task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Java
Java
public static void heapSort(int[] a){ int count = a.length;   //first place a in max-heap order heapify(a, count);   int end = count - 1; while(end > 0){ //swap the root(maximum value) of the heap with the //last element of the heap int tmp = a[end]; a[end] = a[0]; a[0] = tmp; //put the heap back in max-heap order siftDown(a, 0, end - 1); //decrement the size of the heap so that the previous //max value will stay in its proper place end--; } }   public static void heapify(int[] a, int count){ //start is assigned the index in a of the last parent node int start = (count - 2) / 2; //binary heap   while(start >= 0){ //sift down the node at index start to the proper place //such that all nodes below the start index are in heap //order siftDown(a, start, count - 1); start--; } //after sifting down the root all nodes/elements are in heap order }   public static void siftDown(int[] a, int start, int end){ //end represents the limit of how far down the heap to sift int root = start;   while((root * 2 + 1) <= end){ //While the root has at least one child int child = root * 2 + 1; //root*2+1 points to the left child //if the child has a sibling and the child's value is less than its sibling's... if(child + 1 <= end && a[child] < a[child + 1]) child = child + 1; //... then point to the right child instead if(a[root] < a[child]){ //out of max-heap order int tmp = a[root]; a[root] = a[child]; a[child] = tmp; root = child; //repeat to continue sifting down the child now }else return; } }
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Forth
Forth
: merge-step ( right mid left -- right mid+ left+ ) over @ over @ < if over @ >r 2dup - over dup cell+ rot move r> over ! >r cell+ 2dup = if rdrop dup else r> then then cell+ ; : merge ( right mid left -- right left ) dup >r begin 2dup > while merge-step repeat 2drop r> ;   : mid ( l r -- mid ) over - 2/ cell negate and + ;   : mergesort ( right left -- right left ) 2dup cell+ <= if exit then swap 2dup mid recurse rot recurse merge ;   : sort ( addr len -- ) cells over + swap mergesort 2drop ;   create test 8 , 1 , 5 , 3 , 9 , 0 , 2 , 7 , 6 , 4 ,   : .array ( addr len -- ) 0 do dup i cells + @ . loop drop ;   test 10 2dup sort .array \ 0 1 2 3 4 5 6 7 8 9
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Racket
Racket
  #lang racket (define (selection-sort xs) (cond [(empty? xs) '()] [else (define x0 (apply min xs)) (cons x0 (selection-sort (remove x0 xs)))]))  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Raku
Raku
sub selection_sort ( @a is copy ) { for 0 ..^ @a.end -> $i { my $min = [ $i+1 .. @a.end ].min: { @a[$_] }; @a[$i, $min] = @a[$min, $i] if @a[$i] > @a[$min]; } return @a; }   my @data = 22, 7, 2, -5, 8, 4; say 'input = ' ~ @data; say 'output = ' ~ @data.&selection_sort;  
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#SenseTalk
SenseTalk
set names to ["Aschraft","Ashcroft","DiBenedetto","Euler","Gauss","Ghosh","Gutierrez", "Heilbronn","Hilbert","Honeyman","Jackson","Lee","LeGrand","Lissajous","Lloyd", "Moses","Pfister","Robert","Rupert","Rubin","Tymczak","VanDeusen","Van de Graaff","Wheaton"]   repeat with each name in names put !"[[name]] --> [[name's soundex]]" end repeat   to handle soundex of aName delete space from aName -- remove spaces put the first character of aName into soundex replace every occurrence of <{letter:char},{:letter}> with "{:letter}" in aName -- collapse double letters delete "H" from aName delete "W" from aName   set prevCode to 0 repeat with each character ch in aName if ch is in ... ... "BFPV" then set code to 1 ... "CGJKQSXZ" then set code to 2 ... "DT" then set code to 3 ... "L" then set code to 4 ... "MN" then set code to 5 ... "R" then set code to 6 ... else set code to 0 end if if code isn't 0 and the counter > 1 and code isn't prevCode then put code after soundex put code into prevCode end repeat set soundex to the first 4 chars of (soundex & "000") -- fill in with 0's as needed   set prefix to <("Van" or "Con" or "De" or "Di" or "La" or "Le") followed by a capital letter> if aName begins with prefix then put aName into nameWithoutPrefix delete the first occurrence of prefix in nameWithoutPrefix return [soundex, soundex of nameWithoutPrefix] end if   return soundex end soundex  
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Raku
Raku
my @stack; # just a array @stack.push($elem); # add $elem to the end of @stack $elem = @stack.pop; # get the last element back @stack.elems == 0 # true, because the stack is empty not @stack # also true because @stack is false
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Z80_Assembly
Z80 Assembly
; Spiral matrix in Z80 assembly (for CP/M OS - you can use `tnylpo` or `z88dk-ticks` on PC) OPT --syntax=abf : OUTPUT "spiralmt.com" ; asm syntax for z00m's variant of sjasmplus ORG $100 spiral_matrix: ld a,5 ; N matrix size (argument for the code) (valid range: 1..150) ; setup phase push af ld l,a ld h,0 add hl,hl ld (delta_d),hl ; down-direction address delta = +N*2 neg ld l,a ld h,$FF add hl,hl ld (delta_u),hl ; up-direction address delta = -N*2 neg ld hl,matrix ld de,2 ; delta_r value to move right in matrix ld bc,0 ; starting value dec a ; first sequences will be N-1 long jr z,.finish ; 1x1 doesn't need any sequence, just set last element call set_sequence ; initial entry sequence has N-1 elements (same as two more) ; main loop - do twice same length sequence, then decrement length, until zero .loop: call set_sequence_twice dec a jr nz,.loop .finish: ; whole spiral is set except last element, set it now ld (hl),c inc hl ld (hl),b ; print matrix - reading it by POP HL (destructive, plus some memory ahead of matrix too) pop de ; d = N ld (.oldsp+1),sp ld sp,matrix ; set stack to beginning of matrix (call/push does damage memory ahead) ld c,d ; c = N (lines counter) .print_rows: ld b,d ; b = N (value per row counter) .print_row: pop hl push de push bc call print_hl pop bc pop de djnz .print_row push de call print_crlf pop de dec c jr nz,.print_rows .oldsp: ld sp,0 rst 0 ; return to CP/M   print_crlf: ld e,10 call print_char ld e,13 jr print_char print_hl: ld b,' ' ld e,b call print_char ld de,-10000 call extract_digit ld de,-1000 call extract_digit ld de,-100 call extract_digit ld de,-10 call extract_digit ld a,l print_digit: ld b,'0' add a,b ld e,a print_char: push bc push hl ld c,2 call 5 pop hl pop bc ret extract_digit: ld a,-1 .digit_loop: inc a add hl,de jr c,.digit_loop sbc hl,de or a jr nz,print_digit ld e,b jr print_char   set_sequence_twice: call set_sequence set_sequence: ; A = length, HL = next_to_matrix, DE = delta to advance hl, BC = next_value push af .set_loop: ld (hl),c inc hl ld (hl),b dec hl ; [HL] = BC add hl,de ; HL += DE inc bc ; ++BC dec a jr nz,.set_loop push hl ; change DE for next direction (right->down->left->up->right->...) .d: ld hl,delta_d ; self-modify-code: pointer to next delta ld e,(hl) inc hl ld d,(hl) ; de = address delta for next sequence inc hl ld a,low delta_u+2 ; if hl == delta_u+2 => reset it back to delta_r cp l jr nz,.next_delta ld hl,delta_r .next_delta: ld (.d+1),hl ; self modify code pointer for next delta value pop hl pop af ret   delta_r: dw +2 ; value to add to move right in matrix delta_d: dw 0 ; value to add to move down in matrix (set to +N*2) delta_l: dw -2 ; value to add to move left in matrix delta_u: dw 0 ; value to add to move up in matrix (set to -N*2)   matrix: ; following memory is used for NxN matrix of uint16_t values (150x150 needs 45000 bytes)
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#IDL
IDL
function qs, arr if (count = n_elements(arr)) lt 2 then return,arr pivot = total(arr) / count ; use the average for want of a better choice return,[qs(arr[where(arr le pivot)]),qs(arr[where(arr gt pivot)])] end
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Haxe
Haxe
class InsertionSort { @:generic public static function sort<T>(arr:Array<T>) { for (i in 1...arr.length) { var value = arr[i]; var j = i - 1; while (j >= 0 && Reflect.compare(arr[j], value) > 0) { arr[j + 1] = arr[j--]; } arr[j + 1] = value; } } }   class Main { static function main() { var integerArray = [1, 10, 2, 5, -1, 5, -19, 4, 23, 0]; var floatArray = [1.0, -3.2, 5.2, 10.8, -5.7, 7.3, 3.5, 0.0, -4.1, -9.5]; var stringArray = ['We', 'hold', 'these', 'truths', 'to', 'be', 'self-evident', 'that', 'all', 'men', 'are', 'created', 'equal']; Sys.println('Unsorted Integers: ' + integerArray); InsertionSort.sort(integerArray); Sys.println('Sorted Integers: ' + integerArray); Sys.println('Unsorted Floats: ' + floatArray); InsertionSort.sort(floatArray); Sys.println('Sorted Floats: ' + floatArray); Sys.println('Unsorted Strings: ' + stringArray); InsertionSort.sort(stringArray); Sys.println('Sorted Strings: ' + stringArray); } }
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#JavaScript
JavaScript
  function heapSort(arr) { heapify(arr) end = arr.length - 1 while (end > 0) { [arr[end], arr[0]] = [arr[0], arr[end]] end-- siftDown(arr, 0, end) } }   function heapify(arr) { start = Math.floor(arr.length/2) - 1   while (start >= 0) { siftDown(arr, start, arr.length - 1) start-- } }   function siftDown(arr, startPos, endPos) { let rootPos = startPos   while (rootPos * 2 + 1 <= endPos) { childPos = rootPos * 2 + 1 if (childPos + 1 <= endPos && arr[childPos] < arr[childPos + 1]) { childPos++ } if (arr[rootPos] < arr[childPos]) { [arr[rootPos], arr[childPos]] = [arr[childPos], arr[rootPos]] rootPos = childPos } else { return } } } test('rosettacode', () => { arr = [12, 11, 15, 10, 9, 1, 2, 3, 13, 14, 4, 5, 6, 7, 8,] heapSort(arr) expect(arr).toStrictEqual([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) })
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Fortran
Fortran
program TestMergeSort implicit none integer, parameter :: N = 8 integer :: A(N) = (/ 1, 5, 2, 7, 3, 9, 4, 6 /) integer :: work((size(A) + 1) / 2) write(*,'(A,/,10I3)')'Unsorted array :',A call MergeSort(A, work) write(*,'(A,/,10I3)')'Sorted array :',A contains   subroutine merge(A, B, C) implicit none ! The targe attribute is necessary, because A .or. B might overlap with C. integer, target, intent(in) :: A(:), B(:) integer, target, intent(inout) :: C(:) integer :: i, j, k   if (size(A) + size(B) > size(C)) stop(1)   i = 1; j = 1 do k = 1, size(C) if (i <= size(A) .and. j <= size(B)) then if (A(i) <= B(j)) then C(k) = A(i) i = i + 1 else C(k) = B(j) j = j + 1 end if else if (i <= size(A)) then C(k) = A(i) i = i + 1 else if (j <= size(B)) then C(k) = B(j) j = j + 1 end if end do end subroutine merge   subroutine swap(x, y) implicit none integer, intent(inout) :: x, y integer :: tmp tmp = x; x = y; y = tmp end subroutine   recursive subroutine MergeSort(A, work) implicit none integer, intent(inout) :: A(:) integer, intent(inout) :: work(:) integer :: half half = (size(A) + 1) / 2 if (size(A) < 2) then continue else if (size(A) == 2) then if (A(1) > A(2)) then call swap(A(1), A(2)) end if else call MergeSort(A( : half), work) call MergeSort(A(half + 1 :), work) if (A(half) > A(half + 1)) then work(1 : half) = A(1 : half) call merge(work(1 : half), A(half + 1:), A) endif end if end subroutine MergeSort end program TestMergeSort  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#REXX
