task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Groovy
Groovy
new File('.').eachFileRecurse { if (it.name =~ /.*\.txt/) println it; }
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#GUISS
GUISS
Start,Find,Files and Folders,Dropdown: Look in>My Documents, Inputbox: filename>m*.txt,Button:Search
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#J
J
collectLevels =: >./\ <. >./\. NB. collect levels after filling waterLevels=: collectLevels - ] NB. water levels for each tower collectedWater=: +/@waterLevels NB. sum the units of water collected printTowers =: ' ' , [: |.@|: '#~' #~ ] ,. waterLevels NB. print a nice graph of towers and water
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#6502_Assembly
6502 Assembly
LDA #3 JSR $FE95
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Haskell
Haskell
import System.Random import Data.List import Control.Monad import Control.Arrow Β  distribCheck :: IO Int -> Int -> Int -> IO [(Int,(Int,Bool))] distribCheck f n d = do nrs <- replicateM n f let group = takeWhile (not.null) $ unfoldr (Just. (partition =<< (==). head)) nrs avg = (fromIntegral n) / fromIntegral (length group) ul = round $ (100 + fromIntegral d)/100 * avg ll = round $ (100 - fromIntegral d)/100 * avg return $ map (head &&& (id &&& liftM2 (&&) (>ll)(<ul)).length) group
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#Prolog
Prolog
:- dynamic pt/6. voronoi :- V is random(20) + 20, retractall(pt(_,_,_,_)), forall(between(1, V, I), ( X is random(390) + 5, Y is random(390) + 5, R is random(65535), G is random(65535), B is random(65535), assertz(pt(I,X,Y, R, G, B)) )), voronoi(manhattan, V), voronoi(euclide, V), voronoi(minkowski_3, V). Β  voronoi(Distance, V) :- sformat(A, 'Voronoi 400X400 ~w ~w', [V, Distance]), new(D, window(A)), send(D, size, size(400,400)), new(Img, image(@nil, width := 400, height := 400 , kind := pixmap)), Β  % get the list of the sites bagof((N, X, Y), R^G^B^pt(N, X, Y, R, G, B), L), Β  forall(between(0,399, I), forall(between(0,399, J), ( get_nearest_site(V, Distance, I, J, L, S), pt(S, _, _, R, G, B), send(Img, pixel(I, J, colour(@default, R, G, B)))))), Β  new(Bmp, bitmap(Img)), send(D, display, Bmp, point(0,0)), send(D, open). Β  % define predicatea foldl (functionnal spirit) foldl([], _Pred, R, R). Β  foldl([H | T], Pred, Acc, R) :- call(Pred, H, Acc, R1), foldl(T, Pred, R1, R). Β  % predicate for foldl compare(Distance, XP, YP, (N, X, Y), (D, S), R) :- call(Distance, XP, YP, X, Y, DT), ( DT < D -> R = (DT, N) ; R = (D, S)). Β  % use of a fake site for the init of foldl get_nearest_site(Distance, I, J, L, S) :- foldl(L, compare(Distance, I, J), (65535, nil), (_, S)). Β  Β  Β  manhattan(X1, Y1, X2, Y2, D) :- D is abs(X2 - X1) + abs(Y2-Y1). Β  euclide(X1, Y1, X2, Y2, D) :- D is sqrt((X2 - X1)**2 + (Y2-Y1)**2). Β  minkowski_3(X1, Y1, X2, Y2, D) :- D is (abs(X2 - X1)**3 + abs(Y2-Y1)**3)**0.33. Β 
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Elixir
Elixir
defmodule Verify do defp gammaInc_Q(a, x) do a1 = a-1 f0 = fn t ->Β :math.pow(t, a1) *Β :math.exp(-t) end df0 = fn t -> (a1-t) *Β :math.pow(t, a-2) *Β :math.exp(-t) end y = while_loop(f0, x, a1) n = trunc(y / 3.0e-4) h = y / n hh = 0.5 * h sum = Enum.reduce(n-1 .. 0, 0, fn j,sum -> t = h * j sum + f0.(t) + hh * df0.(t) end) h * sum / gamma_spounge(a, make_coef) end Β  defp while_loop(f, x, y) do if f.(y)*(x-y) > 2.0e-8 and y < x, do: while_loop(f, x, y+0.3), else: min(x, y) end Β  @a 12 defp make_coef do coef0 = [:math.sqrt(2.0 *Β :math.pi)] {_, coef} = Enum.reduce(1..@a-1, {1.0, coef0}, fn k,{k1_factrl,c} -> h =Β :math.exp(@a-k) *Β :math.pow(@a-k, k-0.5) / k1_factrl {-k1_factrl*k, [h | c]} end) Enum.reverse(coef) |> List.to_tuple end Β  defp gamma_spounge(z, coef) do accm = Enum.reduce(1..@a-1, elem(coef,0), fn k,res -> res + elem(coef,k) / (z+k) end) accm *Β :math.exp(-(z+@a)) *Β :math.pow(z+@a, z+0.5) / z end Β  def chi2UniformDistance(dataSet) do expected = Enum.sum(dataSet) / length(dataSet) Enum.reduce(dataSet, 0, fn d,sum -> sum + (d-expected)*(d-expected) end) / expected end Β  def chi2Probability(dof, distance) do 1.0 - gammaInc_Q(0.5*dof, 0.5*distance) end Β  def chi2IsUniform(dataSet, significance\\0.05) do dof = length(dataSet) - 1 dist = chi2UniformDistance(dataSet) chi2Probability(dof, dist) > significance end end Β  dsets = [ [ 199809, 200665, 199607, 200270, 199649 ], [ 522573, 244456, 139979, 71531, 21461 ] ] Β  Enum.each(dsets, fn ds -> IO.puts "Data set:#{inspect ds}" dof = length(ds) - 1 IO.puts " degrees of freedom: #{dof}" distance = Verify.chi2UniformDistance(ds) Β :io.fwrite " distance: ~.4f~n", [distance] Β :io.fwrite " probability: ~.4f~n", [Verify.chi2Probability(dof, distance)] Β :io.fwrite " uniform? ~s~n", [(if Verify.chi2IsUniform(ds), do: "Yes", else: "No")] end)
http://rosettacode.org/wiki/Verhoeff_algorithm
Verhoeff algorithm
Description The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code. As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here. Task Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable. The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them. Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example. Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are. Display digit by digit calculations for the first two integers but not for the third. Related task Β  Damm algorithm
#Phix
Phix
with javascript_semantics sequence d = {tagset(9,0)}, inv = tagset(9,0), p = {tagset(9,0)} for i=1 to 4 do d = append(d,extract(d[$],{2,3,4,5,1,7,8,9,10,6})) end for for i=5 to 8 do d = append(d,reverse(d[-4])) end for d = append(d,reverse(d[1])) inv[2..5] = reverse(inv[2..5]) for i=1 to 7 do p = append(p,extract(p[$],{2,6,8,7,3,9,4,1,10,5})) end for -- alternatively, if you prefer: --constant d = {{0,1,2,3,4,5,6,7,8,9}, -- {1,2,3,4,0,6,7,8,9,5}, -- {2,3,4,0,1,7,8,9,5,6}, -- {3,4,0,1,2,8,9,5,6,7}, -- {4,0,1,2,3,9,5,6,7,8}, -- {5,9,8,7,6,0,4,3,2,1}, -- {6,5,9,8,7,1,0,4,3,2}, -- {7,6,5,9,8,2,1,0,4,3}, -- {8,7,6,5,9,3,2,1,0,4}, -- {9,8,7,6,5,4,3,2,1,0}}, -- inv = {0,4,3,2,1,5,6,7,8,9}, -- p = {{0,1,2,3,4,5,6,7,8,9}, -- {1,5,7,6,2,8,3,0,9,4}, -- {5,8,0,3,7,9,6,1,4,2}, -- {8,9,1,6,0,4,3,5,2,7}, -- {9,4,5,3,1,2,6,8,7,0}, -- {4,2,8,6,5,7,3,9,0,1}, -- {2,7,9,3,8,0,6,4,1,5}, -- {7,0,4,6,9,1,3,2,5,8}} function verhoeff(string n, bool validate=false, show_workings=false) string {s,t} = iff(validate?{n,"Validation"}:{n&'0',"Check digit"}) if show_workings then printf(1,"%s calculations for `%s`:\n", {t, n}) printf(1," i ni p(i,ni) c\n") printf(1,"------------------\n") end if integer c = 0 for i=1 to length(s) do integer ni = s[-i]-'0', pi = p[remainder(i-1,8)+1][ni+1] c = d[c+1][pi+1] if show_workings then printf(1,"%2d Β %d Β %d Β %d\n", {i-1, ni, pi, c}) end if end for integer ch = inv[c+1]+'0' string r = iff(validate?iff(c=0?"":"in")&"correct" :"`"&ch&"`") printf(1,"TheΒ %s for `%s` isΒ %s\n\n",{lower(t),n,r}) return ch end function constant tests = {"236", "12345", "123456789012"} for i=1 to length(tests) do bool show_workings = (i<=2) integer ch = verhoeff(tests[i],false,show_workings) assert(verhoeff(tests[i]&ch,true,show_workings)=='0') assert(verhoeff(tests[i]&'9',true,show_workings)!='0') end for
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#Common_Lisp
Common Lisp
(defun strip (s) (remove-if-not (lambda (c) (char<= #\A c #\Z)) (string-upcase s)))   (defun vigenère (s key &key decipher &aux (A (char-code #\A)) (op (if decipher #'- #'+))) (labels ((to-char (c) (code-char (+ c A))) (to-code (c) (- (char-code c) A))) (let ((k (map 'list #'to-code (strip key)))) (setf (cdr (last k)) k) (map 'string (lambda (c) (prog1 (to-char (mod (funcall op (to-code c) (car k)) 26)) (setf k (cdr k)))) (strip s)))))   (let* ((msg "Beware the Jabberwock... The jaws that... the claws that catch!") (key "vigenere cipher") (enc (vigenère msg key)) (dec (vigenère enc key :decipher t))) (format t "msg: ~a~%enc: ~a~%dec: ~a~%" msg enc dec))
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Haskell
Haskell
data Tree a = Empty | Node { value :: a, left :: Tree a, right :: Tree a } deriving (Show, Eq) Β  tree = Node 1 (Node 2 (Node 4 (Node 7 Empty Empty) Empty) (Node 5 Empty Empty)) (Node 3 (Node 6 (Node 8 Empty Empty) (Node 9 Empty Empty)) Empty) Β  treeIndent Empty = ["-- (nil)"] treeIndent t = ["--" ++ show (value t)] ++ map (" |"++) ls ++ (" `" ++ r):map (" "++) rs where (r:rs) = treeIndent$right t ls = treeIndent$left t Β  main = mapM_ putStrLn $ treeIndent tree
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#PicoLisp
PicoLisp
(for F (dir "@src/") # Iterate directory (when (match '`(chop "[email protected]") (chop F)) # Matches 's*.c'? (println F) ) ) # Yes: Print it
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Pike
Pike
array(string) files = get_dir("/home/foo/bar"); foreach(files, string file) write(file + "\n");
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Haskell
Haskell
import System.Environment import System.Directory import System.FilePath.Find Β  search pat = find always (fileName ~~? pat) Β  main = do [pat] <- getArgs dir <- getCurrentDirectory files <- search pat dir mapM_ putStrLn files
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Icon_and_Unicon
Icon and Unicon
Β  ########################### # A sequential solution # ########################### Β  procedure main() every write(!getdirs(".")) # writes out all directories from the current directory down end Β  procedure getdirs(s) #: return a list of directories beneath the directory 's' local D,d,f Β  if ( stat(s).mode ? ="d" ) & ( d := open(s) ) then { D := [s] while f := read(d) do if not ( ".." ? =f ) then # skip . and .. D |||:= getdirs(s || "/" ||f) close(d) return D } end Β  ######################### # A threaded solution # ######################### Β  import threads Β  global n, # number of the concurrently running threads maxT, # Max number of concurrent threads ("soft limit") tot_threads # the total number of threads created in the program Β  procedure main(argv) target := argv[1] | stop("Usage: tdir [dir name] [#threads]. #threads default to 2* the number of cores in the machine.") tot_threads := n := 1 maxT := ( integer(argv[2])| (&features? if ="CPU cores " then cores := integer(tab(0)) * 2) | # available cores * 2 4) # default to 4 threads t := milliseconds() L := getdirs(target) # writes out all directories from the current directory down write((*\L)| 0, " directories in ", milliseconds() - t, " ms using ", maxT, "-concurrent/", tot_threads, "-total threads" ) end Β  procedure getdirs(s) # return a list of directories beneath the directory 's' local D,d,f, thrd Β  if ( stat(s).mode ? ="d" ) & ( d := open(s) ) then { D := [s] while f := read(d) do if not ( ".." ? =f ) then # skip . and .. if n>=maxT then # max thread count reached D |||:= getdirs(s || "/" ||f) else # spawn a new thread for this directory {/thrd:=[]; n +:= 1; put(thrd, thread getdirs(s || "/" ||f))} Β  close(d) Β  if \thrd then{ # If I have threads, collect their results tot_threads +:= *thrd n -:= 1 # allow new threads to be spawned while I'm waiting/collecting results every wait(th := !thrd) do { # wait for the thread to finish n -:= 1 D |||:= <@th # If the thread produced a result, it is going to be # stored in its "outbox", <@th in this case serves as # a deferred return since the thread was created by # thread getdirs(s || "/" ||f) # this is similar to co-expression activation semantics } n +:= 1 } return D } end
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#Java
Java
public class WaterBetweenTowers { public static void main(String[] args) { int i = 1; int[][] tba = new int[][]{ new int[]{1, 5, 3, 7, 2}, new int[]{5, 3, 7, 2, 6, 4, 5, 9, 1, 2}, new int[]{2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1}, new int[]{5, 5, 5, 5}, new int[]{5, 6, 7, 8}, new int[]{8, 7, 7, 6}, new int[]{6, 7, 10, 7, 6} }; Β  for (int[] tea : tba) { int rht, wu = 0, bof; do { for (rht = tea.length - 1; rht >= 0; rht--) { if (tea[rht] > 0) { break; } } Β  if (rht < 0) { break; } Β  bof = 0; for (int col = 0; col <= rht; col++) { if (tea[col] > 0) { tea[col]--; bof += 1; } else if (bof > 0) { wu++; } } if (bof < 2) { break; } } while (true); Β  System.out.printf("BlockΒ %d", i++); if (wu == 0) { System.out.print(" does not hold any"); } else { System.out.printf(" holdsΒ %d", wu); } System.out.println(" water units."); } } }
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#8086_Assembly
8086 Assembly
mov ah,00h mov al,videoMode int 10h
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Action.21
Action!
