task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Pascal
Pascal
sub selection_sort {my @a = @_; foreach my $i (0 .. $#a - 1) {my $min = $i + 1; $a[$_] < $a[$min] and $min = $_ foreach $min .. $#a; $a[$i] > $a[$min] and @a[$i, $min] = @a[$min, $i];} return @a;}
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Prolog
Prolog
%____________________________________________________________________ % Implements the American soundex algorithm % as described at https://en.wikipedia.org/wiki/Soundex % In SWI Prolog, a 'string' is specified in 'single quotes', % while a "list of codes" may be specified in "double quotes". % So, "abc" is equivalent to [97, 98, 99], while % 'abc' = abc (an atom), and 'Abc' is also an atom. There are % conversion methods that can produce lists of characters: %  ?- atom_chars('Abc', X). % X = ['A', b, c]. % or lists of codes (mapping to unicode code points): %  ?- atom_codes('Abc', X). % X = [65, 98, 99]. % and the conversion predicates are bidirectional. %  ?- atom_codes(A, [65, 98, 99]). % A = 'Abc'. % A single character code may be specified as 0'C, where C is the % character you want to convert to a code. %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   % Relates groups of consonants to representative digits creplace(Ch, 0'1) :- member(Ch, "bfpv"). creplace(Ch, 0'2) :- member(Ch, "cgjkqsxz"). creplace(Ch, 0'3) :- member(Ch, "dt"). creplace(0'l, 0'4). creplace(Ch, 0'5) :- member(Ch, "mn"). creplace(0'r, 0'6).   % strips elements contained in <Set> from a string strip(Set, [H|T], Tr) :- memberchk(H, Set), !, strip(Set, T, Tr). strip(Set, [H|T], [H|Tr]) :- !, strip(Set, T, Tr). strip(_, [], []).   % Replace consonants with appropriate digits consonants([H|T], [Ch|Tr]) :- creplace(H, Ch), !, consonants(T, Tr). consonants([H|T], [H|Tr]) :- !, consonants(T, Tr). consonants([], []).   % Replace adjacent digits with single digit adjacent([Ch, Ch|T], [Ch|Tr]) :- between(0'0, 0'9, Ch), !, adjacent(T, Tr). adjacent([H|T], [H|Tr]) :- !, adjacent(T, Tr). adjacent([], []).   % Replace first character with original one if its a digit chk_digit([H,D|T], [H|T]) :- between(0'0, 0'9, D), !. chk_digit([_,H|T], [H|T]).   % Faithul representation of soundex rules: % 1: Save 1st letter, strip "hw" % 2: Replace consonants with appropriate digits % 3: Replace adjacent digits with single occurrence % 4: Remove vowels except 1st letter % 5: If 1st symbol is a digit, replace it with saved 1st letter % 6: Ensure trailing zeroes do_soundex([H|T], Res) :- strip("hw", T, Ts), consonants([H|Ts], Tc), adjacent(Tc, [C|Ta]), strip("aeiouy", Ta, Tv), chk_digit([H,C|Tv], Td), append(Td, "0000", Tr), atom_codes(Tf, Tr), sub_string(Tf, 0, 4, _, Res).   % Prepare string, convert to lower case and do the soundex alogorithm soundex(Text, Res) :- downcase_atom(Text, Lower), atom_codes(Lower, T), do_soundex(T, Res).   % Perform tests to check that the right values are produced test(S,V) :- not(soundex(S,V)), writef('%w failed\n', [S]). test :- test('Robert', 'r163'), !, fail. test :- test('Rupert', 'r163'), !, fail. test :- test('Rubin', 'r150'), !, fail. test :- test('Ashcroft', 'a261'), !, fail. test :- test('Ashcraft', 'a261'), !, fail. test :- test('Tymczak', 't522'), !, fail. test :- test('Pfister', 'p236'), !, fail. test. % Succeeds only if all the tests succeed
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#zkl
zkl
// Shell sort a sequence of objects in place // Requires mutiable list fcn shellSort(sequence){ n := sequence.len(); gap := n / 2; while (0 < gap){ i := gap; while (i < n){ j := i - gap; while ((j >= 0) and (sequence[j] > sequence[j + gap])){ sequence.swap(j,j + gap); j -= gap; } i += 1; } gap /= 2; } return(sequence); }
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#PicoLisp
PicoLisp
(push 'Stack 3) (push 'Stack 2) (push 'Stack 1)
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Sidef
Sidef
func spiral(n) { var (x, y, dx, dy, a) = (0, 0, 1, 0, []) { |i| a[y][x] = i var (nx, ny) = (x+dx, y+dy) ( if (dx == 1 && (nx == n || a[ny][nx]!=nil)) { [ 0, 1] } elsif (dy == 1 && (ny == n || a[ny][nx]!=nil)) { [-1, 0] } elsif (dx == -1 && (nx < 0 || a[ny][nx]!=nil)) { [ 0, -1] } elsif (dy == -1 && (ny < 0 || a[ny][nx]!=nil)) { [ 1, 0] } else { [dx, dy] } ) » (\dx, \dy) x = x+dx y = y+dy } << (1 .. n**2) return a }   spiral(5).each { |row| row.map {"%3d" % _}.join(' ').say }
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#ERRE
ERRE
  PROGRAM QUICKSORT_DEMO   DIM ARRAY[21]   !$DYNAMIC DIM QSTACK[0]   !$INCLUDE="PC.LIB"   PROCEDURE QSORT(ARRAY[],START,NUM) FIRST=START  ! initialize work variables LAST=START+NUM-1 LOOP REPEAT TEMP=ARRAY[(LAST+FIRST) DIV 2]  ! seek midpoint I=FIRST J=LAST REPEAT  ! reverse both < and > below to sort descending WHILE ARRAY[I]<TEMP DO I=I+1 END WHILE WHILE ARRAY[J]>TEMP DO J=J-1 END WHILE EXIT IF I>J IF I<J THEN SWAP(ARRAY[I],ARRAY[J]) END IF I=I+1 J=J-1 UNTIL NOT(I<=J) IF I<LAST THEN  ! Done QSTACK[SP]=I  ! Push I QSTACK[SP+1]=LAST  ! Push Last SP=SP+2 END IF LAST=J UNTIL NOT(FIRST<LAST)   EXIT IF SP=0 SP=SP-2 FIRST=QSTACK[SP]  ! Pop First LAST=QSTACK[SP+1]  ! Pop Last END LOOP END PROCEDURE   BEGIN RANDOMIZE(TIMER)  ! generate a new series each run    ! create an array FOR X=1 TO 21 DO  ! fill with random numbers ARRAY[X]=RND(1)*500  ! between 0 and 500 END FOR PRIMO=6  ! sort starting here NUM=10  ! sort this many elements CLS PRINT("Before Sorting:";TAB(31);"After sorting:") PRINT("===============";TAB(31);"==============") FOR X=1 TO 21 DO  ! show them before sorting IF X>=PRIMO AND X<=PRIMO+NUM-1 THEN PRINT("==>";) END IF PRINT(TAB(5);) WRITE("###.##";ARRAY[X]) END FOR   ! create a stack !$DIM QSTACK[INT(NUM/5)+10] QSORT(ARRAY[],PRIMO,NUM) !$ERASE QSTACK   LOCATE(2,1) FOR X=1 TO 21 DO  ! print them after sorting LOCATE(2+X,30) IF X>=PRIMO AND X<=PRIMO+NUM-1 THEN PRINT("==>";)  ! point to sorted items END IF LOCATE(2+X,35) WRITE("###.##";ARRAY[X]) END FOR END PROGRAM  
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#ERRE
ERRE
  PROGRAM INSERTION_SORT   DIM A[9]   PROCEDURE INSERTION_SORT(A[]) LOCAL I,J FOR I=0 TO UBOUND(A,1) DO V=A[I] J=I-1 WHILE J>=0 DO IF A[J]>V THEN A[J+1]=A[J] J=J-1 ELSE EXIT END IF END WHILE A[J+1]=V END FOR END PROCEDURE   BEGIN A[]=(4,65,2,-31,0,99,2,83,782,1) FOR I%=0 TO UBOUND(A,1) DO PRINT(A[I%];) END FOR PRINT INSERTION_SORT(A[]) FOR I%=0 TO UBOUND(A,1) DO PRINT(A[I%];) END FOR PRINT END PROGRAM  
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#F.23
F#
let inline swap (a: _ []) i j = let temp = a.[i] a.[i] <- a.[j] a.[j] <- temp   let inline sift cmp (a: _ []) start count = let rec loop root child = if root * 2 + 1 < count then let p = child < count - 1 && cmp a.[child] a.[child + 1] < 0 let child = if p then child + 1 else child if cmp a.[root] a.[child] < 0 then swap a root child loop child (child * 2 + 1) loop start (start * 2 + 1)   let inline heapsort cmp (a: _ []) = let n = a.Length for start = n/2 - 1 downto 0 do sift cmp a start n for term = n - 1 downto 1 do swap a term 0 sift cmp a 0 term
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Delphi
Delphi
def merge(var xs :List, var ys :List) { var result := [] while (xs =~ [x] + xr && ys =~ [y] + yr) { if (x <= y) { result with= x xs := xr } else { result with= y ys := yr } } return result + xs + ys }   def sort(list :List) { if (list.size() <= 1) { return list } def split := list.size() // 2 return merge(sort(list.run(0, split)), sort(list.run(split))) }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Tailspin
Tailspin
  templates pancakeSort @: {stack: $, flips: 0"1"}; sink flip when <2..> do @pancakeSort.stack(1..$): [email protected]($..1:-1)...; '[email protected];$#10;' -> !OUT::write @pancakeSort.flips: [email protected] + 1; end flip sink fixTop @: 1; 2..$ -> # $ -> \(when <~=$@fixTop> do $@fixTop -> !flip $ -> !flip \) -> !VOID when <?([email protected]($) <[email protected]($@)..>)> do @: $; end fixTop $::length..2:-1 -> !fixTop $@ ! end pancakeSort   [6,7,2,1,8,9,5,3,4] -> pancakeSort -> !OUT::write  
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Tcl
Tcl
package require Tcl 8.5 # Some simple helper procedures proc flip {nlist n} { concat [lreverse [lrange $nlist 0 $n]] [lrange $nlist $n+1 end] } proc findmax {nlist limit} { lsearch -exact $nlist [tcl::mathfunc::max {*}[lrange $nlist 0 $limit]] }   # Simple-minded pancake sort algorithm proc pancakeSort {nlist {debug ""}} { for {set i [llength $nlist]} {[incr i -1] > 0} {} { set j [findmax $nlist $i] if {$i != $j} { if {$j} { set nlist [flip $nlist $j] if {$debug eq "debug"} {puts [incr flips]>>$nlist} } set nlist [flip $nlist $i] if {$debug eq "debug"} {puts [incr flips]>>$nlist} } } return $nlist }
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Perl
Perl
sub selection_sort {my @a = @_; foreach my $i (0 .. $#a - 1) {my $min = $i + 1; $a[$_] < $a[$min] and $min = $_ foreach $min .. $#a; $a[$i] > $a[$min] and @a[$i, $min] = @a[$min, $i];} return @a;}