REXX
/*REXX program sorts a stemmed array using the selection─sort algorithm. */ call init /*assign some values to an array: @. */ call show 'before sort' /*show the before array elements. */ say copies('▒', 65) /*show a nice separator line (fence). */ call selectionSort # /*invoke selection sort (and # items). */ call show ' after sort' /*show the after array elements. */ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ init: @.=; @.1 = '---The seven hills of Rome:---' @.2 = '=============================='; @.6 = 'Virminal' @.3 = 'Caelian'  ; @.7 = 'Esquiline' @.4 = 'Palatine'  ; @.8 = 'Quirinal' @.5 = 'Capitoline'  ; @.9 = 'Aventine' do #=1 until @.#==''; end /*find the number of items in the array*/ #= #-1; return /*adjust # (because of DO index). */ /*──────────────────────────────────────────────────────────────────────────────────────*/ selectionSort: procedure expose @.; parse arg n do j=1 for n-1; _= @.j; p= j do k=j+1 to n; if @.k>=_ then iterate _= @.k; p= k /*this item is out─of─order, swap later*/ end /*k*/ if p==j then iterate /*if the same, the order of items is OK*/ _= @.j; @.j= @.p; @.p= _ /*swap 2 items that're out─of─sequence.*/ end /*j*/ return /*──────────────────────────────────────────────────────────────────────────────────────*/ show: do i=1 for #; say ' element' right(i,length(#)) arg(1)":" @.i; end; return
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Sidef
Sidef
func soundex(word, length=3) {   # Uppercase the argument passed in to normalize it # and drop any non-alphabetic characters word.uc!.tr!('A-Z', '', 'cd')   # Return if word does not contain 'A-Z' return(nil) if (word.is_empty)   var firstLetter = word.char(0)   # Replace letters with corresponding number values word.tr!('BFPV', '1', 's') word.tr!('CGJKQSXZ', '2', 's') word.tr!('DT', '3', 's') word.tr!('L', '4', 's') word.tr!('MN', '5', 's') word.tr!('R', '6', 's')   # Discard the first letter word.ft!(1)   # Remove A, E, H, I, O, U, W, and Y word.tr!('AEHIOUWY', '', 'd')   # Return the soundex code firstLetter + (word.chars + length.of('0') -> first(length).join) }   func testSoundex {   # Key-value pairs of names and corresponding Soundex codes var sndx = Hash( "Euler" => "E4600", "Gauss" => "G2000", "Hilbert" => "H4163", "Knuth" => "K5300", "Lloyd" => "L3000", "Lukasieicz" => "L2220", 'fulkerson' => 'F4262', 'faulkersuhn' => 'F4262', 'fpfffffauhlkkersssin' => 'F4262', 'Aaeh' => 'A0000', )   sndx.keys.sort.each { |name| var findSdx = soundex(name, 4) say "The soundex for #{name} should be #{sndx{name}} and is #{findSdx}" if (findSdx != sndx{name}) { say "\tHowever, that is incorrect!\n" } } }   testSoundex()
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Raven
Raven
new stack as s 1 s push s pop
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#zkl
zkl
fcn spiralMatrix(n){ sm:=(0).pump(n,List,(0).pump(n,List,False).copy); //L(L(False,False..), L(F,F,..) ...) drc:=Walker.cycle(T(0,1,0), T(1,0,1), T(0,-1,0), T(-1,0,1)); // deltas len:=n; r:=0; c:=-1; z:=-1; while(len>0){ //or do(2*n-1){ dr,dc,dl:=drc.next(); do(len-=dl){ sm[r+=dr][c+=dc]=(z+=1); } } sm }
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Idris
Idris
quicksort : Ord elem => List elem -> List elem quicksort [] = [] quicksort (x :: xs) = let lesser = filter (< x) xs greater = filter(>= x) xs in (quicksort lesser) ++ [x] ++ (quicksort greater)
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#HicEst
HicEst
DO i = 2, LEN(A) value = A(i) j = i - 1 1 IF( j > 0 ) THEN IF( A(j) > value ) THEN A(j+1) = A(j) j = j - 1 GOTO 1 ! no WHILE in HicEst ENDIF ENDIF A(j+1) = value ENDDO
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#jq
jq
def swap($a; $i; $j): $a | .[$i] as $t | .[$i] = .[$j] | .[$j] = $t ;   def siftDown($a; $start; $iend): { $a, root: $start } | until( .stop or (.root*2 + 1 > $iend); .child = .root*2 + 1 | if .child + 1 <= $iend and .a[.child] < .a[.child+1] then .child += 1 else . end | if .a[.root] < .a[.child] then .a = swap(.a; .root; .child) | .root = .child else .stop = true end) | .a ;   def heapify: length as $count | {a: ., start: ((($count - 2)/2)|floor)} | until(.start < 0; .a = siftDown(.a; .start; $count - 1) | .start += -1 ) | .a ;   def heapSort: { a: heapify, iend: (length - 1) } | until( .iend <= 0; .a = swap(.a; 0; .iend) | .iend += -1 | .a = siftDown(.a; 0; .iend) ) | .a ;   [4, 65, 2, -31, 0, 99, 2, 83, 782, 1], [7, 5, 2, 6, 1, 4, 2, 6, 3] | "Before: \(.)", "After : \(heapSort)\n"  
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Julia
Julia
function swap(a, i, j) a[i], a[j] = a[j], a[i] end   function pd!(a, first, last) while (c = 2 * first - 1) < last if c < last && a[c] < a[c + 1] c += 1 end if a[first] < a[c] swap(a, c, first) first = c else break end end end   function heapify!(a, n) f = div(n, 2) while f >= 1 pd!(a, f, n) f -= 1 end end   function heapsort!(a) n = length(a) heapify!(a, n) l = n while l > 1 swap(a, 1, l) l -= 1 pd!(a, 1, l) end return a end   using Random: shuffle a = shuffle(collect(1:12)) println("Unsorted: $a") println("Heap sorted: ", heapsort!(a))  
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64   Sub copyArray(a() As Integer, iBegin As Integer, iEnd As Integer, b() As Integer) Redim b(iBegin To iEnd - 1) As Integer For k As Integer = iBegin To iEnd - 1 b(k) = a(k) Next End Sub   ' Left source half is a(iBegin To iMiddle-1). ' Right source half is a(iMiddle To iEnd-1). ' Result is b(iBegin To iEnd-1). Sub topDownMerge(a() As Integer, iBegin As Integer, iMiddle As Integer, iEnd As Integer, b() As Integer) Dim i As Integer = iBegin Dim j As Integer = iMiddle   ' While there are elements in the left or right runs... For k As Integer = iBegin To iEnd - 1 ' If left run head exists and is <= existing right run head. If i < iMiddle AndAlso (j >= iEnd OrElse a(i) <= a(j)) Then b(k) = a(i) i += 1 Else b(k) = a(j) j += 1 End If Next End Sub   ' Sort the given run of array a() using array b() as a source. ' iBegin is inclusive; iEnd is exclusive (a(iEnd) is not in the set). Sub topDownSplitMerge(b() As Integer, iBegin As Integer, iEnd As Integer, a() As Integer) If (iEnd - iBegin) < 2 Then Return '' If run size = 1, consider it sorted ' split the run longer than 1 item into halves Dim iMiddle As Integer = (iEnd + iBegin) \ 2 '' iMiddle = mid point ' recursively sort both runs from array a() into b() topDownSplitMerge(a(), iBegin, iMiddle, b()) '' sort the left run topDownSplitMerge(a(), iMiddle, iEnd, b()) '' sort the right run ' merge the resulting runs from array b() into a() topDownMerge(b(), iBegin, iMiddle, iEnd, a()) End Sub   ' Array a() has the items to sort; array b() is a work array (empty initially). Sub topDownMergeSort(a() As Integer, b() As Integer, n As Integer) copyArray(a(), 0, n, b()) '' duplicate array a() into b() topDownSplitMerge(b(), 0, n, a()) '' sort data from b() into a() End Sub   Sub printArray(a() As Integer) For i As Integer = LBound(a) To UBound(a) Print Using "####"; a(i); Next Print End Sub   Dim a(0 To 9) As Integer = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1}   Dim b() As Integer Print "Unsorted : "; printArray(a()) topDownMergeSort a(), b(), 10 Print "Sorted  : "; printArray(a()) Print Dim a2(0 To 8) As Integer = {7, 5, 2, 6, 1, 4, 2, 6, 3} Erase b Print "Unsorted : "; printArray(a2()) topDownMergeSort a2(), b(), 9 Print "Sorted  : "; printArray(a2()) Print Print "Press any key to quit" Sleep
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Ring
Ring
  aList = [7,6,5,9,8,4,3,1,2,0] see sortList(aList)   func sortList list count = len(list) + 1 last = count - 1   for i = 1 to last minCandidate = i j = i + 1 while j < count if list[j] < list[minCandidate] minCandidate = j ok j = j + 1 end temp = list[i] list[i] = list[minCandidate] list[minCandidate] = temp next return list  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Ruby
Ruby
  # a relatively readable version - creates a distinct array   def sequential_sort(array) sorted = []   while array.any? index_of_smallest_element = find_smallest_index(array) # defined below sorted << array.delete_at(index_of_smallest_element) end   sorted end   def find_smallest_index(array) smallest_element = array[0] smallest_index = 0   array.each_with_index do |ele, idx| if ele < smallest_element smallest_element = ele smallest_index = idx end end   smallest_index end   puts "sequential_sort([9, 6, 8, 7, 5]): #{sequential_sort([9, 6, 8, 7, 5])}" # prints: sequential_sort([9, 6, 8, 7, 5]): [5, 6, 7, 8, 9]       # more efficient version - swaps the array's elements in place   def sequential_sort_with_swapping(array) array.each_with_index do |element, index| smallest_unsorted_element_so_far = element smallest_unsorted_index_so_far = index   (index+1...array.length).each do |index_value| if array[index_value] < smallest_unsorted_element_so_far smallest_unsorted_element_so_far = array[index_value] smallest_unsorted_index_so_far = index_value end end   # swap index_value-th smallest element for index_value-th element array[index], array[smallest_unsorted_index_so_far] = array[smallest_unsorted_index_so_far], array[index] end   array end   puts "sequential_sort_with_swapping([7,6,5,9,8,4,3,1,2,0]): #{sequential_sort_with_swapping([7,6,5,9,8,4,3,1,2,0])}" # prints: sequential_sort_with_swapping([7,6,5,9,8,4,3,1,2,0]): [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]  
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Smalltalk
Smalltalk
PhoneticStringUtilities soundexCodeOf: 'Soundex' "-> S532"
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#REBOL
REBOL
rebol [ Title: "Stack" URL: http://rosettacode.org/wiki/Stack ]   stack: make object! [ data: copy []   push: func [x][append data x] pop: func [/local x][x: last data remove back tail data x] empty: does [empty? data]   peek: does [last data] ]   ; Teeny Tiny Test Suite   assert: func [code][print [either do code [" ok"]["FAIL"] mold code]]   print "Simple integers:" s: make stack [] s/push 1 s/push 2 ; Initialize.   assert [2 = s/peek] assert [2 = s/pop] assert [1 = s/pop] assert [s/empty]   print [lf "Symbolic data on stack:"] v: make stack [data: [this is a test]] ; Initialize on instance.   assert ['test = v/peek] assert ['test = v/pop] assert ['a = v/pop] assert [not v/empty]
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Io
Io
List do( quickSort := method( if(size > 1) then( pivot := at(size / 2 floor) return select(x, x < pivot) quickSort appendSeq( select(x, x == pivot) appendSeq(select(x, x > pivot) quickSort) ) ) else(return self) )   quickSortInPlace := method( copy(quickSort) ) )   lst := list(5, -1, -4, 2, 9) lst quickSort println # ==> list(-4, -1, 2, 5, 9) lst quickSortInPlace println # ==> list(-4, -1, 2, 5, 9)
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Icon_and_Unicon
Icon and Unicon
procedure main() #: demonstrate various ways to sort a list and string demosort(insertionsort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty") end   procedure insertionsort(X,op) #: return sorted X local i,temp   op := sortop(op,X) # select how and what we sort   every i := 2 to *X do { temp := X[j := i] while op(temp,X[1 <= (j -:= 1)]) do X[j+1] := X[j] X[j+1] := temp } return X end