PROC ShowMode(BYTE m,split,gr CARD w, BYTE h, CARD size, CHAR ARRAY descr) BYTE CH=$02FC CARD i BYTE POINTER ptr Β  Graphics(0) PrintF("Next video mode:Β %B%E",m) IF split THEN PrintF("Split video mode%E%EUpper part:%E") FI Β  IF gr THEN Print("Graphics") ELSE Print("Text") FI PrintF(" mode,Β %Ux%B,Β %S%E",w,h,descr) Β  IF split THEN PrintF("%ELower part:%EText mode 40x4, 2 luminances%E") FI PrintF("%EPress any key to change video mode.") Β  DO UNTIL CH#$FF OD CH=$FF Β  Graphics(m) ptr=PeekC(88) Β  FOR i=1 TO size DO ptr^=Rand(0) ptr==+1 OD Β  DO UNTIL CH#$FF OD CH=$FF RETURN Β  PROC Main() ShowMode(0,0,0,40,24,960,"2 luminances") ShowMode(1,1,0,20,20,640,"5 colors") ShowMode(2,1,0,20,10,400,"5 colors") ShowMode(3,1,1,40,20,400,"4 colors") ShowMode(4,1,1,80,40,640,"2 colors") ShowMode(5,1,1,80,40,1120,"4 colors") ShowMode(6,1,1,160,80,2080,"2 colors") ShowMode(7,1,1,160,80,4000,"4 colors") ShowMode(8,1,1,320,160,7856,"2 luminances") ShowMode(9,0,1,80,192,7680,"16 luminances") ShowMode(10,0,1,80,192,7680,"9 colors") ShowMode(11,0,1,80,192,7680,"16 hues") ShowMode(12,1,0,40,20,1120,"5 colors") ShowMode(13,1,0,40,10,640,"5 colors") ShowMode(14,1,1,160,160,4000,"2 colors") ShowMode(15,1,1,160,160,7856,"4 colors") ShowMode(17,0,0,20,24,480,"5 colors") ShowMode(18,0,0,20,12,240,"5 colors") ShowMode(19,0,1,40,24,240,"4 colors") ShowMode(20,0,1,80,48,480,"2 colors") ShowMode(21,0,1,80,48,960,"4 colors") ShowMode(22,0,1,160,96,1920,"2 colors") ShowMode(23,0,1,160,96,3840,"4 colors") ShowMode(24,0,1,320,192,7680,"2 luminances") ShowMode(28,0,0,40,24,960,"5 colors") ShowMode(29,0,0,40,12,480,"5 colors") ShowMode(30,0,1,160,192,3840,"2 colors") ShowMode(31,0,1,160,192,7680,"4 colors") RETURN
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#AmigaBASIC
AmigaBASIC
SCREEN 1,320,200,5,1
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Hy
Hy
(import [collections [Counter]]) (import [random [randint]]) Β  (defn uniform? [f repeats delta] ; Call 'f' 'repeats' times, then check if the proportion of each ; value seen is within 'delta' of the reciprocal of the count ; of distinct values. (setv bins (Counter (list-comp (f) [i (range repeats)]))) (setv target (/ 1 (len bins))) (all (list-comp (<= (- target delta) (/ n repeats) (+ target delta)) [n (.values bins)])))
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Icon_and_Unicon
Icon and Unicon
# rnd Β : a co-expression, which will generate the random numbers # n Β : the number of numbers to test # delta: tolerance in non-uniformity # This procedure fails if after the sampling the difference # in uniformity exceeds delta, a proportion of n / number-of-alternatives procedure verify_uniform (rnd, n, delta) # generate a table counting the outcome of the generator results := table (0) every (1 to n) do results[@rnd] +:= 1 # retrieve the statistics smallest := n largest := 0 every num := key(results) do { # record result and limits write (num || " " || results[num]) if results[num] < smallest then smallest := results[num] if results[num] > largest then largest := results[num] } # decide if difference is within bounds defined by delta return largest-smallest < delta * n / *results end Β  procedure main () gen_1 := create (|?10) # uniform integers, 1 to 10 if verify_uniform (gen_1, 1000000, 0.01) then write ("uniform") else write ("skewed") gen_2 := create (|(if ?2 = 1 then 6 else ?10)) # skewed integers, 1 to 10 if verify_uniform (gen_2, 1000000, 0.01) then write ("uniform") else write ("skewed") end
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#PureBasic
PureBasic
Structure VCoo x.i: y.i Colour.i: FillColour.i EndStructure Β  Macro RandInt(MAXLIMIT) Int(MAXLIMIT*(Random(#MAXLONG)/#MAXLONG)) EndMacro Β  Macro SQ2(X, Y) ((X)*(X) + (Y)*(Y)) EndMacro Β  Procedure GenRandomPoints(Array a.VCoo(1), xMax, yMax, cnt) Protected i, j, k, l cnt-1 Dim a(cnt) For i=0 To cnt a(i)\x = RandInt(xMax): a(i)\y = RandInt(yMax) j = RandInt(255): k = RandInt(255): l = RandInt(255) a(i)\Colour = RGBA(j, k, l, 255) a(i)\FillColour = RGBA(255-j, 255-k, 255-l, 255) Next i ProcedureReturn #True EndProcedure Β  Procedure MakeVoronoiDiagram(Array a.VCoo(1),xMax, yMax) ; Euclidean Protected i, x, y, img, dist.d, dt.d img = CreateImage(#PB_Any, xMax+1, yMax+1) If StartDrawing(ImageOutput(img)) For y=0 To yMax For x=0 To xMax dist = Infinity() For i=0 To ArraySize(a()) dt = SQ2(x-a(i)\x, y-a(i)\y) If dt > dist Continue ElseIf dt < dist dist = dt Plot(x,y,a(i)\FillColour) Else ; 'Owner ship' is unclear, set pixel to transparent. Plot(x,y,RGBA(0, 0, 0, 0)) EndIf Next Next Next For i=0 To ArraySize(a()) Circle(a(i)\x, a(i)\y, 1, a(i)\Colour) Next StopDrawing() EndIf ProcedureReturn img EndProcedure Β  ; Main code Define img, x, y, file$ Dim V.VCoo(0) x = 640: y = 480 If Not GenRandomPoints(V(), x, y, 150): End: EndIf img = MakeVoronoiDiagram(V(), x, y) If img And OpenWindow(0, 0, 0, x, y, "Voronoi Diagram in PureBasic", #PB_Window_SystemMenu) ImageGadget(0, 0, 0, x, y, ImageID(img)) Repeat: Until WaitWindowEvent() = #PB_Event_CloseWindow EndIf Β  UsePNGImageEncoder() file$ = SaveFileRequester("Save Image?", "Voronoi_Diagram_in_PureBasic.png", "PNG|*.png", 0) If file$ <> "" SaveImage(img, file$, #PB_ImagePlugin_PNG) EndIf
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Fortran
Fortran
module gsl_mini_bind_m Β  use iso_c_binding implicit none private Β  public :: p_value Β  interface function gsl_cdf_chisq_q(x, nu) bind(c, name='gsl_cdf_chisq_Q') import real(c_double), value :: x real(c_double), value :: nu real(c_double) :: gsl_cdf_chisq_q end function gsl_cdf_chisq_q end interface Β  contains Β  !> Get p-value from chi-square distribution real function p_value(x, df) real, intent(in) :: x integer, intent(in) :: df Β  p_value = real(gsl_cdf_chisq_q(real(x, c_double), real(df, c_double))) Β  end function p_value Β  end module gsl_mini_bind_m
http://rosettacode.org/wiki/Verhoeff_algorithm
Verhoeff algorithm
Description The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code. As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here. Task Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable. The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them. Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example. Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are. Display digit by digit calculations for the first two integers but not for the third. Related task Β  Damm algorithm
#Python
Python
MULTIPLICATION_TABLE = [ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), (1, 2, 3, 4, 0, 6, 7, 8, 9, 5), (2, 3, 4, 0, 1, 7, 8, 9, 5, 6), (3, 4, 0, 1, 2, 8, 9, 5, 6, 7), (4, 0, 1, 2, 3, 9, 5, 6, 7, 8), (5, 9, 8, 7, 6, 0, 4, 3, 2, 1), (6, 5, 9, 8, 7, 1, 0, 4, 3, 2), (7, 6, 5, 9, 8, 2, 1, 0, 4, 3), (8, 7, 6, 5, 9, 3, 2, 1, 0, 4), (9, 8, 7, 6, 5, 4, 3, 2, 1, 0), ] Β  INV = (0, 4, 3, 2, 1, 5, 6, 7, 8, 9) Β  PERMUTATION_TABLE = [ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), (1, 5, 7, 6, 2, 8, 3, 0, 9, 4), (5, 8, 0, 3, 7, 9, 6, 1, 4, 2), (8, 9, 1, 6, 0, 4, 3, 5, 2, 7), (9, 4, 5, 3, 1, 2, 6, 8, 7, 0), (4, 2, 8, 6, 5, 7, 3, 9, 0, 1), (2, 7, 9, 3, 8, 0, 6, 4, 1, 5), (7, 0, 4, 6, 9, 1, 3, 2, 5, 8), ] Β  def verhoeffchecksum(n, validate=True, terse=True, verbose=False): """ Calculate the Verhoeff checksum over `n`. Terse mode or with single argument: return True if valid (last digit is a correct check digit). If checksum mode, return the expected correct checksum digit. If validation mode, return True if last digit checks correctly. """ if verbose: print(f"\n{'Validation' if validate else 'Check digit'}",\ f"calculations for {n}:\n\n i nα΅’ p[i,nα΅’] c\n------------------") # transform number list c, dig = 0, list(str(n if validate else 10 * n)) for i, ni in enumerate(dig[::-1]): p = PERMUTATION_TABLE[iΒ % 8][int(ni)] c = MULTIPLICATION_TABLE[c][p] if verbose: print(f"{i:2} {ni} {p} {c}") Β  if verbose and not validate: print(f"\ninv({c}) = {INV[c]}") if not terse: print(f"\nThe validation for '{n}' is {'correct' if c == 0 else 'incorrect'}."\ if validate else f"\nThe check digit for '{n}' is {INV[c]}.") return c == 0 if validate else INV[c] Β  if __name__ == '__main__': Β  for n, va, t, ve in [ (236, False, False, True), (2363, True, False, True), (2369, True, False, True), (12345, False, False, True), (123451, True, False, True), (123459, True, False, True), (123456789012, False, False, False), (1234567890120, True, False, False), (1234567890129, True, False, False)]: verhoeffchecksum(n, va, t, ve) Β 
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#D
D
import std.stdio, std.string; Β  string encrypt(in string txt, in string key) pure @safe in { assert(key.removechars("^A-Z") == key); } body { string res; foreach (immutable i, immutable c; txt.toUpper.removechars("^A-Z")) res ~= (c + key[i % $] - 2 * 'A') % 26 + 'A'; return res; } Β  string decrypt(in string txt, in string key) pure @safe in { assert(key.removechars("^A-Z") == key); } body { string res; foreach (immutable i, immutable c; txt.toUpper.removechars("^A-Z")) res ~= (c - key[i % $] + 26) % 26 + 'A'; return res; } Β  void main() { immutable key = "VIGENERECIPHER"; immutable original = "Beware the Jabberwock, my son!" ~ " The jaws that bite, the claws that catch!"; immutable encoded = original.encrypt(key); writeln(encoded, "\n", encoded.decrypt(key)); }
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Icon_and_Unicon
Icon and Unicon
