task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#C
C
#include <stdio.h> #include <stdarg.h> Β  void varstrings(int count, ...) /* the ellipsis indicates variable arguments */ { va_list args; va_start(args, count); while (count--) puts(va_arg(args, const char *)); va_end(args); } Β  varstrings(5, "Mary", "had", "a", "little", "lamb");
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#C.23
C#
using System; Β  class Program { static void Main(string[] args) { PrintAll("test", "rosetta code", 123, 5.6); } Β  static void PrintAll(params object[] varargs) { foreach (var i in varargs) { Console.WriteLine(i); } } }
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#BASIC
BASIC
10 REM this only works with strings 20 PRINT LEN(variable$)
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#BASIC256
BASIC256
i = 1 #Integer f = 1.0 #Float s$ = "cad" #String dim a(99) #Array A = {1, 2, 3} #Anonymous array m = {"key" -> 1} #Map Β  print typeof(i) # 1 print typeof(f) # 2 print typeof(s$) # 3 print typeof(A) # 4 print typeof(m) # 6
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#BBC_BASIC
BBC BASIC
DIM bstruct{b&} DIM istruct{i%} DIM fstruct{f} DIM dstruct{d#} DIM sstruct{s$} Β  PRINT "Size of b& is ";DIM(bstruct{}) PRINT "Size of i% is ";DIM(istruct{}) PRINT "Size of f is ";DIM(fstruct{}) PRINT "Size of d# is ";DIM(dstruct{}) PRINT "Size of s$ is ";DIM(sstruct{})
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#C
C
printf("An int containsΒ %u bytes.\n", sizeof(int));
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#Go
Go
package main Β  import "fmt" Β  type vector []float64 Β  func (v vector) add(v2 vector) vector { r := make([]float64, len(v)) for i, vi := range v { r[i] = vi + v2[i] } return r } Β  func (v vector) sub(v2 vector) vector { r := make([]float64, len(v)) for i, vi := range v { r[i] = vi - v2[i] } return r } Β  func (v vector) scalarMul(s float64) vector { r := make([]float64, len(v)) for i, vi := range v { r[i] = vi * s } return r } Β  func (v vector) scalarDiv(s float64) vector { r := make([]float64, len(v)) for i, vi := range v { r[i] = vi / s } return r } Β  func main() { v1 := vector{5, 7} v2 := vector{2, 3} fmt.Println(v1.add(v2)) fmt.Println(v1.sub(v2)) fmt.Println(v1.scalarMul(11)) fmt.Println(v1.scalarDiv(2)) }
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Tcl
Tcl
% proc format_trace {fmt _var el op} {upvar 1 $_var v; set v [format $fmt $v]} Β  % trace var foo w {format_trace %10s} % puts "/[set foo bar]/" / bar/ Β  % trace var grill w {format_trace %-10s} % puts "/[set grill bar]/" /bar /
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#TXR
TXR
(make-buf 8 0 4096)
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Ursala
Ursala
p = mpfr..pi 200 # 200 bits of precision Β  x = mpfr..grow(1.0E+0,1000) # 160 default precision, grown to 1160 Β  y = mpfr..shrink(1.0+0,40) # 160 default shrunk to 120 Β  z = mpfr..add(p,y) # inherits 200 bits of precision Β  a = # 180 bits (not the default 160) because of more digits in the constant Β  1.00000000000000000000000000000000000000000000000000000E0
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Vlang
Vlang
fn main() { bΒ := true iΒ := 5 // default type is i32 rΒ := '5' fΒ := 5.0 // default type is float64 println("b: ${sizeof(b)} bytes") println("i: ${sizeof(i)} bytes") println("r: ${sizeof(r)} bytes") println("f: ${sizeof(f)} bytes") i_minΒ := i8(5) r_minΒ := `5` f_minΒ := f32(5.0) println("i_min: ${sizeof(i_min)} bytes") println("r_min: ${sizeof(r_min)} bytes") println("f_min: ${sizeof(f_min)} bytes") }
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Wren
Wren
// create a list with 10 elements all initialized to zero var l = List.filled(10, 0) // give them different values and print them for (i in 0..9) l[i] = i System.print(l) // add another element to the list dynamically and print it again l.add(10) System.print(l)
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#XPL0
XPL0
include c:\cxpl\codes; \intrinsic 'code' declarations Β  def N = 15; \number of sites int SiteX(N), SiteY(N), \coordinates of sites Dist2, MinDist2, MinI, \distance squared, and minimums X, Y, I; [SetVid($13); \set 320x200x8 graphics for I:= 0 to N-1 do \create a number of randomly placed sites [SiteX(I):= Ran(160); SiteY(I):= Ran(100)]; for Y:= 0 to 100-1 do \generate Voronoi diagram for X:= 0 to 160-1 do \for all points... [MinDist2:= -1>>1; \find closest site for I:= 0 to N-1 do [Dist2:= sq(X-SiteX(I)) + sq(Y-SiteY(I)); if Dist2 < MinDist2 then [MinDist2:= Dist2; MinI:= I]; ]; if MinDist2 then Point(X, Y, MinI+1); \leave center black ]; I:= ChIn(1); \wait for keystroke SetVid($03); \restore normal text screen ]
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#Yabasic
Yabasic
Β  clear screen Β  sites = 200 xEdge = 600 yEdge = 400 Β  open window xEdge, yEdge Β  dim townX(sites), townY(sites), col$(sites) Β  for i =1 to sites townX(i) =int(xEdge *ran(1)) townY(i) =int(yEdge *ran(1)) col$(i) = str$(int(256 * ran(1))) + ", " + str$(int(256 * ran(1))) + ", " + str$(int(256 * ran(1))) color col$(i) fill circle townX(i), townY(i), 2 next i Β  dim nearestIndex(xEdge, yEdge) dim dist(xEdge, yEdge) Β  //fill distance table with distances from the first site for x = 0 to xEdge - 1 for y = 0 to yEdge - 1 dist(x, y) = (townX(1) - x) ^ 2 + (townY(1) - y) ^ 2 nearestIndex(x, y) = 1 next y next x Β  color 0,0,255 //for other towns for i = 2 to sites //display some progress //print at(0,20) "computing: ", (i/sites*100) using "###.#", "Β %" Β  //look left for x = townX(i) to 0 step -1 if not(checkRow(i, x,0, yEdge - 1)) break next x //look right for x = townX(i) + 1 to xEdge - 1 if not(checkRow(i, x, 0, yEdge - 1)) break next x next i Β  for x = 0 to xEdge - 1 for y =0 to yEdge - 1 color col$(nearestIndex(x, y)) startY = y nearest = nearestIndex(x, y) for y = y + 1 to yEdge if nearestIndex(x, y) <> nearest then y = y - 1Β : breakΒ : end if next y line x, startY, x, y + 1 next y next x Β  color 0,0,0 for i =1 to sites fill circle townX( i), townY( i), 2 next i print peek("millisrunning"), " ms" Β  sub checkRow(site, x, startY, endY) local dxSquared, y, check Β  dxSquared = (townX(site) - x) ^ 2 for y = startY to endY dSquared = (townY(site) - y) ^ 2 + dxSquared if dSquared <= dist(x, y) then dist(x, y) = dSquared nearestIndex(x, y) = site check = 1 end if next y return check end sub
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#REXX
REXX
/*REXX program performs a chi─squared test to verify a given distribution is uniform. */ numeric digits length( pi() ) - length(.) /*enough decimal digs for calculations.*/ @.=; @.1= 199809 200665 199607 200270 199649 @.2= 522573 244456 139979 71531 21461 do s=1 while @.s\==''; call uTest @.s /*invoke uTest with a data set of #'s.*/ end /*s*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ !: procedure; parse arg x; p=1; do j=2 to x; p= p*j; end /*j*/; return p chi2p: procedure; parse arg dof, distance; return gammaI( dof/2, distance/2 ) f: parse arg t; if t=0 then return 0; return t ** (a-1) * exp(-t) e: e =2.718281828459045235360287471352662497757247093699959574966967627724; return e pi: pi=3.141592653589793238462643383279502884197169399375105820974944592308; return pi /*──────────────────────────────────────────────────────────────────────────────────────*/ !!: procedure; parse arg x; if x<2 then return 1; p= x do k=2+x//2 to x-1 by 2; p= p*k; end /*k*/; return p /*──────────────────────────────────────────────────────────────────────────────────────*/ chi2ud: procedure: parse arg ds; sum=0; expect= 0 do j=1 for words(ds); expect= expect + word(ds, j) end /*j*/ expect = expect / words(ds) do k=1 for words(ds) sum= sum + (word(ds, k) - expect) **2 end /*k*/ return sum / expect /*──────────────────────────────────────────────────────────────────────────────────────*/ exp: procedure; parse arg x; ix= x%1; if abs(x-ix)>.5 then ix= ix + sign(x); x= x-ix z=1; _=1; w=z; do j=1; _= _*x/j; z= (z + _)/1; if z==w then leave; w=z end /*j*/; if z\==0 then z= z * e()**ix; return z /*──────────────────────────────────────────────────────────────────────────────────────*/ gamma: procedure; parse arg x; if datatype(x, 'W') then returnΒ !(x-1) /*Int? Use fact*/ n= trunc(x) /*at this point, X is pos and a multiple of 1/2.*/ d=Β !!(n+n - 1) /*compute the double factorial of: 2*n - 1. */ if n//2 then p= -1 /*if N is odd, then use a negative unity. */ else p= 1 /*if N is even, then use a positive unity. */ if x>0 then return p * d * sqrt(pi()) / (2**n) return p * (2**n) * sqrt(pi()) / d /*──────────────────────────────────────────────────────────────────────────────────────*/ gammaI: procedure; parse arg a,x; y= a-1; do while f(y)*(x-y) > 2e-8 & y<x; y= y + .4 end /*while*/ y= min(x, y) return 1 - simp38(0, y, y / 0.015 / gamma(a-1)Β % 1) /*──────────────────────────────────────────────────────────────────────────────────────*/ simp38: procedure; parse arg a, b, n; h= (b-a) / n; h1= h / 3 sum= f(a) + f(b) do j=3*n-1 by -1 while j>0 if j//3 == 0 then sum= sum + 2 * f(a + h1*j) else sum= sum + 3 * f(a + h1*j) end /*j*/ return h * sum / 8 /*──────────────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); numeric digits; h= d+6 numeric form; m.=9; parse value format(x,2,1,,0) 'E0' with g "E" _ .;g=g *.5'e'_%2 do j=0 while h>9; m.j=h; h=h%2+1; end /*j*/ do k=j+5 to 0 by -1; numeric digits m.k; g=(g+x/g)*.5; end /*k*/; return g /*──────────────────────────────────────────────────────────────────────────────────────*/ uTest: procedure; parse arg dset; sum= 0; pad= left('', 11); sigLev= 1/20 /*5%*/ say; say ' ' center(" Uniform distribution test ", 75, '═') #= words(dset); sigPC= sigLev*100/1 do j=1 for #; sum= sum + word(dset, j) end /*j*/ say pad " dataset: " dset say pad " samples: " sum say pad " categories: " # say pad " degrees of freedom: " # - 1 dist= chi2ud(dset) P= chi2p(# - 1, dist) sig = (abs(P) < dist * sigLev) say pad "significant at " sigPC'% level? ' word('no yes', sig + 1) say pad " is the dataset uniform? " word('no yes', (\(sig))+ 1) return
