task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Nim
Nim
import os, re Β  for file in walkDirRec "/": if file.match re".*\.mp3": echo file
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#Perl
Perl
use Modern::Perl; use List::Util qw{ min max sum }; Β  sub water_collected { my @t = map { { TOWER => $_, LEFT => 0, RIGHT => 0, LEVEL => 0 } } @_; Β  my ( $l, $r ) = ( 0, 0 ); $_->{LEFT} = ( $l = max( $l, $_->{TOWER} ) ) for @t; $_->{RIGHT} = ( $r = max( $r, $_->{TOWER} ) ) for reverse @t; $_->{LEVEL} = min( $_->{LEFT}, $_->{RIGHT} ) for @t; Β  return sum map { $_->{LEVEL} > 0 ? $_->{LEVEL} - $_->{TOWER} : 0 } @t; } Β  say join ' ', map { water_collected( @{$_} ) } ( [ 1, 5, 3, 7, 2 ], [ 5, 3, 7, 2, 6, 4, 5, 9, 1, 2 ], [ 2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1 ], [ 5, 5, 5, 5 ], [ 5, 6, 7, 8 ], [ 8, 7, 7, 6 ], [ 6, 7, 10, 7, 6 ], );
http://rosettacode.org/wiki/Vector_products
Vector products
A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: Β  (X, Y, Z). If you imagine a graph with the Β  x Β  and Β  y Β  axis being at right angles to each other and having a third, Β  z Β  axis coming out of the page, then a triplet of numbers, Β  (X, Y, Z) Β  would represent a point in the region, Β  and a vector from the origin to the point. Given the vectors: A = (a1, a2, a3) B = (b1, b2, b3) C = (c1, c2, c3) then the following common vector products are defined: The dot product Β  Β  Β  (a scalar quantity) A β€’ B = a1b1 Β  + Β  a2b2 Β  + Β  a3b3 The cross product Β  Β  Β  (a vector quantity) A x B = (a2b3Β  - Β  a3b2, Β  Β  a3b1 Β  - Β  a1b3, Β  Β  a1b2 Β  - Β  a2b1) The scalar triple product Β  Β  Β  (a scalar quantity) A β€’ (B x C) The vector triple product Β  Β  Β  (a vector quantity) A x (B x C) Task Given the three vectors: a = ( 3, 4, 5) b = ( 4, 3, 5) c = (-5, -12, -13) Create a named function/subroutine/method to compute the dot product of two vectors. Create a function to compute the cross product of two vectors. Optionally create a function to compute the scalar triple product of three vectors. Optionally create a function to compute the vector triple product of three vectors. Compute and display: a β€’ b Compute and display: a x b Compute and display: a β€’ (b x c), the scalar triple product. Compute and display: a x (b x c), the vector triple product. References Β  A starting page on Wolfram MathWorld is Β  Vector Multiplication . Β  Wikipedia Β  dot product. Β  Wikipedia Β  cross product. Β  Wikipedia Β  triple product. Related tasks Β  Dot product Β  Quaternion type
#11l
11l
F scalartriplep(a, b, c) return dot(a, cross(b, c)) Β  F vectortriplep(a, b, c) return cross(a, cross(b, c)) Β  V a = (3, 4, 5) V b = (4, 3, 5) V c = (-5, -12, -13) Β  print(β€˜a = #.; b = #.; c = #.’.format(a, b, c)) print(β€˜a . b = #.’.format(dot(a, b))) print(β€˜a x b = #.’.format(cross(a,b))) print(β€˜a . (b x c) = #.’.format(scalartriplep(a, b, c))) print(β€˜a x (b x c) = #.’.format(vectortriplep(a, b, c)))
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#PicoLisp
PicoLisp
(de checkDistribution (Cnt Pm . Prg) (let Res NIL (do Cnt (accu 'Res (run Prg 1) 1)) (let (N (/ Cnt (length Res)) Min (*/ N (- 1000 Pm) 1000) Max (*/ N (+ 1000 Pm) 1000) ) (for R Res (prinl (cdr R) " " (if (>= Max (cdr R) Min) "Good" "Bad")) ) ) ) )
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#PureBasic
PureBasic
Prototype RandNum_prt() Β  Procedure.s distcheck(*function.RandNum_prt, repetitions, delta.d) Protected text.s, maxIndex = 0 Dim bucket(maxIndex) ;array will be resized as needed Β  For i = 1 To repetitions ;populate buckets v = *function() If v > maxIndex maxIndex = v Redim bucket(maxIndex) EndIf bucket(v) + 1 Next Β  Β  lbnd = Round((repetitions / maxIndex) * (100 - delta) / 100, #PB_Round_Up) ubnd = Round((repetitions / maxIndex) * (100 + delta) / 100, #PB_Round_Down) text = "Distribution check:" + #crlf$ + #crlf$ text + "Total elements = " + Str(repetitions) + #crlf$ + #crlf$ text + "Margin = " + StrF(delta, 2) + "% --> Lbound = " + Str(lbnd) + ", Ubound = " + Str(ubnd) + #crlf$ Β  For i = 1 To maxIndex If bucket(i) < lbnd Or bucket(i) > ubnd text + #crlf$ + "Bucket " + Str(i) + " contains " + Str(bucket(i)) + " elements. Skewed." EndIf Next ProcedureReturn text EndProcedure Β  MessageRequester("Results", distcheck(@dice7(), 1000000, 0.20))
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Go
Go
package main Β  import ( "fmt" "encoding/binary" ) Β  func main() { buf := make([]byte, binary.MaxVarintLen64) for _, x := range []int64{0x200000, 0x1fffff} { v := buf[:binary.PutVarint(buf, x)] fmt.Printf("%d encodes intoΒ %d bytes:Β %x\n", x, len(v), v) x, _ = binary.Varint(v) fmt.Println(x, "decoded") } }
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#AutoHotkey
AutoHotkey
printAll(args*) { for k,v in args t .= v "`n" MsgBox, %t% }
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#AWK
AWK
function f(a, b, c){ if (a != "") print a if (b != "") print b if (c != "") print c } Β  BEGIN { print "[1 arg]"; f(1) print "[2 args]"; f(1, 2) print "[3 args]"; f(1, 2, 3) }
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#Delphi
Delphi
Β  program Vector; Β  {$APPTYPE CONSOLE} Β  {$R *.res} Β  uses System.Math.Vectors, SysUtils; Β  procedure VectorToString(v: TVector); begin WriteLn(Format('(%.1f + i%.1f)', [v.X, v.Y])); end; Β  var a, b: TVector; Β  begin a := TVector.Create(5, 7); b := TVector.Create(2, 3); VectorToString(a + b); VectorToString(a - b); VectorToString(a * 11); VectorToString(a / 2); Β  ReadLn; end Β  . Β 
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
TYPE UByte = BITS 8 FOR [0..255];
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Modula-3
Modula-3
TYPE UByte = BITS 8 FOR [0..255];
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Nim
Nim
type MyBitfield = object flag {.bitsize:1.}: cuint
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#ooRexx
ooRexx
default(precision, 1000)
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#PARI.2FGP
PARI/GP
default(precision, 1000)
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Pascal
Pascal
type correctInteger = integer attribute (size = 42);
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#Scala
Scala
import java.awt.geom.Ellipse2D import java.awt.image.BufferedImage import java.awt.{Color, Graphics, Graphics2D} Β  import scala.math.sqrt Β  object Voronoi extends App { private val (cells, dim) = (100, 1000) private val rand = new scala.util.Random private val color = Vector.fill(cells)(rand.nextInt(0x1000000)) private val image = new BufferedImage(dim, dim, BufferedImage.TYPE_INT_RGB) private val g: Graphics2D = image.createGraphics() private val px = Vector.fill(cells)(rand.nextInt(dim)) private val py = Vector.fill(cells)(rand.nextInt(dim)) Β  for (x <- 0 until dim; y <- 0 until dim) { var n = 0 Β  def distance(x1: Int, x2: Int, y1: Int, y2: Int) = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2).toDouble) // Euclidian Β  for (i <- px.indices if distance(px(i), x, py(i), y) < distance(px(n), x, py(n), y)) n = i image.setRGB(x, y, color(n)) } Β  g.setColor(Color.BLACK) for (i <- px.indices) g.fill(new Ellipse2D.Double(px(i) - 2.5, py(i) - 2.5, 5, 5)) Β  new javax.swing.JFrame("Voronoi Diagram") { override def paint(g: Graphics): Unit = {g.drawImage(image, 0, 0, this); ()} Β  setBounds(0, 0, dim, dim) setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE) setLocationRelativeTo(null) setResizable(false) setVisible(true) } Β  }
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Phix
Phix
with javascript_semantics function f(atom aa1, t) return power(t, aa1) * exp(-t) end function function simpson38(atom aa1, a, b, integer n) atom h := (b-a)/n, h1 := h/3, tot := f(aa1,a) + f(aa1,b) for j=3*n-1 to 1 by -1 do tot += (3-(mod(j,3)=0)) * f(aa1,a+h1*j) end for return h*tot/8 end function --<copy of gamma from Gamma_function#Phix> sequence c = repeat(0,12) function gamma(atom z) atom accm = c[1] if accm=0 then accm = sqrt(2*PI) c[1] = accm atom k1_factrl = 1 -- (k - 1)!*(-1)^k with 0!==1 for k=2 to 12 do c[k] = exp(13-k)*power(13-k,k-1.5)/k1_factrl k1_factrl *= -(k-1) end for end if for k=2 to 12 do accm += c[k]/(z+k-1) end for accm *= exp(-(z+12))*power(z+12,z+0.5) -- Gamma(z+1) return accm/z end function --</copy of gamma> function gammaIncQ(atom a, x) atom aa1 := a-1, y := aa1, h := 1.5e-2 while f(aa1,y)*(x-y) > 2e-8 and y < x do y += 0.4 end while if y > x then y = x end if return 1 - simpson38(aa1,0,y,floor(y/h/gamma(a))) end function function chi2ud(sequence ds) atom expected = sum(ds)/length(ds), tot = sum(sq_power(sq_sub(ds,expected),2)) return tot/expected end function function chi2p(integer dof, atom distance) return gammaIncQ(0.5*dof,0.5*distance) end function constant sigLevel = 0.05 procedure utest(sequence dset) printf(1,"Uniform distribution test\n") integer tot = sum(dset), dof := length(dset)-1 atom dist := chi2ud(dset), p := chi2p(dof, dist) bool sig := p < sigLevel printf(1," dataset:Β %v\n",{dset}) printf(1," samples: Β %d\n", tot) printf(1," categories: Β %d\n", length(dset)) printf(1," degrees of freedom: Β %d\n", dof) printf(1," chi square test statistic:Β %g\n", dist) printf(1," p-value of test statistic:Β %g\n", p) printf(1," significant atΒ %.0f%% level? Β %t\n", {sigLevel*100, sig}) printf(1," uniform? Β %t\n",not sig) end procedure utest({199809, 200665, 199607, 200270, 199649}) utest({522573, 244456, 139979, 71531, 21461})