procedure main(A) showTree("", " -", [1, [2,[3],[4,[5],[6]],[7,[11]]], [8,[9,[10]]] ]) write() showTree("", " -", [1, [2,[3,[4]]], [5,[6],[7,[8],[9]],[10]] ]) end Β  procedure showTree(prefix, lastc, A) write(prefix, lastc, "--", A[1]) if *A > 1 then { prefix ||:= if prefix[-1] == "|" then " " else " " every showTree(prefix||"|", "-", !A[2:2 < *A]) showTree(prefix, "`-", A[*A]) } end
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Pop11
Pop11
lvars repp, fil; ;;; create path repeater sys_file_match('*.p', '', false, 0) -> repp; ;;; iterate over files while (repp() ->> fil) /= termin do Β ;;; print the file printf(fil, '%s\n'); endwhile;
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#PowerShell
PowerShell
Get-ChildItem *.txt -Name Get-ChildItem f* -Name
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#IDL
IDL
result = file_search( directory, '*.txt', count=cc )
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#J
J
require 'dir' >{."1 dirtree '*.html'
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#JavaScript
JavaScript
(function () { 'use strict'; Β  // waterCollectedΒ :: [Int] -> Int var waterCollected = function (xs) { return sum( // water above each bar zipWith(function (a, b) { return a - b; // difference between water level and bar }, zipWith(min, // lower of two flanking walls scanl1(max, xs), // highest walls to left scanr1(max, xs) // highest walls to right ), xs // tops of bars ) .filter(function (x) { return x > 0; // only bars with water above them }) ); }; Β  // GENERIC FUNCTIONS ---------------------------------------- Β  // zipWithΒ :: (a -> b -> c) -> [a] -> [b] -> [c] var zipWith = function (f, xs, ys) { var ny = ys.length; return (xs.length <= ny ? xs : xs.slice(0, ny)) .map(function (x, i) { return f(x, ys[i]); }); }; Β  // scanl1 is a variant of scanl that has no starting value argument // scanl1Β :: (a -> a -> a) -> [a] -> [a] var scanl1 = function (f, xs) { return xs.length > 0 ? scanl(f, xs[0], xs.slice(1)) : []; }; Β  // scanr1 is a variant of scanr that has no starting value argument // scanr1Β :: (a -> a -> a) -> [a] -> [a] var scanr1 = function (f, xs) { return xs.length > 0 ? scanr(f, xs.slice(-1)[0], xs.slice(0, -1)) : []; }; Β  // scanlΒ :: (b -> a -> b) -> b -> [a] -> [b] var scanl = function (f, startValue, xs) { var lst = [startValue]; return xs.reduce(function (a, x) { var v = f(a, x); return lst.push(v), v; }, startValue), lst; }; Β  // scanrΒ :: (b -> a -> b) -> b -> [a] -> [b] var scanr = function (f, startValue, xs) { var lst = [startValue]; return xs.reduceRight(function (a, x) { var v = f(a, x); return lst.push(v), v; }, startValue), lst.reverse(); }; Β  // sumΒ :: (Num a) => [a] -> a var sum = function (xs) { return xs.reduce(function (a, x) { return a + x; }, 0); }; Β  // maxΒ :: Ord a => a -> a -> a var max = function (a, b) { return a > b ? a : b; }; Β  // minΒ :: Ord a => a -> a -> a var min = function (a, b) { return b < a ? b : a; }; Β  // TEST --------------------------------------------------- return [ [1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6] ].map(waterCollected); Β  //--> [2, 14, 35, 0, 0, 0, 0] })();
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Applesoft_BASIC
Applesoft BASIC
TEXT, page 1, 40 x 24 GR, page 1, 40 x 40, 16 colors, mixed with four lines of text HGR, page 1, 280 x 160, 6 colors, mixed with four lines of text HGR2, page 2, 280 x 192, 6 colors, full screen text, page 2, 40 x 24 gr, page 1, 40 x 48, 16 colors, full screen gr, page 2, 40 x 40, 16 colors, mixed with four lines of text gr, page 2, 40 x 48, 16 colors, full screen hgr, page 1, 280 x 192, 6 colors, full screen hgr, page 2, 280 x 160, 6 colors, mixed with four lines of text
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#ARM_Assembly
ARM Assembly
Β  MOV R1,#0x04000000 MOV R0,#0x403 STR r0,[r1] ;the game boy advance is little-endian, so I would have expected this not to work. However it does indeed work. Β 
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#BBC_BASIC
BBC BASIC
10 MODE 1: REM 320x256 4 colour graphics
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Commodore_BASIC
Commodore BASIC
10 rem video modes - c64 15 rem rosetta code 20 print chr$(147);chr$(14):poke 53280,0:poke 53281,0:poke 646,1 25 poke 53282,2:poke 53283,11:poke 53284,9:rem set extended and multi colors 30 if peek(12288)=60 and peek(12289)=102 then goto 100 35 poke 52,32:poke 56,32:clr 40 print "Initializing - Please wait..." 45 poke 56334,peek(56334) and 254:poke1,peek(1) and 251 50 for i=0 to 4096:poke i+12288,peek(i+53248):next 55 poke1,peek(1) or 4:poke56334,peek(56334) or 1 60 for i=0 to 31:read d:poke 15368+i,d:next i 65 x=0:for i=8192 to 10239:poke i,2^x:x=(x+1) and 7:next 70 for i=10240 to 12287:poke i,228:next 100 data 60,66,165,129,165,153,66,60 105 data 60,66,165,129,153,165,66,60 110 data 245,245,245,245,10,10,10,10 115 data 10,10,10,10,245,245,245,245 480 print chr$(147);"Demonstration of Video Modes" 485 print 490 print "The video modes described at Rosetta " 495 print "Code will be demonstrated in order. " 500 print "Simply press a key to advance to the" 505 print "next video mode." 510 print 515 print "See rosettacode.org for description." 516 print 517 print "http://www.rosettacode.org/wiki/"; 518 print "Video";chr$(164);"display";chr$(164);"modes#"; 519 print "Commodore";chr$(164);"BASIC" 520 print 525 print "Press any key to begin." 530 gosub 9010 600 print chr$(147);"Standard Character Mode" 605 print " - ROM Characters" 610 print:gosub 1000:print:gosub 9000:print chr$(147) 615 gosub 1210 620 print chr$(147);"Multicolor Character Mode" 625 print " - ROM Characters" 630 print:gosub 1000:print:gosub 9000:print chr$(147) 635 gosub 1220 640 gosub 1310 645 print chr$(147);"Extended Color Character Mode" 650 print " - ROM Characters" 655 print:gosub 1000:print:gosub 9000:print chr$(147) 660 gosub 1320 665 gosub 1100 670 print chr$(147);"Standard Character Mode" 675 print " - Programmed Characters" 680 print:gosub 1000:print:gosub 9000:print chr$(147) 685 gosub 1210 690 print chr$(147);"Multicolor Character Mode" 695 print " - Programmed Characters" 700 print:gosub 1000:print:gosub 9000:print chr$(147) 705 gosub 1220 710 gosub 1310 715 print chr$(147);"Extended Color Character Mode" 720 print " - Programmed Characters" 725 print:gosub 1000:print:gosub 9000:print chr$(147) 730 gosub 1320 735 print chr$(147);"The next screen will be the" 740 print "High Resolution Bit Map Mode" 745 print 750 gosub 9000 755 gosub 1430:gosub 1410 760 print:gosub 1050:print:gosub 9010:print chr$(147) 765 gosub 1420:gosub 1120 770 print chr$(147);"The next screen will be the" 775 print "Multicolor High Resolution Bit Map Mode" 780 print 785 gosub 9000 790 gosub 1430:gosub 1410:gosub 1210 795 print:gosub 1050:print:gosub 9010:print chr$(147) 800 gosub 1420:gosub 1220:gosub 1120 805 print chr$(147);"End of demonstration." 810 end 1000 rem put some characters up for demo 1005 for i=0 to 15:poke 646,i 1010 print" a b c d "; 1011 print chr$(160);"A";chr$(160);"B";chr$(160);"C";chr$(160);"D";chr$(160); 1012 print chr$(18);" a b c d "; 1013 print chr$(160);"A";chr$(160);"B";chr$(160);"C";chr$(160);"D";chr$(160); 1014 print chr$(146) 1015 next i:poke 646,1 1020 return 1050 rem show color variety for hi-res modes 1051 print chr$(147) 1055 for i=0 to 255:poke 1024+i,i:poke 55296+i,1:next 1060 for i=0 to 255:poke 1280+i,i:poke 55552+i,int(rnd(1)*16):next 1065 return 1100 rem programmable character mode 1110 poke 53272,(peek(53272) and 240)+14:return:rem on 1120 poke 53272,(peek(53272) and 240)+6:return:rem off 1200 rem multicolor mode 1210 poke 53270,peek(53270) or 16:return:rem on 1220 poke 53270,peek(53270) and 239:return:rem off 1300 rem extended color mode 1310 poke 53265,peek(53265) or 64:return:rem on 1320 poke 53265,peek(53265) and 191:return:rem off 1400 rem hi res mode 1410 poke 53265,(peek(53265) or 32):return:rem on 1420 poke 53265,(peek(53265) and 223):return:rem off 1430 poke 53272,peek(53272) or 8:return:rem place bitmap at 8192 9000 print "Press any key for next screen."; 9010 get k$:if k$="" then 9010 9020 return
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#J
J
checkUniform=: adverb define 0.05 u checkUniform y Β : n=. */y delta=. x sample=. u n NB. the "u" refers to the verb to left of adverb freqtable=. /:~ (~. sample) ,. #/.~ sample expected=. nΒ % # freqtable errmsg=. 'Distribution is potentially skewed' errmsg assert (delta * expected) > | expected - {:"1 freqtable freqtable )
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Java
Java
import static java.lang.Math.abs; import java.util.*; import java.util.function.IntSupplier; Β  public class Test { Β  static void distCheck(IntSupplier f, int nRepeats, double delta) { Map<Integer, Integer> counts = new HashMap<>(); Β  for (int i = 0; i < nRepeats; i++) counts.compute(f.getAsInt(), (k, v) -> v == null ? 1 : v + 1); Β  double target = nRepeats / (double) counts.size(); int deltaCount = (int) (delta / 100.0 * target); Β  counts.forEach((k, v) -> { if (abs(target - v) >= deltaCount) System.out.printf("distribution potentially skewed " + "for '%s': '%d'%n", k, v); }); Β  counts.keySet().stream().sorted().forEach(k -> System.out.printf("%dΒ %d%n", k, counts.get(k))); } Β  public static void main(String[] a) { distCheck(() -> (int) (Math.random() * 5) + 1, 1_000_000, 1); } }
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#11l
11l