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#PureBasic
PureBasic
Procedure.s getCode(c.s) Protected getCode.s = ""   If FindString("BFPV", c ,1)  : getCode = "1" : EndIf If FindString("CGJKQSXZ", c ,1) : getCode = "2" : EndIf If FindString("DT", c ,1)  : getCode = "3" : EndIf If "L" = c  : getCode = "4" : EndIf If FindString("MN", c ,1)  : getCode = "5" : EndIf If "R" = c  : getCode = "6" : EndIf If FindString("HW", c ,1)  : getCode = "." : EndIf ProcedureReturn getCode EndProcedure   Procedure.s soundex(word.s) Protected.s previous.s = "" , code.s , current , soundex Protected.i i   word = UCase(word) code = Mid(word,1,1) previous = getCode(Left(word, 1)) For i = 2 To (Len(word) + 1) current = getCode(Mid(word, i, 1)) If current = "." : Continue : EndIf If Len(current) > 0 And current <> previous code + current EndIf previous = current If Len(code) = 4 Break EndIf Next If Len(code) < 4 code = LSet(code, 4,"0") EndIf ProcedureReturn code EndProcedure   OpenConsole()   PrintN (soundex("Lukasiewicz")) PrintN("Press any key to exit"): Repeat: Until Inkey() <> ""
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Pike
Pike
  object s = ADT.Stack(); s->push("a"); s->push("b"); write("top: %O, pop1: %O, pop2: %O\n", s->top(), s->pop(), s->pop()); s->reset(); // Empty the stack  
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Stata
Stata
function spiral_mat(n) { a = J(n*n, 1, 1) u = J(n, 1, -n) v = J(n, 1, 1) for (k=(i=n)-1; k>=1; i=i+2*k--) { j = 1..k a[j:+i] = u[j] = -u[j] a[j:+(i+k)] = v[j] = -v[j] } return(rowshape(invorder(runningsum(a)),n):-1) }   spiral_mat(5) 1 2 3 4 5 +--------------------------+ 1 | 0 1 2 3 4 | 2 | 15 16 17 18 5 | 3 | 14 23 24 19 6 | 4 | 13 22 21 20 7 | 5 | 12 11 10 9 8 | +--------------------------+
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#F.23
F#
  let rec qsort = function hd :: tl -> let less, greater = List.partition ((>=) hd) tl List.concat [qsort less; [hd]; qsort greater] | _ -> []  
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Euphoria
Euphoria
function insertion_sort(sequence s) object temp integer j for i = 2 to length(s) do temp = s[i] j = i-1 while j >= 1 and compare(s[j],temp) > 0 do s[j+1] = s[j] j -= 1 end while s[j+1] = temp end for return s end function   include misc.e constant s = {4, 15, "delta", 2, -31, 0, "alfa", 19, "gamma", 2, 13, "beta", 782, 1}   puts(1,"Before: ") pretty_print(1,s,{2}) puts(1,"\nAfter: ") pretty_print(1,insertion_sort(s),{2})
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Forth
Forth
create example 70 , 61 , 63 , 37 , 63 , 25 , 46 , 92 , 38 , 87 ,   [UNDEFINED] r'@ [IF] : r'@ r> r> r@ swap >r swap >r ; [THEN]   defer precedes ( n1 n2 a -- f) defer exchange ( n1 n2 a --)   : siftDown ( a e s -- a e s) swap >r swap >r dup ( s r) begin ( s r) dup 2* 1+ dup r'@ < ( s r c f) while ( s r c) dup 1+ dup r'@ < ( s r c c+1 f) if ( s r c c+1) over over r@ precedes if swap then then drop ( s r c) over over r@ precedes ( s r c f) while ( s r c) tuck r@ exchange ( s r) repeat then ( s r) drop drop r> swap r> swap ( a e s) ;   : heapsort ( a n --) over >r ( a n) dup 1- 1- 2/ ( a c s) begin ( a c s) dup 0< 0= ( a c s f) while ( a c s) siftDown 1- ( a c s) repeat drop ( a c)   1- 0 ( a e 0) begin ( a e 0) over 0> ( a e 0 f) while ( a e 0) over over r@ exchange ( a e 0) siftDown swap 1- swap ( a e 0) repeat ( a e 0) drop drop drop r> drop ;   :noname >r cells r@ + @ swap cells r> + @ swap < ; is precedes :noname >r cells r@ + swap cells r> + over @ over @ swap rot ! swap ! ; is exchange   : .array 10 0 do example i cells + ? loop cr ;   .array example 10 heapsort .array
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#E
E
def merge(var xs :List, var ys :List) { var result := [] while (xs =~ [x] + xr && ys =~ [y] + yr) { if (x <= y) { result with= x xs := xr } else { result with= y ys := yr } } return result + xs + ys }   def sort(list :List) { if (list.size() <= 1) { return list } def split := list.size() // 2 return merge(sort(list.run(0, split)), sort(list.run(split))) }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Transd
Transd
  #lang transd   MainModule: { vint: [ 9, 0, 5, 10, 3, -3, -1, 8, -7, -4, -2, -6, 2, 4, 6, -10, 7, -8, -5, 1, -9],   _start: (λ (with n (- (size vint) 1) m 0 (textout vint "\n") (while n (= m (max-element-idx vint Range(0 (+ n 1)))) (if (neq m n) (if m (reverse vint Range(0 (+ m 1)))) (reverse vint Range(0 (+ n 1)))) (-= n 1) ) (textout vint "\n") )) }
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Phix
Phix
with javascript_semantics function selection_sort(sequence s) for i=1 to length(s) do integer m = i object si = s[i], sm = s[m] for j=i+1 to length(s) do object sj = s[j] if sj<sm then {sm,m} = {sj,j} end if end for if sm<si then -- (or equivalently m!=i) s[i] = sm s[m] = si end if end for return s end function ?selection_sort(shuffle(tagset(10)))
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Python
Python
from itertools import groupby   def soundex(word): codes = ("bfpv","cgjkqsxz", "dt", "l", "mn", "r") soundDict = dict((ch, str(ix+1)) for ix,cod in enumerate(codes) for ch in cod) cmap2 = lambda kar: soundDict.get(kar, '9') sdx = ''.join(cmap2(kar) for kar in word.lower()) sdx2 = word[0].upper() + ''.join(k for k,g in list(groupby(sdx))[1:] if k!='9') sdx3 = sdx2[0:4].ljust(4,'0') return sdx3  
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#PL.2FI
PL/I
/* Any controlled variable may behave as a stack. */   declare s float controlled;   /* to push a value on the stack. */ allocate s; s = 10;   /* To pop a value from the stack. */ put (s); free s;   /* to peek at the top of stack> */ put (s);   /* To see whether the stack is empty */ if allocation(s) = 0 then ...   /* Note: popping a value from the stack, or peeking, */ /* would usually require a check that the stack is not empty. */   /* Note: The above is a simple stack for S. */ /* S can be any kind of data structure, an array, etc. */   /* Example to push ten values onto the stack, and then to */ /* remove them. */   /* Push ten values, obtained from the input, onto the stack: */ declare S float controlled; do i = 1 to 10; allocate s; get list (s); end; /* To pop those values from the stack: */ do while (allocation(s) > 0); put skip list (s); free s; end; /* The values are printed in the reverse order, of course. */
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Tcl
Tcl
package require Tcl 8.5 namespace path {::tcl::mathop} proc spiral size { set m [lrepeat $size [lrepeat $size .]] set x 0; set dx 0 set y -1; set dy 1 set i -1 while {$i < $size ** 2 - 1} { if {$dy == 0} { incr x $dx if {0 <= $x && $x < $size && [lindex $m $x $y] eq "."} { lset m $x $y [incr i] } else { # back up and change direction incr x [- $dx] set dy [- $dx] set dx 0 } } else { incr y $dy if {0 <= $y && $y < $size && [lindex $m $x $y] eq "."} { lset m $x $y [incr i] } else { # back up and change direction incr y [- $dy] set dx $dy set dy 0 } } } return $m }   print_matrix [spiral 5]
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Factor
Factor
: qsort ( seq -- seq ) dup empty? [ unclip [ [ < ] curry partition [ qsort ] bi@ ] keep prefix append ] unless ;
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#F.23
F#
  // This function performs an insertion sort with an array. // The input parameter is a generic array (any type that can perform comparison). // As is typical of functional programming style the input array is not modified; // a copy of the input array is made and modified and returned. let insertionSort (A: _ array) = let B = Array.copy A for i = 1 to B.Length - 1 do let mutable value = B.[i] let mutable j = i - 1 while (j >= 0 && B.[j] > value) do B.[j+1] <- B.[j] j <- j - 1 B.[j+1] <- value B // the array B is returned  
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Fortran
Fortran
program Heapsort_Demo implicit none   integer, parameter :: num = 20 real :: array(num)   call random_seed call random_number(array) write(*,*) "Unsorted array:-" write(*,*) array write(*,*) call heapsort(array) write(*,*) "Sorted array:-" write(*,*) array   contains   subroutine heapsort(a)   real, intent(in out) :: a(0:) integer :: start, n, bottom real :: temp   n = size(a) do start = (n - 2) / 2, 0, -1 call siftdown(a, start, n); end do   do bottom = n - 1, 1, -1 temp = a(0) a(0) = a(bottom) a(bottom) = temp; call siftdown(a, 0, bottom) end do   end subroutine heapsort   subroutine siftdown(a, start, bottom)   real, intent(in out) :: a(0:) integer, intent(in) :: start, bottom integer :: child, root real :: temp   root = start do while(root*2 + 1 < bottom) child = root * 2 + 1   if (child + 1 < bottom) then if (a(child) < a(child+1)) child = child + 1 end if   if (a(root) < a(child)) then temp = a(child) a(child) = a (root) a(root) = temp root = child else return end if end do   end subroutine siftdown   end program Heapsort_Demo
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#EasyLang
EasyLang
