task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Water_collected_between_towers | Water collected between towers | Task
In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains,
completely filling all convex enclosures in the chart with water.
9 ██ 9 ██
8 ██ 8 ██
7 ██ ██ 7 ██≈≈≈≈≈≈≈≈██
6 ██ ██ ██ 6 ██≈≈██≈≈≈≈██
5 ██ ██ ██ ████ 5 ██≈≈██≈≈██≈≈████
4 ██ ██ ████████ 4 ██≈≈██≈≈████████
3 ██████ ████████ 3 ██████≈≈████████
2 ████████████████ ██ 2 ████████████████≈≈██
1 ████████████████████ 1 ████████████████████
In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water.
Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart.
Calculate the number of water units that could be collected by bar charts representing each of the following seven series:
[[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]]
See, also:
Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele
Water collected between towers on Stack Overflow, from which the example above is taken)
An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
| #D | D | import std.stdio;
void main() {
int i = 1;
int[][] tba = [
[ 1, 5, 3, 7, 2 ],
[ 5, 3, 7, 2, 6, 4, 5, 9, 1, 2 ],
[ 2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1 ],
[ 5, 5, 5, 5 ],
[ 5, 6, 7, 8 ],
[ 8, 7, 7, 6 ],
[ 6, 7, 10, 7, 6 ]
];
foreach (tea; tba) {
int rht, wu, bof;
do {
for (rht = tea.length - 1; rht >= 0; rht--) {
if (tea[rht] > 0) {
break;
}
}
if (rht < 0) {
break;
}
bof = 0;
for (int col = 0; col <= rht; col++) {
if (tea[col] > 0) {
tea[col] -= 1; bof += 1;
} else if (bof > 0) {
wu++;
}
}
if (bof < 2) {
break;
}
} while (true);
write("Block ", i++);
if (wu == 0) {
write(" does not hold any");
} else {
write(" holds ", wu);
}
writeln(" water units.");
}
} |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #C | C | #include <stdlib.h>
#include <stdio.h>
#include <math.h>
inline int rand5()
{
int r, rand_max = RAND_MAX - (RAND_MAX % 5);
while ((r = rand()) >= rand_max);
return r / (rand_max / 5) + 1;
}
inline int rand5_7()
{
int r;
while ((r = rand5() * 5 + rand5()) >= 27);
return r / 3 - 1;
}
/* assumes gen() returns a value from 1 to n */
int check(int (*gen)(), int n, int cnt, double delta) /* delta is relative */
{
int i = cnt, *bins = calloc(sizeof(int), n);
double ratio;
while (i--) bins[gen() - 1]++;
for (i = 0; i < n; i++) {
ratio = bins[i] * n / (double)cnt - 1;
if (ratio > -delta && ratio < delta) continue;
printf("bin %d out of range: %d (%g%% vs %g%%), ",
i + 1, bins[i], ratio * 100, delta * 100);
break;
}
free(bins);
return i == n;
}
int main()
{
int cnt = 1;
while ((cnt *= 10) <= 1000000) {
printf("Count = %d: ", cnt);
printf(check(rand5_7, 7, cnt, 0.03) ? "flat\n" : "NOT flat\n");
}
return 0;
} |
http://rosettacode.org/wiki/Voronoi_diagram | Voronoi diagram | A Voronoi diagram is a diagram consisting of a number of sites.
Each Voronoi site s also has a Voronoi cell consisting of all points closest to s.
Task
Demonstrate how to generate and display a Voroni diagram.
See algo K-means++ clustering.
| #Liberty_BASIC | Liberty BASIC |
WindowWidth =600
WindowHeight =600
sites = 100
xEdge = 400
yEdge = 400
graphicbox #w.gb1, 10, 10, xEdge, yEdge
open "Voronoi neighbourhoods" for window as #w
#w "trapclose quit"
#w.gb1 "down ; fill black ; size 4"
#w.gb1 "font courier_new 12"
dim townX( sites), townY( sites), col$( sites)
for i =1 to sites
townX( i) =int( xEdge *rnd( 1))
townY( i) =int( yEdge *rnd( 1))
col$( i) = int( 256 *rnd( 1)); " "; int( 256 *rnd( 1)); " "; int( 256 *rnd( 1))
#w.gb1 "color "; col$( i)
#w.gb1 "set "; townX( i); " "; townY( i)
next i
#w.gb1 "size 1"
dim nearestIndex(xEdge, yEdge)
dim dist(xEdge, yEdge)
start = time$("ms")
'fill distance table with distances from the first site
for x = 0 to xEdge - 1
for y = 0 to yEdge - 1
dist(x, y) = (townX(1) - x) ^ 2 + (townY(1) - y) ^ 2
nearestIndex(x, y) = 1
next y
next x
#w.gb1 "color darkblue"
'for other towns
for i = 2 to sites
'display some progress
#w.gb1 "place 0 20"
#w.gb1 "\computing: "; using("###.#", i / sites * 100); "%"
'look left
for x = townX(i) to 0 step -1
if not(checkRow(i, x,0, yEdge - 1)) then exit for
next x
'look right
for x = townX(i) + 1 to xEdge - 1
if not(checkRow(i, x, 0, yEdge - 1)) then exit for
next x
scan
next i
for x = 0 to xEdge - 1
for y =0 to yEdge - 1
#w.gb1 "color "; col$(nearestIndex(x, y))
startY = y
nearest = nearestIndex(x, y)
for y = y + 1 to yEdge
if nearestIndex(x, y) <> nearest then y = y - 1 : exit for
next y
#w.gb1 "line "; x; " "; startY; " "; x; " "; y + 1
next y
next x
#w.gb1 "color black; size 4"
for i =1 to sites
#w.gb1 "set "; townX( i); " "; townY( i)
next i
print time$("ms") - start
wait
sub quit w$
close #w$
end
end sub
function checkRow(site, x, startY, endY)
dxSquared = (townX(site) - x) ^ 2
for y = startY to endY
dSquared = (townY(site) - y) ^ 2 + dxSquared
if dSquared <= dist(x, y) then
dist(x, y) = dSquared
nearestIndex(x, y) = site
checkRow = 1
end if
next y
end function
|
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher | Vigenère cipher | Task
Implement a Vigenère cypher, both encryption and decryption.
The program should handle keys and text of unequal length,
and should capitalize everything and discard non-alphabetic characters.
(If your program handles non-alphabetic characters in another way,
make a note of it.)
Related tasks
Caesar cipher
Rot-13
Substitution Cipher
| #BASIC256 | BASIC256 |
function Filtrar(cadorigen)
filtrado = ""
for i = 1 to length(cadorigen)
letra = upper(mid(cadorigen, i, 1))
if instr("ABCDEFGHIJKLMNOPQRSTUVWXYZ", letra) then filtrado += letra
next i
return filtrado
end function
function Encriptar(texto, llave)
texto = Filtrar(texto)
cifrado = ""
j = 1
for i = 1 to length(texto)
mSS = mid(texto, i, 1)
m = asc(mSS) - asc("A")
kSS = mid(llave, j, 1)
k = asc(kSS) - asc("A")
j = (j mod length(llave)) + 1
c = (m + k) mod 26
letra = chr(asc("A") + c)
cifrado += letra
next i
return cifrado
end function
function DesEncriptar(texto, llave)
descifrado = ""
j = 1
for i = 1 to length(texto)
mSS = mid(texto, i, 1)
m = asc(mSS) - asc("A")
kSS = mid(llave, j, 1)
k = asc(kSS) - asc("A")
j = (j mod length(llave)) + 1
c = (m - k + 26) mod 26
letra = chr(asc("A")+c)
descifrado += letra
next i
return descifrado
end function
llave = Filtrar("vigenerecipher")
cadorigen = "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!"
print cadorigen
print llave
cadcifrada = Encriptar(cadorigen, llave)
print " Cifrado: "; cadcifrada
print "Descifrado: "; DesEncriptar(cadcifrada, llave)
end
|
http://rosettacode.org/wiki/Visualize_a_tree | Visualize a tree | A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
indented text (à la unix tree command)
nested HTML tables
hierarchical GUI widgets
2D or 3D images
etc.
Task
Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
| #D | D | import std.stdio, std.conv, std.algorithm, std.array;
struct Node(T) { T value; Node* left, right; }
string[] treeIndent(T)(in Node!T* t) pure nothrow @safe {
if (!t) return ["-- (null)"];
const tr = t.right.treeIndent;
return "--" ~ t.value.text ~
t.left.treeIndent.map!q{" |" ~ a}.array ~
(" `" ~ tr[0]) ~ tr[1 .. $].map!q{" " ~ a}.array;
}
void main () {
static N(T)(T v, Node!T* l=null, Node!T* r=null) {
return new Node!T(v, l, r);
}
const tree = N(1, N(2, N(4, N(7)), N(5)), N(3, N(6, N(8), N(9))));
writefln("%-(%s\n%)", tree.treeIndent);
} |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #M2000_Interpreter | M2000 Interpreter |
Module Show_Files_Standard {
\\ we get more (include hidden too)
Module InnerWay (folder_path$, pattern$){
olddir$=dir$
dir folder_path$
\\ clear menu list
Menu
\\ + place export to menu, without showing
\\ ! sort to name
files ! + pattern$
If MenuItems>0 then {
For i=1 to MenuItems {
Print Menu$(i)+".exe"
}
}
dir olddir$
}
InnerWay "C:\Windows","*.exe"
}
Show_Files_Standard
|
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #MACRO-10 | MACRO-10 |
TITLE DIRWLK - Directory Walker
SUBTTL PDP-10 Assembly Language (MACRO-10 @ TOPS-20). KJX 2022.
SEARCH MONSYM,MACSYM ;Get system-call names.
.REQUIRE SYS:MACREL ;Macros: TMSG, EJSHLT, etc.
STDAC. ;Define standard register names.
JFN: BLOCK 1 ;Space for JFN (file-handle)
FSPEC: BLOCK 20 ;Space for file specification.
FSPECL= <.-FSPEC>*5 ;Length in chars of file-spec.
GO:: RESET% ;Initialize process.
TMSG <Please enter filespec, wildcards are allowed: >
HRROI T1,FSPEC ;Read into FSPEC.
MOVEI T2,FSPECL ;Maximum allowed characters.
SETZ T3, ;No Ctrl-R prompting.
RDTTY% ;Read string from terminal.
EJSHLT ; Print error-msg on errors.
MOVX T1,GJ%OLD!GJ%IFG!GJ%FLG!GJ%SHT ;Various flags.
HRROI T2,FSPEC ;File specification from above.
GTJFN% ;Get JFN for first matching file.
EJSHLT ; Print error-msg on errors.
MOVEM T1,JFN ;Save JFN.
DO.
MOVEI T1,.PRIOU ;Write to standard-output.
HRRZ T2,JFN ;JFN from above to decode.
SETZ T3, ;No flags.
JFNS% ;Decode filename and print it.
EJSHLT ; Print error-msg on errors.
TMSG <
> ;Print newline.
MOVE T1,JFN ;Get JFN into T1.
GNJFN% ;Get next matching file.
JRST [ HALTF% ; Halt program on failure.
JRST GO ]
LOOP. ;No error: Do it again.
ENDDO.
END GO
|
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #Perl | Perl | use strict;
use warnings;
use feature 'say';
# from Wikipedia
my %English_letter_freq = (
E => 12.70, L => 4.03, Y => 1.97, P => 1.93, T => 9.06, A => 8.17, O => 7.51, I => 6.97, N => 6.75,
S => 6.33, H => 6.09, R => 5.99, D => 4.25, C => 2.78, U => 2.76, M => 2.41, W => 2.36, F => 2.23,
G => 2.02, B => 1.29, V => 0.98, K => 0.77, J => 0.15, X => 0.15, Q => 0.10, Z => 0.07
);
my @alphabet = sort keys %English_letter_freq;
my $max_key_lengths = 5; # number of keylengths to try
sub myguess {
my ($text) = (@_);
my ($seqtext, @spacing, @factors, @sortedfactors, $pos, %freq, %Keys);
# Kasiski examination
$seqtext = $text;
while ($seqtext =~ /(...).*\1/) {
$seqtext = substr($seqtext, 1+index($seqtext, $1));
push @spacing, 1 + index($seqtext, $1);
}
for my $j (@spacing) {
push @factors, grep { $j % $_ == 0 } 2..$j;
}
$freq{$_}++ for @factors;
@sortedfactors = grep { $_ >= 4 } sort { $freq{$b} <=> $freq{$a} } keys %freq; # discard very short keys
for my $keylen ( @sortedfactors[0..$max_key_lengths-1] ) {
my $keyguess = '';
for (my $i = 0; $i < $keylen; $i++) {
my($mykey, %chi_values, $bestguess);
for (my $j = 0; $j < length($text); $j += $keylen) {
$mykey .= substr($text, ($j+$i) % length($text), 1);
}
for my $subkey (@alphabet) {
my $decrypted = mycrypt($mykey, $subkey);
my $length = length($decrypted);
for my $char (@alphabet) {
my $expected = $English_letter_freq{$char} * $length / 100;
my $observed;
++$observed while $decrypted =~ /$char/g;
$chi_values{$subkey} += ($observed - $expected)**2 / $expected if $observed;
}
}
$Keys{$keylen}{score} = $chi_values{'A'};
for my $sk (sort keys %chi_values) {
if ($chi_values{$sk} <= $Keys{$keylen}{score}) {
$bestguess = $sk;
$Keys{$keylen}{score} = $chi_values{$sk};
}
}
$keyguess .= $bestguess;
}
$Keys{$keylen}{key} = $keyguess;
}
map { $Keys{$_}{key} } sort { $Keys{$a}{score} <=> $Keys{$b}{score}} keys %Keys;
}
sub mycrypt {
my ($text, $key) = @_;
my ($new_text, %values_numbers);
my $keylen = length($key);
@values_numbers{@alphabet} = 0..25;
my %values_letters = reverse %values_numbers;
for (my $i = 0; $i < length($text); $i++) {
my $val = -1 * $values_numbers{substr( $key, $i%$keylen, 1)} # negative shift for decode
+ $values_numbers{substr($text, $i, 1)};
$new_text .= $values_letters{ $val % 26 };
}
return $new_text;
}
my $cipher_text = <<~'EOD';
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
EOD
my $text = uc($cipher_text) =~ s/[^@{[join '', @alphabet]}]//gr;
for my $key ( myguess($text) ) {
say "Key $key\n" .
"Key length " . length($key) . "\n" .
"Plaintext " . substr(mycrypt($text, $key), 0, 80) . "...\n";
} |
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #Delphi | Delphi |
program Walk_a_directory;
{$APPTYPE CONSOLE}
{$R *.res}
uses
System.IOUtils;
var
Files: TArray<string>;
FileName, Directory: string;
begin
Directory := TDirectory.GetCurrentDirectory; // dir = '.', work to
Files := TDirectory.GetFiles(Directory, '*.*', TSearchOption.soAllDirectories);
for FileName in Files do
begin
Writeln(FileName);
end;
Readln;
end.
|
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #E | E | def walkTree(directory, pattern) {
for name => file in directory {
if (name =~ rx`.*$pattern.*`) {
println(file.getPath())
}
if (file.isDirectory()) {
walkTree(file, pattern)
}
}
} |
http://rosettacode.org/wiki/Water_collected_between_towers | Water collected between towers | Task
In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains,
completely filling all convex enclosures in the chart with water.
9 ██ 9 ██
8 ██ 8 ██
7 ██ ██ 7 ██≈≈≈≈≈≈≈≈██
6 ██ ██ ██ 6 ██≈≈██≈≈≈≈██
5 ██ ██ ██ ████ 5 ██≈≈██≈≈██≈≈████
4 ██ ██ ████████ 4 ██≈≈██≈≈████████
3 ██████ ████████ 3 ██████≈≈████████
2 ████████████████ ██ 2 ████████████████≈≈██
1 ████████████████████ 1 ████████████████████
In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water.
Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart.
Calculate the number of water units that could be collected by bar charts representing each of the following seven series:
[[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]]
See, also:
Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele
Water collected between towers on Stack Overflow, from which the example above is taken)
An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
| #Erlang | Erlang |
-module(watertowers).
-export([towers/1, demo/0]).
towers(List) -> element(2, tower(List, 0)).
tower([], _) -> {0,0};
tower([H|T], MaxLPrev) ->
MaxL = max(MaxLPrev, H),
{MaxR, WaterAcc} = tower(T, MaxL),
{max(MaxR,H), WaterAcc+max(0, min(MaxR,MaxL)-H)}.
demo() ->
Cases = [[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]],
[io:format("~p -> ~p~n", [Case, towers(Case)]) || Case <- Cases],
ok.
|
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #C.2B.2B | C++ | #include <map>
#include <iostream>
#include <cmath>
template<typename F>
bool test_distribution(F f, int calls, double delta)
{
typedef std::map<int, int> distmap;
distmap dist;
for (int i = 0; i < calls; ++i)
++dist[f()];
double mean = 1.0/dist.size();
bool good = true;
for (distmap::iterator i = dist.begin(); i != dist.end(); ++i)
{
if (std::abs((1.0 * i->second)/calls - mean) > delta)
{
std::cout << "Relative frequency " << i->second/(1.0*calls)
<< " of result " << i->first
<< " deviates by more than " << delta
<< " from the expected value " << mean << "\n";
good = false;
}
}
return good;
} |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #Clojure | Clojure | (defn verify [rand n & [delta]]
(let [rands (frequencies (repeatedly n rand))
avg (/ (reduce + (map val rands)) (count rands))
max-delta (* avg (or delta 1/10))
acceptable? #(<= (- avg max-delta) % (+ avg max-delta))]
(for [[num count] (sort rands)]
[num count (acceptable? count)])))
(doseq [n [100 1000 10000]
[num count okay?] (verify #(rand-int 7) n)]
(println "Saw" num count "times:"
(if okay? "that's" " not") "acceptable")) |
http://rosettacode.org/wiki/Voronoi_diagram | Voronoi diagram | A Voronoi diagram is a diagram consisting of a number of sites.
Each Voronoi site s also has a Voronoi cell consisting of all points closest to s.
Task
Demonstrate how to generate and display a Voroni diagram.
See algo K-means++ clustering.
| #Lua | Lua |
function love.load( )
love.math.setRandomSeed( os.time( ) ) --set the random seed
keys = { } --an empty table where we will store key presses
number_cells = 50 --the number of cells we want in our diagram
--draw the voronoi diagram to a canvas
voronoiDiagram = generateVoronoi( love.graphics.getWidth( ), love.graphics.getHeight( ), number_cells )
end
function hypot( x, y )
return math.sqrt( x*x + y*y )
end
function generateVoronoi( width, height, num_cells )
canvas = love.graphics.newCanvas( width, height )
local imgx = canvas:getWidth( )
local imgy = canvas:getHeight( )
local nx = { }
local ny = { }
local nr = { }
local ng = { }
local nb = { }
for a = 1, num_cells do
table.insert( nx, love.math.random( 0, imgx ) )
table.insert( ny, love.math.random( 0, imgy ) )
table.insert( nr, love.math.random( 0, 1 ) )
table.insert( ng, love.math.random( 0, 1 ) )
table.insert( nb, love.math.random( 0, 1 ) )
end
love.graphics.setColor( { 1, 1, 1 } )
love.graphics.setCanvas( canvas )
for y = 1, imgy do
for x = 1, imgx do
dmin = hypot( imgx-1, imgy-1 )
j = -1
for i = 1, num_cells do
d = hypot( nx[i]-x, ny[i]-y )
if d < dmin then
dmin = d
j = i
end
end
love.graphics.setColor( { nr[j], ng[j], nb[j] } )
love.graphics.points( x, y )
end
end
--reset color
love.graphics.setColor( { 1, 1, 1 } )
--draw points
for b = 1, num_cells do
love.graphics.points( nx[b], ny[b] )
end
love.graphics.setCanvas( )
return canvas
end
--RENDER
function love.draw( )
--reset color
love.graphics.setColor( { 1, 1, 1 } )
--draw diagram
love.graphics.draw( voronoiDiagram )
--draw drop shadow text
love.graphics.setColor( { 0, 0, 0 } )
love.graphics.print( "space: regenerate\nesc: quit", 1, 1 )
--draw text
love.graphics.setColor( { 0.7, 0.7, 0 } )
love.graphics.print( "space: regenerate\nesc: quit" )
end
--CONTROL
function love.keyreleased( key )
if key == 'space' then
voronoiDiagram = generateVoronoi( love.graphics.getWidth( ), love.graphics.getHeight( ), number_cells )
elseif key == 'escape' then
love.event.quit( )
end
end
|
http://rosettacode.org/wiki/Verhoeff_algorithm | Verhoeff algorithm | Description
The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code.
