task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Common_Lisp
Common Lisp
(defun quicksort (list &aux (pivot (car list)) ) (if (cdr list) (nconc (quicksort (remove-if-not #'(lambda (x) (< x pivot)) list)) (remove-if-not #'(lambda (x) (= x pivot)) list) (quicksort (remove-if-not #'(lambda (x) (> x pivot)) list))) list))
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#PicoLisp
PicoLisp
(de leftmost (Lst N H) (let L 1 (while (<= L H) (use (X) (setq X (/ (+ L H) 2)) (if (>= (caar (nth Lst X)) N) (setq H (dec X)) (setq L (inc X)) ) ) ) L ) )   (de patience (Lst) (let (L (cons (cons (car Lst))) C 1 M NIL) (for N (cdr Lst) (let I (leftmost L N C) (and (> I C) (conc L (cons NIL)) (inc 'C) ) (push (nth L I) N) ) ) (make (loop (setq M (cons 0 T)) (for (I . Y) L (let? S (car Y) (and (< S (cdr M)) (setq M (cons I S)) ) ) ) (T (=T (cdr M))) (link (pop (nth L (car M)))) ) ) ) )   (println (patience (4 65 2 -31 0 99 83 782 1)) )   (bye)
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Clojure
Clojure
  (defn insertion-sort [coll] (reduce (fn [result input] (let [[less more] (split-with #(< % input) result)] (concat less [input] more))) [] coll))  
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#C
C
#include <stdio.h>   int max (int *a, int n, int i, int j, int k) { int m = i; if (j < n && a[j] > a[m]) { m = j; } if (k < n && a[k] > a[m]) { m = k; } return m; }   void downheap (int *a, int n, int i) { while (1) { int j = max(a, n, i, 2 * i + 1, 2 * i + 2); if (j == i) { break; } int t = a[i]; a[i] = a[j]; a[j] = t; i = j; } }   void heapsort (int *a, int n) { int i; for (i = (n - 2) / 2; i >= 0; i--) { downheap(a, n, i); } for (i = 0; i < n; i++) { int t = a[n - i - 1]; a[n - i - 1] = a[0]; a[0] = t; downheap(a, n - i - 1, 0); } }   int main () { int a[] = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1}; int n = sizeof a / sizeof a[0]; int i; for (i = 0; i < n; i++) printf("%d%s", a[i], i == n - 1 ? "\n" : " "); heapsort(a, n); for (i = 0; i < n; i++) printf("%d%s", a[i], i == n - 1 ? "\n" : " "); return 0; }  
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#AutoHotkey_L
AutoHotkey_L
#NoEnv   Test := [] Loop 100 { Random n, 0, 999 Test.Insert(n) } Result := MergeSort(Test) Loop % Result.MaxIndex() { MsgBox, 1, , % Result[A_Index] IfMsgBox Cancel Break } Return     /* Function MergeSort Sorts an array by first recursively splitting it down to its individual elements and then merging those elements in their correct order.   Parameters Array The array to be sorted   Returns The sorted array */ MergeSort(Array) { ; Return single element arrays If (! Array.HasKey(2)) Return Array   ; Split array into Left and Right halfs Left := [], Right := [], Middle := Array.MaxIndex() // 2 Loop % Middle Right.Insert(Array.Remove(Middle-- + 1)), Left.Insert(Array.Remove(1)) If (Array.MaxIndex()) Right.Insert(Array.Remove(1))   Left := MergeSort(Left), Right := MergeSort(Right)   ; If all the Right values are greater than all the ; Left values, just append Right at the end of Left. If (Left[Left.MaxIndex()] <= Right[1]) { Loop % Right.MaxIndex() Left.Insert(Right.Remove(1)) Return Left } ; Loop until one of the arrays is empty While(Left.MaxIndex() and Right.MaxIndex()) Left[1] <= Right[1] ? Array.Insert(Left.Remove(1))  : Array.Insert(Right.Remove(1))   Loop % Left.MaxIndex() Array.Insert(Left.Remove(1))   Loop % Right.MaxIndex() Array.Insert(Right.Remove(1))   Return Array }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Nim
Nim
import algorithm   proc pancakeSort[T](list: var openarray[T]) = var length = list.len if length < 2: return   var moves = 0   for i in countdown(length, 2): var maxNumPos = 0 for a in 0 ..< i: if list[a] > list[maxNumPos]: maxNumPos = a   if maxNumPos == i - 1: continue   if maxNumPos > 0: inc moves reverse(list, 0, maxNumPos)   inc moves reverse(list, 0, i - 1)   var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782] pancakeSort a echo a
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#OCaml
OCaml
let rec sorted = function | [] -> (true) | x::y::_ when x > y -> (false) | x::xs -> sorted xs   let rev_until_max li = let rec aux acc greater prefix suffix = function | x::xs when x > greater -> aux (x::acc) x acc xs xs | x::xs -> aux (x::acc) greater prefix suffix xs | [] -> (greater, (prefix @ suffix)) in aux [] min_int [] li li   let pancake_sort li = let rec aux i li suffix = let greater, li = rev_until_max li in let suffix = greater :: suffix and li = List.rev li in if sorted li then (li @ suffix), i else aux (succ i) li suffix in aux 0 li []   let print_list li = List.iter (Printf.printf " %d") li; print_newline()   let make_rand_list n bound = let rec aux acc i = if i >= n then (acc) else aux ((Random.int bound)::acc) (succ i) in aux [] 0   let () = Random.self_init(); let li = make_rand_list 8 100 in print_list li; let res, n = pancake_sort li in print_list res; Printf.printf " sorted in %d loops\n" n; ;;
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#REXX
REXX
/*REXX program sorts an integer array @. [the first element starts at index zero].*/ parse arg N . /*obtain an optional argument from C.L.*/ if N=='' | N=="," then N=19 /*Not specified? Then use the default.*/ call gen@ /*generate a type of scattered array. */ call show 'before sort' /*show the before array elements. */ say copies('▒', wN+wV+ 50) /*show a separator line (between shows)*/ call stoogeSort 0, N /*invoke the Stooge Sort. */ call show ' after sort' /*show the after array elements. */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ gen@: wV= 0; do k=0 to N; @.k= k*2 + k*-1**k; if @.k//7==0 then @.k= -100 - k wV= max(wV, length(@.k) ); end; wN=length(N); return /*──────────────────────────────────────────────────────────────────────────────────────*/ show: do j=0 to N; say right('element',22) right(j,wN) arg(1)":" right(@.j,wV); end;return /*──────────────────────────────────────────────────────────────────────────────────────*/ stoogeSort: procedure expose @.; parse arg i,j /*sort from I ───► J. */ if @.j<@.i then parse value @.i @.j with @.j @.i /*swap @.i with @.j */ if j-i>1 then do; t=(j-i+1) % 3 /*%: integer division.*/ call stoogeSort i , j-t /*invoke recursively. */ call stoogeSort i+t, j /* " " */ call stoogeSort i , j-t /* " " */ end return
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#jq
jq
# Sort any array def selection_sort: def swap(i;j): if i == j then . else .[i] as $tmp | .[i] = .[j] | .[j] = $tmp end; length as $length | reduce range(0; $length) as $currentPlace # state: $array ( .; . as $array | (reduce range( $currentPlace; $length) as $check # state: [ smallestAt, smallest] except initially [null] ( [$currentPlace+1] ; if length == 1 or $array[$check] < .[1] then [$check, $array[$check] ] else . end )) as $ans | swap( $currentPlace; $ans[0] ) ) ;
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
Soundex[ input_ ] := Module[{x = input, head, body}, {head, body} = {First@#, Rest@#}&@ToLowerCase@Characters@x; body = (Select[body, FreeQ[Characters["aeiouyhw"],#]&] /. {("b"|"f"|"p"|"v")->1, ("c"|"g"|"j"|"k"|"q"|"s"|"x"|"z")->2, ("d"|"t")->3,"l"->4 ,("m"|"n")->5, "r"->6}); If[Length[body] < 3, body = PadRight[body, 3], body = DeleteDuplicates[body] ]; StringJoin @@ ToString /@ PrependTo[ body[[1 ;; 3]], ToUpperCase@head]]
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#PL.2FI
PL/I
  /* Based on Rosetta Fortran */ Shell_Sort: PROCEDURE (A); DECLARE A(*) FIXED; DECLARE ( i, j, increment) FIXED BINARY (31); DECLARE temp FIXED;   increment = DIMENSION(a) / 2; DO WHILE (increment > 0); DO i = lbound(A,1)+increment TO hbound(a,1); j = i; temp = a(i); DO WHILE (j >= increment+1 & a(j-increment) > temp); a(j) = a(j-increment); j = j - increment; END; a(j) = temp; END; IF increment = 2 THEN increment = 1; ELSE increment = increment * 5 / 11; END; END SHELL_SORT;  
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#PowerShell
PowerShell
Function ShellSort( [Array] $data ) { # http://oeis.org/A108870 $A108870 = [Int64[]] ( 1, 4, 9, 20, 46, 103, 233, 525, 1182, 2660, 5985, 13467, 30301, 68178, 153401, 345152, 776591, 1747331, 3931496, 8845866, 19903198, 44782196, 100759940, 226709866, 510097200, 1147718700, 2582367076, 5810325920, 13073233321, 29414774973 ) $datal = $data.length - 1 $inci = [Array]::BinarySearch( $A108870, [Int64] ( [Math]::Floor( $datal / 2 ) ) ) if( $inci -lt 0 ) { $inci = ( $inci -bxor -1 ) - 1 } $A108870[ $inci..0 ] | ForEach-Object { $inc = $_ $_..$datal | ForEach-Object { $temp = $data[ $_ ] $j = $_ for( ; ( $j -ge $inc ) -and ( $data[ $j - $inc ] -gt $temp ); $j -= $inc ) { $data[ $j ] = $data[ $j - $inc ] } $data[ $j ] = $temp } } $data }   $l = 10000; ShellSort( ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( 0, $l - 1 ) } ) )
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Oberon-2
Oberon-2
  MODULE Stacks; IMPORT Object, Object:Boxed, Out := NPCT:Console;   TYPE Pool(E: Object.Object) = POINTER TO ARRAY OF E; Stack*(E: Object.Object) = POINTER TO StackDesc(E); StackDesc*(E: Object.Object) = RECORD pool: Pool(E); cap-,top: LONGINT; END;   PROCEDURE (s: Stack(E)) INIT*(cap: LONGINT); BEGIN NEW(s.pool,cap);s.cap := cap;s.top := -1 END INIT;   PROCEDURE (s: Stack(E)) Top*(): E; BEGIN RETURN s.pool[s.top] END Top;   PROCEDURE (s: Stack(E)) Push*(e: E); BEGIN INC(s.top); ASSERT(s.top < s.cap); s.pool[s.top] := e; END Push;   PROCEDURE (s: Stack(E)) Pop*(): E; VAR resp: E; BEGIN ASSERT(s.top >= 0); resp := s.pool[s.top];DEC(s.top); RETURN resp END Pop;   PROCEDURE (s: Stack(E)) IsEmpty(): BOOLEAN; BEGIN RETURN s.top < 0 END IsEmpty;   PROCEDURE (s: Stack(E)) Size*(): LONGINT; BEGIN RETURN s.top + 1 END Size;   PROCEDURE Test; VAR s: Stack(Boxed.LongInt); BEGIN s := NEW(Stack(Boxed.LongInt),100); s.Push(NEW(Boxed.LongInt,10)); s.Push(NEW(Boxed.LongInt,100)); Out.String("size: ");Out.Int(s.Size(),0);Out.Ln; Out.String("pop: ");Out.Object(s.Pop());Out.Ln; Out.String("top: ");Out.Object(s.Top());Out.Ln; Out.String("size: ");Out.Int(s.Size(),0);Out.Ln END Test;   BEGIN Test END Stacks.  