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#Julia
Julia
Β  β†’(a::Char, b::Char, Β± = +) = 'A'+((a-'A')Β±(b-'A')+26)%26 ←(a::Char, b::Char) = β†’(a,b,-) Β  cleanup(str) = filter(a-> a in 'A':'Z', collect(uppercase.(str))) match_length(word, len) = repeat(word,len)[1:len] Β  function β†’(message::String, codeword::String, ↔ = β†’) plaintext = cleanup(message) key = match_length(cleanup(codeword),length(plaintext)) return String(plaintext .↔ key) end ←(message::String, codeword::String) = β†’(message,codeword,←) Β  cyphertext = "I want spearmint gum" β†’ "Gimme!" println(cyphertext) println(cyphertext ← "Gimme!") Β 
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Prolog
Prolog
% direction may be horizontal/vertical/list display_tree(Direction) :- sformat(A, 'Display tree ~w', [Direction]), new(D, window(A)), send(D, size, size(350,200)), new(T, tree(text('Root'))), send(T, neighbour_gap, 10), new(S1, node(text('Child1'))), new(S2, node(text('Child2'))), send_list(T, son,[S1,S2]), new(S11, node(text('Grandchild1'))), new(S12, node(text('Grandchild2'))), send_list(S1, son, [S11, S12]), new(S21, node(text('Grandchild3'))), new(S22, node(text('Grandchild4'))), send_list(S2, son, [S21, S22]), send(T, direction, Direction), send(D, display, T), send(D, open). Β 
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Visual_Basic_.NET
Visual Basic .NET
'Using the OS pattern matching For Each file In IO.Directory.GetFiles("\temp", "*.txt") Console.WriteLine(file) Next Β  'Using VB's pattern matching and LINQ For Each file In (From name In IO.Directory.GetFiles("\temp") Where name Like "*.txt") Console.WriteLine(file) Next Β  'Using VB's pattern matching and dot-notation For Each file In IO.Directory.GetFiles("\temp").Where(Function(f) f Like "*.txt") Console.WriteLine(file) Next
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Wren
Wren
import "io" for Directory import "/pattern" for Pattern Β  var walk = Fn.new { |dir, pattern| if (!Directory.exists(dir)) Fiber.abort("Directory does not exist.") var files = Directory.list(dir) return files.where { |f| pattern.isMatch(f) } } Β  // get all C header files beginning with 'a' or 'b' var p = Pattern.new("[a|b]+0^..h", Pattern.whole) for (f in walk.call("/usr/include", p)) System.print(f)
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#PHP
PHP
function findFiles($dir = '.', $pattern = '/./'){ $prefix = $dir . '/'; $dir = dir($dir); while (false !== ($file = $dir->read())){ if ($file === '.' || $file === '..') continue; $file = $prefix . $file; if (is_dir($file)) findFiles($file, $pattern); if (preg_match($pattern, $file)){ echo $file . "\n"; } } } findFiles('./foo', '/\.bar$/');
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#Racket
Racket
#lang racket/base (require racket/match) Β  (define (water-collected-between-towers towers) (define (build-tallest-left/rev-list t mx/l rv) (match t [(list) rv] [(cons a d) (define new-mx/l (max a mx/l)) (build-tallest-left/rev-list d new-mx/l (cons mx/l rv))])) Β  (define (collect-from-right t tallest/l mx/r rv) (match t [(list) rv] [(cons a d) (define new-mx/r (max a mx/r)) (define new-rv (+ rv (max (- (min new-mx/r (car tallest/l)) a) 0))) (collect-from-right d (cdr tallest/l) new-mx/r new-rv)])) Β  (define reversed-left-list (build-tallest-left/rev-list towers 0 null)) (collect-from-right (reverse towers) reversed-left-list 0 0)) Β  (module+ test (require rackunit) (check-equal? (let ((towerss '[[1 5 3 7 2] [5 3 7 2 6 4 5 9 1 2] [2 6 3 5 2 8 1 4 2 2 5 3 5 7 4 1] [5 5 5 5] [5 6 7 8] [8 7 7 6] [6 7 10 7 6]])) (map water-collected-between-towers towerss)) (list 2 14 35 0 0 0 0)))
http://rosettacode.org/wiki/Vector_products
Vector products
A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: Β  (X, Y, Z). If you imagine a graph with the Β  x Β  and Β  y Β  axis being at right angles to each other and having a third, Β  z Β  axis coming out of the page, then a triplet of numbers, Β  (X, Y, Z) Β  would represent a point in the region, Β  and a vector from the origin to the point. Given the vectors: A = (a1, a2, a3) B = (b1, b2, b3) C = (c1, c2, c3) then the following common vector products are defined: The dot product Β  Β  Β  (a scalar quantity) A β€’ B = a1b1 Β  + Β  a2b2 Β  + Β  a3b3 The cross product Β  Β  Β  (a vector quantity) A x B = (a2b3Β  - Β  a3b2, Β  Β  a3b1 Β  - Β  a1b3, Β  Β  a1b2 Β  - Β  a2b1) The scalar triple product Β  Β  Β  (a scalar quantity) A β€’ (B x C) The vector triple product Β  Β  Β  (a vector quantity) A x (B x C) Task Given the three vectors: a = ( 3, 4, 5) b = ( 4, 3, 5) c = (-5, -12, -13) Create a named function/subroutine/method to compute the dot product of two vectors. Create a function to compute the cross product of two vectors. Optionally create a function to compute the scalar triple product of three vectors. Optionally create a function to compute the vector triple product of three vectors. Compute and display: a β€’ b Compute and display: a x b Compute and display: a β€’ (b x c), the scalar triple product. Compute and display: a x (b x c), the vector triple product. References Β  A starting page on Wolfram MathWorld is Β  Vector Multiplication . Β  Wikipedia Β  dot product. Β  Wikipedia Β  cross product. Β  Wikipedia Β  triple product. Related tasks Β  Dot product Β  Quaternion type
#APL
APL
dot ← +.Γ— cross ← 1⌽(βŠ£Γ—1⌽⊒)-βŠ’Γ—1⌽⊣
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Run_BASIC
Run BASIC
s$ = "#########################" dim num(100) for i = 1 to 1000 n = (rnd(1) * 10) + 1 num(n) = num(n) + 1 next i Β  for i = 1 to 10 print using("###",i);" "; using("#####",num(i));" ";left$(s$,num(i) / 5) next i
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Scala
Scala
object DistrubCheck1 extends App { Β  private def distCheck(f: () => Int, nRepeats: Int, delta: Double): Unit = { val counts = scala.collection.mutable.Map[Int, Int]() Β  for (_ <- 0 until nRepeats) counts.updateWith(f()) { case Some(count) => Some(count + 1) case None => Some(1) } Β  val target: Double = nRepeats.toDouble / counts.size val deltaCount: Int = (delta / 100.0 * target).toInt counts.foreach { case (k, v) => if (math.abs(target - v) >= deltaCount) println(f"distribution potentially skewed for $k%s: $v%d") } counts.toIndexedSeq.foreach(entry => println(f"${entry._1}%d ${entry._2}%d")) } Β  distCheck(() => 1 + util.Random.nextInt(5), 1_000_000, 1) Β  }
http://rosettacode.org/wiki/Variable_declaration_reset
Variable declaration reset
A decidely non-challenging task to highlight a potential difference between programming languages. Using a straightforward longhand loop as in the JavaScript and Phix examples below, show the locations of elements which are identical to the immediately preceding element in {1,2,2,3,4,4,5}. The (non-blank) results may be 2,5 for zero-based or 3,6 if one-based. The purpose is to determine whether variable declaration (in block scope) resets the contents on every iteration. There is no particular judgement of right or wrong here, just a plain-speaking statement of subtle differences. Should your first attempt bomb with "unassigned variable" exceptions, feel free to code it as (say) // int prev // crashes with unassigned variable int prev = -1 // predictably no output If your programming language does not support block scope (eg assembly) it should be omitted from this task.
#AWK
AWK
Β  # syntax: GAWK -f VARIABLE_DECLARATION_RESET.AWK BEGIN { n = split("1,2,2,3,4,4,5",arr,",") for (i=1; i<=n; i++) { curr = arr[i] if (i > 1 && prev == curr) { printf("%s\n",i) } prev = curr } exit(0) } Β 
http://rosettacode.org/wiki/Variable_declaration_reset
Variable declaration reset
A decidely non-challenging task to highlight a potential difference between programming languages. Using a straightforward longhand loop as in the JavaScript and Phix examples below, show the locations of elements which are identical to the immediately preceding element in {1,2,2,3,4,4,5}. The (non-blank) results may be 2,5 for zero-based or 3,6 if one-based. The purpose is to determine whether variable declaration (in block scope) resets the contents on every iteration. There is no particular judgement of right or wrong here, just a plain-speaking statement of subtle differences. Should your first attempt bomb with "unassigned variable" exceptions, feel free to code it as (say) // int prev // crashes with unassigned variable int prev = -1 // predictably no output If your programming language does not support block scope (eg assembly) it should be omitted from this task.