F to_str(v) R β€˜[ ’v.map(n -> hex(n).lowercase().zfill(2)).join(β€˜ ’)β€˜ ]’ Β  F to_seq(UInt64 x) V i = 0 L(ii) (9.<0).step(-1) I x [&] (UInt64(127) << ii * 7)Β != 0 i = ii L.break Β  [Byte] out L(j) 0 .. i out [+]= ((x >> ((i - j) * 7)) [&] 127) [|] 128 Β  out[i] (+)= 128 R out Β  F from_seq(seq) UInt64 r = 0 Β  L(b) seq r = (r << 7) [|] (b [&] 127) Β  R r Β  L(x) [UInt64(7'F), 40'00, 0, 003F'FFFE, 001F'FFFF, 0020'0000, 3311'A123'4DF3'1413] V s = to_seq(x) print(β€˜seq from ’hex(x).lowercase()β€˜ ’to_str(s)β€˜ back: ’hex(from_seq(s)).lowercase())
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#Python
Python
from PIL import Image import random import math Β  def generate_voronoi_diagram(width, height, num_cells): image = Image.new("RGB", (width, height)) putpixel = image.putpixel imgx, imgy = image.size nx = [] ny = [] nr = [] ng = [] nb = [] for i in range(num_cells): nx.append(random.randrange(imgx)) ny.append(random.randrange(imgy)) nr.append(random.randrange(256)) ng.append(random.randrange(256)) nb.append(random.randrange(256)) for y in range(imgy): for x in range(imgx): dmin = math.hypot(imgx-1, imgy-1) j = -1 for i in range(num_cells): d = math.hypot(nx[i]-x, ny[i]-y) if d < dmin: dmin = d j = i putpixel((x, y), (nr[j], ng[j], nb[j])) image.save("VoronoiDiagram.png", "PNG") image.show() Β  generate_voronoi_diagram(500, 500, 25)
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Go
Go
package main Β  import ( "fmt" "math" ) Β  type ifctn func(float64) float64 Β  func simpson38(f ifctn, a, b float64, n int) float64 { h := (b - a) / float64(n) h1 := h / 3 sum := f(a) + f(b) for j := 3*n - 1; j > 0; j-- { if j%3 == 0 { sum += 2 * f(a+h1*float64(j)) } else { sum += 3 * f(a+h1*float64(j)) } } return h * sum / 8 } Β  func gammaIncQ(a, x float64) float64 { aa1 := a - 1 var f ifctn = func(t float64) float64 { return math.Pow(t, aa1) * math.Exp(-t) } y := aa1 h := 1.5e-2 for f(y)*(x-y) > 2e-8 && y < x { y += .4 } if y > x { y = x } return 1 - simpson38(f, 0, y, int(y/h/math.Gamma(a))) } Β  func chi2ud(ds []int) float64 { var sum, expected float64 for _, d := range ds { expected += float64(d) } expected /= float64(len(ds)) for _, d := range ds { x := float64(d) - expected sum += x * x } return sum / expected } Β  func chi2p(dof int, distance float64) float64 { return gammaIncQ(.5*float64(dof), .5*distance) } Β  const sigLevel = .05 Β  func main() { for _, dset := range [][]int{ {199809, 200665, 199607, 200270, 199649}, {522573, 244456, 139979, 71531, 21461}, } { utest(dset) } } Β  func utest(dset []int) { fmt.Println("Uniform distribution test") var sum int for _, c := range dset { sum += c } fmt.Println(" dataset:", dset) fmt.Println(" samples: ", sum) fmt.Println(" categories: ", len(dset)) Β  dof := len(dset) - 1 fmt.Println(" degrees of freedom: ", dof) Β  dist := chi2ud(dset) fmt.Println(" chi square test statistic: ", dist) Β  p := chi2p(dof, dist) fmt.Println(" p-value of test statistic: ", p) Β  sig := p < sigLevel fmt.Printf(" significant atΒ %2.0f%% level? Β %t\n", sigLevel*100, sig) fmt.Println(" uniform? ", !sig, "\n") }
http://rosettacode.org/wiki/Verhoeff_algorithm
Verhoeff algorithm
Description The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code. As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here. Task Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable. The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them. Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example. Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are. Display digit by digit calculations for the first two integers but not for the third. Related task Β  Damm algorithm
#Raku
Raku
my @d = [^10] xx 5; @d[$_][^5].=rotate($_), @d[$_][5..*].=rotate($_) for 1..4; push @d: [@d[$_].reverse] for flat 1..4, 0; Β  my @i = 0,4,3,2,1,5,6,7,8,9; Β  my %h = flat (0,1,5,8,9,4,2,7,0).rotor(2 =>-1).map({.[0]=>.[1]}), 6=>3, 3=>6; my @p = [^10],; @p.push: [@p[*-1].map: {%h{$_}}] for ^7; Β  sub checksum (Int $int where * β‰₯ 0, :$verbose = True ) { my @digits = $int.comb; say "\nCheckdigit calculation for $int:"; say " i ni p(i, ni) c" if $verbose; my ($i, $p, $c) = 0 xx 3; say " $i 0 $p $c" if $verbose; for @digits.reverse { ++$i; $p = @p[$i % 8][$_]; $c = @d[$c; $p]; say "{$i.fmt('%2d')} $_ $p $c" if $verbose; } say "Checkdigit: {@i[$c]}"; +($int ~ @i[$c]); } Β  sub validate (Int $int where * β‰₯ 0, :$verbose = True) { my @digits = $int.comb; say "\nValidation calculation for $int:"; say " i ni p(i, ni) c" if $verbose; my ($i, $p, $c) = 0 xx 3; for @digits.reverse { $p = @p[$i % 8][$_]; $c = @d[$c; $p]; say "{$i.fmt('%2d')} $_ $p $c" if $verbose; ++$i; } say "Checkdigit: {'in' if $c}correct"; } Β  ## TESTING Β  for 236, 12345, 123456789012 -> $int { my $check = checksum $int, :verbose( $int.chars < 8 ); validate $check, :verbose( $int.chars < 8 ); validate +($check.chop ~ 9), :verbose( $int.chars < 8 ); }
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#Elena
Elena
import system'text; import system'math; import system'routines; import extensions; Β  class VCipher { string encrypt(string txt, string pw, int d) { auto outputΒ := new TextBuilder(); int pwiΒ := 0; Β  string PWΒ := pw.upperCase(); Β  txt.upperCase().forEach:(t) { if(t >= $65) { int tmpΒ := t.toInt() - 65 + d * (PW[pwi].toInt() - 65); if (tmp < 0) { tmp += 26 }; output.write((65 + tmp.mod:26).toChar()); pwi += 1; if (pwi == PW.Length) { pwiΒ := 0 } } }; Β  ^ output.Value } } Β  public program() { var vΒ := new VCipher(); Β  var s0Β := "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!"; var pwΒ := "VIGENERECIPHER"; Β  console.printLine(s0,newLine,pw,newLine); var s1Β := v.encrypt(s0, pw, 1); console.printLine("Encrypted:",s1); s1Β := v.encrypt(s1, "VIGENERECIPHER", -1); console.printLine("Decrypted:",s1); console.printLine("Press any key to continue.."); console.readChar() }
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#Elixir
Elixir
defmodule VigenereCipher do @base Β ?A @size Β ?Z - @base + 1 Β  def encrypt(text, key), do: crypt(text, key, 1) Β  def decrypt(text, key), do: crypt(text, key, -1) Β  defp crypt(text, key, dir) do text = String.upcase(text) |> String.replace(~r/[^A-Z]/, "") |> to_char_list key_iterator = String.upcase(key) |> String.replace(~r/[^A-Z]/, "") |> to_char_list |> Enum.map(fn c -> (c - @base) * dir end) |> Stream.cycle Enum.zip(text, key_iterator) |> Enum.reduce('', fn {char, offset}, ciphertext -> [rem(char - @base + offset + @size, @size) + @base | ciphertext] end) |> Enum.reverse |> List.to_string end end Β  plaintext = "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!" key = "Vigenere cipher" ciphertext = VigenereCipher.encrypt(plaintext, key) recovered = VigenereCipher.decrypt(ciphertext, key) Β  IO.puts "Original: #{plaintext}" IO.puts "Encrypted: #{ciphertext}" IO.puts "Decrypted: #{recovered}"
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#J
J
BOXC=: 9!:6 '' NB. box drawing characters EW =: {: BOXC NB. east-west Β  showtree=: 4Β : 0 NB. y is parent index for each node (non-indices for root nodes) NB. x is label for each node t=. (<EW,' ') ,@<@,:@,&":&.> x NB. tree fragments c=. |:(#~ e./@|:);(~.,"0&.>(</. i.@#)) y while. +./ b=. ({.c)*.//.-.e.~/c do. i=. b#~.{.c NB. parents whose children are leaves j=. </./(({.c)e.i)#"1 c NB. leaves grouped by parents t=. a: (;j)}t i}~ (i{t) subtree&.> j{&.><t c=. (-.({.c)e.i)#"1 c NB. prune edges to leaves end. Β ;([: ,.&.>/ extend&.>)&> t -. a: ) Β  subtree=: 4Β : 0 p=. EW={."1 s=. >{.t=. graft y (<(>{.x) root p),(<(connect p),.s),}.t ) Β  graft=: 3Β : 0 n=. (-~ >./) #&> y f=. i.@(,&0)@#&.>@{.&.> y ,&.>/ y ,&> n$&.>f ) Β  connect=: 3Β : 0 b=. (+./\ *. +./\.) y c=. (b+2*y){' ',9 3 3{BOXC NB. β”‚ NS β”œ E c=. (0{BOXC) (b i. 1)}c NB. β”Œ NW c=. (6{BOXC) (b i: 1)}c NB. β”” SW j=. (b i. 1)+<.-:+/b EW&(j})^:(1=+/b) c j}~ ((0 3 6 9{BOXC)i.j{c){1 4 7 5{BOXC ) Β  root=: 4Β : 0 j=. k+<.-:1+(y i: 1)-k=. y i. 1 (-j)|.(#y){.x,.,:' ',EW ) Β  extend=: 3Β : '(+./\"1 (y=EW) *. *./\."1 y e.'' '',EW)}y,:EW' Β 
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#PureBasic
PureBasic
Procedure walkDirectory(directory.s = "", pattern.s = "") Protected directoryID Β  directoryID = ExamineDirectory(#PB_Any,directory,pattern) If directoryID While NextDirectoryEntry(directoryID) PrintN(DirectoryEntryName(directoryID)) Wend FinishDirectory(directoryID) EndIf EndProcedure Β  If OpenConsole() walkDirectory() Β  Print(#CRLF$ + #CRLF$ + "Press ENTER to exit") Input() CloseConsole() EndIf
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Python
Python
import glob for filename in glob.glob('/foo/bar/*.mp3'): print(filename)
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Java
Java
import java.io.File; Β  public class MainEntry { public static void main(String[] args) { walkin(new File("/home/user")); //Replace this with a suitable directory } Β  /** * Recursive function to descend into the directory tree and find all the files * that end with ".mp3" * @param dir A file object defining the top directory **/ public static void walkin(File dir) { String pattern = ".mp3"; Β  File listFile[] = dir.listFiles(); if (listFile != null) { for (int i=0; i<listFile.length; i++) { if (listFile[i].isDirectory()) { walkin(listFile[i]); } else { if (listFile[i].getName().endsWith(pattern)) { System.out.println(listFile[i].getPath()); } } } } } }
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#jq
jq
def waterCollected: . as $tower | ($tower|length) as $n | ([0] + [range(1;$n) | ($tower[0:.] | max) ]) as $highLeft | ( [range(1;$n) | ($tower[.:$n] | max) ] + [0]) as $highRight | [ range(0;$n) | [ ([$highLeft[.], $highRight[.] ]| min) - $tower[.], 0 ] | max] | addΒ ; Β  def towers: [ [1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6] ]; Β  towers[] | "\(waterCollected) from \(.)"