subr merge mid = left + sz if mid > sz_data mid = sz_data . right = mid + sz if right > sz_data right = sz_data . l = left r = mid for i = left to right - 1 if r = right or l < mid and tmp[l] < tmp[r] data[i] = tmp[l] l += 1 else data[i] = tmp[r] r += 1 . . . subr sort sz_data = len data[] len tmp[] sz_data sz = 1 while sz < sz_data swap tmp[] data[] left = 0 while left < sz_data call merge left += sz + sz . sz += sz . . data[] = [ 29 4 72 44 55 26 27 77 92 5 ] call sort print data[]
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#uBasic.2F4tH
uBasic/4tH
PRINT "Pancake sort:" n = FUNC (_InitArray) PROC _ShowArray (n) PROC _Pancakesort (n) PROC _ShowArray (n) PRINT   END     _Flip PARAM(1) LOCAL(1)   b@ = 0   DO WHILE b@ < a@ PROC _Swap (b@, a@) b@ = b@ + 1 a@ = a@ - 1 LOOP RETURN     _Pancakesort PARAM (1) ' Pancakesort LOCAL(3)   IF a@ < 2 THEN RETURN   FOR b@ = a@ TO 2 STEP -1   c@ = 0   FOR d@ = 0 TO b@ - 1 IF @(d@) > @(c@) THEN c@ = d@ NEXT   IF c@ = b@ - 1 THEN CONTINUE IF c@ THEN PROC _Flip (c@) PROC _Flip (b@ - 1)   NEXT RETURN     _Swap PARAM(2) ' Swap two array elements PUSH @(a@) @(a@) = @(b@) @(b@) = POP() RETURN     _InitArray ' Init example array PUSH 4, 65, 2, -31, 0, 99, 2, 83, 782, 1   FOR i = 0 TO 9 @(i) = POP() NEXT   RETURN (i)     _ShowArray PARAM (1) ' Show array subroutine FOR i = 0 TO a@-1 PRINT @(i), NEXT   PRINT RETURN
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#UNIX_Shell
UNIX Shell
#!/usr/bin/env bash main() { local stack local -i n m i if (( $# )); then stack=("$@") else stack=($(printf '%s\n' {0..9} | shuf)) fi print_stack 0 "${stack[@]}"   # start by looking at whole stack (( n = ${#stack[@]} ))   # keep going until we're all sorted while (( n > 0 )); do   # shrink the stack until its bottom is not the right size while (( n > 0 && ${stack[n-1]} == n-1 )); do (( n-=1 )) done   # if we got to the top we're done if (( n == 0 )); then break fi   # find the index of the largest pancake in the unsorted stack m=0 for (( i=1; i < n-1; ++i )); do if (( ${stack[i]} > ${stack[m]} )); then (( m = i )) fi done   # if it's not on top, flip to get it there if (( m > 0 )); then stack=( $(flip "$(( m + 1 ))" "${stack[@]}") ) print_stack "$(( m + 1))" "${stack[@]}" fi   # now flip the top to the bottom stack=( $(flip "$n" "${stack[@]}" ) ) print_stack "$n" "${stack[@]}"   # and move up (( n -= 1 )) done print_stack 0 "${stack[@]}" }   # display the stack, optionally with brackets around a prefix print_stack() { local prefix=$1 shift if (( prefix )); then printf '[%s' "$1" if (( prefix > 1 )); then printf ',%s' "${@:2:prefix-1}" fi printf ']' else printf ' ' fi if (( prefix < $# )); then printf '%s' "${@:prefix+1:1}" if (( prefix+1 < $# )); then printf ',%s' "${@:prefix+2:$#-prefix-1}" fi fi printf '\n' }   # reverse the first N elements of an array flip() { local -i size end midpoint i local stack temp size=$1 shift stack=( "$@" ) if (( size > 1 )); then (( end = size - 1 )) (( midpoint = size/2 + size % 2 )) for (( i=0; i<midpoint; ++i )); do temp=${stack[i]} stack[i]=${stack[size-1-i]} stack[size-1-i]=$temp done fi printf '%s\n' "${stack[@]}" }   main "$@"
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#PHP
PHP
function selection_sort(&$arr) { $n = count($arr); for($i = 0; $i < count($arr); $i++) { $min = $i; for($j = $i + 1; $j < $n; $j++){ if($arr[$j] < $arr[$min]){ $min = $j; } } list($arr[$i],$arr[$min]) = array($arr[$min],$arr[$i]); } }
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Racket
Racket
sub soundex ($name --> Str) { my $first = substr($name,0,1).uc; gather { take $first; my $fakefirst = ''; $fakefirst = "de " if $first ~~ /^ <[AEIOUWH]> /; "$fakefirst$name".lc.trans('wh' => '') ~~ / ^ [ [ | <[ bfpv ]>+ { take 1 } | <[ cgjkqsxz ]>+ { take 2 } | <[ dt ]>+ { take 3 } | <[ l ]>+ { take 4 } | <[ mn ]>+ { take 5 } | <[ r ]>+ { take 6 } ] || . ]+ $ { take 0,0,0 } /; }.flat.[0,2,3,4].join; }   for < Soundex S532 Example E251 Sownteks S532 Ekzampul E251 Euler E460 Gauss G200 Hilbert H416 Knuth K530 Lloyd L300 Lukasiewicz L222 Ellery E460 Ghosh G200 Heilbronn H416 Kant K530 Ladd L300 Lissajous L222 Wheaton W350 Ashcraft A261 Burroughs B620 Burrows B620 O'Hara O600 > -> $n, $s { my $s2 = soundex($n); say $n.fmt("%16s "), $s, $s eq $s2 ?? " OK" !! " NOT OK $s2"; }
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#PostScript
PostScript
% empty? is already defined. /push {exch cons}. /pop {uncons exch pop}. [2 3 4 5 6] 1 push = [1 2 3 4 5 6] [1 2 3 4 5 6] pop =[2 3 4 5 6] [2 3 4 5 6] empty? =false [] empty? =true
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#TI-83_BASIC
TI-83 BASIC
5->N DelVar [F] {N,N}→dim([F]) 1→A: N→B 1→C: N→D 0→E: E→G 1→I: 1→J For(K,1,N*N) K-1→[F](I,J) If E=0: Then If J<D: Then J+1→J Else: 1→G I+1→I: A+1→A End End If E=1: Then If I<B: Then I+1→I Else: 2→G J-1→J: D-1→D End End If E=2: Then If J>C: Then J-1→J Else: 3→G I-1→I: B-1→B End End If E=3: Then If I>A: Then I-1→I Else: 0→G J+1→J: C+1→C End End G→E End [F]
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Fexl
Fexl
# (sort xs) is the ordered list of all elements in list xs. # This version preserves duplicates. \sort== (\xs xs [] \x\xs append (sort; filter (gt x) xs); # all the items less than x cons x; append (filter (eq x) xs); # all the items equal to x sort; filter (lt x) xs # all the items greater than x )   # (unique xs) is the ordered list of unique elements in list xs. \unique== (\xs xs [] \x\xs append (unique; filter (gt x) xs); # all the items less than x cons x; # x itself unique; filter (lt x) xs # all the items greater than x )  
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Factor
Factor
USING: kernel prettyprint sorting.extras sequences ;   : insertion-sort ( seq -- sorted-seq ) <reversed> V{ } clone [ swap insort-left! ] reduce ;   { 6 8 5 9 3 2 1 4 7 } insertion-sort .
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#FreeBASIC
FreeBASIC
' version 22-10-2016 ' compile with: fbc -s console ' for boundary checks on array's compile with: fbc -s console -exx   ' sort from lower bound to the higher bound ' array's can have subscript range from -2147483648 to +2147483647   Sub siftdown(hs() As Long, start As ULong, end_ As ULong) Dim As ULong root = start Dim As Long lb = LBound(hs)   While root * 2 + 1 <= end_ Dim As ULong child = root * 2 + 1 If (child + 1 <= end_) AndAlso (hs(lb + child) < hs(lb + child + 1)) Then child = child + 1 End If If hs(lb + root) < hs(lb + child) Then Swap hs(lb + root), hs(lb + child) root = child Else Return End If Wend End Sub   Sub heapsort(hs() As Long) Dim As Long lb = LBound(hs) Dim As ULong count = UBound(hs) - lb + 1 Dim As Long start = (count - 2) \ 2 Dim As ULong end_ = count - 1   While start >= 0 siftdown(hs(), start, end_) start = start - 1 Wend   While end_ > 0 Swap hs(lb + end_), hs(lb) end_ = end_ - 1 siftdown(hs(), 0, end_) Wend End Sub   ' ------=< MAIN >=------   Dim As Long array(-7 To 7) Dim As Long i, lb = LBound(array), ub = UBound(array)   Randomize Timer For i = lb To ub : array(i) = i : Next For i = lb To ub Swap array(i), array(Int(Rnd * (ub - lb + 1)) + lb) Next   Print "Unsorted" For i = lb To ub Print Using " ###"; array(i); Next : Print : Print   heapsort(array())   Print "After heapsort" For i = lb To ub Print Using " ###"; array(i); Next : Print   ' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Eiffel
Eiffel
  class MERGE_SORT [G -> COMPARABLE]   create sort   feature   sort (ar: ARRAY [G]) -- Sorted array in ascending order. require ar_not_empty: not ar.is_empty do create sorted_array.make_empty mergesort (ar, 1, ar.count) sorted_array := ar ensure sorted_array_not_empty: not sorted_array.is_empty sorted: is_sorted (sorted_array, 1, sorted_array.count) end   sorted_array: ARRAY [G]   feature {NONE}   mergesort (ar: ARRAY [G]; l, r: INTEGER) -- Sorting part of mergesort. local m: INTEGER do if l < r then m := (l + r) // 2 mergesort (ar, l, m) mergesort (ar, m + 1, r) merge (ar, l, m, r) end end   merge (ar: ARRAY [G]; l, m, r: INTEGER) -- Merge part of mergesort. require positive_index_l: l >= 1 positive_index_m: m >= 1 positive_index_r: r >= 1 ar_not_empty: not ar.is_empty local merged: ARRAY [G] h, i, j, k: INTEGER do i := l j := m + 1 k := l create merged.make_filled (ar [1], 1, ar.count) from until i > m or j > r loop if ar.item (i) <= ar.item (j) then merged.force (ar.item (i), k) i := i + 1 elseif ar.item (i) > ar.item (j) then merged.force (ar.item (j), k) j := j + 1 end k := k + 1 end if i > m then from h := j until h > r loop merged.force (ar.item (h), k + h - j) h := h + 1 end elseif j > m then from h := i until h > m loop merged.force (ar.item (h), k + h - i) h := h + 1 end end from h := l until h > r loop ar.item (h) := merged.item (h) h := h + 1 end ensure is_partially_sorted: is_sorted (ar, l, r) end   is_sorted (ar: ARRAY [G]; l, r: INTEGER): BOOLEAN -- Is 'ar' sorted in ascending order? require ar_not_empty: not ar.is_empty l_in_range: l >= 1 r_in_range: r <= ar.count local i: INTEGER do Result := True from i := l until i = r loop if ar [i] > ar [i + 1] then Result := False end i := i + 1 end end   end  