#C
C
#include <stdio.h> Β  int main() { int i, gprev = 0; int s[7] = {1, 2, 2, 3, 4, 4, 5}; Β  /* There is no output as 'prev' is created anew each time around the loop and set explicitly to zero. */ for (i = 0; i < 7; ++i) { // for (int i = 0, prev; i < 7; ++i) { // as below, see note int curr = s[i]; int prev = 0; // int prev; // produces same output as second loop if (i > 0 && curr == prev) printf("%d\n", i); prev = curr; } Β  /* Now 'gprev' is used and reassigned each time around the loop producing the desired output. */ for (i = 0; i < 7; ++i) { int curr = s[i]; if (i > 0 && curr == gprev) printf("%d\n", i); gprev = curr; } Β  return 0; }
http://rosettacode.org/wiki/Variables
Variables
Task Demonstrate a language's methods of: Β  variable declaration Β  initialization Β  assignment Β  datatypes Β  scope Β  referencing, Β  Β  and Β  other variable related facilities
#11l
11l
Int a
http://rosettacode.org/wiki/Van_Eck_sequence
Van Eck sequence
The sequence is generated by following this pseudo-code: A: The first term is zero. Repeatedly apply: If the last term is *new* to the sequence so far then: B: The next term is zero. Otherwise: C: The next term is how far back this last term occured previously. Example Using A: 0 Using B: 0 0 Using C: 0 0 1 Using B: 0 0 1 0 Using C: (zero last occurred two steps back - before the one) 0 0 1 0 2 Using B: 0 0 1 0 2 0 Using C: (two last occurred two steps back - before the zero) 0 0 1 0 2 0 2 2 Using C: (two last occurred one step back) 0 0 1 0 2 0 2 2 1 Using C: (one last appeared six steps back) 0 0 1 0 2 0 2 2 1 6 ... Task Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers. Use it to display here, on this page: The first ten terms of the sequence. Terms 991 - to - 1000 of the sequence. References Don't Know (the Van Eck Sequence) - Numberphile video. Wikipedia Article: Van Eck's Sequence. OEIS sequence: A181391.
#11l
11l
F van_eck(c) [Int] r V n = 0 V seen = [0] V val = 0 L r.append(val) I r.len == c R r I val C seen[1..] val = seen.index(val, 1) E val = 0 seen.insert(0, val) n++ Β  print(β€˜Van Eck: first 10 terms: ’van_eck(10)) print(β€˜Van Eck: terms 991 - 1000: ’van_eck(1000)[(len)-10..])
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Julia
Julia
using Printf Β  mutable struct VLQ quant::Vector{UInt8} end Β  function VLQ(n::T) where T <: Integer quant = UInt8.(digits(n, 128)) @inbounds for i in 2:length(quant) quant[i] |= 0x80 end VLQ(reverse(quant)) end Β  import Base.UInt64 function Base.UInt64(vlq::VLQ) quant = reverse(vlq.quant) n = shift!(quant) p = one(UInt64) for i in quant p *= 0x80 n += p * ( i & 0x7f) end return n end Β  const test = [0x00200000, 0x001fffff, 0x00000000, 0x0000007f, 0x00000080, 0x00002000, 0x00003fff, 0x00004000, 0x08000000, 0x0fffffff] Β  for i in test vlq = VLQ(i) j = UInt(vlq) @printf "0x%-8x => [%-25s] => 0x%x\n" i join(("0x" * hex(r, 2) for r in vlq.quant), ", ") j end
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Kotlin
Kotlin
// version 1.0.6 Β  fun Int.toOctets(): ByteArray { var s = Integer.toBinaryString(this) val r = s.length % 7 var z = s.length / 7 if (r > 0) { z++ s = s.padStart(z * 7, '0') } s = Array(z) { "1" + s.slice(it * 7 until (it + 1) * 7) }.joinToString("") s = s.take(s.length - 8) + "0" + s.takeLast(7) return ByteArray(z) { Integer.parseInt(s.slice(it * 8 until (it + 1) * 8), 2).toByte() } } Β  fun ByteArray.fromOctets(): Int { var s = "" for (b in this) s += Integer.toBinaryString(b.toInt()).padStart(7, '0').takeLast(7) return Integer.parseInt(s, 2) } Β  fun main(args: Array<String>) { val tests = intArrayOf(0x7f, 0x3fff, 0x200000, 0x1fffff) for (test in tests) { val ba = test.toOctets() print("${"0x%x".format(test).padEnd(8)} -> ") var s = "" ba.forEach { s += "0x%02x ".format(it) } println("${s.padEnd(20)} <- ${"0x%x".format(ba.fromOctets())}") } }
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#C.2B.2B
C++
#include <iostream> Β  template<typename T> void print(T const& t) { std::cout << t; } Β  template<typename First, typename ... Rest> void print(First const& first, Rest const& ... rest) { std::cout << first; print(rest ...); } Β  int main() { int i = 10; std::string s = "Hello world"; print("i = ", i, " and s = \"", s, "\"\n"); }
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#C.23
C#
Β  class Program { static void Main(string[] args) { int i = sizeof(int); Console.WriteLine(i); Console.ReadLine(); } } Β 
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#C.2B.2B
C++
#include <cstdlib> std::size_t intsize = sizeof(int);
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#COBOL
COBOL
Β  identification division. program-id. variable-size-get. Β  environment division. configuration section. repository. function all intrinsic. Β  data division. working-storage section. 01 bc-len constant as length of binary-char. 01 fd-34-len constant as length of float-decimal-34. Β  77 fixed-character pic x(13). 77 fixed-national pic n(13). 77 fixed-nine pic s9(5). 77 fixed-separate pic s9(5) sign trailing separate. 77 computable-field pic s9(5) usage computational-5. 77 formatted-field pic +z(4),9. Β  77 binary-field usage binary-double. 01 pointer-item usage pointer. Β  01 group-item. 05 first-inner pic x occurs 0 to 3 times depending on odo. 05 second-inner pic x occurs 0 to 5 times depending on odo-2. 01 odo usage index value 2. 01 odo-2 usage index value 4. Β  procedure division. sample-main. display "Size of:" display "BINARY-CHAR Β : " bc-len display " bc-len constant Β : " byte-length(bc-len) display "FLOAT-DECIMAL-34 Β : " fd-34-len display " fd-34-len constant Β : " byte-length(fd-34-len) Β  display "PIC X(13) field Β : " length of fixed-character display "PIC N(13) field Β : " length of fixed-national Β  display "PIC S9(5) field Β : " length of fixed-nine display "PIC S9(5) sign separateΒ : " length of fixed-separate display "PIC S9(5) COMP-5 Β : " length of computable-field Β  display "ALPHANUMERIC-EDITED Β : " length(formatted-field) Β  display "BINARY-DOUBLE field Β : " byte-length(binary-field) display "POINTER field Β : " length(pointer-item) >>IF P64 IS SET display " sizeof(char *) > 4" >>ELSE display " sizeof(char *) = 4" >>END-IF Β  display "Complex ODO at 2 and 4 Β : " length of group-item set odo down by 1. set odo-2 up by 1. display "Complex ODO at 1 and 5 Β : " length(group-item) Β  goback. end program variable-size-get. Β 
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#Groovy
Groovy
import groovy.transform.EqualsAndHashCode Β  @EqualsAndHashCode class Vector { private List<Number> elements Vector(List<Number> e ) { if (!e) throw new IllegalArgumentException("A Vector must have at least one element.") if (!e.every { it instanceof Number }) throw new IllegalArgumentException("Every element must be a number.") elements = [] + e } Vector(Number... e) { this(e as List) } Β  def order() { elements.size() } def norm2() { elements.sum { it ** 2 } ** 0.5 } Β  def plus(Vector that) { if (this.order() != that.order()) throw new IllegalArgumentException("Vectors must be conformable for addition.") [this.elements,that.elements].transpose()*.sum() as Vector } def minus(Vector that) { this + (-that) } def multiply(Number that) { this.elements.collect { it * that } as Vector } def div(Number that) { this * (1/that) } def negative() { this * -1 } Β  String toString() { "(${elements.join(',')})" } } Β  class VectorCategory { static Vector plus (Number a, Vector b) { b + a } static Vector minus (Number a, Vector b) { -b + a } static Vector multiply (Number a, Vector b) { b * a } }
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#XPL0
XPL0
include c:\cxpl\codes; \intrinsic 'code' declarations string 0; \use zero-terminated strings char S, A(1), \sets up an array containing one byte B(0); \sets up an array containing no bytes int I; [S:= ""; \a zero-length (null) string A:= Reserve(1); \sets up a 1-byte array at runtime B:= Reserve(0); \sets up a 0-byte array at runtime I:= IΒ ! 1<<3; \stores a single 1 bit into an integer I:= I & ~(1<<29); \stores a 0 bit into bit 29 of the integer IntOut(0, I>>3 & 1); \displays value of bit 3 ]
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#Z80_Assembly
Z80 Assembly
MyByte: byte 0 ;most assemblers will also accept DB or DFB MyWord: word 0 ;most assemblers will also accept DW or DFW MyDouble: dd 0
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#zkl
zkl
10 DIM a$(10): REM This array will be 10 characters long 20 DIM b(10): REM this will hold a set of numbers. The fixed number of bytes per number is implementation specific 30 LET c=5: REM this is a single numerical value of fixed size
http://rosettacode.org/wiki/Variable_size/Set
Variable size/Set
Task Demonstrate how to specify the minimum size of a variable or a data type.
#ZX_Spectrum_Basic
ZX Spectrum Basic
10 DIM a$(10): REM This array will be 10 characters long 20 DIM b(10): REM this will hold a set of numbers. The fixed number of bytes per number is implementation specific 30 LET c=5: REM this is a single numerical value of fixed size
http://rosettacode.org/wiki/Voronoi_diagram
Voronoi diagram
A Voronoi diagram is a diagram consisting of a number of sites. Each Voronoi site s also has a Voronoi cell consisting of all points closest to s. Task Demonstrate how to generate and display a Voroni diagram. See algo K-means++ clustering.
