task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Wren
Wren
import "/sort" for Cmp, Sort, Comparable   class Pair is Comparable { construct new (name, value) { _name = name _value = value }   name { _name } value { _value }   compare(other) { Cmp.string.call(_name, other.name) }   toString { "{%(_name), %(_value)}" } }   var pairs = [ Pair.new("grass", "green"), Pair.new("snow", "white"), Pair.new("sky", "blue"), Pair.new("cherry", "red") ]   System.print("Before sorting:") System.print(" " + pairs.join("\n ")) Sort.insertion(pairs) System.print("\nAfter sorting:") System.print(" " + pairs.join("\n "))
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#R
R
nums <- c(2,4,3,1,2) sorted <- sort(nums)
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Racket
Racket
  -> (sort '(1 9 2 8 3 7 4 6 5) <) '(1 2 3 4 5 6 7 8 9)  
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Nim
Nim
proc bubbleSort[T](a: var openarray[T]) = var t = true for n in countdown(a.len-2, 0): if not t: break t = false for j in 0..n: if a[j] <= a[j+1]: continue swap a[j], a[j+1] t = true   var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782] bubbleSort a echo a
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#ZX_Spectrum_Basic
ZX Spectrum Basic
5000 CLS 5002 LET a$="": FOR f=1 TO 64: LET a$=a$+CHR$ (32+INT (RND*96)): NEXT f 5004 PRINT a$; AT 10,0;"ZigZag BubbleSORT" 5010 LET la=LEN a$ 5011 LET i=1: LET u=0 5020 LET d=0: LET p=(u=0)-(u=1) 5021 LET l=(i AND u=0)+(la-i+u AND u=1) 5030 IF u=0 THEN IF a$(l+1)>=a$(l) THEN GO TO 5050 5031 IF u=1 THEN IF a$(l-1)<=a$(l) THEN GO TO 5050 5040 LET d=1 5042 LET t$=a$(l+p) 5043 LET a$(l+p)=a$(l) 5044 LET a$(l)=t$ 5050 LET l=l+p 5051 PRINT AT 10,21;a$(l);AT 12,0;a$ 5055 IF l<=la-i AND l>=i THEN GO TO 5023 5061 LET i=i+NOT u 5063 LET u=NOT u 5064 IF d AND i<la THEN GO TO 5020 5072 PRINT AT 12,0;a$ 9000 STOP
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Sidef
Sidef
var primes = Enumerator({ |callback| static primes = Hash() var p = 2 loop { callback(p) p = (primes{p} := p.next_prime) } })   func factors(remainder) {   remainder == 1 && return([remainder])   gather { primes.each { |factor| if (factor*factor > remainder) { take(remainder) if (remainder > 1) break }   while (factor.divides(remainder)) { take(factor) break if ((remainder /= factor) == 1) } } } }   func is_smith_number(n) {  !n.is_prime && (n.digits.sum == factors(n).join.to_i.digits.sum) }   var s = range(2, 10_000).grep { is_smith_number(_) } say "#{s.len} Smith numbers below 10_000" say "First 10: #{s.first(10)}" say "Last 10: #{s.last(10)}"
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#XPL0
XPL0
include c:\cxpl\stdlib; char Dict(10,10); int Entries;   proc BSort(A, N); \Bubble sort array A's key string into ascending order char A; \address of array int N; \number of items in array (size) int B, I, J, T; [B:= A; \B(I) accesses 32-bit pointers, not A(I) 8-bit bytes for J:= N-1 downto 0 do for I:= 0 to J-1 do if StrCmp(A(I,1), A(I+1,1)) > 0 then [T:= B(I); B(I):= B(I+1); B(I+1):= T]; \swap pointers ];   proc AddEntry(Letter, Greek); \Insert entry into associative array char Letter, Greek; [Dict(Entries,0):= Letter; StrCopy(Greek, @Dict(Entries,1)); Entries:= Entries+1; \(limit checks ignored for simplicity) ];   int I; [Entries:= 0; AddEntry(^A, "alpha"); \add items in arbitrary order AddEntry(^D, "delta"); AddEntry(^B, "beta"); AddEntry(^C, "gamma"); BSort(Dict, Entries); \sort entries by Greek name for I:= 0 to Entries-1 do \show sorted entries [ChOut(0, Dict(I,0)); ChOut(0, ^ ); Text(0, @Dict(I,1)); CrLf(0)]; ]
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#zkl
zkl
class P{var name,value; fcn init(nm,val){name,value=vm.arglist} fcn __opLT(p){name<p.name} // implementation of P1 < P2 } // create list of pairs: p:=List(P("sam","a"),P("fred","b"),P("chris","c")); p.sort(); p.apply("name"); //-->L("chris","fred","sam")
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Raku
Raku
my @sorted = sort @a;
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Rascal
Rascal
rascal>import List; ok   rascal>a = [1, 4, 2, 3, 5]; list[int]: [1,4,2,3,5]   rascal>sort(a) list[int]: [1,2,3,4,5]   rascal>sort(a, bool(int a, int b){return a >= b;}) list[int]: [5,4,3,2,1]
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Objeck
Objeck
  function : Swap(p : Int[]) ~ Nil { t := p[0]; p[0] := p[1]; p[1] := t; }   function : Sort(a : Int[]) ~ Nil { do { sorted := true; size -= 1; for (i:=0; i<a->Size(); i+=1;) { if (a[i+1] < a[i]) { swap(a+i); sorted := 0; }; }; } while (sorted = false); }  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Stata
Stata
function factor(_n) { n = _n a = J(14, 2, .) i = 0 if (mod(n, 2)==0) { j = 0 while (mod(n, 2)==0) { j++ n = n/2 } i++ a[i,1] = 2 a[i,2] = j } for (k=3; k*k<=n; k=k+2) { if (mod(n, k)==0) { j = 0 while (mod(n, k)==0) { j++ n = n/k } i++ a[i,1] = k a[i,2] = j } } if (n>1) { i++ a[i,1] = n a[i,2] = 1 } return(a[1::i,.]) }   function sumdigits(_n) { n = _n for (s=0; n>0; n=floor(n/10)) s = s+mod(n,10) return(s) }   function smith(n) { a = J(n, 1, .) i = 0 for (j=2; j<=n; j++) { f = factor(j) m = rows(f) if (m>1 | f[1,2]>1) { s = 0 for (k=1; k<=m; k++) s = s+sumdigits(f[k,1])*f[k,2] if (s==sumdigits(j)) a[++i] = j } } return(a[1::i]) }   a = smith(10000) n = rows(a) n 376   a[1::10]'   1 2 3 4 5 6 7 8 9 10 +-------------------------------------------------------------+ 1 | 4 22 27 58 85 94 121 166 202 265 | +-------------------------------------------------------------+   a[n-9::n]'   1 2 3 4 5 6 7 8 9 10 +-----------------------------------------------------------------------+ 1 | 9843 9849 9861 9880 9895 9924 9942 9968 9975 9985 | +-----------------------------------------------------------------------+