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#ERRE
ERRE
dim as integer i, w, h, d Β  for i = 0 to 21 if i>2 and i<7 then continue for 'screens 3-6 are not defined screen i screeninfo w, h, d print "Screen ";i print using "#### x ####, color depth ##";w;h;d sleep next i Β  'a more flexible alternative is ScreenRes Β  'this sets up a window of 1618x971 pixels, colour depth 8, and 2 pages screenres 1618, 971, 8, 2 windowtitle "Foo bar baz" sleep Β  Β  'see https://documentation.help/FreeBASIC/KeyPgScreengraphics.html 'for more information Β 
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#FreeBASIC
FreeBASIC
dim as integer i, w, h, d Β  for i = 0 to 21 if i>2 and i<7 then continue for 'screens 3-6 are not defined screen i screeninfo w, h, d print "Screen ";i print using "#### x ####, color depth ##";w;h;d sleep next i Β  'a more flexible alternative is ScreenRes Β  'this sets up a window of 1618x971 pixels, colour depth 8, and 2 pages screenres 1618, 971, 8, 2 windowtitle "Foo bar baz" sleep Β  Β  'see https://documentation.help/FreeBASIC/KeyPgScreengraphics.html 'for more information Β 
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Go
Go
package main Β  import ( "fmt" "log" "os/exec" "time" ) Β  func main() { // query supported display modes out, err := exec.Command("xrandr", "-q").Output() if err != nil { log.Fatal(err) } fmt.Println(string(out)) time.Sleep(3 * time.Second) Β  // change display mode to 1024x768 say (no text output) err = exec.Command("xrandr", "-s", "1024x768").Run() if err != nil { log.Fatal(err) } time.Sleep(3 * time.Second) Β  // change it back again to 1366x768 (or whatever is optimal for your system) err = exec.Command("xrandr", "-s", "1366x768").Run() if err != nil { log.Fatal(err) } }
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#JavaScript
JavaScript
function distcheck(random_func, times, opts) { if (opts === undefined) opts = {} opts['delta'] = opts['delta'] || 2; Β  var count = {}, vals = []; for (var i = 0; i < times; i++) { var val = random_func(); if (! has_property(count, val)) { count[val] = 1; vals.push(val); } else count[val] ++; } vals.sort(function(a,b) {return a-b}); Β  var target = times / vals.length; var tolerance = target * opts['delta'] / 100; Β  for (var i = 0; i < vals.length; i++) { var val = vals[i]; if (Math.abs(count[val] - target) > tolerance) throw "distribution potentially skewed for " + val + ": expected result around " + target + ", got " +count[val]; else print(val + "\t" + count[val]); } } Β  function has_property(obj, propname) { return typeof(obj[propname]) == "undefined" ? false : true; } Β  try { distcheck(function() {return Math.floor(10 * Math.random())}, 100000); print(); distcheck(function() {return (Math.random() > 0.95 ? 1 : 0)}, 100000); } catch (e) { print(e); }
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Ada
Ada
with Ada.Containers.Vectors; with Ada.Text_IO; with Ada.Unchecked_Conversion; Β  procedure VLQ is Β  package Nat_IO is new Ada.Text_IO.Integer_IO (Natural); Β  type Byte is mod 2**8; Β  package Byte_IO is new Ada.Text_IO.Modular_IO (Byte); Β  type Int7 is mod 2**7; Β  package Int7_IO is new Ada.Text_IO.Modular_IO (Int7); Β  type VLQ_Octet is record ValueΒ : Int7Β := 0; Next Β : BooleanΒ := True; end record; pragma Pack (VLQ_Octet); for VLQ_Octet'Size use 8; Β  function VLQ_To_Byte is new Ada.Unchecked_Conversion (VLQ_Octet, Byte); function Byte_To_VLQ is new Ada.Unchecked_Conversion (Byte, VLQ_Octet); Β  package VLQ_Vectors is new Ada.Containers.Vectors (Natural, VLQ_Octet); Β  procedure Hex_Print (PositionΒ : in VLQ_Vectors.Cursor) is ValueΒ : ByteΒ := VLQ_To_Byte (VLQ_Vectors.Element (Position)); begin Ada.Text_IO.Put (':'); Byte_IO.Put (Item => Value, Width => 6, Base => 16); end Hex_Print; Β  procedure Print (XΒ : VLQ_Vectors.Vector) is begin X.Iterate (Hex_Print'Access); Ada.Text_IO.New_Line; end Print; Β  function To_VLQ (FromΒ : Natural) return VLQ_Vectors.Vector is ResultΒ : VLQ_Vectors.Vector; CurrentΒ : NaturalΒ := From; ElementΒ : VLQ_Octet; begin loop Element.ValueΒ := Int7 (Current mod 2**7); Result.Prepend (Element); CurrentΒ := Current / 2**7; exit when Current = 0; end loop; ElementΒ := Result.Last_Element; Element.NextΒ := False; VLQ_Vectors.Replace_Element (Result, Result.Last, Element); return Result; end To_VLQ; Β  function To_Int (FromΒ : VLQ_Vectors.Vector) return Natural is use type VLQ_Vectors.Cursor; ResultΒ : NaturalΒ := 0; IteratorΒ : VLQ_Vectors.CursorΒ := From.First; begin while Iterator /= VLQ_Vectors.No_Element loop ResultΒ := Result * 2**7; ResultΒ := Result + Natural(VLQ_Vectors.Element (Iterator).Value); VLQ_Vectors.Next (Iterator); end loop; return Result; end To_Int; Β  TestΒ : VLQ_Vectors.Vector; begin TestΒ := To_VLQ (16#7f#); Nat_IO.Put (To_Int (Test), 10, 16); Ada.Text_IO.Put (" = "); Print (Test); TestΒ := To_VLQ (16#4000#); Nat_IO.Put (To_Int (Test), 10, 16); Ada.Text_IO.Put (" = "); Print (Test); TestΒ := To_VLQ (16#0#); Nat_IO.Put (To_Int (Test), 10, 16); Ada.Text_IO.Put (" = "); Print (Test); TestΒ := To_VLQ (16#3FFFFE#); Nat_IO.Put (To_Int (Test), 10, 16); Ada.Text_IO.Put (" = "); Print (Test); TestΒ := To_VLQ (16#1FFFFF#); Nat_IO.Put (To_Int (Test), 10, 16); Ada.Text_IO.Put (" = "); Print (Test); TestΒ := To_VLQ (16#200000#); Nat_IO.Put (To_Int (Test), 10, 16); Ada.Text_IO.Put (" = "); Print (Test); end VLQ;
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#11l
11l
T Vector Float x, y Β  F (x, y) .x = x .y = y Β  F +(vector) R Vector(.x + vector.x, .y + vector.y) Β  F -(vector) R Vector(.x - vector.x, .y - vector.y) Β  F *(mult) R Vector(.x * mult, .y * mult) Β  F /(denom) R Vector(.x / denom, .y / denom) Β  F String() R β€˜(#., #.)’.format(.x, .y) Β  print(Vector(5, 7) + Vector(2, 3)) print(Vector(5, 7) - Vector(2, 3)) print(Vector(5, 7) * 11) print(Vector(5, 7) / 2)
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#11l
11l
Β  * Binary interger (H,F) I2 DS H half word 2 bytes I4 DS F full word 4 bytes * Real (floating point) (E,D,L) X4 DS E short 4 bytes X8 DS D double 8 bytes X16 DS L extended 16 bytes * Packed decimal (P) P3 DS PL3 2 bytes P7 DS PL7 4 bytes P15 DS PL15 8 bytes * Zoned decimal (Z) Z8 DS ZL8 8 bytes Z16 DS ZL16 16 bytes * Character (C) C1 DS C 1 byte C16 DS CL16 16 bytes C256 DS CL256 256 bytes * Bit value (B) B1 DC B'10101010' 1 byte * Hexadecimal value (X) X1 DC X'AA' 1 byte * Address value (A) A4 DC A(176) 4 bytes but only 3 bytes used * (24 bits => 16 MB of storage) Β 
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#QB64
QB64
_Title "Voronoi Diagram" Β  Dim As Integer pnt, px, py, i, x, y, adjct, sy, ly Dim As Double st Β  '===================================================================== ' Changes number of points and screen size here '===================================================================== pnt = 100 px = 512 py = 512 '===================================================================== Screen _NewImage(px, py, 32) Randomize Timer Β  Dim Shared As Integer pax(pnt), pay(pnt), indx(px, py) Dim Shared As Long dSqr(px, py) Dim As Long col(pnt) Β  For i = 1 To pnt pax(i) = Int(Rnd * px) pay(i) = Int(Rnd * py) col(i) = _RGB(Rnd * 256, Rnd * 256, Rnd * 256) Next st = Timer For x = 0 To px - 1 For y = 0 To py - 1 dSqr(x, y) = (pax(1) - x) * (pax(1) - x) + (pay(1) - y) * (pay(1) - y) indx(x, y) = 1 Next Next Β  For i = 2 To pnt ly = py - 1 For x = pax(i) To 0 Step -1 If (scan(i, x, ly)) = 0 Then Exit For Next x For x = pax(i) + 1 To px - 1 If (scan(i, x, ly)) = 0 Then Exit For Next Next Β  For x = 0 To px - 1 For y = 0 To py - 1 sy = y adjct = indx(x, y) For y = y + 1 To py If indx(x, y) <> adjct Then y = y - 1: Exit For Next Line (x, sy)-(x, y + 1), col(adjct) Next Next Β  Sleep System Β  Function scan (site As Integer, x As Integer, ly As Integer) Dim As Integer ty Dim As Long delt2, dsq delt2 = (pax(site) - x) * (pax(site) - x) For ty = 0 To ly dsq = (pay(site) - ty) * (pay(site) - ty) + delt2 If dsq <= dSqr(x, ty) Then dSqr(x, ty) = dsq indx(x, ty) = site scan = 1 End If Next End Function
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#R
R
Β  ## HF#1 Random Hex color randHclr <- function() { m=255;r=g=b=0; r <- sample(0:m, 1, replace=TRUE); g <- sample(0:m, 1, replace=TRUE); b <- sample(0:m, 1, replace=TRUE); return(rgb(r,g,b,maxColorValue=m)); } ## HF#2 Metrics: Euclidean, Manhattan and Minkovski Metric <- function(x, y, mt) { if(mt==1) {return(sqrt(x*x + y*y))} if(mt==2) {return(abs(x) + abs(y))} if(mt==3) {return((abs(x)^3 + abs(y)^3)^0.33333)} } Β  ## Plotting Voronoi diagram. aev 3/12/17 ## ns - number of sites, fn - file name, ttl - plot title. ## mt - type of metric: 1 - Euclidean, 2 - Manhattan, 3 - Minkovski. pVoronoiD <- function(ns, fn="", ttl="",mt=1) { cat(" *** START VD:", date(), "\n"); if(mt<1||mt>3) {mt=1}; mts=""; if(mt>1) {mts=paste0(", mt - ",mt)}; m=640; i=j=k=m1=m-2; x=y=d=dm=0; if(fn=="") {pf=paste0("VDR", mt, ns, ".png")} else {pf=paste0(fn, ".png")}; if(ttl=="") {ttl=paste0("Voronoi diagram, sites - ", ns, mts)}; cat(" *** Plot file -", pf, "title:", ttl, "\n"); plot(NA, xlim=c(0,m), ylim=c(0,m), xlab="", ylab="", main=ttl); X=numeric(ns); Y=numeric(ns); C=numeric(ns); for(i in 1:ns) { X[i]=sample(0:m1, 1, replace=TRUE); Y[i]=sample(0:m1, 1, replace=TRUE); C[i]=randHclr(); } for(i in 0:m1) { for(j in 0:m1) { dm=Metric(m1,m1,mt); k=-1; for(n in 1:ns) { d=Metric(X[n]-j,Y[n]-i, mt); if(d<dm) {dm=d; k=n;} } clr=C[k]; segments(j, i, j, i, col=clr); } } points(X, Y, pch = 19, col = "black", bg = "white") dev.copy(png, filename=pf, width=m, height=m); dev.off(); graphics.off(); cat(" *** END VD:",date(),"\n"); } ## Executing: pVoronoiD(150) ## Euclidean metric pVoronoiD(10,"","",2) ## Manhattan metric pVoronoiD(10,"","",3) ## Minkovski metric Β 
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Hy
Hy
(import [scipy.stats [chisquare]] [collections [Counter]]) Β  (defn uniform? [f repeats &optional [alpha .05]] "Call 'f' 'repeats' times and do a chi-squared test for uniformity of the resulting discrete distribution. Return false iff the null hypothesis of uniformity is rejected for the test with size 'alpha'." (<= alpha (second (chisquare (.values (Counter (take repeats (repeatedly f))))))))
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#J
J
require 'stats/base' Β  countCats=: #@~. NB. counts the number of unique items getExpected=: #@]Β % [ NB. divides no of items by category count getObserved=: #/.~@] NB. counts frequency for each category calcX2=: [: +/ *:@(getObserved - getExpected)Β % getExpected NB. calculates test statistic calcDf=: <:@[ NB. calculates degrees of freedom for uniform distribution Β  NB.*isUniform v Tests (5%) whether y is uniformly distributed NB. result is: boolean describing if distribution y is uniform NB. y is: distribution to test NB. x is: optionally specify number of categories possible isUniform=: (countCats $: ])Β : (0.95 > calcDf chisqcdfΒ :: 1: calcX2)
http://rosettacode.org/wiki/Verhoeff_algorithm
Verhoeff algorithm