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Kotlin
Kotlin
// version 1.1.0   fun heapSort(a: IntArray) { heapify(a) var end = a.size - 1 while (end > 0) { val temp = a[end] a[end] = a[0] a[0] = temp end-- siftDown(a, 0, end) } }   fun heapify(a: IntArray) { var start = (a.size - 2) / 2 while (start >= 0) { siftDown(a, start, a.size - 1) start-- } }   fun siftDown(a: IntArray, start: Int, end: Int) { var root = start while (root * 2 + 1 <= end) { var child = root * 2 + 1 if (child + 1 <= end && a[child] < a[child + 1]) child++ if (a[root] < a[child]) { val temp = a[root] a[root] = a[child] a[child] = temp root = child } else return } }   fun main(args: Array<String>) { val aa = arrayOf( intArrayOf(100, 2, 56, 200, -52, 3, 99, 33, 177, -199), intArrayOf(4, 65, 2, -31, 0, 99, 2, 83, 782, 1), intArrayOf(12, 11, 15, 10, 9, 1, 2, 3, 13, 14, 4, 5, 6, 7, 8) ) for (a in aa) { heapSort(a) println(a.joinToString(", ")) } }
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#FunL
FunL
def sort( [] ) = [] sort( [x] ) = [x] sort( xs ) = val (l, r) = xs.splitAt( xs.length()\2 ) merge( sort(l), sort(r) )   merge( [], xs ) = xs merge( xs, [] ) = xs merge( x:xs, y:ys ) | x <= y = x : merge( xs, y:ys ) | otherwise = y : merge( x:xs, ys )   println( sort([94, 37, 16, 56, 72, 48, 17, 27, 58, 67]) ) println( sort(['Sofía', 'Alysha', 'Sophia', 'Maya', 'Emma', 'Olivia', 'Emily']) )
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Run_BASIC
Run BASIC
siz = 10 dim srdData(siz) for i = 1 to siz srtData(i) = rnd(0) * 100 next i   FOR i = 1 TO siz-1 lo = i FOR j = (i + 1) TO siz IF srtData(j) < srtData(lo) lo = j NEXT j if i <> lo then temp = srtData(i) srtData(i) = srtData(lo) srtData(lo) = temp end if NEXT i   for i = 1 to siz print i;chr$(9);srtData(i) next i
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Rust
Rust
  fn selection_sort(array: &mut [i32]) {   let mut min;   for i in 0..array.len() {   min = i;   for j in (i+1)..array.len() {   if array[j] < array[min] { min = j; } }   let tmp = array[i]; array[i] = array[min]; array[min] = tmp; } }   fn main() {   let mut array = [ 9, 4, 8, 3, -5, 2, 1, 6 ]; println!("The initial array is {:?}", array);   selection_sort(&mut array); println!(" The sorted array is {:?}", array); }  
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#SNOBOL4
SNOBOL4
* # Soundex coding * # ABCDEFGHIJKLMNOPQRSTUVWXYZ * # 01230127022455012623017202   define('soundex(str)init,ch') :(soundex_end) soundex sdxmap = '01230127022455012623017202' str = replace(str,&lcase,&ucase) sdx1 str notany(&ucase) = :s(sdx1) init = substr(str,1,1) str = replace(str,&ucase,sdxmap) sdx2 str len(1) $ ch span(*ch) = ch :s(sdx2) * # Omit next line for Knuth's simple Soundex sdx3 str len(1) $ ch ('7' *ch) = ch :s(sdx3) str len(1) = init sdx4 str any('07') = :s(sdx4) str = substr(str,1,4) str = lt(size(str),4) str dupl('0',4 - size(str)) soundex = str :(return) soundex_end   * # Test and display test = " Washington Lee Gutierrez Pfister Jackson Tymczak" + " Ashcroft Swhgler O'Connor Rhys-Davies" loop test span(' ') break(' ') . name = :f(end) output = soundex(name) ' ' name :(loop) end
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Retro
Retro
: stack ( n"- ) create 0 , allot ; : push ( na- ) dup ++ dup @ + ! ; : pop ( a-n ) dup @ over -- + @ ; : top ( a-n ) dup @ + @ ; : empty? ( a-f ) @ 0 = ;   10 stack st   1 st push 2 st push 3 st push st empty? putn st top putn st pop putn st pop putn st pop putn st empty? putn
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Isabelle
Isabelle
theory Quicksort imports Main begin   fun quicksort :: "('a :: linorder) list ⇒ 'a list" where "quicksort [] = []" | "quicksort (x#xs) = (quicksort [y←xs. y<x]) @ [x] @ (quicksort [y←xs. y>x])"   lemma "quicksort [4::int, 2, 7, 1] = [1, 2, 4, 7]" by(code_simp)   lemma set_first_second_partition: fixes x :: "'a :: linorder" shows "{y ∈ ys. y < x} ∪ {x} ∪ {y ∈ ys. x < y} = insert x ys" by fastforce   lemma set_quicksort: "set (quicksort xs) = set xs" by(induction xs rule: quicksort.induct) (simp add: set_first_second_partition[simplified])+     theorem "sorted (quicksort xs)" proof(induction xs rule: quicksort.induct) case 1 show "sorted (quicksort [])" by simp next case (2 x xs) assume IH_less: "sorted (quicksort [y←xs. y<x])" assume IH_greater: "sorted (quicksort [y←xs. y>x])" have pivot_geq_first_partition: "∀z∈set (quicksort [y←xs. y<x]). z ≤ x" by (simp add: set_quicksort less_imp_le) have pivot_leq_second_partition: "∀z ∈ (set (quicksort [y←xs. y>x])). (x ≤ z)" by (simp add: set_quicksort less_imp_le) have first_partition_leq_second_partition: "∀p∈set (quicksort [y←xs. y<x]). ∀z ∈ (set (quicksort [y←xs. y>x])). (p ≤ z)" by (auto simp add: set_quicksort)   from IH_less IH_greater pivot_geq_first_partition pivot_leq_second_partition first_partition_leq_second_partition show "sorted (quicksort (x # xs))" by(simp add: sorted_append) qed     text‹ The specification on rosettacode says ▪ All elements less than the pivot must be in the first partition. ▪ All elements greater than the pivot must be in the second partition. Since this specification neither says "less than or equal" nor "greater or equal", this quicksort implementation removes duplicate elements. › lemma "quicksort [1::int, 1, 1, 2, 2, 3] = [1, 2, 3]" by(code_simp)   text‹If we try the following, we automatically get a counterexample› lemma "length (quicksort xs) = length xs" (* Auto Quickcheck found a counterexample: xs = [a⇩1, a⇩1] Evaluated terms: length (quicksort xs) = 1 length xs = 2 *) oops end  
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Io
Io
  List do( insertionSortInPlace := method( for(j, 1, size - 1, key := at(j) i := j - 1   while(i >= 0 and at(i) > key, atPut(i + 1, at(i)) i = i - 1 ) atPut(i + 1, key) ) ) )   lst := list(7, 6, 5, 9, 8, 4, 3, 1, 2, 0) lst insertionSortInPlace println # ==> list(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Liberty_BASIC
Liberty BASIC
wikiSample=1 'comment out for random array   data 6, 5, 3, 1, 8, 7, 2, 4 itemCount = 20 if wikiSample then itemCount = 8 dim A(itemCount) for i = 1 to itemCount A(i) = int(rnd(1) * 100) if wikiSample then read tmp: A(i)=tmp next i   print "Before Sort" call printArray itemCount   call heapSort itemCount   print "After Sort" call printArray itemCount end   '------------------------------------------ sub heapSort count call heapify count   print "the heap" call printArray count   theEnd = count while theEnd > 1 call swap theEnd, 1 call siftDown 1, theEnd-1 theEnd = theEnd - 1 wend end sub   sub heapify count start = int(count / 2) while start >= 1 call siftDown start, count start = start - 1 wend end sub   sub siftDown start, theEnd root = start while root * 2 <= theEnd child = root * 2 swap = root if A(swap) < A(child) then swap = child end if if child+1 <= theEnd then if A(swap) < A(child+1) then swap = child + 1 end if end if if swap <> root then call swap root, swap root = swap else exit sub end if wend end sub   sub swap a,b tmp = A(a) A(a) = A(b) A(b) = tmp end sub   '=========================================== sub printArray itemCount for i = 1 to itemCount print using("###", A(i)); next i print end sub
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Go
Go
package main   import "fmt"   var a = []int{170, 45, 75, -90, -802, 24, 2, 66} var s = make([]int, len(a)/2+1) // scratch space for merge step   func main() { fmt.Println("before:", a) mergeSort(a) fmt.Println("after: ", a) }   func mergeSort(a []int) { if len(a) < 2 { return } mid := len(a) / 2 mergeSort(a[:mid]) mergeSort(a[mid:]) if a[mid-1] <= a[mid] { return } // merge step, with the copy-half optimization copy(s, a[:mid]) l, r := 0, mid for i := 0; ; i++ { if s[l] <= a[r] { a[i] = s[l] l++ if l == mid { break } } else { a[i] = a[r] r++ if r == len(a) { copy(a[i+1:], s[l:mid]) break } } } return }
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Scala
Scala
def swap(a: Array[Int], i1: Int, i2: Int) = { val tmp = a(i1); a(i1) = a(i2); a(i2) = tmp }   def selectionSort(a: Array[Int]) = for (i <- 0 until a.size - 1) swap(a, i, (i + 1 until a.size).foldLeft(i)((currMin, index) => if (a(index) < a(currMin)) index else currMin))
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Standard_ML
Standard ML
(* There are 3 kinds of letters: * h and w are ignored completely (letters separated by h or w are considered * adjacent, or merged together) * vowels are ignored, but letters separated by a vowel are split apart. * All consonants but h and w map to a digit *) datatype code = Merge | Split | Digit of char   (* Encodes which characters map to which codes *) val codeTable = [([#"H", #"W"], Merge), ([#"A",#"E",#"I", #"O",#"U",#"Y"], Split), ([#"B",#"F",#"P",#"V"], Digit #"1"), ([#"C",#"G",#"J",#"K",#"Q",#"S",#"X",#"Z"], Digit #"2"), ([#"D",#"T"], Digit #"3"), ([#"L"], Digit #"4"), ([#"M",#"N"], Digit #"5"), ([#"R"], Digit #"6")]   (* Find the code that matches a given character *) fun codeOf (c : char) = #2 (valOf (List.find (fn (L,_) => isSome(List.find (fn c' => c = c') L)) codeTable))   (* Remove all the non-digit codes, combining like digits when appropriate. *) fun collapse (c :: Merge :: cs) = collapse (c :: cs) | collapse (Digit d :: Split :: cs) = Digit d :: collapse cs | collapse (Digit d :: (cs' as Digit d' :: cs)) = if d = d' then collapse (Digit d :: cs) else Digit d :: collapse cs' | collapse [Digit d] = [Digit d] | collapse (c::cs) = collapse cs | collapse _ = []   (* dropWhile f L removes the initial elements of L that satisfy f and returns * the rest *) fun dropWhile f [] = [] | dropWhile f (x::xs) = if f x then dropWhile f xs else x::xs   fun soundex (s : string) = let (* Normalize the string to uppercase letters only *) val c::cs = map (Char.toUpper) (filter Char.isAlpha(String.explode s)) fun first3 L = map (fn Digit c => c) (List.take(L,3)) val padding = [Digit #"0", Digit #"0", Digit #"0"] (* Remove any initial section that has the same code as the first character. * This comes up in the "Pfister" test case. *) val codes = dropWhile (fn Merge => true | Digit d => Digit d = codeOf c | Split => false) (map codeOf (c::cs)) in String.implode(c::first3(collapse codes@padding)) end   (* Some test cases from Wikipedia *) fun test input output = if soundex input = output then () else raise Fail ("Soundex of " ^ input ^ " should be " ^ output ^ ", not " ^ soundex input)   val () = test "Rupert" "R163" val () = test "Robert" "R163" val () = test "Rubin" "R150" val () = test "Tymczak" "T522" val () = test "Pfister" "P236"
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#REXX
REXX
y=123 /*define a REXX variable, value is 123 */ push y /*pushes 123 onto the stack. */ pull g /*pops last value stacked & removes it. */ q=empty() /*invokes the EMPTY subroutine (below)*/ exit /*stick a fork in it, we're done. */   empty: return queued() /*subroutine returns # of stacked items.*/
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#J
J
sel=: 1 : 'u # ['   quicksort=: 3 : 0 if. 1 >: #y do. y else. e=. y{~?#y (quicksort y <sel e),(y =sel e),quicksort y >sel e end. )
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Isabelle
Isabelle