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Prolog
Prolog
  % Prolog implementation: SWI-Prolog 7.2.3   replace([_|T], 0, E, [E|T]) :- !. replace([H|T], N, E, Xs) :- succ(N1, N), replace(T, N1, E, Xs1), Xs = [H|Xs1].   % True if Xs is the Original grid with the element at (X, Y) replaces by E. replace_in([H|T], (0, Y), E, Xs) :- replace(H, Y, E, NH), Xs = [NH|T], !. replace_in([H|T], (X, Y), E, Xs) :- succ(X1, X), replace_in(T, (X1, Y), E, Xs1), Xs = [H|Xs1].   % True, if E is the value at (X, Y) in Xs get_in(Xs, (X, Y), E) :- nth0(X, Xs, L), nth0(Y, L, E).   create(N, Mx) :- % NxN grid full of nils numlist(1, N, Ns), findall(X, (member(_, Ns), X = nil), Ls), findall(X, (member(_, Ns), X = Ls), Mx).   % Depending of the direction, returns two possible coordinates and directions % (C,D) that will be used in case of a turn, and (A,B) otherwise. ops(right, (X,Y), (A,B), (C,D), D1, D2) :- A is X, B is Y+1, D1 = right, C is X+1, D is Y, D2 = down.   ops(left, (X,Y), (A,B), (C,D), D1, D2) :- A is X, B is Y-1, D1 = left, C is X-1, D is Y, D2 = up.   ops(up, (X,Y), (A,B), (C,D), D1, D2) :- A is X-1, B is Y, D1 = up, C is X, D is Y+1, D2 = right.   ops(down, (X,Y), (A,B), (C,D), D1, D2) :- A is X+1, B is Y, D1 = down, C is X, D is Y-1, D2 = left.   % True if NCoor is the right coor in spiral shape. Returns a new direction also. next(Dir, Mx, Coor, NCoor, NDir) :- ops(Dir, Coor, C1, C2, D1, D2), (get_in(Mx, C1, nil) -> NCoor = C1, NDir = D1 ; NCoor = C2, NDir = D2).   % Returns an spiral with [H|Vs] elements called R, only work if the length of % [H|Vs], is the square of the size of the grid. spiralH(Dir, Mx, Coor, [H|Vs], R) :- replace_in(Mx, Coor, H, NMx), (Vs = [] -> R = NMx ; next(Dir, Mx, Coor, NCoor, NDir), spiralH(NDir, NMx, NCoor, Vs, R)).   % True if Mx is the grid in spiral shape of the numbers from 0 to N*N-1. spiral(N, Mx) :- Sq is N*N-1, numlist(0, Sq, Ns), create(N, EMx), spiralH(right, EMx, (0,0), Ns, Mx).  
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Wren
Wren
// counting sort of 'a' according to the digit represented by 'exp' var countSort = Fn.new { |a, exp| var n = a.count var output = [0] * n var count = [0] * 10 for (i in 0...n) { var t = (a[i]/exp).truncate % 10 count[t] = count[t] + 1 } for (i in 1..9) count[i] = count[i] + count[i-1] for (i in n-1..0) { var t = (a[i]/exp).truncate % 10 output[count[t] - 1] = a[i] count[t] = count[t] - 1 } for (i in 0...n) a[i] = output[i] }   // sorts 'a' in place var radixSort = Fn.new { |a| // check for negative elements var min = a.reduce { |m, i| (i < m) ? i : m } // if there are any, increase all elements by -min if (min < 0) (0...a.count).each { |i| a[i] = a[i] - min } // now get the maximum to know number of digits var max = a.reduce { |m, i| (i > m) ? i : m } // do counting sort for each digit var exp = 1 while ((max/exp).truncate > 0) { countSort.call(a, exp) exp = exp * 10 } // if there were negative elements, reduce all elements by -min if (min < 0) (0...a.count).each { |i| a[i] = a[i] + min } }   var aa = [[4, 65, 2, -31, 0, 99, 2, 83, 782, 1], [170, 45, 75, 90, 2, 24, -802, -66]] for (a in aa) { System.print("Unsorted: %(a)") radixSort.call(a) System.print("Sorted  : %(a)\n") }
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Cowgol
Cowgol
include "cowgol.coh";   # Comparator interface, on the model of C, i.e: # foo < bar => -1, foo == bar => 0, foo > bar => 1 typedef CompRslt is int(-1, 1); interface Comparator(foo: intptr, bar: intptr): (rslt: CompRslt);   # Quicksort an array of pointer-sized integers given a comparator function # (This is the closest you can get to polymorphism in Cowgol). # Because Cowgol does not support recursion, a pointer to free memory # for a stack must also be given. sub qsort(A: [intptr], len: intptr, comp: Comparator, stack: [intptr]) is # The partition function can be taken almost verbatim from Wikipedia sub partition(lo: intptr, hi: intptr): (p: intptr) is # This is not quite as bad as it looks: /2 compiles into a single shift # and "@bytesof intptr" is always power of 2 so compiles into shift(s). var pivot := [A + (hi/2 + lo/2) * @bytesof intptr]; var i := lo - 1; var j := hi + 1; loop loop i := i + 1; if comp([A + i*@bytesof intptr], pivot) != -1 then break; end if; end loop; loop j := j - 1; if comp([A + j*@bytesof intptr], pivot) != 1 then break; end if; end loop; if i >= j then p := j; return; end if; var ii := i * @bytesof intptr; var jj := j * @bytesof intptr; var t := [A+ii]; [A+ii] := [A+jj]; [A+jj] := t; end loop; end sub;   # Cowgol lacks recursion, so we'll have to solve it by implementing # the stack ourselves. var sp: intptr := 0; # stack index sub push(n: intptr) is sp := sp + 1; [stack] := n; stack := @next stack; end sub; sub pop(): (n: intptr) is sp := sp - 1; stack := @prev stack; n := [stack]; end sub;   # start by sorting [0..length-1] push(len-1); push(0); while sp != 0 loop var lo := pop(); var hi := pop(); if lo < hi then var p := partition(lo, hi); push(hi); # note the order - we need to push the high pair push(p+1); # first for it to be done last push(p); push(lo); end if; end loop; end sub;   # Test: sort a list of numbers sub NumComp implements Comparator is # Compare the inputs as numbers if foo < bar then rslt := -1; elseif foo > bar then rslt := 1; else rslt := 0; end if; end sub;   # Numbers var numbers: intptr[] := { 65,13,4,84,29,5,96,73,5,11,17,76,38,26,44,20,36,12,44,51,79,8,99,7,19,95,26 };   # Room for the stack var stackbuf: intptr[256];   # Sort the numbers in place qsort(&numbers as [intptr], @sizeof numbers, NumComp, &stackbuf as [intptr]);   # Print the numbers (hopefully in order) var i: @indexof numbers := 0; while i < @sizeof numbers loop print_i32(numbers[i] as uint32); print_char(' '); i := i + 1; end loop; print_nl();
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Prolog
Prolog
patience_sort(UnSorted,Sorted) :- make_piles(UnSorted,[],Piled), merge_piles(Piled,[],Sorted).   make_piles([],P,P). make_piles([N|T],[],R) :- make_piles(T,[[N]],R). make_piles([N|T],[[P|Pnt]|Tp],R) :- N =< P, make_piles(T,[[N,P|Pnt]|Tp],R). make_piles([N|T],[[P|Pnt]|Tp],R) :- N > P, make_piles(T,[[N],[P|Pnt]|Tp], R).   merge_piles([],M,M). merge_piles([P|T],L,R) :- merge_pile(P,L,Pl), merge_piles(T,Pl,R).   merge_pile([],M,M). merge_pile(M,[],M). merge_pile([N|T1],[N|T2],[N,N|R]) :- merge_pile(T1,T2,R). merge_pile([N|T1],[P|T2],[P|R]) :- N > P, merge_pile([N|T1],T2,R). merge_pile([N|T1],[P|T2],[N|R]) :- N < P, merge_pile(T1,[P|T2],R).
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#CLU
CLU
% Insertion-sort an array in place. insertion_sort = proc [T: type] (a: array[T]) where T has lt: proctype (T,T) returns (bool)   bound_lo: int := array[T]$low(a) bound_hi: int := array[T]$high(a)   for i: int in int$from_to(bound_lo, bound_hi) do value: T := a[i] j: int := i - 1 while j >= bound_lo cand value < a[j] do a[j+1] := a[j] j := j-1 end a[j+1] := value end end insertion_sort   % Print an array print_arr = proc [T: type] (a: array[T], w: int, s: stream) where T has unparse: proctype (T) returns (string) for el: T in array[T]$elements(a) do stream$putright(s, T$unparse(el), w) end stream$putc(s, '\n') end print_arr   start_up = proc () ai = array[int] po: stream := stream$primary_output() test: ai := ai$[7, -5, 0, 2, 99, 16, 4, 20, 47, 19]   stream$puts(po, "Before: ") print_arr[int](test, 3, po) insertion_sort[int](test) stream$puts(po, "After: ") print_arr[int](test, 3, po) end start_up
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#C.23
C#
using System; using System.Collections.Generic; using System.Text;   public class HeapSortClass { public static void HeapSort<T>(T[] array) { HeapSort<T>(array, 0, array.Length, Comparer<T>.Default); }   public static void HeapSort<T>(T[] array, int offset, int length, IComparer<T> comparer) { HeapSort<T>(array, offset, length, comparer.Compare); }   public static void HeapSort<T>(T[] array, int offset, int length, Comparison<T> comparison) { // build binary heap from all items for (int i = 0; i < length; i++) { int index = i; T item = array[offset + i]; // use next item   // and move it on top, if greater than parent while (index > 0 && comparison(array[offset + (index - 1) / 2], item) < 0) { int top = (index - 1) / 2; array[offset + index] = array[offset + top]; index = top; } array[offset + index] = item; }   for (int i = length - 1; i > 0; i--) { // delete max and place it as last T last = array[offset + i]; array[offset + i] = array[offset];   int index = 0; // the last one positioned in the heap while (index * 2 + 1 < i) { int left = index * 2 + 1, right = left + 1;   if (right < i && comparison(array[offset + left], array[offset + right]) < 0) { if (comparison(last, array[offset + right]) > 0) break;   array[offset + index] = array[offset + right]; index = right; } else { if (comparison(last, array[offset + left]) > 0) break;   array[offset + index] = array[offset + left]; index = left; } } array[offset + index] = last; } }   static void Main() { // usage byte[] r = {5, 4, 1, 2}; HeapSort(r);   string[] s = { "-", "D", "a", "33" }; HeapSort(s, 0, s.Length, StringComparer.CurrentCultureIgnoreCase); } }
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#AutoHotkey
AutoHotkey
MsgBox % MSort("") MsgBox % MSort("xxx") MsgBox % MSort("3,2,1") MsgBox % MSort("dog,000000,cat,pile,abcde,1,zz,xx,z")   MSort(x) { ; Merge-sort of a comma separated list If (2 > L:=Len(x)) Return x ; empty or single item lists are sorted StringGetPos p, x, `,, % "L" L//2 ; Find middle comma Return Merge(MSort(SubStr(x,1,p)), MSort(SubStr(x,p+2))) ; Split, Sort, Merge }   Len(list) { StringReplace t, list,`,,,UseErrorLevel ; #commas -> ErrorLevel Return list="" ? 0 : ErrorLevel+1 }   Item(list,ByRef p) { ; item at position p, p <- next position Return (p := InStr(list,",",0,i:=p+1)) ? SubStr(list,i,p-i) : SubStr(list,i) }   Merge(list0,list1) { ; Merge 2 sorted lists IfEqual list0,, Return list1 IfEqual list1,, Return list0 i0 := Item(list0,p0:=0) i1 := Item(list1,p1:=0) Loop { i := i0>i1 list .= "," i%i% ; output smaller If (p%i%) i%i% := Item(list%i%,p%i%) ; get next item from processed list Else { i ^= 1 ; list is exhausted: attach rest of other Return SubStr(list "," i%i% (p%i% ? "," SubStr(list%i%,p%i%+1) : ""), 2) } } }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#PARI.2FGP
PARI/GP
pancakeSort(v)={ my(top=#v); while(top>1, my(mx=1,t); for(i=2,top,if(v[i]>v[mx], mx=i)); if(mx==top, top--; next); for(i=1,mx\2, t=v[i]; v[i]=v[mx+1-i]; v[mx+1-i]=t ); for(i=1,top\2, t=v[i]; v[i]=v[top+1-i]; v[top+1-i]=t ); top-- ); v };
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Ring
Ring