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Swift
Swift
extension BinaryInteger { @inlinable public var isSmith: Bool { guard self > 3 else { return false }   let primeFactors = primeDecomposition()   guard primeFactors.count != 1 else { return false }   return primeFactors.map({ $0.sumDigits() }).reduce(0, +) == sumDigits() }   @inlinable public func primeDecomposition() -> [Self] { guard self > 1 else { return [] }   func step(_ x: Self) -> Self { return 1 + (x << 2) - ((x >> 1) << 1) }   let maxQ = Self(Double(self).squareRoot()) var d: Self = 1 var q: Self = self & 1 == 0 ? 2 : 3   while q <= maxQ && self % q != 0 { q = step(d) d += 1 }   return q <= maxQ ? [q] + (self / q).primeDecomposition() : [self] }   @inlinable public func sumDigits() -> Self { return String(self).lazy.map({ Self(Int(String($0))!) }).reduce(0, +) } }   let smiths = (0..<10_000).filter({ $0.isSmith })   print("Num Smith numbers below 10,000: \(smiths.count)") print("First 10 smith numbers: \(Array(smiths.prefix(10)))") print("Last 10 smith numbers below 10,000: \(Array(smiths.suffix(10)))")  
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Raven
Raven
[ 2 4 3 1 2 ] sort
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#REBOL
REBOL
sort [2 4 3 1 2]
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Objective-C
Objective-C
- (NSArray *) bubbleSort:(NSMutableArray *)unsorted { BOOL done = false;   while (!done) { done = true; for (int i = 1; i < unsorted.count; i++) { if ( [[unsorted objectAtIndex:i-1] integerValue] > [[unsorted objectAtIndex:i] integerValue] ) { [unsorted exchangeObjectAtIndex:i withObjectAtIndex:i-1]; done = false; } } }   return unsorted; }  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Tcl
Tcl
proc factors {x} { # list the prime factors of x in ascending order set result [list] while {$x % 2 == 0} { lappend result 2 set x [expr {$x / 2}] } for {set i 3} {$i*$i <= $x} {incr i 2} { while {$x % $i == 0} { lappend result $i set x [expr {$x / $i}] } } if {$x != 1} {lappend result $x} return $result }   proc digitsum {n} {  ::tcl::mathop::+ {*}[split $n ""] }   proc smith? {n} { set fs [factors $n] if {[llength $fs] == 1} { return false ;# $n is prime } expr {[digitsum $n] == [digitsum [join $fs ""]]} } proc range {n} { for {set i 1} {$i < $n} {incr i} {lappend result $i} return $result }   set smiths [lmap i [range 10000] { if {![smith? $i]} continue set i }]   puts [lrange $smiths 0 12]... puts ...[lrange $smiths end-12 end] puts "([llength $smiths] total)"  
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Red
Red
>> nums: [3 2 6 4 1 9 0 5 7] == [3 2 6 4 1 9 0 5 7] >> sort nums == [0 1 2 3 4 5 6 7 9]
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#REXX
REXX
/*REXX program sorts an array (using E─sort), in this case, the array contains integers.*/ numeric digits 30 /*enables handling larger Euler numbers*/ @. = 0; @.1 = 1 @.3 = -1; @.5 = 5 @.7 = -61; @.9 = 1385 @.11= -50521; @.13= 2702765 @.15= -199360981; @.17= 19391512145 @.19= -2404879675441; @.21= 370371188237525 #= 21 /*indicate there're 21 Euler numbers.*/ call tell 'unsorted' /*display the array before the eSort. */ call eSort # /*sort the array of some Euler numbers.*/ call tell ' sorted' /*display the array after the eSort. */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ eSort: procedure expose @.; parse arg N; h=N /*an eXchange sort.*/ do while h>1; h= h%2 /*define a segment.*/ do i=1 for N-h; j=i; k= h+i /*sort top segment.*/ do while @.k<@.j /*see if need swap.*/ parse value @.j @.k with @.k @.j /*swap two elements*/ if h>=j then leave; j= j-h; k= k-h /*this part sorted?*/ end /*while @.k<@.j*/ end /*i*/ end /*while h>1*/ return /*──────────────────────────────────────────────────────────────────────────────────────*/ tell: say copies('─', 65); _= left('',9); w= length(#) do j=1 for #; say _ arg(1) 'array element' right(j, w)"="right(@.j, 20) end /*j*/ return
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#OCaml
OCaml
let rec bsort s = let rec _bsort = function | x :: x2 :: xs when x > x2 -> x2 :: _bsort (x :: xs) | x :: x2 :: xs -> x :: _bsort (x2 :: xs) | s -> s in let t = _bsort s in if t = s then t else bsort t
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Vlang
Vlang
fn num_prime_factors(xx int) int { mut p := 2 mut pf := 0 mut x := xx if x == 1 { return 1 } for { if (x % p) == 0 { pf++ x /= p if x == 1 { return pf } } else { p++ } } return 0 }   fn prime_factors(xx int, mut arr []int) { mut p := 2 mut pf := 0 mut x := xx if x == 1 { arr[pf] = 1 return } for { if (x % p) == 0 { arr[pf] = p pf++ x /= p if x == 1 { return } } else { p++ } } }   fn sum_digits(xx int) int { mut x := xx mut sum := 0 for x != 0 { sum += x % 10 x /= 10 } return sum }   fn sum_factors(arr []int, size int) int { mut sum := 0 for a := 0; a < size; a++ { sum += sum_digits(arr[a]) } return sum }   fn list_all_smith_numbers(max_smith int) { mut arr := []int{} mut a := 0 for a = 4; a < max_smith; a++ { numfactors := num_prime_factors(a) arr = []int{len: numfactors} if numfactors < 2 { continue } prime_factors(a, mut arr) if sum_digits(a) == sum_factors(arr, numfactors) { print("${a:4} ") } } }   fn main() { max_smith := 10000 println("All the Smith Numbers less than $max_smith are:") list_all_smith_numbers(max_smith) println('') }  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Wren
