_numbers = list(int). example_numbers = [22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49, 48, 46, 54, 93, 8, 54, 2, 72, 84, 86, 76, 53, 37, 90].   main(!IO) :- from_list(example_numbers, Array), bounds(Array, Ifirst, Ilast), patience_sort(<, Ifirst, Ilast, Array, Sorted), print("unsorted ", !IO), print_int_array(Array, Ifirst, !IO), print_line("", !IO), print("sorted ", !IO), print_indirect_array(Sorted, Array, 0, !IO), print_line("", !IO).   :- pred print_int_array(array(int)::in, int::in, io::di, io::uo) is det. print_int_array(Array, I, !IO) :- bounds(Array, _, Ilast), (if (I = Ilast + 1) then true else (print(" ", !IO), print(from_int(Array^elem(I)), !IO), print_int_array(Array, I + 1, !IO))).   :- pred print_indirect_array(array(int)::in, array(int)::in, int::in, io::di, io::uo) is det. print_indirect_array(Sorted, Array, I, !IO) :- bounds(Sorted, _, Ilast), (if (I = Ilast + 1) then true else (print(" ", !IO), print(from_int(Array^elem(Sorted^elem(I))), !IO), print_indirect_array(Sorted, Array, I + 1, !IO))).   %%%------------------------------------------------------------------- %%% local variables: %%% mode: mercury %%% prolog-indent-width: 2 %%% end:
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#AWK
AWK
{ line[NR] = $0 } END { # sort it with insertion sort for(i=1; i <= NR; i++) { value = line[i] j = i - 1 while( ( j > 0) && ( line[j] > value ) ) { line[j+1] = line[j] j-- } line[j+1] = value } #print it for(i=1; i <= NR; i++) { print line[i] } }
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#R
R
permutationsort <- function(x) { if(!require(e1071) stop("the package e1071 is required") is.sorted <- function(x) all(diff(x) >= 0)   perms <- permutations(length(x)) i <- 1 while(!is.sorted(x)) { x <- x[perms[i,]] i <- i + 1 } x } permutationsort(c(1, 10, 9, 7, 3, 0))
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Racket
Racket
  #lang racket (define (sort l) (for/first ([p (in-permutations l)] #:when (apply <= p)) p)) (sort '(6 1 5 2 4 3)) ; => '(1 2 3 4 5 6)  
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#ActionScript
ActionScript
function heapSort(data:Vector.<int>):Vector.<int> { for (var start:int = (data.length-2)/2; start >= 0; start--) { siftDown(data, start, data.length); } for (var end:int = data.length - 1; end > 0; end--) { var tmp:int=data[0]; data[0]=data[end]; data[end]=tmp; siftDown(data, 0, end); } return data; } function siftDown(data:Vector.<int>, start:int, end:int):void { var heapRoot:int=start; while (heapRoot * 2+1 < end) { var child:int=heapRoot*2+1; if (child+1<end&&data[child]<data[child+1]) { child++; } if (data[heapRoot]<data[child]) { var tmp:int=data[heapRoot]; data[heapRoot]=data[child]; data[child]=tmp; heapRoot=child; } else { return; } } }
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Action.21
Action!
DEFINE MAX_COUNT="100"   PROC PrintArray(INT ARRAY a INT size) INT i   Put('[) FOR i=0 TO size-1 DO IF i>0 THEN Put(' ) FI PrintI(a(i)) OD Put(']) PutE() RETURN   PROC Merge(INT ARRAY a INT first,mid,last) INT ARRAY left(MAX_COUNT),right(MAX_COUNT) INT leftSize,rightSize,i,j,k   leftSize=mid-first+1 rightSize=last-mid   FOR i=0 TO leftSize-1 DO left(i)=a(first+i) OD FOR i=0 TO rightSize-1 DO right(i)=a(mid+1+i) OD i=0 j=0 k=first WHILE i<leftSize AND j<rightSize DO IF left(i)<=right(j) THEN a(k)=left(i) i==+1 ELSE a(k)=right(j) j==+1 FI k==+1 OD   WHILE i<leftSize DO a(k)=left(i) i==+1 k==+1 OD   WHILE j<rightSize DO a(k)=right(j) j==+1 k==+1 OD RETURN   PROC MergeSort(INT ARRAY a INT size) INT currSize,first,mid,last   currSize=1 WHILE currSize<size DO first=0 WHILE first<size-1 DO mid=first+currSize-1 IF mid>size-1 THEN mid=size-1 FI last=first+2*currSize-1 IF last>size-1 THEN last=size-1 FI Merge(a,first,mid,last);   first==+2*currSize OD currSize==*2 OD RETURN   PROC Test(INT ARRAY a INT size) PrintE("Array before sort:") PrintArray(a,size) MergeSort(a,size) PrintE("Array after sort:") PrintArray(a,size) PutE() RETURN   PROC Main() INT ARRAY a(10)=[1 4 65535 0 3 7 4 8 20 65530], b(21)=[10 9 8 7 6 5 4 3 2 1 0 65535 65534 65533 65532 65531 65530 65529 65528 65527 65526], c(8)=[101 102 103 104 105 106 107 108], d(12)=[1 65535 1 65535 1 65535 1 65535 1 65535 1 65535]   Test(a,10) Test(b,21) Test(c,8) Test(d,12) RETURN
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Haxe
Haxe
class PancakeSort { @:generic inline private static function flip<T>(arr:Array<T>, num:Int) { var i = 0; while (i < --num) { var temp = arr[i]; arr[i++] = arr[num]; arr[num] = temp; } }   @:generic public static function sort<T>(arr:Array<T>) { if (arr.length < 2) return;   var i = arr.length; while (i > 1) { var maxNumPos = 0; for (a in 0...i) { if (Reflect.compare(arr[a], arr[maxNumPos]) > 0) maxNumPos = a; } if (maxNumPos == i - 1) i--; if (maxNumPos > 0) flip(arr, maxNumPos + 1); flip(arr, i--); } } }   class Main { static function main() { var integerArray = [1, 10, 2, 5, -1, 5, -19, 4, 23, 0]; var floatArray = [1.0, -3.2, 5.2, 10.8, -5.7, 7.3, 3.5, 0.0, -4.1, -9.5]; var stringArray = ['We', 'hold', 'these', 'truths', 'to', 'be', 'self-evident', 'that', 'all', 'men', 'are', 'created', 'equal']; Sys.println('Unsorted Integers: ' + integerArray); PancakeSort.sort(integerArray); Sys.println('Sorted Integers: ' + integerArray); Sys.println('Unsorted Floats: ' + floatArray); PancakeSort.sort(floatArray); Sys.println('Sorted Floats: ' + floatArray); Sys.println('Unsorted Strings: ' + stringArray); PancakeSort.sort(stringArray); Sys.println('Sorted Strings: ' + stringArray); } }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Icon_and_Unicon