As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here.
Task
Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable.
The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them.
Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example.
Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are.
Display digit by digit calculations for the first two integers but not for the third.
Related task
Damm algorithm
| #11l | 11l | V MULTIPLICATION_TABLE = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 0, 6, 7, 8, 9, 5],
[2, 3, 4, 0, 1, 7, 8, 9, 5, 6],
[3, 4, 0, 1, 2, 8, 9, 5, 6, 7],
[4, 0, 1, 2, 3, 9, 5, 6, 7, 8],
[5, 9, 8, 7, 6, 0, 4, 3, 2, 1],
[6, 5, 9, 8, 7, 1, 0, 4, 3, 2],
[7, 6, 5, 9, 8, 2, 1, 0, 4, 3],
[8, 7, 6, 5, 9, 3, 2, 1, 0, 4],
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]]
V INV = [0, 4, 3, 2, 1, 5, 6, 7, 8, 9]
V PERMUTATION_TABLE = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 5, 7, 6, 2, 8, 3, 0, 9, 4],
[5, 8, 0, 3, 7, 9, 6, 1, 4, 2],
[8, 9, 1, 6, 0, 4, 3, 5, 2, 7],
[9, 4, 5, 3, 1, 2, 6, 8, 7, 0],
[4, 2, 8, 6, 5, 7, 3, 9, 0, 1],
[2, 7, 9, 3, 8, 0, 6, 4, 1, 5],
[7, 0, 4, 6, 9, 1, 3, 2, 5, 8]]
F verhoeffchecksum(n, validate = 1B, terse = 1B, verbose = 0B)
‘
Calculate the Verhoeff checksum over `n`.
Terse mode or with single argument: return True if valid (last digit is a correct check digit).
If checksum mode, return the expected correct checksum digit.
If validation mode, return True if last digit checks correctly.
’
I verbose
print(("\n"(I validate {‘Validation’} E ‘Check digit’))‘ ’(‘calculations for ’n":\n\n i ni p[i,ni] c\n------------------"))
V (c, dig) = (0, Array(String(I validate {n} E 10 * n)))
L(ni) reversed(dig)
V i = L.index
V p = :PERMUTATION_TABLE[i % 8][Int(ni)]
c = :MULTIPLICATION_TABLE[c][p]
I verbose
print(f:‘{i:2} {ni} {p} {c}’)
I verbose & !validate
print("\ninv("c‘) = ’:INV[c])
I !terse
print(I validate {"\nThe validation for '"n‘' is ’(I c == 0 {‘correct’} E ‘incorrect’)‘.’} E "\nThe check digit for '"n‘' is ’:INV[c]‘.’)
R I validate {c == 0} E :INV[c]
L(n, va, t, ve) [(Int64(236), 0B, 0B, 1B),
(Int64(2363), 1B, 0B, 1B),
(Int64(2369), 1B, 0B, 1B),
(Int64(12345), 0B, 0B, 1B),
(Int64(123451), 1B, 0B, 1B),
(Int64(123459), 1B, 0B, 1B),
(Int64(123456789012), 0B, 0B, 0B),
(Int64(1234567890120), 1B, 0B, 0B),
(Int64(1234567890129), 1B, 0B, 0B)]
verhoeffchecksum(n, va, t, ve) |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher | Vigenère cipher | Task
Implement a Vigenère cypher, both encryption and decryption.
The program should handle keys and text of unequal length,
and should capitalize everything and discard non-alphabetic characters.
(If your program handles non-alphabetic characters in another way,
make a note of it.)
Related tasks
Caesar cipher
Rot-13
Substitution Cipher
| #BBC_BASIC | BBC BASIC | key$ = "LEMON"
plaintext$ = "ATTACK AT DAWN"
ciphertext$ = FNencrypt(plaintext$, key$)
PRINT "Key = """ key$ """"
PRINT "Plaintext = """ plaintext$ """"
PRINT "Ciphertext = """ ciphertext$ """"
PRINT "Decrypted = """ FNdecrypt(ciphertext$, key$) """"
END
DEF FNencrypt(plain$, key$)
LOCAL i%, k%, n%, o$
plain$ = FNupper(plain$)
key$ = FNupper(key$)
FOR i% = 1 TO LEN(plain$)
n% = ASCMID$(plain$, i%)
IF n% >= 65 IF n% <= 90 THEN
o$ += CHR$(65 + (n% + ASCMID$(key$, k%+1)) MOD 26)
k% = (k% + 1) MOD LEN(key$)
ENDIF
NEXT
= o$
DEF FNdecrypt(cipher$, key$)
LOCAL i%, k%, n%, o$
cipher$ = FNupper(cipher$)
key$ = FNupper(key$)
FOR i% = 1 TO LEN(cipher$)
n% = ASCMID$(cipher$, i%)
o$ += CHR$(65 + (n% + 26 - ASCMID$(key$, k%+1)) MOD 26)
k% = (k% + 1) MOD LEN(key$)
NEXT
= o$
DEF FNupper(A$)
LOCAL A%,C%
FOR A% = 1 TO LEN(A$)
C% = ASCMID$(A$,A%)
IF C% >= 97 IF C% <= 122 MID$(A$,A%,1) = CHR$(C%-32)
NEXT
= A$ |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher | Vigenère cipher | Task
Implement a Vigenère cypher, both encryption and decryption.
The program should handle keys and text of unequal length,
and should capitalize everything and discard non-alphabetic characters.
(If your program handles non-alphabetic characters in another way,
make a note of it.)
Related tasks
Caesar cipher
Rot-13
Substitution Cipher
| #Befunge | Befunge | "VIGENERECIPHER">>>>1\:!v>"A"-\:00p0v
>>!#:0#-0#1g#,*#<+:v:-1$_^#!:\+1g00p<
\"{"\v>9+2*%"A"+^>$>~>:48*\`#@_::"`"`
*84*`<^4+"4"+g0\_^#!+`*55\`\0::-"A"-* |
http://rosettacode.org/wiki/Visualize_a_tree | Visualize a tree | A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
indented text (à la unix tree command)
nested HTML tables
hierarchical GUI widgets
2D or 3D images
etc.
Task
Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
| #Delphi | Delphi |
program Visualize_a_tree;
{$APPTYPE CONSOLE}
uses
System.SysUtils;
type
TNode = record
_label: string;
children: TArray<Integer>;
end;
TTree = TArray<TNode>;
TTreeHelper = record helper for TTree
procedure AddNode(lb: string; chl: TArray<Integer> = []);
end;
procedure Vis(t: TTree);
procedure f(n: Integer; pre: string);
begin
var ch := t[n].children;
if Length(ch) = 0 then
begin
Writeln('-', t[n]._label);
exit;
end;
writeln('+', t[n]._label);
var last := Length(ch) - 1;
for var c in copy(ch, 0, last) do
begin
write(pre, '+-');
f(c, pre + '¦ ');
end;
write(pre, '+-');
f(ch[last], pre + ' ');
end;
begin
if Length(t) = 0 then
begin
writeln('<empty>');
exit;
end;
f(0, '');
end;
{ TTreeHelper }
procedure TTreeHelper.AddNode(lb: string; chl: TArray<Integer> = []);
begin
SetLength(self, Length(self) + 1);
with self[High(self)] do
begin
_label := lb;
if Length(chl) > 0 then
children := copy(chl, 0, length(chl));
end;
end;
var
Tree: TTree;
begin
Tree.AddNode('root', [1, 2, 3]);
Tree.AddNode('ei', [4, 5]);
Tree.AddNode('bee');
Tree.AddNode('si');
Tree.AddNode('dee');
Tree.AddNode('y', [6]);
Tree.AddNode('eff');
Vis(Tree);
{$IFNDEF UNIX} readln; {$ENDIF}
end. |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | FileNames["*"]
FileNames["*.png", $RootDirectory] |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #MAXScript | MAXScript | getFiles "C:\\*.txt" |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #Phix | Phix | --
-- demo\rosetta\Cryptanalysis.exw
--
with javascript_semantics
atom t0 = time()
constant ciphertext = substitute_all("""
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK""",{" ","\n"},{"",""})
constant letters = new_dict(
{{'E',12.702},
{'T',9.056},
{'A',8.167},
{'O',7.507},
{'I',6.966},
{'N',6.749},
{'S',6.327},
{'H',6.094},
{'R',5.987},
{'D',4.253},
{'L',4.025},
{'C',2.782},
{'U',2.758},
{'M',2.406},
{'W',2.361},
{'F',2.228},
{'G',2.015},
{'Y',1.974},
{'P',1.929},
{'B',1.492},
{'V',0.978},
{'K',0.772},
{'J',0.153},
{'X',0.150},
{'Q',0.095},
{'Z',0.074}})
constant digraphs = new_dict(
{{"TH",15.2},
{"HE",12.8},
{"IN",9.4},
{"ER",9.4},
{"AN",8.2},
{"RE",6.8},
{"ND",6.3},
{"AT",5.9},
{"ON",5.7},
{"NT",5.6},
{"HA",5.6},
{"ES",5.6},
{"ST",5.5},
{"EN",5.5},
{"ED",5.3},
{"TO",5.2},
{"IT",5.0},
{"OU",5.0},
{"EA",4.7},
{"HI",4.6},
{"IS",4.6},
{"OR",4.3},
{"TI",3.4},
{"AS",3.3},
{"TE",2.7},
{"ET",1.9},
{"NG",1.8},
{"OF",1.6},
{"AL",0.9},
{"DE",0.9},
{"SE",0.8},
{"LE",0.8},
{"SA",0.6},
{"SI",0.5},
{"AR",0.4},
{"VE",0.4},
{"RA",0.4},
{"LD",0.2},
{"UR",0.2}})
constant trigraphs = new_dict(
{{"THE",18.1},
{"AND",7.3},
{"ING",7.2},
{"ION",4.2},
{"ENT",4.2},
{"HER",3.6},
{"FOR",3.4},
{"THA",3.3},
{"NTH",3.3},
{"INT",3.2},
{"TIO",3.1},
{"ERE",3.1},
{"TER",3.0},
{"EST",2.8},
{"ERS",2.8},
{"HAT",2.6},
{"ATI",2.6},
{"ATE",2.5},
{"ALL",2.5},
{"VER",2.4},
{"HIS",2.4},
{"HES",2.4},
{"ETH",2.4},
{"OFT",2.2},
{"STH",2.1},
{"RES",2.1},
{"OTH",2.1},
{"ITH",2.1},
{"FTH",2.1},
{"ONT",2.0}})
function decrypt(string enc, string key)
integer keylen = length(key), k = 1
string msg = repeat(' ', length(enc))
for i=1 to length(enc) do
msg[i] = mod(enc[i]-key[k]+26,26)+'A'
k = mod(k,keylen)+1
end for
return msg
end function
function cryptanalyze(string enc, integer maxkeylen=20)
integer enclen = length(enc)
string maxkey = "",
maxdec = "",
k1 = " "
atom maxscore = 0.0
for keylen=1 to maxkeylen do
string key = repeat(' ',keylen)
sequence idx = {}
for i=1 to enclen do
if mod(i,keylen)=0 then
idx &= i-keylen+1
end if
end for
for i=1 to keylen do
atom maxsubscore = 0.0
for j='A' to 'Z' do
atom subscore = 0.0
k1[1] = j
string encidx = ""
for ii=1 to length(idx) do
encidx &= enc[idx[ii]]
end for
string dec = decrypt(encidx,k1)
for di=1 to length(dec) do
subscore += getd(dec[di],letters)
end for
if subscore > maxsubscore then
maxsubscore = subscore
key[i] = j
end if
end for
idx = sq_add(idx,1)
end for
string dec = decrypt(enc, key)
atom score = 0.0
for i=1 to length(dec) do
score += getd(dec[i],letters)
end for
for i=1 to enclen - 2 do
string digraph = dec[i..i+1]
string trigraph = dec[i..i + 2]
score += 2 * getd(digraph,digraphs)
score += 3 * getd(trigraph,trigraphs)
end for
if score > maxscore then
maxscore = score
maxkey = key
maxdec = dec
end if
end for
return {maxkey,maxdec}
end function
function fold(string s, integer w)
for i=w to length(s) by w do
s[i..i-1] = "\n"
end for
return s
end function
string {key, dec} = cryptanalyze(ciphertext)
printf(1,"key: %s\n\n%s\n\n", {key, fold(dec,80)})
printf(1,"elapsed time: %3.2f seconds",{time()-t0})
{} = wait_key()
|
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #Elixir | Elixir | defmodule Walk_directory do
def recursive(dir \\ ".") do
Enum.each(File.ls!(dir), fn file ->
IO.puts fname = "#{dir}/#{file}"
if File.dir?(fname), do: recursive(fname)
end)
end
end
Walk_directory.recursive |
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #Emacs_Lisp | Emacs Lisp | ELISP> (directory-files-recursively "/tmp/el" "\\.el$")
("/tmp/el/1/c.el" "/tmp/el/a.el" "/tmp/el/b.el") |
http://rosettacode.org/wiki/Water_collected_between_towers | Water collected between towers | Task
In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains,
completely filling all convex enclosures in the chart with water.
9 ██ 9 ██
8 ██ 8 ██
7 ██ ██ 7 ██≈≈≈≈≈≈≈≈██
6 ██ ██ ██ 6 ██≈≈██≈≈≈≈██
5 ██ ██ ██ ████ 5 ██≈≈██≈≈██≈≈████
4 ██ ██ ████████ 4 ██≈≈██≈≈████████
3 ██████ ████████ 3 ██████≈≈████████
2 ████████████████ ██ 2 ████████████████≈≈██
1 ████████████████████ 1 ████████████████████
In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water.
Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart.
Calculate the number of water units that could be collected by bar charts representing each of the following seven series:
[[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]]
See, also:
Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele
Water collected between towers on Stack Overflow, from which the example above is taken)
An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
| #F.23 | F# |
(*
A solution I'd show to Euclid !!!!.
Nigel Galloway May 4th., 2017
*)
let solve n =
let (n,_)::(i,e)::g = n|>List.sortBy(fun n->(-(snd n)))
let rec fn i g e l =
match e with
| (n,e)::t when n < i -> fn n g t (l+(i-n-1)*e)
| (n,e)::t when n > g -> fn i n t (l+(n-g-1)*e)
| (n,t)::e -> fn i g e (l-t)
| _ -> l
fn (min n i) (max n i) g (e*(abs(n-i)-1))
|
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #Common_Lisp | Common Lisp | (defun check-distribution (function n &optional (delta 1.0))
(let ((bins (make-hash-table)))
(loop repeat n do (incf (gethash (funcall function) bins 0)))
(loop with target = (/ n (hash-table-count bins))
for key being each hash-key of bins using (hash-value value)
when (> (abs (- value target)) (* 0.01 delta n))
do (format t "~&Distribution potentially skewed for ~w:~
expected around ~w got ~w." key target value)
finally (return bins)))) |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #D | D | import std.stdio, std.string, std.math, std.algorithm, std.traits;
/**
Bin the answers to fn() and check bin counts are within
+/- delta % of repeats/bincount.
*/
void distCheck(TF)(in TF func, in int nRepeats, in double delta) /*@safe*/
if (isCallable!TF) {
int[int] counts;
foreach (immutable i; 0 .. nRepeats)
counts[func()]++;
immutable double target = nRepeats / double(counts.length);
immutable int deltaCount = cast(int)(delta / 100.0 * target);
foreach (immutable k, const count; counts)
if (abs(target - count) >= deltaCount)
throw new Exception(format(
"distribution potentially skewed for '%s': '%d'\n",
k, count));
foreach (immutable k; counts.keys.sort())
writeln(k, " ", counts[k]);
writeln;
}
version (verify_distribution_uniformity_naive_main) {
void main() {
import std.random;
distCheck(() => uniform(1, 6), 1_000_000, 1);
}
} |
http://rosettacode.org/wiki/Voronoi_diagram | Voronoi diagram | A Voronoi diagram is a diagram consisting of a number of sites.
Each Voronoi site s also has a Voronoi cell consisting of all points closest to s.
Task
Demonstrate how to generate and display a Voroni diagram.
See algo K-means++ clustering.
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | Needs["ComputationalGeometry`"]
DiagramPlot[{{4.4, 14}, {6.7, 15.25}, {6.9, 12.8}, {2.1, 11.1}, {9.5, 14.9}, {13.2, 11.9}, {10.3, 12.3},
{6.8, 9.5}, {3.3, 7.7}, {0.6, 5.1}, {5.3, 2.4}, {8.45, 4.7}, {11.5, 9.6}, {13.8, 7.3}, {12.9, 3.1}, {11, 1.1}}] |
http://rosettacode.org/wiki/Verhoeff_algorithm | Verhoeff algorithm | Description
The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code.
As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here.
Task
Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable.
The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them.
Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example.
Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are.
Display digit by digit calculations for the first two integers but not for the third.
Related task
Damm algorithm
| #C | C | #include <assert.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
static const int d[][10] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 2, 3, 4, 0, 6, 7, 8, 9, 5},
{2, 3, 4, 0, 1, 7, 8, 9, 5, 6}, {3, 4, 0, 1, 2, 8, 9, 5, 6, 7},
{4, 0, 1, 2, 3, 9, 5, 6, 7, 8}, {5, 9, 8, 7, 6, 0, 4, 3, 2, 1},
{6, 5, 9, 8, 7, 1, 0, 4, 3, 2}, {7, 6, 5, 9, 8, 2, 1, 0, 4, 3},
{8, 7, 6, 5, 9, 3, 2, 1, 0, 4}, {9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
};
static const int inv[] = {0, 4, 3, 2, 1, 5, 6, 7, 8, 9};
static const int p[][10] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 5, 7, 6, 2, 8, 3, 0, 9, 4},
{5, 8, 0, 3, 7, 9, 6, 1, 4, 2}, {8, 9, 1, 6, 0, 4, 3, 5, 2, 7},
{9, 4, 5, 3, 1, 2, 6, 8, 7, 0}, {4, 2, 8, 6, 5, 7, 3, 9, 0, 1},
{2, 7, 9, 3, 8, 0, 6, 4, 1, 5}, {7, 0, 4, 6, 9, 1, 3, 2, 5, 8},
};
int verhoeff(const char* s, bool validate, bool verbose) {
if (verbose) {
const char* t = validate ? "Validation" : "Check digit";
printf("%s calculations for '%s':\n\n", t, s);
puts(u8" i n\xE1\xB5\xA2 p[i,n\xE1\xB5\xA2] c");
puts("------------------");
}
int len = strlen(s);
if (validate)
--len;
int c = 0;
for (int i = len; i >= 0; --i) {
int ni = (i == len && !validate) ? 0 : s[i] - '0';
assert(ni >= 0 && ni < 10);
int pi = p[(len - i) % 8][ni];
c = d[c][pi];
if (verbose)
printf("%2d %d %d %d\n", len - i, ni, pi, c);
}
if (verbose && !validate)
printf("\ninv[%d] = %d\n", c, inv[c]);
return validate ? c == 0 : inv[c];
}
int main() {
const char* ss[3] = {"236", "12345", "123456789012"};
for (int i = 0; i < 3; ++i) {
const char* s = ss[i];
bool verbose = i < 2;
int c = verhoeff(s, false, verbose);
printf("\nThe check digit for '%s' is '%d'.\n", s, c);
int len = strlen(s);
char sc[len + 2];
strncpy(sc, s, len + 2);
for (int j = 0; j < 2; ++j) {
sc[len] = (j == 0) ? c + '0' : '9';
int v = verhoeff(sc, true, verbose);
printf("\nThe validation for '%s' is %s.\n", sc,
v ? "correct" : "incorrect");
}
}
return 0;
} |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher | Vigenère cipher | Task
Implement a Vigenère cypher, both encryption and decryption.