#zkl
zkl
fcn generate_voronoi_diagram(width,height,num_cells){ image,imgx,imgy:=PPM(width,height),width,height; nx:=num_cells.pump(List,(0).random.fp(imgx)); ny:=num_cells.pump(List,(0).random.fp(imgy)); nr:=num_cells.pump(List,(0).random.fp(256)); // red ng:=num_cells.pump(List,(0).random.fp(256)); // blue nb:=num_cells.pump(List,(0).random.fp(256)); // green Β  foreach y,x in (imgy,imgx){ dmin:=(imgx-1).toFloat().hypot(imgy-1); j:=-1; foreach i in (num_cells){ d:=(nx[i] - x).toFloat().hypot(ny[i] - y); if(d<dmin) dmin,j = d,i } image[x,y]=(nr[j]*0xff00 + ng[j])*0xff00 + nb[j]; } image }
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Ruby
Ruby
def gammaInc_Q(a, x) a1, a2 = a-1, a-2 f0 = lambda {|t| t**a1 * Math.exp(-t)} df0 = lambda {|t| (a1-t) * t**a2 * Math.exp(-t)} Β  y = a1 y += 0.3 while f0[y]*(x-y) > 2.0e-8 and y < x y = x if y > x Β  h = 3.0e-4 n = (y/h).to_i h = y/n hh = 0.5 * h sum = 0 (n-1).step(0, -1) do |j| t = h * j sum += f0[t] + hh * df0[t] end h * sum / gamma_spounge(a) end Β  A = 12 k1_factrl = 1.0 coef = [Math.sqrt(2.0*Math::PI)] COEF = (1...A).each_with_object(coef) do |k,c| c << Math.exp(A-k) * (A-k)**(k-0.5) / k1_factrl k1_factrl *= -k end Β  def gamma_spounge(z) accm = (1...A).inject(COEF[0]){|res,k| res += COEF[k] / (z+k)} accm * Math.exp(-(z+A)) * (z+A)**(z+0.5) / z end Β  def chi2UniformDistance(dataSet) expected = dataSet.inject(:+).to_f / dataSet.size dataSet.map{|d|(d-expected)**2}.inject(:+) / expected end Β  def chi2Probability(dof, distance) 1.0 - gammaInc_Q(0.5*dof, 0.5*distance) end Β  def chi2IsUniform(dataSet, significance=0.05) dof = dataSet.size - 1 dist = chi2UniformDistance(dataSet) chi2Probability(dof, dist) > significance end Β  dsets = [ [ 199809, 200665, 199607, 200270, 199649 ], [ 522573, 244456, 139979, 71531, 21461 ] ] Β  for ds in dsets puts "Data set:#{ds}" dof = ds.size - 1 puts " degrees of freedom:Β %d" % dof distance = chi2UniformDistance(ds) puts " distance: Β %.4f" % distance puts " probability: Β %.4f" % chi2Probability(dof, distance) puts " uniform? Β %s" % (chi2IsUniform(ds)Β ? "Yes"Β : "No") end
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#Kotlin
Kotlin
// version 1.1.3 Β  fun vigenere(text: String, key: String, encrypt: Boolean = true): String { val t = if (encrypt) text.toUpperCase() else text val sb = StringBuilder() var ki = 0 for (c in t) { if (c !in 'A'..'Z') continue val ci = if (encrypt) (c.toInt() + key[ki].toInt() - 130) % 26 else (c.toInt() - key[ki].toInt() + 26) % 26 sb.append((ci + 65).toChar()) ki = (ki + 1) % key.length } return sb.toString() } Β  fun main(args: Array<String>) { val key = "VIGENERECIPHER" val text = "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!" val encoded = vigenere(text, key) println(encoded) val decoded = vigenere(encoded, key, false) println(decoded) }
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Python
Python
Python 3.2.3 (default, May 3 2012, 15:54:42) [GCC 4.6.3] on linux2 Type "copyright", "credits" or "license()" for more information. >>> help('pprint.pprint') Help on function pprint in pprint: Β  pprint.pprint = pprint(object, stream=None, indent=1, width=80, depth=None) Pretty-print a Python object to a stream [default is sys.stdout]. Β  >>> from pprint import pprint >>> for tree in [ (1, 2, 3, 4, 5, 6, 7, 8), (1, (( 2, 3 ), (4, (5, ((6, 7), 8))))), ((((1, 2), 3), 4), 5, 6, 7, 8) ]: print("\nTreeΒ %r can be pprint'd as:"Β % (tree, )) pprint(tree, indent=1, width=1) Β  Β  Β  Tree (1, 2, 3, 4, 5, 6, 7, 8) can be pprint'd as: (1, 2, 3, 4, 5, 6, 7, 8) Β  Tree (1, ((2, 3), (4, (5, ((6, 7), 8))))) can be pprint'd as: (1, ((2, 3), (4, (5, ((6, 7), 8))))) Β  Tree ((((1, 2), 3), 4), 5, 6, 7, 8) can be pprint'd as: ((((1, 2), 3), 4), 5, 6, 7, 8) >>>
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#zkl
zkl
File.glob("*.zkl") //--> list of matches
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
Walk a directory/Non-recursively
Task Walk a given directory and print the names of files matching a given pattern. (How is "pattern" defined? substring match? DOS pattern? BASH pattern? ZSH pattern? Perl regular expression?) Note: This task is for non-recursive methods. Β  These tasks should read a single directory, not an entire directory tree. Note: Please be careful when running any code presented here. Related task Β  Walk Directory Tree Β  (read entire directory tree).
#Zsh
Zsh
print -l -- *.c
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#PicoLisp
PicoLisp
(let Dir "." (recur (Dir) (for F (dir Dir) (let Path (pack Dir "/" F) (cond ((=T (car (info Path))) # Is a subdirectory? (recurse Path) ) # Yes: Recurse ((match '`(chop "[email protected]") (chop F)) # Matches 's*.l'? (println Path) ) ) ) ) ) ) # Yes: Print it
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Pop11
Pop11
lvars repp, fil; ;;; create path repeater sys_file_match('.../*.p', '', false, 0) -> repp; ;;; iterate over paths while (repp() ->> fil) /= termin do Β ;;; print the path printf(fil, '%s\n'); endwhile;
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#Raku
Raku
sub max_l ( @a ) { [\max] @a } sub max_r ( @a ) { ([\max] @a.reverse).reverse }   sub water_collected ( @towers ) { return 0 if @towers <= 2;   my @levels = max_l(@towers) »min« max_r(@towers);   return ( @levels »-« @towers ).grep( * > 0 ).sum; }   say map &water_collected, [ 1, 5, 3, 7, 2 ], [ 5, 3, 7, 2, 6, 4, 5, 9, 1, 2 ], [ 2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1 ], [ 5, 5, 5, 5 ], [ 5, 6, 7, 8 ], [ 8, 7, 7, 6 ], [ 6, 7, 10, 7, 6 ], ;
http://rosettacode.org/wiki/Vector_products
Vector products
A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: Β  (X, Y, Z). If you imagine a graph with the Β  x Β  and Β  y Β  axis being at right angles to each other and having a third, Β  z Β  axis coming out of the page, then a triplet of numbers, Β  (X, Y, Z) Β  would represent a point in the region, Β  and a vector from the origin to the point. Given the vectors: A = (a1, a2, a3) B = (b1, b2, b3) C = (c1, c2, c3) then the following common vector products are defined: The dot product Β  Β  Β  (a scalar quantity) A β€’ B = a1b1 Β  + Β  a2b2 Β  + Β  a3b3 The cross product Β  Β  Β  (a vector quantity) A x B = (a2b3Β  - Β  a3b2, Β  Β  a3b1 Β  - Β  a1b3, Β  Β  a1b2 Β  - Β  a2b1) The scalar triple product Β  Β  Β  (a scalar quantity) A β€’ (B x C) The vector triple product Β  Β  Β  (a vector quantity) A x (B x C) Task Given the three vectors: a = ( 3, 4, 5) b = ( 4, 3, 5) c = (-5, -12, -13) Create a named function/subroutine/method to compute the dot product of two vectors. Create a function to compute the cross product of two vectors. Optionally create a function to compute the scalar triple product of three vectors. Optionally create a function to compute the vector triple product of three vectors. Compute and display: a β€’ b Compute and display: a x b Compute and display: a β€’ (b x c), the scalar triple product. Compute and display: a x (b x c), the vector triple product. References Β  A starting page on Wolfram MathWorld is Β  Vector Multiplication . Β  Wikipedia Β  dot product. Β  Wikipedia Β  cross product. Β  Wikipedia Β  triple product. Related tasks Β  Dot product Β  Quaternion type
#AppleScript
AppleScript
--------------------- VECTOR PRODUCTS --------------------- Β  -- dotProductΒ :: Num a => [a] -> [a] -> Either String a on dotProduct(xs, ys) -- Dot product of two vectors of equal dimension. Β  if length of xs = length of ys then |Right|(sum(zipWith(my mul, xs, ys))) else |Left|("Dot product not defined for vectors of differing dimension.") end if end dotProduct Β  Β  -- crossProductΒ :: Num a => (a, a, a) -> (a, a, a) -- Either String -> (a, a, a) on crossProduct(xs, ys) -- The cross product of two 3D vectors. Β  if 3 β‰  length of xs or 3 β‰  length of ys then |Left|("Cross product is defined only for 3d vectors.") else set {x1, x2, x3} to xs set {y1, y2, y3} to ys |Right|({Β¬ x2 * y3 - x3 * y2, Β¬ x3 * y1 - x1 * y3, Β¬ x1 * y2 - x2 * y1}) end if end crossProduct Β  Β  -- scalarTripleΒ :: Num a => (a, a, a) -> (a, a, a) -> (a, a a) -> -- Either String -> a on scalarTriple(q, r, s) -- The scalar triple product. Β  script go on |Ξ»|(ys) dotProduct(q, ys) end |Ξ»| end script bindLR(crossProduct(r, s), go) end scalarTriple Β  Β  -- vectorTripleΒ :: Num a => (a, a, a) -> (a, a, a) -> (a, a a) -> -- Either String -> (a, a, a) on vectorTriple(q, r, s) -- The vector triple product. Β  script go on |Ξ»|(ys) crossProduct(q, ys) end |Ξ»| end script bindLR(crossProduct(r, s), go) end vectorTriple Β  Β  -------------------------- TEST --------------------------- on run set a to {3, 4, 5} set b to {4, 3, 5} set c to {-5, -12, -13} set d to {3, 4, 5, 6} Β  Β  script test on |Ξ»|(f) either(my identity, my show, Β¬ mReturn(f)'s |Ξ»|(a, b, c, d)) end |Ξ»| end script Β  Β  tell test unlines({Β¬ "a . b = " & |Ξ»|(dotProduct), Β¬ "a x b = " & |Ξ»|(crossProduct), Β¬ "a . (b x c) = " & |Ξ»|(scalarTriple), Β¬ "a x (b x c) = " & |Ξ»|(vectorTriple), Β¬ "a x d = " & either(my identity, my show, Β¬ dotProduct(a, d)), Β¬ "a . (b x d) = " & either(my identity, my show, Β¬ scalarTriple(a, b, d)) Β¬ }) end tell end run Β  Β  -------------------- GENERIC FUNCTIONS -------------------- Β  -- LeftΒ :: a -> Either a b on |Left|(x) {type:"Either", |Left|:x, |Right|:missing value} end |Left| Β  Β  -- RightΒ :: b -> Either a b on |Right|(x) {type:"Either", |Left|:missing value, |Right|:x} end |Right| Β  Β  -- bindLR (>>=)Β :: Either a -> (a -> Either b) -> Either b on bindLR(m, mf) if missing value is not |Left| of m then m else mReturn(mf)'s |Ξ»|(|Right| of m) end if end bindLR Β  Β  -- eitherΒ :: (a -> c) -> (b -> c) -> Either a b -> c on either(lf, rf, e) if missing value is |Left| of e then tell mReturn(rf) to |Ξ»|(|Right| of e) else tell mReturn(lf) to |Ξ»|(|Left| of e) end if end either Β  Β  -- foldlΒ :: (a -> b -> a) -> a -> [b] -> a on foldl(f, startValue, xs) tell mReturn(f) set v to startValue set lng to length of xs repeat with i from 1 to lng set v to |Ξ»|(v, item i of xs, i, xs) end repeat return v end tell end foldl Β  Β  -- identityΒ :: a -> a on identity(x) -- The argument unchanged. x end identity Β  Β  -- intercalateΒ :: String -> [String] -> String on intercalate(delim, xs) set {dlm, my text item delimiters} to Β¬ {my text item delimiters, delim} set str to xs as text set my text item delimiters to dlm str end intercalate Β  Β  -- mapΒ :: (a -> b) -> [a] -> [b] on map(f, xs) -- The list obtained by applying f -- to each element of xs. tell mReturn(f) set lng to length of xs set lst to {} repeat with i from 1 to lng set end of lst to |Ξ»|(item i of xs, i, xs) end repeat return lst end tell end map Β  Β  -- minΒ :: Ord a => a -> a -> a on min(x, y) if y < x then y else x end if end min Β  Β  -- mulΒ :: Num aΒ :: a -> a -> a on mul(x, y) x * y end mul Β  Β  -- Lift 2nd class handler function into 1st class script wrapper -- mReturnΒ :: Handler -> Script on mReturn(f) if class of f is script then f else script property |Ξ»|Β : f end script end if end mReturn Β  Β  -- showΒ :: a -> String on show(x) if list is class of x then showList(x) else str(x) end if end show Β  Β  -- showListΒ :: [a] -> String on showList(xs) "[" & intercalate(", ", map(my str, xs)) & "]" end showList Β  Β  -- strΒ :: a -> String on str(x) x as string end str Β  Β  -- sumΒ :: [Number] -> Number on sum(xs) script add on |Ξ»|(a, b) a + b end |Ξ»| end script Β  foldl(add, 0, xs) end sum Β  Β  -- unlinesΒ :: [String] -> String on unlines(xs) -- A single string formed by the intercalation -- of a list of strings with the newline character. set {dlm, my text item delimiters} to Β¬ {my text item delimiters, linefeed} set s to xs as text set my text item delimiters to dlm s end unlines Β  Β  -- zipWithΒ :: (a -> b -> c) -> [a] -> [b] -> [c] on zipWith(f, xs, ys) set lng to min(length of xs, length of ys) set lst to {} tell mReturn(f) repeat with i from 1 to lng set end of lst to |Ξ»|(item i of xs, item i of ys) end repeat return lst end tell end zipWith
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Tcl
Tcl
proc distcheck {random times {delta 1}} { for {set i 0} {$i<$times} {incr i} {incr vals([uplevel 1 $random])} set target [expr {$times / [array size vals]}] foreach {k v} [array get vals] { if {abs($v - $target) > $times * $delta / 100.0} { error "distribution potentially skewed for $k: expected around $target, got $v" } } foreach k [lsort -integer [array names vals]] {lappend result $k $vals($k)} return $result }
http://rosettacode.org/wiki/Variable_declaration_reset
Variable declaration reset
A decidely non-challenging task to highlight a potential difference between programming languages. Using a straightforward longhand loop as in the JavaScript and Phix examples below, show the locations of elements which are identical to the immediately preceding element in {1,2,2,3,4,4,5}. The (non-blank) results may be 2,5 for zero-based or 3,6 if one-based. The purpose is to determine whether variable declaration (in block scope) resets the contents on every iteration. There is no particular judgement of right or wrong here, just a plain-speaking statement of subtle differences. Should your first attempt bomb with "unassigned variable" exceptions, feel free to code it as (say) // int prev // crashes with unassigned variable int prev = -1 // predictably no output If your programming language does not support block scope (eg assembly) it should be omitted from this task.
#C.2B.2B
C++
#include <array> #include <iostream> Β  int main() { constexpr std::array s {1,2,2,3,4,4,5}; Β  if(!s.empty()) { int previousValue = s[0]; Β  for(size_t i = 1; i < s.size(); ++i) { // in C++, variables in block scope are reset at each iteration const int currentValue = s[i]; Β  if(i > 0 && previousValue == currentValue) { std::cout << i << "\n"; } Β  previousValue = currentValue; } } } Β  Β 
http://rosettacode.org/wiki/Variable_declaration_reset
Variable declaration reset
A decidely non-challenging task to highlight a potential difference between programming languages. Using a straightforward longhand loop as in the JavaScript and Phix examples below, show the locations of elements which are identical to the immediately preceding element in {1,2,2,3,4,4,5}. The (non-blank) results may be 2,5 for zero-based or 3,6 if one-based. The purpose is to determine whether variable declaration (in block scope) resets the contents on every iteration. There is no particular judgement of right or wrong here, just a plain-speaking statement of subtle differences. Should your first attempt bomb with "unassigned variable" exceptions, feel free to code it as (say) // int prev // crashes with unassigned variable int prev = -1 // predictably no output If your programming language does not support block scope (eg assembly) it should be omitted from this task.
#F.23
F#
Β  // Variable declaration reset. Nigel Galloway: June 21st 2022 let s=[1;2;2;3;4;4;5] // First let me write this in real F#, which rather avoids the whole issue printfn "Real F#" s|>List.pairwise|>List.iteri(fun i (n,g)->if n=g then printfn "%d" (i+1)) // Now let me take the opportunity to write some awful F# by translating the C++ printfn "C++ like awful F#" let mutable previousValue = -1 for i in 0..s.Length-1 do let currentValue=s.[i] if previousValue = currentValue then printfn "%d" i previousValue <- currentValue Β 
http://rosettacode.org/wiki/Variables
Variables
Task Demonstrate a language's methods of: Β  variable declaration Β  initialization Β  assignment Β  datatypes Β  scope Β  referencing, Β  Β  and Β  other variable related facilities
#360_Assembly
360 Assembly
* value of F L 2,F assigment r2=f * reference (or address) of F LA 3,F reference r3=@f * referencing (or indexing) of reg3 (r3->f) L 4,0(3) referencing r4=%r3=%@f=f
http://rosettacode.org/wiki/Variables
Variables
Task Demonstrate a language's methods of: Β  variable declaration Β  initialization Β  assignment Β  datatypes Β  scope Β  referencing, Β  Β  and Β  other variable related facilities
#6502_Assembly
6502 Assembly
org $1200 SoundRam equ $1200 Β ;some assemblers require equ directives to not be indented. SoundChannel_One equ $1200 SoundChannel_Two equ $1201 SoundChannel_Three equ $1202 LDA #$FFΒ ;this still gets assembled starting at $1200, since equ directives don't take up space!
http://rosettacode.org/wiki/Van_Eck_sequence
Van Eck sequence
The sequence is generated by following this pseudo-code: A: The first term is zero. Repeatedly apply: If the last term is *new* to the sequence so far then: B: The next term is zero. Otherwise: C: The next term is how far back this last term occured previously. Example Using A: 0 Using B: 0 0 Using C: 0 0 1 Using B: 0 0 1 0 Using C: (zero last occurred two steps back - before the one) 0 0 1 0 2 Using B: 0 0 1 0 2 0 Using C: (two last occurred two steps back - before the zero) 0 0 1 0 2 0 2 2 Using C: (two last occurred one step back) 0 0 1 0 2 0 2 2 1 Using C: (one last appeared six steps back) 0 0 1 0 2 0 2 2 1 6 ... Task Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers. Use it to display here, on this page: The first ten terms of the sequence. Terms 991 - to - 1000 of the sequence. References Don't Know (the Van Eck Sequence) - Numberphile video. Wikipedia Article: Van Eck's Sequence. OEIS sequence: A181391.