Icon and Unicon
procedure main() #: demonstrate various ways to sort a list and string demosort(pancakesort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty") pancakeflip := pancakeflipshow # replace pancakeflip procedure with a variant that displays each flip pancakesort([3, 14, 1, 5, 9, 2, 6, 3]) end   procedure pancakesort(X,op) #: return sorted list ascending(or descending) local i,m   op := sortop(op,X) # select how and what we sort   every i := *X to 2 by -1 do { # work back to front m := 1 every j := 2 to i do if op(X[m],X[j]) then m := j # find X that belongs @i high (or low) if i ~= m then { # not already in-place X := pancakeflip(X,m) # . bring max (min) to front X := pancakeflip(X,i) # . unsorted portion of stack } } return X end   procedure pancakeflip(X,tail) #: return X[1:tail] flipped local i   i := 0 tail := integer(\tail|*X) + 1 | runerr(101,tail) while X[(i +:= 1) < (tail -:= 1)] :=: X[i] # flip return X end   procedure pancakeflipshow(X,tail) #: return X[1:tail] flipped (and display) local i   i := 0 tail := integer(\tail|*X) + 1 | runerr(101,tail) while X[(i +:= 1) < (tail -:= 1)] :=: X[i] # flip every writes(" ["|right(!X,4)|" ]\n") # show X return X end
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Perl
Perl
sub stooge { use integer; my ($x, $i, $j) = @_;   $i //= 0; $j //= $#$x;   if ( $x->[$j] < $x->[$i] ) { @$x[$i, $j] = @$x[$j, $i]; } if ( $j - $i > 1 ) { my $t = ($j - $i + 1) / 3; stooge( $x, $i, $j - $t ); stooge( $x, $i + $t, $j ); stooge( $x, $i, $j - $t ); } }     my @a = map (int rand(100), 1 .. 10); print "Before @a\n"; stooge(\@a); print "After @a\n";  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#FreeBASIC
FreeBASIC
' version 03-12-2016 ' compile with: fbc -s console ' for boundry checks on array's compile with: fbc -s console -exx   Sub selectionsort(arr() As Long)   ' sort from lower bound to the highter bound ' array's can have subscript range from -2147483648 to +2147483647   Dim As Long i, j, x Dim As Long lb = LBound(arr) Dim As Long ub = UBound(arr)   For i = lb To ub -1 x = i For j = i +1 To ub If arr(j) < arr(x) Then x = j Next If x <> i Then Swap arr(i), arr(x) End If Next   End Sub   ' ------=< MAIN >=------   Dim As Long i, array(-7 To 7) Dim As Long a = LBound(array), b = UBound(array)   Randomize Timer For i = a To b : array(i) = i  : Next For i = a To b ' little shuffle Swap array(i), array(Int(Rnd * (b - a +1)) + a) Next   Print "unsort "; For i = a To b : Print Using "####"; array(i); : Next : Print selectionsort(array()) ' sort the array Print " sort "; For i = a To b : Print Using "####"; array(i); : Next : Print   ' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Icon_and_Unicon
Icon and Unicon
procedure main(arglist) # computes soundex of each argument every write(x := !arglist, " => ",soundex(x)) end   procedure soundex(name) local dig,i,x static con initial { # construct mapping x[i] => i all else . x := ["bfpv","cgjkqsxz","dt","l","mn","r"] every ( dig := con := "") ||:= repl(i := 1 to *x,*x[i]) do con ||:= x[i] con := map(map(&lcase,con,dig),&lcase,repl(".",*&lcase)) }   name := map(name) # lower case name[1] := map(name[1],&lcase,&ucase) # upper case 1st name := map(name,&lcase,con) # map cons every x := !"123456" do while name[find(x||x,name)+:2] := x # kill duplicates while name[upto('.',name)] := "" # kill . return left(name,4,"0") end
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Nim
Nim
proc shellSort[T](a: var openarray[T]) = var h = a.len while h > 0: h = h div 2 for i in h ..< a.len: let k = a[i] var j = i while j >= h and k < a[j-h]: a[j] = a[j-h] j -= h a[j] = k   var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782] shellSort a echo a
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Objeck
Objeck
  bundle Default { class ShellSort { function : Main(args : String[]) ~ Nil { a := [1, 3, 7, 21, 48, 112,336, 861, 1968, 4592, 13776,33936, 86961, 198768, 463792, 1391376,3402672, 8382192, 21479367, 49095696, 114556624,343669872, 52913488, 2085837936]; Shell(a); each(i : a) { IO.Console->Print(a[i])->Print(", "); }; IO.Console->PrintLine(); }   function : native : Shell(a : Int[]) ~ Nil { increment := a->Size() / 2; while(increment > 0) { for(i := increment; i < a->Size(); i += 1;) { j := i; temp := a[i]; while(j >= increment & a[j - increment] > temp) { a[j] := a[j - increment]; j -= increment; }; a[j] := temp; };   if(increment = 2) { increment := 1; } else { increment *= (5.0 / 11); }; }; } } }  
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#MATLAB_.2F_Octave
MATLAB / Octave
mystack = {};   % push mystack{end+1} = x;   %pop x = mystack{end}; mystack{end} = [];   %peek,top x = mystack{end};   % empty isempty(mystack)
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Oz
Oz