The program should handle keys and text of unequal length,
and should capitalize everything and discard non-alphabetic characters.
(If your program handles non-alphabetic characters in another way,
make a note of it.)
Related tasks
Caesar cipher
Rot-13
Substitution Cipher
| #C | C | #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <ctype.h>
#include <getopt.h>
#define NUMLETTERS 26
#define BUFSIZE 4096
char *get_input(void);
int main(int argc, char *argv[])
{
char const usage[] = "Usage: vinigere [-d] key";
char sign = 1;
char const plainmsg[] = "Plain text: ";
char const cryptmsg[] = "Cipher text: ";
bool encrypt = true;
int opt;
while ((opt = getopt(argc, argv, "d")) != -1) {
switch (opt) {
case 'd':
sign = -1;
encrypt = false;
break;
default:
fprintf(stderr, "Unrecogized command line argument:'-%i'\n", opt);
fprintf(stderr, "\n%s\n", usage);
return 1;
}
}
if (argc - optind != 1) {
fprintf(stderr, "%s requires one argument and one only\n", argv[0]);
fprintf(stderr, "\n%s\n", usage);
return 1;
}
// Convert argument into array of shifts
char const *const restrict key = argv[optind];
size_t const keylen = strlen(key);
char shifts[keylen];
char const *restrict plaintext = NULL;
for (size_t i = 0; i < keylen; i++) {
if (!(isalpha(key[i]))) {
fprintf(stderr, "Invalid key\n");
return 2;
}
char const charcase = (isupper(key[i])) ? 'A' : 'a';
// If decrypting, shifts will be negative.
// This line would turn "bacon" into {1, 0, 2, 14, 13}
shifts[i] = (key[i] - charcase) * sign;
}
do {
fflush(stdout);
// Print "Plain text: " if encrypting and "Cipher text: " if
// decrypting
printf("%s", (encrypt) ? plainmsg : cryptmsg);
plaintext = get_input();
if (plaintext == NULL) {
fprintf(stderr, "Error getting input\n");
return 4;
}
} while (strcmp(plaintext, "") == 0); // Reprompt if entry is empty
size_t const plainlen = strlen(plaintext);
char* const restrict ciphertext = calloc(plainlen + 1, sizeof *ciphertext);
if (ciphertext == NULL) {
fprintf(stderr, "Memory error\n");
return 5;
}
for (size_t i = 0, j = 0; i < plainlen; i++) {
// Skip non-alphabetical characters
if (!(isalpha(plaintext[i]))) {
ciphertext[i] = plaintext[i];
continue;
}
// Check case
char const charcase = (isupper(plaintext[i])) ? 'A' : 'a';
// Wrapping conversion algorithm
ciphertext[i] = ((plaintext[i] + shifts[j] - charcase + NUMLETTERS) % NUMLETTERS) + charcase;
j = (j+1) % keylen;
}
ciphertext[plainlen] = '\0';
printf("%s%s\n", (encrypt) ? cryptmsg : plainmsg, ciphertext);
free(ciphertext);
// Silence warnings about const not being maintained in cast to void*
free((char*) plaintext);
return 0;
}
char *get_input(void) {
char *const restrict buf = malloc(BUFSIZE * sizeof (char));
if (buf == NULL) {
return NULL;
}
fgets(buf, BUFSIZE, stdin);
// Get rid of newline
size_t const len = strlen(buf);
if (buf[len - 1] == '\n') buf[len - 1] = '\0';
return buf;
} |
http://rosettacode.org/wiki/Visualize_a_tree | Visualize a tree | A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
indented text (à la unix tree command)
nested HTML tables
hierarchical GUI widgets
2D or 3D images
etc.
Task
Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
| #Elena | Elena | import system'routines;
import extensions;
class Node
{
string theValue;
Node[] theChildren;
constructor new(string value, Node[] children)
{
theValue := value;
theChildren := children;
}
constructor new(string value)
<= new(value, new Node[](0));
constructor new(Node[] children)
<= new(emptyString, children);
get() = theValue;
Children = theChildren;
}
extension treeOp
{
writeTree(node, prefix)
{
var children := node.Children;
var length := children.Length;
children.zipForEach(new Range(1, length), (child,index)
{
self.printLine(prefix,"|");
self.printLine(prefix,"+---",child.get());
var nodeLine := prefix + (index==length).iif(" ","| ");
self.writeTree(child,nodeLine);
});
^ self
}
writeTree(node)
= self.writeTree(node,"");
}
public program()
{
var tree := Node.new(
new Node[]{
Node.new("a", new Node[]
{
Node.new("b", new Node[]{Node.new("c")}),
Node.new("d")
}),
Node.new("e")
});
console.writeTree(tree).readChar()
} |
http://rosettacode.org/wiki/Visualize_a_tree | Visualize a tree | A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
indented text (à la unix tree command)
nested HTML tables
hierarchical GUI widgets
2D or 3D images
etc.
Task
Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
| #Erlang | Erlang | 9> io:fwrite("~1p", [{1, 2, {30, 40}, {{500, 600}, 70}}]).
{1,
2,
{30,
40},
{{500,
600},
70}}
|
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #Nanoquery | Nanoquery | import Nanoquery.IO
for fname in new(File).listDir("/foo/bar")
if lower(new(File, fname).getExtension()) = ".mp3"
println filename
end
end |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #Nemerle | Nemerle | using System.Console;
using System.IO;
module DirWalk
{
Main() : void
{
def files = Directory.GetFiles(@"C:\MyDir"); // retrieves only files
def files_subs = Directory.GetFileSystemEntries(@"C:\MyDir"); // also retrieves (but does not enter) sub-directories
// (like ls command)
foreach (file in files) WriteLine(file);
}
} |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #Python | Python | from string import uppercase
from operator import itemgetter
def vigenere_decrypt(target_freqs, input):
nchars = len(uppercase)
ordA = ord('A')
sorted_targets = sorted(target_freqs)
def frequency(input):
result = [[c, 0.0] for c in uppercase]
for c in input:
result[c - ordA][1] += 1
return result
def correlation(input):
result = 0.0
freq = frequency(input)
freq.sort(key=itemgetter(1))
for i, f in enumerate(freq):
result += f[1] * sorted_targets[i]
return result
cleaned = [ord(c) for c in input.upper() if c.isupper()]
best_len = 0
best_corr = -100.0
# Assume that if there are less than 20 characters
# per column, the key's too long to guess
for i in xrange(2, len(cleaned) // 20):
pieces = [[] for _ in xrange(i)]
for j, c in enumerate(cleaned):
pieces[j % i].append(c)
# The correlation seems to increase for smaller
# pieces/longer keys, so weigh against them a little
corr = -0.5 * i + sum(correlation(p) for p in pieces)
if corr > best_corr:
best_len = i
best_corr = corr
if best_len == 0:
return ("Text is too short to analyze", "")
pieces = [[] for _ in xrange(best_len)]
for i, c in enumerate(cleaned):
pieces[i % best_len].append(c)
freqs = [frequency(p) for p in pieces]
key = ""
for fr in freqs:
fr.sort(key=itemgetter(1), reverse=True)
m = 0
max_corr = 0.0
for j in xrange(nchars):
corr = 0.0
c = ordA + j
for frc in fr:
d = (ord(frc[0]) - c + nchars) % nchars
corr += frc[1] * target_freqs[d]
if corr > max_corr:
m = j
max_corr = corr
key += chr(m + ordA)
r = (chr((c - ord(key[i % best_len]) + nchars) % nchars + ordA)
for i, c in enumerate(cleaned))
return (key, "".join(r))
def main():
encoded = """
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK"""
english_frequences = [
0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
0.00978, 0.02360, 0.00150, 0.01974, 0.00074]
(key, decoded) = vigenere_decrypt(english_frequences, encoded)
print "Key:", key
print "\nText:", decoded
main() |
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #Erlang | Erlang |
walk_dir(Path, Pattern) ->
filelib:fold_files(
Path,
Pattern,
true, % Recurse
fun(File, Accumulator) -> [File|Accumulator] end,
[]
)
|
http://rosettacode.org/wiki/Water_collected_between_towers | Water collected between towers | Task
In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains,
completely filling all convex enclosures in the chart with water.
9 ██ 9 ██
8 ██ 8 ██
7 ██ ██ 7 ██≈≈≈≈≈≈≈≈██
6 ██ ██ ██ 6 ██≈≈██≈≈≈≈██
5 ██ ██ ██ ████ 5 ██≈≈██≈≈██≈≈████
4 ██ ██ ████████ 4 ██≈≈██≈≈████████
3 ██████ ████████ 3 ██████≈≈████████
2 ████████████████ ██ 2 ████████████████≈≈██
1 ████████████████████ 1 ████████████████████
In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water.
Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart.
Calculate the number of water units that could be collected by bar charts representing each of the following seven series:
[[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]]
See, also:
Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele
Water collected between towers on Stack Overflow, from which the example above is taken)
An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
| #Factor | Factor | USING: formatting kernel math.statistics math.vectors sequences ;
: area ( seq -- n )
[ cum-max ] [ <reversed> cum-max reverse vmin ] [ v- sum ] tri ;
{
{ 1 5 3 7 2 }
{ 5 3 7 2 6 4 5 9 1 2 }
{ 2 6 3 5 2 8 1 4 2 2 5 3 5 7 4 1 }
{ 5 5 5 5 }
{ 5 6 7 8 }
{ 8 7 7 6 }
{ 6 7 10 7 6 }
} [ dup area "%[%d, %] -> %d\n" printf ] each |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #Elixir | Elixir | defmodule VerifyDistribution do
def naive( generator, times, delta_percent ) do
dict = Enum.reduce( List.duplicate(generator, times), Map.new, &update_counter/2 )
values = Map.values(dict)
average = Enum.sum( values ) / map_size( dict )
delta = average * (delta_percent / 100)
fun = fn {_key, value} -> abs(value - average) > delta end
too_large_dict = Enum.filter( dict, fun )
return( length(too_large_dict), too_large_dict, average, delta_percent )
end
def return( 0, _too_large_dict, _average, _delta ), do: :ok
def return( _n, too_large_dict, average, delta ) do
{:error, {too_large_dict, :failed_expected_average, average, 'with_delta_%', delta}}
end
def update_counter( fun, dict ), do: Map.update( dict, fun.(), 1, &(&1+1) )
end
fun = fn -> Dice.dice7 end
IO.inspect VerifyDistribution.naive( fun, 100000, 3 )
IO.inspect VerifyDistribution.naive( fun, 100, 3 ) |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #Erlang | Erlang |
-module( verify_distribution_uniformity ).
-export( [naive/3] ).
naive( Generator, Times, Delta_percent ) ->
Dict = lists:foldl( fun update_counter/2, dict:new(), lists:duplicate(Times, Generator) ),
Values = [dict:fetch(X, Dict) || X <- dict:fetch_keys(Dict)],
Average = lists:sum( Values ) / dict:size( Dict ),
Delta = Average * (Delta_percent / 100),
Fun = fun(_Key, Value) -> erlang:abs(Value - Average) > Delta end,
Too_large_dict = dict:filter( Fun, Dict ),
return( dict:size(Too_large_dict), Too_large_dict, Average, Delta_percent ).
return( 0, _Too_large_dict, _Average, _Delta ) -> ok;
return( _N, Too_large_dict, Average, Delta ) ->
{error, {dict:to_list(Too_large_dict), failed_expected_average, Average, 'with_delta_%', Delta}}.
update_counter( Fun, Dict ) -> dict:update_counter( Fun(), 1, Dict ).
|
http://rosettacode.org/wiki/Voronoi_diagram | Voronoi diagram | A Voronoi diagram is a diagram consisting of a number of sites.
Each Voronoi site s also has a Voronoi cell consisting of all points closest to s.
Task
Demonstrate how to generate and display a Voroni diagram.
See algo K-means++ clustering.
| #.D0.9C.D0.9A-61.2F52 | МК-61/52 | 0 П4
0 П5
ИП0 1 - x^2 ИП1 1 - x^2 + КвКор П3
9 П6
КИП6 П8 {x} 2 10^x * П9
[x] ИП5 - x^2 ИП9 {x} 2 10^x * ИП4 - x^2 + КвКор П9
ИП3 - x<0 47 ИП9 П3 ИП6 П7
ИП6 ИП2 - 9 - x>=0 17
КИП7 [x] С/П
КИП5 ИП5 ИП1 - x>=0 04
КИП4 ИП4 ИП0 - x>=0 02 |
http://rosettacode.org/wiki/Voronoi_diagram | Voronoi diagram | A Voronoi diagram is a diagram consisting of a number of sites.
Each Voronoi site s also has a Voronoi cell consisting of all points closest to s.
Task
Demonstrate how to generate and display a Voroni diagram.
See algo K-means++ clustering.
| #Nim | Nim |
from sequtils import newSeqWith
from random import rand, randomize
from times import now
import libgd
const
img_width = 400
img_height = 300
nSites = 20
proc dot(x, y: int): int = x * x + y * y
proc generateVoronoi(img: gdImagePtr) =
randomize(cast[int64](now()))
# random sites
let sx = newSeqWith(nSites, rand(img_width))
let sy = newSeqWith(nSites, rand(img_height))
# generate a random color for each site
let sc = newSeqWith(nSites, img.setColor(rand(255), rand(255), rand(255)))
# generate diagram by coloring each pixel with color of nearest site
for x in 0 ..< img_width:
for y in 0 ..< img_height:
var dMin = dot(img_width, img_height)
var sMin: int
for s in 0 ..< nSites:
if (let d = dot(sx[s] - x, sy[s] - y); d) < dMin:
(sMin, dMin) = (s, d)
img.setPixel(point=[x, y], color=sc[sMin])
# mark each site with a black box
let black = img.setColor(0x000000)
for s in 0 ..< nSites:
img.drawRectangle(
startCorner=[sx[s] - 2, sy[s] - 2],
endCorner=[sx[s] + 2, sy[s] + 2],
color=black,
fill=true)
proc main() =
withGd imageCreate(img_width, img_height, trueColor=true) as img:
img.generateVoronoi()
let png_out = open("outputs/voronoi_diagram.png", fmWrite)
img.writePng(png_out)
png_out.close()
main()
|
http://rosettacode.org/wiki/Verhoeff_algorithm | Verhoeff algorithm | Description
The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code.
As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here.
Task
Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable.
The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them.
Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example.
Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are.
Display digit by digit calculations for the first two integers but not for the third.
Related task
Damm algorithm
| #F.23 | F# |
// Verhoeff algorithm. Nigel Galloway: August 26th., 2021
let d,inv,p=let d=[|0;1;2;3;4;5;6;7;8;9;1;2;3;4;0;6;7;8;9;5;2;3;4;0;1;7;8;9;5;6;3;4;0;1;2;8;9;5;6;7;4;0;1;2;3;9;5;6;7;8;5;9;8;7;6;0;4;3;2;1;6;5;9;8;7;1;0;4;3;2;7;6;5;9;8;2;1;0;4;3;8;7;6;5;9;3;2;1;0;4;9;8;7;6;5;4;3;2;1;0|]
let p=[|0;1;2;3;4;5;6;7;8;9;1;5;7;6;2;8;3;0;9;4;5;8;0;3;7;9;6;1;4;2;8;9;1;6;0;4;3;5;2;7;9;4;5;3;1;2;6;8;7;0;4;2;8;6;5;7;3;9;0;1;2;7;9;3;8;0;6;4;1;5;7;0;4;6;9;1;3;2;5;8|]
let inv=[|0;4;3;2;1;5;6;7;8;9|] in (fun n g->d.[10*n+g]),(fun g->inv.[g]),(fun n g->p.[10*(n%8)+g])
let fN g=Seq.unfold(fun(i,g,l)->if i=0I then None else let ni=int(i%10I) in let l=d l (p g ni) in Some((ni,l),(i/10I,g+1,l)))(g,0,0)
let csum g=let _,g=Seq.last(fN g) in inv g
let printTable g=printfn $"Work Table for %A{g}\n i nᵢ p[i,nᵢ] c\n--------------"; fN g|>Seq.iteri(fun i (n,g)->printfn $"%d{i} %d{n} %d{p i n} %d{g}")
printTable 2360I
printfn $"\nThe CheckDigit for 236 is %d{csum 2360I}\n"
printTable 2363I
printfn $"\nThe assertion that 2363 is valid is %A{csum 2363I=0}\n"
printTable 2369I
printfn $"\nThe assertion that 2369 is valid is %A{csum 2369I=0}\n"
printTable 123450I
printfn $"\nThe CheckDigit for 12345 is %d{csum 123450I}\n"
printTable 123451I
printfn $"\nThe assertion that 123451 is valid is %A{csum 123451I=0}\n"
printTable 123459I
printfn $"\nThe assertion that 123459 is valid is %A{csum 123459I=0}"
printfn $"The CheckDigit for 123456789012 is %d{csum 1234567890120I}"
printfn $"The assertion that 1234567890120 is valid is %A{csum 1234567890120I=0}"
printfn $"The assertion that 1234567890129 is valid is %A{csum 1234567890129I=0}"
|
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher | Vigenère cipher | Task
Implement a Vigenère cypher, both encryption and decryption.
The program should handle keys and text of unequal length,
and should capitalize everything and discard non-alphabetic characters.
(If your program handles non-alphabetic characters in another way,
make a note of it.)
Related tasks
Caesar cipher
Rot-13
Substitution Cipher
| #C.23 | C# |
using System;
namespace VigenereCipher
{
class VCipher
{
public string encrypt(string txt, string pw, int d)
{
int pwi = 0, tmp;
string ns = "";
txt = txt.ToUpper();
pw = pw.ToUpper();
foreach (char t in txt)
{
if (t < 65) continue;
tmp = t - 65 + d * (pw[pwi] - 65);
if (tmp < 0) tmp += 26;
ns += Convert.ToChar(65 + ( tmp % 26) );
if (++pwi == pw.Length) pwi = 0;
}
return ns;
}
};
class Program
{
static void Main(string[] args)
{
VCipher v = new VCipher();
string s0 = "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!",
pw = "VIGENERECIPHER";
Console.WriteLine(s0 + "\n" + pw + "\n");
string s1 = v.encrypt(s0, pw, 1);
Console.WriteLine("Encrypted: " + s1);
s1 = v.encrypt(s1, "VIGENERECIPHER", -1);
Console.WriteLine("Decrypted: " + s1);
Console.WriteLine("\nPress any key to continue...");
Console.ReadKey();
}
}
}
|
http://rosettacode.org/wiki/Visualize_a_tree | Visualize a tree | A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
indented text (à la unix tree command)
nested HTML tables
hierarchical GUI widgets
2D or 3D images
etc.