theory Insertionsort imports Main begin   fun insert :: "int ⇒ int list ⇒ int list" where "insert x [] = [x]" | "insert x (y#ys) = (if x ≤ y then (x#y#ys) else y#(insert x ys))"   text‹Example:› lemma "insert 4 [1, 2, 3, 5, 6] = [1, 2, 3, 4, 5, 6]" by(code_simp)   fun insertionsort :: "int list ⇒ int list" where "insertionsort [] = []" | "insertionsort (x#xs) = insert x (insertionsort xs)"   lemma "insertionsort [4, 2, 6, 1, 8, 1] = [1, 1, 2, 4, 6, 8]" by(code_simp)   text‹ Our function behaves the same as the \<^term>‹sort› function of the standard library. › lemma insertionsort: "insertionsort xs = sort xs" proof(induction xs) case Nil show "insertionsort [] = sort []" by simp next case (Cons x xs) text‹Our \<^const>‹insert› behaves the same as the std libs \<^const>‹insort›.› have "insert a as = insort a as" for a as by(induction as) simp+ with Cons show "insertionsort (x # xs) = sort (x # xs)" by simp qed   text‹ Given that we behave the same as the std libs sorting algorithm, we get the correctness properties for free. › corollary insertionsort_correctness: "sorted (insertionsort xs)" and "set (insertionsort xs) = set xs" using insertionsort by(simp)+   text‹ The Haskell implementation from 🌐‹https://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort#Haskell› also behaves the same. Ultimately, they all return a sorted list. One exception to the Haskell implementation is that the type signature of \<^const>‹foldr› in Isabelle is slightly different: The initial value of the accumulator goes last. › definition rosettacode_haskell_insertionsort :: "int list ⇒ int list" where "rosettacode_haskell_insertionsort ≡ λxs. foldr insert xs []"   lemma "rosettacode_haskell_insertionsort [4, 2, 6, 1, 8, 1] = [1, 1, 2, 4, 6, 8]" by(code_simp)   lemma "rosettacode_haskell_insertionsort xs = insertionsort xs" unfolding rosettacode_haskell_insertionsort_def by(induction xs) simp+   end
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Lobster
Lobster
def siftDown(a, start, end): // (end represents the limit of how far down the heap to sift) var root = start   while root * 2 + 1 <= end: // (While the root has at least one child) var child = root * 2 + 1 // (root*2+1 points to the left child) // (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 <= end and a[child] < a[child + 1]: child += 1 // (... then point to the right child instead) if a[root] < a[child]: // (out of max-heap order) let r = a[root] // swap(a[root], a[child]) a[root] = a[child] a[child] = r root = child // (repeat to continue sifting down the child now) else: return   def heapify(a, count): //(start is assigned the index in a of the last parent node) var start = (count - 2) >> 1   while start >= 0: // (sift down the node at index start to the proper place // such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start -= 1 // (after sifting down the root all nodes/elements are in heap order)   def heapSort(a): // input: an unordered array a of length count let count = a.length // (first place a in max-heap order) heapify(a, count)   var end = count - 1 while end > 0: //(swap the root(maximum value) of the heap with the last element of the heap) let z = a[0] a[0] = a[end] a[end] = z //(decrement the size of the heap so that the previous max value will stay in its proper place) end -= 1 // (put the heap back in max-heap order) siftDown(a, 0, end)   let inputi = [1,10,2,5,-1,5,-19,4,23,0] print ("input: " + inputi) heapSort(inputi) print ("sorted: " + inputi) let inputf = [1,-3.2,5.2,10.8,-5.7,7.3,3.5,0,-4.1,-9.5] print ("input: " + inputf) heapSort(inputf) print ("sorted: " + inputf) let inputs = ["We","hold","these","truths","to","be","self-evident","that","all","men","are","created","equal"] print ("input: " + inputs) heapSort(inputs) print ("sorted: " + inputs)  
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#LotusScript
LotusScript
  Public Sub heapsort(pavIn As Variant) Dim liCount As Integer, liEnd As Integer Dim lvTemp As Variant liCount = UBound(pavIn) + 1   heapify pavIn, liCount   liEnd = liCount - 1 While liEnd > 0 lvTemp = pavIn(liEnd) pavIn(liEnd) = pavIn(0) pavIn(0) = lvTemp liEnd = liEnd -1 siftDown pavIn,0, liEnd Wend End Sub   Private Sub heapify(pavIn As Variant,piCount As Integer) Dim liStart As Integer liStart = (piCount - 2) / 2 While liStart >=0 siftDown pavIn, liStart, piCount -1 liStart = liStart - 1 Wend End Sub   Private Sub siftDown(pavIn As Variant, piStart As Integer, piEnd As Integer) Dim liRoot As Integer, liChild As Integer Dim lvTemp As Variant liRoot = piStart While liRoot *2 + 1 <= piEnd liChild = liRoot *2 + 1 If liChild +1 <= piEnd And pavIn(liChild) < pavIn(liChild + 1) Then liChild = liChild + 1 End If If pavIn(liRoot) < pavIn(liChild) Then lvTemp = pavIn(liRoot) pavIn(liRoot) = pavIn(liChild) pavIn(liChild) = lvTemp liRoot = liChild Else Exit sub End if wend End Sub  
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Groovy
Groovy
def merge = { List left, List right -> List mergeList = [] while (left && right) { print "." mergeList << ((left[-1] > right[-1]) ? left.pop() : right.pop()) } mergeList = mergeList.reverse() mergeList = left + right + mergeList }   def mergeSort; mergeSort = { List list ->   def n = list.size() if (n < 2) return list   def middle = n.intdiv(2) def left = [] + list[0..<middle] def right = [] + list[middle..<n] left = mergeSort(left) right = mergeSort(right)   if (left[-1] <= right[0]) return left + right   merge(left, right) }
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Seed7
Seed7
const proc: selectionSort (inout array elemType: arr) is func local var integer: i is 0; var integer: j is 0; var integer: min is 0; var elemType: help is elemType.value; begin for i range 1 to length(arr) - 1 do min := i; for j range i + 1 to length(arr) do if arr[j] < arr[min] then min := j; end if; end for; help := arr[min]; arr[min] := arr[i]; arr[i] := help; end for; end func;
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Sidef
Sidef
class Array { method selectionsort { for i in ^(self.end) { var min_idx = i for j in (i+1 .. self.end) { if (self[j] < self[min_idx]) { min_idx = j } } self.swap(i, min_idx) } return self } }   var nums = [7,6,5,9,8,4,3,1,2,0]; say nums.selectionsort;   var strs = ["John", "Kate", "Zerg", "Alice", "Joe", "Jane"]; say strs.selectionsort;
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Stata
Stata
. display soundex_nara("Ashcraft") A261   . display soundex_nara("Tymczak") T522
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Ring
Ring
  # Project : Stack   load "stdlib.ring" ostack = new stack for n = 5 to 7 see "Push: " + n + nl ostack.push(n) next see "Pop:" + ostack.pop() + nl see "Push: " + "8" + nl ostack.push(8) while len(ostack) > 0 see "Pop:" + ostack.pop() + nl end if len(ostack) = 0 see "Pop: stack is empty" + nl ok  
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Java
Java
public static <E extends Comparable<? super E>> List<E> quickSort(List<E> arr) { if (arr.isEmpty()) return arr; else { E pivot = arr.get(0);   List<E> less = new LinkedList<E>(); List<E> pivotList = new LinkedList<E>(); List<E> more = new LinkedList<E>();   // Partition for (E i: arr) { if (i.compareTo(pivot) < 0) less.add(i); else if (i.compareTo(pivot) > 0) more.add(i); else pivotList.add(i); }   // Recursively sort sublists less = quickSort(less); more = quickSort(more);   // Concatenate results less.addAll(pivotList); less.addAll(more); return less; } }  
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#J
J
isort=:((>: # ]) , [ , < #])/
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#M4
M4
divert(-1)   define(`randSeed',141592653) define(`setRand', `define(`randSeed',ifelse(eval($1<10000),1,`eval(20000-$1)',`$1'))') define(`rand_t',`eval(randSeed^(randSeed>>13))') define(`random', `define(`randSeed',eval((rand_t^(rand_t<<18))&0x7fffffff))randSeed')   define(`set',`define(`$1[$2]',`$3')') define(`get',`defn(`$1[$2]')') define(`new',`set($1,size,0)') dnl for the heap calculations, it's easier if origin is 0, so set value first define(`append', `set($1,get($1,size),$2)`'set($1,size,incr(get($1,size)))')   dnl swap(<name>,<j>,<name>[<j>],<k>) using arg stack for the temporary define(`swap',`set($1,$2,get($1,$4))`'set($1,$4,$3)')   define(`deck', `new($1)for(`x',1,$2, `append(`$1',eval(random%100))')') define(`show', `for(`x',0,decr(get($1,size)),`get($1,x) ')') define(`for', `ifelse($#,0,``$0'', `ifelse(eval($2<=$3),1, `pushdef(`$1',$2)$4`'popdef(`$1')$0(`$1',incr($2),$3,`$4')')')')   define(`ifywork', `ifelse(eval($2>=0),1, `siftdown($1,$2,$3)`'ifywork($1,decr($2),$3)')') define(`heapify', `define(`start',eval((get($1,size)-2)/2))`'ifywork($1,start, decr(get($1,size)))') define(`siftdown', `define(`child',eval($2*2+1))`'ifelse(eval(child<=$3),1, `ifelse(eval(child+1<=$3),1, `ifelse(eval(get($1,child)<get($1,incr(child))),1, `define(`child', incr(child))')')`'ifelse(eval(get($1,$2)<get($1,child)),1, `swap($1,$2,get($1,$2),child)`'siftdown($1,child,$3)')')') define(`sortwork', `ifelse($2,0, `', `swap($1,0,get($1,0),$2)`'siftdown($1,0,decr($2))`'sortwork($1, decr($2))')')   define(`heapsort', `heapify($1)`'sortwork($1,decr(get($1,size)))')   divert deck(`a',10) show(`a') heapsort(`a') show(`a')
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Maple
Maple
swap := proc(arr, a, b) local temp: temp := arr[a]: arr[a] := arr[b]: arr[b] := temp: end proc: heapify := proc(toSort, n, i) local largest, l, r, holder: largest := i: l := 2*i: r := 2*i+1: if (l <= n and toSort[l] > toSort[largest]) then largest := l: end if: if (r <= n and toSort[r] > toSort[largest]) then largest := r: end if: if (not largest = i) then swap(toSort, i, largest); heapify(toSort, n, largest): end if: end proc: heapsort := proc(arr) local n,i: n := numelems(arr): for i from trunc(n/2) to 1 by -1 do heapify(arr, n, i): end do: for i from n to 2 by -1 do swap(arr, 1, i): heapify(arr, i-1, 1): end do: end proc: arr := Array([17,3,72,0,36,2,3,8,40,0]); heapsort(arr); arr;
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Haskell
Haskell
merge [] ys = ys merge xs [] = xs merge xs@(x:xt) ys@(y:yt) | x <= y = x : merge xt ys | otherwise = y : merge xs yt   split (x:y:zs) = let (xs,ys) = split zs in (x:xs,y:ys) split [x] = ([x],[]) split [] = ([],[])   mergeSort [] = [] mergeSort [x] = [x] mergeSort xs = let (as,bs) = split xs in merge (mergeSort as) (mergeSort bs)
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Standard_ML
Standard ML
fun selection_sort [] = [] | selection_sort (first::lst) = let val (small, output) = foldl (fn (x, (small, output)) => if x < small then (x, small::output) else (small, x::output) ) (first, []) lst in small :: selection_sort output end
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Stata
Stata
mata function selection_sort(real vector a) { real scalar i, j, k, n n = length(a) for (i = 1; i < n; i++) { k = i for (j = i+1; j <= n; j++) { if (a[j] < a[k]) k = j } if (k != i) a[(i, k)] = a[(k, i)] } } end
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Tcl
Tcl
package require soundex   foreach string {"Soundex" "Example" "Sownteks" "Ekzampul"} { set soundexCode [soundex::knuth $string] puts "\"$string\" has code $soundexCode" }
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Ruby
Ruby
stack = [] stack.push(value) # pushing value = stack.pop # popping stack.empty? # is empty?