Wren
import "/math" for Int import "/fmt" for Fmt import "/seq" for Lst   var sumDigits = Fn.new { |n| var sum = 0 while (n > 0) { sum = sum + n%10 n = (n/10).floor } return sum }   var smiths = [] System.print("The Smith numbers below 10,000 are:") for (i in 2...10000) { if (!Int.isPrime(i)) { var thisSum = sumDigits.call(i) var factors = Int.primeFactors(i) var factSum = factors.reduce(0) { |acc, f| acc + sumDigits.call(f) } if (thisSum == factSum) smiths.add(i) } } for (chunk in Lst.chunks(smiths, 16)) Fmt.print("$4d", chunk)
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Ring
Ring
aArray = [2,4,3,1,2] see sort(aArray)
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Ruby
Ruby
nums = [2,4,3,1,2] sorted = nums.sort # returns a new sorted array. 'nums' is unchanged p sorted #=> [1, 2, 2, 3, 4] p nums #=> [2, 4, 3, 1, 2]   nums.sort! # sort 'nums' "in-place" p nums #=> [1, 2, 2, 3, 4]
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Octave
Octave
function s = bubblesort(v) itemCount = length(v); do hasChanged = false; itemCount--; for i = 1:itemCount if ( v(i) > v(i+1) ) v([i,i+1]) = v([i+1,i]); % swap hasChanged = true; endif endfor until(hasChanged == false) s = v; endfunction
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#XPL0
XPL0
func SumDigits(N); \Return sum of digits in N int N, S; [S:= 0; repeat N:= N/10; S:= S+rem(0); until N=0; return S; ];   func SumFactor(N); \Return sum of digits of factors of N int N0, N, F, S; [N:= N0; F:= 2; S:= 0; repeat if rem(N/F) = 0 then \found a factor [S:= S + SumDigits(F); N:= N/F; ] else F:= F+1; until F > N; if F = N0 then return 0; \is prime return S; ];   int C, N; [C:= 0; Format(5, 0); for N:= 0 to 10_000-1 do if SumDigits(N) = SumFactor(N) then [RlOut(0, float(N)); C:= C+1; if rem(C/20) = 0 then CrLf(0); ]; ]
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#zkl
zkl
fcn smithNumbers(N=0d10_000){ // -->(Smith numbers to N) [2..N].filter(fcn(n){ (pfs:=primeFactors(n)).len()>1 and n.split().sum(0)==primeFactors(n).apply("split").flatten().sum(0) }) }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Rust
Rust
fn main() { let mut a = vec!(9, 8, 7, 6, 5, 4, 3, 2, 1, 0);   a.sort(); println!("{:?}", a); }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Sather
Sather
class MAIN is main is arr: ARRAY{INT} := |4, 6, 7, 2, 1, 0, 100, 21, 34|; #OUT+"unsorted: " + arr + "\n";   -- sort in place: arr.sort;   #OUT+" sorted: " + arr + "\n"; end; end;
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Ol
Ol
  (define (bubble-sort x ??) (define (sort-step l) (if (or (null? l) (null? (cdr l))) l (if (?? (car l) (cadr l)) (cons (cadr l) (sort-step (cons (car l) (cddr l)))) (cons (car l) (sort-step (cdr l)))))) (let loop ((i x)) (if (equal? i (sort-step i)) i (loop (sort-step i)))))   (print (bubble-sort (list 1 3 5 9 8 6 4 3 2) >)) (print (bubble-sort (iota 100) >)) (print (bubble-sort (iota 100) <))  
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Scala
Scala
import scala.compat.Platform   object Sort_an_integer_array extends App { val array = Array((for (i <- 0 to 10) yield scala.util.Random.nextInt()): _* /*Sequence is passed as multiple parameters to Array(xs : T*)*/)   /** Function test the array if it is in order */ def isSorted[T](arr: Array[T]) = array.sliding(2).forall(pair => pair(0) <= pair(1))   assert(!isSorted(array), "Not random") scala.util.Sorting.quickSort(array) assert(isSorted(array), "Not sorted")   println(s"Array in sorted order.\nSuccessfully completed without errors. [total ${Platform.currentTime - executionStart} ms]") }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Scheme
Scheme
(sort #(9 -2 1 2 8 0 1 2) #'<)
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#ooRexx
ooRexx
/* Rexx */ Do placesList = sampleData() call show placesList say sortedList = bubbleSort(placesList) call show sortedList say   return End Exit   -- ----------------------------------------------------------------------------- bubbleSort: procedure Do il = arg(1) sl = il~copy   listLen = sl~size loop i_ = 1 to listLen loop j_ = i_ + 1 to listLen cmpi = sl[i_] cmpj = sl[j_] if cmpi > cmpj then do sl[i_] = cmpj sl[j_] = cmpi end end j_ end i_ return sl End Exit   -- ----------------------------------------------------------------------------- show: procedure Do al = arg(1)   loop e_ over al say e_ end e_   return End Exit   -- ----------------------------------------------------------------------------- sampleData: procedure Do placesList = .array~of( , "UK London", "US New York", "US Boston", "US Washington", , "UK Washington", "US Birmingham", "UK Birmingham", "UK Boston" , )   return placesList End Exit    
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Seed7
Seed7
var array integer: nums is [] (2, 4, 3, 1, 2);   nums := sort(nums);
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Sidef
Sidef
var nums = [2,4,3,1,2]; var sorted = nums.sort; # returns a new sorted array. nums.sort!; # sort 'nums' "in-place"