#8080_Assembly
8080 Assembly
org 100h lxi h,ecks ; Zero out 2000 bytes lxi b,0 lxi d,2000 zero: mov m,b inx h dcx d mov a,d ora e jnz zero lxi b,-1 ; BC = Outer loop variable outer: inx b mvi a,3 ; Are we there yet? 1000 = 03E8h cmp b ; Compare high byte jnz go mvi a,0E8h ; Compare low byte cmp c jz done go: mov d,b ; DE = Inner loop variable mov e,c inner: dcx d mov a,d ; <= 0? ral jc outer push b ; Keep both pointers push d mov h,b ; Load BC = eck[BC] mov l,c call eck mov c,m inx h mov b,m xchg ; Load HL = -eck[DE] call eck xchg ldax d cma mov l,a inx d ldax d cma mov h,a inx h ; Two's complement dad b ; -eck[DE] + eck[BC] mov a,h ; Unfortunately this does not set flags ora l ; Check zero pop d ; Meanwhile, restore the pointers pop b jnz inner ; If no match, continue with inner loop mov h,b ; If we _did_, then get &eck[BC + 1] mov l,c inx h call eck mov a,c ; Store BC - DE at that address sub e mov m,a inx h mov a,b sbb d mov m,a jmp outer ; And continue the outer loop done: lxi h,0 ; Print first 10 terms call p10 lxi h,990 ; Print last 10 terms p10: mvi b,10 ; Print 10 terms starting at term HL call eck ploop: mov e,m ; Load term into DE inx h mov d,m inx h push b ; Keep counter push h ; Keep pointer xchg ; Term in HL call printn ; Print term pop h ; Restore pointer and counter pop b dcr b jnz ploop lxi d,nl ; Print a newline afterwards jmp prints eck: push b ; Set HL = &eck[HL] lxi b,ecks ; Base address dad h ; Multiply by two dad b ; Add base pop b ret printn: lxi d,buf ; Print the number in HL push d ; Buffer pointer on stack lxi b,-10 ; Divisor pdigit: lxi d,-1 ; Quotient pdiv: inx d dad b jc pdiv mvi a,'0'+10 add l ; Make ASCII digit pop h dcx h ; Store digit mov m,a push h xchg mov a,h ; Quotient nonzero? ora l jnz pdigit ; Then there are more digits pop d ; Otherwise, print string using CP/M prints: mvi c,9 jmp 5 nl: db 13,10,'$' db '.....' buf: db ' $' ecks: equ $
http://rosettacode.org/wiki/Van_Eck_sequence
Van Eck sequence
The sequence is generated by following this pseudo-code: A: The first term is zero. Repeatedly apply: If the last term is *new* to the sequence so far then: B: The next term is zero. Otherwise: C: The next term is how far back this last term occured previously. Example Using A: 0 Using B: 0 0 Using C: 0 0 1 Using B: 0 0 1 0 Using C: (zero last occurred two steps back - before the one) 0 0 1 0 2 Using B: 0 0 1 0 2 0 Using C: (two last occurred two steps back - before the zero) 0 0 1 0 2 0 2 2 Using C: (two last occurred one step back) 0 0 1 0 2 0 2 2 1 Using C: (one last appeared six steps back) 0 0 1 0 2 0 2 2 1 6 ... Task Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers. Use it to display here, on this page: The first ten terms of the sequence. Terms 991 - to - 1000 of the sequence. References Don't Know (the Van Eck Sequence) - Numberphile video. Wikipedia Article: Van Eck's Sequence. OEIS sequence: A181391.
#8086_Assembly
8086 Assembly
LIMIT: equ 1000 cpu 8086 org 100h section .text mov di,eck ; Zero out the memory xor ax,ax mov cx,LIMIT rep stosw mov bx,eck ; Base address mov cx,LIMIT ; Limit xor ax,ax mov si,-1 ; Outer loop index outer: inc si dec cx jcxz done mov di,si ; Inner loop index inner: dec di js outer shl si,1 ; Shift the loop indices (each entry is 2 bytes) shl di,1 mov ax,[si+bx] ; Find a match? cmp ax,[di+bx] je match shr si,1 ; If not, shift SI and DI back and keep going shr di,1 jmp inner match: mov ax,si ; Calculate the new value sub ax,di shr ax,1 ; Compensate for shift mov [si+bx+2],ax ; Store value shr si,1 ; Shift SI back and calculate next value jmp outer done: xor si,si ; Print first 10 elements call p10 mov si,LIMIT-10 ; Print last 10 elements⌈ p10: mov cx,10 ; Print 10 elements starting at SI shl si,1 ; Items are 2 bytes wide add si,eck .item: lodsw ; Retrieve item call printn ; Print it loop .item mov dx,nl ; Print a newline afterwards jmp prints printn: mov bx,buf ; Print AX mov bp,10 .digit: xor dx,dx ; Extract digit div bp add dl,'0' ; ASCII digit dec bx mov [bx],dl ; Store in buffer test ax,ax ; Any more digits? jnz .digit mov dx,bx prints: mov ah,9 ; Print string in buffer int 21h ret section .data nl: db 13,10,'$' db '.....' buf: db ' $' section .bss eck: resw LIMIT
http://rosettacode.org/wiki/Vampire_number
Vampire number
A vampire number is a natural decimal number with an even number of digits, Β  that can be factored into two integers. These two factors are called the Β  fangs, Β  and must have the following properties: Β  they each contain half the number of the decimal digits of the original number Β  together they consist of exactly the same decimal digits as the original number Β  at most one of them has a trailing zero An example of a vampire number and its fangs: Β  1260Β : (21, 60) Task Print the first Β  25 Β  vampire numbers and their fangs. Check if the following numbers are vampire numbers and, Β  if so, Β  print them and their fangs: 16758243290880, 24959017348650, 14593825548650 Note that a vampire number can have more than one pair of fangs. See also numberphile.com. vampire search algorithm vampire numbers on OEIS
#11l
11l
-V Pow10 = (0..18).map(n -> Int64(10) ^ n) Β  F isOdd(n) R (n [&] 1)Β != 0 Β  F fangs(n) [(Int64, Int64)] r Β  V nDigits = sorted(String(n)) I isOdd(nDigits.len) R r Β  V fangLen = nDigits.len I/ 2 V inf = Pow10[fangLen - 1] L(d) inf .< inf * 10 I nΒ % dΒ != 0 L.continue V q = n I/ d I q < d R r V dDigits = String(d) V qDigits = String(q) I qDigits.len > fangLen L.continue I qDigits.len < fangLen R r I nDigitsΒ != sorted(dDigitsβ€˜β€™qDigits) L.continue I dDigits.lastΒ != β€˜0’ | qDigits.lastΒ != β€˜0’ r.append((d, q)) Β  R r Β  print(β€˜First 25 vampire numbers with their fangs:’) V count = 0 V n = 10 V limit = 100 L countΒ != 25 V fangList = fangs(n) IΒ !fangList.empty count++ print((β€˜#2: #6 =’.format(count, n))β€˜ ’fangList.map(it -> β€˜#3 x #3’.format(it[0], it[1])).join(β€˜ = ’)) n++ I n == limit n *= 10 limit *= 10 Β  print() L(n) [16'758'243'290'880, 24'959'017'348'650, 14'593'825'548'650] V fangList = fangs(n) I fangList.empty print(nβ€˜ is not vampiric.’) E print(nβ€˜ = ’fangList.map(it -> β€˜#. x #.’.format(it[0], it[1])).join(β€˜ = ’))
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#xTalk
xTalk
Β  on DecToVLQ Ask "Enter base 10 value:" -- input dialog box if it is not empty then if it is a number then put it into theString if isWholeNumString(theString) is false then -- I think there is built in equivalent for this but I rolled my own! answer "Only Whole Decimal Numbers Are Allowed!" exit DecToVLQ end if if theString>4294967295 then answer "This function fails with whole numbers over 4294967295!"&cr\ & "4294967295 is the maximum allowed value for 32bits (4 bytes)" exit DecToVLQ end if if theString>268435455 then answer "This function is not accurate with whole numbers over 268435455!"&cr\ & "268435455 is the maximum allowed value for 28bit (7bits per byte) MIDI delta-time VLQ" end if put "Original Whole Number="& theString & cr & \ "Original Whole Number in Hex="& baseConvert(theString,10,16) & cr & \ --- LC's built in baseConvert function "Variable Length Quantity in Hex=" & wholeNumToVLQ(theString) into fld "Output" else answer "Only Whole Decimal Numbers Are Allowed!" end if end if end DecToVLQ Β  function wholeNumToVLQ theWholeNum -- baseConvert(number,originalBase,destinationBase) -- there is also bitwise operations in LC but I took the long road if theWholeNum < 127 then -- if it fits into a single 7bit byte value and theres no need to process it put baseConvert(theWholeNum,10,16) into VQLinHex if the number of chars in VQLinHex=1 then put "0" before VQLinHex return VQLinHex exit wholeNumToVLQ end if put baseConvert(theWholeNum,10,2) into theBits put number of chars in theBits into x put 0 into bitCounter put empty into the7bitBytes repeat if char x of theBits is not empty then put char x theBits before the7bitBytes delete char x of theBits if theBits is empty then exit repeat put number of chars in theBits into x add 1 to bitCounter if bitCounter=7 then put "," before the7bitBytes put 0 into bitCounter next repeat end if else exit repeat end if end repeat get the number of chars in item 1 of the7bitBytes if it<7 then put 7 - it into x repeat x put "0" before item 1 of the7bitBytes end repeat end if put the number of items in the7bitBytes into y repeat with x = 1 to y if x is not y then put "1" before item x of the7bitBytes else put "0" before item x of the7bitBytes end if put baseConvert(item x of the7bitBytes,2,16) into item x of the7bitBytes if the number of chars in item x of the7bitBytes<2 then put "0" before item x of the7bitBytes put item x of the7bitBytes after VQLinHex end repeat return VQLinHex end wholeNumToVLQ Β  function isWholeNumString theString put the number of chars in theString into y repeat with x = 1 to y if char x of theString is not in "0123456789" then return false exit isWholeNumString end if end repeat return true end isWholeNumString Β 