  test = [4, 65, 2, -31, 0, 99, 2, 83, 782, 1] stoogeSort(test, 1, len(test)) for i = 1 to 10 see "" + test[i] + " " next see nl   func stoogeSort list, i, j if list[j] < list[i] temp = list[i] list[i] = list[j] list[j] = temp ok if j - i > 1 t = (j - i + 1)/3 stoogeSort(list, i, j-t) stoogeSort(list, i+t, j) stoogeSort(list, i, j-t) ok return list  
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Ruby
Ruby
class Array def stoogesort self.dup.stoogesort! end   def stoogesort!(i = 0, j = self.length-1) if self[j] < self[i] self[i], self[j] = self[j], self[i] end if j - i > 1 t = (j - i + 1)/3 stoogesort!(i, j-t) stoogesort!(i+t, j) stoogesort!(i, j-t) end self end end   p [1,4,5,3,-6,3,7,10,-2,-5].stoogesort
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Julia
Julia
function selectionsort!(arr::Vector{<:Real}) len = length(arr) if len < 2 return arr end for i in 1:len-1 lmin, j = findmin(arr[i+1:end]) if lmin < arr[i] arr[i+j] = arr[i] arr[i] = lmin end end return arr end   v = rand(-10:10, 10) println("# unordered: $v\n -> ordered: ", selectionsort!(v))
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Kotlin
Kotlin
fun <T : Comparable<T>> Array<T>.selection_sort() { for (i in 0..size - 2) { var k = i for (j in i + 1..size - 1) if (this[j] < this[k]) k = j   if (k != i) { val tmp = this[i] this[i] = this[k] this[k] = tmp } } }   fun main(args: Array<String>) { val i = arrayOf(4, 9, 3, -2, 0, 7, -5, 1, 6, 8) i.selection_sort() println(i.joinToString())   val s = Array(i.size, { -i[it].toShort() }) s.selection_sort() println(s.joinToString())   val c = arrayOf('z', 'h', 'd', 'c', 'a') c.selection_sort() println(c.joinToString()) }
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#MUMPS
MUMPS
SOUNDEX(X,NARA=0)  ;Converts a string to its Soundex value.  ;Empty strings return "0000". Non-alphabetic ASCII characters are ignored.  ;X is the name to be converted to Soundex  ;NARA is a flag, defaulting to zero, for which implementation to perform.  ;If NARA is 0, do what seems to be the Knuth implementation  ;If NARA is a positive integer, do the NARA implementation.  ; This varies the soundex rule for "W" and "H", and adds variants for prefixed names separated by carets.  ; http://www.archives.gov/publications/general-info-leaflets/55-census.html  ;Y is the string to be returned  ;UP is the list of upper case letters  ;LO is the list of lower case letters  ;PREFIX is a list of prefixes to be stripped off  ;X1 is the upper case version of X  ;X2 is the name without a prefix  ;Y2 is the soundex of a name without a prefix  ;C is a loop variable  ;DX is a list of Soundex values, in alphabetical order. Underscores are used for the NARA variation letters  ;XD is a partially processed translation of X into soundex values NEW Y,UP,LO,PREFIX,X1,X2,Y2,C,DX,XD SET UP="ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;Upper case characters SET LO="abcdefghijklmnopqrstuvwxyz" ;Lower case characters SET DX=" 123 12_ 22455 12623 1_2 2" ;Soundex values SET PREFIX="VAN^CO^DE^LA^LE" ;Prefixes that could create an alternate soundex value SET Y="" ;Y is the value to be returned SET X1=$TRANSLATE(X,LO,UP) ;Make local copy, and force all letters to be upper case SET XD=$TRANSLATE(X1,UP,DX) ;Soundex values for string  ; SET Y=$EXTRACT(X1,1,1) ;Get first character FOR C=2:1:$LENGTH(X1) QUIT:$L(Y)>=4 DO . ;ignore doubled letters OR and side-by-side soundex values OR same soundex on either side of "H" or "W" . QUIT:($EXTRACT(X1,C,C)=$EXTRACT(X1,C-1,C-1)) . QUIT:($EXTRACT(XD,C,C)=$EXTRACT(XD,C-1,C-1)) . ;ignore non-alphabetic characters . QUIT:UP'[($EXTRACT(X1,C,C)) . QUIT:NARA&(($EXTRACT(XD,C-1,C-1)="_")&(C>2))&($EXTRACT(XD,C,C)=$EXTRACT(XD,C-2,C-2)) . QUIT:" _"[$EXTRACT(XD,C,C) . SET Y=Y_$EXTRACT(XD,C,C)  ; Pad with "0" so string length is 4 IF $LENGTH(Y)<4 FOR C=$L(Y):1:3 SET Y=Y_"0" IF NARA DO . FOR C=1:1:$LENGTH(PREFIX,"^") DO . . IF $EXTRACT(X1,1,$LENGTH($PIECE(PREFIX,"^",C)))=$PIECE(PREFIX,"^",C) DO . . . ;Take off the prefix, and any leading spaces . . . SET X2=$EXTRACT(X1,$LENGTH($PIECE(PREFIX,"^",C))+1,$LENGTH(X1)-$PIECE(PREFIX,"^",C)) FOR QUIT:UP[$E(X2,1,1) SET X2=$E(X2,2,$L(X2)) . . . SET Y2=$$SOUNDEX(X2,NARA) SET Y=Y_"^"_Y2 KILL UP,LO,PREFIX,X1,X2,Y2,C,DX,XD QUIT Y  
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#PureBasic
PureBasic
#STEP=2.2   Procedure Shell_sort(Array A(1)) Protected l=ArraySize(A()), increment=Int(l/#STEP) Protected i, j, temp While increment For i= increment To l j=i temp=A(i) While j>=increment And A(j-increment)>temp A(j)=A(j-increment) j-increment Wend A(j)=temp Next i If increment=2 increment=1 Else increment*(5.0/11) EndIf Wend EndProcedure
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Python
Python
def shell(seq): inc = len(seq) // 2 while inc: for i, el in enumerate(seq[inc:], inc): while i >= inc and seq[i - inc] > el: seq[i] = seq[i - inc] i -= inc seq[i] = el inc = 1 if inc == 2 else inc * 5 // 11
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Objeck
Objeck
stack := IntStack->New(); stack->Push(13); stack->Push(7); (stack->Pop() + stack->Pop())->PrintLine(); stack->IsEmpty()->PrintLine();
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#PureBasic
PureBasic
Procedure spiralMatrix(size = 1) Protected i, x = -1, y, count = size, n Dim a(size - 1,size - 1)   For i = 1 To count x + 1 a(x,y) = n n + 1 Next   Repeat count - 1 For i = 1 To count y + 1 a(x,y) = n n + 1 Next For i = 1 To count x - 1 a(x,y) = n n + 1 Next   count - 1 For i = 1 To count y - 1 a(x,y) = n n + 1 Next For i = 1 To count x + 1 a(x,y) = n n + 1 Next Until count < 1   PrintN("Spiral: " + Str(Size) + #CRLF$) Protected colWidth = Len(Str(size * size - 1)) + 1 For y = 0 To size - 1 For x = 0 To size - 1 Print("" + LSet(Str(a(x, y)), colWidth, " ") + "") Next PrintN("") Next PrintN("") EndProcedure   If OpenConsole() spiralMatrix(2) PrintN("") spiralMatrix(5)     Print(#CRLF$ + #CRLF$ + "Press ENTER to exit") Input() CloseConsole() EndIf
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#zkl
zkl
fcn radixSort(ns){ // ints only, inplace, ns is mutable b:=(0).pump(20,List,List().copy); // 20 [empty] buckets: -10..10 z:=ns.reduce(fcn(a,b){ a.abs().max(b.abs()) },0); // |max or min of input| m:=1; while(z){ ns.apply2('wrap(n){ b[(n/m)%10 +10].append(n) }); // sort on right digit ns.clear(); b.pump(ns.extend); // slam buckets over src b.apply("clear"); // reset buckets m*=10; z/=10; // move sort digit left } ns }
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Crystal
Crystal
def quick_sort(a : Array(Int32)) : Array(Int32) return a if a.size <= 1 p = a[0] lt, rt = a[1 .. -1].partition { |x| x < p } return quick_sort(lt) + [p] + quick_sort(rt) end   a = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0] puts quick_sort(a) # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Python
Python
from functools import total_ordering from bisect import bisect_left from heapq import merge   @total_ordering class Pile(list): def __lt__(self, other): return self[-1] < other[-1] def __eq__(self, other): return self[-1] == other[-1]   def patience_sort(n): piles = [] # sort into piles for x in n: new_pile = Pile([x]) i = bisect_left(piles, new_pile) if i != len(piles): piles[i].append(x) else: piles.append(new_pile)   # use a heap-based merge to merge piles efficiently n[:] = merge(*[reversed(pile) for pile in piles])   if __name__ == "__main__": a = [4, 65, 2, -31, 0, 99, 83, 782, 1] patience_sort(a) print a
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#CMake
CMake
# insertion_sort(var [value1 value2...]) sorts a list of integers. function(insertion_sort var) math(EXPR last "${ARGC} - 1") # Sort ARGV[1..last]. foreach(i RANGE 1 ${last}) # Extend the sorted area to ARGV[1..i]. set(b ${i}) set(v ${ARGV${b}}) # Insert v == ARGV[b] in sorted order. While b > 1, check if b is # too high, then decrement b. After loop, set ARGV[b] = v. while(b GREATER 1) math(EXPR a "${b} - 1") set(u ${ARGV${a}}) # Now u == ARGV[a]. Pretend v == ARGV[b]. Compare. if(u GREATER ${v}) # ARGV[a] and ARGV[b] are in wrong order. Fix by moving ARGV[a] # to ARGV[b], making room for later insertion of v. set(ARGV${b} ${u}) else() break() endif() math(EXPR b "${b} - 1") endwhile() set(ARGV${b} ${v}) endforeach(i)   set(answer) foreach(i RANGE 1 ${last}) list(APPEND answer ${ARGV${i}}) endforeach(i) set("${var}" "${answer}" PARENT_SCOPE) endfunction(insertion_sort)
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#C.2B.2B
C++
g++ -std=c++11 heap.cpp
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#BBC_BASIC
BBC BASIC
DEFPROC_MergeSort(Start%,End%) REM ***************************************************************** REM This procedure Merge Sorts the chunk of data% bounded by REM Start% & End%. REM *****************************************************************   LOCAL Middle% IF End%=Start% ENDPROC   IF End%-Start%=1 THEN IF data%(End%)<data%(Start%) THEN SWAP data%(Start%),data%(End%) ENDIF ENDPROC ENDIF   Middle%=Start%+(End%-Start%)/2   PROC_MergeSort(Start%,Middle%) PROC_MergeSort(Middle%+1,End%) PROC_Merge(Start%,Middle%,End%)   ENDPROC : DEF PROC_Merge(Start%,Middle%,End%)   LOCAL fh_size% fh_size% = Middle%-Start%+1   FOR I%=0 TO fh_size%-1 fh%(I%)=data%(Start%+I%) NEXT I%   I%=0 J%=Middle%+1 K%=Start%   REPEAT IF fh%(I%) <= data%(J%) THEN data%(K%)=fh%(I%) I%+=1 K%+=1 ELSE data%(K%)=data%(J%) J%+=1 K%+=1 ENDIF UNTIL I%=fh_size% OR J%>End%   WHILE I% < fh_size% data%(K%)=fh%(I%) I%+=1 K%+=1 ENDWHILE   ENDPROC
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Pascal
Pascal
Program PancakeSort (output);   procedure flip(var b: array of integer; last: integer);   var swap, i: integer;   begin for i := low(b) to (last - low(b) - 1) div 2 do begin swap := b[i]; b[i] := b[last-(i-low(b))]; b[last-(i-low(b))] := swap; end; end;   procedure PancakeSort(var a: array of integer);   var i, j, maxpos: integer;   begin for i := high(a) downto low(a) do begin // Find position of max number between beginning and i maxpos := i; for j := low(a) to i - 1 do if a[j] > a[maxpos] then maxpos := j;   // is it in the correct position already? if maxpos = i then continue;   // is it at the beginning of the array? If not flip array section so it is if maxpos <> low(a) then flip(a, maxpos);   // Flip array section to get max number to correct position flip(a, i); end; end;   var data: array of integer; i: integer;   begin setlength(data, 8); Randomize; writeln('The data before sorting:'); for i := low(data) to high(data) do begin data[i] := Random(high(data)); write(data[i]:4); end; writeln; PancakeSort(data); writeln('The data after sorting:'); for i := low(data) to high(data) do begin write(data[i]:4); end; writeln; end.