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Oz
Oz
declare proc {BubbleSort Arr} proc {Swap I J} Arr.J := (Arr.I := Arr.J) %% assignment returns the old value end IsSorted = {NewCell false} MaxItem = {NewCell {Array.high Arr}-1} in for until:@IsSorted do IsSorted := true for I in {Array.low Arr}..@MaxItem do if Arr.I > Arr.(I+1) then IsSorted := false {Swap I I+1} end end MaxItem := @MaxItem - 1 end end Arr = {Tuple.toArray unit(10 9 8 7 6 5 4 3 2 1)} in {BubbleSort Arr} {Inspect Arr}
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Slate
Slate
#(7 5 2 9 0 -1) sort
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Smalltalk
Smalltalk
#(7 5 2 9 0 -1) asSortedCollection
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#ActionScript
ActionScript
package { public class Singleton {   private static var instance:Singleton;   // ActionScript does not allow private or protected constructors. public function Singleton(enforcer:SingletonEnforcer) {   }   public static function getInstance():Singleton { if (instance == null) instance = new Singleton(new SingletonEnforcer()); return instance; } } }   internal class SingletonEnforcer {}
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#PARI.2FGP
PARI/GP
bubbleSort(v)={ for(i=1,#v-1, for(j=i+1,#v, if(v[j]<v[i], my(t=v[j]); v[j]=v[i]; v[i]=t ) ) ); v };
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Sparkling
Sparkling
var arr = { 2, 8, 1, 4, 6, 5, 3, 7, 0, 9 }; sort(arr);
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Standard_ML
Standard ML
- val nums = Array.fromList [2, 4, 3, 1, 2]; val nums = [|2,4,3,1,2|] : int array - ArrayQSort.sort Int.compare nums; val it = () : unit - nums; val it = [|1,2,2,3,4|] : int array
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Ada
Ada
package Global_Singleton is procedure Set_Data (Value : Integer); function Get_Data return Integer; private type Instance_Type is record -- Define instance data elements Data : Integer := 0; end record; Instance : Instance_Type; end Global_Singleton;
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#AutoHotkey
AutoHotkey
b1 := borg() b2 := borg() msgbox % "b1 is b2? " . (b1 == b2) b1.datum := 3 msgbox % "b1.datum := 3`n...`nb1 datum: " b1.datum "`nb2 datum: " b2.datum ; is 3 also msgbox % "b1.datum is b2.datum ? " (b1.datum == b2.datum) return     borg(){ static borg If !borg borg := Object("__Set", "Borg_Set" , "__Get", "Borg_Get") return object(1, borg, "base", borg) }     Borg_Get(brg, name) { Return brg[1, name] }   Borg_Set(brg, name, val) { brg[1, name] := val Return val }
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Pascal
Pascal
procedure bubble_sort(var list: array of real); var i, j, n: integer; t: real; begin n := length(list); for i := n downto 2 do for j := 0 to i - 1 do if list[j] > list[j + 1] then begin t := list[j]; list[j] := list[j + 1]; list[j + 1] := t; end; end;
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Stata
Stata
. clear . matrix a=(2,9,4,7,5,3,6,1,8)' . qui svmat a . sort a . list   +----+ | a1 | |----| 1. | 1 | 2. | 2 | 3. | 3 | 4. | 4 | 5. | 5 | |----| 6. | 6 | 7. | 7 | 8. | 8 | 9. | 9 | +----+
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Swift
Swift
var nums = [2, 4, 3, 1, 2] nums.sortInPlace() print(nums)
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#C
C
#ifndef SILLY_H #define SILLY_H   extern void JumpOverTheDog( int numberOfTimes); extern int PlayFetchWithDog( float weightOfStick);   #endif
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#C.23
C#
public sealed class Singleton1 //Lazy: Yes ||| Thread-safe: Yes ||| Uses locking: Yes { private static Singleton1 instance; private static readonly object lockObj = new object();   public static Singleton1 Instance { get { lock(lockObj) { if (instance == null) { instance = new Singleton1(); } } return instance; } } }
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Perl
Perl
# Sorts an array in place sub bubble_sort { for my $i (0 .. $#_){ for my $j ($i + 1 .. $#_){ $_[$j] < $_[$i] and @_[$i, $j] = @_[$j, $i]; } } }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Tcl
Tcl
set result [lsort -integer $unsorted_list]
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#TI-83_BASIC
TI-83 BASIC
:L1→L2 :SortA(L2)
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#C.2B.2B
C++
  #include <stdexcept>   template <typename Self> class singleton { protected: static Self* sentry; public: static Self& instance() { return *sentry; } singleton() { if(sentry) throw std::logic_error("Error: attempt to instantiate a singleton over a pre-existing one!"); sentry = (Self*)this; } virtual ~singleton() { if(sentry == this) sentry = 0; } }; template <typename Self> Self* singleton<Self>::sentry = 0;   /* Example usage: */   #include <iostream> #include <string>   using namespace std;   class controller : public singleton<controller> { public: controller(string const& name) : name(name) { trace("begin"); } ~controller() { trace("end"); } void work() { trace("doing stuff"); } void trace(string const& message) { cout << name << ": " << message << endl; } string name; }; int main() { controller* first = new controller("first"); controller::instance().work(); delete first; /* No problem, our first controller no longer exists... */ controller second("second"); controller::instance().work(); try { /* Never happens... */ controller goner("goner"); controller::instance().work(); } catch(exception const& error) { cout << error.what() << endl; } controller::instance().work(); /* Never happens (and depending on your system this may or may not print a helpful message!) */ controller goner("goner"); controller::instance().work(); }  