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#VBA
VBA
    'pancake sort 'uses two auxiliary routines "printarray" and "flip" Public Sub printarray(A) For i = LBound(A) To UBound(A) Debug.Print A(i), Next Debug.Print End Sub   Public Sub Flip(ByRef A, p1, p2, trace) 'flip first elements of A (p1 to p2) If trace Then Debug.Print "we'll flip the first "; p2 - p1 + 1; "elements of the array" Cut = Int((p2 - p1 + 1) / 2) For i = 0 To Cut - 1 'flip position i and (n - i + 1) temp = A(i) A(i) = A(p2 - i) A(p2 - i) = temp Next End Sub   Public Sub pancakesort(ByRef A(), Optional trace As Boolean = False) 'sort A into ascending order using pancake sort lb = LBound(A) ub = UBound(A) Length = ub - lb + 1 If Length <= 1 Then 'no need to sort Exit Sub End If   For i = ub To lb + 1 Step -1 'find position of max. element in subarray A(lowerbound to i) P = lb Maximum = A(P) For j = lb + 1 To i If A(j) > Maximum Then P = j Maximum = A(j) End If Next j 'check if maximum is already at end - then we don't need to flip If P < i Then 'flip the first part of the array up to the maximum so it is at the head - skip if it is already there If P > 1 Then Flip A, lb, P, trace If trace Then printarray A End If 'now flip again so that it is in its final position Flip A, lb, i, trace If trace Then printarray A End If Next i End Sub   'test routine Public Sub TestPancake(Optional trace As Boolean = False) Dim A() A = Array(5, 7, 8, 3, 1, 10, 9, 23, 50, 0) Debug.Print "Initial array:" printarray A pancakesort A, trace Debug.Print "Final array:" printarray A End Sub  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#PicoLisp
PicoLisp
(de selectionSort (Lst) (map '((L) (and (cdr L) (xchg L (member (apply min @) L)))) Lst ) Lst )
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#PL.2FI
PL/I
  Selection: procedure options (main); /* 2 November 2013 */   declare a(10) fixed binary initial ( 5, 7, 3, 98, 4, -3, 25, 20, 60, 17);   put edit (trim(a)) (a, x(1));   call Selection_Sort (a);   put skip edit (trim(a)) (a, x(1));   Selection_sort: procedure (a); declare a(*) fixed binary; declare t fixed binary; declare n fixed binary; declare (i, j, k) fixed binary;   n = hbound(a,1); do j = 1 to n; k = j; t = a(j); do i = j+1 to n; if t > a(i) then do; t = a(i); k = i; end; end; a(k) = a(j); a(j) = t; end; end Selection_Sort;   end Selection;  
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Raku
Raku
sub soundex ($name --> Str) { my $first = substr($name,0,1).uc; gather { take $first; my $fakefirst = ''; $fakefirst = "de " if $first ~~ /^ <[AEIOUWH]> /; "$fakefirst$name".lc.trans('wh' => '') ~~ / ^ [ [ | <[ bfpv ]>+ { take 1 } | <[ cgjkqsxz ]>+ { take 2 } | <[ dt ]>+ { take 3 } | <[ l ]>+ { take 4 } | <[ mn ]>+ { take 5 } | <[ r ]>+ { take 6 } ] || . ]+ $ { take 0,0,0 } /; }.flat.[0,2,3,4].join; }   for < Soundex S532 Example E251 Sownteks S532 Ekzampul E251 Euler E460 Gauss G200 Hilbert H416 Knuth K530 Lloyd L300 Lukasiewicz L222 Ellery E460 Ghosh G200 Heilbronn H416 Kant K530 Ladd L300 Lissajous L222 Wheaton W350 Ashcraft A261 Burroughs B620 Burrows B620 O'Hara O600 > -> $n, $s { my $s2 = soundex($n); say $n.fmt("%16s "), $s, $s eq $s2 ?? " OK" !! " NOT OK $s2"; }
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#PowerShell
PowerShell
  $stack = New-Object -TypeName System.Collections.Stack # or $stack = [System.Collections.Stack] @()  
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#TSE_SAL
TSE SAL
    // library: math: create: array: spiral: inwards <description></description> <version control></version control> <version>1.0.0.0.15</version> (filenamemacro=creamasi.s) [<Program>] [<Research>] [kn, ri, mo, 31-12-2012 01:15:43] PROC PROCMathCreateArraySpiralInwards( INTEGER nI ) // e.g. PROC Main() // e.g. STRING s1[255] = "5" // e.g. IF ( NOT ( Ask( "math: create: array: spiral: inwards: nI = ", s1, _EDIT_HISTORY_ ) ) AND ( Length( s1 ) > 0 ) ) RETURN() ENDIF // e.g. PROCMathCreateArraySpiralInwards( Val( s1 ) ) // e.g. END // e.g. // e.g. <F12> Main() // INTEGER columnEndI = 0 // INTEGER columnBeginI = nI - 1 // INTEGER rowEndI = 0 // INTEGER rowBeginI = nI - 1 // INTEGER columnI = 0 // INTEGER rowI = 0 // INTEGER minI = 0 INTEGER maxI = nI * nI - 1 INTEGER I = 0 // INTEGER columnWidthI = Length( Str( nI * nI - 1 ) ) + 1 // INTEGER directionRightI = 0 INTEGER directionLeftI = 1 INTEGER directionDownI = 2 INTEGER directionUpI = 3 // INTEGER directionI = directionRightI // FOR I = minI TO maxI // SetGlobalInt( Format( "MatrixS", columnI, ",", rowI ), I ) // SetGlobalInt( Format( "MatrixS", columnI, ",", rowI ), I ) // PutStrXY( ( Query( ScreenCols ) / 8 ) + columnI * columnWidthI, ( Query( ScreenRows ) / 8 ) + rowI, Str( I ), Color( BRIGHT RED ON WHITE ) ) // PutStrXY( ( Query( ScreenCols ) / 8 ) + columnI * columnWidthI, ( Query( ScreenRows ) / 8 ) + rowI, Str( I + 1 ), Color( BRIGHT RED ON WHITE ) ) // CASE directionI // WHEN directionRightI // IF ( columnI < columnBeginI ) // columnI = columnI + 1 // ELSE // directionI = directionDownI // rowI = rowI + 1 // rowEndI = rowEndI + 1 // ENDIF // WHEN directionDownI // IF ( rowI < rowBeginI ) // rowI = rowI + 1 // ELSE // directionI = directionLeftI // columnI = columnI - 1 // columnBeginI = columnBeginI - 1 // ENDIF // WHEN directionLeftI // IF ( columnI > columnEndI ) // columnI = columnI - 1 // ELSE // directionI = directionUpI // rowI = rowI - 1 // rowBeginI = rowBeginI - 1 // ENDIF // WHEN directionUpI // IF ( rowI > rowEndI ) // rowI = rowI - 1 // ELSE // directionI = directionRightI // columnI = columnI + 1 // columnEndI = columnEndI + 1 // ENDIF // OTHERWISE // Warn( Format( "PROCMathCreateArraySpiralInwards(", " ", "case", " ", ":", " ", Str( directionI ), ": not known" ) ) // RETURN() // ENDCASE // ENDFOR // END   PROC Main() STRING s1[255] = "5" IF ( NOT ( Ask( "math: create: array: spiral: inwards: nI = ", s1, _EDIT_HISTORY_ ) ) AND ( Length( s1 ) > 0 ) ) RETURN() ENDIF PROCMathCreateArraySpiralInwards( Val( s1 ) ) END    
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Forth
Forth
: mid ( l r -- mid ) over - 2/ -cell and + ;   : exch ( addr1 addr2 -- ) dup @ >r over @ swap ! r> swap ! ;   : partition ( l r -- l r r2 l2 ) 2dup mid @ >r ( r: pivot ) 2dup begin swap begin dup @ r@ < while cell+ repeat swap begin r@ over @ < while cell- repeat 2dup <= if 2dup exch >r cell+ r> cell- then 2dup > until r> drop ;   : qsort ( l r -- ) partition swap rot \ 2over 2over - + < if 2swap then 2dup < if recurse else 2drop then 2dup < if recurse else 2drop then ;   : sort ( array len -- ) dup 2 < if 2drop exit then 1- cells over + qsort ;
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Forth
Forth
: insert ( start end -- start ) dup @ >r ( r: v ) \ v = a[i] begin 2dup < \ j>0 while r@ over cell- @ < \ a[j-1] > v while cell- \ j-- dup @ over cell+ ! \ a[j] = a[j-1] repeat then r> swap ! ; \ a[j] = v   : sort ( array len -- ) 1 ?do dup i cells + insert loop drop ;   create test 7 , 3 , 0 , 2 , 9 , 1 , 6 , 8 , 4 , 5 , test 10 sort test 10 cells dump
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#FunL
FunL
def heapSort( a ) = heapify( a ) end = a.length() - 1   while end > 0 a(end), a(0) = a(0), a(end) siftDown( a, 0, --end )   def heapify( a ) = for i <- (a.length() - 2)\2..0 by -1 siftDown( a, i, a.length() - 1 )   def siftDown( a, start, end ) = root = start   while root*2 + 1 <= end child = root*2 + 1   if child + 1 <= end and a(child) < a(child + 1) child++   if a(root) < a(child) a(root), a(child) = a(child), a(root) root = child else break   a = array( [7, 2, 6, 1, 9, 5, 0, 3, 8, 4] ) heapSort( a ) println( a )
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Go
Go
package main   import ( "sort" "container/heap" "fmt" )   type HeapHelper struct { container sort.Interface length int }   func (self HeapHelper) Len() int { return self.length } // We want a max-heap, hence reverse the comparison func (self HeapHelper) Less(i, j int) bool { return self.container.Less(j, i) } func (self HeapHelper) Swap(i, j int) { self.container.Swap(i, j) } // this should not be called func (self *HeapHelper) Push(x interface{}) { panic("impossible") } func (self *HeapHelper) Pop() interface{} { self.length-- return nil // return value not used }   func heapSort(a sort.Interface) { helper := HeapHelper{ a, a.Len() } heap.Init(&helper) for helper.length > 0 { heap.Pop(&helper) } }   func main() { a := []int{170, 45, 75, -90, -802, 24, 2, 66} fmt.Println("before:", a) heapSort(sort.IntSlice(a)) fmt.Println("after: ", a) }
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Elixir
Elixir
defmodule Sort do def merge_sort(list) when length(list) <= 1, do: list def merge_sort(list) do {left, right} = Enum.split(list, div(length(list), 2))  :lists.merge( merge_sort(left), merge_sort(right)) end end
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Wren
Wren