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#J
J
NB.*vig c Vigenère cipher NB. cipher=. key 0 vig charset plain NB. plain=. key 1 vig charset cipher vig=: conjunction define : r=. (#y) $ n i.x n {~ (#n) | (r*_1^m) + n i.y )   ALPHA=: (65,:26) ];.0 a. NB. Character Set preprocess=: (#~ e.&ALPHA)@toupper NB. force uppercase and discard non-alpha chars vigEncryptRC=: 0 vig ALPHA preprocess vigDecryptRC=: 1 vig ALPHA preprocess
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Maxima
Maxima
load(graphs)$ Β  g: random_tree(10)$ Β  is_tree(g); true Β  draw_graph(g)$
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Nim
Nim
import strutils Β  type Node[T] = ref object data: T left, right: Node[T] Β  proc n[T](data: T; left, right: Node[T] = nil): Node[T] = Node[T](data: data, left: left, right: right) Β  proc indent[T](n: Node[T]): seq[string] = if n == nil: return @["-- (null)"] Β  result = @["--" & $n.data] Β  for a in indent n.left: result.add " |" & a Β  let r = indent n.right result.add " `" & r[0] for a in r[1..r.high]: result.add " " & a Β  let tree = 1.n(2.n(4.n(7.n),5.n),3.n(6.n(8.n,9.n))) Β  echo tree.indent.join("\n")
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Standard_ML
Standard ML
fun dirEntries path = let fun loop strm = case OS.FileSys.readDir strm of SOME name => nameΒ :: loop strm | NONE => [] val strm = OS.FileSys.openDir path in loop strm before OS.FileSys.closeDir strm end
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Tcl
Tcl
foreach filename [glob *.txt] { puts $filename }
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Objeck
Objeck
use System.IO.File; Β  class Test { function : Main(args : String[]) ~ Nil { if(args->Size() = 2) { DescendDir(args[0], args[1]); }; } Β  function : DescendDir(path : String, pattern : String) ~ Nil { files := Directory->List(path); each(i : files) { file := files[i]; if(<>file->StartsWith('.')) { dir_path := String->New(path); dir_path += '/'; dir_path += file; Β  if(Directory->Exists(dir_path)) { DescendDir(dir_path, pattern); } else if(File->Exists(dir_path) & dir_path->EndsWith(pattern)) { dir_path->PrintLine(); }; }; }; } }
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#Phix
Phix
with javascript_semantics function collect_water(sequence heights) integer res = 0 for i=2 to length(heights)-1 do integer lm = max(heights[1..i-1]), rm = max(heights[i+1..$]), d = min(lm,rm)-heights[i] res += max(0,d) end for return res end function constant tests = {{1,5,3,7,2}, {5,3,7,2,6,4,5,9,1,2}, {2,6,3,5,2,8,1,4,2,2,5,3,5,7,4,1}, {5,5,5,5}, {5,6,7,8}, {8,7,7,6}, {6,7,10,7,6}} for i=1 to length(tests) do sequence ti = tests[i] printf(1,"%35sΒ :Β %d\n",{sprint(ti),collect_water(ti)}) end for
http://rosettacode.org/wiki/Vector_products
Vector products
A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: Β  (X, Y, Z). If you imagine a graph with the Β  x Β  and Β  y Β  axis being at right angles to each other and having a third, Β  z Β  axis coming out of the page, then a triplet of numbers, Β  (X, Y, Z) Β  would represent a point in the region, Β  and a vector from the origin to the point. Given the vectors: A = (a1, a2, a3) B = (b1, b2, b3) C = (c1, c2, c3) then the following common vector products are defined: The dot product Β  Β  Β  (a scalar quantity) A β€’ B = a1b1 Β  + Β  a2b2 Β  + Β  a3b3 The cross product Β  Β  Β  (a vector quantity) A x B = (a2b3Β  - Β  a3b2, Β  Β  a3b1 Β  - Β  a1b3, Β  Β  a1b2 Β  - Β  a2b1) The scalar triple product Β  Β  Β  (a scalar quantity) A β€’ (B x C) The vector triple product Β  Β  Β  (a vector quantity) A x (B x C) Task Given the three vectors: a = ( 3, 4, 5) b = ( 4, 3, 5) c = (-5, -12, -13) Create a named function/subroutine/method to compute the dot product of two vectors. Create a function to compute the cross product of two vectors. Optionally create a function to compute the scalar triple product of three vectors. Optionally create a function to compute the vector triple product of three vectors. Compute and display: a β€’ b Compute and display: a x b Compute and display: a β€’ (b x c), the scalar triple product. Compute and display: a x (b x c), the vector triple product. References Β  A starting page on Wolfram MathWorld is Β  Vector Multiplication . Β  Wikipedia Β  dot product. Β  Wikipedia Β  cross product. Β  Wikipedia Β  triple product. Related tasks Β  Dot product Β  Quaternion type
#Action.21
Action!
TYPE Vector=[INT x,y,z] Β  PROC CreateVector(INT vx,vy,vz Vector POINTER v) v.x=vx v.y=vy v.z=vz RETURN Β  PROC PrintVector(Vector POINTER v) PrintF("(%I,%I,%I)",v.x,v.y,v.z) RETURN Β  INT FUNC DotProduct(Vector POINTER v1,v2) INT res Β  res=v1.x*v2.x Β ;calculation split into parts res==+v1.y*v2.y Β ;otherwise incorrect result res==+v1.z*v2.z Β ;is returned RETURN (res) Β  PROC CrossProduct(Vector POINTER v1,v2,res) res.x=v1.y*v2.z Β ;calculation split into parts res.x==-v1.z*v2.y Β ;otherwise incorrect result res.y=v1.z*v2.x Β ;is returned res.y==-v1.x*v2.z res.z=v1.x*v2.y res.z==-v1.y*v2.x RETURN Β  PROC Main() Vector a,b,c,d,e INT res Β  CreateVector(3,4,5,a) CreateVector(4,3,5,b) CreateVector(-5,-12,-13,c) Β  Print("a=") PrintVector(a) PutE() Print("b=") PrintVector(b) PutE() Print("c=") PrintVector(c) PutE() PutE() Β  res=DotProduct(a,b) PrintF("a.b=%I%E",res) Β  CrossProduct(a,b,d) Print("axb=") PrintVector(d) PutE() Β  CrossProduct(b,c,d) res=DotProduct(a,d) PrintF("a.(bxc)=%I%E",res) Β  CrossProduct(b,c,d) CrossProduct(a,d,e) Print("ax(bxc)=") PrintVector(e) PutE() RETURN
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Python
Python
from collections import Counter from pprint import pprint as pp Β  def distcheck(fn, repeats, delta): '''\ Bin the answers to fn() and check bin counts are within +/- deltaΒ % of repeats/bincount''' bin = Counter(fn() for i in range(repeats)) target = repeats // len(bin) deltacount = int(delta / 100. * target) assert all( abs(target - count) < deltacount for count in bin.values() ), "Bin distribution skewed fromΒ %i +/-Β %i:Β %s"Β % ( target, deltacount, [ (key, target - count) for key, count in sorted(bin.items()) ] ) pp(dict(bin))
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Quackery
Quackery
[ stack [ 0 0 0 0 0 0 0 ] ] is bins ( --> s ) Β  [ 7 times [ 0 bins take i poke bins put ] ] is emptybins ( --> ) Β  [ bins share over peek 1+ bins take rot poke bins put ] is bincrement ( n --> ) Β  [ emptybins over 7 / temp put swap times [ over do 1 - bincrement ] bins share dup echo cr witheach [ temp share - abs over > if [ say "Number of " i^ 1+ echo say "s is sketchy." cr ] ] 2drop temp release ] is distribution ( x n n --> )
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Groovy
Groovy
final RADIX = 7 final MASK = 2**RADIX - 1 Β  def octetify = { n -> def octets = [] for (def i = n; i != 0; i >>>= RADIX) { octets << ((byte)((i & MASK) + (octets.empty ? 0Β : MASK + 1))) } octets.reverse() } Β  def deoctetify = { octets -> octets.inject(0) { long n, octet -> (n << RADIX) + ((int)(octet) & MASK) } }
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Haskell
Haskell
import Numeric (readOct, showOct) import Data.List (intercalate) Β  to :: Int -> String to = flip showOct "" Β  from :: String -> Int from = fst . head . readOct Β  main :: IO () main = mapM_ (putStrLn . intercalate " <-> " . (pure (:) <*> to <*> (return . show . from . to))) [2097152, 2097151]
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#BaCon
BaCon
' Variadic functions OPTION BASE 1 SUB demo (VAR arg$ SIZE argc) LOCAL x PRINT "Amount of incoming arguments: ", argc FOR x = 1 TO argc PRINT arg$[x] NEXT END SUB Β  ' No argument demo(0) ' One argument demo("abc") ' Three arguments demo("123", "456", "789")
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#BASIC
BASIC
SUB printAll cdecl (count As Integer, ... ) DIM arg AS Any Ptr DIM i AS Integer Β  arg = va_first() FOR i = 1 To count PRINT va_arg(arg, Double) arg = va_next(arg, Double) NEXT i END SUB Β  printAll 3, 3.1415, 1.4142, 2.71828
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#11l
11l
Int64 i print(T(i).size) print(Int64.size)
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#F.23
F#
open System Β  let add (ax, ay) (bx, by) = (ax+bx, ay+by) Β  let sub (ax, ay) (bx, by) = (ax-bx, ay-by) Β  let mul (ax, ay) c = (ax*c, ay*c) Β  let div (ax, ay) c = (ax/c, ay/c) Β  [<EntryPoint>] let main _ = let a = (5.0, 7.0) let b = (2.0, 3.0) Β  printfn "%A" (add a b) printfn "%A" (sub a b) printfn "%A" (mul a 11.0) printfn "%A" (div a 2.0) 0 // return an integer exit code