Task
Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
| #F.23 | F# | type tree =
| T of string * tree list
let prefMid = seq { yield "├─"; while true do yield "│ " }
let prefEnd = seq { yield "└─"; while true do yield " " }
let prefNone = seq { while true do yield "" }
let c2 x y = Seq.map2 (fun u v -> String.concat "" [u; v]) x y
let rec visualize (T(label, children)) pre =
seq {
yield (Seq.head pre) + label
if children <> [] then
let preRest = Seq.skip 1 pre
let last = Seq.last (List.toSeq children)
for e in children do
if e = last then yield! visualize e (c2 preRest prefEnd)
else yield! visualize e (c2 preRest prefMid)
}
let example =
T ("root",
[T ("a",
[T ("a1",
[T ("a11", []);
T ("a12", []) ]) ]);
T ("b",
[T ("b1", []) ]) ])
visualize example prefNone
|> Seq.iter (printfn "%s") |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #NetRexx | NetRexx | /* NetRexx */
options replace format comments java crossref symbols nobinary
import java.util.List
runSample(arg)
return
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method getFileNames(dirname, pattern) public static returns List
dir = File(dirname)
contents = dir.list()
fileNames = ArrayList()
loop fname over contents
if fname.matches(pattern) then do
fileNames.add(fname)
end
end fname
Collections.sort(fileNames)
return fileNames
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method runSample(arg) private static
parse arg dirname pattern
if dirname = '' then dirname = System.getProperty('user.dir')
if pattern = '' then pattern = '^RW.*\\.nrx$'
fileNames = getFileNames(dirname, pattern)
say 'Search of' dirname 'for files matching pattern "'pattern'" found' fileNames.size() 'files.'
loop fn = 0 while fn < fileNames.size()
say (fn + 1).right(5)':' fileNames.get(fn)
end fn
return
|
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #Nim | Nim | import os
for file in walkFiles "/foo/bar/*.mp3":
echo file |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #Racket | Racket |
#lang at-exp racket
(define max-keylen 30)
(define text
@~a{MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK})
(define first-char (char->integer #\A))
(define chars# (- (char->integer #\Z) first-char -1))
(define freqs ; english letter frequencies from wikipedia
((compose1 list->vector (curry map (curryr / 100000.0)))
'(8167 1492 2782 4253 12702 2228 2015 6094 6966 153 772 4025 2406
6749 7507 1929 95 5987 6327 9056 2758 978 2360 150 1974 74)))
(define text* (for/vector ([c (regexp-replace* #px"\\s+" text "")])
(- (char->integer c) first-char)))
(define N (vector-length text*))
(define (col-guesses len)
(for/list ([ofs len])
(define text (for/list ([i (in-range ofs N len)]) (vector-ref text* i)))
(define cN (length text))
(define cfreqs (make-vector chars# 0))
(for ([c (in-list text)])
(vector-set! cfreqs c (add1 (vector-ref cfreqs c))))
(for ([i chars#]) (vector-set! cfreqs i (/ (vector-ref cfreqs i) cN)))
(argmin car
(for/list ([d chars#])
(cons (for/sum ([i chars#])
(expt (- (vector-ref freqs i)
(vector-ref cfreqs (modulo (+ i d) chars#)))
2))
d)))))
(define best-key
(cdr (argmin car
(for/list ([len (range 1 (add1 max-keylen))])
(define guesses (col-guesses len))
(cons (/ (apply + (map car guesses)) len) (map cdr guesses))))))
(printf "Best key found: ")
(for ([c best-key]) (display (integer->char (+ c first-char))))
(newline)
(printf "Decoded text:\n")
(define decode-num
(let ([cur '()])
(λ(n) (when (null? cur) (set! cur best-key))
(begin0 (modulo (- n (car cur)) chars#) (set! cur (cdr cur))))))
(for ([c text])
(define n (- (char->integer c) first-char))
(if (not (< -1 n chars#)) (display c)
(display (integer->char (+ first-char (decode-num n))))))
(newline)
|
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #Raku | Raku | # from Wikipedia
constant %English-letter-freq = (
E => 12.70, L => 4.03, Y => 1.97, P => 1.93, T => 9.06, A => 8.17, O => 7.51, I => 6.97, N => 6.75,
S => 6.33, H => 6.09, R => 5.99, D => 4.25, C => 2.78, U => 2.76, M => 2.41, W => 2.36, F => 2.23,
G => 2.02, B => 1.29, V => 0.98, K => 0.77, J => 0.15, X => 0.15, Q => 0.10, Z => 0.07
);
constant @alphabet = %English-letter-freq.keys.sort;
constant max_key_lengths = 5; # number of keylengths to try
sub myguess ($text) {
my ($seqtext, @spacing, @factors, $pos, %freq, %Keys);
# Kasiski examination
$seqtext = $text;
while ($seqtext ~~ /$<sequence>=[...].*$<sequence>/) {
$seqtext = substr($seqtext, 1+index($seqtext, $<sequence>));
push @spacing, 1 + index($seqtext, $<sequence>);
}
for @spacing -> $j {
%freq{$_}++ for grep { $j %% $_ }, 2..$j;
}
# discard very short keys, and test only the most likely remaining key lengths
(%freq.keys.grep(* > 3).sort({%freq{$_}}).tail(max_key_lengths)).race(:1batch).map: -> $keylen {
my $key-guess = '';
loop (my $i = 0; $i < $keylen; $i++) {
my ($mykey, %chi-square, $best-guess);
loop (my $j = 0; $j < $text.chars; $j += $keylen) {
$mykey ~= substr($text, ($j+$i) % $text.chars, 1);
}
for @alphabet -> $subkey {
my $decrypted = mycrypt($mykey, $subkey);
my $length = $decrypted.chars;
for @alphabet -> $char {
my $expected = %English-letter-freq{$char} * $length / 100;
my $observed = $decrypted.comb.grep(* eq $char).elems;
%chi-square{$subkey} += ($observed - $expected)² / $expected if $observed;
}
}
%Keys{$keylen}{'score'} = %chi-square{@alphabet[0]};
for %chi-square.keys.sort -> $sk {
if (%chi-square{$sk} <= %Keys{$keylen}{'score'}) {
$best-guess = $sk;
%Keys{$keylen}{'score'} = %chi-square{$sk};
}
}
$key-guess ~= $best-guess;
}
%Keys{$keylen}{'key'} = $key-guess;
}
%Keys.keys.sort({ %Keys{$_}{'score'} }).map:{ %Keys{$_}{'key'} };
}
sub mycrypt ($text, $key) {
constant %values-numbers = @alphabet Z=> ^@alphabet;
constant %values-letters = %values-numbers.invert;
my ($new-text);
my $keylen = $key.chars;
loop (my $i = 0; $i < $text.chars; $i++) {
my $val = -1 * %values-numbers{substr( $key, $i%$keylen, 1)} # negative shift for decode
+ %values-numbers{substr($text, $i, 1)};
$new-text ~= %values-letters{ $val % @alphabet };
}
return $new-text;
}
my $cipher-text = .uc.trans(@alphabet => '', :c) given q:to/EOD/;
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
EOD
for myguess($cipher-text) -> $key {
say "Key $key\n" ~
"Key length {$key.chars}\n" ~
"Plaintext {substr(mycrypt($cipher-text, $key), 0, 80)}...\n";
} |
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #F.23 | F# | open System.IO
let rec getAllFiles dir pattern =
seq { yield! Directory.EnumerateFiles(dir, pattern)
for d in Directory.EnumerateDirectories(dir) do
yield! getAllFiles d pattern }
getAllFiles "c:\\temp" "*.xml"
|> Seq.iter (printfn "%s") |
http://rosettacode.org/wiki/Water_collected_between_towers | Water collected between towers | Task
In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains,
completely filling all convex enclosures in the chart with water.
9 ██ 9 ██
8 ██ 8 ██
7 ██ ██ 7 ██≈≈≈≈≈≈≈≈██
6 ██ ██ ██ 6 ██≈≈██≈≈≈≈██
5 ██ ██ ██ ████ 5 ██≈≈██≈≈██≈≈████
4 ██ ██ ████████ 4 ██≈≈██≈≈████████
3 ██████ ████████ 3 ██████≈≈████████
2 ████████████████ ██ 2 ████████████████≈≈██
1 ████████████████████ 1 ████████████████████
In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water.
Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart.
Calculate the number of water units that could be collected by bar charts representing each of the following seven series:
[[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]]
See, also:
Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele
Water collected between towers on Stack Overflow, from which the example above is taken)
An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
| #FreeBASIC | FreeBASIC | type tower
hght as uinteger
posi as uinteger
end type
sub shellsort( a() as tower )
'quick and dirty shellsort, not the focus of this exercise
dim as uinteger gap = ubound(a), i, j, n=ubound(a)
dim as tower temp
do
gap = int(gap / 2.2)
if gap=0 then gap=1
for i=gap to n
temp = a(i)
j=i
while j>=gap andalso a(j-gap).hght < temp.hght
a(j) = a(j - gap)
j -= gap
wend
a(j) = temp
next i
loop until gap = 1
end sub
'heights of towers in each city prefixed by the number of towers
data 5, 1, 5, 3, 7, 2
data 10, 5, 3, 7, 2, 6, 4, 5, 9, 1, 2
data 16, 2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1
data 4, 5, 5, 5, 5
data 4, 5, 6, 7, 8
data 4, 8, 7, 7, 6
data 5, 6, 7, 10, 7, 6
dim as uinteger i, n, j, first, last, water
dim as tower manhattan(0 to 1)
for i = 1 to 7
read n
redim manhattan( 0 to n-1 )
for j = 0 to n-1
read manhattan(j).hght
manhattan(j).posi = j
next j
shellsort( manhattan() )
if manhattan(0).posi < manhattan(1).posi then
first = manhattan(0).posi
last = manhattan(1).posi
else
first = manhattan(1).posi
last = manhattan(0).posi
end if
water = manhattan(1).hght * (last-first-1)
for j = 2 to n-1
if first<manhattan(j).posi and manhattan(j).posi<last then water -= manhattan(j).hght
if manhattan(j).posi < first then
water += manhattan(j).hght * (first-manhattan(j).posi-1)
first = manhattan(j).posi
end if
if manhattan(j).posi > last then
water += manhattan(j).hght * (manhattan(j).posi-last-1)
last = manhattan(j).posi
end if
next j
print using "City configuration ## collected #### units of water."; i; water
next i |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #Euler_Math_Toolbox | Euler Math Toolbox |
>function checkrandom (frand$, n:index, delta:positive real) ...
$ v=zeros(1,n);
$ loop 1 to n; v{#}=frand$(); end;
$ K=max(v);
$ fr=getfrequencies(v,1:K);
$ return max(fr/n-1/K)<delta/sqrt(n);
$ endfunction
>function dice () := intrandom(1,1,6);
>checkrandom("dice",1000000,1)
1
>wd = 0|((1:6)+[-0.01,0.01,0,0,0,0])/6
[ 0 0.165 0.335 0.5 0.666666666667 0.833333333333 1 ]
>function wrongdice () := find(wd,random())
>checkrandom("wrongdice",1000000,1)
0
|
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #Factor | Factor | USING: kernel random sequences assocs locals sorting prettyprint
math math.functions math.statistics math.vectors math.ranges ;
IN: rosetta-code.dice7
! Output a random integer 1..5.
: dice5 ( -- x )
5 [1,b] random
;
! Output a random integer 1..7 using dice5 as randomness source.
: dice7 ( -- x )
0 [ dup 21 < ] [ drop dice5 5 * dice5 + 6 - ] do until
7 rem 1 +
;
! Roll the die by calling the quotation the given number of times and return
! an array with roll results.
! Sample call: 1000 [ dice7 ] roll
: roll ( times quot: ( -- x ) -- array )
[ call( -- x ) ] curry replicate
;
! Input array contains outcomes of a number of die throws. Each die result is
! an integer in the range 1..X. Calculate and return the number of each
! of the results in the array so that in the first position of the result
! there is the number of ones in the input array, in the second position
! of the result there is the number of twos in the input array, etc.
: count-dice-outcomes ( X array -- array )
histogram
swap [1,b] [ over [ 0 or ] change-at ] each
sort-keys values
;
! Verify distribution uniformity/Naive. Delta is the acceptable deviation
! from the ideal number of items in each bucket, expressed as a fraction of
! the total count. Sides is the number of die sides. Die-func is a word that
! produces a random number on stack in the range [1..sides], times is the
! number of times to call it.
! Sample call: 0.02 7 [ dice7 ] 100000 verify
:: verify ( delta sides die-func: ( -- random ) times -- )
sides
times die-func roll
count-dice-outcomes
dup .
times sides / :> ideal-count
ideal-count v-n vabs
times v/n
delta [ < ] curry all?
[ "Random enough" . ] [ "Not random enough" . ] if
;
! Call verify with 1, 10, 100, ... 1000000 rolls of 7-sided die.
: verify-all ( -- )
{ 1 10 100 1000 10000 100000 1000000 }
[| times | 0.02 7 [ dice7 ] times verify ] each
; |
http://rosettacode.org/wiki/Voronoi_diagram | Voronoi diagram | A Voronoi diagram is a diagram consisting of a number of sites.
Each Voronoi site s also has a Voronoi cell consisting of all points closest to s.
Task
Demonstrate how to generate and display a Voroni diagram.
See algo K-means++ clustering.
| #OCaml | OCaml | let n_sites = 220
let size_x = 640
let size_y = 480
let sq2 ~x ~y =
(x * x + y * y)
let rand_int_range a b =
a + Random.int (b - a + 1)
let nearest_site ~site ~x ~y =
let ret = ref 0 in
let dist = ref 0 in
Array.iteri (fun k (sx, sy) ->
let d = sq2 (x - sx) (y - sy) in
if k = 0 || d < !dist then begin
dist := d;
ret := k;
end
) site;
!ret
let gen_map ~site ~rgb =
let nearest = Array.make (size_x * size_y) 0 in
let buf = Bytes.create (3 * size_x * size_y) in
for y = 0 to pred size_y do
for x = 0 to pred size_x do
nearest.(y * size_x + x) <-
nearest_site ~site ~x ~y;
done;
done;
for i = 0 to pred (size_y * size_x) do
let j = i * 3 in
let r, g, b = rgb.(nearest.(i)) in
Bytes.set buf (j+0) (char_of_int r);
Bytes.set buf (j+1) (char_of_int g);
Bytes.set buf (j+2) (char_of_int b);
done;
Printf.printf "P6\n%d %d\n255\n" size_x size_y;
print_bytes buf;
;;
let () =
Random.self_init ();
let site =
Array.init n_sites (fun i ->
(Random.int size_x,
Random.int size_y))
in
let rgb =
Array.init n_sites (fun i ->
(rand_int_range 160 255,
rand_int_range 40 160,
rand_int_range 20 140))
in
gen_map ~site ~rgb |
http://rosettacode.org/wiki/Verhoeff_algorithm | Verhoeff algorithm | Description
The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code.
As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here.
Task
Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable.
The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them.
Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example.
Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are.
Display digit by digit calculations for the first two integers but not for the third.
Related task
Damm algorithm
| #Go | Go | package main
import "fmt"
var d = [][]int{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 2, 3, 4, 0, 6, 7, 8, 9, 5},
{2, 3, 4, 0, 1, 7, 8, 9, 5, 6},
{3, 4, 0, 1, 2, 8, 9, 5, 6, 7},
{4, 0, 1, 2, 3, 9, 5, 6, 7, 8},
{5, 9, 8, 7, 6, 0, 4, 3, 2, 1},
{6, 5, 9, 8, 7, 1, 0, 4, 3, 2},
{7, 6, 5, 9, 8, 2, 1, 0, 4, 3},
{8, 7, 6, 5, 9, 3, 2, 1, 0, 4},
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
}
var inv = []int{0, 4, 3, 2, 1, 5, 6, 7, 8, 9}
var p = [][]int{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 5, 7, 6, 2, 8, 3, 0, 9, 4},
{5, 8, 0, 3, 7, 9, 6, 1, 4, 2},
{8, 9, 1, 6, 0, 4, 3, 5, 2, 7},
{9, 4, 5, 3, 1, 2, 6, 8, 7, 0},
{4, 2, 8, 6, 5, 7, 3, 9, 0, 1},
{2, 7, 9, 3, 8, 0, 6, 4, 1, 5},
{7, 0, 4, 6, 9, 1, 3, 2, 5, 8},
}
func verhoeff(s string, validate, table bool) interface{} {
if table {
t := "Check digit"
if validate {
t = "Validation"
}
fmt.Printf("%s calculations for '%s':\n\n", t, s)
fmt.Println(" i nᵢ p[i,nᵢ] c")
fmt.Println("------------------")
}
if !validate {
s = s + "0"
}
c := 0
le := len(s) - 1
for i := le; i >= 0; i-- {
ni := int(s[i] - 48)
pi := p[(le-i)%8][ni]
c = d[c][pi]
if table {
fmt.Printf("%2d %d %d %d\n", le-i, ni, pi, c)
}
}
if table && !validate {
fmt.Printf("\ninv[%d] = %d\n", c, inv[c])
}
if !validate {
return inv[c]
}
return c == 0
}
func main() {
ss := []string{"236", "12345", "123456789012"}
ts := []bool{true, true, false, true}
for i, s := range ss {
c := verhoeff(s, false, ts[i]).(int)
fmt.Printf("\nThe check digit for '%s' is '%d'\n\n", s, c)
for _, sc := range []string{s + string(c+48), s + "9"} {
v := verhoeff(sc, true, ts[i]).(bool)
ans := "correct"
if !v {
ans = "incorrect"
}
fmt.Printf("\nThe validation for '%s' is %s\n\n", sc, ans)
}
}
} |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher | Vigenère cipher | Task
Implement a Vigenère cypher, both encryption and decryption.
The program should handle keys and text of unequal length,
and should capitalize everything and discard non-alphabetic characters.
(If your program handles non-alphabetic characters in another way,
make a note of it.)
Related tasks
Caesar cipher
Rot-13
Substitution Cipher
| #C.2B.2B | C++ | #include <iostream>
#include <string>
using namespace std;
class Vigenere
{
public:
string key;
Vigenere(string key)
{
for(int i = 0; i < key.size(); ++i)
{
if(key[i] >= 'A' && key[i] <= 'Z')
this->key += key[i];
else if(key[i] >= 'a' && key[i] <= 'z')
this->key += key[i] + 'A' - 'a';
}
}
string encrypt(string text)
{
string out;
for(int i = 0, j = 0; i < text.length(); ++i)
{
char c = text[i];
if(c >= 'a' && c <= 'z')
c += 'A' - 'a';
else if(c < 'A' || c > 'Z')
continue;
out += (c + key[j] - 2*'A') % 26 + 'A';
j = (j + 1) % key.length();
}
return out;
}
string decrypt(string text)
{
string out;
for(int i = 0, j = 0; i < text.length(); ++i)
{
char c = text[i];
if(c >= 'a' && c <= 'z')
c += 'A' - 'a';
else if(c < 'A' || c > 'Z')
continue;
out += (c - key[j] + 26) % 26 + 'A';
j = (j + 1) % key.length();
}
return out;
}
};
int main()
{
Vigenere cipher("VIGENERECIPHER");
string original = "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!";
string encrypted = cipher.encrypt(original);
string decrypted = cipher.decrypt(encrypted);
cout << original << endl;
cout << "Encrypted: " << encrypted << endl;
cout << "Decrypted: " << decrypted << endl;
} |
http://rosettacode.org/wiki/Visualize_a_tree | Visualize a tree | A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
indented text (à la unix tree command)
nested HTML tables
hierarchical GUI widgets
2D or 3D images
etc.