Description The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code. As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here. Task Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable. The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them. Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example. Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are. Display digit by digit calculations for the first two integers but not for the third. Related task Β  Damm algorithm
#Vlang
Vlang
const d = [ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 0, 6, 7, 8, 9, 5], [2, 3, 4, 0, 1, 7, 8, 9, 5, 6], [3, 4, 0, 1, 2, 8, 9, 5, 6, 7], [4, 0, 1, 2, 3, 9, 5, 6, 7, 8], [5, 9, 8, 7, 6, 0, 4, 3, 2, 1], [6, 5, 9, 8, 7, 1, 0, 4, 3, 2], [7, 6, 5, 9, 8, 2, 1, 0, 4, 3], [8, 7, 6, 5, 9, 3, 2, 1, 0, 4], [9, 8, 7, 6, 5, 4, 3, 2, 1, 0], ] Β  const inv = [0, 4, 3, 2, 1, 5, 6, 7, 8, 9] Β  const p = [ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 5, 7, 6, 2, 8, 3, 0, 9, 4], [5, 8, 0, 3, 7, 9, 6, 1, 4, 2], [8, 9, 1, 6, 0, 4, 3, 5, 2, 7], [9, 4, 5, 3, 1, 2, 6, 8, 7, 0], [4, 2, 8, 6, 5, 7, 3, 9, 0, 1], [2, 7, 9, 3, 8, 0, 6, 4, 1, 5], [7, 0, 4, 6, 9, 1, 3, 2, 5, 8], ] Β  fn verhoeff(ss string, validate bool, table bool) int { mut s:= ss if table { mut t := "Check digit" if validate { t = "Validation" } println("$t calculations for '$s':\n") println(" i nα΅’ p[i,nα΅’] c") println("------------------") } if !validate { s = s + "0" } mut c := 0 le := s.len - 1 for i := le; i >= 0; i-- { ni := int(s[i] - 48) pi := p[(le-i)%8][ni] c = d[c][pi] if table { println("${le-i:2} $ni $pi $c") } } if table && !validate { println("\ninv[$c] = ${inv[c]}") } if !validate { return inv[c] } return int(c == 0) } Β  fn main() { ss := ["236", "12345", "123456789012"] ts := [true, true, false, true] for i, s in ss { c := verhoeff(s, false, ts[i]) println("\nThe check digit for '$s' is '$c'\n") for sc in [s + c.str(), s + "9"] { v := verhoeff(sc, true, ts[i]) mut ans := "correct" if v==0 { ans = "incorrect" } println("\nThe validation for '$sc' is $ans\n") } } }
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#Erlang
Erlang
% Erlang implementation of Vigenère cipher -module(vigenere). -export([encrypt/2, decrypt/2]). -import(lists, [append/2, filter/2, map/2, zipwith/3]).   % Utility functions for character tests and conversions isupper([C|_]) -> isupper(C); isupper(C) -> (C >= $A) and (C =< $Z).   islower([C|_]) -> islower(C); islower(C) -> (C >= $a) and (C =< $z).   isalpha([C|_]) -> isalpha(C); isalpha(C) -> isupper(C) or islower(C).   toupper(S) when is_list(S) -> lists:map(fun toupper/1, S); toupper(C) when (C >= $a) and (C =< $z) -> C - $a + $A; toupper(C) -> C.   % modulo function that normalizes into positive range for positive divisor mod(X,Y) -> (X rem Y + Y) rem Y.   % convert letter to position in alphabet (A=0,B=1,...,Y=24,Z=25). to_pos(L) when L >= $A, L =< $Z -> L - $A.   % convert position in alphabet back to letter from_pos(N) -> mod(N, 26) + $A.   % encode the given letter given the single-letter key encipher(P, K) -> from_pos(to_pos(P) + to_pos(K)).   % decode the given letter given the single-letter key decipher(C, K) -> from_pos(to_pos(C) - to_pos(K)).   % extend a list by repeating it until it is at least N elements long cycle_to(N, List) when length(List) >= N -> List; cycle_to(N, List) -> append(List, cycle_to(N-length(List), List)).   % Encryption prep: reduce string to only its letters, in uppercase normalize(Str) -> toupper(filter(fun isalpha/1, Str)).   crypt(RawText, RawKey, Func) -> PlainText = normalize(RawText), zipwith(Func, PlainText, cycle_to(length(PlainText), normalize(RawKey))).   encrypt(Text, Key) -> crypt(Text, Key, fun encipher/2). decrypt(Text, Key) -> crypt(Text, Key, fun decipher/2).
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Java
Java
public class VisualizeTree { public static void main(String[] args) { BinarySearchTree tree = new BinarySearchTree(); Β  tree.insert(100); for (int i = 0; i < 20; i++) tree.insert((int) (Math.random() * 200)); tree.display(); } } Β  class BinarySearchTree { private Node root; Β  private class Node { private int key; private Node left, right; Β  Node(int k) { key = k; } } Β  public boolean insert(int key) { if (root == null) root = new Node(key); else { Node n = root; Node parent; while (true) { if (n.key == key) return false; Β  parent = n; Β  boolean goLeft = key < n.key; n = goLeft ? n.left : n.right; Β  if (n == null) { if (goLeft) { parent.left = new Node(key); } else { parent.right = new Node(key); } break; } } } return true; } Β  public void display() { final int height = 5, width = 64; Β  int len = width * height * 2 + 2; StringBuilder sb = new StringBuilder(len); for (int i = 1; i <= len; i++) sb.append(i < len - 2 && i % width == 0 ? "\n" : ' '); Β  displayR(sb, width / 2, 1, width / 4, width, root, " "); System.out.println(sb); } Β  private void displayR(StringBuilder sb, int c, int r, int d, int w, Node n, String edge) { if (n != null) { displayR(sb, c - d, r + 2, d / 2, w, n.left, " /"); Β  String s = String.valueOf(n.key); int idx1 = r * w + c - (s.length() + 1) / 2; int idx2 = idx1 + s.length(); int idx3 = idx1 - w; if (idx2 < sb.length()) sb.replace(idx1, idx2, s).replace(idx3, idx3 + 2, edge); Β  displayR(sb, c + d, r + 2, d / 2, w, n.right, "\\ "); } } }
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#R
R
dir("/foo/bar", "mp3")
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Racket
Racket
Β  -> (for ([f (directory-list "/tmp")] #:when (regexp-match? "\\.rkt$" f)) (displayln f)) ... *.rkt files ... Β 
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#JavaScript
JavaScript
var fso = new ActiveXObject("Scripting.FileSystemObject"); Β  function walkDirectoryTree(folder, folder_name, re_pattern) { WScript.Echo("Files in " + folder_name + " matching '" + re_pattern + "':"); walkDirectoryFilter(folder.files, re_pattern); Β  var subfolders = folder.SubFolders; WScript.Echo("Folders in " + folder_name + " matching '" + re_pattern + "':"); walkDirectoryFilter(subfolders, re_pattern); Β  WScript.Echo(); var en = new Enumerator(subfolders); while (! en.atEnd()) { var subfolder = en.item(); walkDirectoryTree(subfolder, folder_name + "/" + subfolder.name, re_pattern); en.moveNext(); } } Β  function walkDirectoryFilter(items, re_pattern) { var e = new Enumerator(items); while (! e.atEnd()) { var item = e.item(); if (item.name.match(re_pattern)) WScript.Echo(item.name); e.moveNext(); } } Β  walkDirectoryTree(dir, dir.name, '\\.txt$');
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#Julia
Julia
using Printf Β  function watercollected(towers::Vector{Int}) high_lft = vcat(0, accumulate(max, towers[1:end-1])) high_rgt = vcat(reverse(accumulate(max, towers[end:-1:2])), 0) waterlvl = max.(min.(high_lft, high_rgt) .- towers, 0) return waterlvl end Β  function towerprint(towers, levels) ctowers = copy(towers) clevels = copy(levels) hmax = maximum(towers) ntow = length(towers) for h in hmax:-1:1 @printf("%2i |", h) for j in 1:ntow if ctowers[j] + clevels[j] β‰₯ h if clevels[j] > 0 cell = "β‰ˆβ‰ˆ" clevels[j] -= 1 else cell = "NN" ctowers[j] -= 1 end else cell = " " end print(cell) end println("|") end Β  Β  println(" " * join(lpad(t, 2) for t in levels) * ": Water lvl") println(" " * join(lpad(t, 2) for t in towers) * ": Tower lvl") end Β  for towers in [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] towerprint(towers, watercollected(towers)) println() end
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Groovy
Groovy
def invoke(String cmd) { println(cmd.execute().text) } Β  invoke("xrandr -q") Thread.sleep(3000) Β  invoke("xrandr -s 1024x768") Thread.sleep(3000) Β  invoke("xrandr -s 1366x768")
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#GW-BASIC
GW-BASIC
10 REM GW Basic can switch VGA modes 20 SCREEN 18: REM Mode 12h 640x480 16 colour graphics
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Icon_and_Unicon
Icon and Unicon
procedure main(A) mode := A[1] if \mode then system("xrandr -s " || \mode || " >/dev/null") else system("xrandr -q") # Display available modes end
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Julia
Julia
Β  if Base.Sys.islinux() run(`xrandr -s 640x480`) sleep(3) run(`xrandr -s 1280x960`) else # windows run(`mode CON: COLS=40 LINES=100`) sleep(3) run(`mode CON: COLS=100 LINES=50`) end Β 
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Julia
Julia
using Printf Β  function distcheck(f::Function, rep::Int=10000, Ξ”::Int=3) smpl = f(rep) counts = Dict(k => count(smpl .== k) for k in unique(smpl)) expected = rep / length(counts) lbound = expected * (1 - 0.01Ξ”) ubound = expected * (1 + 0.01Ξ”) noobs = count(x ->Β !(lbound ≀ x ≀ ubound), values(counts)) if noobs > 0 warn(@sprintf "%2.4f%% values out of bounds" noobs / rep) end return counts end Β  # Dice5 check distcheck(x -> rand(1:5, x)) # Dice7 check distcheck(dice7)
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Kotlin
Kotlin
// version 1.1.3 Β  import java.util.Random Β  val r = Random() Β  fun dice5() = 1 + r.nextInt(5) Β  fun checkDist(gen: () -> Int, nRepeats: Int, tolerance: Double = 0.5) { val occurs = mutableMapOf<Int, Int>() for (i in 1..nRepeats) { val d = gen() if (occurs.containsKey(d)) occurs[d] = occurs[d]!! + 1 else occurs.put(d, 1) } val expected = (nRepeats.toDouble()/ occurs.size).toInt() val maxError = (expected * tolerance / 100.0).toInt() println("Repetitions = $nRepeats, Expected = $expected") println("Tolerance = $tolerance%, Max Error = $maxError\n") println("Integer Occurrences Error Acceptable") val f = " Β %d Β %5d Β %5d Β %s" var allAcceptable = true for ((k,v) in occurs.toSortedMap()) { val error = Math.abs(v - expected) val acceptable = if (error <= maxError) "Yes" else "No" if (acceptable == "No") allAcceptable = false println(f.format(k, v, error, acceptable)) } println("\nAcceptable overall: ${if (allAcceptable) "Yes" else "No"}") } Β  fun main(args: Array<String>) { checkDist(::dice5, 1_000_000) println() checkDist(::dice5, 100_000) }
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#ANSI_Standard_BASIC
ANSI Standard BASIC
INPUT s$ LET s$ = LTRIM$(RTRIM$(s$)) LET v = 0 FOR i = 1 TO LEN(s$) LET c$ = s$(i:i) LET k = POS("0123456789abcdef", c$) IF k > 0 THEN LET v = v*16 + k - 1 NEXT i PRINT "S= ";s$, "V=";v Β  ! Convert back to hex LET hex$ ="0123456789abcdef" LET hs$=" " Β  FOR i = LEN(hs$) TO 1 STEP -1 IF v = 0 THEN EXIT FOR LET d = MOD(v, 16) + 1 LET hs$(i:i) = hex$(d:d) LET v = INT(v/16) NEXT i PRINT hs$ END
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Bracmat
Bracmat
( ( VLQ = b07 b8 vlq . 0:?b8 &Β :?vlq & whl ' (Β !arg:>0 & mod$(!arg.128):?b07 & (chr$(!b8+!b07)|)Β !vlq:?vlq & 128:?b8 & div$(!arg.128):?arg ) & str$!vlq ) & ( NUM = c num d . 0:?num:?d & whl ' ( @(!arg:%@?cΒ ?arg) & asc$!c:?c:~<128 & 128*(!c+-128+!num):?num & 1+!d:?d ) & (!c:<128&!c+!num:?num|) &Β !num ) & ( printVLQ = c h . Β :?h & whl ' ( @(!arg:%@?cΒ ?arg) & d2x$(asc$!c):?x & Β !h (@(!x:? [1)&0|)Β !x Β :Β ?h ) & ( asc$!c:~<128&!h 00:?h | ) & out$("VLQ Β :" str$!h) ) & ( test = vlq num . out$("input:"Β !arg) & VLQ$(x2d$!arg):?vlq & printVLQ$!vlq & NUM$!vlq:?num & out$("backΒ :" d2x$!num \n) ) & test$200000 & test$1fffff & test$00 & test$7f & test$80 & test$81 & test$82 & test$894E410E0A );
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#Action.21
Action!