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Phix
Phix
with javascript_semantics function bubble_sort(sequence s) s = deep_copy(s) for j=length(s) to 1 by -1 do integer changed = 0 for i=1 to j-1 do object si = s[i], sn = s[i+1] if si>sn then s[i] = sn s[i+1] = si changed = 1 end if end for if changed=0 then exit end if end for return s end function constant s = {4, 15, "delta", 2, -31, 0, "alfa", 19, "gamma", 2, 13, "beta", 782, 1} puts(1,"Before: ") ?s puts(1,"After: ") ?bubble_sort(s)
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Toka
Toka
needs bsort arrayname number_elements bsort
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#UNIX_Shell
UNIX Shell
nums="2 4 3 1 5" sorted=`printf "%s\n" $nums | sort -n` echo $sorted # prints 1 2 3 4 5
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Cach.C3.A9_ObjectScript
Caché ObjectScript
  /// The <CLASS>Singleton</CLASS> class represents a global singleton object that can /// be instantiated by multiple processes. The 'Get' class method is used to obtain /// an in-memory object reference and the 'Set' method is used to save any changes to /// state. See below for an example. /// /// <EXAMPLE> /// Set one=##class(Singleton).Get(,.sc) /// Set one.GlobalProperty="Some Value" /// Set sc=one.Set() /// </EXAMPLE> /// /// This class can also be extended. Class User.Singleton Extends %SerialObject {   Property GlobalProperty As %String;   /// Refer to <LINK href=/AboutConcurrency.html>About Concurrency</LINK> for more details /// on the optional <var>pConcurrency</var> argument. ClassMethod Get(pConcurrency As %Integer = -1, Output pStatus As %Status = {$$$OK}) As Singleton [ Final ] { // check if singleton object already instantiated Set oRef = "" For { Set oRef = $ZObjNext(oRef) If oRef = "" Quit If oRef.%ClassName(1) = ..%ClassName(1) Quit } If $IsObject(oRef) Quit oRef   // determine what lock needs to be applied If '$IsValidNum(pConcurrency, 0, -1, 4) { Set pStatus = $$$ERROR($$$LockTypeInvalid, pConcurrency) Quit $$$NULLOREF } If pConcurrency = -1 Set pConcurrency = $Xecute("Quit "_..#DEFAULTCONCURRENCY)   // acquire lock for global singleton object Set lockTO = $ZUtil(115,4), lockOK = 1 If pConcurrency<4, pConcurrency { Lock +^CacheTempUser("Singleton", ..%ClassName(1))#"S":lockTO Set lockOK = $Test } ElseIf pConcurrency = 4 { Lock +^CacheTempUser("Singleton", ..%ClassName(1)):lockTO Set lockOK = $Test } If 'lockOK { If pConcurrency = 4 { Set pStatus = $$$ERROR($$$LockFailedToAcquireExclusive, ..%ClassName(1)) } Else { Set pStatus = $$$ERROR($$$LockFailedToAcquireRead, ..%ClassName(1)) } Quit $$$NULLOREF }   // retrieve global singleton object and deserialise Set oId = $Get(^CacheTempUser("Singleton", ..%ClassName(1))) Set oRef = ..%Open(oId) //,, .pStatus) If '$IsObject(oRef) Set pStatus = $$$ERROR($$$GeneralError, "Failed to load singleton object.")   // release temporary lock If (pConcurrency = 1) || (pConcurrency = 2) { Lock -^CacheTempUser("Singleton", ..%ClassName(1))#"S" }   // singleton object failed to load If $$$ISERR(pStatus) { // release retained lock If pConcurrency = 3 { Lock -^CacheTempUser("Singleton", ..%ClassName(1))#"S" } If pConcurrency = 4 { Lock -^CacheTempUser("Singleton", ..%ClassName(1)) } Quit $$$NULLOREF }   // store concurrency state and return in-memory object reference Set oRef.Concurrency = pConcurrency Quit oRef }   Method Set() As %Status [ Final ] { // check for version change Set oId0 = $Get(^CacheTempUser("Singleton", ..%ClassName(1))) Set oRef0 = ..%Open(oId0) //,, .sc) If '$IsObject(oRef0) Quit $$$ERROR($$$GeneralError, "Failed to load singleton object.") If oRef0.Version = ..Version { Set ..Version = ..Version + 1 } Else { Quit $$$ERROR($$$ConcurrencyVersionMismatch, ..%ClassName(1)) }   // serialise local singleton object and check status code Set sc = ..%GetSwizzleObject(,.oId) If $$$ISERR(sc) Quit sc   // acquire exclusive lock on global singleton object Set lockTO = $ZUtil(115,4) Lock +^CacheTempUser("Singleton", ..%ClassName(1)):lockTO If '$Test Quit $$$ERROR($$$LockFailedToAcquireExclusive, ..%ClassName(1))   // update global singleton object and release lock Set ^CacheTempUser("Singleton", ..%ClassName(1)) = oId Lock -^CacheTempUser("Singleton", ..%ClassName(1)) Quit $$$OK }   Method %OnNew() As %Status [ Final, Internal ] { // do not allow constructor method to be called Quit $$$ERROR($$$GeneralError, "Can't instantiate directly.") }   Method %OnConstructClone() As %Status [ Final, Internal ] { // do not allow singleton object to be cloned Quit $$$ERROR($$$GeneralError, "Can't clone instance.") }   Method %OnClose() As %Status [ Final, Internal ] { // reference count for singleton object is now zero, so // release lock on global singleton object, if applicable If ..Concurrency = 3 Lock -^CacheTempUser("Singleton", ..%ClassName(1))#"S" If ..Concurrency = 4 Lock -^CacheTempUser("Singleton", ..%ClassName(1)) Quit $$$OK }   Property Concurrency As %Integer [ Final, Private, Transient ];   Property Version As %Integer [ Final, Private ];   }  
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Common_Lisp