import "/sort" for Find   class Pancake { construct new(a) { _a = a.toList }   flip(r) { for (l in 0...r) { _a.swap(r, l) r = r - 1 } }   sort() { for (uns in _a.count-1..1) { var h = Find.highest(_a[0..uns]) var lx = h[2][0] flip(lx) flip(uns) } }   toString { _a.toString } }   var p = Pancake.new([31, 41, 59, 26, 53, 58, 97, 93, 23, 84]) System.print("unsorted: %(p)") p.sort() System.print("sorted  : %(p)")
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#PowerShell
PowerShell
Function SelectionSort( [Array] $data ) { $datal=$data.length-1 0..( $datal - 1 ) | ForEach-Object { $min = $data[ $_ ] $mini = $_ ( $_ + 1 )..$datal | ForEach-Object { if( $data[ $_ ] -lt $min ) { $min = $data[ $_ ] $mini = $_ } } $temp = $data[ $_ ] $data[ $_ ] = $min $data[ $mini ] = $temp } $data }   $l = 100; SelectionSort( ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( 0, $l - 1 ) } ) )
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#REXX
REXX
/*REXX program demonstrates Soundex codes from some words or from the command line.*/ _=; @.= /*set a couple of vars to "null".*/ parse arg @.0 . /*allow input from command line. */ @.1 = "12346"  ; #.1 = '0000' @.4 = "4-H"  ; #.4 = 'H000' @.11 = "Ashcraft"  ; #.11 = 'A261' @.12 = "Ashcroft"  ; #.12 = 'A261' @.18 = "auerbach"  ; #.18 = 'A612' @.20 = "Baragwanath"  ; #.20 = 'B625' @.22 = "bar"  ; #.22 = 'B600' @.23 = "barre"  ; #.23 = 'B600' @.20 = "Baragwanath"  ; #.20 = 'B625' @.28 = "Burroughs"  ; #.28 = 'B620' @.29 = "Burrows"  ; #.29 = 'B620' @.30 = "C.I.A."  ; #.30 = 'C000' @.37 = "coöp"  ; #.37 = 'C100' @.43 = "D-day"  ; #.43 = 'D000' @.44 = "d jay"  ; #.44 = 'D200' @.45 = "de la Rosa"  ; #.45 = 'D462' @.46 = "Donnell"  ; #.46 = 'D540' @.47 = "Dracula"  ; #.47 = 'D624' @.48 = "Drakula"  ; #.48 = 'D624' @.49 = "Du Pont"  ; #.49 = 'D153' @.50 = "Ekzampul"  ; #.50 = 'E251' @.51 = "example"  ; #.51 = 'E251' @.55 = "Ellery"  ; #.55 = 'E460' @.59 = "Euler"  ; #.59 = 'E460' @.60 = "F.B.I."  ; #.60 = 'F000' @.70 = "Gauss"  ; #.70 = 'G200' @.71 = "Ghosh"  ; #.71 = 'G200' @.72 = "Gutierrez"  ; #.72 = 'G362' @.80 = "he"  ; #.80 = 'H000' @.81 = "Heilbronn"  ; #.81 = 'H416' @.84 = "Hilbert"  ; #.84 = 'H416' @.100 = "Jackson"  ; #.100 = 'J250' @.104 = "Johnny"  ; #.104 = 'J500' @.105 = "Jonny"  ; #.105 = 'J500' @.110 = "Kant"  ; #.110 = 'K530' @.116 = "Knuth"  ; #.116 = 'K530' @.120 = "Ladd"  ; #.120 = 'L300' @.124 = "Llyod"  ; #.124 = 'L300' @.125 = "Lee"  ; #.125 = 'L000' @.126 = "Lissajous"  ; #.126 = 'L222' @.128 = "Lukasiewicz"  ; #.128 = 'L222' @.130 = "naïve"  ; #.130 = 'N100' @.141 = "Miller"  ; #.141 = 'M460' @.143 = "Moses"  ; #.143 = 'M220' @.146 = "Moskowitz"  ; #.146 = 'M232' @.147 = "Moskovitz"  ; #.147 = 'M213' @.150 = "O'Conner"  ; #.150 = 'O256' @.151 = "O'Connor"  ; #.151 = 'O256' @.152 = "O'Hara"  ; #.152 = 'O600' @.153 = "O'Mally"  ; #.153 = 'O540' @.161 = "Peters"  ; #.161 = 'P362' @.162 = "Peterson"  ; #.162 = 'P362' @.165 = "Pfister"  ; #.165 = 'P236' @.180 = "R2-D2"  ; #.180 = 'R300' @.182 = "rÄ≈sumÅ∙"  ; #.182 = 'R250' @.184 = "Robert"  ; #.184 = 'R163' @.185 = "Rupert"  ; #.185 = 'R163' @.187 = "Rubin"  ; #.187 = 'R150' @.191 = "Soundex"  ; #.191 = 'S532' @.192 = "sownteks"  ; #.192 = 'S532' @.199 = "Swhgler"  ; #.199 = 'S460' @.202 = "'til"  ; #.202 = 'T400' @.208 = "Tymczak"  ; #.208 = 'T522' @.216 = "Uhrbach"  ; #.216 = 'U612' @.221 = "Van de Graaff" ; #.221 = 'V532' @.222 = "VanDeusen"  ; #.222 = 'V532' @.230 = "Washington"  ; #.230 = 'W252' @.233 = "Wheaton"  ; #.233 = 'W350' @.234 = "Williams"  ; #.234 = 'W452' @.236 = "Woolcock"  ; #.236 = 'W422'   do k=0 for 300; if @.k=='' then iterate; $=soundex(@.k) say word('nope [ok]', 1 +($==#.k | k==0)) _ $ "is the Soundex for" @.k if k==0 then leave end /*k*/ exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ soundex: procedure; arg x /*ARG uppercases the var X. */ old_alphabet= 'AEIOUYHWBFPVCGJKQSXZDTLMNR' new_alphabet= '@@@@@@**111122222222334556' word= /* [+] exclude non-letters. */ do i=1 for length(x); _=substr(x, i, 1) /*obtain a character from word*/ if datatype(_,'M') then word=word || _ /*Upper/lower letter? Then OK*/ end /*i*/   value=strip(left(word, 1)) /*1st character is left alone.*/ word=translate(word, new_alphabet, old_alphabet) /*define the current word. */ prev=translate(value,new_alphabet, old_alphabet) /* " " previous " */   do j=2 to length(word) /*process remainder of word. */  ?=substr(word, j, 1) if ?\==prev & datatype(?,'W') then do; value=value || ?; prev=?; end else if ?=='@' then prev=? end /*j*/   return left(value,4,0) /*padded value with zeroes. */
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Prolog
Prolog
% push( ELEMENT, STACK, NEW ) % True if NEW is [ELEMENT|STACK] push(ELEMENT,STACK,[ELEMENT|STACK]).   % pop( STACK, TOP, NEW ) % True if TOP and NEW are head and tail, respectively, of STACK pop([TOP|STACK],TOP,STACK).   % empty( STACK ) % True if STACK is empty empty([]).
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#uBasic.2F4tH
uBasic/4tH
Input "Width: ";w Input "Height: ";h Print   For i = 0 To h-1 For j = 0 To w-1 Print Using "__#"; FUNC(_Spiral(w,h,j,i)); Next Print Next End     _Spiral Param(4) If d@ Then Return (a@ + FUNC(_Spiral(b@-1, a@, d@ - 1, a@ - c@ - 1))) Else Return (c@) EndIf
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Fortran
Fortran
MODULE qsort_mod   IMPLICIT NONE   TYPE group INTEGER :: order ! original order of unsorted data REAL :: VALUE ! values to be sorted by END TYPE group   CONTAINS   RECURSIVE SUBROUTINE QSort(a,na)   ! DUMMY ARGUMENTS INTEGER, INTENT(in) :: nA TYPE (group), DIMENSION(nA), INTENT(in out) :: A   ! LOCAL VARIABLES INTEGER :: left, right REAL :: random REAL :: pivot TYPE (group) :: temp INTEGER :: marker   IF (nA > 1) THEN   CALL random_NUMBER(random) pivot = A(INT(random*REAL(nA-1))+1)%VALUE ! Choice a random pivot (not best performance, but avoids worst-case) left = 1 right = nA ! Partition loop DO IF (left >= right) EXIT DO IF (A(right)%VALUE <= pivot) EXIT right = right - 1 END DO DO IF (A(left)%VALUE >= pivot) EXIT left = left + 1 END DO IF (left < right) THEN temp = A(left) A(left) = A(right) A(right) = temp END IF END DO   IF (left == right) THEN marker = left + 1 ELSE marker = left END IF   CALL QSort(A(:marker-1),marker-1) CALL QSort(A(marker:),nA-marker+1)   END IF   END SUBROUTINE QSort   END MODULE qsort_mod   ! Test Qsort Module PROGRAM qsort_test USE qsort_mod IMPLICIT NONE   INTEGER, PARAMETER :: nl = 10, nc = 5, l = nc*nl, ns=33 TYPE (group), DIMENSION(l) :: A INTEGER, DIMENSION(ns) :: seed INTEGER :: i REAL :: random CHARACTER(LEN=80) :: fmt1, fmt2 ! Using the Fibonacci sequence to initialize seed: seed(1) = 1 ; seed(2) = 1 DO i = 3,ns seed(i) = seed(i-1)+seed(i-2) END DO ! Formats of the outputs WRITE(fmt1,'(A,I2,A)') '(', nc, '(I5,2X,F6.2))' WRITE(fmt2,'(A,I2,A)') '(3x', nc, '("Ord. Num.",3x))' PRINT *, "Unsorted Values:" PRINT fmt2, CALL random_SEED(put = seed) DO i = 1, l CALL random_NUMBER(random) A(i)%VALUE = NINT(1000*random)/10.0 A(i)%order = i IF (MOD(i,nc) == 0) WRITE (*,fmt1) A(i-nc+1:i) END DO PRINT * CALL QSort(A,l) PRINT *, "Sorted Values:" PRINT fmt2, DO i = nc, l, nc IF (MOD(i,nc) == 0) WRITE (*,fmt1) A(i-nc+1:i) END DO STOP END PROGRAM qsort_test
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Fortran
Fortran
subroutine sort(n, a) implicit none integer :: n, i, j real :: a(n), x   do i = 2, n x = a(i) j = i - 1 do while (j >= 1) if (a(j) <= x) exit a(j + 1) = a(j) j = j - 1 end do a(j + 1) = x end do end subroutine
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Groovy
Groovy
def makeSwap = { a, i, j = i+1 -> print "."; a[[j,i]] = a[[i,j]] }   def checkSwap = { list, i, j = i+1 -> [(list[i] > list[j])].find{ it }.each { makeSwap(list, i, j) } }   def siftDown = { a, start, end -> def p = start while (p*2 < end) { def c = p*2 + ((p*2 + 1 < end && a[p*2 + 2] > a[p*2 + 1]) ? 2 : 1) if (checkSwap(a, c, p)) { p = c } else { return } } }   def heapify = { (((it.size()-2).intdiv(2))..0).each { start -> siftDown(it, start, it.size()-1) } }   def heapSort = { list -> heapify(list) (0..<(list.size())).reverse().each { end -> makeSwap(list, 0, end) siftDown(list, 0, end-1) } list }
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Erlang
Erlang
mergeSort(L) when length(L) == 1 -> L; mergeSort(L) when length(L) > 1 -> {L1, L2} = lists:split(length(L) div 2, L), lists:merge(mergeSort(L1), mergeSort(L2)).
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#zkl
zkl
fcn pancakeSort(a){ foreach i in ([a.len()-1..1,-1]){ j := a.index((0).max(a[0,i+1])); // min for decending sort if(i != j){ a.swap(0,j); a.swap(0,i); } } a }
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Prolog
Prolog
  selection_sort([], []). selection_sort([H | L], [H1 | L2]) :- exchange(H, L, H1, L1), selection_sort(L1, L2).     exchange(H, [], H, []).   exchange(H, L, H1, L1) :- min_list(L, H2), ( H < H2 -> H1 = H, L1 = L ; H1 = H2, % does the exchange of the number H % and the min of the list nth0(Ind, L, H1, L2), nth0(Ind, L1, H, L2)).  