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Rust
Rust
fn stoogesort<E>(a: &mut [E]) where E: PartialOrd { let len = a.len();   if a.first().unwrap() > a.last().unwrap() { a.swap(0, len - 1); } if len - 1 > 1 { let t = len / 3; stoogesort(&mut a[..len - 1]); stoogesort(&mut a[t..]); stoogesort(&mut a[..len - 1]); } }   fn main() { let mut numbers = vec![1_i32, 9, 4, 7, 6, 5, 3, 2, 8]; println!("Before: {:?}", &numbers); stoogesort(&mut numbers); println!("After: {:?}", &numbers); }
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Scala
Scala
object StoogeSort extends App { def stoogeSort(a: Array[Int], i: Int, j: Int) { if (a(j) < a(i)) { val temp = a(j) a(j) = a(i) a(i) = temp } if (j - i > 1) { val t = (j - i + 1) / 3 stoogeSort(a, i, j - t) stoogeSort(a, i + t, j) stoogeSort(a, i, j - t) } }   val a = Array(100, 2, 56, 200, -52, 3, 99, 33, 177, -199) println(s"Original : ${a.mkString(", ")}") stoogeSort(a, 0, a.length - 1) println(s"Sorted  : ${a.mkString(", ")}") }
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Liberty_BASIC
Liberty BASIC
itemCount = 20 dim A(itemCount) for i = 1 to itemCount A(i) = int(rnd(1) * 100) next i   print "Before Sort" gosub [printArray]   '--- Selection sort algorithm for i = 1 to itemCount-1 jMin = i for j = i+1 to itemCount if A(j) < A(jMin) then jMin = j next tmp = A(i) A(i) = A(jMin) A(jMin) = tmp next '--- end of (Selection sort algorithm)   print "After Sort" gosub [printArray] end   [printArray] for i = 1 to itemCount print using("###", A(i)); next i print return  
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#NetRexx
NetRexx
  class Soundex   method get_soundex(in_) static in = in_.upper() old_alphabet= 'AEIOUYHWBFPVCGJKQSXZDTLMNR' new_alphabet= '@@@@@@**111122222222334556' word='' loop i=1 for in.length() tmp_=in.substr(i, 1) /*obtain a character from word*/ if tmp_.datatype('M') then word=word||tmp_ end   value=word.strip.left(1) /*1st character is left alone.*/ word=word.translate(new_alphabet, old_alphabet) /*define the current word. */ prev=value.translate(new_alphabet, old_alphabet) /* " " previous " */   loop j=2 to word.length() /*process remainder of word. */ q=word.substr(j, 1) if q\==prev & q.datatype('W') then do value=value || q; prev=q end else if q=='@' then prev=q end /*j*/   return value.left(4,0) /*padded value with zeroes. */   method main(args=String[]) static   test=''; result_='' test['1']= "12346"  ; result_['1']= '0000' test['4']= "4-H"  ; result_['4']= 'H000' test['11']= "Ashcraft"  ; result_['11']= 'A261' test['12']= "Ashcroft"  ; result_['12']= 'A261' test['18']= "auerbach"  ; result_['18']= 'A612' test['20']= "Baragwanath"  ; result_['20']= 'B625' test['22']= "bar"  ; result_['22']= 'B600' test['23']= "barre"  ; result_['23']= 'B600' test['20']= "Baragwanath"  ; result_['20']= 'B625' test['28']= "Burroughs"  ; result_['28']= 'B620' test['29']= "Burrows"  ; result_['29']= 'B620' test['30']= "C.I.A."  ; result_['30']= 'C000' test['37']= "coöp"  ; result_['37']= 'C100' test['43']= "D-day"  ; result_['43']= 'D000' test['44']= "d jay"  ; result_['44']= 'D200' test['45']= "de la Rosa"  ; result_['45']= 'D462' test['46']= "Donnell"  ; result_['46']= 'D540' test['47']= "Dracula"  ; result_['47']= 'D624' test['48']= "Drakula"  ; result_['48']= 'D624' test['49']= "Du Pont"  ; result_['49']= 'D153' test['50']= "Ekzampul"  ; result_['50']= 'E251' test['51']= "example"  ; result_['51']= 'E251' test['55']= "Ellery"  ; result_['55']= 'E460' test['59']= "Euler"  ; result_['59']= 'E460' test['60']= "F.B.I."  ; result_['60']= 'F000' test['70']= "Gauss"  ; result_['70']= 'G200' test['71']= "Ghosh"  ; result_['71']= 'G200' test['72']= "Gutierrez"  ; result_['72']= 'G362' test['80']= "he"  ; result_['80']= 'H000' test['81']= "Heilbronn"  ; result_['81']= 'H416' test['84']= "Hilbert"  ; result_['84']= 'H416' test['100']= "Jackson"  ; result_['100']= 'J250' test['104']= "Johnny"  ; result_['104']= 'J500' test['105']= "Jonny"  ; result_['105']= 'J500' test['110']= "Kant"  ; result_['110']= 'K530' test['116']= "Knuth"  ; result_['116']= 'K530' test['120']= "Ladd"  ; result_['120']= 'L300' test['124']= "Llyod"  ; result_['124']= 'L300' test['125']= "Lee"  ; result_['125']= 'L000' test['126']= "Lissajous"  ; result_['126']= 'L222' test['128']= "Lukasiewicz"  ; result_['128']= 'L222' test['130']= "naïve"  ; result_['130']= 'N100' test['141']= "Miller"  ; result_['141']= 'M460' test['143']= "Moses"  ; result_['143']= 'M220' test['146']= "Moskowitz"  ; result_['146']= 'M232' test['147']= "Moskovitz"  ; result_['147']= 'M213' test['150']= "O'Conner"  ; result_['150']= 'O256' test['151']= "O'Connor"  ; result_['151']= 'O256' test['152']= "O'Hara"  ; result_['152']= 'O600' test['153']= "O'Mally"  ; result_['153']= 'O540' test['161']= "Peters"  ; result_['161']= 'P362' test['162']= "Peterson"  ; result_['162']= 'P362' test['165']= "Pfister"  ; result_['165']= 'P236' test['180']= "R2-D2"  ; result_['180']= 'R300' test['182']= "rÄ≈sumÅ∙"  ; result_['182']= 'R250' test['184']= "Robert"  ; result_['184']= 'R163' test['185']= "Rupert"  ; result_['185']= 'R163' test['187']= "Rubin"  ; result_['187']= 'R150' test['191']= "Soundex"  ; result_['191']= 'S532' test['192']= "sownteks"  ; result_['192']= 'S532' test['199']= "Swhgler"  ; result_['199']= 'S460' test['202']= "'til"  ; result_['202']= 'T400' test['208']= "Tymczak"  ; result_['208']= 'T522' test['216']= "Uhrbach"  ; result_['216']= 'U612' test['221']= "Van de Graaff" ; result_['221']= 'V532' test['222']= "VanDeusen"  ; result_['222']= 'V532' test['230']= "Washington"  ; result_['230']= 'W252' test['233']= "Wheaton"  ; result_['233']= 'W350' test['234']= "Williams"  ; result_['234']= 'W452' test['236']= "Woolcock"  ; result_['236']= 'W422'   loop i over test say test[i].left(10) get_soundex(test[i]) '=' result_[i] end  
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Racket
Racket
  #lang racket (define (shell-sort! xs) (define ref (curry vector-ref xs)) (define (new Δ) (if (= Δ 2) 1 (quotient (* Δ 5) 11))) (let loop ([Δ (quotient (vector-length xs) 2)]) (unless (= Δ 0) (for ([xᵢ (in-vector xs)] [i (in-naturals)]) (let while ([i i]) (cond [(and (>= i Δ) (> (ref (- i Δ)) xᵢ)) (vector-set! xs i (ref (- i Δ))) (while (- i Δ))] [else (vector-set! xs i xᵢ)]))) (loop (new Δ)))) xs)  
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Raku
Raku
sub shell_sort ( @a is copy ) { loop ( my $gap = (@a/2).round; $gap > 0; $gap = ( $gap * 5 / 11 ).round ) { for $gap .. @a.end -> $i { my $temp = @a[$i];   my $j; loop ( $j = $i; $j >= $gap; $j -= $gap ) { my $v = @a[$j - $gap]; last if $v <= $temp; @a[$j] = $v; }   @a[$j] = $temp; } } return @a; } my @data = 22, 7, 2, -5, 8, 4; say 'input = ' ~ @data; say 'output = ' ~ @data.&shell_sort;  
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Objective-C
Objective-C
NSMutableArray *stack = [NSMutableArray array]; // creating   [stack addObject:value]; // pushing   id value = [stack lastObject]; [stack removeLastObject]; // popping   [stack count] == 0 // is empty?
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Python
Python
def spiral(n): dx,dy = 1,0 # Starting increments x,y = 0,0 # Starting location myarray = [[None]* n for j in range(n)] for i in xrange(n**2): myarray[x][y] = i nx,ny = x+dx, y+dy if 0<=nx<n and 0<=ny<n and myarray[nx][ny] == None: x,y = nx,ny else: dx,dy = -dy,dx x,y = x+dx, y+dy return myarray   def printspiral(myarray): n = range(len(myarray)) for y in n: for x in n: print "%2i" % myarray[x][y], print   printspiral(spiral(5))
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Curry
Curry
-- quicksort using higher-order functions:   qsort :: [Int] -> [Int] qsort [] = [] qsort (x:l) = qsort (filter (<x) l) ++ x : qsort (filter (>=x) l)   goal = qsort [2,3,1,0]
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Quackery
Quackery
[ dip [ 0 over size rot ] nested bsearchwith [ -1 peek dip [ -1 peek ] > ] drop ] is searchpiles ( [ n --> n )   [ dup size dup 1 = iff [ drop 0 peek ] done 2 / split recurse swap recurse merge ] is k-merge ( [ --> [ )   [ 1 split dip nested witheach [ 2dup dip dup searchpiles over size over = iff [ 2drop nested nested join ] else [ dup dip [ peek swap join swap ] poke ] ] k-merge ] is patience-sort ( [ --> [ )     ' [ 0 1 2 3 4 5 6 7 8 9 ] shuffle dup echo cr patience-sort echo
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#COBOL
COBOL
C-PROCESS SECTION. PERFORM E-INSERTION VARYING WB-IX-1 FROM 1 BY 1 UNTIL WB-IX-1 > WC-SIZE.   ...   E-INSERTION SECTION. E-000. MOVE WB-ENTRY(WB-IX-1) TO WC-TEMP. SET WB-IX-2 TO WB-IX-1.   PERFORM F-PASS UNTIL WB-IX-2 NOT > 1 OR WC-TEMP NOT < WB-ENTRY(WB-IX-2 - 1).   IF WB-IX-1 NOT = WB-IX-2 MOVE WC-TEMP TO WB-ENTRY(WB-IX-2).   E-999. EXIT.   F-PASS SECTION. F-000. MOVE WB-ENTRY(WB-IX-2 - 1) TO WB-ENTRY(WB-IX-2). SET WB-IX-2 DOWN BY 1.   F-999. EXIT.