INCLUDE "D2:REAL.ACT"Β ;from the Action! Tool Kit Β  DEFINE X_="+0" DEFINE Y_="+6" Β  TYPE Vector=[CARD x1,x2,x3,y1,y2,y3] Β  PROC PrintVec(Vector POINTER v) Print("[") PrintR(v X_) Print(",") PrintR(v Y_) Print("]") RETURN Β  PROC VecIntInit(Vector POINTER v INT ix,iy) IntToReal(ix,v X_) IntToReal(iy,v Y_) RETURN Β  PROC VecRealInit(Vector POINTER v REAL POINTER rx,ry) RealAssign(rx,v X_) RealAssign(ry,v Y_) RETURN Β  PROC VecStringInit(Vector POINTER v CHAR ARRAY sx,sy) ValR(sx,v X_) ValR(sy,v Y_) RETURN Β  PROC VecAdd(Vector POINTER v1,v2,res) RealAdd(v1 X_,v2 X_,res X_)Β ;res.x=v1.x+v2.x RealAdd(v1 Y_,v2 Y_,res Y_)Β ;res.y=v1.y+v2.y RETURN Β  PROC VecSub(Vector POINTER v1,v2,res) RealSub(v1 X_,v2 X_,res X_)Β ;res.x=v1.x-v2.x RealSub(v1 Y_,v2 Y_,res Y_)Β ;res.y=v1.y-v2.y RETURN Β  PROC VecMult(Vector POINTER v REAL POINTER a Vector POINTER res) RealMult(v X_,a,res X_)Β ;res.x=v.x*a RealMult(v Y_,a,res Y_)Β ;res.y=v.y*a RETURN Β  PROC VecDiv(Vector POINTER v REAL POINTER a Vector POINTER res) RealDiv(v X_,a,res X_)Β ;res.x=v.x/a RealDiv(v Y_,a,res Y_)Β ;res.y=v.y/a RETURN Β  PROC Main() Vector v1,v2,res REAL s Β  Put(125) PutE()Β ;clear the screen VecStringInit(v1,"12.3","-4.56") VecStringInit(v2,"9.87","654.3") ValR("0.1",s) Β  VecAdd(v1,v2,res) PrintVec(v1) Print(" + ") PrintVec(v2) Print(" =") PutE() PrintVec(res) PutE() PutE() Β  VecSub(v1,v2,res) PrintVec(v1) Print(" - ") PrintVec(v2) Print(" =") PutE() PrintVec(res) PutE() PutE() Β  VecMult(v1,s,res) PrintVec(v1) Print(" * ") PrintR(s) Print(" = ") PrintVec(res) PutE() PutE() Β  VecDiv(v1,s,res) PrintVec(v1) Print(" / ") PrintR(s) Print(" = ") PrintVec(res) RETURN
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#ALGOL_68
ALGOL 68
# the standard mode COMPLEX is a two element vector # MODE VECTOR = COMPLEX; # the operations required for the task plus many others are provided as standard for COMPLEX and REAL items # # the two components are fields called "re" and "im" # # we can define a "pretty-print" operator: # # returns a formatted representation of the vector # OP TOSTRING = ( VECTOR a )STRING: "[" + TOSTRING re OF a + ", " + TOSTRING im OF a + "]"; # returns a formatted representation of the scaler # OP TOSTRING = ( REAL a )STRING: fixed( a, 0, 4 ); Β  # test the operations # VECTOR a = 5 I 7, b = 2 I 3; # note the use of the I operator to construct a COMPLEX from two scalers # print( ( "a+bΒ : ", TOSTRING ( a + b ), newline ) ); print( ( "a-bΒ : ", TOSTRING ( a - b ), newline ) ); print( ( "a*11: ", TOSTRING ( a * 11 ), newline ) ); print( ( "a/2Β : ", TOSTRING ( a / 2 ), newline ) ) Β 
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#360_Assembly
360 Assembly
Β  * Binary interger (H,F) I2 DS H half word 2 bytes I4 DS F full word 4 bytes * Real (floating point) (E,D,L) X4 DS E short 4 bytes X8 DS D double 8 bytes X16 DS L extended 16 bytes * Packed decimal (P) P3 DS PL3 2 bytes P7 DS PL7 4 bytes P15 DS PL15 8 bytes * Zoned decimal (Z) Z8 DS ZL8 8 bytes Z16 DS ZL16 16 bytes * Character (C) C1 DS C 1 byte C16 DS CL16 16 bytes C256 DS CL256 256 bytes * Bit value (B) B1 DC B'10101010' 1 byte * Hexadecimal value (X) X1 DC X'AA' 1 byte * Address value (A) A4 DC A(176) 4 bytes but only 3 bytes used * (24 bits => 16 MB of storage) Β 
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#6502_Assembly
6502 Assembly
MyByte: byte 0 Β ;most assemblers will also accept DB or DFB MyWord: word 0 Β ;most assemblers will also accept DW or DFW MyDouble: dd 0
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#68000_Assembly
68000 Assembly
MyByte: DC.B 0 EVEN ;you need this to prevent alignment problems if you define an odd number of bytes. MyWord: DC.W 0 ;this takes up 2 bytes even though only one 0 was written MyLong: DC.L 0 ;this takes up 4 bytes even though only one 0 was written
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#8086_Assembly
8086 Assembly
Β  .data ;data segment Β  TestValue_00 byte 0 ;an 8-bit variable TestValue_01 word 0 ;a 16-bit variable TestValue_02 dword 0 ;a 32-bit variable Β  .code Β  start: Β  mov dh, byte ptr [ds:TestValue_00] ;load the value stored at the address "TestValue_00" mov ax, word ptr [ds:TestValue_01] ;load the value stored at the address "TestValue_01"
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#Racket
Racket
Β  #lang racket Β  (require plot) Β  ;; Performs clustering of points in a grid ;; using the nearest neigbour approach and shows ;; clusters in different colors (define (plot-Voronoi-diagram point-list) (define pts (for*/list ([x (in-range 0 1 0.005)] [y (in-range 0 1 0.005)]) (vector x y))) Β  (define clusters (clusterize pts point-list)) Β  (plot (append (for/list ([r (in-list clusters)] [i (in-naturals)]) (points (rest r) #:color i #:sym 'fullcircle1)) (list (points point-list #:sym 'fullcircle5 #:fill-color 'white))))) Β  ;; Divides the set of points into clusters ;; using given centroids (define (clusterize data centroids) (for*/fold ([res (map list centroids)]) ([x (in-list data)]) (define c (argmin (curryr (metric) x) centroids)) (dict-set res c (cons x (dict-ref res c))))) Β 
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Java
Java
import static java.lang.Math.pow; import java.util.Arrays; import static java.util.Arrays.stream; import org.apache.commons.math3.special.Gamma; Β  public class Test { Β  static double x2Dist(double[] data) { double avg = stream(data).sum() / data.length; double sqs = stream(data).reduce(0, (a, b) -> a + pow((b - avg), 2)); return sqs / avg; } Β  static double x2Prob(double dof, double distance) { return Gamma.regularizedGammaQ(dof / 2, distance / 2); } Β  static boolean x2IsUniform(double[] data, double significance) { return x2Prob(data.length - 1.0, x2Dist(data)) > significance; } Β  public static void main(String[] a) { double[][] dataSets = {{199809, 200665, 199607, 200270, 199649}, {522573, 244456, 139979, 71531, 21461}}; Β  System.out.printf("Β %4sΒ %12s Β %12sΒ %8s Β %s%n", "dof", "distance", "probability", "Uniform?", "dataset"); Β  for (double[] ds : dataSets) { int dof = ds.length - 1; double dist = x2Dist(ds); double prob = x2Prob(dof, dist); System.out.printf("%4dΒ %12.3f Β %12.8f Β %5s Β %6s%n", dof, dist, prob, x2IsUniform(ds, 0.05) ? "YES" : "NO", Arrays.toString(ds)); } } }
http://rosettacode.org/wiki/Verhoeff_algorithm
Verhoeff algorithm
Description The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code. As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here. Task Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable. The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them. Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example. Use your routines to calculate check digits for the integers: 236, 12345 and 123456789012 and then validate them. Also attempt to validate the same integers if the check digits in all cases were 9 rather than what they actually are. Display digit by digit calculations for the first two integers but not for the third. Related task Β  Damm algorithm
#Wren
Wren
import "/fmt" for Fmt Β  var d = [ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 0, 6, 7, 8, 9, 5], [2, 3, 4, 0, 1, 7, 8, 9, 5, 6], [3, 4, 0, 1, 2, 8, 9, 5, 6, 7], [4, 0, 1, 2, 3, 9, 5, 6, 7, 8], [5, 9, 8, 7, 6, 0, 4, 3, 2, 1], [6, 5, 9, 8, 7, 1, 0, 4, 3, 2], [7, 6, 5, 9, 8, 2, 1, 0, 4, 3], [8, 7, 6, 5, 9, 3, 2, 1, 0, 4], [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] ] Β  var inv = [0, 4, 3, 2, 1, 5, 6, 7, 8, 9] Β  var p = [ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 5, 7, 6, 2, 8, 3, 0, 9, 4], [5, 8, 0, 3, 7, 9, 6, 1, 4, 2], [8, 9, 1, 6, 0, 4, 3, 5, 2, 7], [9, 4, 5, 3, 1, 2, 6, 8, 7, 0], [4, 2, 8, 6, 5, 7, 3, 9, 0, 1], [2, 7, 9, 3, 8, 0, 6, 4, 1, 5], [7, 0, 4, 6, 9, 1, 3, 2, 5, 8] ] Β  var verhoeff = Fn.new { |s, validate, table| if (table) { System.print("%(validateΒ ? "Validation"Β : "Check digit") calculations for '%(s)':\n") System.print(" i nα΅’ p[i,nα΅’] c") System.print("------------------") } if (!validate) s = s + "0" var c = 0 var le = s.count - 1 for (i in le..0) { var ni = s[i].bytes[0] - 48 var pi = p[(le-i) % 8][ni] c = d[c][pi] if (table) Fmt.print("$2d $d $d $d", le-i, ni, pi, c) } if (table && !validate) System.print("\ninv[%(c)] =Β %(inv[c])") return !validate ? inv[c] : c == 0 } Β  var sts = [["236", true], ["12345", true], ["123456789012", false]] for (st in sts) { var c = verhoeff.call(st[0], false, st[1]) System.print("\nThe check digit for '%(st[0])' is '%(c)'\n") for (stc in [st[0] + c.toString, st[0] + "9"]) { var v = verhoeff.call(stc, true, st[1]) System.print("\nThe validation for '%(stc)' isΒ %(vΒ ? "correct"Β : "incorrect").\n") } }
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#F.23
F#
Β  module vigenere = let keyschedule (key:string) = let s = key.ToUpper().ToCharArray() |> Array.filter System.Char.IsLetter let l = Array.length s (fun n -> int s.[n % l]) Β  let enc k c = ((c + k - 130) % 26) + 65 let dec k c = ((c - k + 130) % 26) + 65 let crypt f key = Array.mapi (fun n c -> f (key n) c |> char) Β  let encrypt key (plaintext:string) = plaintext.ToUpper().ToCharArray() |> Array.filter System.Char.IsLetter |> Array.map int |> crypt enc (keyschedule key) |> (fun a -> new string(a)) Β  let decrypt key (ciphertext:string) = ciphertext.ToUpper().ToCharArray() |> Array.map int |> crypt dec (keyschedule key) |> (fun a -> new string(a)) Β  let passwd = "Vigenere Cipher" let cipher = vigenere.encrypt passwd "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!" let plain = vigenere.decrypt passwd cipher printfn "%s\n%s" cipher plain Β 
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#JavaScript
JavaScript