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Ring
Ring
  # Project: Soundex   name = ["Ashcraf", "Ashcroft", "Gauss", "Ghosh", "Hilbert", "Heilbronn", "Lee", "Lloyd", "Moses", "Pfister", "Robert", "Rupert", "Rubin","Tymczak", "Soundex", "Example"] for i = 1 to 16 sp = 10 - len(name[i]) see '"' + name[i] + '"' + copy(" ", sp) + " " + soundex(name[i]) + nl next   func soundex(name2) name2 = upper(name2) n = "01230129022455012623019202" s = left(name2,1) p = number(substr(n, ascii(s) - 64, 1)) for i = 2 to len(name2) n2 = number(substr(n, ascii(name2[i]) - 64, 1)) if n2 > 0 and n2 != 9 and n2 != p s = s + string(n2) ok if n2 != 9 p = n2 ok next return left(s + "000", 4)  
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#PureBasic
PureBasic
Global NewList MyStack()   Procedure Push_LIFO(n) FirstElement(MyStack()) InsertElement(MyStack()) MyStack() = n EndProcedure   Procedure Pop_LIFO() If FirstElement(MyStack()) Topmost = MyStack() DeleteElement(MyStack()) EndIf ProcedureReturn Topmost EndProcedure   Procedure Empty_LIFO() Protected Result If ListSize(MyStack())=0 Result = #True EndIf ProcedureReturn Result EndProcedure   Procedure Peek_LIFO() If FirstElement(MyStack()) Topmost = MyStack() EndIf ProcedureReturn Topmost EndProcedure   ;---- Example of implementation ---- Push_LIFO(3) Push_LIFO(1) Push_LIFO(4) While Not Empty_LIFO() Debug Pop_LIFO() Wend
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Ursala
Ursala
#import std #import nat #import int   spiral =   ^H/block nleq-<lS&r+ -+ num@NiC+ sum:-0*yK33x+ (|\LL negation**)+ rlc ~&lh==1, ~&rNNXNXSPlrDlSPK32^lrtxiiNCCSLhiC5D/~& iota*+ iota+-   #cast %nLLL   examples = spiral* <5,6,7>
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#FreeBASIC
FreeBASIC
' version 23-10-2016 ' compile with: fbc -s console   ' sort from lower bound to the highter bound ' array's can have subscript range from -2147483648 to +2147483647   Sub quicksort(qs() As Long, l As Long, r As Long)   Dim As ULong size = r - l +1 If size < 2 Then Exit Sub   Dim As Long i = l, j = r Dim As Long pivot = qs(l + size \ 2)   Do While qs(i) < pivot i += 1 Wend While pivot < qs(j) j -= 1 Wend If i <= j Then Swap qs(i), qs(j) i += 1 j -= 1 End If Loop Until i > j   If l < j Then quicksort(qs(), l, j) If i < r Then quicksort(qs(), i, r)   End Sub   ' ------=< MAIN >=------   Dim As Long i, array(-7 To 7) Dim As Long a = LBound(array), b = UBound(array)   Randomize Timer For i = a To b : array(i) = i  : Next For i = a To b ' little shuffle Swap array(i), array(Int(Rnd * (b - a +1)) + a) Next   Print "unsorted "; For i = a To b : Print Using "####"; array(i); : Next : Print   quicksort(array(), LBound(array), UBound(array))   Print " sorted "; For i = a To b : Print Using "####"; array(i); : Next : Print   ' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#FreeBASIC
FreeBASIC
' version 20-10-2016 ' compile with: fbc -s console ' for boundry checks on array's compile with: fbc -s console -exx   Sub insertionSort( arr() As Long )   ' sort from lower bound to the highter bound ' array's can have subscript range from -2147483648 to +2147483647   Dim As Long lb = LBound(arr) Dim As Long i, j, value   For i = lb +1 To UBound(arr)   value = arr(i) j = i -1 While j >= lb And arr(j) > value arr(j +1) = arr(j) j = j -1 Wend   arr(j +1) = value   Next   End Sub   ' ------=< MAIN >=------   Dim As Long i, array(-7 To 7) Dim As Long a = LBound(array), b = UBound(array)   Randomize Timer For i = a To b : array(i) = i  : Next For i = a To b ' little shuffle Swap array(i), array(Int(Rnd * (b - a +1)) + a) Next   Print "unsort "; For i = a To b : Print Using "####"; array(i); : Next : Print insertionSort(array()) ' sort the array Print " sort "; For i = a To b : Print Using "####"; array(i); : Next : Print     ' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Haskell
Haskell
import Data.Graph.Inductive.Internal.Heap( Heap(..),insert,findMin,deleteMin)   -- heapsort is added in this module as an example application   build :: Ord a => [(a,b)] -> Heap a b build = foldr insert Empty   toList :: Ord a => Heap a b -> [(a,b)] toList Empty = [] toList h = x:toList r where (x,r) = (findMin h,deleteMin h)   heapsort :: Ord a => [a] -> [a] heapsort = (map fst) . toList . build . map (\x->(x,x))
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#ERRE
ERRE
  PROGRAM MERGESORT_DEMO   ! Example of merge sort usage.   CONST SIZE%=100,S1%=50   DIM DTA%[SIZE%],FH%[S1%],STACK%[20,2]     PROCEDURE MERGE(START%,MIDDLE%,ENDS%)   LOCAL FHSIZE%   FHSIZE%=MIDDLE%-START%+1   FOR I%=0 TO FHSIZE%-1 DO FH%[I%]=DTA%[START%+I%] END FOR   I%=0 J%=MIDDLE%+1 K%=START%   REPEAT IF FH%[I%]<=DTA%[J%] THEN DTA%[K%]=FH%[I%] I%=I%+1 K%=K%+1 ELSE DTA%[K%]=DTA%[J%] J%=J%+1 K%=K%+1 END IF UNTIL I%=FHSIZE% OR J%>ENDS%   WHILE I%<FHSIZE% DO DTA%[K%]=FH%[I%] I%=I%+1 K%=K%+1 END WHILE   END PROCEDURE   PROCEDURE MERGE_SORT(LEV->LEV)   ! ***************************************************************** ! This procedure Merge Sorts the chunk of DTA% bounded by ! Start% & Ends%. ! *****************************************************************   LOCAL MIDDLE%   IF ENDS%=START% THEN LEV=LEV-1 EXIT PROCEDURE END IF   IF ENDS%-START%=1 THEN IF DTA%[ENDS%]<DTA%[START%] THEN SWAP(DTA%[START%],DTA%[ENDS%]) END IF LEV=LEV-1 EXIT PROCEDURE END IF   MIDDLE%=START%+(ENDS%-START%)/2   STACK%[LEV,0]=START% STACK%[LEV,1]=ENDS% STACK%[LEV,2]=MIDDLE% START%=START% ENDS%=MIDDLE% MERGE_SORT(LEV+1->LEV) START%=STACK%[LEV,0] ENDS%=STACK%[LEV,1] MIDDLE%=STACK%[LEV,2]   STACK%[LEV,0]=START% STACK%[LEV,1]=ENDS% STACK%[LEV,2]=MIDDLE% START%=MIDDLE%+1 ENDS%=ENDS% MERGE_SORT(LEV+1->LEV) START%=STACK%[LEV,0] ENDS%=STACK%[LEV,1] MIDDLE%=STACK%[LEV,2]   MERGE(START%,MIDDLE%,ENDS%)   LEV=LEV-1 END PROCEDURE   BEGIN FOR I%=1 TO SIZE% DO DTA%[I%]=RND(1)*10000 END FOR   START%=1 ENDS%=SIZE% MERGE_SORT(0->LEV)   FOR I%=1 TO SIZE% DO WRITE("#####";DTA%[I%];) END FOR PRINT END PROGRAM  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#PureBasic
PureBasic
Procedure selectionSort(Array a(1)) Protected i, j, lastIndex, minIndex   lastIndex = ArraySize(a()) For i = 0 To lastIndex - 1 minIndex = i For j = i + 1 To lastIndex If a(minIndex) > a(j) minIndex = j EndIf Next Swap a(minIndex), a(i) Next EndProcedure
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Ruby
Ruby
class String   SoundexChars = 'BFPVCGJKQSXZDTLMNR' SoundexNums = '111122222222334556' SoundexCharsEx = '^' + SoundexChars SoundexCharsDel = '^A-Z'   # desc: http://en.wikipedia.org/wiki/Soundex def soundex(census = true) str = self.upcase.delete(SoundexCharsDel) str[0,1] + str[1..-1].delete(SoundexCharsEx). tr_s(SoundexChars, SoundexNums)\ [0 .. (census ? 2 : -1)]. ljust(3, '0') rescue '' end   def sounds_like(other) self.soundex == other.soundex end end   %w(Soundex Sownteks Example Ekzampul foo bar).each_slice(2) do |word1, word2| [word1, word2].each {|word| puts '%-8s -> %s' % [word, word.soundex]}   print "'#{word1}' " print word1.sounds_like(word2) ? "sounds" : "does not sound" print " like '#{word2}'\n" end
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Python
Python
from collections import deque stack = deque() stack.append(value) # pushing value = stack.pop() not stack # is empty?