declare fun {Spiral N} %% create nested array Arr = {Array.new 1 N unit} for Y in 1..N do Arr.Y := {Array.new 1 N 0} end %% fill it recursively with increasing numbers C = {Counter 0} in {Fill Arr 1 N C} Arr end   proc {Fill Arr S E C} %% go right for X in S..E do Arr.S.X := {C} end %% go down for Y in S+1..E do Arr.Y.E := {C} end %% go left for X in E-1..S;~1 do Arr.E.X := {C} end %% go up for Y in E-1..S+1;~1 do Arr.Y.S := {C} end %% fill the inner rectangle if E - S > 1 then {Fill Arr S+1 E-1 C} end end   fun {Counter N} C = {NewCell N} in fun {$} C := @C + 1 end end in {Inspect {Spiral 5}}
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#QB64
QB64
  #lang QB64 '* don't be an a$$. Keep this credit notice with the source: '* written/refactored by CodeGuy, 2018. '* also works with negative numbers. TESTN& = 63 A$ = "" REDIM b(0 TO TESTN&) AS DOUBLE FOR s& = -1 TO 1 STEP 2 A$ = A$ + CHR$(13) + CHR$(10) + "Random order:" FOR i = 0 TO TESTN& b(i) = (1000 * RND) AND 1023 IF i MOD 2 THEN b(i) = -b(i) IF i < TESTN& THEN A$ = A$ + LTRIM$(STR$(b(i))) + "," ELSE A$ = A$ + LTRIM$(STR$(b(i))) + CHR$(13) + CHR$(10) END IF NEXT RadixSort b(), 0, TESTN&, s& IF s& = -1 THEN A$ = A$ + "descending order" + CHR$(13) + CHR$(10) ELSE A$ = A$ + "ascending order" + CHR$(13) + CHR$(10) END IF   FOR i = 0 TO TESTN& PRINT b(i); IF i < TESTN& THEN A$ = A$ + LTRIM$(STR$(b(i))) + "," ELSE A$ = A$ + LTRIM$(STR$(b(i))) + CHR$(13) + CHR$(10) END IF NEXT NEXT PRINT A$ TYPE MinMaxRec min AS LONG max AS LONG END TYPE   SUB RadixSort (CGSortLibArr() AS DOUBLE, start&, finish&, order&) ArrayIsInteger CGSortLibArr(), start&, finish&, errindex&, errcon& IF errcon& THEN '* use another stable sort and sort anyway MergeSort CGSortLibArr(), start&, finish&, order& ELSE DIM RSMMrec AS MinMaxRec GetMinMaxArray CGSortLibArr(), start&, finish&, RSMMrec IF CGSortLibArr(RSMMrec.min) = CGSortLibArr(RSMMrec.max) THEN EXIT SUB '* no div0 bombs delta# = CGSortLibArr(RSMMrec.max) - CGSortLibArr(RSMMrec.min) DIM pow2 AS _UNSIGNED _INTEGER64 DIM NtmpN AS _UNSIGNED _INTEGER64 DIM Int64MaxShift AS _INTEGER64: Int64MaxShift = 2 ^ 64 REDIM ct&(-1 TO 1) REDIM RadixCGSortLibArr(0 TO 1, finish& - start&) AS DOUBLE SELECT CASE order& CASE 1 pow2 = Int64MaxShift bits& = LEN(Int64MaxShift) * 8 DO UNTIL bits& < 0 FOR i& = start& TO finish& NtmpN = Int64MaxShift * (CGSortLibArr(i&) - CGSortLibArr(RSMMrec.min)) / (delta#) IF NtmpN AND pow2 THEN tmpradix% = 1 ELSE tmpradix% = 0 END IF RadixCGSortLibArr(tmpradix%, ct&(tmpradix%)) = CGSortLibArr(i&) ct&(tmpradix%) = ct&(tmpradix%) + 1 NEXT c& = start& FOR i& = 0 TO 1 FOR j& = 0 TO ct&(i&) - 1 CGSortLibArr(c&) = RadixCGSortLibArr(i&, j&) c& = c& + 1 NEXT ct&(i&) = 0 NEXT pow2 = pow2 / 2 bits& = bits& - 1 LOOP CASE ELSE pow2 = 1 FOR bits& = 0 TO 63 FOR i& = start& TO finish& NtmpN = Int64MaxShift * (CGSortLibArr(i&) - CGSortLibArr(RSMMrec.min)) / (delta#) IF NtmpN AND pow2 THEN tmpradix% = 1 ELSE tmpradix% = 0 END IF RadixCGSortLibArr(tmpradix%, ct&(tmpradix%)) = CGSortLibArr(i&) ct&(tmpradix%) = ct&(tmpradix%) + 1 NEXT c& = start& FOR i& = 0 TO 1 FOR j& = 0 TO ct&(i&) - 1 CGSortLibArr(c&) = RadixCGSortLibArr(i&, j&) c& = c& + 1 NEXT ct&(i&) = 0 NEXT pow2 = pow2 * 2 NEXT END SELECT ERASE RadixCGSortLibArr, ct& END IF END SUB   SUB ArrayIsInteger (CGSortLibArr() AS DOUBLE, start&, finish&, errorindex&, IsInt&) IsInt& = 1 errorindex& = start& FOR IsIntegerS& = start& TO finish& IF CGSortLibArr(IsIntegerS&) MOD 1 THEN errorindex& = IsIntegerS& IsInt& = 0 EXIT FUNCTION END IF NEXT END FUNCTION   SUB MergeSort (CGSortLibArr() AS DOUBLE, start&, finish&, order&) SELECT CASE finish& - start& CASE IS > 31 middle& = start& + (finish& - start&) \ 2 MergeSort CGSortLibArr(), start&, middle&, order& MergeSort CGSortLibArr(), middle& + 1, finish&, order& 'IF order& = 1 THEN EfficientMerge CGSortLibArr(), start&, finish&, order& 'ELSE ' MergeRoutine CGSortLibArr(), start&, finish&, order& 'END IF CASE IS > 0 InsertionSort CGSortLibArr(), start&, finish&, order& END SELECT END SUB   SUB EfficientMerge (right() AS DOUBLE, start&, finish&, order&) half& = start& + (finish& - start&) \ 2 REDIM left(start& TO half&) AS DOUBLE '* hold the first half of the array in left() -- must be the same type as right() FOR LoadLeft& = start& TO half& left(LoadLeft&) = right(LoadLeft&) NEXT SELECT CASE order& CASE 1 i& = start& j& = half& + 1 insert& = start& DO IF i& > half& THEN '* left() exhausted IF j& > finish& THEN '* right() exhausted EXIT DO ELSE '* stuff remains in right to be inserted, so flush right() WHILE j& <= finish& right(insert&) = right(j&) j& = j& + 1 insert& = insert& + 1 WEND EXIT DO '* and exit END IF ELSE IF j& > finish& THEN WHILE i& < LoadLeft& right(insert&) = left(i&) i& = i& + 1 insert& = insert& + 1 WEND EXIT DO ELSE IF right(j&) < left(i&) THEN right(insert&) = right(j&) j& = j& + 1 ELSE right(insert&) = left(i&) i& = i& + 1 END IF insert& = insert& + 1 END IF END IF LOOP CASE ELSE i& = start& j& = half& + 1 insert& = start& DO IF i& > half& THEN '* left() exhausted IF j& > finish& THEN '* right() exhausted EXIT DO ELSE '* stuff remains in right to be inserted, so flush right() WHILE j& <= finish& right(insert&) = right(j&) j& = j& + 1 insert& = insert& + 1 WEND EXIT DO '* and exit END IF ELSE IF j& > finish& THEN WHILE i& < LoadLeft& right(insert&) = left(i&) i& = i& + 1 insert& = insert& + 1 