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#Factor
Factor
(scratchpad) USE: math.vectors (scratchpad) { 1 2 } { 3 4 } v+ Β  --- Data stack: { 4 6 }
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Perl
Perl
with javascript_semantics requires("1.0.0") include mpfr.e mpfr pi = mpfr_init(0,-121) -- 120 dp, +1 for the "3." mpfr_const_pi(pi) printf(1,"PI with 120 decimals:Β %s\n\n",mpfr_get_fixed(pi,120))
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Phix
Phix
with javascript_semantics requires("1.0.0") include mpfr.e mpfr pi = mpfr_init(0,-121) -- 120 dp, +1 for the "3." mpfr_const_pi(pi) printf(1,"PI with 120 decimals:Β %s\n\n",mpfr_get_fixed(pi,120))
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#PicoLisp
PicoLisp
Β  declare i fixed binary (7), /* occupies 1 byte */ j fixed binary (15), /* occupies 2 bytes */ k fixed binary (31), /* occupies 4 bytes */ l fixed binary (63); /* occupies 8 bytes */ Β  declare d fixed decimal (1), /* occupies 1 byte */ e fixed decimal (3), /* occupies 2 bytes */ /* an so on ... */ f fixed decimal (15); /* occupies 8 bytes */ Β  declare b(16) bit (1) unaligned; /* occupies 2 bytes */ declare c(16) bit (1) aligned; /* occupies 16 bytes */ Β  declare x float decimal (6), /* occupies 4 bytes */ y float decimal (16), /* occupies 8 bytes */ z float decimal (33); /* occupies 16 bytes */ Β 
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#Seed7
Seed7
$ include "seed7_05.s7i"; include "draw.s7i"; include "keybd.s7i"; Β  const type: point is new struct var integer: xPos is 0; var integer: yPos is 0; var color: col is black; end struct; Β  const proc: generateVoronoiDiagram (in integer: width, in integer: height, in integer: numCells) is func local var array point: points is 0 times point.value; var integer: index is 0; var integer: x is 0; var integer: y is 0; var integer: distSquare is 0; var integer: minDistSquare is 0; var integer: indexOfNearest is 0; begin screen(width, height); pointsΒ := numCells times point.value; for index range 1 to numCells do points[index].xPosΒ := rand(0, width); points[index].yPosΒ := rand(0, height); points[index].colΒ := color(rand(0, 65535), rand(0, 65535), rand(0, 65535)); end for; for y range 0 to height do for x range 0 to width do minDistSquareΒ := width ** 2 + height ** 2; for index range 1 to numCells do distSquareΒ := (points[index].xPos - x) ** 2 + (points[index].yPos - y) ** 2; if distSquare < minDistSquare then minDistSquareΒ := distSquare; indexOfNearestΒ := index; end if; end for; point(x, y, points[indexOfNearest].col); end for; end for; for index range 1 to numCells do line(points[index].xPos - 2, points[index].yPos, 4, 0, black); line(points[index].xPos, points[index].yPos - 2, 0, 4, black); end for; end func; Β  const proc: main is func begin generateVoronoiDiagram(500, 500, 25); KEYBOARDΒ := GRAPH_KEYBOARD; readln(KEYBOARD); end func;
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#Sidef
Sidef
require('Imager') Β  func generate_voronoi_diagram(width, height, num_cells) { var img = %O<Imager>.new(xsize => width, ysize => height) var (nx,ny,nr,ng,nb) = 5.of { [] }... Β  for i in (^num_cells) { nx << rand(^width) ny << rand(^height) nr << rand(^256) ng << rand(^256) nb << rand(^256) } Β  for y=(^height), x=(^width) { var j = (^num_cells -> min_by {|i| hypot(nx[i]-x, ny[i]-y) }) img.setpixel(x => x, y => y, color => [nr[j], ng[j], nb[j]]) } return img } Β  var img = generate_voronoi_diagram(500, 500, 25) img.write(file => 'VoronoiDiagram.png')
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Python
Python
import math import random Β  def GammaInc_Q( a, x): a1 = a-1 a2 = a-2 def f0( t ): return t**a1*math.exp(-t) Β  def df0(t): return (a1-t)*t**a2*math.exp(-t) Β  y = a1 while f0(y)*(x-y) >2.0e-8 and y < x: y += .3 if y > x: y = x Β  h = 3.0e-4 n = int(y/h) h = y/n hh = 0.5*h gamax = h * sum( f0(t)+hh*df0(t) for t in ( h*j for j in xrange(n-1, -1, -1))) Β  return gamax/gamma_spounge(a) Β  c = None def gamma_spounge( z): global c a = 12 Β  if c is None: k1_factrl = 1.0 c = [] c.append(math.sqrt(2.0*math.pi)) for k in range(1,a): c.append( math.exp(a-k) * (a-k)**(k-0.5) / k1_factrl ) k1_factrl *= -k Β  accm = c[0] for k in range(1,a): accm += c[k] / (z+k) accm *= math.exp( -(z+a)) * (z+a)**(z+0.5) return accm/z; Β  def chi2UniformDistance( dataSet ): expected = sum(dataSet)*1.0/len(dataSet) cntrd = (d-expected for d in dataSet) return sum(x*x for x in cntrd)/expected Β  def chi2Probability(dof, distance): return 1.0 - GammaInc_Q( 0.5*dof, 0.5*distance) Β  def chi2IsUniform(dataSet, significance): dof = len(dataSet)-1 dist = chi2UniformDistance(dataSet) return chi2Probability( dof, dist ) > significance Β  dset1 = [ 199809, 200665, 199607, 200270, 199649 ] dset2 = [ 522573, 244456, 139979, 71531, 21461 ] Β  for ds in (dset1, dset2): print "Data set:", ds dof = len(ds)-1 distance =chi2UniformDistance(ds) print "dof:Β %d distance:Β %.4f"Β % (dof, distance), prob = chi2Probability( dof, distance) print "probability:Β %.4f"%prob, print "uniform? ", "Yes"if chi2IsUniform(ds,0.05) else "No"
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#Java
Java
public class VigenereCipher { public static void main(String[] args) { String key = "VIGENERECIPHER"; String ori = "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!"; String enc = encrypt(ori, key); System.out.println(enc); System.out.println(decrypt(enc, key)); } Β  static String encrypt(String text, final String key) { String res = ""; text = text.toUpperCase(); for (int i = 0, j = 0; i < text.length(); i++) { char c = text.charAt(i); if (c < 'A' || c > 'Z') continue; res += (char)((c + key.charAt(j) - 2 * 'A') % 26 + 'A'); j = ++j % key.length(); } return res; } Β  static String decrypt(String text, final String key) { String res = ""; text = text.toUpperCase(); for (int i = 0, j = 0; i < text.length(); i++) { char c = text.charAt(i); if (c < 'A' || c > 'Z') continue; res += (char)((c - key.charAt(j) + 26) % 26 + 'A'); j = ++j % key.length(); } return res; } }
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Perl
Perl
#!/usr/bin/perl use warnings; use strict; use utf8; use open OUT => ':utf8', ':std'; Β  sub parse { my ($tree) = shift; if (my ($root, $children) = $tree =~ /^(.+?)\((.*)\)$/) { Β  my $depth = 0; for my $pos (0 .. length($children) - 1) { my $char = \substr $children, $pos, 1; if (0 == $depth and ',' eq $$char) { $$char = "\x0"; } elsif ('(' eq $$char) { $depth++; } elsif (')' eq $$char) { $depth--; } } return($root, [map parse($_), split /\x0/, $children]); Β  } else { # Leaf. return $tree; } } Β  sub output { my ($parsed, $prefix) = @_; my $is_root = not defined $prefix; $prefix //= ' '; while (my $member = shift @$parsed) { my $last = !@$parsed || (1 == @$parsed and ref $parsed->[0]); unless ($is_root) { substr $prefix, -3, 1, ' '; substr($prefix, -4, 1) =~ s/β”œ/β”‚/; substr $prefix, -2, 1, ref $member ? ' ' : 'β””' if $last; } Β  if (ref $member) { output($member, $prefix . 'β”œβ”€'); } else { print $prefix, $member, "\n"; } } } Β  my $tree = 'a(b0(c1,c2(d(ef,gh)),c3(i1,i2,i3(jj),i4(kk,m))),b1(C1,C2(D1(E),D2,D3),C3))'; my $parsed = [parse($tree)]; output($parsed);
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Toka
Toka
needs shell " ." " .\\.txt$" dir.listByPattern
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#TUSCRIPT
TUSCRIPT
$$ MODE TUSCRIPT files=FILE_NAMES (+,-std-) fileswtxt= FILTER_INDEX (files,":*.txt:",-) txtfiles= SELECT (files,#fileswtxt)
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Objective-C
Objective-C
NSString *dir = NSHomeDirectory(); NSDirectoryEnumerator *de = [[NSFileManager defaultManager] enumeratorAtPath:dir]; Β  for (NSString *file in de) if ([[file pathExtension] isEqualToString:@"mp3"]) NSLog(@"%@", file);
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#OCaml
OCaml
#!/usr/bin/env ocaml #load "unix.cma" #load "str.cma" open Unix Β  let walk_directory_tree dir pattern = let re = Str.regexp pattern in (* pre-compile the regexp *) let select str = Str.string_match re str 0 in let rec walk acc = function | [] -> (acc) | dir::tail -> let contents = Array.to_list (Sys.readdir dir) in let contents = List.rev_map (Filename.concat dir) contents in let dirs, files = List.fold_left (fun (dirs,files) f -> match (stat f).st_kind with | S_REG -> (dirs, f::files) (* Regular file *) | S_DIR -> (f::dirs, files) (* Directory *) | _ -> (dirs, files) ) ([],[]) contents in let matched = List.filter (select) files in walk (matched @ acc) (dirs @ tail) in walk [] [dir] ;; Β  let () = let results = walk_directory_tree "/usr/local/lib/ocaml" ".*\\.cma" in List.iter print_endline results; ;;
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#Phixmonti
Phixmonti