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
toOctets[n_Integer]Β := StringJoin @@@ Partition[ PadLeft[Characters@IntegerString[n, 16], 2 Ceiling[Plus @@ DigitCount[n, 16]/2], {"0"}], 2] fromOctets[octets_List]Β := FromDigits[StringJoin @@ octets, 16] Grid[{#, toOctets@#, fromOctets[toOctets@#]} & /@ {16^^3ffffe, 16^^1fffff, 16^^200000}]
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#Clojure
Clojure
(defn foo [& args] (doseq [a args] (println a))) Β  (foo :bar :baz :quux) (apply foo [:bar :baz :quux])
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#COBOL
COBOL
Β  program-id. dsp-str is external. data division. linkage section. 1 cnt comp-5 pic 9(4). 1 str pic x. procedure division using by value cnt by reference str delimited repeated 1 to 5. end program dsp-str. Β  program-id. variadic. procedure division. call "dsp-str" using 4 "The" "quick" "brown" "fox" stop run . end program variadic. Β  program-id. dsp-str. data division. working-storage section. 1 i comp-5 pic 9(4). 1 len comp-5 pic 9(4). 1 wk-string pic x(20). linkage section. 1 cnt comp-5 pic 9(4). 1 str1 pic x(20). 1 str2 pic x(20). 1 str3 pic x(20). 1 str4 pic x(20). 1 str5 pic x(20). procedure division using cnt str1 str2 str3 str4 str5. if cnt < 1 or > 5 display "Invalid number of parameters" stop run end-if perform varying i from 1 by 1 until i > cnt evaluate i when 1 unstring str1 delimited low-value into wk-string count in len when 2 unstring str2 delimited low-value into wk-string count in len when 3 unstring str3 delimited low-value into wk-string count in len when 4 unstring str4 delimited low-value into wk-string count in len when 5 unstring str5 delimited low-value into wk-string count in len end-evaluate display wk-string (1:len) end-perform exit program . end program dsp-str. Β 
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#Common_Lisp
Common Lisp
(let ((a (cons 1 2)) (b (make-array 10)) (c "a string")) (list (hcl:find-object-size a) (hcl:find-object-size b) (hcl:find-object-size c)))
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#D
D
int i ; writefln(i.sizeof) ; // print 4 int[13] ints1 ; // static integer array of length 13 writefln(ints1.sizeof) ; // print 52 int[] ints2 = new int[13] ; // dynamic integer array, variable length, currently 13 writefln(ints2.sizeof) ; // print 8, all dynamic array has this size writefln(ints2.length) ; // print 13, length is the number of allocated element in aggregated type
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#Haskell
Haskell
Β  add (u,v) (x,y) = (u+x,v+y) minus (u,v) (x,y) = (u-x,v-y) multByScalar k (x,y) = (k*x,k*y) divByScalar (x,y) k = (x/k,y/k) Β  main = do let vecA = (3.0,8.0) -- cartersian coordinates let (r,theta) = (3,pi/12) :: (Double,Double) let vecB = (r*(cos theta),r*(sin theta)) -- from polar coordinates to cartesian coordinates putStrLn $ "vecA = " ++ (show vecA) putStrLn $ "vecB = " ++ (show vecB) putStrLn $ "vecA + vecB = " ++ (show.add vecA $ vecB) putStrLn $ "vecA - vecB = " ++ (show.minus vecA $ vecB) putStrLn $ "2 * vecB = " ++ (show.multByScalar 2 $ vecB) putStrLn $ "vecA / 3 = " ++ (show.divByScalar vecA $ 3) Β 
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Rust
Rust
Β  use statrs::function::gamma::gamma_li; Β  fn chi_distance(dataset: &[u32]) -> f64 { let expected = f64::from(dataset.iter().sum::<u32>()) / dataset.len() as f64; dataset .iter() .fold(0., |acc, &elt| acc + (elt as f64 - expected).powf(2.)) / expected } Β  fn chi2_probability(dof: f64, distance: f64) -> f64 { 1. - gamma_li(dof * 0.5, distance * 0.5) } Β  fn chi2_uniform(dataset: &[u32], significance: f64) -> bool { let d = chi_distance(&dataset); chi2_probability(dataset.len() as f64 - 1., d) > significance } Β  fn main() { let dsets = vec![ vec![199809, 200665, 199607, 200270, 199649], vec![522573, 244456, 139979, 71531, 21461], ]; Β  for ds in dsets { println!("Data set: {:?}", ds); let d = chi_distance(&ds); print!("Distance: {:.6} ", d); print!( "Chi2 probability: {:.6} ", chi2_probability(ds.len() as f64 - 1., d) ); print!("Uniform? {}\n", chi2_uniform(&ds, 0.05)); } } Β  Β 
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Scala
Scala
import org.apache.commons.math3.special.Gamma.regularizedGammaQ Β  object ChiSquare extends App { private val dataSets: Seq[Seq[Double]] = Seq( Seq(199809, 200665, 199607, 200270, 199649), Seq(522573, 244456, 139979, 71531, 21461) ) Β  private def Ο‡2IsUniform(data: Seq[Double], significance: Double) = Ο‡2Prob(data.size - 1.0, Ο‡2Dist(data)) > significance Β  private def Ο‡2Dist(data: Seq[Double]) = { val avg = data.sum / data.size Β  data.reduce((a, b) => a + math.pow(b - avg, 2)) / avg } Β  private def Ο‡2Prob(dof: Double, distance: Double) = regularizedGammaQ(dof / 2, distance / 2) Β  printf("Β %4sΒ %10s Β %12sΒ %8s Β %s%n", "d.f.", "χ²distance", "χ²probability", "Uniform?", "dataset") dataSets.foreach { ds => val (dist, dof) = (Ο‡2Dist(ds), ds.size - 1) Β  printf("%4dΒ %11.3f Β %13.8f Β %5s Β %6s%n", dof, dist, Ο‡2Prob(dof.toDouble, dist), if (Ο‡2IsUniform(ds, 0.05)) "YES" else "NO", ds.mkString(", ")) } }
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#Lambdatalk
Lambdatalk
Β  {def vigenere {def vigenere.map {lambda {:codeΒ :keyΒ :txt} {S.map {{lambda {:codeΒ :txtΒ :keyΒ :i} {W.code2char {+ {% {+ {W.char2code {W.getΒ :iΒ :txt}} {ifΒ :code then {W.char2code {W.get {%Β :i {W.lengthΒ :key}}Β :key}} else {- 26 {W.char2code {W.get {%Β :i {W.lengthΒ :key}}Β :key}}} }} 26} 65}} }Β :codeΒ :txtΒ :key} {S.serie 0 {- {W.lengthΒ :txt} 1}}} }} {lambda {:codeΒ :keyΒ :txt} {S.replace \s by in {vigenere.mapΒ :codeΒ :key {S.replace \s by inΒ :txt}}} }} -> vigenere Β  1) encode: {vigenere true LEMON ATTACK AT DAWN} -> LXFOPVEFRNHR Β  2) decode: {vigenere false LEMON LXFOPVEFRNHR} -> ATTACKATDAWN Β  Β 
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Racket
Racket
Β  #lang racket/base Β  (define (visualize t0) (let loop ([t t0] [last? #t] [indent '()]) (define (I mid last) (cond [(eq? t t0) ""] [last? mid] [else last])) (for-each display (reverse indent)) (unless (eq? t t0) (printf "|\n")) (for-each display (reverse indent)) (printf "~a~a\n" (I "\\-" "+-") (car t)) (for ([s (cdr t)] [n (in-range (- (length t) 2) -1 -1)]) (loop s (zero? n) (cons (I " " "| ") indent))))) Β  (visualize '(1 (2 (3 (4) (5) (6 (7))) (8 (9)) (10)) (11 (12) (13)))) Β 
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#Raku
Raku
sub visualize-tree($tree, &label, &children, :$indent = '', :@mid = ('β”œβ”€', 'β”‚ '), :@end = ('└─', ' '), ) { sub visit($node, *@pre) { | gather { take @pre[0] ~ label($node); my @children := children($node); my $end = @children.end; for @children.kv -> $_, $child { when $end { take visit($child, (@pre[1] X~ @end)) } default { take visit($child, (@pre[1] X~ @mid)) } } } } visit($tree, $indent xx 2); } Β  # example tree built up of pairs my $tree = root=>[a=>[a1=>[a11=>[]]],b=>[b1=>[b11=>[]],b2=>[],b3=>[]]]; Β  .map({.join("\n")}).join("\n").say for visualize-tree($tree, *.key, *.value.list);
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#PowerShell
PowerShell
Get-ChildItem -Recurse -Include *.mp3
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#Prolog
Prolog
Β  % submitted by Aykayayciti (Earl Lamont Montgomery) % altered from fsaenzperez April 2019 % (swi-prolog.discourse-group) test_run :- proc_dir('C:\\vvvv\\vvvv_beta_39_x64'). Β  proc_dir(Directory) :- format('Directory: ~w~n',[Directory]), directory_files(Directory,Files),!, %cut inserted proc_files(Directory,Files). Β  proc_files(Directory, [File|Files]) :- proc_file(Directory, File),!, %cut inserted proc_files(Directory, Files). proc_files(_Directory, []). Β  proc_file(Directory, File) :- ( File = '.', directory_file_path(Directory, File, Path), exists_directory(Path),!,%cut inserted format('Directory: ~w~n',[File]) ; File = '..', directory_file_path(Directory, File, Path), exists_directory(Path),!,%cut inserted format('Directory: ~w~n',[File]) ; directory_file_path(Directory, File, Path), exists_directory(Path),!,%cut inserted proc_dir(Path) ; directory_file_path(Directory, File, Path), exists_file(Path),!,%cut inserted format('File: ~w~n',[File]) ; format('Unknown: ~w~n',[File]) ).