WEND EXIT DO ELSE IF right(j&) > left(i&) THEN right(insert&) = right(j&) j& = j& + 1 ELSE right(insert&) = left(i&) i& = i& + 1 END IF insert& = insert& + 1 END IF END IF LOOP END SELECT ERASE left END SUB   SUB GetMinMaxArray (CGSortLibArr() AS DOUBLE, Start&, Finish&, GetMinMaxArray_minmax AS MinMaxRec) DIM GetGetMinMaxArray_minmaxArray_i AS LONG DIM GetMinMaxArray_n AS LONG DIM GetMinMaxArray_TT AS LONG DIM GetMinMaxArray_NMod2 AS INTEGER '* this is a workaround for the irritating malfunction '* of MOD using larger numbers and small divisors GetMinMaxArray_n = Finish& - Start& GetMinMaxArray_TT = GetMinMaxArray_n MOD 10000 GetMinMaxArray_NMod2 = GetMinMaxArray_n - 10000 * ((GetMinMaxArray_n - GetMinMaxArray_TT) / 10000) IF (GetMinMaxArray_NMod2 MOD 2) THEN GetMinMaxArray_minmax.min = Start& GetMinMaxArray_minmax.max = Start& GetGetMinMaxArray_minmaxArray_i = Start& + 1 ELSE IF CGSortLibArr(Start&) > CGSortLibArr(Finish&) THEN GetMinMaxArray_minmax.max = Start& GetMinMaxArray_minmax.min = Finish& ELSE GetMinMaxArray_minmax.min = Finish& GetMinMaxArray_minmax.max = Start& END IF GetGetMinMaxArray_minmaxArray_i = Start& + 2 END IF   WHILE GetGetMinMaxArray_minmaxArray_i < Finish& IF CGSortLibArr(GetGetMinMaxArray_minmaxArray_i) > CGSortLibArr(GetGetMinMaxArray_minmaxArray_i + 1) THEN IF CGSortLibArr(GetGetMinMaxArray_minmaxArray_i) > CGSortLibArr(GetMinMaxArray_minmax.max) THEN GetMinMaxArray_minmax.max = GetGetMinMaxArray_minmaxArray_i END IF IF CGSortLibArr(GetGetMinMaxArray_minmaxArray_i + 1) < CGSortLibArr(GetMinMaxArray_minmax.min) THEN GetMinMaxArray_minmax.min = GetGetMinMaxArray_minmaxArray_i + 1 END IF ELSE IF CGSortLibArr(GetGetMinMaxArray_minmaxArray_i + 1) > CGSortLibArr(GetMinMaxArray_minmax.max) THEN GetMinMaxArray_minmax.max = GetGetMinMaxArray_minmaxArray_i + 1 END IF IF CGSortLibArr(GetGetMinMaxArray_minmaxArray_i) < CGSortLibArr(GetMinMaxArray_minmax.min) THEN GetMinMaxArray_minmax.min = GetGetMinMaxArray_minmaxArray_i END IF END IF GetGetMinMaxArray_minmaxArray_i = GetGetMinMaxArray_minmaxArray_i + 2 WEND END SUB   SUB InsertionSort (CGSortLibArr() AS DOUBLE, start AS LONG, finish AS LONG, order&) DIM InSort_Local_ArrayTemp AS DOUBLE DIM InSort_Local_i AS LONG DIM InSort_Local_j AS LONG SELECT CASE order& CASE 1 FOR InSort_Local_i = start + 1 TO finish InSort_Local_ArrayTemp = CGSortLibArr(InSort_Local_i) InSort_Local_j = InSort_Local_i - 1 DO UNTIL InSort_Local_j < start IF (InSort_Local_ArrayTemp < CGSortLibArr(InSort_Local_j)) THEN CGSortLibArr(InSort_Local_j + 1) = CGSortLibArr(InSort_Local_j) InSort_Local_j = InSort_Local_j - 1 ELSE EXIT DO END IF LOOP CGSortLibArr(InSort_Local_j + 1) = InSort_Local_ArrayTemp NEXT CASE ELSE FOR InSort_Local_i = start + 1 TO finish InSort_Local_ArrayTemp = CGSortLibArr(InSort_Local_i) InSort_Local_j = InSort_Local_i - 1 DO UNTIL InSort_Local_j < start IF (InSort_Local_ArrayTemp > CGSortLibArr(InSort_Local_j)) THEN CGSortLibArr(InSort_Local_j + 1) = CGSortLibArr(InSort_Local_j) InSort_Local_j = InSort_Local_j - 1 ELSE EXIT DO END IF LOOP CGSortLibArr(InSort_Local_j + 1) = InSort_Local_ArrayTemp NEXT END SELECT END SUB  
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Quackery
Quackery
[ stack ] is digit ( --> s )   [ behead swap witheach min ] is smallest ( [ --> n )   [ [] over smallest rot witheach [ over - rot swap join swap ] swap 0 digit put dup size temp put [ ' [ [ ] ] 16 of constant swap witheach [ dup dip [ digit share >> 15 & 2dup peek ] join unrot poke ] dup 0 peek size temp share != while behead swap witheach join 4 digit tally again ] behead nip temp release digit release [] unrot witheach [ over + rot swap join swap ] drop ] is radixsort ( [ --> [ )   [] 256 times [ 1999 random 999 - join ] radixsort 16 times [ 16 times [ behead dup 0 > if sp dup abs dup 10 < if sp 100 < if sp echo sp ] cr ] drop
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Bracmat
Bracmat
( ( Q = Less Greater Equal pivot element .  !arg:%(?pivot:?Equal) %?arg & :?Less:?Greater & whl ' ( !arg:%?element ?arg & (.!element)+(.!pivot) { BAD: 1900+90 adds to 1990, GOOD: (.1900)+(.90) is sorted to (.90)+(.1900) }  : ( (.!element)+(.!pivot) & !element !Less:?Less | (.!pivot)+(.!element) & !element !Greater:?Greater | ?&!element !Equal:?Equal ) ) & Q$!Less !Equal Q$!Greater | !arg ) & out$Q$(1900 optimized variants of 4001/2 Quicksort (quick,sort) are (quick,sober) features of 90 languages) );
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Modula-2
Modula-2