include ..\Utilitys.pmt Β  def collect_water 0 var res len 1 - 2 swap 2 tolist for var i 1 i 1 - slice max >ps len i - 1 + i swap slice max >ps i get ps> ps> min swap - 0 max res + var res endfor drop res enddef Β  ( ( 1 5 3 7 2 ) ( 5 3 7 2 6 4 5 9 1 2 ) ( 2 6 3 5 2 8 1 4 2 2 5 3 5 7 4 1 ) ( 5 5 5 5 ) ( 5 6 7 8 ) ( 8 7 7 6 ) ( 6 7 10 7 6 ) ) Β  len for get dup print "Β : " print collect_waterΒ ? endfor
http://rosettacode.org/wiki/Vector_products
Vector products
A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: Β  (X, Y, Z). If you imagine a graph with the Β  x Β  and Β  y Β  axis being at right angles to each other and having a third, Β  z Β  axis coming out of the page, then a triplet of numbers, Β  (X, Y, Z) Β  would represent a point in the region, Β  and a vector from the origin to the point. Given the vectors: A = (a1, a2, a3) B = (b1, b2, b3) C = (c1, c2, c3) then the following common vector products are defined: The dot product Β  Β  Β  (a scalar quantity) A β€’ B = a1b1 Β  + Β  a2b2 Β  + Β  a3b3 The cross product Β  Β  Β  (a vector quantity) A x B = (a2b3Β  - Β  a3b2, Β  Β  a3b1 Β  - Β  a1b3, Β  Β  a1b2 Β  - Β  a2b1) The scalar triple product Β  Β  Β  (a scalar quantity) A β€’ (B x C) The vector triple product Β  Β  Β  (a vector quantity) A x (B x C) Task Given the three vectors: a = ( 3, 4, 5) b = ( 4, 3, 5) c = (-5, -12, -13) Create a named function/subroutine/method to compute the dot product of two vectors. Create a function to compute the cross product of two vectors. Optionally create a function to compute the scalar triple product of three vectors. Optionally create a function to compute the vector triple product of three vectors. Compute and display: a β€’ b Compute and display: a x b Compute and display: a β€’ (b x c), the scalar triple product. Compute and display: a x (b x c), the vector triple product. References Β  A starting page on Wolfram MathWorld is Β  Vector Multiplication . Β  Wikipedia Β  dot product. Β  Wikipedia Β  cross product. Β  Wikipedia Β  triple product. Related tasks Β  Dot product Β  Quaternion type
#Ada
Ada
with Ada.Text_IO; Β  procedure Vector is type Float_Vector is array (Positive range <>) of Float; package Float_IO is new Ada.Text_IO.Float_IO (Float); Β  procedure Vector_Put (XΒ : Float_Vector) is begin Ada.Text_IO.Put ("("); for I in X'Range loop Float_IO.Put (X (I), Aft => 1, Exp => 0); if I /= X'Last then Ada.Text_IO.Put (", "); end if; end loop; Ada.Text_IO.Put (")"); end Vector_Put; Β  -- cross product function "*" (Left, RightΒ : Float_Vector) return Float_Vector is begin if Left'Length /= Right'Length then raise Constraint_Error with "vectors of different size in dot product"; end if; if Left'Length /= 3 then raise Constraint_Error with "dot product only implemented for R**3"; end if; return Float_Vector'(Left (Left'First + 1) * Right (Right'First + 2) - Left (Left'First + 2) * Right (Right'First + 1), Left (Left'First + 2) * Right (Right'First) - Left (Left'First) * Right (Right'First + 2), Left (Left'First) * Right (Right'First + 1) - Left (Left'First + 1) * Right (Right'First)); end "*"; Β  -- scalar product function "*" (Left, RightΒ : Float_Vector) return Float is ResultΒ : FloatΒ := 0.0; I, JΒ : Positive; begin if Left'Length /= Right'Length then raise Constraint_Error with "vectors of different size in scalar product"; end if; IΒ := Left'First; JΒ := Right'First; while I <= Left'Last and then J <= Right'Last loop ResultΒ := Result + Left (I) * Right (J); IΒ := I + 1; JΒ := J + 1; end loop; return Result; end "*"; Β  -- stretching function "*" (LeftΒ : Float_Vector; RightΒ : Float) return Float_Vector is ResultΒ : Float_Vector (Left'Range); begin for I in Left'Range loop Result (I)Β := Left (I) * Right; end loop; return Result; end "*"; Β  AΒ : constant Float_VectorΒ := (3.0, 4.0, 5.0); BΒ : constant Float_VectorΒ := (4.0, 3.0, 5.0); CΒ : constant Float_VectorΒ := (-5.0, -12.0, -13.0); begin Ada.Text_IO.Put ("A: "); Vector_Put (A); Ada.Text_IO.New_Line; Ada.Text_IO.Put ("B: "); Vector_Put (B); Ada.Text_IO.New_Line; Ada.Text_IO.Put ("C: "); Vector_Put (C); Ada.Text_IO.New_Line; Ada.Text_IO.New_Line; Ada.Text_IO.Put ("A dot B = "); Float_IO.Put (A * B, Aft => 1, Exp => 0); Ada.Text_IO.New_Line; Ada.Text_IO.Put ("A x B = "); Vector_Put (A * B); Ada.Text_IO.New_Line; Ada.Text_IO.Put ("A dot (B x C) = "); Float_IO.Put (A * (B * C), Aft => 1, Exp => 0); Ada.Text_IO.New_Line; Ada.Text_IO.Put ("A x (B x C) = "); Vector_Put (A * Float_Vector'(B * C)); Ada.Text_IO.New_Line; end Vector;
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#R
R
distcheck <- function(fn, repetitions=1e4, delta=3) { if(is.character(fn)) { fn <- get(fn) } if(!is.function(fn)) { stop("fn is not a function") } samp <- fn(n=repetitions) counts <- table(samp) expected <- repetitions/length(counts) lbound <- expected * (1 - 0.01*delta) ubound <- expected * (1 + 0.01*delta) status <- ifelse(counts < lbound, "under", ifelse(counts > ubound, "over", "okay")) data.frame(value=names(counts), counts=as.vector(counts), status=status) } distcheck(dice7.vec)
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Racket
Racket
#lang racket (define (pretty-fraction f) (if (integer? f) f (let* ((d (denominator f)) (n (numerator f)) (q (quotient n d)) (r (remainder n d))) (format "~a ~a" q (/ r d))))) Β  (define (test-uniformity/naive r n Ξ΄) (define observation (make-hash)) (for ((_ (in-range n))) (hash-update! observation (r) add1 0)) (define target (/ n (hash-count observation))) (define max-skew (* n Ξ΄ 1/100)) (define (skewed? v) (> (abs (- v target)) max-skew)) (let/ec ek (cons #t (for/list ((k (sort (hash-keys observation) <))) (define v (hash-ref observation k)) (when (skewed? v) (ek (cons #f (format "~a distribution of ~s potentially skewed for ~a. expected ~a got ~a" 'test-uniformity/naive r k (pretty-fraction target) v)))) (cons k v))))) Β  (define (straight-die) (min 6 (add1 (random 6)))) Β  (define (crooked-die) (min 6 (add1 (random 7)))) Β  ; Test whether the builtin generator is uniform: (test-uniformity/naive (curry random 10) 1000 5) ; Test whether a straight die is uniform: (test-uniformity/naive straight-die 1000 5) ; Test whether a biased die fails: (test-uniformity/naive crooked-die 1000 5)
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Raku
Raku
my $d7 = 1..7; sub roll7 { $d7.roll }; Β  my $threshold = 3; Β  for 14, 105, 1001, 10003, 100002, 1000006 -> $n { dist( $n, $threshold, &roll7 ) }; Β  Β  sub dist ( $n is copy, $threshold, &producer ) { my @dist; my $expect = $n / 7; say "Expect\t",$expect.fmt("%.3f"); Β  loop ($_ = $n; $n; --$n) { @dist[&producer()]++; } Β  for @dist.kv -> $i, $v is copy { next unless $i; $v //= 0; my $pct = ($v - $expect)/$expect*100; printf "%d\t%d\t%+.2f%%Β %s\n", $i, $v, $pct, ($pct.abs > $threshold ?? '- skewed' !! ''); } say ''; }
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Icon_and_Unicon
Icon and Unicon
procedure main() every i := 2097152 | 2097151 | 1 | 127 | 128 | 589723405834 | 165 | 256 do write(image(i)," = ",string2hex(v := uint2vlq(i))," = ",vlq2uint(v)) end Β  procedure vlq2uint(s) #: decode a variable length quantity if *s > 0 then { i := 0 s ? while h := ord(move(1)) do { if (pos(0) & h > 128) | (not pos(0) & h < 128) then fail i := 128 * i + h % 128 } return i } end Β  procedure uint2vlq(i,c) #: encode a whole number as a variable length quantity if "integer" == type(-1 < i) then return if i = 0 then char((/c := 0)) | "" else uint2vlq(i/128,1) || char((i % 128) + ((/c := 0) | 128) ) end Β  procedure string2hex(s) #: convert a string to hex h := "" every i := ord(!s) do h ||:= "0123456789abcdef"[i/16+1] || "0123456789abcdef"[i%16+1] return h end
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#Batch_File
Batch File
Β  @echo off Β  :_main call:_variadicfunc arg1 "arg 2" arg-3 pause>nul Β  :_variadicfunc setlocal for %%i in (%*) do echo %%~i exit /b :: Note: if _variadicfunc was called from cmd.exe with arguments parsed to it, it would only need to contain: :: @forΒ %%i in (%*) do echoΒ %%i Β 
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#bc
bc
/* Version a */ define f(a[], l) { auto i for (i = 0; i < l; i++) a[i] } Β  /* Version b */ define g(a[]) { auto i for (i = 0; a[i]Β != -1; i++) a[i] } Β  /* Version c */ define h(a[]) { auto i Β  for (i = 1; i <= a[0]; i++) a[i] }
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#ActionScript
ActionScript
Β  package { Β  import flash.display.Sprite; import flash.events.Event; import flash.sampler.getSize; Β  public class VariableSizeGet extends Sprite { Β  public function VariableSizeGet() { if ( stage ) _init(); else addEventListener(Event.ADDED_TO_STAGE, _init); } Β  private function _init(e:Event = null):void { Β  var i:int = 1; var n:Number = 0.5; var s:String = "abc"; var b:Boolean = true; var date:Date = new Date(); Β  trace("An int contains " + getSize(i) + " bytes."); // 4 trace("A Number contains " + getSize(n) + " bytes."); // 8 trace("The string 'abc' contains " + getSize(s) + " bytes."); // 24 trace("A Boolean contains " + getSize(b) + " bytes."); // 4 trace("A Date object contains " + getSize(date) + " bytes."); // 48 Β  } Β  } Β  } Β 