Task
Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
| #Factor | Factor | USE: literals
CONSTANT: mammals { "mammals" { "deer" "gorilla" "dolphin" } }
CONSTANT: reptiles { "reptiles" { "turtle" "lizard" "snake" } }
{ "animals" ${ mammals reptiles } } dup . 10 margin set . |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #Objeck | Objeck | use IO;
bundle Default {
class Test {
function : Main(args : System.String[]) ~ Nil {
dir := Directory->List("/src/code");
for(i := 0; i < dir->Size(); i += 1;) {
if(dir[i]->EndsWith(".obs")) {
dir[i]->PrintLine();
};
};
}
}
} |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #Objective-C | Objective-C | NSString *dir = @"/foo/bar";
// Pre-OS X 10.5
NSArray *contents = [[NSFileManager defaultManager] directoryContentsAtPath:dir];
// OS X 10.5+
NSArray *contents = [[NSFileManager defaultManager] contentsOfDirectoryAtPath:dir error:NULL];
for (NSString *file in contents)
if ([[file pathExtension] isEqualToString:@"mp3"])
NSLog(@"%@", file); |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #Rust | Rust |
use std::iter::FromIterator;
const CRYPTOGRAM: &str = "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK";
const FREQUENCIES: [f32; 26] = [
0.08167, 0.01492, 0.02202, 0.04253, 0.12702, 0.02228, 0.02015, 0.06094, 0.06966, 0.00153,
0.01292, 0.04025, 0.02406, 0.06749, 0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09356,
0.02758, 0.00978, 0.02560, 0.00150, 0.01994, 0.00077,
];
fn best_match(a: &[f32]) -> u8 {
let sum: f32 = a.iter().sum();
let mut best_fit = std::f32::MAX;
let mut best_rotate = 0;
for rotate in 0..=25 {
let mut fit = 0.;
for i in 0..=25 {
let char_freq = FREQUENCIES[i];
let idx = (i + rotate as usize) % 26 as usize;
let d = a[idx] / sum - char_freq;
fit += d * d / char_freq;
}
if fit < best_fit {
best_fit = fit;
best_rotate = rotate;
}
}
best_rotate
}
fn freq_every_nth(msg: &[u8], key: &mut [char]) -> f32 {
let len = msg.len();
let interval = key.len();
let mut accu = [0.; 26];
for j in 0..interval {
let mut out = [0.; 26];
for i in (j..len).step_by(interval) {
let idx = msg[i] as usize;
out[idx] += 1.;
}
let rot = best_match(&out);
key[j] = char::from(rot + b'A');
for i in 0..=25 {
let idx: usize = (i + rot as usize) % 26;
accu[i] += out[idx];
}
}
let sum: f32 = accu.iter().sum();
let mut ret = 0.;
for i in 0..=25 {
let char_freq = FREQUENCIES[i];
let d = accu[i] / sum - char_freq;
ret += d * d / char_freq;
}
ret
}
fn decrypt(text: &str, key: &str) -> String {
let key_chars_cycle = key.as_bytes().iter().map(|b| *b as i32).cycle();
let is_ascii_uppercase = |c: &u8| (b'A'..=b'Z').contains(c);
text.as_bytes()
.iter()
.filter(|c| is_ascii_uppercase(c))
.map(|b| *b as i32)
.zip(key_chars_cycle)
.fold(String::new(), |mut acc, (c, key_char)| {
let ci: u8 = ((c - key_char + 26) % 26) as u8;
acc.push(char::from(b'A' + ci));
acc
})
}
fn main() {
let enc = CRYPTOGRAM
.split_ascii_whitespace()
.collect::<Vec<_>>()
.join("");
let cryptogram: Vec<u8> = enc.as_bytes().iter().map(|b| u8::from(b - b'A')).collect();
let mut best_fit = std::f32::MAX;
let mut best_key = String::new();
for j in 1..=26 {
let mut key = vec!['\0'; j];
let fit = freq_every_nth(&cryptogram, &mut key);
let s_key = String::from_iter(key); // 'from_iter' is imported from std::iter::FromIterator;
if fit < best_fit {
best_fit = fit;
best_key = s_key;
}
}
println!("best key: {}", &best_key);
println!("\nDecrypted text:\n{}", decrypt(&enc, &best_key));
}
|
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #Tcl | Tcl | package require Tcl 8.6
oo::class create VigenereAnalyzer {
variable letterFrequencies sortedTargets
constructor {{frequencies {
0.08167 0.01492 0.02782 0.04253 0.12702 0.02228 0.02015
0.06094 0.06966 0.00153 0.00772 0.04025 0.02406 0.06749
0.07507 0.01929 0.00095 0.05987 0.06327 0.09056 0.02758
0.00978 0.02360 0.00150 0.01974 0.00074
}}} {
set letterFrequencies $frequencies
set sortedTargets [lsort -real $frequencies]
if {[llength $frequencies] != 26} {
error "wrong length of frequency table"
}
}
### Utility methods
# Find the value of $idxvar in the range [$from..$to) that maximizes the value
# in $scorevar (which is computed by evaluating $body)
method Best {idxvar from to scorevar body} {
upvar 1 $idxvar i $scorevar s
set bestI $from
for {set i $from} {$i < $to} {incr i} {
uplevel 1 $body
if {![info exist bestS] || $bestS < $s} {
set bestI $i
set bestS $s
}
}
return $bestI
}
# Simple list map
method Map {var list body} {
upvar 1 $var v
set result {}
foreach v $list {lappend result [uplevel 1 $body]}
return $result
}
# Simple partition of $list into $groups groups; thus, the partition of
# {a b c d e f} into 3 produces {a d} {b e} {c f}
method Partition {list groups} {
set i 0
foreach val $list {
dict lappend result $i $val
if {[incr i] >= $groups} {
set i 0
}
}
return [dict values $result]
}
### Helper methods
# Get the actual counts of different types of characters in the given list
method Frequency cleaned {
for {set i 0} {$i < 26} {incr i} {
dict set tbl $i 0
}
foreach ch $cleaned {
dict incr tbl [expr {[scan $ch %c] - 65}]
}
return $tbl
}
# Get the correlation factor of the characters in a given list with the
# class-specified language frequency corpus
method Correlation cleaned {
set result 0.0
set freq [lsort -integer [dict values [my Frequency $cleaned]]]
foreach f $freq s $sortedTargets {
set result [expr {$result + $f * $s}]
}
return $result
}
# Compute an estimate for the key length
method GetKeyLength {cleaned {required 20}} {
# Assume that we need at least 20 characters per column to guess
set bestLength [my Best i 2 [expr {[llength $cleaned] / $required}] corr {
set corr [expr {-0.5 * $i}]
foreach chars [my Partition $cleaned $i] {
set corr [expr {$corr + [my Correlation $chars]}]
}
}]
if {$bestLength == 0} {
error "text is too short to analyze"
}
return $bestLength
}
# Compute the key from the given frequency tables and the class-specified
# language frequency corpus
method GetKeyFromFreqs freqs {
foreach f $freqs {
set m [my Best i 0 26 corr {
set corr 0.0
foreach {ch count} $f {
set d [expr {($ch - $i) % 26}]
set corr [expr {$corr + $count*[lindex $letterFrequencies $d]}]
}
}]
append key [format %c [expr {65 + $m}]]
}
return $key
}
##### The main analyzer method #####
method analyze input {
# Turn the input into a clean letter sequence
set cleaned [regexp -all -inline {[A-Z]} [string toupper $input]]
# Get the (estimated) key length
set bestLength [my GetKeyLength $cleaned]
# Get the frequency mapping for the partitioned input text
set freqs [my Map p [my Partition $cleaned $bestLength] {my Frequency $p}]
# Get the key itself
return [my GetKeyFromFreqs $freqs]
}
} |
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #Factor | Factor | USE: io.directories.search
"." t [
dup ".factor" tail? [ print ] [ drop ] if
] each-file |
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #Forth | Forth |
require unix/filestat.fs
require unix/libc.fs
: $append ( from len to -- ) 2DUP >R >R COUNT + SWAP MOVE R> R@ C@ + R> C! ;
defer ls-filter
: dots? ( name len -- ? ) drop c@ [char] . = ;
file-stat buffer: statbuf
: isdir ( addr u -- flag )
statbuf lstat ?ior statbuf st_mode w@ S_IFMT and S_IFDIR = ;
: (ls-r) ( dir len -- )
pad c@ >r pad $append s" /" pad $append
pad count open-dir if drop r> pad c! exit then ( dirid)
begin
dup pad count + 256 rot read-dir throw
while
pad count + over dots? 0= if \ ignore all hidden names
dup pad count rot + 2dup ls-filter if
cr 2dup type
then
isdir if
pad count + swap recurse
else drop then
else drop then
repeat
drop r> pad c!
close-dir throw
;
: ls-r ( dir len -- ) 0 pad c! (ls-r) ;
: c-files ( str len -- ? )
dup 3 < if 2drop false exit then
+ 1- dup c@ 32 or
dup [char] c <> swap [char] h <> and if drop false exit then
1- dup c@ [char] . <> if drop false exit then
drop true ;
' c-files is ls-filter
: all-files ( str len -- ? ) 2drop true ;
' all-files is ls-filter
s" ." ls-r cr
|
http://rosettacode.org/wiki/Water_collected_between_towers | Water collected between towers | Task
In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains,
completely filling all convex enclosures in the chart with water.
9 ██ 9 ██
8 ██ 8 ██
7 ██ ██ 7 ██≈≈≈≈≈≈≈≈██
6 ██ ██ ██ 6 ██≈≈██≈≈≈≈██
5 ██ ██ ██ ████ 5 ██≈≈██≈≈██≈≈████
4 ██ ██ ████████ 4 ██≈≈██≈≈████████
3 ██████ ████████ 3 ██████≈≈████████
2 ████████████████ ██ 2 ████████████████≈≈██
1 ████████████████████ 1 ████████████████████
In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water.
Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart.
Calculate the number of water units that could be collected by bar charts representing each of the following seven series:
[[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]]
See, also:
Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele
Water collected between towers on Stack Overflow, from which the example above is taken)
An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
| #Go | Go |
package main
import "fmt"
func maxl(hm []int ) []int{
res := make([]int,len(hm))
max := 1
for i := 0; i < len(hm);i++{
if(hm[i] > max){
max = hm[i]
}
res[i] = max;
}
return res
}
func maxr(hm []int ) []int{
res := make([]int,len(hm))
max := 1
for i := len(hm) - 1 ; i >= 0;i--{
if(hm[i] > max){
max = hm[i]
}
res[i] = max;
}
return res
}
func min(a,b []int) []int {
res := make([]int,len(a))
for i := 0; i < len(a);i++{
if a[i] >= b[i]{
res[i] = b[i]
}else {
res[i] = a[i]
}
}
return res
}
func diff(hm, min []int) []int {
res := make([]int,len(hm))
for i := 0; i < len(hm);i++{
if min[i] > hm[i]{
res[i] = min[i] - hm[i]
}
}
return res
}
func sum(a []int) int {
res := 0
for i := 0; i < len(a);i++{
res += a[i]
}
return res
}
func waterCollected(hm []int) int {
maxr := maxr(hm)
maxl := maxl(hm)
min := min(maxr,maxl)
diff := diff(hm,min)
sum := sum(diff)
return sum
}
func main() {
fmt.Println(waterCollected([]int{1, 5, 3, 7, 2}))
fmt.Println(waterCollected([]int{5, 3, 7, 2, 6, 4, 5, 9, 1, 2}))
fmt.Println(waterCollected([]int{2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1}))
fmt.Println(waterCollected([]int{5, 5, 5, 5}))
fmt.Println(waterCollected([]int{5, 6, 7, 8}))
fmt.Println(waterCollected([]int{8, 7, 7, 6}))
fmt.Println(waterCollected([]int{6, 7, 10, 7, 6}))
} |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #Forth | Forth | : .bounds ( u1 u2 -- ) ." lower bound = " . ." upper bound = " 1- . cr ;
: init-bins ( n -- addr )
cells dup allocate throw tuck swap erase ;
: expected ( u1 cnt -- u2 ) over 2/ + swap / ;
: calc-limits ( n cnt pct -- low high )
>r expected r> over 100 */ 2dup + 1+ >r - r> ;
: make-histogram ( bins xt cnt -- )
0 ?do 2dup execute 1- cells + 1 swap +! loop 2drop ;
: valid-bin? ( addr n low high -- f )
2>r cells + @ dup . 2r> within ;
: check-distribution {: xt cnt n pct -- f :}
\ assumes xt generates numbers from 1 to n
n init-bins {: bins :}
n cnt pct calc-limits {: low high :}
high low .bounds
bins xt cnt make-histogram
true \ result flag
n 0 ?do
i 1+ . ." : " bins i low high valid-bin?
dup 0= if ." not " then ." ok" cr
and
loop
bins free throw ; |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #Fortran | Fortran | subroutine distcheck(randgen, n, delta)
interface
function randgen
integer :: randgen
end function randgen
end interface
real, intent(in) :: delta
integer, intent(in) :: n
integer :: i, mval, lolim, hilim
integer, allocatable :: buckets(:)
integer, allocatable :: rnums(:)
logical :: skewed = .false.
allocate(rnums(n))
do i = 1, n
rnums(i) = randgen()
end do
mval = maxval(rnums)
allocate(buckets(mval))
buckets = 0
do i = 1, n
buckets(rnums(i)) = buckets(rnums(i)) + 1
end do
lolim = n/mval - n/mval*delta
hilim = n/mval + n/mval*delta
do i = 1, mval
if(buckets(i) < lolim .or. buckets(i) > hilim) then
write(*,"(a,i0,a,i0,a,i0)") "Distribution potentially skewed for bucket ", i, " Expected: ", &
n/mval, " Actual: ", buckets(i)
skewed = .true.
end if
end do
if (.not. skewed) write(*,"(a)") "Distribution uniform"
deallocate(rnums)
deallocate(buckets)
end subroutine |
http://rosettacode.org/wiki/Voronoi_diagram | Voronoi diagram | A Voronoi diagram is a diagram consisting of a number of sites.
Each Voronoi site s also has a Voronoi cell consisting of all points closest to s.
Task
Demonstrate how to generate and display a Voroni diagram.
See algo K-means++ clustering.
| #Perl | Perl | use strict;
use warnings;
use Imager;
my %type = (
Taxicab => sub { my($px, $py, $x, $y) = @_; abs($px - $x) + abs($py - $y) },
Euclidean => sub { my($px, $py, $x, $y) = @_; ($px - $x)**2 + ($py - $y)**2 },
Minkowski => sub { my($px, $py, $x, $y) = @_; abs($px - $x)**3 + abs($py - $y)**3 },
);
my($xmax, $ymax) = (400, 400);
my @domains;
for (1..30) {
push @domains, {
x => int 5 + rand $xmax-10,
y => int 5 + rand $ymax-10,
rgb => [int rand 255, int rand 255, int rand 255]
}
}
for my $type (keys %type) {
our $img = Imager->new(xsize => $xmax, ysize => $ymax, channels => 3);
voronoi($type, $xmax, $ymax, @domains);
dot(1,@domains);
$img->write(file => "voronoi-$type.png");
sub voronoi {
my($type, $xmax, $ymax, @d) = @_;
for my $x (0..$xmax) {
for my $y (0..$ymax) {
my $i = 0;
my $d = 10e6;
for (0..$#d) {
my $dd = &{$type{$type}}($d[$_]{'x'}, $d[$_]{'y'}, $x, $y);
if ($dd < $d) { $d = $dd; $i = $_ }
}
$img->setpixel(x => $x, y => $y, color => $d[$i]{rgb} );
}
}
}
sub dot {
my($radius, @d) = @_;
for (0..$#d) {
my $dx = $d[$_]{'x'};
my $dy = $d[$_]{'y'};
for my $x ($dx-$radius .. $dx+$radius) {
for my $y ($dy-$radius .. $dy+$radius) {
$img->setpixel(x => $x, y => $y, color => [0,0,0]);
}
}
}
}
} |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test | Verify distribution uniformity/Chi-squared test | Task
Write a function to verify that a given distribution of values is uniform by using the
χ
2
{\displaystyle \chi ^{2}}
test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%).
The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce.
Reference
an entry at the MathWorld website: chi-squared distribution.
| #11l | 11l | V a = 12
V k1_factrl = 1.0
[Float] c
c.append(sqrt(2.0 * math:pi))
L(k) 1 .< a
c.append(exp(a - k) * (a - k) ^ (k - 0.5) / k1_factrl)
k1_factrl *= -k
F gamma_spounge(z)
V accm = :c[0]
L(k) 1 .< :a
accm += :c[k] / (z + k)
accm *= exp(-(z + :a)) * (z + :a) ^ (z + 0.5)
R accm / z
F GammaInc_Q(a, x)
V a1 = a - 1
V a2 = a - 2
F f0(t)
R t ^ @a1 * exp(-t)
F df0(t)
R (@a1 - t) * t ^ @a2 * exp(-t)
V y = a1
L f0(y) * (x - y) > 2.0e-8 & y < x
y += 0.3
I y > x
y = x
V h = 3.0e-4
V n = Int(y / h)
h = y / n
V hh = 0.5 * h
V gamax = h * sum(((n - 1 .< -1).step(-1).map(j -> @h * j)).map(t -> @f0(t) + @hh * @df0(t)))
R gamax / gamma_spounge(a)
F chi2UniformDistance(dataSet)
V expected = sum(dataSet) * 1.0 / dataSet.len
V cntrd = (dataSet.map(d -> d - @expected))
R sum(cntrd.map(x -> x * x)) / expected
F chi2Probability(dof, distance)
R 1.0 - GammaInc_Q(0.5 * dof, 0.5 * distance)
F chi2IsUniform(dataSet, significance)
V dof = dataSet.len - 1
V dist = chi2UniformDistance(dataSet)
R chi2Probability(dof, dist) > significance
V dset1 = [199809, 200665, 199607, 200270, 199649]
V dset2 = [522573, 244456, 139979, 71531, 21461]
L(ds) (dset1, dset2)
print(‘Data set: ’ds)
V dof = ds.len - 1
V distance = chi2UniformDistance(ds)
print(‘dof: #. distance: #.4’.format(dof, distance), end' ‘ ’)
V prob = chi2Probability(dof, distance)
print(‘probability: #.4’.format(prob), end' ‘ ’)
print(‘uniform? ’(I chi2IsUniform(ds, 0.05) {‘Yes’} E ‘No’)) |
http://rosettacode.org/wiki/Verhoeff_algorithm | Verhoeff algorithm | Description
The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code.
As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here.
Task
Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable.
The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them.
Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example.
Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are.
Display digit by digit calculations for the first two integers but not for the third.
Related task
Damm algorithm
| #J | J | cyc=: | +/~@i. NB. cyclic group, order y
ac=: |(+-/~@i.) NB. anticyclic group, order y
a2n=: (+#)@ NB. add 2^n
di=: (cyc,.cyc a2n),((ac a2n),.ac)
D=: di 5
INV=: ,I.0=D
P=: {&(C.1 5 8 9 4 2 7 0;3 6)^:(i.8) i.10
verhoeff=: {{
c=. 0
for_N. |.10 #.inv y do.
c=. D{~<c,P{~<(8|N_index),N
end.
}}
traceverhoeff=: {{
r=. EMPTY
c=. 0
for_N. |.10 #.inv y do.
c0=. c
c=. D{~<c,p=.P{~<(j=.8|N_index),N
r=. r, c,p,j,N_index,N,c0
end.
labels=. cut 'cᵢ p[i,nᵢ] i nᵢ n cₒ'
1 1}.}:~.":labels,(<;._1"1~[:*/' '=])' ',.":r
}}
checkdigit=: INV {~ verhoeff@*&10
valid=: 0 = verhoeff |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher | Vigenère cipher | Task
Implement a Vigenère cypher, both encryption and decryption.
The program should handle keys and text of unequal length,
and should capitalize everything and discard non-alphabetic characters.
(If your program handles non-alphabetic characters in another way,
make a note of it.)