Common Lisp
(defgeneric concat (a b) (:documentation "Concatenate two phrases."))   (defclass nonempty-phrase () ((text :initarg :text :reader text)))   (defmethod concat ((a nonempty-phrase) (b nonempty-phrase)) (make-instance 'nonempty-phrase :text (concatenate 'string (text a) " " (text b))))   (defmethod concat ((a (eql 'the-empty-phrase)) b) b)   (defmethod concat (a (b (eql 'the-empty-phrase))) a)   (defun example () (let ((before (make-instance 'nonempty-phrase :text "Jack")) (mid (make-instance 'nonempty-phrase :text "went")) (after (make-instance 'nonempty-phrase :text "to fetch a pail of water"))) (dolist (p (list 'the-empty-phrase (make-instance 'nonempty-phrase :text "and Jill"))) (dolist (q (list 'the-empty-phrase (make-instance 'nonempty-phrase :text "up the hill"))) (write-line (text (reduce #'concat (list before p mid q after))))))))
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#PHP
PHP
function bubbleSort(array $array){ foreach($array as $i => &$val){ foreach($array as $k => &$val2){ if($k <= $i) continue; if($val > $val2) { list($val, $val2) = [$val2, $val]; break; } } } return $array; }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Ursa
Ursa
decl int<> nums append 2 4 3 1 2 nums sort nums
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Ursala
Ursala
#import nat   #cast %nL   example = nleq-< <39,47,40,53,14,23,88,52,78,62,41,92,88,66,5,40>
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#D
D
module singleton ; import std.stdio ; import std.thread ; import std.random ; import std.c.time ;   class Dealer { private static Dealer me ; static Dealer Instance() { writefln(" Calling Dealer... ") ; if(me is null) // Double Checked Lock synchronized // this part of code can only be executed by one thread a time if(me is null) me = new Dealer ; return me ; } private static string[] str = ["(1)Enjoy", "(2)Rosetta", "(3)Code"] ; private int state ; private this() { for(int i = 0 ; i < 3 ; i++) { writefln("...calling Dealer... ") ; msleep(rand() & 2047) ; } writefln(">>Dealer is called to come in!") ; state = str.length - 1 ; } Dealer nextState() { synchronized(this) // accessed to Object _this_ is locked ... is it necessary ??? state = (state + 1) % str.length ; return this ; } string toString() { return str[state] ; } }   class Coder : Thread { private string name_ ; Coder hasName(string name) { name_ = name ; return this ; } override int run() { msleep(rand() & 1023) ; writefln(">>%s come in.", name_) ; Dealer single = Dealer.Instance ; msleep(rand() & 1023) ; for(int i = 0 ; i < 3 ; i++) { writefln("%9s got %-s", name_, single.nextState) ; msleep(rand() & 1023) ; } return 0 ; } }   void main() { Coder x = new Coder ; Coder y = new Coder ; Coder z = new Coder ;   x.hasName("Peter").start() ; y.hasName("Paul").start() ; z.hasName("Mary").start() ;   x.wait ; y.wait ; z.wait ; }
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#PicoLisp
PicoLisp
(de bubbleSort (Lst) (use Chg (loop (off Chg) (for (L Lst (cdr L) (cdr L)) (when (> (car L) (cadr L)) (xchg L (cdr L)) (on Chg) ) ) (NIL Chg Lst) ) ) )
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#WDTE
WDTE
let a => import 'arrays'; a.sort [39; 47; 40; 53; 14; 23; 88; 52; 78; 62; 41; 92; 88; 66; 5; 40] < -- io.writeln io.stdout;
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Wortel
Wortel
@sort [39 47 40 53 14 23 88 52 78 62 41 92 88 66 5 40]
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Delphi_and_Pascal
Delphi and Pascal
unit Singleton;   interface   type TSingleton = class private //Private fields and methods here...   class var _instance: TSingleton; protected //Other protected methods here... public //Global point of access to the unique instance class function Create: TSingleton;   destructor Destroy; override;   //Other public methods and properties here... end;   implementation   { TSingleton }   class function TSingleton.Create: TSingleton; begin if (_instance = nil) then _instance:= inherited Create as Self;   result:= _instance; end;   destructor TSingleton.Destroy; begin _instance:= nil; inherited; end;   end.
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#PL.2FI
PL/I
/* A primitive bubble sort */ bubble_sort: procedure (A); declare A(*) fixed binary; declare temp fixed binary; declare i fixed binary, no_more_swaps bit (1) aligned;   do until (no_more_swaps); no_more_swaps = true; do i = lbound(A,1) to hbound(A,1)-1; if A(i) > A(i+1) then do; temp = A(i); A(i) = A(i+1); A(i+1) = temp; no_more_swaps = false; end; end; end; end bubble_sort;
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Wren
Wren
import "/sort" for Sort   var a = [7, 10, 2, 4, 6, 1, 8, 3, 9, 5] Sort.quick(a) System.print(a)
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#XPL0
XPL0
include c:\cxpl\codes; \intrinsic 'code' declarations   proc SSort(A, N); \Shell sort array in ascending order int A; \address of array int N; \number of elements in array (size) int I, J, Gap, JG, T; [Gap:= N>>1; while Gap > 0 do [for I:= Gap to N-1 do [J:= I - Gap; loop [JG:= J + Gap; if A(J) <= A(JG) then quit; T:= A(J); A(J):= A(JG); A(JG):= T; \swap elements J:= J - Gap; if J < 0 then quit; ]; ]; Gap:= Gap>>1; ]; ]; \SSort   int A, I; [A:= [3, 1, 4, 1, 5, 9, 2, 6, 5, 4]; SSort(A, 10); for I:= 0 to 10-1 do [IntOut(0, A(I)); ChOut(0, ^ )]; CrLf(0); ]
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#E