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#Ada
Ada
Int_BitsΒ : constant IntegerΒ := Integer'size; Whole_BytesΒ : constant IntegerΒ := Int_Bits / Storage_Unit; -- Storage_Unit is the number of bits per storage element
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#Forth
Forth
: v. swap . .Β ; : v* swap over * >r * r>Β ; : v/ swap over / >r / r>Β ; : v+ >r swap >r + r> r> +Β ; : v- >r swap >r - r> r> -Β ;
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#Fortran
Fortran
MODULE ROSETTA_VECTOR IMPLICIT NONE Β  TYPE VECTOR REAL :: X, Y END TYPE VECTOR Β  Β  INTERFACE OPERATOR(+) MODULE PROCEDURE VECTOR_ADD END INTERFACE Β  INTERFACE OPERATOR(-) MODULE PROCEDURE VECTOR_SUB END INTERFACE Β  INTERFACE OPERATOR(/) MODULE PROCEDURE VECTOR_DIV END INTERFACE Β  INTERFACE OPERATOR(*) MODULE PROCEDURE VECTOR_MULT END INTERFACE Β  CONTAINS Β  FUNCTION VECTOR_ADD(VECTOR_1, VECTOR_2) TYPE(VECTOR), INTENT(IN) :: VECTOR_1, VECTOR_2 TYPE(VECTOR) :: VECTOR_ADD VECTOR_ADD%X = VECTOR_1%X+VECTOR_2%X VECTOR_ADD%Y = VECTOR_1%Y+VECTOR_2%Y END FUNCTION VECTOR_ADD Β  FUNCTION VECTOR_SUB(VECTOR_1, VECTOR_2) TYPE(VECTOR), INTENT(IN) :: VECTOR_1, VECTOR_2 TYPE(VECTOR) :: VECTOR_SUB VECTOR_SUB%X = VECTOR_1%X-VECTOR_2%X VECTOR_SUB%Y = VECTOR_1%Y-VECTOR_2%Y END FUNCTION VECTOR_SUB Β  FUNCTION VECTOR_DIV(VEC, SCALAR) TYPE(VECTOR), INTENT(IN) :: VEC REAL, INTENT(IN) :: SCALAR TYPE(VECTOR) :: VECTOR_DIV VECTOR_DIV%X = VEC%X/SCALAR VECTOR_DIV%Y = VEC%Y/SCALAR END FUNCTION VECTOR_DIV Β  FUNCTION VECTOR_MULT(VEC, SCALAR) TYPE(VECTOR), INTENT(IN) :: VEC REAL, INTENT(IN) :: SCALAR TYPE(VECTOR) :: VECTOR_MULT VECTOR_MULT%X = VEC%X*SCALAR VECTOR_MULT%Y = VEC%Y*SCALAR END FUNCTION VECTOR_MULT Β  FUNCTION FROM_RTHETA(R, THETA) REAL :: R, THETA TYPE(VECTOR) :: FROM_RTHETA FROM_RTHETA%X = R*SIN(THETA) FROM_RTHETA%Y = R*COS(THETA) END FUNCTION FROM_RTHETA Β  FUNCTION FROM_XY(X, Y) REAL :: X, Y TYPE(VECTOR) :: FROM_XY FROM_XY%X = X FROM_XY%Y = Y END FUNCTION FROM_XY Β  FUNCTION PRETTY_PRINT(VEC) TYPE(VECTOR), INTENT(IN) :: VEC CHARACTER(LEN=100) PRETTY_PRINT WRITE(PRETTY_PRINT,"(A, F0.5, A, F0.5, A)") "[", VEC%X, ", ", VEC%Y, "]" END FUNCTION PRETTY_PRINT END MODULE ROSETTA_VECTOR Β  PROGRAM VECTOR_DEMO USE ROSETTA_VECTOR IMPLICIT NONE Β  TYPE(VECTOR) :: VECTOR_1, VECTOR_2 REAL, PARAMETER :: PI = 4*ATAN(1.0) REAL :: SCALAR Β  SCALAR = 2.0 Β  VECTOR_1 = FROM_XY(2.0, 3.0) VECTOR_2 = FROM_RTHETA(2.0, PI/6.0) Β  WRITE(*,*) "VECTOR_1 (X: 2.0, Y: 3.0) Β : ", PRETTY_PRINT(VECTOR_1) WRITE(*,*) "VECTOR_2 (R: 2.0, THETA: PI/6)Β : ", PRETTY_PRINT(VECTOR_2) WRITE(*,*) NEW_LINE('A') WRITE(*,*) "VECTOR_1 + VECTOR_2 = ", PRETTY_PRINT(VECTOR_1+VECTOR_2) WRITE(*,*) "VECTOR_1 - VECTOR_2 = ", PRETTY_PRINT(VECTOR_1-VECTOR_2) WRITE(*,*) "VECTOR_1 / 2.0 = ", PRETTY_PRINT(VECTOR_1/SCALAR) WRITE(*,*) "VECTOR_1 * 2.0 = ", PRETTY_PRINT(VECTOR_1*SCALAR) END PROGRAM VECTOR_DEMO
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#PL.2FI
PL/I
Β  declare i fixed binary (7), /* occupies 1 byte */ j fixed binary (15), /* occupies 2 bytes */ k fixed binary (31), /* occupies 4 bytes */ l fixed binary (63); /* occupies 8 bytes */ Β  declare d fixed decimal (1), /* occupies 1 byte */ e fixed decimal (3), /* occupies 2 bytes */ /* an so on ... */ f fixed decimal (15); /* occupies 8 bytes */ Β  declare b(16) bit (1) unaligned; /* occupies 2 bytes */ declare c(16) bit (1) aligned; /* occupies 16 bytes */ Β  declare x float decimal (6), /* occupies 4 bytes */ y float decimal (16), /* occupies 8 bytes */ z float decimal (33); /* occupies 16 bytes */ Β 
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#PureBasic
PureBasic
Β  EnableExplicit Β  Structure AllTypes b.b a.a w.w u.u c.c ; character typeΒ : 1 byte on x86, 2 bytes on x64 l.l i.i ; integer typeΒ : 4 bytes on x86, 8 bytes on x64 q.q f.f d.d s.s ; pointer to string on heapΒ : pointer size same as integer z.s{2} ; fixed length string of 2 characters, stored inline EndStructure Β  If OpenConsole() Define at.AllTypes PrintN("Size of types in bytes (x64)") PrintN("") PrintN("byte = " + SizeOf(at\b)) PrintN("ascii = " + SizeOf(at\a)) PrintN("word = " + SizeOf(at\w)) PrintN("unicode = " + SizeOf(at\u)) PrintN("character = " + SizeOf(at\c)) PrintN("long = " + SizeOf(at\l)) PrintN("integer = " + SizeOf(at\i)) PrintN("quod = " + SizeOf(at\q)) PrintN("float = " + SizeOf(at\f)) PrintN("double = " + SizeOf(at\d)) PrintN("string = " + SizeOf(at\s)) PrintN("string{2} = " + SizeOf(at\z)) PrintN("---------------") PrintN("AllTypes = " + SizeOf(at)) PrintN("") PrintN("Press any key to close the console") Repeat: Delay(10)Β : Until Inkey() <> "" CloseConsole() EndIf Β  Β 
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#Tcl
Tcl
package require Tk proc r to {expr {int(rand()*$to)}}; # Simple helper Β  proc voronoi {photo pointCount} { for {set i 0} {$i < $pointCount} {incr i} { lappend points [r [image width $photo]] [r [image height $photo]] } foreach {x y} $points { lappend colors [format "#%02x%02x%02x" [r 256] [r 256] [r 256]] } set initd [expr {[image width $photo] + [image height $photo]}] for {set i 0} {$i < [image width $photo]} {incr i} { for {set j 0} {$j < [image height $photo]} {incr j} { set color black set d $initd foreach {x y} $points c $colors { set h [expr {hypot($x-$i,$y-$j)}] ### Other interesting metrics #set h [expr {abs($x-$i)+abs($y-$j)}] #set h [expr {(abs($x-$i)**3+abs($y-$j)**3)**0.3}] if {$d > $h} {set d $h;set color $c} } $photo put $color -to $i $j } # To display while generating, uncomment this line and the other one so commented #if {$i%4==0} {update idletasks} } } Β  # Generate a 600x400 Voronoi diagram with 60 random points image create photo demo -width 600 -height 400 pack [label .l -image demo] # To display while generating, uncomment this line and the other one so commented #update voronoi demo 60
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#R
R
Β  dset1=c(199809,200665,199607,200270,199649) dset2=c(522573,244456,139979,71531,21461) Β  chi2IsUniform<-function(dataset,significance=0.05){ chi2IsUniform=(chisq.test(dataset)$p.value>significance) } Β  for (ds in list(dset1,dset2)){ print(c("Data set:",ds)) print(chisq.test(ds)) print(paste("uniform?",chi2IsUniform(ds))) } Β 
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#JavaScript
JavaScript
// helpers // helper function ordA(a) { return a.charCodeAt(0) - 65; } Β  // vigenere function vigenere(text, key, decode) { var i = 0, b; key = key.toUpperCase().replace(/[^A-Z]/g, ''); return text.toUpperCase().replace(/[^A-Z]/g, '').replace(/[A-Z]/g, function(a) { b = key[i++ % key.length]; return String.fromCharCode(((ordA(a) + (decode ? 26 - ordA(b) : ordA(b))) % 26 + 65)); }); } Β  // example var text = "The quick brown fox Jumped over the lazy Dog the lazy dog lazy dog dog"; var key = 'alex'; var enc = vigenere(text,key); var dec = vigenere(enc,key,true); Β  console.log(enc); console.log(dec);
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Phix
Phix
-- -- demo\rosetta\VisualiseTree.exw -- with javascript_semantics -- To the theme tune of the Milk Tray Ad iyrt, -- All because the Windows console hates utf8: constant TL = '\#DA', -- aka 'β”Œ' VT = '\#B3', -- aka 'β”‚' BL = '\#C0', -- aka 'β””' HZ = '\#C4', -- aka '─' HS = "\#C4" -- (string version of HZ) function w1252_to_utf8(string s) if platform()!=WINDOWS then s = substitute_all(s,{ TL, VT, BL, HZ}, {"β”Œ","β”‚","β””","─"}) end if return s end function --</hates utf8> procedure visualise_tree(object tree, string root=HS) if atom(tree) then puts(1,"<empty>\n") else object {v,l,r} = tree integer g = root[$] if sequence(l) then root[$] = iff(g=TL or g=HZ?' ':VT) visualise_tree(l,root&TL) end if root[$] = g printf(1,"%s%d\n",{w1252_to_utf8(root),v}) if sequence(r) then root[$] = iff(g=TL?VT:' ') visualise_tree(r,root&BL) end if end if end procedure function rand_tree(integer low, integer high) for i=1 to 2 do integer v = rand(high-low+1)-1+low if v!=low and v!=high then return {v,rand_tree(low,v),rand_tree(v,high)} end if end for return 0 end function object tree = rand_tree(0,20) -- (can be 0, <1% chance) visualise_tree(tree) --pp(tree,{pp_Nest,10}) {} = wait_key()
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#TXR
TXR
(glob "/etc/*.conf")
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#UNIX_Shell
UNIX Shell
ls -d *.c # *.c files in current directory (cd mydir && ls -d *.c) # *.c files in mydir
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#ooRexx
ooRexx
/* REXX --------------------------------------------------------------- * List all file names on my disk D: that contain the string TTTT *--------------------------------------------------------------------*/ call SysFileTree "d:\*.*", "file", "FS" -- F get all Files -- S search subdirectories Say file.0 'files on disk' do i=1 to file.0 If pos('TTTT',translate(file.i))>0 Then say file.i end