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#JavaScript
JavaScript
function sort(array, less) {   function swap(i, j) { var t = array[i]; array[i] = array[j]; array[j] = t; }   function quicksort(left, right) {   if (left < right) { var pivot = array[left + Math.floor((right - left) / 2)], left_new = left, right_new = right;   do { while (less(array[left_new], pivot)) { left_new += 1; } while (less(pivot, array[right_new])) { right_new -= 1; } if (left_new <= right_new) { swap(left_new, right_new); left_new += 1; right_new -= 1; } } while (left_new <= right_new);   quicksort(left, right_new); quicksort(left_new, right);   } }   quicksort(0, array.length - 1);   return array; }
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Java
Java
public static void insertSort(int[] A){ for(int i = 1; i < A.length; i++){ int value = A[i]; int j = i - 1; while(j >= 0 && A[j] > value){ A[j + 1] = A[j]; j = j - 1; } A[j + 1] = value; } }
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
siftDown[list_,root_,theEnd_]:= While[(root*2) <= theEnd, child = root*2; If[(child+1 <= theEnd)&&(list[[child]] < list[[child+1]]), child++;]; If[list[[root]] < list[[child]], list[[{root,child}]] = list[[{child,root}]]; root = child;, Break[]; ] ] heapSort[list_] := Module[{ count, start}, count = Length[list]; start = Floor[count/2]; While[start >= 1,list = siftDown[list,start,count]; start--; ] While[count > 1, list[[{count,1}]] = list[[{1,count}]]; count--; list = siftDown[list,1,count]; ] ]
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#MATLAB_.2F_Octave
MATLAB / Octave
function list = heapSort(list)   function list = siftDown(list,root,theEnd) while (root * 2) <= theEnd   child = root * 2; if (child + 1 <= theEnd) && (list(child) < list(child+1)) child = child + 1; end   if list(root) < list(child) list([root child]) = list([child root]); %Swap root = child; else return end   end %while end %siftDown   count = numel(list);   %Because heapify is called once in pseudo-code, it is inline here start = floor(count/2);   while start >= 1 list = siftDown(list, start, count); start = start - 1; end %End Heapify   while count > 1   list([count 1]) = list([1 count]); %Swap count = count - 1; list = siftDown(list,1,count);   end   end
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Icon_and_Unicon
Icon and Unicon
procedure main() #: demonstrate various ways to sort a list and string demosort(mergesort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty") end   procedure mergesort(X,op,lower,upper) #: return sorted list ascending(or descending) local middle   if /lower := 1 then { # top level call setup upper := *X op := sortop(op,X) # select how and what we sort }   if upper ~= lower then { # sort all sections with 2 or more elements X := mergesort(X,op,lower,middle := lower + (upper - lower) / 2) X := mergesort(X,op,middle+1,upper)   if op(X[middle+1],X[middle]) then # @middle+1 < @middle merge if halves reversed X := merge(X,op,lower,middle,upper) } return X end   procedure merge(X,op,lower,middle,upper) # merge two list sections within a larger list local p1,p2,add   p1 := lower p2 := middle + 1 add := if type(X) ~== "string" then put else "||" # extend X, strings require X := add (until ||:= is invocable)   while p1 <= middle & p2 <= upper do if op(X[p1],X[p2]) then { # @p1 < @p2 X := add(X,X[p1]) # extend X temporarily (rather than use a separate temporary list) p1 +:= 1 } else { X := add(X,X[p2]) # extend X temporarily p2 +:= 1 }   while X := add(X,X[middle >= p1]) do p1 +:= 1 # and rest of lower or ... while X := add(X,X[upper >= p2]) do p2 +:= 1 # ... upper trailers if any   if type(X) ~== "string" then # pull section's sorted elements from extension every X[upper to lower by -1] := pull(X) else (X[lower+:(upper-lower+1)] := X[0-:(upper-lower+1)])[0-:(upper-lower+1)] := ""   return X end
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Swift
Swift
func selectionSort(inout arr:[Int]) { var min:Int   for n in 0..<arr.count { min = n   for x in n+1..<arr.count { if (arr[x] < arr[min]) { min = x } }   if min != n { let temp = arr[min] arr[min] = arr[n] arr[n] = temp } } }
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Tcl
Tcl
package require Tcl 8.5 package require struct::list   proc selectionsort {A} { set len [llength $A] for {set i 0} {$i < $len - 1} {incr i} { set min_idx [expr {$i + 1}] for {set j $min_idx} {$j < $len} {incr j} { if {[lindex $A $j] < [lindex $A $min_idx]} { set min_idx $j } } if {[lindex $A $i] > [lindex $A $min_idx]} { struct::list swap A $i $min_idx } } return $A }   puts [selectionsort {8 6 4 2 1 3 5 7 9}] ;# => 1 2 3 4 5 6 7 8 9
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#TMG
TMG
prog: ignore(spaces) let: peek/done [ch = ch>140 ? ch-40 : ch ] ( [ch<110?] ( [ch==101?] vow | [ch==102?] r1 | [ch==103?] r2 | [ch==104?] r3 | [ch==105?] vow | [ch==106?] r1 | [ch==107?] r2 ) | [ch<120?] ( [ch==110?] hw | [ch==111?] vow | [ch==112?] r2 | [ch==113?] r2 | [ch==114?] r4 | [ch==115?] r5 | [ch==116?] r5 | [ch==117?] vow ) | [ch<130?] ( [ch==120?] r1 | [ch==121?] r2 | [ch==122?] r6 | [ch==123?] r2 | [ch==124?] r3 | [ch==125?] vow | [ch==126?] r1 | [ch==127?] hw ) | [ch<140?] ( [ch==130?] r2 | [ch==131?] vow | [ch==132?] r2 )) [n>0?]\let done;   vow: [ch=0] out; r1: [ch=1] out; r2: [ch=2] out; r3: [ch=3] out; r4: [ch=4] out; r5: [ch=5] out; r6: [ch=6] out; hw: [ch=7] out; out: [n==4?] [--n] parse(( scopy )) | ( [(l1!=10) & ((ch==l1) | (ch==7) | (!ch)) ?] | [(l1==7) & (ch==l2) ?] | [--n] parse(num) ); num: octal(ch); done: [l1=10] [ch=0] loop: [n>0?] out loop | parse((={*}));   peek: adv ord/read; ord: char(ch) fail; read: smark any(!<<>>); adv: [l2=l1] [l1=ch];   spaces: << >>;   n: 4; ch: 0; l1: 0; l2: 0;
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Run_BASIC
Run BASIC
dim stack$(10) ' stack of ten global stack$ global stackEnd   for i = 1 to 5 ' push 5 values to the stack a$ = push$(chr$(i + 64)) print "Pushed ";chr$(i + 64);" stack has ";stackEnd next i   print "Pop Value:";pop$();" stack has ";stackEnd ' pop last in print "Pop Value:";pop$();" stack has ";stackEnd ' pop last in   e$ = mt$() ' MT the stack print "Empty stack. stack has ";stackEnd   ' ------ PUSH the stack FUNCTION push$(val$) stackEnd = stackEnd + 1 ' if more than 10 then lose the oldest if stackEnd > 10 then for i = 0 to 9 stack$(i) = stack$(i+1) next i stackEnd = 10 end if stack$(stackEnd) = val$ END FUNCTION   ' ------ POP the stack ----- FUNCTION pop$() if stackEnd = 0 then pop$ = "Stack is MT" else pop$ = stack$(stackEnd) ' pop last in stackEnd = max(stackEnd - 1,0) end if END FUNCTION   ' ------ MT the stack ------ FUNCTION mt$() stackEnd = 0 END FUNCTION
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Joy
Joy
  DEFINE qsort == [small] # termination condition: 0 or 1 element [] # do nothing [uncons [>] split] # pivot and two lists [enconcat] # insert the pivot after the recursion binrec. # recursion on the two lists  
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#JavaScript
JavaScript
  function insertionSort (a) { for (var i = 0; i < a.length; i++) { var k = a[i]; for (var j = i; j > 0 && k < a[j - 1]; j--) a[j] = a[j - 1]; a[j] = k; } return a; }   var a = [4, 65, 2, -31, 0, 99, 83, 782, 1]; insertionSort(a); document.write(a.join(" "));
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#MAXScript
MAXScript
fn heapify arr count = ( local s = count /2 while s > 0 do ( arr = siftDown arr s count s -= 1 ) return arr ) fn siftDown arr s end = ( local root = s while root * 2 <= end do ( local child = root * 2 if child < end and arr[child] < arr[child+1] do ( child += 1 ) if arr[root] < arr[child] then ( swap arr[root] arr[child] root = child ) else return arr ) return arr ) fn heapSort arr = ( local count = arr.count arr = heapify arr count local end = count while end >= 1 do ( swap arr[1] arr[end]   end -= 1 arr = siftDown arr 1 end )   )
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Io
Io
List do ( merge := method(lst1, lst2, result := list() while(lst1 isNotEmpty or lst2 isNotEmpty, if(lst1 first <= lst2 first) then( result append(lst1 removeFirst) ) else ( result append(lst2 removeFirst) ) ) result)   mergeSort := method( if (size > 1) then( half_size := (size / 2) ceil return merge(slice(0, half_size) mergeSort, slice(half_size, size) mergeSort) ) else (return self) )   mergeSortInPlace := method( copy(mergeSort) ) )   lst := list(9, 5, 3, -1, 15, -2) lst mergeSort println # ==> list(-2, -1, 3, 5, 9, 15) lst mergeSortInPlace println # ==> list(-2, -1, 3, 5, 9, 15)
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#TI-83_BASIC
TI-83 BASIC
:L1→L2 :dim(L2)→I :For(A,1,I) :A→C :0→X :For(B,A,I) :If L2(B)<L2(C) :Then :B→C :1→X :End :End :If X=1 :Then :L2(C)→B :L2(A)→L2(C) :B→L2(A) :End :End :DelVar A :DelVar B :DelVar C :DelVar I :DelVar X :Return
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#uBasic.2F4tH
uBasic/4tH
PRINT "Selection sort:" n = FUNC (_InitArray) PROC _ShowArray (n) PROC _Selectionsort (n) PROC _ShowArray (n) PRINT   END     _Selectionsort PARAM (1) ' Selection sort LOCAL (3)   FOR b@ = 0 TO a@-1 c@ = b@   FOR d@ = b@ TO a@-1 IF @(d@) < @(c@) THEN c@ = d@ NEXT   IF b@ # c@ THEN PROC _Swap (b@, c@) NEXT RETURN     _Swap PARAM(2) ' Swap two array elements PUSH @(a@) @(a@) = @(b@) @(b@) = POP() RETURN     _InitArray ' Init example array PUSH 4, 65, 2, -31, 0, 99, 2, 83, 782, 1   FOR i = 0 TO 9 @(i) = POP() NEXT   RETURN (i)     _ShowArray PARAM (1) ' Show array subroutine FOR i = 0 TO a@-1 PRINT @(i), NEXT   PRINT RETURN