MODULE PatienceSortTask;   FROM STextIO IMPORT WriteString; FROM STextIO IMPORT WriteLn; FROM WholeStr IMPORT IntToStr;   CONST MaxSortSize = 1024; (* A power of two. *) MaxWinnersSize = (2 * MaxSortSize) - 1;   TYPE PilesArrayType = ARRAY [1 .. MaxSortSize] OF INTEGER; WinnersArrayType = ARRAY [1 .. MaxWinnersSize], [1 .. 2] OF INTEGER;   VAR ExampleNumbers : ARRAY [0 .. 35] OF INTEGER; SortedIndices : ARRAY [0 .. 25] OF INTEGER; i : INTEGER; NumStr : ARRAY [0 .. 2] OF CHAR;   PROCEDURE NextPowerOfTwo (n : INTEGER) : INTEGER; VAR Pow2 : INTEGER; BEGIN (* This need not be a fast implementation. *) Pow2 := 1; WHILE Pow2 < n DO Pow2 := Pow2 + Pow2; END; RETURN Pow2; END NextPowerOfTwo;   PROCEDURE InitPilesArray (VAR Arr : PilesArrayType); VAR i : INTEGER; BEGIN FOR i := 1 TO MaxSortSize DO Arr[i] := 0; END; END InitPilesArray;   PROCEDURE InitWinnersArray (VAR Arr : WinnersArrayType); VAR i : INTEGER; BEGIN FOR i := 1 TO MaxWinnersSize DO Arr[i, 1] := 0; Arr[i, 2] := 0; END; END InitWinnersArray;   PROCEDURE IntegerPatienceSort (iFirst, iLast : INTEGER; Arr : ARRAY OF INTEGER; VAR Sorted : ARRAY OF INTEGER); VAR NumPiles : INTEGER; Piles, Links : PilesArrayType; Winners : WinnersArrayType;   PROCEDURE FindPile (q : INTEGER) : INTEGER; (* Bottenbruch search for the leftmost pile whose top is greater than or equal to some element x. Return an index such that:   * if x is greater than the top element at the far right, then the index returned will be num-piles.   * otherwise, x is greater than every top element to the left of index, and less than or equal to the top elements at index and to the right of index.   References:   * H. Bottenbruch, "Structure and use of ALGOL 60", Journal of the ACM, Volume 9, Issue 2, April 1962, pp.161-221. https://doi.org/10.1145/321119.321120   The general algorithm is described on pages 214 and 215.   * https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure *) VAR i, j, k, Index : INTEGER; BEGIN IF NumPiles = 0 THEN Index := 1; ELSE j := 0; k := NumPiles - 1; WHILE j <> k DO i := (j + k) DIV 2; IF Arr[Piles[j + 1] + iFirst - 1] < Arr[q + iFirst - 1] THEN j := i + 1; ELSE k := i; END; END; IF j = NumPiles - 1 THEN IF Arr[Piles[j + 1] + iFirst - 1] < Arr[q + iFirst - 1] THEN (* A new pile is needed. *) j := j + 1; END; END; Index := j + 1; END; RETURN Index; END FindPile;   PROCEDURE Deal; VAR i, q : INTEGER; BEGIN FOR q := 1 TO iLast - iFirst + 1 DO i := FindPile (q); Links[q] := Piles[i]; Piles[i] := q; IF i = NumPiles + 1 THEN NumPiles := i; END; END; END Deal;   PROCEDURE KWayMerge; (* k-way merge by tournament tree.   See Knuth, volume 3, and also https://en.wikipedia.org/w/index.php?title=K-way_merge_algorithm&oldid=1047851465#Tournament_Tree   However, I store a winners tree instead of the recommended losers tree. If the tree were stored as linked nodes, it would probably be more efficient to store a losers tree. However, I am storing the tree as an array, and one can find an opponent quickly by simply toggling the least significant bit of a competitor's array index. *) VAR TotalExternalNodes : INTEGER; TotalNodes : INTEGER; iSorted, i, Next : INTEGER;   PROCEDURE FindOpponent (i : INTEGER) : INTEGER; VAR Opponent : INTEGER; BEGIN IF ODD (i) THEN Opponent := i - 1; ELSE Opponent := i + 1; END; RETURN Opponent; END FindOpponent;   PROCEDURE PlayGame (i : INTEGER) : INTEGER; VAR j, iWinner : INTEGER; BEGIN j := FindOpponent (i); IF Winners[i, 1] = 0 THEN iWinner := j; ELSIF Winners[j, 1] = 0 THEN iWinner := i; ELSIF Arr[Winners[j, 1] + iFirst - 1] < Arr[Winners[i, 1] + iFirst - 1] THEN iWinner := j; ELSE iWinner := i; END; RETURN iWinner; END PlayGame;   PROCEDURE ReplayGames (i : INTEGER); VAR j, iWinner : INTEGER; BEGIN j := i; WHILE j <> 1 DO iWinner := PlayGame (j); j := j DIV 2; Winners[j, 1] := Winners[iWinner, 1]; Winners[j, 2] := Winners[iWinner, 2]; END; END ReplayGames;   PROCEDURE BuildTree; VAR iStart, i, iWinner : INTEGER; BEGIN FOR i := 1 TO TotalExternalNodes DO (* Record which pile a winner will have come from. *) Winners[TotalExternalNodes - 1 + i, 2] := i; END;   FOR i := 1 TO NumPiles DO (* The top of each pile becomes a starting competitor. *) Winners[TotalExternalNodes + i - 1, 1] := Piles[i]; END;   FOR i := 1 TO NumPiles DO (* Discard the top of each pile. *) Piles[i] := Links[Piles[i]]; END;   iStart := TotalExternalNodes; WHILE iStart <> 1 DO FOR i := iStart TO (2 * iStart) - 1 BY 2 DO iWinner := PlayGame (i); Winners[i DIV 2, 1] := Winners[iWinner, 1]; Winners[i DIV 2, 2] := Winners[iWinner, 2]; END; iStart := iStart DIV 2; END; END BuildTree;   BEGIN TotalExternalNodes := NextPowerOfTwo (NumPiles); TotalNodes := (2 * TotalExternalNodes) - 1; BuildTree; iSorted := 0; WHILE Winners[1, 1] <> 0 DO Sorted[iSorted] := Winners[1, 1] + iFirst - 1; iSorted := iSorted + 1; i := Winners[1, 2]; Next := Piles[i]; (* The next top of pile i. *) IF Next <> 0 THEN Piles[i] := Links[Next]; (* Drop that top. *) END; i := (TotalNodes DIV 2) + i; Winners[i, 1] := Next; ReplayGames (i); END; END KWayMerge;   BEGIN NumPiles := 0; InitPilesArray (Piles); InitPilesArray (Links); InitWinnersArray (Winners);   IF MaxSortSize < iLast - iFirst + 1 THEN WriteString ('This subarray is too large for the program.'); WriteLn; HALT; ELSE Deal; KWayMerge; END; END IntegerPatienceSort;   BEGIN ExampleNumbers[10] := 22; ExampleNumbers[11] := 15; ExampleNumbers[12] := 98; ExampleNumbers[13] := 82; ExampleNumbers[14] := 22; ExampleNumbers[15] := 4; ExampleNumbers[16] := 58; ExampleNumbers[17] := 70; ExampleNumbers[18] := 80; ExampleNumbers[19] := 38; ExampleNumbers[20] := 49; ExampleNumbers[21] := 48; ExampleNumbers[22] := 46; ExampleNumbers[23] := 54; ExampleNumbers[24] := 93; ExampleNumbers[25] := 8; ExampleNumbers[26] := 54; ExampleNumbers[27] := 2; ExampleNumbers[28] := 72; ExampleNumbers[29] := 84; ExampleNumbers[30] := 86; ExampleNumbers[31] := 76; ExampleNumbers[32] := 53; ExampleNumbers[33] := 37; ExampleNumbers[34] := 90;   IntegerPatienceSort (10, 34, ExampleNumbers, SortedIndices);   WriteString ("unsorted "); FOR i := 10 TO 34 DO WriteString (" "); IntToStr (ExampleNumbers[i], NumStr); WriteString (NumStr); END; WriteLn; WriteString ("sorted "); FOR i := 0 TO 24 DO WriteString (" "); IntToStr (ExampleNumbers[SortedIndices[i]], NumStr); WriteString (NumStr); END; WriteLn; END PatienceSortTask.