Related tasks
Caesar cipher
Rot-13
Substitution Cipher
| #Ceylon | Ceylon | shared void run() {
function normalize(String text) => text.uppercased.filter(Character.letter);
function crypt(String text, String key, Character(Character, Character) transform) => String {
for ([a, b] in zipPairs(normalize(text), normalize(key).cycled))
transform(a, b)
};
function encrypt(String clearText, String key) =>
crypt(clearText, key, (Character a, Character b) =>
('A'.integer + ((a.integer + b.integer - 130) % 26)).character);
function decrypt(String cipherText, String key) =>
crypt(cipherText, key, (Character a, Character b) =>
('A'.integer + ((a.integer - b.integer + 26) % 26)).character);
value key = "VIGENERECIPHER";
value message = "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!";
value encrypted = encrypt(message, key);
value decrypted = decrypt(encrypted, key);
print(encrypted);
print(decrypted);
} |
http://rosettacode.org/wiki/Visualize_a_tree | Visualize a tree | A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
indented text (à la unix tree command)
nested HTML tables
hierarchical GUI widgets
2D or 3D images
etc.
Task
Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
| #F.C5.8Drmul.C3.A6 | Fōrmulæ | Dim Shared As Ubyte colores(4) => {7,13,14,3,2}
Sub showTree(n As Integer, A As String)
Dim As Integer i, co = 0, b = 1, col
Dim As String cs = Left(A, 1)
If cs = "" Then Exit Sub
Select Case cs
Case "["
co += 1 : showTree(n + 1, Right(A, Len(A) - 1))
Exit Select
Case "]"
co -= 1 : showTree(n - 1, Right(A, Len(A) - 1))
Exit Select
Case Else
For i = 2 To n
Print " ";
co = n
Next i
Color colores(co) : Print !"\&hc0-"; cs
showTree(n, Right(A, Len(A) - 1))
Exit Select
End Select
End Sub
Cls
showTree(0, "[1[2[3][4[5][6]][7]][8[9]]]")
Print !"\n\n\n"
showTree(0, "[1[2[3[4]]][5[6][7[8][9]]]]")
Sleep |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #OCaml | OCaml | #load "str.cma"
let contents = Array.to_list (Sys.readdir ".") in
let select pat str = Str.string_match (Str.regexp pat) str 0 in
List.filter (select ".*\\.jpg") contents |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #Oz | Oz | declare
[Path] = {Module.link ['x-oz://system/os/Path.ozf']}
[Regex] = {Module.link ['x-oz://contrib/regex']}
Files = {Filter {Path.readdir "."} Path.isFile}
Pattern = ".*\\.oz$"
MatchingFiles = {Filter Files fun {$ File} {Regex.search Pattern File} \= false end}
in
{ForAll MatchingFiles System.showInfo} |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #Vedit_macro_language | Vedit macro language | // (1) Copy text into tmp buffer and remove non-alpha chars.
Chdir(PATH_ONLY)
BOF
Reg_Copy(10, ALL) // copy text to new buffer
Buf_Switch(Buf_Free)
Reg_Ins(10)
BOF
Replace ("|!|A", "", BEGIN+ALL+NOERR) // remove non-alpha chars
Reg_Copy_Block(10,0,EOB_pos) // @10 = text to be analysed
#20 = Buf_Num // buffer for text being analyzed
#21 = Buf_Free // buffer for English frequency list (A-Z)
Buf_Switch(#21)
Ins_Text("8167 1492 2782 4253 12702 2228 2015 6094 6966 153 772 4025 2406 6749 7507 1929 95 5987 6327 9056 2758 978 2360 150 1974 74")
File_Open("unixdict.txt") // or use "|(MACRO_DIR)\scribe\english.vdf"
#23 = Buf_Num // buffer for dictionary
#24 = Buf_Free // buffer for key canditates
Buf_Switch(#24)
for (#1=0; #1<5; #1++) { // Fill table for 5 keys of 50 chars
Ins_Char('.', COUNT, 50)
Ins_Newline
}
#22 = Buf_Free // buffer for results
#25 = Reg_Size(10) // number of letters in the text
#26 = 26 // number of characters in the alphabet
#61 = min(#25/10, 50) // max key length to try
// (2) Check Index of coincidence (or Kp) for each key length
Buf_Switch(#22) // buffer for results
Ins_Text("KeyLen Kp dist ") Ins_Newline
Ins_Text("-----------------") Ins_Newline
#13 = Cur_Pos
#7 = 0 // no Caesar encryption
for (#5=1; #5<=#61; #5++) {
Buf_Switch(#20) // text being analyzed
BOF
#54 = 0; // sum of Kp's
for (#6=0; #6<#5; #6++) { // for each slide
Goto_Pos(#6)
Call("CHARACTER_FREQUENCIES")
Call("INDEX_OF_COINCIDENCE") // #51 = Kp * 10000
#54 += #51
}
#54 /= #5 // average of Kp's
Buf_Switch(#22)
Num_Ins(#5, COUNT, 3) // write key length
IT(": ")
Num_Ins(#54, NOCR) // average Kp
Num_Ins(670-#54) // distance to English Kp
}
Buf_Switch(#22)
Sort_Merge("5,12", #13, Cur_Pos, REVERSE) // sort the results by Kp value
Ins_Newline
// (3) Check the best 4 key lengths to find which one gives the best decrypt result
#38 = 0 // max number of correct characters found
#19 = 1 // best key length
for (#14 = 0; #14<4; #14++) { // try 4 best key lengths
Buf_Switch(#22) // results buffer
Goto_Pos(#13) Line(#14)
#5 = Num_Eval(SUPPRESS) // #5 = key length
Call("FIND_KEYS") // find Caesar key for each key character
#4 = -1 // try best match key chars only
Call("BUILD_KEY")
EOF
Ins_Text("Key length ")
Num_Ins(#5, LEFT)
Reg_Ins(10) // encrypted text
BOL
Call("DECRYPT_LINE")
BOL
Call("FIND_ENGLISH_WORDS") // #37 = number of English chars
EOL Ins_Newline
Ins_Text("Correct chars: ")
Num_Ins(#37)
if (#37 > #38) {
#38 = #37
#19 = #5
}
Update()
}
Ins_Text("Using key length: ") Num_Ins(#19) Ins_Newline
#5 = #19
Call("FIND_KEYS") // find Caesar key for each key character
// (4) Decrypt with different key combinations and try to find English words.
// Try key combinations where max one char is taken from 2nd best Caesar key.
#38 = 0 // max number of chars in English words found
#39 = -1 // best key number found
for (#4 = -1; #4 < #19; #4++)
{
Call("BUILD_KEY")
Buf_Switch(#22) // results
Reg_Ins(10) // encrypted text
BOL
Call("DECRYPT_LINE")
BOL
Update()
Call("FIND_ENGLISH_WORDS") // #37 := number of correct letters in text
if (#37 > #38) {
#38 = #37 // new highest number of correct chars
#39 = #4 // new best key
}
EOL IT(" -- ") // display results
Num_Ins(#4, COUNT, 3) // key number
Ins_Text(": ")
for (#6=0; #6<#19; #6++) { // display key
#9 = 130 + #6
Ins_Char(#@9)
}
Ins_Text(" correct chars =")
Num_Ins(#37)
}
Ins_Text("Best key = ")
Num_Ins(#39, LEFT)
#4 = #39
Ins_Newline
// Display results
//
Buf_Switch(#24) // table for key canditates
BOF
Reg_Copy_Block(14, Cur_Pos, Cur_Pos+#19) // best Caesar key chars
Line(1)
Reg_Copy_Block(15, Cur_Pos, Cur_Pos+#19) // 2nd best Caesar key chars
Call("BUILD_KEY")
Buf_Switch(#22)
Ins_Text("Key 1: ") Reg_Ins(14) Ins_Newline
Ins_Text("Key 2: ") Reg_Ins(15) Ins_Newline
Ins_Text("Key: ")
for (#6=0; #6 < #19; #6++) {
#9 = #6+130
Ins_Char(#@9)
}
Ins_Newline
Ins_Newline
// decrypt the text with selected key
Ins_Text("Decrypted text:") Ins_Newline
Reg_Ins(10)
BOL
Call("DECRYPT_LINE")
BOL Reg_Copy(13,1)
EOL Ins_Newline
// Find English words from the text
Reg_Ins(13)
Call("FIND_ENGLISH_WORDS")
EOL
Ins_Newline
Num_Ins(#37, NOCR) IT(" of ")
Num_Ins(#25, NOCR) IT(" characters are English words. ")
Ins_Newline
Buf_Switch(#20) Buf_Quit(OK)
Buf_Switch(#21) Buf_Quit(OK)
Buf_Switch(#23) Buf_Quit(OK)
Buf_Switch(#24) Buf_Quit(OK)
Statline_Message("Done!")
Return
/////////////////////////////////////////////////////////////////////////////
//
// Caesar decrypt current line and count character frequencies.
// in: #5 = step size, #7 = encryption key, #26 = num of chars in alphabet
// out: #65...#90 = frequencies, #60 = number of chars
:CHARACTER_FREQUENCIES:
Save_Pos
for (#8 = 'A'; #8<='Z'; #8++) {
#@8 = 0 // reset frequency counters
}
#60 = 0 // total number of chars
while (!At_EOL) {
if (Cur_Char >= 'A' && Cur_Char <= 'Z') {
#8 = (Cur_Char-'A'+#26-#7) % #26 + 'A' // decrypted char
#@8++
#60++
}
Char(#5)
}
Restore_Pos
Return
// Calculate Index of Coincidence (Kp).
// in: character frequencies in #65...#90, #60 = num of chars
// out: #51 = IC * 10000
//
:INDEX_OF_COINCIDENCE:
Num_Push(10,15)
#10 = 0
for (#11 = 'A'; #11<='Z'; #11++) {
#10 += (#@11 * (#@11-1)) // Calculate sigma{ni * (ni-1)}
}
#12 = #60 * (#60-1) // #12 = N * (N-1)
#51 = #10 * 10000 / #12 // #51 = Kp * 10000
Num_Pop(10,15)
Return
// Find best and 2nd best Caesar key for each character position of Vigenère key.
// in: #5=step size (key length)
// out: keys in buffer #24
//
:FIND_KEYS:
for (#6 = 0; #6 < #5; #6++) { // for each char position in the key
#30 = -1 // best key char found so far
#31 = -1 // 2nd best key char
#32 = MAXNUM // smallest error found so far
#33 = MAXNUM // 2nd smallest error found so far
for (#7 = 0; #7 < #26; #7++) { // for each possible key value
#35 = 0 // total frequency error compared to English
Buf_Switch(#20) // text being analyzed
Goto_Pos(#6)
Call("CHARACTER_FREQUENCIES")
Buf_Switch(#21) // English frequency table
BOF
for (#8 = 'A'; #8<='Z'; #8++) { // calculate total frequency error
#34 = Num_Eval(SUPPRESS+ADVANCE)
#35 += abs((#@8*100000+50000)/#60-#34)
}
if (#35 < #32) { // found better match?
#33 = #32
#32 = #35
#31 = #30
#30 = #7
} else {
if (#35 < #33) { // 2nd best match?
#33 = #35
#31 = #7
}
}
}
Buf_Switch(#24) // table for key canditates
BOF
Goto_Col(#6+1)
Ins_Char(#30+'A', OVERWRITE) // save the best match
Line(1)
Goto_Col(#6+1)
Ins_Char(#31+'A', OVERWRITE) // save 2nd best match
}
Buf_Switch(#22) // results buffer
Return
// Combine actual key from 1st and 2nd best Caesar key characters
// Use 1st key chars and (possibly) one character from 2nd key.
// #4 = index of the char to be picked from 2nd key, -1 = none.
// #5 = key length
//
:BUILD_KEY:
Buf_Switch(#24) // table for key canditates
BOF
for (#6=0; #6<#5; #6++) { // copy 1st key
#8 = 130 + #6
#@8 = Cur_Char
Char(1)
}
if (#4 >= 0) {
#8 = 130 + #4 // pick one char from 2st key
Line(1)
Goto_Col(#4+1)
#@8 = Cur_Char
}
Buf_Switch(#22) // results buffer
Return
// Decrypt text on current line
// in: #5 = key length, #130...#189 = key
//
:DECRYPT_LINE:
Num_Push(6,9)
#6 = 0
While (!At_EOL) {
#9 = #6+130
#7 = #@9
#8 = (Cur_Char - #7 + #26) % #26 + 'A' // decrypted char
Ins_Char(#8, OVERWRITE)
#6++
if (#6 >= #5) {
#6 = 0
}
}
Num_Pop(6,9)
Return
// Find English words from text on current line
// out: #37 = number of chars matched
//
:FIND_ENGLISH_WORDS:
Buf_Switch(#23) // dictionary
BOF
While (!At_EOF) {
Reg_Copy_Block(12, Cur_Pos, EOL_Pos)
if (Reg_Size(12) > 2) {
Buf_Switch(#22) // buffer for results
BOL
while (Search_Block(@12, Cur_Pos, EOL_Pos, NOERR)) {
Reg_Ins(12, OVERWRITE)
}
Buf_Switch(#23)
}
Line(1, ERRBREAK)
}
Buf_Switch(#22)
BOL
#37 = Search_Block("|V", Cur_Pos, EOL_Pos, ALL+NOERR)
Return |
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #FreeBASIC | FreeBASIC | #include "dir.bi"
Sub listFiles(Byref filespec As String, Byval attrib As Integer)
Dim As Integer count = 0
Dim As String filename = Dir(filespec, attrib)
Do While Len(filename) > 0
count += 1
Print filename
filename = Dir()
Loop
Print !"\nArchives count:"; count
End Sub
Dim As String mylist = "C:\FreeBASIC\""
Print "Directories:"
listFiles(mylist & "*", fbDirectory)
Print
Print "Archive files:"
listFiles(mylist & "*", fbArchive)
Sleep |
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #Gambas | Gambas | Public Sub Main()
Dim sTemp As String
For Each sTemp In RDir("/etc", "*.d")
Print sTemp
Next
End |
http://rosettacode.org/wiki/Water_collected_between_towers | Water collected between towers | Task
In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains,
completely filling all convex enclosures in the chart with water.
9 ██ 9 ██
8 ██ 8 ██
7 ██ ██ 7 ██≈≈≈≈≈≈≈≈██
6 ██ ██ ██ 6 ██≈≈██≈≈≈≈██
5 ██ ██ ██ ████ 5 ██≈≈██≈≈██≈≈████
4 ██ ██ ████████ 4 ██≈≈██≈≈████████
3 ██████ ████████ 3 ██████≈≈████████
2 ████████████████ ██ 2 ████████████████≈≈██
1 ████████████████████ 1 ████████████████████
In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water.
Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart.
Calculate the number of water units that could be collected by bar charts representing each of the following seven series:
[[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]]
See, also:
Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele
Water collected between towers on Stack Overflow, from which the example above is taken)
An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
| #Groovy | Groovy |
Integer waterBetweenTowers(List<Integer> towers) {
// iterate over the vertical axis. There the amount of water each row can hold is
// the number of empty spots, minus the empty spots at the beginning and end
return (1..towers.max()).collect { height ->
// create a string representing the row, '#' for tower material and ' ' for air
// use .trim() to remove spaces at beginning and end and then count remaining spaces
towers.collect({ it >= height ? "#" : " " }).join("").trim().count(" ")
}.sum()
}
tasks = [
[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]
]
tasks.each {
println "$it => total water: ${waterBetweenTowers it}"
}
|
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #FreeBASIC | FreeBASIC |
Randomize Timer
Function dice5() As Integer
Return Int(Rnd * 5) + 1
End Function
Function dice7() As Integer
Dim As Integer temp
Do
temp = dice5() * 5 + dice5() -6
Loop Until temp < 21
Return (temp Mod 7) +1
End Function
Function distCheck(n As Ulongint, delta As Double) As Ulongint
Dim As Ulongint a(n)
Dim As Ulongint maxBucket = 0
Dim As Ulongint minBucket = 1000000
For i As Ulongint = 1 To n
a(i) = dice5()
If a(i) > maxBucket Then maxBucket = a(i)
If a(i) < minBucket Then minBucket = a(i)
Next i
Dim As Ulongint nBuckets = maxBucket + 1
Dim As Ulongint buckets(maxBucket)
For i As Ulongint = 1 To n
buckets(a(i)) += 1
Next i
'check buckets
Dim As Ulongint expected = n / (maxBucket-minBucket+1)
Dim As Ulongint minVal = Int(expected*(1-delta))
Dim As Ulongint maxVal = Int(expected*(1+delta))
expected = Int(expected)
Print "minVal", "Expected", "maxVal"
Print minVal, expected, maxVal
Print "Bucket", "Counter", "pass/fail"
distCheck = true
For i As Ulongint = minBucket To maxBucket
Print i, buckets(i), Iif((minVal > buckets(i)) Or (buckets(i) > maxVal),"fail","")
If (minVal > buckets(i)) Or (buckets(i) > maxVal) Then Return false
Next i
End Function
Dim Shared As Ulongint n = 1000
Print "Testing ";n;" times"
If Not(distCheck(n, 0.05)) Then Print "Test failed" Else Print "Test passed"
Print
n = 10000
Print "Testing ";n;" times"
If Not(distCheck(n, 0.05)) Then Print "Test failed" Else Print "Test passed"
Print
n = 50000
Print "Testing ";n;" times"
If Not(distCheck(n, 0.05)) Then Print "Test failed" Else Print "Test passed"
Print
Sleep
|
http://rosettacode.org/wiki/Voronoi_diagram | Voronoi diagram | A Voronoi diagram is a diagram consisting of a number of sites.
Each Voronoi site s also has a Voronoi cell consisting of all points closest to s.
Task
Demonstrate how to generate and display a Voroni diagram.
See algo K-means++ clustering.
| #Phix | Phix | --
-- demo\rosetta\VoronoiDiagram.exw
-- ===============================
--
-- Can resize, double or halve the number of sites (press +/-), and toggle
-- between Euclid, Manhattan, and Minkowski (press e/m/w).