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#TSE_SAL
TSE SAL
    // library: string: get: soundex <description></description> <version>1.0.0.0.35</version> <version control></version control> (filenamemacro=getstgso.s) [kn, ri, sa, 15-10-2011 18:23:04] STRING PROC FNStringGetSoundexS( STRING inS ) // Except the first character, you replace each character in the string with its corresponding mapping number // Idea is that you give characters with the same sound the same mapping number (e.g. 'c' is replaced by '2'. And 'k' which might sound the same as a 'c' is also replaced by the same '2' STRING map1S[255] = "AEHIOUWYBFPVCGJKQSXZDTLMNR" STRING map2S[255] = "00000000111122222222334556" STRING s[255] = Upper( inS ) STRING soundexS[255] = "" STRING characterCurrentS[255] = "" STRING characterPreviousS[255] = "?" STRING characterMapS[255] = "" INTEGER mapPositionI = 0 INTEGER minI = 1 INTEGER I = minI INTEGER maxI = Length( s ) I = minI characterCurrentS = SubStr( s, I, 1 ) mapPositionI = Pos( characterCurrentS, map1S ) WHILE ( ( I <= maxI ) AND ( Length( soundexS ) < 4 ) AND ( NOT ( mapPositionI == 0 ) ) ) // Skip double letters, like CC, KK, PP, ... IF ( NOT ( mapPositionI == 0 ) ) AND ( NOT ( characterCurrentS == characterPreviousS ) ) characterPreviousS = characterCurrentS // First character is extracted unchanged, for sorting purposes. IF ( I == minI ) soundexS = Format( soundexS, characterCurrentS ) ELSE mapPositionI = Pos( characterCurrentS, map1S ) IF ( NOT ( mapPositionI == 0 ) ) characterMapS = SubStr( map2S, mapPositionI, 1 ) // skip vowels A, E, I, O, U, further also H, W and Y. In general all characters which have a mapping value of "0" IF ( NOT ( characterMapS == "0" ) ) soundexS = Format( soundexS, characterMapS ) ENDIF ENDIF ENDIF ENDIF I = I + 1 characterCurrentS = SubStr( s, I, 1 ) ENDWHILE IF ( NOT ( soundexS == "" ) ) WHILE ( Length( soundexS ) < 4 ) soundexS = Format( soundexS, "0" ) ENDWHILE ENDIF RETURN( soundexS ) END   PROC Main() STRING s1[255] = "John Doe" // Warn( Format( FNStringGetSoundexS( "Ashcraft" ) ) ) // gives e.g. "A226" // using another rule the value might be "A261" (see Wikipedia, soundex) // Warn( Format( FNStringGetSoundexS( "Ashcroft" ) ) ) // gives e.g. "A226" // using another rule the value might be "A261" (see Wikipedia, soundex) // Warn( Format( FNStringGetSoundexS( "Davidson, Greg" ) ) ) // gives e.g. "D132" // Warn( Format( FNStringGetSoundexS( "Dracula" ) ) ) // gives e.g. "D624" // Warn( Format( FNStringGetSoundexS( "Drakula" ) ) ) // gives e.g. "D624" // Warn( Format( FNStringGetSoundexS( "Darwin" ) ) ) // gives e.g. "D650" // Warn( Format( FNStringGetSoundexS( "Darwin, Daemon" ) ) ) // gives e.g. "D650" // Warn( Format( FNStringGetSoundexS( "Darwin, Ian" ) ) ) // gives e.g. "D650" // Warn( Format( FNStringGetSoundexS( "Derwin" ) ) ) // gives e.g. "D650" // Warn( Format( FNStringGetSoundexS( "Darwent, William" ) ) ) // gives e.g. "D653" // Warn( Format( FNStringGetSoundexS( "Ellery" ) ) ) // gives e.g. "E460" // Warn( Format( FNStringGetSoundexS( "Euler" ) ) ) // gives e.g. "E460" // Warn( Format( FNStringGetSoundexS( "Ghosh" ) ) ) // gives e.g. "G200" // Warn( Format( FNStringGetSoundexS( "Gauss" ) ) ) // gives e.g. "G200" // Warn( Format( FNStringGetSoundexS( "Heilbronn" ) ) ) // gives e.g. "H416" // Warn( Format( FNStringGetSoundexS( "Hilbert" ) ) ) // gives e.g. "H416" // Warn( Format( FNStringGetSoundexS( "Johnny" ) ) ) // gives e.g. "J500" // Warn( Format( FNStringGetSoundexS( "Jonny" ) ) ) // gives e.g. "J500" // Warn( Format( FNStringGetSoundexS( "Kant" ) ) ) // gives e.g. "K530" // Warn( Format( FNStringGetSoundexS( "Knuth" ) ) ) // gives e.g. "K530" // Warn( Format( FNStringGetSoundexS( "Lissajous" ) ) ) // gives e.g. "L222" // Warn( Format( FNStringGetSoundexS( "Lukasiewicz" ) ) ) // gives e.g. "L222" // Warn( Format( FNStringGetSoundexS( "Ladd" ) ) ) // gives e.g. "L300" // Warn( Format( FNStringGetSoundexS( "Lloyd" ) ) ) // gives e.g. "L300" // Warn( Format( FNStringGetSoundexS( "Rubin" ) ) ) // gives e.g. "R150" // Warn( Format( FNStringGetSoundexS( "Robert" ) ) ) // gives e.g. "R163" // Warn( Format( FNStringGetSoundexS( "Rupert" ) ) ) // gives e.g. "R163" REPEAT IF ( NOT ( Ask( "string: get: soundex = ", s1, _EDIT_HISTORY_ ) ) AND ( Length( s1 ) > 0 ) ) RETURN() ENDIF Warn( Format( FNStringGetSoundexS( s1 ) ) ) UNTIL FALSE END    
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Rust
Rust
fn main() { let mut stack = Vec::new(); stack.push("Element1"); stack.push("Element2"); stack.push("Element3");   assert_eq!(Some(&"Element3"), stack.last()); assert_eq!(Some("Element3"), stack.pop()); assert_eq!(Some("Element2"), stack.pop()); assert_eq!(Some("Element1"), stack.pop()); assert_eq!(None, stack.pop()); }
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#jq
jq
[1, 1.1, [1,2], true, false, null, {"a":1}, null] | sort
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#jq
jq
def insertion_sort: reduce .[] as $x ([]; insert($x));
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Mercury
Mercury
%%%-------------------------------------------------------------------   :- module heapsort_task.   :- interface. :- import_module io. :- pred main(io::di, io::uo) is det.   :- implementation. :- import_module array. :- import_module int. :- import_module list. :- import_module random. :- import_module random.sfc16.   %%%------------------------------------------------------------------- %%% %%% heapsort/3 -- %%% %%% A generic heapsort predicate. It takes a "Less_than" predicate to %%% determine the order of the sort. %%% %%% That I call the predicate "Less_than" does not, by any means, %%% preclude a descending order. This "Less_than" refers to the %%% ordinals of the sequence. In other words, it means "comes before". %%% %%% The implementation closely follows the task pseudocode--although, %%% of course, loops have been turned into tail recursions and arrays %%% are treated as state variables. %%%   :- pred heapsort(pred(T, T)::pred(in, in) is semidet, array(T)::array_di, array(T)::array_uo) is det. heapsort(Less_than, !Arr) :- heapsort(Less_than, size(!.Arr), !Arr).   :- pred heapsort(pred(T, T)::pred(in, in) is semidet, int::in, array(T)::array_di, array(T)::array_uo) is det. heapsort(Less_than, Count, !Arr) :- heapify(Less_than, Count, !Arr), heapsort_loop(Less_than, Count, Count - 1, !Arr).   :- pred heapsort_loop(pred(T, T)::pred(in, in) is semidet, int::in, int::in, array(T)::array_di, array(T)::array_uo) is det. heapsort_loop(Less_than, Count, End, !Arr) :- if (End = 0) then true else (swap(End, 0, !Arr), sift_down(Less_than, 0, End - 1, !Arr), heapsort_loop(Less_than, Count, End - 1, !Arr)).   :- pred heapify(pred(T, T)::pred(in, in) is semidet, int::in, array(T)::array_di, array(T)::array_uo) is det. heapify(Less_than, Count, !Arr) :- heapify(Less_than, Count, (Count - 2) // 2, !Arr).   :- pred heapify(pred(T, T)::pred(in, in) is semidet, int::in, int::in, array(T)::array_di, array(T)::array_uo) is det. heapify(Less_than, Count, Start, !Arr) :- if (Start = -1) then true else (sift_down(Less_than, Start, Count - 1, !Arr), heapify(Less_than, Count, Start - 1, !Arr)).   :- pred sift_down(pred(T, T)::pred(in, in) is semidet, int::in, int::in, array(T)::array_di, array(T)::array_uo) is det. sift_down(Less_than, Root, End, !Arr) :- if (End < (Root * 2) + 1) then true else (locate_child(Less_than, Root, End, !.Arr, Child), (if not Less_than(!.Arr^elem(Root), !.Arr^elem(Child)) then true else (swap(Root, Child, !Arr), sift_down(Less_than, Child, End, !Arr)))).   :- pred locate_child(pred(T, T)::pred(in, in) is semidet, int::in, int::in, array(T)::in, int::out) is det. locate_child(Less_than, Root, End, Arr, Child) :- Child0 = (Root * 2) + 1, (if (End =< Child0 + 1) then (Child = Child0) else if not Less_than(Arr^elem(Child0), Arr^elem(Child0 + 1)) then (Child = Child0) else (Child = Child0 + 1)).   %%%-------------------------------------------------------------------   main(!IO) :- R = (sfc16.init), make_io_random(R, M, !IO), Generate = (pred(Index::in, Number::out, IO1::di, IO::uo) is det :- uniform_int_in_range(M, min(0, Index), 10, Number, IO1, IO)), generate_foldl(30, Generate, Arr0, !IO), print_line(Arr0, !IO), heapsort(<, Arr0, Arr1), print_line(Arr1, !IO), heapsort(>=, Arr1, Arr2), print_line(Arr2, !IO).   %%%------------------------------------------------------------------- %%% local variables: %%% mode: mercury %%% prolog-indent-width: 2 %%% end:
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#NetRexx
NetRexx