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Bash
Bash
#!/bin/bash   # Sorting integers with insertion sort   function insertion_sort () { # input: unsorted integer array # output: sorted integer array (ascending)   # local variables local -a arr # array local -i i # integers local -i j local -i key local -i prev local -i leftval local -i N # size of array   arr=( $@ ) # copy args into array   N=${#arr[*]} # arr extent readonly N # make const   # insertion sort for (( i=1; i<$N; i++ )) # c-style for loop do key=$((arr[$i])) # current value prev=$((arr[$i-1])) # previous value j=$i # current index   while [ $j -gt 0 ] && [ $key -lt $prev ] # inner loop do arr[$j]=$((arr[$j-1])) # shift   j=$(($j-1)) # decrement   prev=$((arr[$j-1])) # last value   done   arr[$j]=$(($key)) # insert key in proper order   done   echo ${arr[*]} # output sorted array }   ################ function main () { # main script declare -a sorted   # use a default if no cmdline list if [ $# -eq 0 ]; then arr=(10 8 20 100 -3 12 4 -5 32 0 1) else arr=($@) #cmdline list of ints fi   echo echo "original" echo -e "\t ${arr[*]} \n"   sorted=($(insertion_sort ${arr[*]})) # call function   echo echo "sorted:" echo -e "\t ${sorted[*]} \n" }     #script starts here # source or run if [[ "$0" == "bash" ]]; then # script is sourced unset main else main "$@" # call with cmdline args fi   #END
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Raku
Raku
# Lexicographic permuter from "Permutations" task. sub next_perm ( @a ) { my $j = @a.end - 1; $j-- while $j >= 1 and [>] @a[ $j, $j+1 ];   my $aj = @a[$j]; my $k = @a.end; $k-- while [>] $aj, @a[$k];   @a[ $j, $k ] .= reverse;   my Int $r = @a.end; my Int $s = $j + 1; while $r > $s { @a[ $r, $s ] .= reverse; $r--; $s++; } }   sub permutation_sort ( @a ) { my @n = @a.keys; my $perm_count = [*] 1 .. +@n; # Factorial for ^$perm_count { my @permuted_a = @a[ @n ]; return @permuted_a if [le] @permuted_a; next_perm(@n); } }   my @data = < c b e d a >; # Halfway between abcde and edcba say 'Input = ' ~ @data; say 'Output = ' ~ @data.&permutation_sort;  
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Ada
Ada
generic type Element_Type is private; type Index_Type is (<>); type Collection is array(Index_Type range <>) of Element_Type; with function "<" (Left, right : element_type) return boolean is <>; procedure Generic_Heapsort(Item : in out Collection);
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#ActionScript
ActionScript
function mergesort(a:Array) { //Arrays of length 1 and 0 are always sorted if(a.length <= 1) return a; else { var middle:uint = a.length/2; //split the array into two var left:Array = new Array(middle); var right:Array = new Array(a.length-middle); var j:uint = 0, k:uint = 0; //fill the left array for(var i:uint = 0; i < middle; i++) left[j++]=a[i]; //fill the right array for(i = middle; i< a.length; i++) right[k++]=a[i]; //sort the arrays left = mergesort(left); right = mergesort(right); //If the last element of the left array is less than or equal to the first //element of the right array, they are in order and don't need to be merged if(left[left.length-1] <= right[0]) return left.concat(right); a = merge(left, right); return a; } }   function merge(left:Array, right:Array) { var result:Array = new Array(left.length + right.length); var j:uint = 0, k:uint = 0, m:uint = 0; //merge the arrays in order while(j < left.length && k < right.length) { if(left[j] <= right[k]) result[m++] = left[j++]; else result[m++] = right[k++]; } //If one of the arrays has remaining entries that haven't been merged, they //will be greater than the rest of the numbers merged so far, so put them on the //end of the array. for(; j < left.length; j++) result[m++] = left[j]; for(; k < right.length; k++) result[m++] = right[k]; return result; }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#J
J
flip=: C.~ C.@i.@- unsorted=: #~ 1 , [: >./\. 2 >/\ ] FlDown=: flip 1 + (i. >./)@unsorted FlipUp=: flip 1 >. [:+/>./\&|.@(< {.)   pancake=: FlipUp@FlDown^:_
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Java
Java
  public class PancakeSort { int[] heap;   public String toString() { String info = ""; for (int x: heap) info += x + " "; return info; }   public void flip(int n) { for (int i = 0; i < (n+1) / 2; ++i) { int tmp = heap[i]; heap[i] = heap[n-i]; heap[n-i] = tmp; } System.out.println("flip(0.." + n + "): " + toString()); }   public int[] minmax(int n) { int xm, xM; xm = xM = heap[0]; int posm = 0, posM = 0;   for (int i = 1; i < n; ++i) { if (heap[i] < xm) { xm = heap[i]; posm = i; } else if (heap[i] > xM) { xM = heap[i]; posM = i; } } return new int[] {posm, posM}; }   public void sort(int n, int dir) { if (n == 0) return;   int[] mM = minmax(n); int bestXPos = mM[dir]; int altXPos = mM[1-dir]; boolean flipped = false;   if (bestXPos == n-1) { --n; } else if (bestXPos == 0) { flip(n-1); --n; } else if (altXPos == n-1) { dir = 1-dir; --n; flipped = true; } else { flip(bestXPos); } sort(n, dir);   if (flipped) { flip(n); } }   PancakeSort(int[] numbers) { heap = numbers; sort(numbers.length, 1); }   public static void main(String[] args) { int[] numbers = new int[args.length]; for (int i = 0; i < args.length; ++i) numbers[i] = Integer.valueOf(args[i]);   PancakeSort pancakes = new PancakeSort(numbers); System.out.println(pancakes); } }