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Clojure
Clojure
(defn- swap [a i j] (assoc a i (nth a j) j (nth a i)))   (defn- sift [a pred k l] (loop [a a x k y (inc (* 2 k))] (if (< (inc (* 2 x)) l) (let [ch (if (and (< y (dec l)) (pred (nth a y) (nth a (inc y)))) (inc y) y)] (if (pred (nth a x) (nth a ch)) (recur (swap a x ch) ch (inc (* 2 ch))) a)) a)))   (defn- heapify[pred a len] (reduce (fn [c term] (sift (swap c term 0) pred 0 term)) (reduce (fn [c i] (sift c pred i len)) (vec a) (range (dec (int (/ len 2))) -1 -1)) (range (dec len) 0 -1)))   (defn heap-sort ([a pred] (let [len (count a)] (heapify pred a len))) ([a] (heap-sort a <)))  
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#BCPL
BCPL
get "libhdr"   let mergesort(A, n) be if n >= 2 $( let m = n / 2 mergesort(A, m) mergesort(A+m, n-m) merge(A, n, m) $) and merge(A, n, m) be $( let i, j = 0, m let x = getvec(n) for k=0 to n-1 x!k := A!valof test j~=n & (i=m | A!j < A!i) $( j := j + 1 resultis j - 1 $) else $( i := i + 1 resultis i - 1 $) for i=0 to n-1 do a!i := x!i freevec(x) $)   let write(s, A, len) be $( writes(s) for i=0 to len-1 do writed(A!i, 4) wrch('*N') $)   let start() be $( let array = table 4,65,2,-31,0,99,2,83,782,1 let length = 10 write("Before: ", array, length) mergesort(array, length) write("After: ", array, length) $)
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Perl
Perl
sub pancake { my @x = @_; for my $idx (0 .. $#x - 1) { my $min = $idx; $x[$min] > $x[$_] and $min = $_ for $idx + 1 .. $#x;   next if $x[$min] == $x[$idx];   @x[$min .. $#x] = reverse @x[$min .. $#x] if $x[$min] != $x[-1]; @x[$idx .. $#x] = reverse @x[$idx .. $#x]; } @x; }   my @a = map (int rand(100), 1 .. 10); print "Before @a\n"; @a = pancake(@a); print "After @a\n";  
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Sidef
Sidef
func stooge(x, i, j) { if (x[j] < x[i]) { x.swap(i, j) }   if (j-i > 1) { var t = ((j - i + 1) / 3) stooge(x, i, j - t) stooge(x, i + t, j ) stooge(x, i, j - t) } }   var a = 10.of { 100.irand }   say "Before #{a}" stooge(a, 0, a.end) say "After #{a}"
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Smalltalk
Smalltalk
OrderedCollection extend [ stoogeSortFrom: i to: j [ (self at: j) < (self at: i) ifTrue: [ self swapElement: i with: j ]. j - i > 1 ifTrue: [ |t| t := (j - i + 1)//3. self stoogeSortFrom: i to: (j-t). self stoogeSortFrom: (i+t) to: j. self stoogeSortFrom: i to: (j-t) ] ] stoogeSort [ self stoogeSortFrom: 1 to: (self size) ] swapElement: i with: j [ |t| t := self at: i. self at: i put: (self at: j). self at: j put: t ] ].   |test| test := #( 1 4 5 3 -6 3 7 10 -2 -5) asOrderedCollection. test stoogeSort. test printNl.
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#LSE
LSE
  (* ** Tri par Sélection ** (LSE2000) *) PROCEDURE &Test(TABLEAU DE ENTIER pDonnees[], ENTIER pTaille) LOCAL pTaille ENTIER i, j, minimum, tmp POUR i <- 0 JUSQUA pTaille-1 FAIRE minimum <- i POUR j <- i+1 JUSQUA pTaille FAIRE SI pDonnees[j] < pDonnees[minimum] ALORS minimum <- j FIN SI BOUCLER SI i # min ALORS tmp <- pDonnees[i] pDonnees[i] <- pDonnees[minimum] pDonnees[minimum] <- tmp FIN SI BOUCLER FIN PROCEDURE  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Lua
Lua
function SelectionSort( f ) for k = 1, #f-1 do local idx = k for i = k+1, #f do if f[i] < f[idx] then idx = i end end f[k], f[idx] = f[idx], f[k] end end     f = { 15, -3, 0, -1, 5, 4, 5, 20, -8 }   SelectionSort( f )   for i in next, f do print( f[i] ) end
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Nim
Nim
import strutils   const Wovel = 'W' # Character code used to specify a wovel. Ignore = ' ' # Character code used to specify a character to ignore ('h', 'w' or non-letter).     proc code(ch: char): char = ## Return the soundex code for a character. case ch.toLowerAscii() of 'b', 'f', 'p', 'v': '1' of 'c', 'g', 'j', 'k', 'q', 's', 'x', 'z': '2' of 'd', 't': '3' of 'l': '4' of 'm', 'n': '5' of 'r': '6' of 'a', 'e', 'i', 'o', 'u', 'y': Wovel else: Ignore   proc soundex(str: string): string = ## Return the soundex for the given string.   result.add str[0] # Store the first letter.   # Process characters. var prev = code(str[0]) for i in 1..str.high: let curr = code(str[i]) if curr != Ignore: if curr != Wovel and curr != prev: result.add curr prev = curr   # Make sure the result has four characters. if result.len > 4: result.setLen(4) else: for _ in result.len..3: result.add '0'     for name in ["Robert", "Rupert", "Rubin", "Ashcraft", "Ashcroft", "Tymczak", "Pfister", "Honeyman", "Moses", "O'Mally", "O'Hara", "D day"]: echo name.align(8), " ", soundex(name)
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#REXX
REXX
/*REXX program sorts a stemmed array using the shell sort (shellsort) algorithm. */ call gen /*generate the array elements. */ call show 'before sort' /*display the before array elements. */ say copies('▒', 75) /*displat a separator line (a fence). */ call shellSort # /*invoke the shell sort. */ call show ' after sort' /*display the after array elements. */ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ gen: @.= /*assign a default value to stem array.*/ @.1= '3 character abbreviations for states of the USA' /*predates ZIP code.*/ @.2= '===============================================' @.3= 'RHO Rhode Island and Providence Plantations'  ; @.36= 'NMX New Mexico' @.4= 'CAL California'  ; @.20= "NEV Nevada"  ; @.37= 'IND Indiana' @.5= 'KAN Kansas'  ; @.21= "TEX Texas"  ; @.38= 'MOE Missouri' @.6= 'MAS Massachusetts' ; @.22= "VGI Virginia"  ; @.39= 'COL Colorado' @.7= 'WAS Washington'  ; @.23= "OHI Ohio"  ; @.40= 'CON Connecticut' @.8= 'HAW Hawaii'  ; @.24= "NHM New Hampshire"; @.41= 'MON Montana' @.9= 'NCR North Carolina'; @.25= "MAE Maine"  ; @.42= 'LOU Louisiana' @.10= 'SCR South Carolina'; @.26= "MIC Michigan"  ; @.43= 'IOW Iowa' @.11= 'IDA Idaho'  ; @.27= "MIN Minnesota"  ; @.44= 'ORE Oregon' @.12= 'NDK North Dakota'  ; @.28= "MIS Mississippi"  ; @.45= 'ARK Arkansas' @.13= 'SDK South Dakota'  ; @.29= "WIS Wisconsin"  ; @.46= 'ARZ Arizona' @.14= 'NEB Nebraska'  ; @.30= "OKA Oklahoma"  ; @.47= 'UTH Utah' @.15= 'DEL Delaware'  ; @.31= "ALA Alabama"  ; @.48= 'KTY Kentucky' @.16= 'PEN Pennsylvania'  ; @.32= "FLA Florida"  ; @.49= 'WVG West Virginia' @.17= 'TEN Tennessee'  ; @.33= "MLD Maryland"  ; @.50= 'NWJ New Jersey' @.18= 'GEO Georgia'  ; @.34= "ALK Alaska"  ; @.51= 'NYK New York' @.19= 'VER Vermont'  ; @.35= "ILL Illinois"  ; @.52= 'WYO Wyoming' do #=1 until @.#==''; end; #= #-1 /*determine number of entries in array.*/ return /*──────────────────────────────────────────────────────────────────────────────────────*/ shellSort: procedure expose @.; parse arg n /*obtain the n from the argument list*/ i= n % 2 /*% is integer division in REXX. */ do while i\==0 do j=i+1 to n; k= j; p= k - i /*P: previous item*/ _= @.j do while k>=i+1 & @.p>_; @.k= @.p; k= k-i; p= k-i end /*while*/ @.k= _ end /*j*/ if i==2 then i= 1 else i= i * 5 % 11 end /*while*/ return /*──────────────────────────────────────────────────────────────────────────────────────*/ show: do j=1 for #; say 'element' right(j, length(#) ) arg(1)": " @.j; end; return
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#OCaml
OCaml
exception Stack_empty   class ['a] stack = object (self) val mutable lst : 'a list = []   method push x = lst <- x::lst   method pop = match lst with [] -> raise Stack_empty | x::xs -> lst <- xs; x   method is_empty = lst = [] end
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Quackery
Quackery
[ stack ] is stepcount ( --> s ) [ stack ] is position ( --> s ) [ stack ] is heading ( --> s )   [ heading take behead join heading put ] is right ( --> )   [ heading share 0 peek unrot times [ position share stepcount share unrot poke over position tally 1 stepcount tally ] nip ] is walk ( [ n --> [ )   [ dip [ temp put [] ] temp share times [ temp share split dip [ nested join ] ] drop temp release ] is matrixify ( n [ --> [ )   [ 0 stepcount put ( set up... ) 0 position put ' [ 1 ] over join -1 join over negate join heading put 0 over dup * of   over 1 - walk right ( turtle draws spiral ) over 1 - times [ i 1+ walk right i 1+ walk right ] 1 walk   matrixify ( ...tidy up ) heading release position release stepcount release ] is spiral ( n --> [ )   9 spiral witheach [ witheach [ dup 10 < if sp echo sp ] cr ]
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#D
D
import std.stdio : writefln, writeln; import std.algorithm: filter; import std.array;   T[] quickSort(T)(T[] xs) => xs.length == 0 ? [] : xs[1 .. $].filter!(x => x< xs[0]).array.quickSort ~ xs[0 .. 1] ~ xs[1 .. $].filter!(x => x>=xs[0]).array.quickSort;   void main() => [4, 65, 2, -31, 0, 99, 2, 83, 782, 1].quickSort.writeln;  
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Racket
Racket
#lang racket/base (require racket/match racket/list)   ;; the car of a pile is the "bottom", i.e. where we place a card (define (place-greedily ps-in c <?) (let inr ((vr null) (ps ps-in)) (match ps [(list) (reverse (cons (list c) vr))] [(list (and psh (list ph _ ...)) pst ...) #:when (<? c ph) (append (reverse (cons (cons c psh) vr)) pst)] [(list psh pst ...) (inr (cons psh vr) pst)])))   (define (patience-sort cs-in <?)  ;; Scatter (define piles (let scatter ((cs cs-in) (ps null)) (match cs [(list) ps] [(cons a d) (scatter d (place-greedily ps a <?))])))  ;; Gather (let gather ((rv null) (ps piles)) (match ps [(list) (reverse rv)] [(list psh pst ...) (let scan ((least psh) (seens null) (unseens pst)) (define least-card (car least)) (match* (unseens least) [((list) (list l)) (gather (cons l rv) seens)] [((list) (cons l lt)) (gather (cons l rv) (cons lt seens))] [((cons (and ush (cons u _)) ust) (cons l _)) #:when (<? l u) (scan least (cons ush seens) ust)] [((cons ush ust) least) (scan ush (cons least seens) ust)]))])))   (patience-sort (shuffle (for/list ((_ 10)) (random 7))) <)
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Common_Lisp
Common Lisp
(defun span (predicate list) (let ((tail (member-if-not predicate list))) (values (ldiff list tail) tail)))   (defun less-than (x) (lambda (y) (< y x)))   (defun insert (list elt) (multiple-value-bind (left right) (span (less-than elt) list) (append left (list elt) right)))   (defun insertion-sort (list) (reduce #'insert list :initial-value nil))
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#CLU
CLU
% Sort an array in place using heap-sort. The contained type % may be any type that can be compared. heapsort = cluster [T: type] is sort where T has lt: proctype (T,T) returns (bool) rep = null aT = array[T]   sort = proc (a: aT)  % CLU arrays may start at any index.  % For simplicity, we will store the old index,  % reindex the array at zero, do the heap-sort,  % then undo the reindexing.  % This should be a constant-time operation. old_low: int := aT$low(a) aT$set_low(a, 0) heapsort_(a) aT$set_low(a, old_low) end sort    % Heap-sort a zero-indexed array heapsort_ = proc (a: aT) heapify(a) end_: int := aT$high(a) while end_ > 0 do swap(a, end_, 0) end_ := end_ - 1 siftDown(a, 0, end_) end end heapsort_   heapify = proc (a: aT) start: int := (aT$high(a) - 1) / 2 while start >= 0 do siftDown(a, start, aT$high(a)) start := start - 1 end end heapify   siftDown = proc (a: aT, start, end_: int) root: int := start while root*2 + 1 <= end_ do child: int := root * 2 + 1 if child + 1 <= end_ cand a[child] < a[child + 1] then child := child + 1 end if a[root] < a[child] then swap(a, root, child) root := child else break end end end siftDown   swap = proc (a: aT, i, j: int) temp: T := a[i] a[i] := a[j] a[j] := temp end swap end heapsort   % Print an array print_arr = proc [T: type] (s: stream, a: array[T], w: int) where T has unparse: proctype (T) returns (string) for e: T in array[T]$elements(a) do stream$putright(s, T$unparse(e), w) end stream$putl(s, "") end print_arr   % Test the heapsort start_up = proc () po: stream := stream$primary_output() arr: array[int] := array[int]$[9, -5, 3, 3, 24, -16, 3, -120, 250, 17]   stream$puts(po, "Before sorting: ") print_arr[int](po,arr,5)   heapsort[int]$sort(arr) stream$puts(po, "After sorting: ") print_arr[int](po,arr,5) end start_up