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Oz
Oz
declare [Path] = {Module.link ['x-oz://system/os/Path.ozf']} [Regex] = {Module.link ['x-oz://contrib/regex']} Β  proc {WalkDirTree Root Pattern Proc} proc {Walk R} Entries = {Path.readdir R} Files = {Filter Entries Path.isFile} MatchingFiles = {Filter Files fun {$ File} {Regex.search Pattern File} \= false end} Subdirs = {Filter Entries Path.isDir} in {ForAll MatchingFiles Proc} {ForAll Subdirs Walk} end in {Walk Root} end in {WalkDirTree "." ".*\\.oz$" System.showInfo}
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#PicoLisp
PicoLisp
(de water (Lst) (sum '((A) (cnt nT (clip (mapcar '((B) (>= B A)) Lst)) ) ) (range 1 (apply max Lst)) ) ) (println (mapcar water (quote (1 5 3 7 2) (5 3 7 2 6 4 5 9 1 2) (2 6 3 5 2 8 1 4 2 2 5 3 5 7 4 1) (5 5 5 5) (5 6 7 8) (8 7 7 6) (6 7 10 7 6) ) ) )
http://rosettacode.org/wiki/Vector_products
Vector products
A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: Β  (X, Y, Z). If you imagine a graph with the Β  x Β  and Β  y Β  axis being at right angles to each other and having a third, Β  z Β  axis coming out of the page, then a triplet of numbers, Β  (X, Y, Z) Β  would represent a point in the region, Β  and a vector from the origin to the point. Given the vectors: A = (a1, a2, a3) B = (b1, b2, b3) C = (c1, c2, c3) then the following common vector products are defined: The dot product Β  Β  Β  (a scalar quantity) A β€’ B = a1b1 Β  + Β  a2b2 Β  + Β  a3b3 The cross product Β  Β  Β  (a vector quantity) A x B = (a2b3Β  - Β  a3b2, Β  Β  a3b1 Β  - Β  a1b3, Β  Β  a1b2 Β  - Β  a2b1) The scalar triple product Β  Β  Β  (a scalar quantity) A β€’ (B x C) The vector triple product Β  Β  Β  (a vector quantity) A x (B x C) Task Given the three vectors: a = ( 3, 4, 5) b = ( 4, 3, 5) c = (-5, -12, -13) Create a named function/subroutine/method to compute the dot product of two vectors. Create a function to compute the cross product of two vectors. Optionally create a function to compute the scalar triple product of three vectors. Optionally create a function to compute the vector triple product of three vectors. Compute and display: a β€’ b Compute and display: a x b Compute and display: a β€’ (b x c), the scalar triple product. Compute and display: a x (b x c), the vector triple product. References Β  A starting page on Wolfram MathWorld is Β  Vector Multiplication . Β  Wikipedia Β  dot product. Β  Wikipedia Β  cross product. Β  Wikipedia Β  triple product. Related tasks Β  Dot product Β  Quaternion type
#ALGOL_68
ALGOL 68
MODE FIELD = INT; FORMAT field fmt = $g(-0)$; Β  MODE VEC = [3]FIELD; FORMAT vec fmt = $"("f(field fmt)", "f(field fmt)", "f(field fmt)")"$; Β  PROC crossp = (VEC a, b)VEC:( #Cross product of two 3D vectors# CO ASSERT(LWB a = LWB b AND UPB a = UPB b AND UPB b = 3 # "For 3D vectors only" #); CO (a[2]*b[3] - a[3]*b[2], a[3]*b[1] - a[1]*b[3], a[1]*b[2] - a[2]*b[1]) ); Β  PRIO MAXLWB = 8, MINUPB=8; Β  OP MAXLWB = (VEC a, b)INT: (LWB a<LWB b|LWB a|LWB b); OP MINUPB = (VEC a, b)INT: (UPB a>UPB b|UPB a|UPB b); Β  PROC dotp = (VEC a, b)FIELD:( #Dot product of two vectors# FIELD sum := 0; FOR i FROM a MAXLWB b TO a MINUPB b DO sum +:= a[i]*b[i] OD; sum ); Β  PROC scalartriplep = (VEC a, b, c)VEC:( #Scalar triple product of three vectors: "a . (b x c)"# dotp(a, crossp(b, c)) ); Β  PROC vectortriplep = (VEC a, b, c)VEC:( #Vector triple product of three vectors: "a x (b x c)"# crossp(a, crossp(b, c)) ); Β  # Declare some useful operators # PRIO DOT = 5, X = 5; OP (VEC, VEC)FIELD DOT = dotp; OP (VEC, VEC)VEC X = crossp; Β  main:( VEC a=(3, 4, 5), b=(4, 3, 5), c=(-5, -12, -13); printf(($"a = "f(vec fmt)"; b = "f(vec fmt)"; c = "f(vec fmt)l$ , a, b, c)); printf($"Using PROCedures:"l$); printf(($"a . b = "f(field fmt)l$, dotp(a,b))); printf(($"a x b = "f(vec fmt)l$, crossp(a,b))); printf(($"a . (b x c) = "f(field fmt)l$, scalartriplep(a, b, c))); printf(($"a x (b x c) = "f(vec fmt)l$, vectortriplep(a, b, c))); printf($"Using OPerators:"l$); printf(($"a . b = "f(field fmt)l$, a DOT b)); printf(($"a x b = "f(vec fmt)l$, a X b)); printf(($"a . (b x c) = "f(field fmt)l$, a DOT (b X c))); printf(($"a x (b x c) = "f(vec fmt)l$, a X (b X c))) )
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#REXX
REXX
/*REXX program simulates a number of trials of a random digit and show it's skewΒ %. */ parse arg func times delta seed . /*obtain arguments (options) from C.L. */ if func=='' | func=="," then func= 'RANDOM' /*function not specified? Use default.*/ if times=='' | times=="," then times= 1000000 /*times " " " " */ if delta=='' | delta=="," then delta= 1/2 /*delta% " " " " */ if datatype(seed, 'W') then call random ,,seed /*use some RAND seed for repeatability.*/ highDig= 9 /*use this var for the highest digit. */ !.= 0 /*initialize all possible random trials*/ do times /* [↓] perform a bunch of trials. */ if func=='RANDOM' thenΒ ?= random(highDig) /*use RANDOM function.*/ else interpret '?=' func "(0,"highDig')' /* " specified " */ Β !.?=Β !.? + 1 /*bump the invocation counter.*/ end /*times*/ /* [↑] store trials ───► pigeonholes. */ /* [↓] compute the digit's skewness. */ g= times / (1 + highDig) /*calculate number of each digit throw.*/ w= max(9, length( commas(times) ) ) /*maximum length of number of trials.*/ pad= left('', 9) /*this is used for output indentation. */ say pad 'digit' center(" hits", w) ' skew ' "skewΒ %" 'result' /*header. */ say sep /*display a separator line. */ /** [↑] show header and the separator.*/ do k=0 to highDig /*process each of the possible digits. */ skew= g -Β !.k /*calculate the skew for the digit. */ skewPC= (1 - (g - abs(skew)) / g) * 100 /* " " " percentage for dig*/ say pad center(k, 5) right( commas(!.k), w) right(skew, 6) , right( format(skewPC, , 3), 6) center( word('ok skewed', 1+(skewPC>delta)), 6) end /*k*/ say sep /*display a separator line. */ y= 5+1+w+1+6+1+6+1+6 /*width + seps*/ say pad center(" (with " commas(times) ' trials)' , y) /*# trials. */ say pad center(" (skewed when exceeds " delta'%)' , y) /*skewed note.*/ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg _; do jc=length(_)-3 to 1 by -3; _=insert(',', _, jc); end; return _ sep: say pad '─────' center('', w, '─') '──────' "──────" '──────'; return
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#J
J
N=: 128x v2i=: (N&| N&#./.~ [: +/\ _1 |. N&>)@i.~&a. i2v=: a. {~ [:;}.@(N+//.@,:N&#.inv)&.> ifv=: v2iΒ :. i2v vfi=: i2vΒ :. v2i
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Java
Java
public class VLQCode { public static byte[] encode(long n) { int numRelevantBits = 64 - Long.numberOfLeadingZeros(n); int numBytes = (numRelevantBits + 6) / 7; if (numBytes == 0) numBytes = 1; byte[] output = new byte[numBytes]; for (int i = numBytes - 1; i >= 0; i--) { int curByte = (int)(n & 0x7F); if (i != (numBytes - 1)) curByte |= 0x80; output[i] = (byte)curByte; n >>>= 7; } return output; } Β  public static long decode(byte[] b) { long n = 0; for (int i = 0; i < b.length; i++) { int curByte = b[i] & 0xFF; n = (n << 7) | (curByte & 0x7F); if ((curByte & 0x80) == 0) break; } return n; } Β  public static String byteArrayToString(byte[] b) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < b.length; i++) { if (i > 0) sb.append(", "); String s = Integer.toHexString(b[i] & 0xFF); if (s.length() < 2) s = "0" + s; sb.append(s); } return sb.toString(); } Β  public static void main(String[] args) { long[] testNumbers = { 2097152, 2097151, 1, 127, 128, 589723405834L }; for (long n : testNumbers) { byte[] encoded = encode(n); long decoded = decode(encoded); System.out.println("Original input=" + n + ", encoded = [" + byteArrayToString(encoded) + "], decoded=" + decoded + ", " + ((n == decoded) ? "OK" : "FAIL")); } } } Β 
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#BCPL
BCPL
get "libhdr" Β  // A, B, C, etc are dummy arguments. If more are needed, more can be added. // Eventually you will run into the compiler limit. let foo(num, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O) be // The arguments can be indexed starting from the first one. for i=1 to num do writef("%S*N", (@num)!i) Β  // You can pass as many arguments as you want. The declaration above guarantees // that at least the first 16 arguments (including the number) will be available, // but you certainly needn't use them all. let start() be foo(5, "Mary", "had", "a", "little", "lamb")
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#BQN
BQN
Fun1 ← β€’ShowΒ¨ Fun2 ← {β€’Show¨𝕩} Fun3 ← { 1=≠𝕩 ? β€’Show 𝕩; "too many arguments "Β ! 𝕩}
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#ALGOL_68
ALGOL 68
INT i; BYTES b; # typically INT and BYTES are the same size # STRING s:="DCLXVI", [666]CHAR c; print(( "sizeof INT i =",bytes width, new line, "UPB STRING s =",UPB s, new line, "UPB []CHAR c =",UPB c, new line ))
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#AutoHotkey