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Phix
Phix
with javascript_semantics function stoogesort(sequence s, integer i=1, j=length(s)) if s[j]<s[i] then {s[i],s[j]} = {s[j],s[i]} end if if j-i>1 then integer t = floor((j-i+1)/3) s = stoogesort(s,i, j-t) s = stoogesort(s,i+t,j ) s = stoogesort(s,i, j-t) end if return s end function ?stoogesort(shuffle(tagset(10)))
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Gambas
Gambas
  siLow As Short = -99 'Set the lowest value number to create siHigh As Short = 99 'Set the highest value number to create siQty As Short = 20 'Set the quantity of numbers to create   Public Sub Main() Dim siToSort As Short[] = CreateNumbersToSort() Dim siPos, siLow, siChar, siCount As Short   PrintOut("To sort: ", siToSort)   For siCount = 0 To siToSort.Max siChar = siCount For siPos = siCount + 1 To siToSort.Max If siToSort[siChar] > siToSort[siPos] Then siChar = siPos Next siLow = siToSort[siChar] siToSort.Delete(siChar, 1) siToSort.Add(siLow, siCount) Next   PrintOut(" Sorted: ", siToSort)   End '--------------------------------------------------------- Public Sub PrintOut(sText As String, siToSort As String[]) Dim siCount As Short   Print sText;   For siCount = 0 To siToSort.Max Print siToSort[siCount]; If siCount <> siToSort.max Then Print ", "; Next   Print   End '--------------------------------------------------------- Public Sub CreateNumbersToSort() As Short[] Dim siCount As Short Dim siList As New Short[]   For siCount = 0 To siQty siList.Add(Rand(siLow, siHigh)) Next   Return siList   End
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#IS-BASIC
IS-BASIC
100 PROGRAM "Soundex.bas" 110 FOR I=1 TO 20 120 READ NAME$ 130 PRINT """";NAME$;"""";TAB(20);SOUNDEX$(NAME$) 140 NEXT 150 DEF SOUNDEX$(NAME$) 160 NUMERIC I,N,P 170 LET NAME$=UCASE$(NAME$):LET S$=NAME$(1) 180 LET N$="01230129022455012623019202" 190 LET P=VAL(N$(ORD(S$)-64)) 200 FOR I=2 TO LEN(NAME$) 210 LET N=VAL(N$(ORD(NAME$(I))-64)) 220 IF N<>0 AND N<>9 AND N<>P THEN LET S$=S$&STR$(N) 230 IF N<>9 THEN LET P=N 240 NEXT 250 LET S$=S$&"000" 260 LET SOUNDEX$=S$(1:4) 270 END DEF 280 DATA Aschraft,Ashcroft,Euler,Gauss,Ghosh,Hilbert,Heilbronn,Lee,Lissajous,Lloyd 290 DATA Moses,Pfister,Robert,Rupert,Rubin,Tymczak,VanDeusen,Wheaton,Soundex,Example
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#OCaml
OCaml
let shellsort a = let len = Array.length a in let incSequence = [| 412771; 165103; 66041; 26417; 10567; 4231; 1693; 673; 269; 107; 43; 17; 7; 3; 1 |] in   Array.iter (fun increment -> if (increment * 2) <= len then for i = increment to pred len do let temp = a.(i) in let rec loop j = if j < 0 || a.(j) <= temp then (j) else begin a.(j + increment) <- a.(j); loop (j - increment) end in let j = loop (i - increment) in a.(j + increment) <- temp; done; ) incSequence; ;;
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Maxima
Maxima
/* lists can be used as stacks; Maxima provides pop and push */   load(basic)$   a: []$ push(25, a)$ push(7, a)$ pop(a);   emptyp(a); length(a);
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#PARI.2FGP
PARI/GP
spiral(dim) = { my (M = matrix(dim, dim), p = s = 1, q = i = 0); for (n=1, dim, for (b=1, dim-n+1, M[p,q+=s] = i; i++); for (b=1, dim-n, M[p+=s,q] = i; i++); s = -s; ); M }
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Racket
Racket
  #lang Racket (define (radix-sort l r) (define queues (for/vector #:length r ([_ r]) (make-queue))) (let loop ([l l] [R 1]) (define all-zero? #t) (for ([x (in-list l)]) (define x/R (quotient x R)) (enqueue! (vector-ref queues (modulo x/R r)) x) (unless (zero? x/R) (set! all-zero? #f))) (if all-zero? l (loop (let q-loop ([i 0]) (define q (vector-ref queues i)) (let dq-loop () (if (queue-empty? q) (if (< i (sub1 r)) (q-loop (add1 i)) '()) (cons (dequeue! q) (dq-loop))))) (* R r))))) (for/and ([i 10000]) ; run some tests on random lists with a random radix (define (make-random-list) (for/list ([i (+ 10 (random 10))]) (random 100000))) (define (sorted? l) (match l [(list) #t] [(list x) #t] [(list x y more ...) (and (<= x y) (sorted? (cons y more)))])) (sorted? (radix-sort (make-random-list) (+ 2 (random 98))))) ;; => #t, so all passed  
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Raku
Raku
sub radsort (@ints) { my $maxlen = max @ints».chars; my @list = @ints».fmt("\%0{$maxlen}d");   for reverse ^$maxlen -> $r { my @buckets = @list.classify( *.substr($r,1) ).sort: *.key; @buckets[0].value = @buckets[0].value.reverse.List if !$r and @buckets[0].key eq '-'; @list = flat map *.value.values, @buckets; } @list».Int; }   .say for radsort (-2_000 .. 2_000).roll(20);
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#C
C