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#COBOL
COBOL
>>SOURCE FORMAT FREE *> This code is dedicated to the public domain *> This is GNUCOBOL 2.0 identification division. program-id. heapsort. environment division. configuration section. repository. function all intrinsic. data division. working-storage section. 01 filler. 03 a pic 99. 03 a-start pic 99. 03 a-end pic 99. 03 a-parent pic 99. 03 a-child pic 99. 03 a-sibling pic 99. 03 a-lim pic 99 value 10. 03 array-swap pic 99. 03 array occurs 10 pic 99. procedure division. start-heapsort.   *> fill the array compute a = random(seconds-past-midnight) perform varying a from 1 by 1 until a > a-lim compute array(a) = random() * 100 end-perform   perform display-array display space 'initial array'   *>heapify the array move a-lim to a-end compute a-start = (a-lim + 1) / 2 perform sift-down varying a-start from a-start by -1 until a-start = 0   perform display-array display space 'heapified'   *> sort the array move 1 to a-start move a-lim to a-end perform until a-end = a-start move array(a-end) to array-swap move array(a-start) to array(a-end) move array-swap to array(a-start) subtract 1 from a-end perform sift-down end-perform   perform display-array display space 'sorted'   stop run . sift-down. move a-start to a-parent perform until a-parent * 2 > a-end compute a-child = a-parent * 2 compute a-sibling = a-child + 1 if a-sibling <= a-end and array(a-child) < array(a-sibling) *> take the greater of the two move a-sibling to a-child end-if if a-child <= a-end and array(a-parent) < array(a-child) *> the child is greater than the parent move array(a-child) to array-swap move array(a-parent) to array(a-child) move array-swap to array(a-parent) end-if *> continue down the tree move a-child to a-parent end-perform . display-array. perform varying a from 1 by 1 until a > a-lim display space array(a) with no advancing end-perform . end program heapsort.
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#C
C
#include <stdio.h> #include <stdlib.h>   void merge (int *a, int n, int m) { int i, j, k; int *x = malloc(n * sizeof (int)); for (i = 0, j = m, k = 0; k < n; k++) { x[k] = j == n ? a[i++] : i == m ? a[j++] : a[j] < a[i] ? a[j++] : a[i++]; } for (i = 0; i < n; i++) { a[i] = x[i]; } free(x); }   void merge_sort (int *a, int n) { if (n < 2) return; int m = n / 2; merge_sort(a, m); merge_sort(a + m, n - m); merge(a, n, m); }   int main () { int a[] = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1}; int n = sizeof a / sizeof a[0]; int i; for (i = 0; i < n; i++) printf("%d%s", a[i], i == n - 1 ? "\n" : " "); merge_sort(a, n); for (i = 0; i < n; i++) printf("%d%s", a[i], i == n - 1 ? "\n" : " "); return 0; }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Phix
Phix
with javascript_semantics function pancake_sort(sequence s) s = deep_copy(s) for i=length(s) to 2 by -1 do integer m = largest(s[1..i],true) if m<i then if m>1 then s[1..m] = reverse(s[1..m]) end if s[1..i] = reverse(s[1..i]) end if end for return s end function constant s = shuffle(tagset(10)) ? s ? pancake_sort(s)
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Swift
Swift
func stoogeSort(inout arr:[Int], _ i:Int = 0, var _ j:Int = -1) { if j == -1 { j = arr.count - 1 }   if arr[i] > arr[j] { swap(&arr[i], &arr[j]) }   if j - i > 1 { let t = (j - i + 1) / 3 stoogeSort(&arr, i, j - t) stoogeSort(&arr, i + t, j) stoogeSort(&arr, i, j - t) } }   var a = [-4, 2, 5, 2, 3, -2, 1, 100, 20]   stoogeSort(&a)   println(a)
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Maple
Maple
arr:= Array([17,3,72,0,36,2,3,8,40,0]): len := numelems(arr): for i to len-1 do j_min := i: for j from i+1 to len do if arr[j] < arr[j_min] then j_min := j: end if: end do: if (not j_min = i) then temp := arr[i]: arr[i] := arr[j_min]: arr[j_min] := temp: end if: end do: arr;
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Objeck
Objeck
class SoundEx { function : Main(args : String[]) ~ Nil { SoundEx("Soundex")->PrintLine(); SoundEx("Example")->PrintLine(); SoundEx("Sownteks")->PrintLine(); SoundEx("Ekzampul")->PrintLine(); }   function : SoundEx(s : String) ~ String { input := s->ToUpper()->Get(0); code := input->ToString(); previous := GetCode(input);   for(i := 1; i < s->Size(); i += 1;) { current := GetCode(s->ToUpper()->Get(i)); if(current->Size() > 0 & <>current->Equals(previous)) { code += current; }; previous := current; };   soundex := String->New(code); soundex += "0000"; return soundex->SubString(4); }   function : GetCode(c : Char) ~ String { select(c) { label 'B': label 'F': label 'P': label 'V': { return "1"; }   label 'C': label 'G': label 'J': label 'K': label 'Q': label 'S': label 'X': label 'Z': { return "2"; }   label 'D': label 'T': { return "3"; }   label 'L': { return "4"; }   label 'M': label 'N': { return "5"; }   label 'R': { return "6"; }   other: { return ""; } }; } }  
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Ring
Ring
  aList = [-12, 3, 0, 4, 7, 4, 8, -5, 9] shellSort(aList) for i=1 to len(aList) see "" + aList[i] + " " next   func shellSort a inc = ceil( len(a) / 2 ) while inc > 0 for i = inc to len(a) tmp = a[i] j = i while j > inc and a[j-inc] > tmp a[j] = a[j-inc] j = j - inc end a[j] = tmp next inc = floor( 0.5 + inc / 2.2 ) end return a  
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Ruby
Ruby
class Array def shellsort! inc = length / 2 while inc != 0 inc.step(length-1) do |i| el = self[i] while i >= inc and self[i - inc] > el self[i] = self[i - inc] i -= inc end self[i] = el end inc = (inc == 2 ? 1 : (inc * 5.0 / 11).to_i) end self end end   data = [22, 7, 2, -5, 8, 4] data.shellsort! p data # [-5, 2, 4, 7, 8, 22]
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Oforth
Oforth
ListBuffer Class new: Stack Stack method: push self add ; Stack method: pop self removeLast ; Stack method: top self last ;
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#R
R
spiral <- function(n) matrix(order(cumsum(rep(rep_len(c(1, n, -1, -n), 2 * n - 1), n - seq(2 * n - 1) %/% 2))), n, byrow = T) - 1   spiral(5)
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Dart
Dart
quickSort(List a) { if (a.length <= 1) { return a; }   var pivot = a[0]; var less = []; var more = []; var pivotList = [];   // Partition a.forEach((var i){ if (i.compareTo(pivot) < 0) { less.add(i); } else if (i.compareTo(pivot) > 0) { more.add(i); } else { pivotList.add(i); } });   // Recursively sort sublists less = quickSort(less); more = quickSort(more);   // Concatenate results less.addAll(pivotList); less.addAll(more); return less; }   void main() { var arr=[1,5,2,7,3,9,4,6,8]; print("Before sort"); arr.forEach((var i)=>print("$i")); arr = quickSort(arr); print("After sort"); arr.forEach((var i)=>print("$i")); }
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Raku
Raku
multi patience(*@deck) { my @stacks; for @deck -> $card { with @stacks.first: $card before *[*-1] -> $stack { $stack.push: $card; } else { @stacks.push: [$card]; } } gather while @stacks { take .pop given min :by(*[*-1]), @stacks; @stacks .= grep: +*; } }   say ~patience ^10 . pick(*);
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#D
D
void insertionSort(T)(T[] data) pure nothrow @safe @nogc { foreach (immutable i, value; data[1 .. $]) { auto j = i + 1; for ( ; j > 0 && value < data[j - 1]; j--) data[j] = data[j - 1]; data[j] = value; } }   void main() { import std.stdio; auto items = [28, 44, 46, 24, 19, 2, 17, 11, 25, 4]; items.insertionSort; items.writeln; }
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#CoffeeScript
CoffeeScript
# Do an in-place heap sort. heap_sort = (arr) -> put_array_in_heap_order(arr) end = arr.length - 1 while end > 0 [arr[0], arr[end]] = [arr[end], arr[0]] sift_element_down_heap arr, 0, end end -= 1   put_array_in_heap_order = (arr) -> i = arr.length / 2 - 1 i = Math.floor i while i >= 0 sift_element_down_heap arr, i, arr.length i -= 1   sift_element_down_heap = (heap, i, max) -> while i < max i_big = i c1 = 2*i + 1 c2 = c1 + 1 if c1 < max and heap[c1] > heap[i_big] i_big = c1 if c2 < max and heap[c2] > heap[i_big] i_big = c2 return if i_big is i [heap[i], heap[i_big]] = [heap[i_big], heap[i]] i = i_big   do -> arr = [12, 11, 15, 10, 9, 1, 2, 3, 13, 14, 4, 5, 6, 7, 8] heap_sort arr console.log arr
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#C.23
C#
namespace RosettaCode { using System;   public class MergeSort<T> where T : IComparable { #region Constants public const UInt32 INSERTION_LIMIT_DEFAULT = 12; public const Int32 MERGES_DEFAULT = 6; #endregion   #region Properties public UInt32 InsertionLimit { get; } protected UInt32[] Positions { get; set; }   private Int32 merges; public Int32 Merges { get { return merges; } set { // A minimum of 2 merges are required if (value > 1) merges = value; else throw new ArgumentOutOfRangeException($"value = {value} must be greater than one", nameof(Merges));   if (Positions == null || Positions.Length != merges) Positions = new UInt32[merges]; } } #endregion   #region Constructors public MergeSort(UInt32 insertionLimit, Int32 merges) { InsertionLimit = insertionLimit; Merges = merges; }   public MergeSort() : this(INSERTION_LIMIT_DEFAULT, MERGES_DEFAULT) { } #endregion   #region Sort Methods public void Sort(T[] entries) { // Allocate merge buffer var entries2 = new T[entries.Length]; Sort(entries, entries2, 0, entries.Length - 1); }   // Top-Down K-way Merge Sort public void Sort(T[] entries1, T[] entries2, Int32 first, Int32 last) { var length = last + 1 - first; if (length < 2) return; if (length < Merges || length < InsertionLimit) { InsertionSort<T>.Sort(entries1, first, last); return; }   var left = first; var size = ceiling(length, Merges); for (var remaining = length; remaining > 0; remaining -= size, left += size) { var right = left + Math.Min(remaining, size) - 1; Sort(entries1, entries2, left, right); }   Merge(entries1, entries2, first, last); Array.Copy(entries2, first, entries1, first, length); } #endregion   #region Merge Methods public void Merge(T[] entries1, T[] entries2, Int32 first, Int32 last) { Array.Clear(Positions, 0, Merges); // This implementation has a quadratic time dependency on the number of merges for (var index = first; index <= last; index++) entries2[index] = remove(entries1, first, last); }   private T remove(T[] entries, Int32 first, Int32 last) { T entry = default; Int32? found = default; var length = last + 1 - first;   var index = 0; var left = first; var size = ceiling(length, Merges); for (var remaining = length; remaining > 0; remaining -= size, left += size, index++) { var position = Positions[index]; if (position < Math.Min(remaining, size)) { var next = entries[left + position]; if (!found.HasValue || entry.CompareTo(next) > 0) { found = index; entry = next; } } }   // Remove entry Positions[found.Value]++; return entry; } #endregion   #region Math Methods private static Int32 ceiling(Int32 numerator, Int32 denominator) { return (numerator + denominator - 1) / denominator; } #endregion }   #region Insertion Sort static class InsertionSort<T> where T : IComparable { public static void Sort(T[] entries, Int32 first, Int32 last) { for (var next = first + 1; next <= last; next++) insert(entries, first, next); }   /// <summary>Bubble next entry up to its sorted location, assuming entries[first:next - 1] are already sorted.</summary> private static void insert(T[] entries, Int32 first, Int32 next) { var entry = entries[next]; while (next > first && entries[next - 1].CompareTo(entry) > 0) entries[next] = entries[--next]; entries[next] = entry; } } #endregion }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Picat
Picat
go => Nums = [6,7,8,9,2,5,3,4,1], println(Nums), Sorted = pancake_sort(Nums), println(Sorted), nl.   pancake_sort(L) = L => T = L.len, while (T > 1) Ix = argmax(L[1..T]), if Ix == 1 then L := L[1..T].reverse ++ L.slice(T+1), T := T-1 else L := L[1..Ix].reverse ++ L.slice(Ix+1) end end.   % Get the index of the (first) maximal value in L argmax(L) = MaxIx => Max = max(L), MaxIx = [I : I in 1..L.length, L[I] == Max].first.