E
def aSingleton { # ... }
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Eiffel
Eiffel
class SINGLETON create {SINGLETON_ACCESS} default_create feature -- singleton features go here end
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Pop11
Pop11
define bubble_sort(v); lvars n=length(v), done=false, i; while not(done) do true -> done; n - 1 -> n; for i from 1 to n do if v(i) > v(i+1) then false -> done;  ;;; Swap using multiple assignment (v(i+1), v(i)) -> (v(i), v(i+1)); endif; endfor; endwhile; enddefine;   ;;; Test it vars ar = { 10 8 6 4 2 1 3 5 7 9}; bubble_sort(ar); ar =>
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Yabasic
Yabasic
export sub shell_sort(x()) // Shell sort based on insertion sort   local gap, i, j, first, last, tempi, tempj   last = arraysize(x(),1) gap = int(last / 10) + 1 while(TRUE) first = gap + 1 for i = first to last tempi = x(i) j = i - gap while(TRUE) tempj = x(j) if tempi >= tempj then j = j + gap break end if x(j+gap) = tempj if j <= gap then break end if j = j - gap wend x(j) = tempi next i if gap = 1 then return else gap = int(gap / 3.5) + 1 end if wend end sub   if peek$("library") = "main" then   clear screen   ITEMS = 100 dim numeros(ITEMS)   for n = 1 to ITEMS numeros(n) = ran(ITEMS + 1) next n   print time$ shell_sort(numeros()) print time$ print "Press a key to see ordered numbers." inkey$   for n = 1 to ITEMS print numeros(n),", "; next n   end if
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Yorick
Yorick
  nums = [2,4,3,1,2]; nums = nums(sort(nums));  
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#zkl
zkl
a:=L(4,5,2,6); a.sort(); a.println() //--> L(2,4,5,6)
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Elena
Elena
  singleton Singleton { // ... }  
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Epoxy
Epoxy
fn Singleton() if this.self then return this.self cls var new: {} iter k,v as this._props do new[k]:v cls this.self:new return new cls Singleton._props: { name: "Singleton", fn setName(self,new) self.name:new cls, }   var MySingleton: Singleton() log(MySingleton == Singleton()) --true log(MySingleton.name) --Singleton   var NewSingleton: Singleton() NewSingleton>>setName("Test")   log(MySingleton.name) --Test
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#PostScript
PostScript
  /bubblesort{ /x exch def /temp x x length 1 sub get def /i x length 1 sub def /j i 1 sub def   x length 1 sub{ i 1 sub{ x j 1 sub get x j get lt { /temp x j 1 sub get def x j 1 sub x j get put x j temp put }if /j j 1 sub def }repeat /i i 1 sub def /j i 1 sub def }repeat x pstack }def  
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Zoea
Zoea
  program: sort_integer_array input: [2,4,3,1] output: [1,2,3,4]  
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Erlang
Erlang
-module(singleton).   -export([get/0, set/1, start/0]).   -export([loop/1]).   % spec singleton:get() -> {ok, Value::any()} | not_set get() ->  ?MODULE ! {get, self()}, receive {ok, not_set} -> not_set; Answer -> Answer end.   % spec singleton:set(Value::any()) -> ok set(Value) ->  ?MODULE ! {set, self(), Value}, receive ok -> ok end.   start() -> register(?MODULE, spawn(?MODULE, loop, [not_set])).   loop(Value) -> receive {get, From} -> From ! {ok, Value}, loop(Value); {set, From, NewValue} -> From ! ok, loop(NewValue) end.
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#PowerShell
PowerShell
function bubblesort ($a) { $l = $a.Length $hasChanged = $true while ($hasChanged) { $hasChanged = $false $l-- for ($i = 0; $i -lt $l; $i++) { if ($a[$i] -gt $a[$i+1]) { $a[$i], $a[$i+1] = $a[$i+1], $a[$i] $hasChanged = $true } } } }
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Factor
Factor
USING: classes.singleton kernel io prettyprint ; IN: singleton-demo   SINGLETON: bar GENERIC: foo ( obj -- ) M: bar foo drop "Hello!" print ;
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Forth
Forth
include FMS-SI.f   \ A singleton is created by using normal Forth data \ allocation words such as value or variable as instance variables. \ Any number of instances of a singleton class may be \ instantiated but messages will all operate on the same shared data \ so it is the same as if only one object has been created. \ The data name space will remain private to the class.   :class singleton 0 value a 0 value b  :m printa a . ;m  :m printb b . ;m  :m add-a ( n -- ) a + to a ;m  :m add-b ( n -- ) b + to b ;m ;class   singleton s1 singleton s2 singleton s3   4 s1 add-a 9 s2 add-b s3 printa \ => 4 s3 printb \ => 9 s1 printb \ => 9 s2 printa \ => 4  
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Prolog
Prolog
%___________________________________________________________________________ % Bubble sort   bubble(0, Res, Res, sorted). bubble(Len, [A,B|T], Res, unsorted) :- A > B, !, bubble(Len,[B,A|T], Res, _). bubble(Len, [A|T], [A|Ts], Ch) :- L is Len-1, bubble(L, T, Ts, Ch).   bubblesort(In, Out) :- length(In, Len), bubblesort(Len, In, Out). bubblesort(0, In, In). bubblesort(Len, In, Out) :- bubble(Len, In, Bubbled, SortFlag), % bubble the list (SortFlag=sorted -> Out=Bubbled; % list is already sorted SegLen is Len - 1, % one fewer to process writef('bubbled=%w\n', [Bubbled]), % show progress bubblesort(SegLen, Bubbled, Out)).   test :- In = [8,9,1,3,4,2,6,5,4], writef(' input=%w\n', [In]), bubblesort(In, R), writef('-> %w\n', [R]).