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#VBScript
VBScript
  Function build_spiral(n) botcol = 0 : topcol = n - 1 botrow = 0 : toprow = n - 1 'declare a two dimensional array Dim matrix() ReDim matrix(topcol,toprow) dir = 0 : col = 0 : row = 0 'populate the array For i = 0 To n*n-1 matrix(col,row) = i Select Case dir Case 0 If col < topcol Then col = col + 1 Else dir = 1 : row = row + 1 : botrow = botrow + 1 End If Case 1 If row < toprow Then row = row + 1 Else dir = 2 : col = col - 1 : topcol = topcol - 1 End If Case 2 If col > botcol Then col = col - 1 Else dir = 3 : row = row - 1 : toprow = toprow - 1 End If Case 3 If row > botrow Then row = row - 1 Else dir = 0 : col = col + 1 : botcol = botcol + 1 End If End Select Next 'print the array For y = 0 To n-1 For x = 0 To n-1 WScript.StdOut.Write matrix(x,y) & vbTab Next WScript.StdOut.WriteLine Next End Function   build_spiral(CInt(WScript.Arguments(0)))  
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#FunL
FunL
def qsort( [] ) = [] qsort( p:xs ) = qsort( xs.filter((< p)) ) + [p] + qsort( xs.filter((>= p)) )
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#GAP
GAP
InsertionSort := function(L) local n, i, j, x; n := Length(L); for i in [ 2 .. n ] do x := L[i]; j := i - 1; while j >= 1 and L[j] > x do L[j + 1] := L[j]; j := j - 1; od; L[j + 1] := x; od; end;   s := "BFKRIMPOQACNESWUTXDGLVZHYJ"; InsertionSort(s); s; # "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Haxe
Haxe
class HeapSort { @:generic private static function siftDown<T>(arr: Array<T>, start:Int, end:Int) { var root = start; while (root * 2 + 1 <= end) { var child = root * 2 + 1; if (child + 1 <= end && Reflect.compare(arr[child], arr[child + 1]) < 0) child++; if (Reflect.compare(arr[root], arr[child]) < 0) { var temp = arr[root]; arr[root] = arr[child]; arr[child] = temp; root = child; } else { break; } } }   @:generic public static function sort<T>(arr:Array<T>) { if (arr.length > 1) { var start = (arr.length - 2) >> 1; while (start > 0) { siftDown(arr, start - 1, arr.length - 1); start--; } }   var end = arr.length - 1; while (end > 0) { var temp = arr[end]; arr[end] = arr[0]; arr[0] = temp; siftDown(arr, 0, end - 1); end--; } } }   class Main { static function main() { var integerArray = [1, 10, 2, 5, -1, 5, -19, 4, 23, 0]; var floatArray = [1.0, -3.2, 5.2, 10.8, -5.7, 7.3, 3.5, 0.0, -4.1, -9.5]; var stringArray = ['We', 'hold', 'these', 'truths', 'to', 'be', 'self-evident', 'that', 'all', 'men', 'are', 'created', 'equal']; Sys.println('Unsorted Integers: ' + integerArray); HeapSort.sort(integerArray); Sys.println('Sorted Integers: ' + integerArray); Sys.println('Unsorted Floats: ' + floatArray); HeapSort.sort(floatArray); Sys.println('Sorted Floats: ' + floatArray); Sys.println('Unsorted Strings: ' + stringArray); HeapSort.sort(stringArray); Sys.println('Sorted Strings: ' + stringArray); } }
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Euphoria
Euphoria
function merge(sequence left, sequence right) sequence result result = {} while length(left) > 0 and length(right) > 0 do if compare(left[1], right[1]) <= 0 then result = append(result, left[1]) left = left[2..$] else result = append(result, right[1]) right = right[2..$] end if end while return result & left & right end function   function mergesort(sequence m) sequence left, right integer middle if length(m) <= 1 then return m else middle = floor(length(m)/2) left = mergesort(m[1..middle]) right = mergesort(m[middle+1..$]) if compare(left[$], right[1]) <= 0 then return left & right elsif compare(right[$], left[1]) <= 0 then return right & left else return merge(left, right) end if end if end function   constant s = rand(repeat(1000,10)) ? s ? mergesort(s)
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Python
Python
def selection_sort(lst): for i, e in enumerate(lst): mn = min(range(i,len(lst)), key=lst.__getitem__) lst[i], lst[mn] = lst[mn], e return lst
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Qi
Qi
(define select-r Small [] Output -> [Small | (selection-sort Output)] Small [X|Xs] Output -> (select-r X Xs [Small|Output]) where (< X Small) Small [X|Xs] Output -> (select-r Small Xs [X|Output]))   (define selection-sort [] -> [] [First|Lst] -> (select-r First Lst []))   (selection-sort [8 7 4 3 2 0 9 1 5 6])  
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Run_BASIC
Run BASIC
global val$ val$(1) = "BPFV" val$(2) = "CSGJKQXZ" val$(3) = "DT" val$(4) = "L" val$(5) = "MN" val$(6) = "R"   ' --------------------------------- ' show soundex on these words ' --------------------------------- w$(1) = "Robert" 'R163 w$(2) = "Rupert" 'R163 w$(3) = "Rubin" 'R150 w$(4) = "moses" 'M220 w$(5) = "O'Mally" 'O540 w$(6) = "d jay" 'D200   for i = 1 to 6 print w$(i);" soundex:";soundex$(w$(i)) next i wait   ' --------------------------------- ' Return soundex of word ' --------------------------------- function soundex$(a$) a$ = upper$(a$) for i = 2 to len(a$) theLtr$ = mid$(a$,i,1) s$ = "0" if instr("AEIOUYHW |",theLtr$) <> 0 then s$ = "" if theLtr$ <> preLtr$ then for j = 1 to 6 if instr(val$(j),theLtr$) <> 0 then s$ = str$(j) next j end if sdx$ = sdx$ + s$ preLtr$ = theLtr$ next i soundex$ = left$(a$,1) + left$(sdx$;"000",3) end function
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Quackery
Quackery
[ size 1 = ] is isempty ( s --> b )   [ stack ] is mystack ( --> s )   mystack isempty if [ say "mystack is empty" cr cr ] 23 mystack put mystack share echo say " is on the top of mystack" cr cr   mystack mystack put ( you can put anything on an ancillary stack, even itself! )   mystack share echo say " is on the top of mystack" cr cr mystack take echo say " has been removed from mystack" cr cr mystack take echo say " has been removed from mystack" cr cr mystack isempty if [ say "mystack is empty" cr cr ] say "you are in a maze of twisty little passages, all alike"
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Visual_Basic
Visual Basic
Option Explicit   Sub Main() print2dArray getSpiralArray(5) End Sub   Function getSpiralArray(dimension As Integer) As Integer() ReDim spiralArray(dimension - 1, dimension - 1) As Integer   Dim numConcentricSquares As Integer numConcentricSquares = dimension \ 2 If (dimension Mod 2) Then numConcentricSquares = numConcentricSquares + 1     Dim j As Integer, sideLen As Integer, currNum As Integer sideLen = dimension   Dim i As Integer For i = 0 To numConcentricSquares - 1 ' do top side For j = 0 To sideLen - 1 spiralArray(i, i + j) = currNum currNum = currNum + 1 Next   ' do right side For j = 1 To sideLen - 1 spiralArray(i + j, dimension - 1 - i) = currNum currNum = currNum + 1 Next   ' do bottom side For j = sideLen - 2 To 0 Step -1 spiralArray(dimension - 1 - i, i + j) = currNum currNum = currNum + 1 Next   ' do left side For j = sideLen - 2 To 1 Step -1 spiralArray(i + j, i) = currNum currNum = currNum + 1 Next   sideLen = sideLen - 2 Next   getSpiralArray = spiralArray() End Function   Sub print2dArray(arr() As Integer) Dim row As Integer, col As Integer For row = 0 To UBound(arr, 1) For col = 0 To UBound(arr, 2) - 1 Debug.Print arr(row, col), Next Debug.Print arr(row, UBound(arr, 2)) Next End Sub
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Go
Go
package main   import "fmt"   func main() { list := []int{31, 41, 59, 26, 53, 58, 97, 93, 23, 84} fmt.Println("unsorted:", list)   quicksort(list) fmt.Println("sorted! ", list) }   func quicksort(a []int) { var pex func(int, int) pex = func(lower, upper int) { for { switch upper - lower { case -1, 0: // 0 or 1 item in segment. nothing to do here! return case 1: // 2 items in segment // < operator respects strict weak order if a[upper] < a[lower] { // a quick exchange and we're done. a[upper], a[lower] = a[lower], a[upper] } return // Hoare suggests optimized sort-3 or sort-4 algorithms here, // but does not provide an algorithm. }   // Hoare stresses picking a bound in a way to avoid worst case // behavior, but offers no suggestions other than picking a // random element. A function call to get a random number is // relatively expensive, so the method used here is to simply // choose the middle element. This at least avoids worst case // behavior for the obvious common case of an already sorted list. bx := (upper + lower) / 2 b := a[bx] // b = Hoare's "bound" (aka "pivot") lp := lower // lp = Hoare's "lower pointer" up := upper // up = Hoare's "upper pointer" outer: for { // use < operator to respect strict weak order for lp < upper && !(b < a[lp]) { lp++ } for { if lp > up { // "pointers crossed!" break outer } // < operator for strict weak order if a[up] < b { break // inner } up-- } // exchange a[lp], a[up] = a[up], a[lp] lp++ up-- } // segment boundary is between up and lp, but lp-up might be // 1 or 2, so just call segment boundary between lp-1 and lp. if bx < lp { // bound was in lower segment if bx < lp-1 { // exchange bx with lp-1 a[bx], a[lp-1] = a[lp-1], b } up = lp - 2 } else { // bound was in upper segment if bx > lp { // exchange a[bx], a[lp] = a[lp], b } up = lp - 1 lp++ } // "postpone the larger of the two segments" = recurse on // the smaller segment, then iterate on the remaining one. if up-lower < upper-lp { pex(lower, up) lower = lp } else { pex(lp, upper) upper = up } } } pex(0, len(a)-1) }
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Go
Go
package main   import "fmt"   func insertionSort(a []int) { for i := 1; i < len(a); i++ { value := a[i] j := i - 1 for j >= 0 && a[j] > value { a[j+1] = a[j] j = j - 1 } a[j+1] = value } }   func main() { list := []int{31, 41, 59, 26, 53, 58, 97, 93, 23, 84} fmt.Println("unsorted:", list)   insertionSort(list) fmt.Println("sorted! ", list) }
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Icon_and_Unicon
Icon and Unicon
procedure main() #: demonstrate various ways to sort a list and string demosort(heapsort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty") end   procedure heapsort(X,op) #: return sorted list ascending(or descending) local head,tail   op := sortop(op,X) # select how and what we sort   every head := (tail := *X) / 2 to 1 by -1 do # work back from from last parent node X := siftdown(X,op,head,tail) # sift down from head to make the heap   every tail := *X to 2 by -1 do { # work between the beginning and the tail to final positions X[1] :=: X[tail] X := siftdown(X,op,1,tail-1) # re-sift next (previous) branch after shortening the heap }   return X end   procedure siftdown(X,op,root,tail) #: the value @root is moved "down" the path of max(min) value to its level local child   while (child := root * 2) <= tail do { # move down the branch from root to tail   if op(X[child],X[tail >= child + 1]) then # choose the larger(smaller) child +:= 1 # ... child   if op(X[root],X[child]) then { # root out of order? X[child] :=: X[root] root := child # follow max(min) branch } else return X } return X end
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#F.23
F#
let split list = let rec aux l acc1 acc2 = match l with | [] -> (acc1,acc2) | [x] -> (x::acc1,acc2) | x::y::tail -> aux tail (x::acc1) (y::acc2) in aux list [] []   let rec merge l1 l2 = match (l1,l2) with | (x,[]) -> x | ([],y) -> y | (x::tx,y::ty) -> if x <= y then x::merge tx l2 else y::merge l1 ty let rec mergesort list = match list with | [] -> [] | [x] -> [x] | _ -> let (l1,l2) = split list in merge (mergesort l1) (mergesort l2)