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#PicoLisp
PicoLisp
(de pancake (Lst) (prog1 (flip Lst (index (apply max Lst) Lst)) (for (L @ (cdr (setq Lst (cdr L))) (cdr L)) (con L (flip Lst (index (apply max Lst) Lst))) ) ) )
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Tcl
Tcl
package require Tcl 8.5   proc stoogesort {L {i 0} {j -42}} { if {$j == -42} {# Magic marker set j [expr {[llength $L]-1}] } set Li [lindex $L $i] set Lj [lindex $L $j] if {$Lj < $Li} { lset L $i $Lj lset L $j $Li } if {$j-$i > 1} { set t [expr {($j-$i+1)/3}] set L [stoogesort $L $i [expr {$j-$t}]] set L [stoogesort $L [expr {$i+$t}] $j] set L [stoogesort $L $i [expr {$j-$t}]] } return $L }   stoogesort {1 4 5 3 -6 3 7 10 -2 -5}
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
SelectSort[x_List] := Module[{n = 1, temp, xi = x, j}, While[n <= Length@x, temp = xi[[n]]; For[j = n, j <= Length@x, j++, If[xi[[j]] < temp, temp = xi[[j]]]; ]; xi[[n ;;]] = {temp}~Join~ Delete[xi[[n ;;]], First@Position[xi[[n ;;]], temp] ]; n++; ]; xi ]
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#MATLAB_.2F_Octave
MATLAB / Octave
function list = selectionSort(list)   listSize = numel(list);   for i = (1:listSize-1)   minElem = list(i); minIndex = i;   %This for loop can be vectorized, but there will be no significant %increase in sorting efficiency. for j = (i:listSize) if list(j) <= minElem minElem = list(j); minIndex = j; end end   if i ~= minIndex list([minIndex i]) = list([i minIndex]); %Swap end   end %for end %selectionSort
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#OCaml
OCaml
let c2d = function | 'B' | 'F' | 'P' | 'V' -> "1" | 'C' | 'G' | 'J' | 'K' | 'Q' | 'S' | 'X' | 'Z' -> "2" | 'D' | 'T' -> "3" | 'L' -> "4" | 'M' | 'N' -> "5" | 'R' -> "6" | _ -> ""   let rec dbl acc = function | [] -> (List.rev acc) | [c] -> List.rev(c::acc) | c1::(c2::_ as tl) -> if c1 = c2 then dbl acc tl else dbl (c1::acc) tl   let pad s = match String.length s with | 0 -> s ^ "000" | 1 -> s ^ "00" | 2 -> s ^ "0" | 3 -> s | _ -> String.sub s 0 3   let soundex_aux rem = pad(String.concat "" (dbl [] (List.map c2d rem)))   let soundex s = let s = String.uppercase s in let cl = ref [] in String.iter (fun c -> cl := c :: !cl) s; match dbl [] (List.rev !cl) with | c::rem -> (String.make 1 c) ^ (soundex_aux rem) | [] -> invalid_arg "soundex"
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Run_BASIC
Run BASIC
siz = 100 dim a(siz) for i = 1 to siz a(i) = rnd(1) * 1000 next i   ' ------------------------------- ' Shell Sort ' ------------------------------- incr = int(siz / 2) WHILE incr > 0 for i = 1 to siz j = i temp = a(i) WHILE (j >= incr and a(abs(j-incr)) > temp) a(j) = a(j-incr) j = j - incr WEND a(j) = temp next i incr = int(incr / 2.2) WEND
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Rust
Rust
  fn shell_sort<T: Ord + Copy>(v: &mut [T]) { let mut gap = v.len() / 2; let len = v.len(); while gap > 0 { for i in gap..len { let temp = v[i]; let mut j = i; while j >= gap && v[j - gap] > temp { v[j] = v[j - gap]; j -= gap; } v[j] = temp; } gap /= 2; } }   fn main() { let mut numbers = [4i32, 65, 2, -31, 0, 99, 2, 83, 782, 1]; println!("Before: {:?}", numbers); shell_sort(&mut numbers); println!("After: {:?}", numbers); }    
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Ol
Ol
  (define stack #null) (print "stack is: " stack) (print "is stack empty: " (eq? stack #null))   (print "* pushing 1") (define stack (cons 1 stack)) (print "stack is: " stack) (print "is stack empty: " (eq? stack #null))   (print "* pushing 2") (define stack (cons 2 stack)) (print "stack is: " stack) (print "is stack empty: " (eq? stack #null))   (print "* pushing 3") (define stack (cons 3 stack)) (print "stack is: " stack) (print "is stack empty: " (eq? stack #null))   (print "* poping") (define-values (value stack) (uncons stack #f)) (print "value: " value) (print "stack: " stack) (print "is stack empty: " (eq? stack #null))   (print "* poping") (define-values (value stack) (uncons stack #f)) (print "value: " value) (print "stack: " stack) (print "is stack empty: " (eq? stack #null))   (print "* poping") (define-values (value stack) (uncons stack #f)) (print "value: " value) (print "stack: " stack) (print "is stack empty: " (eq? stack #null))   (print "* poping") (define-values (value stack) (uncons stack #f)) (print "value: " value) (print "stack: " stack) (print "is stack empty: " (eq? stack #null))  
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Racket
Racket
  #lang racket (require math)   (define (spiral rows columns) (define (index x y) (+ (* x columns) y)) (do ((N (* rows columns)) (spiral (make-vector (* rows columns) #f)) (dx 1) (dy 0) (x 0) (y 0) (i 0 (+ i 1))) ((= i N) spiral) (vector-set! spiral (index y x) i) (let ((nx (+ x dx)) (ny (+ y dy))) (cond ((and (< -1 nx columns) (< -1 ny rows) (not (vector-ref spiral (index ny nx)))) (set! x nx) (set! y ny)) (else (set!-values (dx dy) (values (- dy) dx)) (set! x (+ x dx)) (set! y (+ y dy)))))))   (vector->matrix 4 4 (spiral 4 4))  
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#E
E
def quicksort := {   def swap(container, ixA, ixB) { def temp := container[ixA] container[ixA] := container[ixB] container[ixB] := temp }   def partition(array, var first :int, var last :int) { if (last <= first) { return }   # Choose a pivot def pivot := array[def pivotIndex := (first + last) // 2]   # Move pivot to end temporarily swap(array, pivotIndex, last)   var swapWith := first   # Scan array except for pivot, and... for i in first..!last { if (array[i] <= pivot) { # items ≤ the pivot swap(array, i, swapWith) # are moved to consecutive positions on the left swapWith += 1 } }   # Swap pivot into between-partition position. # Because of the swapping we know that everything before swapWith is less # than or equal to the pivot, and the item at swapWith (since it was not # swapped) is greater than the pivot, so inserting the pivot at swapWith # will preserve the partition. swap(array, swapWith, last) return swapWith }   def quicksortR(array, first :int, last :int) { if (last <= first) { return } def pivot := partition(array, first, last) quicksortR(array, first, pivot - 1) quicksortR(array, pivot + 1, last) }   def quicksort(array) { # returned from block quicksortR(array, 0, array.size() - 1) } }
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#REXX
REXX
/*REXX program sorts a list of things (or items) using the patience sort algorithm. */ parse arg xxx; say ' input: ' xxx /*obtain a list of things from the C.L.*/ n= words(xxx); #= 0;  !.= 1 /*N: # of things; #: number of piles*/ @.= /* [↓] append or create a pile (@.j) */ do i=1 for n; q= word(xxx, i) /* [↓] construct the piles of things. */ do j=1 for # /*add the Q thing (item) to a pile.*/ if q>word(@.j,1) then iterate /*Is this item greater? Then skip it.*/ @.j= q @.j; iterate i /*add this item to the top of the pile.*/ end /*j*/ /* [↑] find a pile, or make a new pile*/ #= # + 1 /*increase the pile count. */ @.#= q /*define a new pile. */ end /*i*/ /*we are done with creating the piles. */ $= /* [↓] build a thingy list from piles*/ do k=1 until words($)==n /*pick off the smallest from the piles.*/ _= /*this is the smallest thingy so far···*/ do m=1 for #; z= word(@.m, !.m) /*traipse through many piles of items. */ if z=='' then iterate /*Is this pile null? Then skip pile.*/ if _=='' then _= z /*assume this one is the low pile value*/ if _>=z then do; _= z; p= m; end /*found a low value in a pile of items.*/ end /*m*/ /*the traipsing is done, we found a low*/ $= $ _ /*add to the output thingy ($) list. */  !.p= !.p + 1 /*bump the thingy pointer in pile P. */ end /*k*/ /* [↑] each iteration finds a low item*/ /* [↓] string $ has a leading blank.*/ say 'output: ' strip($) /*stick a fork in it, we're all done. */
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Dart
Dart
    insertSort(List<int> array){ for(int i = 1; i < array.length; i++){ int value = array[i]; int j = i - 1; while(j >= 0 && array[j] > value){ array[j + 1] = array[j]; j = j - 1; } array[j + 1] = value; } return array; }   void main() { List<int> a = insertSort([10, 3, 11, 15, 19, 1]); print('${a}'); }  
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Common_Lisp
Common Lisp