/* NetRexx */ options replace format comments java crossref savelog symbols binary   import java.util.List   placesList = [String - "UK London", "US New York", "US Boston", "US Washington" - , "UK Washington", "US Birmingham", "UK Birmingham", "UK Boston" - ]   lists = [ - placesList - , heapSort(String[] Arrays.copyOf(placesList, placesList.length)) - ]   loop ln = 0 to lists.length - 1 cl = lists[ln] loop ct = 0 to cl.length - 1 say cl[ct] end ct say end ln   return   method heapSort(a = String[], count = a.length) public constant binary returns String[]     rl = String[a.length] al = List heapSort(Arrays.asList(a), count) al.toArray(rl)   return rl   method heapSort(a = List, count = a.size) public constant binary returns ArrayList   a = heapify(a, count)   iend = count - 1 loop label iend while iend > 0 swap = a.get(0) a.set(0, a.get(iend)) a.set(iend, swap) a = siftDown(a, 0, iend - 1) iend = iend - 1 end iend   return ArrayList(a)   method heapify(a = List, count = int) public constant binary returns List   start = (count - 2) % 2   loop label strt while start >= 0 a = siftDown(a, start, count - 1) start = start - 1 end strt   return a   method siftDown(a = List, istart = int, iend = int) public constant binary returns List   root = istart   loop label root while root * 2 + 1 <= iend child = root * 2 + 1 if child + 1 <= iend then do if (Comparable a.get(child)).compareTo(Comparable a.get(child + 1)) < 0 then do child = child + 1 end end if (Comparable a.get(root)).compareTo(Comparable a.get(child)) < 0 then do swap = a.get(root) a.set(root, a.get(child)) a.set(child, swap) root = child end else do leave root end end root   return a
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Isabelle
Isabelle
theory Mergesort   imports Main begin   fun merge :: "int list ⇒ int list ⇒ int list" where   "merge [] ys = ys" | "merge xs [] = xs" | "merge (x#xs) (y#ys) = (if x ≤ y                           then x # merge xs (y#ys)                           else y # merge (x # xs) ys)"   text‹example:› lemma "merge [1,3,6] [1,2,5,8] = [1,1,2,3,5,6,8]" by simp   lemma merge_set: "set (merge xs ys) = set xs ∪ set ys"   by(induction xs ys rule: merge.induct) auto   lemma merge_sorted:   "sorted xs ⟹ sorted ys ⟹ sorted (merge xs ys)" proof(induction xs ys rule: merge.induct)   case (1 ys)   then show "sorted (merge [] ys)" by simp next   case (2 x xs)   then show "sorted (merge (x # xs) [])" by simp next   case (3 x xs y ys)   assume premx: "sorted (x # xs)"      and premy: "sorted (y # ys)"      and IHx: "x ≤ y ⟹ sorted xs ⟹ sorted (y # ys) ⟹                  sorted (merge xs (y # ys))"      and IHy: "¬ x ≤ y ⟹ sorted (x # xs) ⟹ sorted ys ⟹                  sorted (merge (x # xs) ys)"   then show "sorted (merge (x # xs) (y # ys))"   proof(cases "x ≤ y")     case True     with premx IHx premy have IH: "sorted (merge xs (y # ys))" by simp     from ‹x ≤ y› premx premy merge_set have       "∀z ∈ set (merge xs (y # ys)). x ≤ z" by fastforce     with ‹x ≤ y› IH show "sorted (merge (x # xs) (y # ys))" by(simp)   next     case False     with premy IHy premx have IH: "sorted (merge (x # xs) ys)" by simp     from ‹¬x ≤ y› premx premy merge_set have       "∀z ∈ set (merge (x # xs) ys). y ≤ z" by fastforce     with ‹¬x ≤ y› IH show "sorted (merge (x # xs) (y # ys))" by(simp)   qed qed   fun mergesort :: "int list ⇒ int list" where   "mergesort [] = []" | "mergesort [x] = [x]" | "mergesort xs = merge (mergesort (take (length xs div 2) xs))                         (mergesort (drop (length xs div 2) xs))"   theorem mergesort_set: "set xs = set (mergesort xs)" proof(induction xs rule: mergesort.induct)   case 1   show "set [] = set (mergesort [])" by simp next   case (2 x)   show "set [x] = set (mergesort [x])" by simp next   case (3 x1 x2 xs)   from 3 have IH_simplified_take:     "set (mergesort (x1 # take (length xs div 2) (x2 # xs))) =      insert x1 (set (take (length xs div 2) (x2 # xs)))"   and IH_simplified_drop:     "set (mergesort (drop (length xs div 2) (x2 # xs))) =      set (drop (length xs div 2) (x2 # xs))" by simp+     have "(set (take n as) ∪ set (drop n as)) = set as"     for n and as::"int list"   proof -     from set_append[of "take n as" "drop n as"] have       "(set (take n as) ∪ set (drop n as)) =        set (take n as @ drop n as)" by simp     moreover have       "set (take n as @ drop n as) =        set as" using append_take_drop_id by simp     ultimately show ?thesis by simp   qed   hence "(set (take (length xs div 2) (x2 # xs)) ∪         set (drop (length xs div 2) (x2 # xs))) =         set (x2 # xs)"by(simp)   with IH_simplified_take IH_simplified_drop show     "set (x1 # x2 # xs) = set (mergesort (x1 # x2 # xs))"     by(simp add: merge_set) qed   theorem mergesort_sorted: "sorted (mergesort xs)"   by(induction xs rule: mergesort.induct) (simp add: merge_sorted)+   text‹example:› lemma "mergesort [42, 5, 1, 3, 67, 3, 9, 0, 33, 32] =                  [0, 1, 3, 3, 5, 9, 32, 33, 42, 67]" by simp end  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Ursala
Ursala
#import std   selection_sort "p" = @iNX ~&l->rx ^(gldif ==,~&r)^/~&l ^|C/"p"$- ~&
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#VBA
VBA
  sub swap( byref a, byref b) dim tmp tmp = a a = b b = tmp end sub   function selectionSort (a) for i = 0 to ubound(a) k = i for j=i+1 to ubound(a) if a(j) < a(i) then swap a(i), a(j) end if next next selectionSort = a end function  
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#TUSCRIPT
TUSCRIPT
  $$ MODE DATA   $$ BUILD X_TABLE soundex = * :b:1:f:1:p:1:v:1: :c:2:g:2:j:2:k:2:1:2:s:2:x:2:z:2: :d:3:t:3: :l:4: :m:5:n:5: :r:6:   $$ names="Christiansen'Kris Jenson'soundex'Lloyd'Woolcock'Donnell'Baragwanath'Williams'Ashcroft'Euler'Ellery'Gauss'Ghosh'Hilbert'Heilbronn'Knuth'Kant'Ladd'Lukasiewicz'Lissajous'Wheaton'Burroughs'Burrows"   $$ MODE TUSCRIPT,{} LOOP/CLEAR n=names first=EXTRACT (n,1,2),second=EXTRACT (n,2,3) IF (first==second) THEN rest=EXTRACT (n,3,0) ELSE rest=EXTRACT (n,2,0) ENDIF   soundex=EXCHANGE (rest,soundex) soundex=STRINGS (soundex,":{\0}:a:e:i:o:u:") soundex=REDUCE (soundex) soundex=STRINGS (soundex,":{\0}:",0,0,1,0,"") soundex=CONCAT (soundex,"000") soundex=EXTRACT (soundex,0,4)   PRINT first,soundex,"=",n ENDLOOP  
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Sather
Sather
class STACK{T} is private attr stack :LLIST{T};   create:SAME is res ::= new; res.stack := #LLIST{T}; return res; end;   push(elt: T) is stack.insert_front(elt); end;   pop: T is if ~stack.is_empty then stack.rewind; r ::= stack.current; stack.delete; return r; else raise "stack empty!\n"; end; end;   top: T is stack.rewind; return stack.current; end;   is_empty: BOOL is return stack.is_empty; end; end;
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Julia
Julia
sort!(A, alg=QuickSort)
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Julia
Julia
# v0.6   function insertionsort!(A::Array{T}) where T <: Number for i in 1:length(A)-1 value = A[i+1] j = i while j > 0 && A[j] > value A[j+1] = A[j] j -= 1 end A[j+1] = value end return A end   x = randn(5) @show x insertionsort!(x)
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Nim
Nim
proc siftDown[T](a: var openarray[T]; start, ending: int) = var root = start while root * 2 + 1 < ending: var child = 2 * root + 1 if child + 1 < ending and a[child] < a[child+1]: inc child if a[root] < a[child]: swap a[child], a[root] root = child else: return   proc heapSort[T](a: var openarray[T]) = let count = a.len for start in countdown((count - 2) div 2, 0): siftDown(a, start, count) for ending in countdown(count - 1, 1): swap a[ending], a[0] siftDown(a, 0, ending)   var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782] heapSort a echo a
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#Objeck
Objeck
bundle Default { class HeapSort { function : Main(args : String[]) ~ Nil { values := [4, 3, 1, 5, 6, 2]; HeapSort(values); each(i : values) { values[i]->PrintLine(); }; }   function : HeapSort(a : Int[]) ~ Nil { count := a->Size(); Heapify(a, count);   end := count - 1; while(end > 0) { tmp := a[end]; a[end] := a[0]; a[0] := tmp; SiftDown(a, 0, end - 1); end -= 1; }; }   function : Heapify(a : Int[], count : Int) ~ Nil { start := (count - 2) / 2; while(start >= 0) { SiftDown(a, start, count - 1); start -= 1; }; }   function : SiftDown(a : Int[], start : Int, end : Int) ~ Nil { root := start; while((root * 2 + 1) <= end) { child := root * 2 + 1; if(child + 1 <= end & a[child] < a[child + 1]) { child := child + 1; };   if(a[root] < a[child]) { tmp := a[root]; a[root] := a[child]; a[child] := tmp; root := child; } else { return; }; }; } } }
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#J
J
mergesort=: {{ if. 2>#y do. y return.end. middle=. <.-:#y X=. mergesort middle{.y Y=. mergesort middle}.y X merge Y }}   merge=: {{ r=. y#~ i=. j=. 0 while. (i<#x)*(j<#y) do. a=. i{x [b=. j{y if. a<b do. r=. r,a [i=. i+1 else. r=. r,b [j=. j+1 end. end. if. i<#x do. r=. r, i}.x end. if. j<#y do. r=. r, j}.y end. }}
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#VBScript
VBScript
Function Selection_Sort(s) arr = Split(s,",") For i = 0 To UBound(arr) For j = i To UBound(arr) temp = arr(i) If arr(j) < arr(i) Then arr(i) = arr(j) arr(j) = temp End If Next Next Selection_Sort = (Join(arr,",")) End Function   WScript.StdOut.Write "Pre-Sort" & vbTab & "Sorted" WScript.StdOut.WriteLine WScript.StdOut.Write "3,2,5,4,1" & vbTab & Selection_Sort("3,2,5,4,1") WScript.StdOut.WriteLine WScript.StdOut.Write "c,e,b,a,d" & vbTab & Selection_Sort("c,e,b,a,d")
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Wren
Wren
var selectionSort = Fn.new { |a| var last = a.count - 1 for (i in 0...last) { var aMin = a[i] var iMin = i for (j in i+1..last) { if (a[j] < aMin) { aMin = a[j] iMin = j } } var t = a[i] a[i] = aMin a[iMin] = t } }   var as = [ [4, 65, 2, -31, 0, 99, 2, 83, 782, 1], [7, 5, 2, 6, 1, 4, 2, 6, 3] ] for (a in as) { System.print("Before: %(a)") selectionSort.call(a) System.print("After : %(a)") System.print() }
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#TXR
TXR