<!doctype html> <html id="doc"> <head><meta charset="utf-8"/> <title>Stuff</title> <script type="application/javascript"> function gid(id) { return document.getElementById(id); } Β  function ce(tag, cls, parent_node) { var e = document.createElement(tag); e.className = cls; if (parent_node) parent_node.appendChild(e); return e; } Β  function dom_tree(id) { gid('tree').textContent = ""; gid('tree').appendChild(mktree(gid(id), null)); } Β  function mktree(e, p) { var t = ce("div", "tree", p); var tog = ce("span", "toggle", t); var h = ce("span", "tag", t); Β  if (e.tagName === undefined) { h.textContent = "#Text"; var txt = e.textContent; if (txt.length > 0 && txt.match(/\S/)) { h = ce("div", "txt", t); h.textContent = txt; } return t; } Β  tog.textContent = "βˆ’"; tog.onclick = function () { clicked(tog); } h.textContent = e.nodeName; Β  var l = e.childNodes; for (var i = 0; iΒ != l.length; i++) mktree(l[i], t); return t; } Β  function clicked(e) { var is_on = e.textContent == "βˆ’"; e.textContent = is_onΒ ? "+"Β : "βˆ’"; e.parentNode.className = is_onΒ ? "tree-hide"Β : "tree"; } </script> <style> #tree { white-space: pre; font-family: monospace; border: 1px solid } .tree > .tree-hide, .tree > .tree { margin-left: 2em; border-left: 1px dotted rgba(0,0,0,.2)} .tree-hide > .tree, .tree-hide > .tree-hide { display: none } .tag { color: navy } .tree-hide > .tag { color: maroon } .txt { color: gray; padding: 0 .5em; margin: 0 .5em 0 2em; border: 1px dotted rgba(0,0,0,.1) } .toggle { display: inline-block; width: 2em; text-align: center } </style> </head> <body> <article> <section> <h1>Headline</h1> Blah blah </section> <section> <h1>More headline</h1> <blockquote>Something something</blockquote> <section><h2>Nested section</h2> Somethin somethin list: <ul> <li>Apples</li> <li>Oranges</li> <li>Cetera Fruits</li> </ul> </section> </section> </article> <div id="tree"><a href="javascript:dom_tree('doc')">click me</a></div> </body> </html>
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Raku
Raku
.say for dir ".", :test(/foo/);
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Rascal
Rascal
import IO; public void Walk(loc a, str pattern){ for (entry <- listEntries(a)) endsWith(entry, pattern)Β ? println(entry); }
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Julia
Julia
rootpath = "/home/user/music" pattern = r".mp3$" Β  for (root, dirs, files) in walkdir(rootpath) for file in files if occursin(pattern, file) println(file) end end end
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Kotlin
Kotlin
// version 1.2.0 Β  import java.io.File Β  fun walkDirectoryRecursively(dirPath: String, pattern: Regex): Sequence<String> { val d = File(dirPath) require (d.exists() && d.isDirectory()) return d.walk().map { it.name }.filter { it.matches(pattern) }.sorted().distinct() } Β  fun main(args: Array<String>) { val r = Regex("""^v(a|f).*\.h$""") // get all C header files beginning with 'va' or 'vf' val files = walkDirectoryRecursively("/usr/include", r) for (file in files) println(file) } Β 
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#Kotlin
Kotlin
// version 1.1.2 Β  fun waterCollected(tower: IntArray): Int { val n = tower.size val highLeft = listOf(0) + (1 until n).map { tower.slice(0 until it).max()!! } val highRight = (1 until n).map { tower.slice(it until n).max()!! } + 0 return (0 until n).map { maxOf(minOf(highLeft[it], highRight[it]) - tower[it], 0) }.sum() } Β  fun main(args: Array<String>) { val towers = listOf( intArrayOf(1, 5, 3, 7, 2), intArrayOf(5, 3, 7, 2, 6, 4, 5, 9, 1, 2), intArrayOf(2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1), intArrayOf(5, 5, 5, 5), intArrayOf(5, 6, 7, 8), intArrayOf(8, 7, 7, 6), intArrayOf(6, 7, 10, 7, 6) ) for (tower in towers) { println("${"%2d".format(waterCollected(tower))} from ${tower.contentToString()}") } }
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Kotlin
Kotlin
// version 1.1.51 Β  import java.util.Scanner Β  fun runSystemCommand(command: String) { val proc = Runtime.getRuntime().exec(command) Scanner(proc.inputStream).use { while (it.hasNextLine()) println(it.nextLine()) } proc.waitFor() println() } Β  fun main(args: Array<String>) { // query supported display modes runSystemCommand("xrandr -q") Thread.sleep(3000) Β  // change display mode to 1024x768 say (no text output) runSystemCommand("xrandr -s 1024x768") Thread.sleep(3000) Β  // change it back again to 1366x768 (or whatever is optimal for your system) runSystemCommand("xrandr -s 1366x768") }
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Locomotive_Basic
Locomotive Basic
10 MODE 0: REM switch to mode 0
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Lua
Lua
print("\33[?3h") -- 132-column text print("\33[?3l") -- 80-column text
http://rosettacode.org/wiki/Video_display_modes
Video display modes
The task is to demonstrate how to switch video display modes within the language. A brief description of the supported video modes would be useful.
#Nim
Nim
import os, osproc, strformat, strscans Β  # Retrieve video modes. let p = startProcess("xrandr", "", ["-q"], nil, {poUsePath}) var currWidth, currHeight = 0 # Current video mode. var width, height = 0 # Some other video mode. for line in p.lines: echo line # Find current display mode, marked by an asterisk. var f: float if currWidth == 0: # Find current width and height. discard line.scanf(" $s$ix$i $s$f*", currWidth, currHeight, f) elif width == 0: # Find another width and height. discard line.scanf(" $s$ix$i $s$f", width, height, f) p.close() Β  # Change video mode. let newMode = &"{width}x{height}" sleep 1000 echo "\nSwitching to ", newMode sleep 2000 discard execProcess("xrandr", "", ["-s", newMode], nil, {poUsePath}) Β  # Restore previous video mode. let prevMode = &"{currWidth}x{currHeight}" sleep 1000 echo "\nSwitching back to ", prevMode sleep 2000 discard execProcess("xrandr", "", ["-s", prevMode], nil, {poUsePath})
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Liberty_BASIC
Liberty BASIC
Β  n=1000 print "Testing ";n;" times" if not(check(n, 0.05)) then print "Test failed" else print "Test passed" print Β  n=10000 print "Testing ";n;" times" if not(check(n, 0.05)) then print "Test failed" else print "Test passed" print Β  n=50000 print "Testing ";n;" times" if not(check(n, 0.05)) then print "Test failed" else print "Test passed" print Β  end Β  function check(n, delta) 'fill randoms dim a(n) maxBucket=0 minBucket=1e10 for i = 1 to n a(i) = GENERATOR() if a(i)>maxBucket then maxBucket=a(i) if a(i)<minBucket then minBucket=a(i) next 'fill buckets nBuckets = maxBucket+1 'from 0 dim buckets(maxBucket) for i = 1 to n buckets(a(i)) = buckets(a(i))+1 next 'check buckets expected=n/(maxBucket-minBucket+1) minVal=int(expected*(1-delta)) maxVal=int(expected*(1+delta)) expected=int(expected) print "minVal", "Expected", "maxVal" print minVal, expected, maxVal print "Bucket", "Counter", "pass/fail" check = 1 for i = minBucket to maxBucket print i, buckets(i), _ iif$((minVal > buckets(i)) OR (buckets(i) > maxVal) ,"fail","") if (minVal > buckets(i)) OR (buckets(i) > maxVal) then check = 0 next end function Β  function iif$(test, valYes$, valNo$) iif$ = valNo$ if test then iif$ = valYes$ end function Β  function GENERATOR() 'GENERATOR = int(rnd(0)*10) '0..9 GENERATOR = 1+int(rnd(0)*5) '1..5: dice5 end function Β 
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#C
C
#include <stdio.h> #include <stdint.h> Β  void to_seq(uint64_t x, uint8_t *out) { int i, j; for (i = 9; i > 0; i--) { if (x & 127ULL << i * 7) break; } for (j = 0; j <= i; j++) out[j] = ((x >> ((i - j) * 7)) & 127) | 128; Β  out[i] ^= 128; } Β  uint64_t from_seq(uint8_t *in) { uint64_t r = 0; Β  do { r = (r << 7) | (uint64_t)(*in & 127); } while (*in++ & 128); Β  return r; } Β  int main() { uint8_t s[10]; uint64_t x[] = { 0x7f, 0x4000, 0, 0x3ffffe, 0x1fffff, 0x200000, 0x3311a1234df31413ULL}; Β  int i, j; for (j = 0; j < sizeof(x)/8; j++) { to_seq(x[j], s); printf("seq fromΒ %llx: [ ", x[j]); Β  i = 0; do { printf("%02x ", s[i]); } while ((s[i++] & 128)); printf("] back:Β %llx\n", from_seq(s)); } Β  return 0; }
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#ACL2
ACL2
(defun print-all-fn (xs) (if (endp xs) nil (prog2$ (cw "~x0~%" (first xs)) (print-all-fn (rest xs))))) Β  (defmacro print-all (&rest args) `(print-all-fn (quote ,args)))
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#BASIC256
BASIC256
arraybase 1 dim vect1(2) vect1[1] = 5Β : vect1[2] = 7 dim vect2(2) vect2[1] = 2Β : vect2[2] = 3 dim vect3(vect1[?]) Β  subroutine showarray(vect3) print "["; svect$ = "" for n = 1 to vect3[?] svect$ &= vect3[n] & ", " next n svect$ = left(svect$, length(svect$) - 2) print svect$; print "]" end subroutine Β  for n = 1 to vect1[?] vect3[n] = vect1[n] + vect2[n] next n print "[" & vect1[1] & ", " & vect1[2] & "] + [" & vect2[1] & ", " & vect2[2] & "] = "; call showarray(vect3) Β  for n = 1 to vect1[?] vect3[n] = vect1[n] - vect2[n] next n print "[" & vect1[1] & ", " & vect1[2] & "] - [" & vect2[1] & ", " & vect2[2] & "] = "; call showarray(vect3) Β  for n = 1 to vect1[?] vect3[n] = vect1[n] * 11 next n print "[" & vect1[1] & ", " & vect1[2] & "] * " & 11 & " = "; call showarray(vect3) Β  for n = 1 to vect1[?] vect3[n] = vect1[n] / 2 next n print "[" & vect1[1] & ", " & vect1[2] & "] / " & 2 & " = "; call showarray(vect3) end
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Ada
Ada
type Response is (Yes, No); -- Definition of an enumeration type with two values for Response'Size use 1; -- Setting the size of Response to 1 bit, rather than the default single byte size
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#ARM_Assembly
ARM Assembly
.byte 0xFF .align 4 .word 0xFFFF .align 4 .long 0xFFFFFFFF
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#AutoHotkey
AutoHotkey
10 DIM A%(10): REM the array size is 10 integers 20 DIM B(10): REM the array will hold 10 floating point values 30 DIM C$(12): REM a character array of 12 bytes