  #include <stdio.h>   void quicksort(int *A, int len);   int main (void) { int a[] = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1}; int n = sizeof a / sizeof a[0];   int i; for (i = 0; i < n; i++) { printf("%d ", a[i]); } printf("\n");   quicksort(a, n);   for (i = 0; i < n; i++) { printf("%d ", a[i]); } printf("\n");   return 0; }   void quicksort(int *A, int len) { if (len < 2) return;   int pivot = A[len / 2];   int i, j; for (i = 0, j = len - 1; ; i++, j--) { while (A[i] < pivot) i++; while (A[j] > pivot) j--;   if (i >= j) break;   int temp = A[i]; A[i] = A[j]; A[j] = temp; }   quicksort(A, i); quicksort(A + i, len - i); }  
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Nim
Nim
import std/decls   func patienceSort[T](a: var openArray[T]) =   if a.len < 2: return   var piles: seq[seq[T]]   for elem in a: block processElem: for pile in piles.mitems: if pile[^1] > elem: pile.add(elem) break processElem piles.add(@[elem])   for i in 0..a.high: var min = piles[0][^1] var minPileIndex = 0 for j in 1..piles.high: if piles[j][^1] < min: min = piles[j][^1] minPileIndex = j   a[i] = min var minPile {.byAddr.} = piles[minPileIndex] minPile.setLen(minpile.len - 1) if minPile.len == 0: piles.delete(minPileIndex)     when isMainModule:   var iArray = [4, 65, 2, -31, 0, 99, 83, 782, 1] iArray.patienceSort() echo iArray var cArray = ['n', 'o', 'n', 'z', 'e', 'r', 'o', 's', 'u','m'] cArray.patienceSort() echo cArray var sArray = ["dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu"] sArray.patienceSort() echo sArray
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#B4X
B4X
Sub InsertionSort (A() As Int) For i = 1 To A.Length - 1 Dim value As Int = A(i) Dim j As Int = i - 1 Do While j >= 0 And A(j) > value A(j + 1) = A(j) j = j - 1 Loop A(j + 1) = value Next End Sub   Sub Test Dim arr() As Int = Array As Int(34, 23, 54, 123, 543, 123) InsertionSort(arr) For Each i As Int In arr Log(i) Next End Sub  
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#REXX
REXX
/*REXX program sorts and displays an array using the permutation-sort method. */ call gen /*generate the array elements. */ call show 'before sort' /*show the before array elements. */ say copies('░', 75) /*show separator line between displays.*/ call pSort L /*invoke the permutation sort. */ call show ' after sort' /*show the after array elements. */ say; say 'Permutation sort took '  ? " permutations to find the sorted list." exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ .pAdd: #=#+1; do j=1 for N; #.#=#.#  !.j; end; return /*add a permutation.*/ show: do j=1 for L; say @e right(j, wL) arg(1)":" translate(@.j, , '_'); end; return /*──────────────────────────────────────────────────────────────────────────────────────*/ gen: @.=; @.1 = '---Four_horsemen_of_the_Apocalypse---' @.2 = '=====================================' @.3 = 'Famine───black_horse' @.4 = 'Death───pale_horse' @.5 = 'Pestilence_[Slaughter]───red_horse' @.6 = 'Conquest_[War]───white_horse' @e= right('element', 15) /*literal used for the display.*/ do L=1 while @.L\==''; @@[email protected]; end; L= L-1; wL=length(L); return /*──────────────────────────────────────────────────────────────────────────────────────*/ isOrd: parse arg q /*see if Q list is in order. */ _= word(q, 1); do j=2 to words(q); x= word(q, j); if x<_ then return 0; _= x end /*j*/ /* [↑] Out of order? ¬sorted*/ do k=1 for #; _= word(#.?, k); @.k= @@._; end /*k*/; return 1 /*in order*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ .pNxt: procedure expose !.; parse arg n,i; nm= n - 1 do k=nm by -1 for nm; kp= k + 1 if !.k<!.kp then do; i= k; leave; end end /*k*/ /* [↓] swap two array elements*/ do j=i+1 while j<n; parse value  !.j !.n with  !.n !.j; n= n-1; end /*j*/ if i==0 then return 0 /*0: indicates no more perms. */ do j=i+1 while !.j<!.i; end /*j*/ /*search perm for a lower value*/ parse value !.j !.i with  !.i !.j; return 1 /*swap two values in !. array.*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ pSort: parse arg n,#.; #= 0 /*generate L items (!) permutations.*/ do f=1 for n;  !.f= f; end /*f*/; call .pAdd do while .pNxt(n, 0); call .pAdd; end /*while*/ do ?=1 until isOrd($); $= /*find permutation.*/ do m=1 for #; _= word(#.?, m); $= $ @._; end /*m*/ /*build the $ list.*/ end /*?*/; return
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#ALGOL_68
ALGOL 68
#--- Swap function ---# PROC swap = (REF []INT array, INT first, INT second) VOID: ( INT temp := array[first]; array[first] := array[second]; array[second]:= temp );   #--- Heap sort Move Down ---# PROC heapmove = (REF []INT array, INT i, INT last) VOID: ( INT index := i; INT larger := (index*2);   WHILE larger <= last DO IF larger < last THEN IF array[larger] < array[larger+1] THEN larger +:= 1 FI FI; IF array[index] < array[larger] THEN swap(array, index, larger) FI; index := larger; larger := (index*2) OD );   #--- Heap sort ---# PROC heapsort = (REF []INT array) VOID: ( FOR i FROM ENTIER((UPB array) / 2) BY -1 WHILE heapmove(array, i, UPB array); i > 1 DO SKIP OD;   FOR i FROM UPB array BY -1 WHILE swap(array, 1, i); heapmove(array, 1, i-1); i > 1 DO SKIP OD ); #***************************************************************# main: ( [10]INT a; FOR i FROM 1 TO UPB a DO a[i] := ROUND(random*100) OD;   print(("Before:", a)); print((newline, newline)); heapsort(a); print(("After: ", a))   )