AutoHotkey
VarSetCapacity(Var, 10240000) ; allocate 10 megabytes MsgBoxΒ % size := VarSetCapacity(Var) ; 10240000
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#Babel
Babel
main: { (1 2 (3 4) 5 6) dup mu disp dup nva disp dup npt disp dup nlf disp dup nin disp dup nhref disp dup nhword disp } Β  disp!Β : {Β %d cr << } Β 
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64 Β  Type Vector As Double x, y Declare Operator Cast() As String End Type Β  Operator Vector.Cast() As String Return "[" + Str(x) + ", " + Str(y) + "]" End Operator Β  Operator + (vec1 As Vector, vec2 As Vector) As Vector Return Type<Vector>(vec1.x + vec2.x, vec1.y + vec2.y) End Operator Β  Operator - (vec1 As Vector, vec2 As Vector) As Vector Return Type<Vector>(vec1.x - vec2.x, vec1.y - vec2.y) End Operator Β  Operator * (vec As Vector, scalar As Double) As Vector Return Type<Vector>(vec.x * scalar, vec.y * scalar) End Operator Β  Operator / (vec As Vector, scalar As Double) As Vector ' No need to check for division by zero as we're using Doubles Return Type<Vector>(vec.x / scalar, vec.y / scalar) End Operator Β  Dim v1 As Vector = (5, 7) Dim v2 As Vector = (2, 3) Print v1; " + "; v2; " = "; v1 + v2 Print v1; " - "; v2; " = "; v1 - v2 Print v1; " * "; 11; " = "; v1 * 11.0 Print v1; " / "; 2; " = "; v1 / 2.0 Print Print "Press any key to quit" Sleep
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Python
Python
/*REXX program demonstrates on setting a variable (using a "minimum var size".*/ numeric digits 100 /*default: 9 (decimal digs) for numbers*/ Β  /*── 1 2 3 4 5 6 7──*/ /*──1234567890123456789012345678901234567890123456789012345678901234567890──*/ Β  z = 12345678901111111112222222222333333333344444444445555555555.66 n =-12345678901111111112222222222333333333344444444445555555555.66 Β  /* [↑] these #'s are stored as coded. */ /*stick a fork in it, we're all done. */
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Racket
Racket
/*REXX program demonstrates on setting a variable (using a "minimum var size".*/ numeric digits 100 /*default: 9 (decimal digs) for numbers*/ Β  /*── 1 2 3 4 5 6 7──*/ /*──1234567890123456789012345678901234567890123456789012345678901234567890──*/ Β  z = 12345678901111111112222222222333333333344444444445555555555.66 n =-12345678901111111112222222222333333333344444444445555555555.66 Β  /* [↑] these #'s are stored as coded. */ /*stick a fork in it, we're all done. */
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Raku
Raku
/*REXX program demonstrates on setting a variable (using a "minimum var size".*/ numeric digits 100 /*default: 9 (decimal digs) for numbers*/ Β  /*── 1 2 3 4 5 6 7──*/ /*──1234567890123456789012345678901234567890123456789012345678901234567890──*/ Β  z = 12345678901111111112222222222333333333344444444445555555555.66 n =-12345678901111111112222222222333333333344444444445555555555.66 Β  /* [↑] these #'s are stored as coded. */ /*stick a fork in it, we're all done. */
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#REXX
REXX
/*REXX program demonstrates on setting a variable (using a "minimum var size".*/ numeric digits 100 /*default: 9 (decimal digs) for numbers*/ Β  /*── 1 2 3 4 5 6 7──*/ /*──1234567890123456789012345678901234567890123456789012345678901234567890──*/ Β  z = 12345678901111111112222222222333333333344444444445555555555.66 n =-12345678901111111112222222222333333333344444444445555555555.66 Β  /* [↑] these #'s are stored as coded. */ /*stick a fork in it, we're all done. */
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Scala
Scala
/* Ranges for variables of the primitive numeric types */ println(s"A Byte variable has a range ofΒ : ${Byte.MinValue} to ${Byte.MaxValue}") println(s"A Short variable has a range ofΒ : ${Short.MinValue} to ${Short.MaxValue}") println(s"An Int variable has a range ofΒ : ${Int.MinValue} to ${Int.MaxValue}") println(s"A Long variable has a range ofΒ : ${Long.MinValue} to ${Long.MaxValue}") println(s"A Float variable has a range ofΒ : ${Float.MinValue} to ${Float.MaxValue}") println(s"A Double variable has a range ofΒ : ${Double.MinValue} to ${Double.MaxValue}")
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#Wren
Wren
import "graphics" for Canvas, Color import "dome" for Window import "random" for Random Β  class Game { static init() { Window.title = "Voronoi diagram" var cells = 70 var size = 700 Window.resize(size, size) Canvas.resize(size, size) voronoi(cells, size) } Β  static update() {} Β  static draw(alpha) {} Β  static distSq(x1, x2, y1, y2) { (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) } Β  static voronoi(cells, size) { var r = Random.new() var px = List.filled(cells, 0) var py = List.filled(cells, 0) var cl = List.filled(cells, 0) for (i in 0...cells) { px[i] = r.int(size) py[i] = r.int(size) cl[i] = Color.rgb(r.int(256), r.int(256), r.int(256)) } for (x in 0...size) { for (y in 0...size) { var n = 0 for (i in 0...cells) { if (distSq(px[i], x, py[i], y) < distSq(px[n], x, py[n], y)) n = i } Canvas.pset(x, y, cl[n]) } } for (i in 0...cells) { Canvas.circlefill(px[i], py[i], 2, Color.black) } } }
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Racket
Racket
Β  #lang racket (require racket/flonum (planet williams/science:4:5/science) (only-in (planet williams/science/unsafe-ops-utils) real->float)) Β  ; (chi^2-goodness-of-fit-test observed expected df) ; Given: observed, a sequence of observed frequencies ; expected, a sequence of expected frequencies ; df, the degrees of freedom ; Result: P-value = 1-chi^2cdf(X^2,df) , the p-value (define (chi^2-goodness-of-fit-test observed expected df) (define X^2 (for/sum ([o observed] [e expected]) (/ (sqr (- o e)) e))) (- 1.0 (chi-squared-cdf X^2 df))) Β  (define (is-uniform? rand n Ξ±) Β ; Use significance level Ξ± to test whether Β ; n small random numbers generated by rand Β ; have a uniform distribution. Β  Β ; Observed values: (define o (make-vector 10 0)) Β ; generate n random integers from 0 to 9. (for ([_ (+ n 1)]) (define r (rand 10)) (vector-set! o r (+ (vector-ref o r) 1))) Β ; Expected values: (define ex (make-vector 10 (/ n 10))) Β  Β ; Calculate the P-value: (define P (chi^2-goodness-of-fit-test o ex (- n 1))) Β  Β ; If the P-value is larger than Ξ± we accept the Β ; hypothesis that the numbers are distributed uniformly. (> P Ξ±)) Β  ; Test whether the builtin generator is uniform: (is-uniform? random 1000 0.05) ; Test whether the constant generator fails: (is-uniform? (Ξ»(_) 5) 1000 0.05) Β 
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Raku
Raku
sub incomplete-Ξ³-series($s, $z) { my \numers = $z X** 1..*; my \denoms = [\*] $s X+ 1..*; my $M = 1 + [+] (numers Z/ denoms) ... * < 1e-6; $z**$s / $s * exp(-$z) * $M; } Β  sub postfix:<!>(Int $n) { [*] 2..$n } Β  sub Ξ“-of-half(Int $n where * > 0) { ($n %% 2) ?? (($_-1)! given $n div 2) !! ((2*$_)! / (4**$_ * $_!) * sqrt(pi) given ($n-1) div 2); } Β  # degrees of freedom constrained due to numerical limitations sub chi-squared-cdf(Int $k where 1..200, $x where * >= 0) { my $f = $k < 20 ?? 20 !! 10; given $x { when 0 { 0.0 } when * < $k + $f*sqrt($k) { incomplete-Ξ³-series($k/2, $x/2) / Ξ“-of-half($k) } default { 1.0 } } } Β  sub chi-squared-test(@bins, :$significance = 0.05) { my $n = +@bins; my $N = [+] @bins; my $expected = $N / $n; my $chi-squared = [+] @bins.map: { ($^bin - $expected)**2 / $expected } my $p-value = 1 - chi-squared-cdf($n-1, $chi-squared); return (:$chi-squared, :$p-value, :uniform($p-value > $significance)); } Β  for [< 199809 200665 199607 200270 199649 >], [< 522573 244456 139979 71531 21461 >] -> $dataset { my %t = chi-squared-test($dataset); say 'data: ', $dataset; say "χ² = {%t<chi-squared>}, p-value = {%t<p-value>.fmt('%.4f')}, uniform = {%t<uniform>}"; }
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#jq
jq
def vigenere(text; key; encryptp): # retain alphabetic characters only def n: ascii_upcase | explode | map(select(65 <= . and . <= 90)) | [., length]; (text | n) as [$xtext, $length] | (key | n) as [$xkey, $keylength] | reduce range(0; $length) as $i (null; ($iΒ % $keylength) as $ki | . + [if encryptp then (($xtext[$i] + $xkey[$ki] - 130)Β % 26) + 65 else (($xtext[$i] - $xkey[$ki] + 26)Β % 26) + 65 end] ) | implode; Β  # Input: sample text def example($key): vigenere(.; $key; true) | . as $encoded | ., vigenere($encoded; $key; false)Β ; Β  "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!" | (., example("VIGENERECIPHER")), "", (., example("ROSETTACODE"))
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#Jsish
Jsish