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Quackery
Quackery
[ 0 swap behead swap witheach [ 2dup > iff [ nip nip i^ 1+ swap ] else drop ] drop ] is least ( [ --> n )   [ [] swap dup size times [ dup least pluck swap dip join ] drop ] is ssort ( [ --> [ )   [] 20 times [ 10 random join ] dup echo cr ssort echo cr
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#R
R
selectionsort.loop <- function(x) { lenx <- length(x) for(i in seq_along(x)) { mini <- (i - 1) + which.min(x[i:lenx]) start_ <- seq_len(i-1) x <- c(x[start_], x[mini], x[-c(start_, mini)]) } x }
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Scala
Scala
def soundex(s:String)={ var code=s.head.toUpper.toString var previous=getCode(code.head) for(ch <- s.drop(1); current=getCode(ch.toUpper)){ if (!current.isEmpty && current!=previous) code+=current previous=current } code+="0000" code.slice(0,4) }   def getCode(c:Char)={ val code=Map("1"->List('B','F','P','V'), "2"->List('C','G','J','K','Q','S','X','Z'), "3"->List('D', 'T'), "4"->List('L'), "5"->List('M', 'N'), "6"->List('R'))   code.find(_._2.exists(_==c)) match { case Some((k,_)) => k case _ => "" } }
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#R
R
library(proto)   stack <- proto(expr = { l <- list() empty <- function(.) length(.$l) == 0 push <- function(., x) { .$l <- c(list(x), .$l) print(.$l) invisible() } pop <- function(.) { if(.$empty()) stop("can't pop from an empty list") .$l[[1]] <- NULL print(.$l) invisible() } })   stack$empty() # [1] TRUE stack$push(3) # [[1]] # [1] 3 stack$push("abc") # [[1]] # [1] "abc" # [[2]] # [1] 3 stack$push(matrix(1:6, nrow=2)) # [[1]] # [,1] [,2] [,3] # [1,] 1 3 5 # [2,] 2 4 6 # [[2]] # [1] "abc" # [[3]] # [1] 3 stack$empty() # [1] FALSE stack$pop() # [[1]] [1] "abc" # [[2]] # [1] 3 stack$pop() # [[1]] # [1] 3 stack$pop() # list() stack$pop() # Error in get("pop", env = stack, inherits = TRUE)(stack, ...) : # can't pop from an empty list
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Wren
Wren
import "/fmt" for Conv, Fmt   var n = 5 var top = 0 var left = 0 var bottom = n - 1 var right = n - 1 var sz = n * n var a = List.filled(sz, 0) var i = 0 while (left < right) { // work right, along top var c = left while (c <= right) { a[top*n+c] = i i = i + 1 c = c + 1 } top = top + 1 // work down right side var r = top while (r <= bottom) { a[r*n+right] = i i = i + 1 r = r + 1 } right = right - 1 if (top == bottom) break // work left, along bottom c = right while (c >= left) { a[bottom*n+c] = i i = i + 1 c = c - 1 } bottom = bottom - 1 r = bottom // work up left side while (r >= top) { a[r*n+left] = i i = i + 1 r = r - 1 } left = left + 1 } // center (last) element a[top*n+left] = i   // print var w = Conv.itoa(n*n - 1).count i = 0 for (e in a) { Fmt.write("$*d ", w, e) if (i%n == n - 1) System.print() i = i + 1 }
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Haskell
Haskell
qsort [] = [] qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Groovy
Groovy
def insertionSort = { list ->   def size = list.size() (1..<size).each { i -> def value = list[i] def j = i - 1 for (; j >= 0 && list[j] > value; j--) { print "."; list[j+1] = list[j] } print "."; list[j+1] = value } list }
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#J
J
swap=: C.~ <   siftDown=: 4 : 0 'c e'=. x while. e > c=.1+2*s=.c do. before=. <&({&y) if. e > 1+c do. c=.c+ c before c+1 end. if. s before c do. y=. y swap c,s else. break. end. end. y )   heapSort=: 3 : 0 if. 1>: c=. # y do. y return. end. z=. siftDown&.>/ (c,~each i.<.c%2),<y NB. heapify > ([ siftDown swap~)&.>/ (0,each}.i.c),z )
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Factor
Factor
: mergestep ( accum seq1 seq2 -- accum seq1 seq2 ) 2dup [ first ] bi@ < [ [ [ first ] [ rest-slice ] bi [ suffix ] dip ] dip ] [ [ first ] [ rest-slice ] bi [ swap [ suffix ] dip ] dip ] if ;   : merge ( seq1 seq2 -- merged ) [ { } ] 2dip [ 2dup [ length 0 > ] bi@ and ] [ mergestep ] while append append ;   : mergesort ( seq -- sorted ) dup length 1 > [ dup length 2 / floor [ head ] [ tail ] 2bi [ mergesort ] bi@ merge ] [ ] if ;
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Ra
Ra
  class SelectionSort **Sort a list with the Selection Sort algorithm**   on start   args := program arguments .sort(args) print args   define sort(list) is shared **Sort the list**   test list := [4, 2, 7, 3] .sort(list) assert list = [2, 3, 4, 7]   body count := list.count last := count - 1   for i in last   minCandidate := i j := i + 1   while j < count if list[j] < list[minCandidate], minCandidate := j j :+ 1   temp := list[i] list[i] := list[minCandidate] list[minCandidate] := temp  
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Scheme
Scheme
;; The American Soundex System ;; ;; The soundex code consist of the first letter of the name followed ;; by three digits. These three digits are determined by dropping the ;; letters a, e, i, o, u, h, w and y and adding three digits from the ;; remaining letters of the name according to the table below. There ;; are only two additional rules. (1) If two or more consecutive ;; letters have the same code, they are coded as one letter. (2) If ;; there are an insufficient numbers of letters to make the three ;; digits, the remaining digits are set to zero.   ;; Soundex Table   ;; 1 b,f,p,v ;; 2 c,g,j,k,q,s,x,z ;; 3 d, t ;; 4 l ;; 5 m, n ;; 6 r   ;; Examples:   ;; Miller M460 ;; Peterson P362 ;; Peters P362 ;; Auerbach A612 ;; Uhrbach U612 ;; Moskowitz M232 ;; Moskovitz M213   (define (char->soundex c) (case (char-upcase c) ((#\B #\F #\P #\V) #\1) ((#\C #\G #\J #\K #\Q #\S #\X #\Z) #\2) ((#\D #\T) #\3) ((#\L) #\4) ((#\M #\N) #\5) ((#\R) #\6) (else #\nul)))   (define (collapse-dups lst) (if (= (length lst) 1) lst (if (equal? (car lst) (cadr lst)) (collapse-dups (cdr lst)) (cons (car lst) (collapse-dups (cdr lst))))))   (define (remove-nul lst) (filter (lambda (c) (not (equal? c #\nul))) lst))   (define (force-len n lst) (cond ((= n 0) '()) ((null? lst) (force-len n (list #\0))) (else (cons (car lst) (force-len (- n 1) (cdr lst))))))   (define (soundex s) (let ((slst (string->list s))) (force-len 4 (cons (char-upcase (car slst)) (remove-nul (collapse-dups (map char->soundex (cdr slst))))))))   (soundex "miller") (soundex "Peterson") (soundex "PETERS") (soundex "auerbach") (soundex "Uhrbach") (soundex "Moskowitz") (soundex "Moskovitz")
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Racket
Racket
  #lang racket (define stack '()) (define (push x stack) (cons x stack)) (define (pop stack) (values (car stack) (cdr stack))) (define (empty? stack) (null? stack))  
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#XPL0
XPL0
def N=5; int A(N,N); int I, J, X, Y, Steps, Dir; include c:\cxpl\codes; [Clear; I:= 0; X:= -1; Y:= 0; Steps:= N; Dir:= 0; repeat for J:= 1 to Steps do [case Dir&3 of 0: X:= X+1; 1: Y:= Y+1; 2: X:= X-1; 3: Y:= Y-1 other []; A(X,Y):= I; Cursor(X*3,Y); IntOut(0,I); I:= I+1; ]; Dir:= Dir+1; if Dir&1 then Steps:= Steps-1; until Steps = 0; Cursor(0,N); ]
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Icon_and_Unicon
Icon and Unicon
procedure main() #: demonstrate various ways to sort a list and string demosort(quicksort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty") end   procedure quicksort(X,op,lower,upper) #: return sorted list local pivot,x   if /lower := 1 then { # top level call setup upper := *X op := sortop(op,X) # select how and what we sort }   if upper - lower > 0 then { every x := quickpartition(X,op,lower,upper) do # find a pivot and sort ... /pivot | X := x # ... how to return 2 values w/o a structure X := quicksort(X,op,lower,pivot-1) # ... left X := quicksort(X,op,pivot,upper) # ... right }   return X end   procedure quickpartition(X,op,lower,upper) #: quicksort partitioner helper local pivot static pivotL initial pivotL := list(3)   pivotL[1] := X[lower] # endpoints pivotL[2] := X[upper] # ... and pivotL[3] := X[lower+?(upper-lower)] # ... random midpoint if op(pivotL[2],pivotL[1]) then pivotL[2] :=: pivotL[1] # mini- if op(pivotL[3],pivotL[2]) then pivotL[3] :=: pivotL[2] # ... sort pivot := pivotL[2] # median is pivot   lower -:= 1 upper +:= 1 while lower < upper do { # find values on wrong side of pivot ... while op(pivot,X[upper -:= 1]) # ... rightmost while op(X[lower +:=1],pivot) # ... leftmost if lower < upper then # not crossed yet X[lower] :=: X[upper] # ... swap }   suspend lower # 1st return pivot point suspend X # 2nd return modified X (in case immutable) end
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Haskell
Haskell
import Data.List (insert)   insertionSort :: Ord a => [a] -> [a] insertionSort = foldr insert []   -- Example use: -- *Main> insertionSort [6,8,5,9,3,2,1,4,7] -- [1,2,3,4,5,6,7,8,9]
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Janet
Janet
  (defn swap [l a b] (let [aval (get l a) bval (get l b)] (put l a bval) (put l b aval)))   (defn heap-sort [l] (def len (length l)) # Invariant: heap[parent] <= heap[*children] (def heap (array/new (+ len 1))) (array/push heap nil) (def ROOT 1)   # Returns the parent index of index, or nil if none (defn parent [idx] (assert (> idx 0)) (if (= idx 1) nil (math/trunc (/ idx 2)))) # Returns a tuple [a b] of the two child indices of idx (defn children [idx] (def a (* idx 2)) (def b (+ a 1)) (def l (length heap)) # NOTE: `if` implicitly returns nil on false [(if (< a l) a) (if (< b l) b)]) (defn check-invariants [idx] (def [a b] (children idx)) (def p (parent idx)) (assert (or (nil? a) (<= (get heap idx) (get heap a)))) (assert (or (nil? b) (<= (get heap idx) (get heap b)))) (assert (or (nil? p) (>= (get heap idx) (get heap p))))) (defn swim [idx] (def val (get heap idx)) (def parent-idx (parent idx)) (when (and (not (nil? parent-idx)) (< val (get heap parent-idx))) (swap heap parent-idx idx) (swim parent-idx) ) (check-invariants idx))     (defn sink [idx] (def [a b] (children idx)) (def target-val (get heap idx)) (def smaller-children @[]) (defn handle-child [idx] (let [child-val (get heap idx)] (if (and (not (nil? idx)) (< child-val target-val)) (array/push smaller-children idx)))) (handle-child a) (handle-child b) (assert (<= (length smaller-children) 2)) (def smallest-child (cond (empty? smaller-children) nil (= 1 (length smaller-children)) (get smaller-children 0) (< (get heap (get smaller-children 0)) (get heap (get smaller-children 1))) (get smaller-children 0) # NOTE: The `else` for final branch of `cond` is implicit (get smaller-children 1) )) (unless (nil? smallest-child) (swap heap smallest-child idx) (sink smallest-child) # Recheck invariants (check-invariants idx)))   (defn insert [val] (def idx (length heap)) (array/push heap val) (swim idx))   (defn remove-smallest [] (assert (> (length heap) 1)) (def largest (get heap ROOT)) (def new-root (array/pop heap)) (when (> (length heap) 1) (put heap ROOT new-root) (sink ROOT)) (assert (not (nil? largest))) largest)   (each item l (insert item))   (def res @[]) (while (> (length heap) 1) (array/push res (remove-smallest))) res)   # NOTE: Makes a copy of input array. Output is mutable (print (heap-sort [7 12 3 9 -1 17 6]))