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#FreeBASIC
FreeBASIC
  REM Sacado del forum de FreeBASIC (https://www.freebasic.net/forum/viewtopic.php?t=20432)   Type singleton Public : Declare Static Function crearInstancia() As singleton Ptr Declare Destructor () Dim i As Integer Private : Declare Constructor() Declare Constructor(Byref rhs As singleton) Declare Static Function instancia(Byval crear As Integer) As singleton Ptr End Type   Static Function singleton.crearInstancia() As singleton Ptr Return singleton.instancia(1) End Function   Static Function singleton.instancia(Byval crear As Integer) As singleton Ptr Static ref As singleton Ptr = 0 Function = 0 If crear = 0 Then ref = 0 Elseif ref = 0 Then ref = New singleton Function = ref End If End Function   Constructor singleton () End Constructor   Destructor singleton() singleton.instancia(0) End Destructor   '----------------------------------------------------------------------------- Dim As singleton Ptr ps1 = singleton.crearinstancia() ps1->i = 1234 Print ps1, ps1->i   Dim As singleton Ptr ps2 = singleton.crearinstancia() Print ps2   Delete ps1   Dim As singleton Ptr ps3 = singleton.crearinstancia() Print ps3, ps3->i Delete ps3 Sleep  
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#PureBasic
PureBasic
Procedure bubbleSort(Array a(1)) Protected i, itemCount, hasChanged   itemCount = ArraySize(a()) Repeat hasChanged = #False itemCount - 1 For i = 0 To itemCount If a(i) > a(i + 1) Swap a(i), a(i + 1) hasChanged = #True EndIf Next Until hasChanged = #False EndProcedure
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Go
Go
package main   import ( "log" "math/rand" "sync" "time" )   var ( instance string once sync.Once // initialize instance with once.Do )   func claim(color string, w *sync.WaitGroup) { time.Sleep(time.Duration(rand.Intn(1e8))) // hesitate up to .1 sec log.Println("trying to claim", color) once.Do(func() { instance = color }) log.Printf("tried %s. instance: %s", color, instance) w.Done() }   func main() { rand.Seed(time.Now().Unix()) var w sync.WaitGroup w.Add(2) go claim("red", &w) // these two attempts run concurrently go claim("blue", &w) w.Wait() log.Println("after trying both, instance =", instance) }
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Python
Python
def bubble_sort(seq): """Inefficiently sort the mutable sequence (list) in place. seq MUST BE A MUTABLE SEQUENCE.   As with list.sort() and random.shuffle this does NOT return """ changed = True while changed: changed = False for i in range(len(seq) - 1): if seq[i] > seq[i+1]: seq[i], seq[i+1] = seq[i+1], seq[i] changed = True return seq   if __name__ == "__main__": """Sample usage and simple test suite"""   from random import shuffle   testset = [_ for _ in range(100)] testcase = testset.copy() # make a copy shuffle(testcase) assert testcase != testset # we've shuffled it bubble_sort(testcase) assert testcase == testset # we've unshuffled it back into a copy
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Groovy
Groovy
@Singleton class SingletonClass {   def invokeMe() { println 'invoking method of a singleton class' }   static void main(def args) { SingletonClass.instance.invokeMe() } }
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Icon_and_Unicon
Icon and Unicon
class Singleton method print() write("Hi there.") end initially write("In constructor!") Singleton := create |self end   procedure main() Singleton().print() Singleton().print() end
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Quackery
Quackery
[ stack ] is sorted ( --> s )   [ rot tuck over peek 2swap tuck over peek dip rot 2dup < iff [ dip [ unrot poke ] swap rot poke sorted release false sorted put ] else [ drop 2drop nip ] ] is >exch ( [ n n --> [ )   [ dup size 1 - times [ true sorted put i 1+ times [ i^ dup 1+ >exch ] sorted take if conclude ] ] is bubble ( [ --> [ )   [] 20 times [ 10 random join ] say "Before: " dup echo cr say "After: " bubble echo
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Io
Io
Singleton := Object clone Singleton clone = Singleton
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#J
J
class Singleton { private static Singleton myInstance; public static Singleton getInstance() { if (myInstance == null) { synchronized(Singleton.class) { if (myInstance == null) { myInstance = new Singleton(); } } }   return myInstance; }   protected Singleton() { // Constructor code goes here. }   // Any other methods }
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Qi
Qi
(define bubble-shot [A] -> [A] [A B|R] -> [B|(bubble-shot [A|R])] where (> A B) [A |R] -> [A|(bubble-shot R)])   (define bubble-sort X -> (fix bubble-shot X))   (bubble-sort [6 8 5 9 3 2 2 1 4 7])  
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Java
Java
class Singleton { private static Singleton myInstance; public static Singleton getInstance() { if (myInstance == null) { synchronized(Singleton.class) { if (myInstance == null) { myInstance = new Singleton(); } } }   return myInstance; }   protected Singleton() { // Constructor code goes here. }   // Any other methods }
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#JavaScript
JavaScript
function Singleton() { if(Singleton._instance) return Singleton._instance; this.set(""); Singleton._instance = this; }   Singleton.prototype.set = function(msg) { this.msg = msg; } Singleton.prototype.append = function(msg) { this.msg += msg; } Singleton.prototype.get = function() { return this.msg; }     var a = new Singleton(); var b = new Singleton(); var c = new Singleton();   a.set("Hello"); b.append(" World"); c.append("!!!");   document.write( (new Singleton()).get() );
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#R
R
bubbleSort <- function(items) { repeat { if((itemCount <- length(items)) <= 1) return(items) hasChanged <- FALSE itemCount <- itemCount - 1 for(i in seq_len(itemCount)) { if(items[i] > items[i + 1]) { items[c(i, i + 1)] <- items[c(i + 1, i)]#The cool trick mentioned above. hasChanged <- TRUE } } if(!hasChanged) break } items } #Examples taken from the Haxe solution. ints <- c(1, 10, 2, 5, -1, 5, -19, 4, 23, 0) numerics <- c(1, -3.2, 5.2, 10.8, -5.7, 7.3, 3.5, 0, -4.1, -9.5) strings <- c("We", "hold", "these", "truths", "to", "be", "self-evident", "that", "all", "men", "are", "created", "equal")
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Julia
Julia
  struct IAmaSingleton end   x = IAmaSingleton() y = IAmaSingleton()   println("x == y is $(x == y) and x === y is $(x === y).")  
http://rosettacode.org/wiki/Singleton
Singleton
A Global Singleton is a class of which only one instance exists within a program. Any attempt to use non-static members of the class involves performing operations on this one instance.
#Kotlin
Kotlin
// version 1.1.2   object Singleton { fun speak() = println("I am a singleton") }   fun main(args: Array<String>) { Singleton.speak() }
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Ra
Ra
  class BubbleSort **Sort a list with the Bubble Sort algorithm**   on start   args := program arguments .sort(args) print args   define sort(list) is shared **Sort the list**   test list := [4, 2, 7, 3] .sort(list) assert list = [2, 3, 4, 7]   body last := list.count - 1   post while changed   changed := false   for i in last   if list[i] > list[i + 1] temp := list[i] list[i] := list[i + 1] list[i + 1] := temp changed := true