/* Vigenère cipher, in Jsish */ "use strict";   function ordA(a:string):number { return a.charCodeAt(0) - 65; }   // vigenere function vigenereCipher(text:string, key:string, decode:boolean=false):string { var i = 0, b; key = key.toUpperCase().replace(/[^A-Z]/g, ''); return text.toUpperCase().replace(/[^A-Z]/g, '').replace(/[A-Z]/g, function(a:string, idx:number, str:string) { b = key[i++ % key.length]; return String.fromCharCode(((ordA(a) + (decode ? 26 - ordA(b) : ordA(b))) % 26 + 65)); }); }   provide('vigenereCipher', 1);   if (Interp.conf('unitTest')) { var text = "The quick brown fox Jumped over the lazy Dog the lazy dog lazy dog dog"; var key = 'jsish'; var enc = vigenereCipher(text, key); ; text; ; enc; ; vigenereCipher(enc, key, true); }   /* =!EXPECTSTART!= text ==> The quick brown fox Jumped over the lazy Dog the lazy dog lazy dog dog enc ==> CZMIBRUSTYXOVXVGBCEWNVWNLALPWSJRGVVPLPWSJRGVVPDIRFMGOVVP vigenere(enc, key, true) ==> THEQUICKBROWNFOXJUMPEDOVERTHELAZYDOGTHELAZYDOGLAZYDOGDOG =!EXPECTEND!= */
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#PicoLisp
PicoLisp
(view '(1 (2 (3 (4) (5) (6 (7))) (8 (9)) (10)) (11 (12) (13))))
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#UnixPipes
UnixPipes
ls | grep '\.c$'
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#VBScript
VBScript
Β  Sub show_files(folder_path,pattern) Set objfso = CreateObject("Scripting.FileSystemObject") For Each file In objfso.GetFolder(folder_path).Files If InStr(file.Name,pattern) Then WScript.StdOut.WriteLine file.Name End If Next End Sub Β  Call show_files("C:\Windows",".exe") Β 
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Perl
Perl
use File::Find qw(find); my $dir = '.'; my $pattern = 'foo'; my $callback = sub { print $File::Find::name, "\n" if /$pattern/ }; find $callback, $dir;
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Phix
Phix
function find_pfile(string pathname, sequence dirent) if match("pfile.e",dirent[D_NAME]) then -- return pathname&dirent[D_NAME] -- as below ?pathname&"\\"&dirent[D_NAME] end if return 0 -- non-zero terminates scan end function ?walk_dir("C:\\Program Files (x86)\\Phix",find_pfile,1)
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#Python
Python
def water_collected(tower): N = len(tower) highest_left = [0] + [max(tower[:n]) for n in range(1,N)] highest_right = [max(tower[n:N]) for n in range(1,N)] + [0] water_level = [max(min(highest_left[n], highest_right[n]) - tower[n], 0) for n in range(N)] print("highest_left: ", highest_left) print("highest_right: ", highest_right) print("water_level: ", water_level) print("tower_level: ", tower) print("total_water: ", sum(water_level)) print("") return sum(water_level) Β  towers = [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] Β  [water_collected(tower) for tower in towers]
http://rosettacode.org/wiki/Vector_products
Vector products
A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: Β  (X, Y, Z). If you imagine a graph with the Β  x Β  and Β  y Β  axis being at right angles to each other and having a third, Β  z Β  axis coming out of the page, then a triplet of numbers, Β  (X, Y, Z) Β  would represent a point in the region, Β  and a vector from the origin to the point. Given the vectors: A = (a1, a2, a3) B = (b1, b2, b3) C = (c1, c2, c3) then the following common vector products are defined: The dot product Β  Β  Β  (a scalar quantity) A β€’ B = a1b1 Β  + Β  a2b2 Β  + Β  a3b3 The cross product Β  Β  Β  (a vector quantity) A x B = (a2b3Β  - Β  a3b2, Β  Β  a3b1 Β  - Β  a1b3, Β  Β  a1b2 Β  - Β  a2b1) The scalar triple product Β  Β  Β  (a scalar quantity) A β€’ (B x C) The vector triple product Β  Β  Β  (a vector quantity) A x (B x C) Task Given the three vectors: a = ( 3, 4, 5) b = ( 4, 3, 5) c = (-5, -12, -13) Create a named function/subroutine/method to compute the dot product of two vectors. Create a function to compute the cross product of two vectors. Optionally create a function to compute the scalar triple product of three vectors. Optionally create a function to compute the vector triple product of three vectors. Compute and display: a β€’ b Compute and display: a x b Compute and display: a β€’ (b x c), the scalar triple product. Compute and display: a x (b x c), the vector triple product. References Β  A starting page on Wolfram MathWorld is Β  Vector Multiplication . Β  Wikipedia Β  dot product. Β  Wikipedia Β  cross product. Β  Wikipedia Β  triple product. Related tasks Β  Dot product Β  Quaternion type
#ALGOL_W
ALGOL W
begin Β % define the Vector record type Β % record Vector( integer X, Y, Z ); Β  Β % calculates the dot product of two Vectors Β % integer procedure dotProduct( reference(Vector) value A, B )Β ; ( X(A) * X(B) ) + ( Y(A) * Y(B) ) + ( Z(A) * Z(B) ); Β  Β % calculates the cross product or two Vectors Β % reference(Vector) procedure crossProduct( reference(Vector) value A, B )Β ; Vector( ( Y(A) * Z(B) ) - ( Z(A) * Y(B) ) , ( Z(A) * X(B) ) - ( X(A) * Z(B) ) , ( X(A) * Y(B) ) - ( Y(A) * X(B) ) ); Β  Β % calculates the scaler triple product of two vectors Β % integer procedure scalerTripleProduct( reference(Vector) value A, B, C )Β ; dotProduct( A, crossProduct( B, C ) ); Β  Β % calculates the vector triple product of two vectors Β % reference(Vector) procedure vectorTripleProduct( reference(Vector) value A, B, C )Β ; crossProduct( A, crossProduct( B, C ) ); Β  Β % test the Vector routines Β % begin procedure writeonVector( reference(Vector) value v )Β ; writeon( "(", X(v), ", ", Y(v), ", ", Z(v), ")" ); Β  Reference(Vector) a, b, c; Β  aΒ := Vector( 3, 4, 5 ); bΒ := Vector( 4, 3, 5 ); cΒ := Vector( -5, -12, -13 ); Β  i_wΒ := 1; s_wΒ := 0;Β % set output formatting Β % Β  write( " a: " ); writeonVector( a ); write( " b: " ); writeonVector( b ); write( " c: " ); writeonVector( c ); write( " a . b: ", dotProduct( a, b ) ); write( " a x b: " ); writeonVector( crossProduct( a, b ) ); write( "a . ( b x c ): ", scalerTripleProduct( a, b, c ) ); write( "a x ( b x c ): " ); writeonVector( vectorTripleProduct( a, b, c ) ) end end.
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Ring
Ring
Β  # ProjectΒ : Verify distribution uniformity/Naive Β  maxrnd = 7 for r = 2 to 5 check = distcheck(pow(10,r), 0.05) see "over " + pow(10,r) + " runs dice5 " + nl if check see "failed distribution check with " + check + " bin(s) out of range" + nl else see "passed distribution check" + nl ok next Β  func distcheck(repet, delta) m = 1 s = 0 bins = list(maxrnd) for i = 1 to repet r = dice5() + 1 bins[r] = bins[r] + 1 if r>m m = r ok next for i = 1 to m if bins[i]/(repet/m) > 1+delta s = s + 1 ok if bins[i]/(repet/m) < 1-delta s = s + 1 ok next return s Β  func dice5 return random(5) Β 
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Ruby
Ruby
def distcheck(n, delta=1) unless block_given? raise ArgumentError, "pass a block to this method" end Β  h = Hash.new(0) n.times {h[ yield ] += 1} Β  target = 1.0 * n / h.length h.each do |key, value| if (value - target).abs > 0.01 * delta * n raise StandardError, "distribution potentially skewed for '#{key}': expected around #{target}, got #{value}" end end Β  puts h.sort.map{|k, v| "#{k} #{v}"} end Β  if __FILE__ == $0 begin distcheck(100_000) {rand(10)} distcheck(100_000) {rand > 0.95} rescue StandardError => e p e end end
http://rosettacode.org/wiki/Variable_declaration_reset
Variable declaration reset
A decidely non-challenging task to highlight a potential difference between programming languages. Using a straightforward longhand loop as in the JavaScript and Phix examples below, show the locations of elements which are identical to the immediately preceding element in {1,2,2,3,4,4,5}. The (non-blank) results may be 2,5 for zero-based or 3,6 if one-based. The purpose is to determine whether variable declaration (in block scope) resets the contents on every iteration. There is no particular judgement of right or wrong here, just a plain-speaking statement of subtle differences. Should your first attempt bomb with "unassigned variable" exceptions, feel free to code it as (say) // int prev // crashes with unassigned variable int prev = -1 // predictably no output If your programming language does not support block scope (eg assembly) it should be omitted from this task.
#ALGOL_68
ALGOL 68
BEGIN []INT s = ( 1, 2, 2, 3, 4, 4, 5 ); FOR i FROM LWB s TO UPB s DO INT curr := s[ i ], prev; IF IF i > LWB s THEN curr = prev ELSE FALSE FI THEN print( ( i, newline ) ) FI; prev := curr OD END
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#JavaScript
JavaScript
const RADIX = 7; const MASK = 2**RADIX - 1; Β  const octetify = (n)=> { if (n >= 2147483648) { throw new RangeError("Variable Length Quantity not supported for numbers >= 2147483648"); } const octets = []; for (let i = n; i != 0; i >>>= RADIX) { octets.push((((i & MASK) + (octets.empty ? 0 : (MASK + 1))))); } octets.reverse(); return octets; }; Β  const deoctetify = (octets)=> octets.reduce((n, octet)=> (n << RADIX) + (octet & MASK) , 0); Β  // Test (assuming Node.js) Β  const assert = require("assert"); const testNumbers = [ 0x200000, 0x1fffff, 1, 127, 128, 2147483647 /*, 589723405834*/ ] Β  testNumbers.forEach((number)=> { const octets = octetify(number) console.log(octets); const got_back_number = deoctetify(octets) assert.strictEqual(got_back_number, number); });