--
with javascript_semantics
include pGUI.e
Ihandle dlg, canvas, timer
cdCanvas cddbuffer, cdcanvas
-- Stop any current drawing process before starting a new one:
-- Without this it /is/ going to crash, if it tries to finish
-- drawing all 100 sites, when there are now only 50, for eg.
integer timer_active = 0
integer nsites = 200
integer last_width = -1, last_height
sequence siteX, siteY, siteC
enum EUCLID, MANHATTAN, MINKOWSKI
constant dmodes = {"Euclid", "Manhattan", "Minkowski"}
integer dmode = EUCLID,
drawn = 0 -- (last dmode actually shown)
function distance(integer x1, integer y1, integer x2, integer y2)
atom d
x1 -= x2
y1 -= y2
switch dmode do
case EUCLID: d = x1*x1+y1*y1 -- (no need for sqrt)
case MANHATTAN: d = abs(x1)+abs(y1)
case MINKOWSKI: d = power(abs(x1),3)+power(abs(y1),3) -- ("" power(d,1/3))
end switch
return d
end function
sequence nearestIndex, dist
function checkRow(integer site, integer x, integer height)
bool res = false
atom dxSquared
integer x1 = siteX[site]-x
switch dmode do
case EUCLID: dxSquared = x1*x1
case MANHATTAN: dxSquared = abs(x1)
case MINKOWSKI: dxSquared = power(abs(x1),3)
end switch
for y=1 to height do
-- atom dSquared = distance(siteX[site],siteY[site],x,y) -- (sub-optimal..)
atom dSquared
integer y1 = siteY[site]-y
switch dmode do
case EUCLID: dSquared = dxSquared+y1*y1
case MANHATTAN: dSquared = dxSquared+abs(y1)
case MINKOWSKI: dSquared = dxSquared+power(abs(y1),3)
end switch
if dSquared<=dist[x,y] then
dist[x,y] = dSquared
nearestIndex[x,y] = site
res = true
end if
end for
return res
end function
function redraw_cb(Ihandle /*ih*/)
integer {width, height} = IupGetIntInt(canvas, "DRAWSIZE")
if width!=last_width
or height!=last_height
or nsites!=length(siteX) then
if nsites<1 then nsites = 1 end if
siteX = sq_rand(repeat(width,nsites))
siteY = sq_rand(repeat(height,nsites))
siteC = sq_rand(repeat(#FFFFFF,nsites))
last_width = width
last_height = height
drawn = 0
end if
if drawn!=dmode -- (prevent double-draw, and)
and not timer_active then -- (drawing when rug moved..)
drawn = dmode
cdCanvasActivate(cddbuffer)
cdCanvasClear(cddbuffer)
atom t0 = time(), t1
t1 = time()+0.25
nearestIndex = repeat(repeat(1,height),width)
dist = repeat(repeat(0,height),width)
-- fill distance table with distances from the first site
integer x1 = siteX[1], y1 = siteY[1]
for x=1 to width do
for y=1 to height do
dist[x,y] = distance(x1,y1,x,y)
end for
if timer_active then exit end if
end for
--for other towns
for i=2 to nsites do
-- look left
for x=siteX[i] to 1 by -1 do
if not checkRow(i, x, height) then exit end if
end for
-- look right
for x=siteX[i]+1 to width do
if not checkRow(i, x, height) then exit end if
end for
if timer_active then exit end if
if time()>t1 then
IupSetStrAttribute(dlg, "TITLE", "Voronoi diagram (generating - %3.2f%%)",{100*i/nsites})
IupFlush()
t1 = time()+0.25
end if
end for
t1 = time()
for y=1 to height do
integer nearest = nearestIndex[1,y]
integer s = 1
for x=2 to width do
if nearestIndex[x,y]<>nearest then
cdCanvasSetForeground(cddbuffer, siteC[nearest])
cdCanvasLine(cddbuffer, s-1, y-1, x-2, y-1)
nearest = nearestIndex[x,y]
s = x
end if
end for
if timer_active then exit end if
cdCanvasSetForeground(cddbuffer, siteC[nearest])
cdCanvasLine(cddbuffer, s-1, y-1, width-1, y-1)
end for
if not timer_active then
cdCanvasSetForeground(cddbuffer, CD_BLACK)
for i=1 to nsites do
cdCanvasSector(cddbuffer, siteX[i], siteY[i], 2, 2, 0, 360)
end for
cdCanvasFlush(cddbuffer)
IupSetStrAttribute(dlg, "TITLE", "Voronoi diagram - %s, %dx%d, %d sites, %3.2fs",
{dmodes[dmode],width,height,nsites,time()-t0})
end if
end if
return IUP_DEFAULT
end function
function map_cb(Ihandle ih)
cdcanvas = cdCreateCanvas(CD_IUP, ih)
cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
cdCanvasSetBackground(cddbuffer, CD_WHITE)
cdCanvasSetForeground(cddbuffer, CD_BLACK)
return IUP_DEFAULT
end function
function key_cb(Ihandle /*ih*/, atom c)
if c=K_ESC then return IUP_CLOSE end if
integer wasdmode = dmode
switch c do
case '+': nsites *= 2
case '-': nsites = max(floor(nsites/2),1)
case 'E','e': dmode = EUCLID
case 'M','m': dmode = MANHATTAN
case 'W','w': dmode = MINKOWSKI
end switch
if dmode!=wasdmode
or nsites!=length(siteX) then
-- give any current drawing process 0.1s to abandon:
timer_active = 1
IupStoreAttribute(timer, "RUN", "YES")
-- IupUpdate(canvas)
end if
return IUP_CONTINUE
end function
function timer_cb(Ihandle /*ih*/)
timer_active = 0
IupStoreAttribute(timer, "RUN", "NO")
IupUpdate(canvas)
return IUP_IGNORE
end function
procedure main()
IupOpen()
canvas = IupCanvas("RASTERSIZE=600x400")
IupSetCallbacks(canvas, {"MAP_CB", Icallback("map_cb"),
"ACTION", Icallback("redraw_cb")})
timer = IupTimer(Icallback("timer_cb"), 100, 0) -- (inactive)
dlg = IupDialog(canvas,`TITLE="Voronoi diagram"`)
IupSetCallback(dlg, "KEY_CB", Icallback("key_cb"))
IupShow(dlg)
IupSetAttribute(canvas, "RASTERSIZE", NULL) -- release the minimum limitation
if platform()!=JS then
IupMainLoop()
IupClose()
end if
end procedure
main()
|
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test | Verify distribution uniformity/Chi-squared test | Task
Write a function to verify that a given distribution of values is uniform by using the
χ
2
{\displaystyle \chi ^{2}}
test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%).
The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce.
Reference
an entry at the MathWorld website: chi-squared distribution.
| #Ada | Ada | package Chi_Square is
type Flt is digits 18;
type Bins_Type is array(Positive range <>) of Natural;
function Distance(Bins: Bins_Type) return Flt;
end Chi_Square; |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test | Verify distribution uniformity/Chi-squared test | Task
Write a function to verify that a given distribution of values is uniform by using the
χ
2
{\displaystyle \chi ^{2}}
test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%).
The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce.
Reference
an entry at the MathWorld website: chi-squared distribution.
| #C | C | #include <stdlib.h>
#include <stdio.h>
#include <math.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
typedef double (* Ifctn)( double t);
/* Numerical integration method */
double Simpson3_8( Ifctn f, double a, double b, int N)
{
int j;
double l1;
double h = (b-a)/N;
double h1 = h/3.0;
double sum = f(a) + f(b);
for (j=3*N-1; j>0; j--) {
l1 = (j%3)? 3.0 : 2.0;
sum += l1*f(a+h1*j) ;
}
return h*sum/8.0;
}
#define A 12
double Gamma_Spouge( double z )
{
int k;
static double cspace[A];
static double *coefs = NULL;
double accum;
double a = A;
if (!coefs) {
double k1_factrl = 1.0;
coefs = cspace;
coefs[0] = sqrt(2.0*M_PI);
for(k=1; k<A; k++) {
coefs[k] = exp(a-k) * pow(a-k,k-0.5) / k1_factrl;
k1_factrl *= -k;
}
}
accum = coefs[0];
for (k=1; k<A; k++) {
accum += coefs[k]/(z+k);
}
accum *= exp(-(z+a)) * pow(z+a, z+0.5);
return accum/z;
}
double aa1;
double f0( double t)
{
return pow(t, aa1)*exp(-t);
}
double GammaIncomplete_Q( double a, double x)
{
double y, h = 1.5e-2; /* approximate integration step size */
/* this cuts off the tail of the integration to speed things up */
y = aa1 = a-1;
while((f0(y) * (x-y) > 2.0e-8) && (y < x)) y += .4;
if (y>x) y=x;
return 1.0 - Simpson3_8( &f0, 0, y, (int)(y/h))/Gamma_Spouge(a);
} |
http://rosettacode.org/wiki/Verhoeff_algorithm | Verhoeff algorithm | Description
The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code.
As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here.
Task
Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable.
The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them.
Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example.
Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are.
Display digit by digit calculations for the first two integers but not for the third.
Related task
Damm algorithm
| #jq | jq | def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;
def d: [
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 0, 6, 7, 8, 9, 5],
[2, 3, 4, 0, 1, 7, 8, 9, 5, 6],
[3, 4, 0, 1, 2, 8, 9, 5, 6, 7],
[4, 0, 1, 2, 3, 9, 5, 6, 7, 8],
[5, 9, 8, 7, 6, 0, 4, 3, 2, 1],
[6, 5, 9, 8, 7, 1, 0, 4, 3, 2],
[7, 6, 5, 9, 8, 2, 1, 0, 4, 3],
[8, 7, 6, 5, 9, 3, 2, 1, 0, 4],
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
];
def inv: [0, 4, 3, 2, 1, 5, 6, 7, 8, 9];
def p: [
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 5, 7, 6, 2, 8, 3, 0, 9, 4],
[5, 8, 0, 3, 7, 9, 6, 1, 4, 2],
[8, 9, 1, 6, 0, 4, 3, 5, 2, 7],
[9, 4, 5, 3, 1, 2, 6, 8, 7, 0],
[4, 2, 8, 6, 5, 7, 3, 9, 0, 1],
[2, 7, 9, 3, 8, 0, 6, 4, 1, 5],
[7, 0, 4, 6, 9, 1, 3, 2, 5, 8]
];
# Output: an object: {emit, c}
def verhoeff($s; $validate; $table):
{emit:
(if $table then
["\(if $validate then "Validation" else "Check digit" end) calculations for '\($s)':\n",
" i nᵢ p[i,nᵢ] c",
"------------------"]
else []
end),
s: (if $validate then $s else $s + "0" end),
c: 0 }
| ((.s|length) - 1) as $le
| reduce range($le; -1; -1) as $i (.;
(.s[$i:$i+1]|explode[] - 48) as $ni
| (p[($le-$i) % 8][$ni]) as $pi
| .c = d[.c][$pi]
| if $table
then .emit += ["\($le-$i|lpad(2)) \($ni) \($pi) \(.c)"]
else .
end )
| if $table and ($validate|not)
then .emit += ["\ninv[\(.c)] = \(inv[.c])"]
else .
end
| .c = (if $validate then (.c == 0) else inv[.c] end);
def sts: [
["236", true],
["12345", true],
["123456789012", false]];
def task:
sts[]
| . as $st
| verhoeff($st[0]; false; $st[1]) as {c: $c, emit: $emit}
| $emit[],
"\nThe check digit for '\($st[0])' is '\($c)'\n",
( ($st[0] + ($c|tostring)), ($st[0] + "9")
| . as $stc
| verhoeff($stc; true; $st[1]) as {emit: $emit, c: $v}
| (if $v then "correct" else "incorrect" end) as $v
| $emit[],
"\nThe validation for '\($stc)' is \($v).\n" );
task |
http://rosettacode.org/wiki/Verhoeff_algorithm | Verhoeff algorithm | Description
The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code.
As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here.
Task
Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable.
The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them.
Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example.
Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are.
Display digit by digit calculations for the first two integers but not for the third.
Related task
Damm algorithm
| #Julia | Julia | const multiplicationtable = [
0 1 2 3 4 5 6 7 8 9;
1 2 3 4 0 6 7 8 9 5;
2 3 4 0 1 7 8 9 5 6;
3 4 0 1 2 8 9 5 6 7;
4 0 1 2 3 9 5 6 7 8;
5 9 8 7 6 0 4 3 2 1;
6 5 9 8 7 1 0 4 3 2;
7 6 5 9 8 2 1 0 4 3;
8 7 6 5 9 3 2 1 0 4;
9 8 7 6 5 4 3 2 1 0]
const permutationtable = [
0 1 2 3 4 5 6 7 8 9;
1 5 7 6 2 8 3 0 9 4;
5 8 0 3 7 9 6 1 4 2;
8 9 1 6 0 4 3 5 2 7;
9 4 5 3 1 2 6 8 7 0;
4 2 8 6 5 7 3 9 0 1;
2 7 9 3 8 0 6 4 1 5;
7 0 4 6 9 1 3 2 5 8]
const inv = [0, 4, 3, 2, 1, 5, 6, 7, 8, 9]
"""
verhoeffchecksum(n::Integer, validate=true, terse=true, verbose=false)
Calculate the Verhoeff checksum over `n`.
Terse mode or with single argument: return true if valid (last digit is a correct check digit).
If checksum mode, return the expected correct checksum digit.
If validation mode, return true if last digit checks correctly.
"""
function verhoeffchecksum(n::Integer, validate=true, terse=true, verbose=false)
verbose && println("\n", validate ? "Validation" : "Check digit",
" calculations for '$n':\n\n", " i nᵢ p[i,nᵢ] c\n------------------")
# transform number list
c, dig = 0, reverse(digits(validate ? n : 10 * n))
for i in length(dig):-1:1
ni = dig[i]
p = permutationtable[(length(dig) - i) % 8 + 1, ni + 1]
c = multiplicationtable[c + 1, p + 1]
verbose && println(lpad(length(dig) - i, 2), " $ni $p $c")
end
verbose && !validate && println("\ninv($c) = $(inv[c + 1])")
!terse && println(validate ? "\nThe validation for '$n' is $(c == 0 ?
"correct" : "incorrect")." : "\nThe check digit for '$n' is $(inv[c + 1]).")
return validate ? c == 0 : inv[c + 1]
end
for args in [(236, false, false, true), (2363, true, false, true), (2369, true, false, true),
(12345, false, false, true), (123451, true, false, true), (123459, true, false, true),
(123456789012, false, false), (1234567890120, true, false), (1234567890129, true, false)]
verhoeffchecksum(args...)
end
|
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher | Vigenère cipher | Task
Implement a Vigenère cypher, both encryption and decryption.
The program should handle keys and text of unequal length,
and should capitalize everything and discard non-alphabetic characters.
(If your program handles non-alphabetic characters in another way,
make a note of it.)
Related tasks
Caesar cipher
Rot-13
Substitution Cipher
| #Clojure | Clojure | (ns org.rosettacode.clojure.vigenere
(:require [clojure.string :as string]))
; convert letter to offset from \A
(defn to-num [char] (- (int char) (int \A)))
; convert number to letter, treating it as modulo 26 offset from \A
(defn from-num [num] (char (+ (mod num 26) (int \A))))
; Convert a string to a sequence of just the letters as uppercase chars
(defn to-normalized-seq [str]
(map #'first (re-seq #"[A-Z]" (string/upper-case str))))
; add (op=+) or subtract (op=-) the numerical value of the key letter from the
; text letter.
(defn crypt1 [op text key]
(from-num (apply op (list (to-num text) (to-num key)))))
(defn crypt [op text key]
(let [xcrypt1 (partial #'crypt1 op)]
(apply #'str
(map xcrypt1 (to-normalized-seq text)
(cycle (to-normalized-seq key))))))
; encipher a text
(defn encrypt [plaintext key] (crypt #'+ plaintext key))
; decipher a text
(defn decrypt [ciphertext key] (crypt #'- ciphertext key)) |
http://rosettacode.org/wiki/Visualize_a_tree | Visualize a tree | A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
indented text (à la unix tree command)
nested HTML tables
hierarchical GUI widgets
2D or 3D images
etc.
Task
Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
| #FreeBASIC | FreeBASIC | Dim Shared As Ubyte colores(4) => {7,13,14,3,2}
Sub showTree(n As Integer, A As String)
Dim As Integer i, co = 0, b = 1, col
Dim As String cs = Left(A, 1)
If cs = "" Then Exit Sub
Select Case cs
Case "["
co += 1 : showTree(n + 1, Right(A, Len(A) - 1))
Exit Select
Case "]"
co -= 1 : showTree(n - 1, Right(A, Len(A) - 1))
Exit Select
Case Else
For i = 2 To n
Print " ";
co = n
Next i
Color colores(co) : Print !"\&hc0-"; cs
showTree(n, Right(A, Len(A) - 1))
Exit Select
End Select
End Sub
Cls
showTree(0, "[1[2[3][4[5][6]][7]][8[9]]]")
Print !"\n\n\n"
showTree(0, "[1[2[3[4]]][5[6][7[8][9]]]]")
Sleep |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #Pascal | Pascal | {$H+}
program Walk;
uses SysUtils;
var Res: TSearchRec;
Pattern, Path, Name: String;
FileAttr: LongInt;
Attr: Integer;
begin
Write('File pattern: ');
ReadLn(Pattern); { For example .\*.pas }
Attr := faAnyFile;
if FindFirst(Pattern, Attr, Res) = 0 then
begin
Path := ExtractFileDir(Pattern);
repeat
Name := ConcatPaths([Path, Res.Name]);
FileAttr := FileGetAttr(Name);
if FileAttr and faDirectory = 0 then
begin
{ Do something with file name }
WriteLn(Name);
end
until FindNext(Res) <> 0;
end;
FindClose(Res);
end. |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #Perl | Perl | use 5.010;
opendir my $dh, '/home/foo/bar';
say for grep { /php$/ } readdir $dh;
closedir $dh; |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #Vlang | Vlang | import strings
const encoded =
"MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH" +
"VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD" +
"ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS" +
"FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG" +
"ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ" +
"ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS" +
"JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT" +
"LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST" +
"MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH" +
"QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV" +
"RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW" +
"TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO" +
"SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR" +
"ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX" +
"BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB" +
"BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA" +
"FWAML ZZRXJ EKAHV FASMU LVVUT TGK"
const freq = [
0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
0.00978, 0.02360, 0.00150, 0.01974, 0.00074,
]
fn sum(a []f64) f64 {
mut s := 0.0
for f in a {
s += f
}
return s
}
fn best_match(a []f64) int {
s := sum(a)
mut best_fit, mut best_rotate := 1e100, 0
for rotate in 0..26 {
mut fit := 0.0
for i in 0..26 {
d := a[(i+rotate)%26]/s - freq[i]
fit += d * d / freq[i]
}
if fit < best_fit {
best_fit, best_rotate = fit, rotate
}
}
return best_rotate
}
fn freq_every_nth(msg []int, mut key []u8) f64 {
l := msg.len
interval := key.len
mut out := []f64{len: 26}
mut accu := []f64{len: 26}
for j in 0..interval {
for z in 0..26 {
out[z] = 0.0
}
for i := j; i < l; i += interval {
out[msg[i]]++
}
rot := best_match(out)
key[j] = u8(rot + 65)
for i := 0; i < 26; i++ {
accu[i] += out[(i+rot)%26]
}
}
s := sum(accu)
mut ret := 0.0
for i := 0; i < 26; i++ {
d := accu[i]/s - freq[i]
ret += d * d / freq[i]
}
return ret
}
fn decrypt(text string, key string) string {
mut sb := strings.new_builder(128)
mut ki := 0
for c in text {
if c < 'A'[0] || c > 'Z'[0] {
continue
}
ci := (c - key[ki] + 26) % 26
sb.write_rune(ci + 65)
ki = (ki + 1) % key.len
}
return sb.str()
}
fn main() {
enc := encoded.replace(" ", "")
mut txt := []int{len: enc.len}
for i in 0..txt.len {
txt[i] = int(enc[i] - 'A'[0])
}
mut best_fit, mut best_key := 1e100, ""
println(" Fit Length Key")
for j := 1; j <= 26; j++ {
mut key := []u8{len: j}
fit := freq_every_nth(txt, mut key)
s_key := key.bytestr()
print("${fit:.6} ${j:2} $s_key")
if fit < best_fit {
best_fit, best_key = fit, s_key
print(" <--- best so far")
}
println('')
}
println("\nBest key : $best_key")
println("\nDecrypted text:\n${decrypt(enc, best_key)}")
} |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #Wren | Wren | import "/math" for Nums
import "/trait" for Stepped
import "/str" for Char, Str
import "/fmt" for Fmt
var encoded =
"MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH" +
"VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD" +
"ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS" +
"FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG" +
"ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ" +
"ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS" +
"JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT" +
"LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST" +
"MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH" +
"QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV" +
"RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW" +
"TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO" +
"SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR" +
"ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX" +
"BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB" +
"BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA" +
"FWAML ZZRXJ EKAHV FASMU LVVUT TGK"
var freq = [
0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
0.00978, 0.02360, 0.00150, 0.01974, 0.00074
]
var bestMatch = Fn.new { |a|
var sum = Nums.sum(a)
var bestFit = 1e100
var bestRotate = 0
for (rotate in 0..25) {
var fit = 0
for (i in 0..25) {
var d = a[(i + rotate) % 26] / sum - freq[i]
fit = fit + d * d / freq[i]
}
if (fit < bestFit) {
bestFit = fit
bestRotate = rotate
}
}
return bestRotate
}
var freqEveryNth = Fn.new { |msg, key|
var len = msg.count
var interval = key.count
var out = List.filled(26, 0)
var accu = List.filled(26, 0)
for (j in 0...interval) {
for (i in 0..25) out[i] = 0
for (i in Stepped.new(j...len, interval)) out[msg[i]] = out[msg[i]] + 1
var rot = bestMatch.call(out)
key[j] = Char.fromCode(rot + 65)
for (i in 0..25) accu[i] = accu[i] + out[(i + rot) % 26]
}
var sum = Nums.sum(accu)
var ret = 0
for (i in 0..25) {
var d = accu[i] / sum - freq[i]
ret = ret + d * d / freq[i]
}
return ret
}
var decrypt = Fn.new { |text, key|
var sb = ""
var ki = 0
for (c in text) {
if (Char.isAsciiUpper(c)) {
var ci = (c.bytes[0] - key[ki].bytes[0] + 26) % 26
sb = sb + Char.fromCode(ci + 65)
ki = (ki + 1) % key.count
}
}
return sb
}
var enc = encoded.replace(" ", "")
var txt = List.filled(enc.count, 0)
for (i in 0...txt.count) txt[i] = Char.code(enc[i]) - 65
var bestFit = 1e100
var bestKey = ""
var f = "$f $2d $s"
System.print(" Fit Length Key")
for (j in 1..26) {
var key = List.filled(j, "")
var fit = freqEveryNth.call(txt, key)
var sKey = key.join("")
Fmt.write(f, fit, j, sKey)
if (fit < bestFit) {
bestFit = fit
bestKey = sKey
System.write(" <--- best so far")
}
System.print()
}
System.print()
System.print("Best key : %(bestKey)")
System.print("\nDecrypted text:\n%(decrypt.call(enc, bestKey))") |
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #GAP | GAP | Walk := function(name, op)
local dir, file, e;
dir := Directory(name);
for e in SortedList(DirectoryContents(name)) do
file := Filename(dir, e);
if IsDirectoryPath(file) then
if not (e in [".", ".."]) then
Walk(file, op);
fi;
else
op(file);
fi;
od;
end;
# This will print filenames
Walk(".", Display); |
http://rosettacode.org/wiki/Walk_a_directory/Recursively | Walk a directory/Recursively | Task
Walk a given directory tree and print files matching a given pattern.