(defun make-heap (&optional (length 7)) (make-array length :adjustable t :fill-pointer 0))   (defun left-index (index) (1- (* 2 (1+ index))))   (defun right-index (index) (* 2 (1+ index)))   (defun parent-index (index) (floor (1- index) 2))   (defun percolate-up (heap index predicate) (if (zerop index) heap (do* ((element (aref heap index)) (index index pindex) (pindex (parent-index index) (parent-index index))) ((zerop index) heap) (if (funcall predicate element (aref heap pindex)) (rotatef (aref heap index) (aref heap pindex)) (return-from percolate-up heap)))))   (defun heap-insert (heap element predicate) (let ((index (vector-push-extend element heap 2))) (percolate-up heap index predicate)))   (defun percolate-down (heap index predicate) (let ((length (length heap)) (element (aref heap index))) (flet ((maybe-element (index) "return the element at index or nil, and a boolean indicating whether there was an element." (if (< index length) (values (aref heap index) t) (values nil nil)))) (do ((index index swap-index) (lindex (left-index index) (left-index index)) (rindex (right-index index) (right-index index)) (swap-index nil) (swap-child nil)) (nil) ;; Extact the left child if there is one. If there is not, ;; return the heap. Set the left child as the swap-child. (multiple-value-bind (lchild lp) (maybe-element lindex) (if (not lp) (return-from percolate-down heap) (setf swap-child lchild swap-index lindex)) ;; Extract the right child, if any, and when better than the ;; current swap-child, update the swap-child. (multiple-value-bind (rchild rp) (maybe-element rindex) (when (and rp (funcall predicate rchild lchild)) (setf swap-child rchild swap-index rindex)) ;; If the swap-child is better than element, rotate them, ;; and continue percolating down, else return heap. (if (not (funcall predicate swap-child element)) (return-from percolate-down heap) (rotatef (aref heap index) (aref heap swap-index)))))))))   (defun heap-empty-p (heap) (eql (length heap) 0))   (defun heap-delete-min (heap predicate) (assert (not (heap-empty-p heap)) () "Can't pop from empty heap.") (prog1 (aref heap 0) (setf (aref heap 0) (vector-pop heap)) (unless (heap-empty-p heap) (percolate-down heap 0 predicate))))   (defun heapsort (sequence predicate) (let ((h (make-heap (length sequence)))) (map nil #'(lambda (e) (heap-insert h e predicate)) sequence) (map-into sequence #'(lambda () (heap-delete-min h predicate)))))
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#C.2B.2B
C++
#include <iterator> #include <algorithm> // for std::inplace_merge #include <functional> // for std::less   template<typename RandomAccessIterator, typename Order> void mergesort(RandomAccessIterator first, RandomAccessIterator last, Order order) { if (last - first > 1) { RandomAccessIterator middle = first + (last - first) / 2; mergesort(first, middle, order); mergesort(middle, last, order); std::inplace_merge(first, middle, last, order); } }   template<typename RandomAccessIterator> void mergesort(RandomAccessIterator first, RandomAccessIterator last) { mergesort(first, last, std::less<typename std::iterator_traits<RandomAccessIterator>::value_type>()); }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#PL.2FI
PL/I
  pancake_sort: procedure options (main); /* 23 April 2009 */ declare a(10) fixed, (i, n, loc) fixed binary;   a(1) = 3; a(2) = 9; a(3) = 2; a(4) = 7; a(5) = 10; a(6) = 1; a(7) = 8; a(8) = 5; a(9) = 4; a(10) = 6;   n = hbound(A,1); put skip edit (A) (f(5)); do i = 1 to n-1; loc = max(A, n); call flip (A, loc); call flip (A, n); n = n - 1; put skip edit (A) (f(5)); end;   max: procedure (A, k) returns (fixed binary); declare A(*) fixed, k fixed binary; declare (i, maximum, loc) fixed binary; maximum = A(1); loc = 1; do i = 2 to k; if A(i) > maximum then do; maximum = A(i); loc = i; end; end; return (loc); end max;   flip: procedure (A, k); declare A(*) fixed, k fixed binary; declare (i, t) fixed binary; do i = 1 to (k+1)/2; t = A(i); A(i) = A(k-i+1); A(k-i+1) = t; end; end flip;   end pancake_sort;  
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#PowerShell
PowerShell
Function FlipPancake( [Object[]] $indata, $index = 1 ) { $data=$indata.Clone() $datal = $data.length - 1 if( $index -gt 0 ) { if( $datal -gt $index ) { $first = $data[ $index..0 ] $last = $data[ ( $index + 1 )..$datal ] $data = $first + $last } else { $data = $data[ $index..0 ] } } $data }   Function MaxIdx( [Object[]] $data ) { $data | ForEach-Object { $max = $data[ 0 ]; $i = 0; $maxi = 0 } { if( $_ -gt $max ) { $max = $_; $maxi = $i }; $i++ } { $maxi } }   Function PancakeSort( [Object[]] $data, $index = 0 ) { "unsorted - $data" $datal = $data.length - 1 if( $datal -gt 0 ) { for( $i = $datal; $i -gt 0; $i-- ) { $data = FlipPancake ( FlipPancake $data ( MaxIdx $data[ 0..$i ] ) ) $i } } "sorted - $data" }   $l = 100; PancakeSort ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( 0, $l - 1 ) } )
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#uBasic.2F4tH
uBasic/4tH
PRINT "Stooge sort:" n = FUNC (_InitArray) PROC _ShowArray (n) PROC _Stoogesort (n) PROC _ShowArray (n) PRINT   END     _InnerStooge PARAM(2) ' Stoogesort LOCAL(1)   IF @(b@) < @(a@) Then Proc _Swap (a@, b@) IF b@ - a@ > 1 THEN c@ = (b@ - a@ + 1)/3 PROC _InnerStooge (a@, b@-c@) PROC _InnerStooge (a@+c@, b@) PROC _InnerStooge (a@, b@-c@) ENDIF RETURN     _Stoogesort PARAM(1) PROC _InnerStooge (0, a@ - 1) RETURN     _Swap PARAM(2) ' Swap two array elements PUSH @(a@) @(a@) = @(b@) @(b@) = POP() RETURN     _InitArray ' Init example array PUSH 4, 65, 2, -31, 0, 99, 2, 83, 782, 1   FOR i = 0 TO 9 @(i) = POP() NEXT   RETURN (i)     _ShowArray PARAM (1) ' Show array subroutine FOR i = 0 TO a@-1 PRINT @(i), NEXT   PRINT RETURN
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Wren
Wren
var stoogeSort // recursive stoogeSort = Fn.new { |a, i, j| if (a[j] < a[i]) { var t = a[i] a[i] = a[j] a[j] = t } if (j - i > 1) { var t = ((j - i + 1)/3).floor stoogeSort.call(a, i, j - t) stoogeSort.call(a, i + t, j) stoogeSort.call(a, i, j - t) } }   var as = [ [4, 65, 2, -31, 0, 99, 2, 83, 782, 1], [7, 5, 2, 6, 1, 4, 2, 6, 3] ] for (a in as) { System.print("Before: %(a)") stoogeSort.call(a, 0, a.count-1) System.print("After : %(a)") System.print() }
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Maxima
Maxima
selection_sort(v) := block([k, m, n], n: length(v), for i: 1 thru n do ( k: i, m: v[i], for j: i + 1 thru n do if v[j] < m then (k: j, m: v[j]), v[k]: v[i], v[i]: m ))$   v: makelist(random(199) - 99, i, 1, 10); /* [52, -85, 41, -70, -59, 88, 19, 80, 90, 44] */ selection_sort(v)$ v; /* [-85, -70, -59, 19, 41, 44, 52, 80, 88, 90] */
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Pascal
Pascal
program Soundex;   {$mode objfpc}{$H+}   uses {$IFDEF UNIX}{$IFDEF UseCThreads} cthreads, {$ENDIF}{$ENDIF} SysUtils;   type TLang=(en,fr,de);   const Examples : array[1..16, 1..2] of string = (('Ashcraft', 'A261') ,('Ashcroft', 'A261') ,('Gauss', 'G200') ,('Ghosh', 'G200') ,('Hilbert', 'H416') ,('Heilbronn', 'H416') ,('Lee', 'L000') ,('Lloyd', 'L300') ,('Moses', 'M220') ,('Pfister', 'P236') ,('Robert', 'R163') ,('Rupert', 'R163') ,('Rubin', 'R150') ,('Tymczak', 'T522') ,('Soundex', 'S532') ,('Example', 'E251') );   // For Ansi Str function Soundex(Value: String; Lang: TLang) : String; const // Thx to WP. Map: array[TLang, 0..2] of String =( // Deals with accented, to improve ('abcdefghijklmnopqrstuvwxyz' ,'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ,' 123 12- 22455 12623 1-2 2'), ('aàâäbcçdeéèêëfghiîjklmnoöôpqrstuùûüvwxyz' // all chars with accented ,'AAAABCCDEEEEEFGHIIJKLMNOOOPQRSTUUUUVWXYZ' // uppercased ,' 123 97- 72455 12683 9-8 8'), // coding ('abcdefghijklmnopqrstuvwxyz' ,'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ,' 123 12- 22455 12623 1-2 2') ); var i: Integer; c, cOld: Char;   function Normalize(const s: string): string; var c: Char; p: Integer; begin result := ''; for c in LowerCase(s) do begin p := Pos(c, Map[Lang,0]); // unmapped chars are ignored if p > 0 then Result := Result + Map[Lang, 1][p]; end; End;   function GetCode(c: Char): Char; begin Result := Map[Lang, 2][Ord(c)-Ord('A')+1]; End;   begin Value := Trim(Value); if Value = '' then begin Result := '0000'; exit; end; Value := Normalize(Value); Result := Value[1]; cOld := GetCode(Value[1]); for i := 2 to length(Value) do begin c := GetCode(Value[i]); if (c <> ' ') and (c <> '-') and (c <> cOld) then Result := Result + c; if c <> '-' then cOld := c; end; Result := Copy(Result+'0000', 1, 4); End;   const Status : array[boolean] of string = ('KO', 'OK'); var Found: String; tab: array[1..2] of String; begin WriteLn('Word  : Code Found Status'); for tab in Examples do begin Found := Soundex(tab[1], en); WriteLn(Format('%-20s: %s  %s  %s',[tab[1], tab[2], Found, Status[Found = tab[2]]])) end; ReadLn; End.
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Scala
Scala
object ShellSort { def incSeq(len:Int)=new Iterator[Int]{ private[this] var x:Int=len/2 def hasNext=x>0 def next()={x=if (x==2) 1 else x*5/11; x} }   def InsertionSort(a:Array[Int], inc:Int)={ for (i <- inc until a.length; temp=a(i)){ var j=i; while (j>=inc && a(j-inc)>temp){ a(j)=a(j-inc) j=j-inc } a(j)=temp } }   def shellSort(a:Array[Int])=for(inc<-incSeq(a.length)) InsertionSort(a, inc)   def main(args: Array[String]): Unit = { var a=Array(2, 5, 3, 4, 3, 9, 3, 2, 5, 4, 1, 3, 22, 7, 2, -5, 8, 4) println(a.mkString(",")) shellSort(a) println(a.mkString(",")) } }