@(next :args) @### @# soundex-related filters @### @(deffilter remdbl ("AA" "A") ("BB" "B") ("CC" "C") ("DD" "D") ("EE" "E") ("FF" "F") ("GG" "G") ("HH" "H") ("II" "I") ("JJ" "J") ("KK" "K") ("LL" "L") ("MM" "M") ("NN" "N") ("OO" "O") ("PP" "P") ("QQ" "Q") ("RR" "R") ("SS" "S") ("TT" "T") ("UU" "U") ("VV" "V") ("WW" "W") ("XX" "X") ("YY" "Y") ("ZZ" "Z")) @(deffilter code ("B" "F" "P" "V" "1") ("C" "G" "J" "K" "Q" "S" "X" "Z" "2") ("D" "T" "3") ("L" "4") ("M" "N" "5") ("R" "6") ("A" "E" "I" "O" "U" "Y" "0") ("H" "W" "")) @(deffilter squeeze ("11" "111" "1111" "11111" "1") ("22" "222" "2222" "22222" "2") ("33" "333" "3333" "33333" "3") ("44" "444" "4444" "44444" "4") ("55" "555" "5555" "55555" "5") ("66" "666" "6666" "66666" "6")) @(bind prefix ("VAN" "CON" "DE" "DI" "LA" "LE")) @(deffilter remzero ("0" "")) @### @# soundex function @### @(define soundex (in out)) @ (local nodouble letters remainder first rest coded) @ (next :string in) @ (coll)@{letters /[A-Za-z]+/}@(end) @ (cat letters "") @ (output :into nodouble :filter (:upcase remdbl)) @letters @ (end) @ (next :list nodouble) @ (maybe) @prefix@remainder @ (output :into nodouble) @nodouble @remainder @ (end) @ (end) @ (next :list nodouble) @ (collect) @{first 1}@rest @ (output :filter (code squeeze remzero) :into coded) @{rest}000 @ (end) @ (next :list coded) @{digits 3}@(skip) @ (end) @ (output :into out) @ (rep):@first@digits@(first)@first@digits@(end) @ (end) @ (cat out) @(end) @### @# process arguments and list soundex codes @### @(collect :vars ()) @input @ (output :filter (:fun soundex)) @input @ (end) @(end) @### @# compare first and second argument under soundex @### @(bind (first_arg second_arg . rest_args) input) @(cases) @ (bind first_arg second_arg :filter (:fun soundex)) @ (output) "@first_arg" and "@second_arg" match under soundex @ (end) @(end)
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Scala
Scala
class Stack[T] { private var items = List[T]()   def isEmpty = items.isEmpty   def peek = items match { case List() => error("Stack empty") case head :: rest => head }   def pop = items match { case List() => error("Stack empty") case head :: rest => items = rest; head }   def push(value: T) = items = value +: items }
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#K
K
quicksort:{f:*x@1?#x;:[0=#x;x;,/(_f x@&x<f;x@&x=f;_f x@&x>f)]}
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#Kotlin
Kotlin
fun insertionSort(array: IntArray) { for (index in 1 until array.size) { val value = array[index] var subIndex = index - 1 while (subIndex >= 0 && array[subIndex] > value) { array[subIndex + 1] = array[subIndex] subIndex-- } array[subIndex + 1] = value } }   fun main(args: Array<String>) { val numbers = intArrayOf(5, 2, 3, 17, 12, 1, 8, 3, 4, 9, 7)   fun printArray(message: String, array: IntArray) = with(array) { print("$message [") forEachIndexed { index, number -> print(if (index == lastIndex) number else "$number, ") } println("]") }   printArray("Unsorted:", numbers) insertionSort(numbers) printArray("Sorted:", numbers) }
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
Sorting algorithms/Heapsort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Heapsort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Heapsort is an in-place sorting algorithm with worst case and average complexity of   O(n logn). The basic idea is to turn the array into a binary heap structure, which has the property that it allows efficient retrieval and removal of the maximal element. We repeatedly "remove" the maximal element from the heap, thus building the sorted list from back to front. A heap sort requires random access, so can only be used on an array-like data structure. Pseudocode: function heapSort(a, count) is input: an unordered array a of length count (first place a in max-heap order) heapify(a, count) end := count - 1 while end > 0 do (swap the root(maximum value) of the heap with the last element of the heap) swap(a[end], a[0]) (decrement the size of the heap so that the previous max value will stay in its proper place) end := end - 1 (put the heap back in max-heap order) siftDown(a, 0, end) function heapify(a,count) is (start is assigned the index in a of the last parent node) start := (count - 2) / 2 while start ≥ 0 do (sift down the node at index start to the proper place such that all nodes below the start index are in heap order) siftDown(a, start, count-1) start := start - 1 (after sifting down the root all nodes/elements are in heap order) function siftDown(a, start, end) is (end represents the limit of how far down the heap to sift) root := start while root * 2 + 1 ≤ end do (While the root has at least one child) child := root * 2 + 1 (root*2+1 points to the left child) (If the child has a sibling and the child's value is less than its sibling's...) if child + 1 ≤ end and a[child] < a[child + 1] then child := child + 1 (... then point to the right child instead) if a[root] < a[child] then (out of max-heap order) swap(a[root], a[child]) root := child (repeat to continue sifting down the child now) else return Write a function to sort a collection of integers using heapsort.
#OCaml
OCaml
let heapsort a =   let swap i j = let t = a.(i) in a.(i) <- a.(j); a.(j) <- t in   let sift k l = let rec check x y = if 2*x+1 < l then let ch = if y < l-1 && a.(y) < a.(y+1) then y+1 else y in if a.(x) < a.(ch) then (swap x ch; check ch (2*ch+1)) in check k (2*k+1) in   let len = Array.length a in   for start = (len/2)-1 downto 0 do sift start len; done;   for term = len-1 downto 1 do swap term 0; sift 0 term; done;;
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
Sorting algorithms/Merge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort The   merge sort   is a recursive sort of order   n*log(n). It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input). The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups). Then merge the groups back together so that their elements are in order. This is how the algorithm gets its   divide and conquer   description. Task Write a function to sort a collection of integers using the merge sort. The merge sort algorithm comes in two parts: a sort function and a merge function The functions in pseudocode look like this: function mergesort(m) var list left, right, result if length(m) ≤ 1 return m else var middle = length(m) / 2 for each x in m up to middle - 1 add x to left for each x in m at and after middle add x to right left = mergesort(left) right = mergesort(right) if last(left) ≤ first(right) append right to left return left result = merge(left, right) return result function merge(left,right) var list result while length(left) > 0 and length(right) > 0 if first(left) ≤ first(right) append first(left) to result left = rest(left) else append first(right) to result right = rest(right) if length(left) > 0 append rest(left) to result if length(right) > 0 append rest(right) to result return result See also   the Wikipedia entry:   merge sort Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.
#Java
Java
import java.util.List; import java.util.ArrayList; import java.util.Iterator;   public class Merge{ public static <E extends Comparable<? super E>> List<E> mergeSort(List<E> m){ if(m.size() <= 1) return m;   int middle = m.size() / 2; List<E> left = m.subList(0, middle); List<E> right = m.subList(middle, m.size());   right = mergeSort(right); left = mergeSort(left); List<E> result = merge(left, right);   return result; }   public static <E extends Comparable<? super E>> List<E> merge(List<E> left, List<E> right){ List<E> result = new ArrayList<E>(); Iterator<E> it1 = left.iterator(); Iterator<E> it2 = right.iterator();   E x = it1.next(); E y = it2.next(); while (true){ //change the direction of this comparison to change the direction of the sort if(x.compareTo(y) <= 0){ result.add(x); if(it1.hasNext()){ x = it1.next(); }else{ result.add(y); while(it2.hasNext()){ result.add(it2.next()); } break; } }else{ result.add(y); if(it2.hasNext()){ y = it2.next(); }else{ result.add(x); while (it1.hasNext()){ result.add(it1.next()); } break; } } } return result; } }
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#XPL0
XPL0
include c:\cxpl\codes; \intrinsic 'code' declarations string 0; \use zero-terminated strings   proc SelSort(A, N); \Selection sort char A; \address of array int N; \number of elements in array (size) int I, J, S, JS, T; [for I:= 0 to N-2 do [S:= (~0)>>1; for J:= I to N-1 do \find smallest element if A(J) < S then [S:= A(J); JS:= J]; T:= A(I); A(I):= A(JS); A(JS):= T; ]; ];   func StrLen(Str); \Return number of characters in an ASCIIZ string char Str; int I; for I:= 0 to -1>>1-1 do if Str(I) = 0 then return I;   char Str; [Str:= "Pack my box with five dozen liquor jugs."; SelSort(Str, StrLen(Str)); Text(0, Str); CrLf(0); ]
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#zkl
zkl
fcn selectionSort(list){ // sort a list of ints copy,r:=list.copy(),List(); while(copy){ min,idx:=(0).min(copy), copy.find(min); r.append(min); copy.del(idx); } r }
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#UNIX_Shell
UNIX Shell
declare -A value=( [B]=1 [F]=1 [P]=1 [V]=1 [C]=2 [G]=2 [J]=2 [K]=2 [Q]=2 [S]=2 [X]=2 [Z]=2 [D]=3 [T]=3 [L]=4 [M]=5 [N]=5 [R]=6 )
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Scheme
Scheme
(define (make-stack) (let ((st '())) (lambda (message . args) (case message ((empty?) (null? st)) ((top) (if (null? st) 'empty (car st))) ((push) (set! st (cons (car args) st))) ((pop) (if (null? st) 'empty (let ((result (car st))) (set! st (cdr st)) result))) (else 'badmsg)))))