Note: This task is for recursive methods. These tasks should read an entire directory tree, not a single directory.
Note: Please be careful when running any code examples found here.
Related task
Walk a directory/Non-recursively (read a single directory).
| #Go | Go | package main
import (
"fmt"
"os"
"path/filepath"
)
func VisitFile(fp string, fi os.FileInfo, err error) error {
if err != nil {
fmt.Println(err) // can't walk here,
return nil // but continue walking elsewhere
}
if fi.IsDir() {
return nil // not a file. ignore.
}
matched, err := filepath.Match("*.mp3", fi.Name())
if err != nil {
fmt.Println(err) // malformed pattern
return err // this is fatal.
}
if matched {
fmt.Println(fp)
}
return nil
}
func main() {
filepath.Walk("/", VisitFile)
} |
http://rosettacode.org/wiki/Water_collected_between_towers | Water collected between towers | Task
In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains,
completely filling all convex enclosures in the chart with water.
9 ██ 9 ██
8 ██ 8 ██
7 ██ ██ 7 ██≈≈≈≈≈≈≈≈██
6 ██ ██ ██ 6 ██≈≈██≈≈≈≈██
5 ██ ██ ██ ████ 5 ██≈≈██≈≈██≈≈████
4 ██ ██ ████████ 4 ██≈≈██≈≈████████
3 ██████ ████████ 3 ██████≈≈████████
2 ████████████████ ██ 2 ████████████████≈≈██
1 ████████████████████ 1 ████████████████████
In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water.
Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart.
Calculate the number of water units that could be collected by bar charts representing each of the following seven series:
[[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]]
See, also:
Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele
Water collected between towers on Stack Overflow, from which the example above is taken)
An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
| #Haskell | Haskell | import Data.Vector.Unboxed (Vector)
import qualified Data.Vector.Unboxed as V
waterCollected :: Vector Int -> Int
waterCollected =
V.sum . -- Sum of the water depths over each of
V.filter (> 0) . -- the columns that are covered by some water.
(V.zipWith (-) =<< -- Where coverages are differences between:
(V.zipWith min . -- the lower water level in each case of:
V.scanl1 max <*> -- highest wall to left, and
V.scanr1 max)) -- highest wall to right.
main :: IO ()
main =
mapM_
(print . waterCollected . V.fromList)
[ [1, 5, 3, 7, 2]
, [5, 3, 7, 2, 6, 4, 5, 9, 1, 2]
, [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1]
, [5, 5, 5, 5]
, [5, 6, 7, 8]
, [8, 7, 7, 6]
, [6, 7, 10, 7, 6]
] |
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive | Verify distribution uniformity/Naive | This task is an adjunct to Seven-sided dice from five-sided dice.
Task
Create a function to check that the random integers returned from a small-integer generator function have uniform distribution.
The function should take as arguments:
The function (or object) producing random integers.
The number of times to call the integer generator.
A 'delta' value of some sort that indicates how close to a flat distribution is close enough.
The function should produce:
Some indication of the distribution achieved.
An 'error' if the distribution is not flat enough.
Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice).
See also:
Verify distribution uniformity/Chi-squared test
| #Go | Go | package main
import (
"fmt"
"math"
"math/rand"
"time"
)
// "given"
func dice5() int {
return rand.Intn(5) + 1
}
// function specified by task "Seven-sided dice from five-sided dice"
func dice7() (i int) {
for {
i = 5*dice5() + dice5()
if i < 27 {
break
}
}
return (i / 3) - 1
}
// function specified by task "Verify distribution uniformity/Naive"
//
// Parameter "f" is expected to return a random integer in the range 1..n.
// (Values out of range will cause an unceremonious crash.)
// "Max" is returned as an "indication of distribution achieved."
// It is the maximum delta observed from the count representing a perfectly
// uniform distribution.
// Also returned is a boolean, true if "max" is less than threshold
// parameter "delta."
func distCheck(f func() int, n int,
repeats int, delta float64) (max float64, flatEnough bool) {
count := make([]int, n)
for i := 0; i < repeats; i++ {
count[f()-1]++
}
expected := float64(repeats) / float64(n)
for _, c := range count {
max = math.Max(max, math.Abs(float64(c)-expected))
}
return max, max < delta
}
// Driver, produces output satisfying both tasks.
func main() {
rand.Seed(time.Now().UnixNano())
const calls = 1000000
max, flatEnough := distCheck(dice7, 7, calls, 500)
fmt.Println("Max delta:", max, "Flat enough:", flatEnough)
max, flatEnough = distCheck(dice7, 7, calls, 500)
fmt.Println("Max delta:", max, "Flat enough:", flatEnough)
} |
http://rosettacode.org/wiki/Voronoi_diagram | Voronoi diagram | A Voronoi diagram is a diagram consisting of a number of sites.
Each Voronoi site s also has a Voronoi cell consisting of all points closest to s.
Task
Demonstrate how to generate and display a Voroni diagram.
See algo K-means++ clustering.
| #Processing | Processing | void setup() {
size(500, 500);
generateVoronoiDiagram(width, height, 25);
saveFrame("VoronoiDiagram.png");
}
void generateVoronoiDiagram(int w, int h, int num_cells) {
int nx[] = new int[num_cells];
int ny[] = new int[num_cells];
int nr[] = new int[num_cells];
int ng[] = new int[num_cells];
int nb[] = new int[num_cells];
for (int n=0; n < num_cells; n++) {
nx[n]=int(random(w));
ny[n]=int(random(h));
nr[n]=int(random(256));
ng[n]=int(random(256));
nb[n]=int(random(256));
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
float dmin = dist(0, 0, w - 1, h - 1);
int j = -1;
for (int i=0; i < num_cells; i++) {
float d = dist(0, 0, nx[i] - x, ny[i] - y);
if (d < dmin) {
dmin = d;
j = i;
}
}
set(x, y, color(nr[j], ng[j], nb[j]));
}
}
}
}
|
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test | Verify distribution uniformity/Chi-squared test | Task
Write a function to verify that a given distribution of values is uniform by using the
χ
2
{\displaystyle \chi ^{2}}
test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%).
The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce.
Reference
an entry at the MathWorld website: chi-squared distribution.
| #D | D | import std.stdio, std.algorithm, std.mathspecial;
real x2Dist(T)(in T[] data) pure nothrow @safe @nogc {
immutable avg = data.sum / data.length;
immutable sqs = reduce!((a, b) => a + (b - avg) ^^ 2)(0.0L, data);
return sqs / avg;
}
real x2Prob(in real dof, in real distance) pure nothrow @safe @nogc {
return gammaIncompleteCompl(dof / 2, distance / 2);
}
bool x2IsUniform(T)(in T[] data, in real significance=0.05L)
pure nothrow @safe @nogc {
return x2Prob(data.length - 1.0L, x2Dist(data)) > significance;
}
void main() {
immutable dataSets = [[199809, 200665, 199607, 200270, 199649],
[522573, 244456, 139979, 71531, 21461]];
writefln(" %4s %12s %12s %8s %s",
"dof", "distance", "probability", "Uniform?", "dataset");
foreach (immutable ds; dataSets) {
immutable dof = ds.length - 1;
immutable dist = ds.x2Dist;
immutable prob = x2Prob(dof, dist);
writefln("%4d %12.3f %12.8f %5s %6s",
dof, dist, prob, ds.x2IsUniform ? "YES" : "NO", ds);
}
} |
http://rosettacode.org/wiki/Verhoeff_algorithm | Verhoeff algorithm | Description
The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code.
As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here.
Task
Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable.
The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them.
Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example.
Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are.
Display digit by digit calculations for the first two integers but not for the third.
Related task
Damm algorithm
| #Nim | Nim | import strformat
const
D = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 0, 6, 7, 8, 9, 5],
[2, 3, 4, 0, 1, 7, 8, 9, 5, 6],
[3, 4, 0, 1, 2, 8, 9, 5, 6, 7],
[4, 0, 1, 2, 3, 9, 5, 6, 7, 8],
[5, 9, 8, 7, 6, 0, 4, 3, 2, 1],
[6, 5, 9, 8, 7, 1, 0, 4, 3, 2],
[7, 6, 5, 9, 8, 2, 1, 0, 4, 3],
[8, 7, 6, 5, 9, 3, 2, 1, 0, 4],
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]]
Inv = [0, 4, 3, 2, 1, 5, 6, 7, 8, 9]
P = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 5, 7, 6, 2, 8, 3, 0, 9, 4],
[5, 8, 0, 3, 7, 9, 6, 1, 4, 2],
[8, 9, 1, 6, 0, 4, 3, 5, 2, 7],
[9, 4, 5, 3, 1, 2, 6, 8, 7, 0],
[4, 2, 8, 6, 5, 7, 3, 9, 0, 1],
[2, 7, 9, 3, 8, 0, 6, 4, 1, 5],
[7, 0, 4, 6, 9, 1, 3, 2, 5, 8]]
type Digit = 0..9
proc verhoeff[T: SomeInteger](n: T; validate, verbose = false): T =
## Compute or validate a check digit.
## Return the check digit if computation or the number with the check digit
## removed if validation.
## If not in verbose mode, an exception is raised if validation failed.
doAssert n >= 0, "Argument must not be negative."
# Extract digits.
var digits: seq[Digit]
if not validate: digits.add 0
var val = n
while val != 0:
digits.add val mod 10
val = val div 10
if verbose:
echo if validate: &"Check digit validation for {n}:" else: &"Check digit computation for {n}:"
echo " i ni p(i, ni) c"
# Compute c.
var c = 0
for i, ni in digits:
let p = P[i mod 8][ni]
c = D[c][p]
if verbose: echo &"{i:2} {ni} {p} {c}"
if validate:
if verbose:
let verb = if c == 0: "is" else: "is not"
echo &"Validation {verb} successful.\n"
elif c != 0:
raise newException(ValueError, &"Check digit validation failed for {n}.")
result = n div 10
else:
result = Inv[c]
if verbose: echo &"The check digit for {n} is {result}.\n"
for n in [236, 12345]:
let d = verhoeff(n, false, true)
discard verhoeff(10 * n + d, true, true)
discard verhoeff(10 * n + 9, true, true)
let n = 123456789012
let d = verhoeff(n)
echo &"Check digit for {n} is {d}."
discard verhoeff(10 * n + d, true)
echo &"Check digit validation was successful for {10 * n + d}."
try:
discard verhoeff(10 * n + 9, true)
except ValueError:
echo getCurrentExceptionMsg() |
http://rosettacode.org/wiki/Verhoeff_algorithm | Verhoeff algorithm | Description
The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code.
As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here.
Task
Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable.
The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them.
Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example.
Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are.
Display digit by digit calculations for the first two integers but not for the third.
Related task
Damm algorithm
| #Perl | Perl | #!/usr/bin/perl
use strict; # https://rosettacode.org/wiki/Verhoeff_algorithm
use warnings;
my @inv = qw(0 4 3 2 1 5 6 7 8 9);
my @d = map [ split ], split /\n/, <<END;
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 6 7 8 9 5
2 3 4 0 1 7 8 9 5 6
3 4 0 1 2 8 9 5 6 7
4 0 1 2 3 9 5 6 7 8
5 9 8 7 6 0 4 3 2 1
6 5 9 8 7 1 0 4 3 2
7 6 5 9 8 2 1 0 4 3
8 7 6 5 9 3 2 1 0 4
9 8 7 6 5 4 3 2 1 0
END
my @p = map [ split ], split /\n/, <<END;
0 1 2 3 4 5 6 7 8 9
1 5 7 6 2 8 3 0 9 4
5 8 0 3 7 9 6 1 4 2
8 9 1 6 0 4 3 5 2 7
9 4 5 3 1 2 6 8 7 0
4 2 8 6 5 7 3 9 0 1
2 7 9 3 8 0 6 4 1 5
7 0 4 6 9 1 3 2 5 8
END
my $debug;
sub generate
{
local $_ = shift() . 0;
my $c = my $i = 0;
my ($n, $p);
$debug and print "i ni d(c,p(i%8,ni)) c\n";
while( length )
{
$c = $d[ $c ][ $p = $p[ $i % 8 ][ $n = chop ] ];
$debug and printf "%d%3d%7d%10d\n", $i, $n, $p, $c;
$i++;
}
return $inv[ $c ];
}
sub validate { shift =~ /(\d+)(\d)/ and $2 == generate($1) }
for ( 236, 12345, 123456789012 )
{
print "testing $_\n";
$debug = length() < 6;
my $checkdigit = generate($_);
print "check digit for $_ is $checkdigit\n";
$debug = 0;
for my $cd ( $checkdigit, 9 )
{
print "$_$cd is ", validate($_ . $cd) ? '' : 'not ', "valid\n";
}
print "\n";
} |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher | Vigenère cipher | Task
Implement a Vigenère cypher, both encryption and decryption.
The program should handle keys and text of unequal length,
and should capitalize everything and discard non-alphabetic characters.
(If your program handles non-alphabetic characters in another way,
make a note of it.)
Related tasks
Caesar cipher
Rot-13
Substitution Cipher
| #CoffeeScript | CoffeeScript | # Simple helper since charCodeAt is quite long to write.
code = (char) -> char.charCodeAt()
encrypt = (text, key) ->
res = []
j = 0
for c in text.toUpperCase()
continue if c < 'A' or c > 'Z'
res.push ((code c) + (code key[j]) - 130) % 26 + 65
j = ++j % key.length
String.fromCharCode res...
decrypt = (text, key) ->
res = []
j = 0
for c in text.toUpperCase()
continue if c < 'A' or c > 'Z'
res.push ((code c) - (code key[j]) + 26) % 26 + 65
j = ++j % key.length
String.fromCharCode res...
# Trying it out
key = "VIGENERECIPHER"
original = "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!"
encrypted = encrypt original, key
console.log "Original : #{original}"
console.log "Encrypted : #{encrypted}"
console.log "Decrypted : #{decrypt encrypted, key}" |
http://rosettacode.org/wiki/Visualize_a_tree | Visualize a tree | A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
indented text (à la unix tree command)
nested HTML tables
hierarchical GUI widgets
2D or 3D images
etc.
Task
Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
| #Go | Go | package main
import (
"encoding/json"
"fmt"
"log"
)
type Node struct {
Name string
Children []*Node
}
func main() {
tree := &Node{"root", []*Node{
&Node{"a", []*Node{
&Node{"d", nil},
&Node{"e", []*Node{
&Node{"f", nil},
}}}},
&Node{"b", nil},
&Node{"c", nil},
}}
b, err := json.MarshalIndent(tree, "", " ")
if err != nil {
log.Fatal(err)
}
fmt.Println(string(b))
} |
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #Phix | Phix | puts(1,join(columnize(dir("*.txt"))[D_NAME],"\n"))
|
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively | Walk a directory/Non-recursively | Task
Walk a given directory and print the names of files matching a given pattern.
(How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?)
Note: This task is for non-recursive methods. These tasks should read a single directory, not an entire directory tree.
Note: Please be careful when running any code presented here.
Related task
Walk Directory Tree (read entire directory tree).
| #PHP | PHP | $pattern = 'php';
$dh = opendir('c:/foo/bar'); // Or '/home/foo/bar' for Linux
while (false !== ($file = readdir($dh)))
{
if ($file != '.' and $file != '..')
{
if (preg_match("/$pattern/", $file))
{
echo "$file matches $pattern\n";
}
}
}
closedir($dh); |
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher/Cryptanalysis | Vigenère cipher/Cryptanalysis | Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
Letter frequencies for English can be found here.
Specifics for this task:
Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
Assume the plaintext is written in English.
Find and output the key.
Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm. | #zkl | zkl | var[const] uppercase=["A".."Z"].pump(String),
english_frequences=T( // A..Z
0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
0.00978, 0.02360, 0.00150, 0.01974, 0.00074);
fcn vigenere_decrypt(target_freqs, input){ // ( (float,...), string)
nchars,ordA :=uppercase.len(),"A".toAsc();
sorted_targets:=target_freqs.sort();
frequency:='wrap(input){ // (n,n,n,n,...), n is ASCII index ("A"==65)
result:=uppercase.pump(List(),List.fp1(0)); // ( ("A",0),("B",0) ...)
foreach c in (input){ result[c - ordA][1] += 1 }
result // --> mutable list of mutable lists ( ("A",Int)...("Z",Int) )
};
correlation:='wrap(input){ // (n,n,n,n,...), n is ASCII index ("A"==65)
result,freq:=0.0, frequency(input);
freq.sort(fcn([(_,a)],[(_,b)]){ a<b }); // sort letters by frequency
foreach i,f in (freq.enumerate()){ result+=sorted_targets[i]*f[1] }
result // -->Float
};
cleaned:=input.toUpper().pump(List,uppercase.holds,Void.Filter,"toAsc");
best_len,best_corr := 0,-100.0;
# Assume that if there are less than 20 characters
# per column, the key's too long to guess
foreach i in ([2..cleaned.len()/20]){
pieces:=(i).pump(List,List.copy); // ( (),() ... )
foreach c in (cleaned){ pieces[__cWalker.idx%i].append(c) }
# The correlation seems to increase for smaller
# pieces/longer keys, so weigh against them a little
corr:=-0.5*i + pieces.apply(correlation).sum(0.0);
if(corr>best_corr) best_len,best_corr=i,corr;
}
if(best_len==0) return("Text is too short to analyze", "");
pieces:=best_len.pump(List,List.copy);
foreach c in (cleaned){ pieces[__cWalker.idx%best_len].append(c) }
key,freqs := "",pieces.apply(frequency);
foreach fr in (freqs){
fr.sort(fcn([(_,a)],[(_,b)]){ a>b }); // reverse sort by freq
m,max_corr := 0,0.0;
foreach j in (nchars){
corr,c := 0.0,ordA + j;
foreach frc in (fr){
d:=(frc[0].toAsc() - c + nchars) % nchars;
corr+=target_freqs[d]*frc[1];
if(corr>max_corr) m,max_corr=j,corr;
}
}
key+=(m + ordA).toChar();
}
cleaned.enumerate().apply('wrap([(i,c])){
( (c - (key[i%best_len]).toAsc() + nchars)%nchars + ordA ).toChar()
}).concat() :
T(key,_);
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.