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#REXX
REXX
/* REXX */ Call bars '1 5 3 7 2' Call bars '5 3 7 2 6 4 5 9 1 2' Call bars '2 6 3 5 2 8 1 4 2 2 5 3 5 7 4 1' Call bars '5 5 5 5' Call bars '5 6 7 8' Call bars '8 7 7 6' Call bars '6 7 10 7 6' Exit bars: Parse Arg bars bar.0=words(bars) high=0 box.=' ' Do i=1 To words(bars) bar.i=word(bars,i) high=max(high,bar.i) Do j=1 To bar.i box.i.j='x' End End m=1 w=0 Do Forever Do i=m+1 To bar.0 If bar.i>bar.m Then Leave End If i>bar.0 Then Leave n=i Do i=m+1 To n-1 w=w+bar.m-bar.i Do j=bar.i+1 To bar.m box.i.j='*' End End m=n End m=bar.0 Do Forever Do i=bar.0 To 1 By -1 If bar.i>bar.m Then Leave End If i<1 Then Leave n=i Do i=m-1 To n+1 By -1 w=w+bar.m-bar.i Do j=bar.i+1 To bar.m box.i.j='*' End End m=n End Say bars '->' w Call show Return show: Do j=high To 1 By -1 ol='' Do i=1 To bar.0 ol=ol box.i.j End Say ol End Return
http://rosettacode.org/wiki/Vector_products
Vector products
A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: Β  (X, Y, Z). If you imagine a graph with the Β  x Β  and Β  y Β  axis being at right angles to each other and having a third, Β  z Β  axis coming out of the page, then a triplet of numbers, Β  (X, Y, Z) Β  would represent a point in the region, Β  and a vector from the origin to the point. Given the vectors: A = (a1, a2, a3) B = (b1, b2, b3) C = (c1, c2, c3) then the following common vector products are defined: The dot product Β  Β  Β  (a scalar quantity) A β€’ B = a1b1 Β  + Β  a2b2 Β  + Β  a3b3 The cross product Β  Β  Β  (a vector quantity) A x B = (a2b3Β  - Β  a3b2, Β  Β  a3b1 Β  - Β  a1b3, Β  Β  a1b2 Β  - Β  a2b1) The scalar triple product Β  Β  Β  (a scalar quantity) A β€’ (B x C) The vector triple product Β  Β  Β  (a vector quantity) A x (B x C) Task Given the three vectors: a = ( 3, 4, 5) b = ( 4, 3, 5) c = (-5, -12, -13) Create a named function/subroutine/method to compute the dot product of two vectors. Create a function to compute the cross product of two vectors. Optionally create a function to compute the scalar triple product of three vectors. Optionally create a function to compute the vector triple product of three vectors. Compute and display: a β€’ b Compute and display: a x b Compute and display: a β€’ (b x c), the scalar triple product. Compute and display: a x (b x c), the vector triple product. References Β  A starting page on Wolfram MathWorld is Β  Vector Multiplication . Β  Wikipedia Β  dot product. Β  Wikipedia Β  cross product. Β  Wikipedia Β  triple product. Related tasks Β  Dot product Β  Quaternion type
#Arturo
Arturo
; dot product dot: function [a b][ sum map couple a b => product ] Β  ; cross product cross: function [a b][ A: (a\1 * b\2) - a\2 * b\1 B: (a\2 * b\0) - a\0 * b\2 C: (a\0 * b\1) - a\1 * b\0 @[A B C] ] Β  ; scalar triple product stp: function [a b c][ dot a cross b c ] Β  ; vector triple product vtp: function [a b c][ cross a cross b c ] Β  ; task a: [3 4 5] b: [4 3 5] c: @[neg 5 neg 12 neg 13] Β  print ["a β€’ b =", dot a b] print ["a x b =", cross a b] print ["a β€’ (b x c) =", stp a b c] print ["a x (b x c) =", vtp a b c]
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#VBScript
VBScript
Option Explicit Β  sub verifydistribution(calledfunction, samples, delta) Dim i, n, maxdiff 'We could cheat via Dim d(7), but "7" wasn't mentioned in the Task. Heh. Dim dΒ : Set d = CreateObject("Scripting.Dictionary") wscript.echo "Running """ & calledfunction & """ " & samples & " times..." for i = 1 to samples Execute "n = " & calledfunction d(n) = d(n) + 1 next n = d.Count maxdiff = 0 wscript.echo "Expected average count is " & Int(samples/n) & " across " & n & " buckets." for each i in d.Keys dim diffΒ : diff = abs(1 - d(i) / (samples/n)) if diff > maxdiff then maxdiff = diff wscript.echo "Bucket " & i & " had " & d(i) & " occurences" _ & vbTab & " difference from expected=" & FormatPercent(diff, 2) next wscript.echo "Maximum found variation is " & FormatPercent(maxdiff, 2) _ & ", desired limit is " & FormatPercent(delta, 2) & "." if maxdiff > delta then wscript.echo "Skewed!" else wscript.echo "Smooth!" end sub
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Vlang
Vlang
import rand import rand.seed import math // "given" fn dice5() int { return rand.intn(5) or {0} + 1 } Β  // fntion specified by task "Seven-sided dice from five-sided dice" fn dice7() int { mut iΒ := 0 for { i = 5*dice5() + dice5() if i < 27 { break } } return (i / 3) - 1 } Β  // fntion specified by task "Verify distribution uniformity/Naive" // // Parameter "f" is expected to return a random integer in the range 1..n. // (Values out of range will cause an unceremonious crash.) // "Max" is returned as an "indication of distribution achieved." // It is the maximum delta observed from the count representing a perfectly // uniform distribution. // Also returned is a boolean, true if "max" is less than threshold // parameter "delta." fn dist_check(f fn() int, n int, repeats int, delta f64) (f64, bool) { mut maxΒ := 0.0 mut countΒ := []int{len: n} for _ in 0..repeats { count[f()-1]++ } expectedΒ := f64(repeats) / f64(n) for c in count { max = math.max(max, math.abs(f64(c)-expected)) } return max, max < delta } Β  // Driver, produces output satisfying both tasks. fn main() { rand.seed(seed.time_seed_array(2)) callsΒ := 1000000 mut max, mut flat_enoughΒ := dist_check(dice7, 7, calls, 500) println("Max delta: $max Flat enough: $flat_enough") max, flat_enough = dist_check(dice7, 7, calls, 500) println("Max delta: $max Flat enough: $flat_enough") }
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
Verify distribution uniformity/Naive
This task is an adjunct to Seven-sided dice from five-sided dice. Task Create a function to check that the random integers returned from a small-integer generator function have uniform distribution. The function should take as arguments: The function (or object) producing random integers. The number of times to call the integer generator. A 'delta' value of some sort that indicates how close to a flat distribution is close enough. The function should produce: Some indication of the distribution achieved. An 'error' if the distribution is not flat enough. Show the distribution checker working when the produced distribution is flat enough and when it is not. (Use a generator from Seven-sided dice from five-sided dice). See also: Verify distribution uniformity/Chi-squared test
#Wren
Wren
import "random" for Random import "/fmt" for Fmt import "/sort" for Sort Β  var r = Random.new() Β  var dice5 = Fn.new { 1 + r.int(5) } Β  var checkDist = Fn.new { |gen, nRepeats, tolerance| var occurs = {} for (i in 1..nRepeats) { var d = gen.call() occurs[d] = occurs.containsKey(d) ? occurs[d] + 1 : 1 } var expected = (nRepeats/occurs.count).floor var maxError = (expected*tolerance/100).floor System.print("Repetitions =Β %(nRepeats), Expected =Β %(expected)") System.print("Tolerance =Β %(tolerance)\%, Max Error =Β %(maxError)\n") System.print("Integer Occurrences Error Acceptable") var f = " $d $5d $5d $s" var allAcceptable = true occurs = occurs.toList Sort.quick(occurs) for (me in occurs) { var error = (me.value - expected).abs var acceptable = (error <= maxError) ? "Yes" : "No" if (acceptable == "No") allAcceptable = false Fmt.print(f, me.key, me.value, error, acceptable) } System.print("\nAcceptable overall:Β %(allAcceptableΒ ? "Yes"Β : "No")") } Β  checkDist.call(dice5, 1e6, 0.5) System.print() checkDist.call(dice5, 1e5, 0.5)
http://rosettacode.org/wiki/Variable_declaration_reset
Variable declaration reset
A decidely non-challenging task to highlight a potential difference between programming languages. Using a straightforward longhand loop as in the JavaScript and Phix examples below, show the locations of elements which are identical to the immediately preceding element in {1,2,2,3,4,4,5}. The (non-blank) results may be 2,5 for zero-based or 3,6 if one-based. The purpose is to determine whether variable declaration (in block scope) resets the contents on every iteration. There is no particular judgement of right or wrong here, just a plain-speaking statement of subtle differences. Should your first attempt bomb with "unassigned variable" exceptions, feel free to code it as (say) // int prev // crashes with unassigned variable int prev = -1 // predictably no output If your programming language does not support block scope (eg assembly) it should be omitted from this task.
#Factor
Factor
USING: kernel math prettyprint sequencesΒ ; Β  [let { 1 2 2 3 4 4 5 }Β :> s s length <iota> [| i | i s nth -1Β :> ( curr prev! ) i 0 > curr prev = and [ i . ] when curr prev! ] each ]
http://rosettacode.org/wiki/Variable_declaration_reset
Variable declaration reset
A decidely non-challenging task to highlight a potential difference between programming languages. Using a straightforward longhand loop as in the JavaScript and Phix examples below, show the locations of elements which are identical to the immediately preceding element in {1,2,2,3,4,4,5}. The (non-blank) results may be 2,5 for zero-based or 3,6 if one-based. The purpose is to determine whether variable declaration (in block scope) resets the contents on every iteration. There is no particular judgement of right or wrong here, just a plain-speaking statement of subtle differences. Should your first attempt bomb with "unassigned variable" exceptions, feel free to code it as (say) // int prev // crashes with unassigned variable int prev = -1 // predictably no output If your programming language does not support block scope (eg assembly) it should be omitted from this task.
#FreeBASIC
FreeBASIC
Dim As Integer s(1 To 7) => {1,2,2,3,4,4,5} For i As Integer = 1 To Ubound(s) Dim As Integer curr = s(i), prev If i > 1 And curr = prev Then Print i prev = curr Next i Sleep
http://rosettacode.org/wiki/Variable_declaration_reset
Variable declaration reset
A decidely non-challenging task to highlight a potential difference between programming languages. Using a straightforward longhand loop as in the JavaScript and Phix examples below, show the locations of elements which are identical to the immediately preceding element in {1,2,2,3,4,4,5}. The (non-blank) results may be 2,5 for zero-based or 3,6 if one-based. The purpose is to determine whether variable declaration (in block scope) resets the contents on every iteration. There is no particular judgement of right or wrong here, just a plain-speaking statement of subtle differences. Should your first attempt bomb with "unassigned variable" exceptions, feel free to code it as (say) // int prev // crashes with unassigned variable int prev = -1 // predictably no output If your programming language does not support block scope (eg assembly) it should be omitted from this task.
#Go
Go
package main Β  import "fmt" Β  func main() { s := []int{1, 2, 2, 3, 4, 4, 5} Β  // There is no output as 'prev' is created anew each time // around the loop and set implicitly to zero. for i := 0; i < len(s); i++ { curr := s[i] var prev int if i > 0 && curr == prev { fmt.Println(i) } prev = curr } Β  // Now 'prev' is created only once and reassigned // each time around the loop producing the desired output. var prev int for i := 0; i < len(s); i++ { curr := s[i] if i > 0 && curr == prev { fmt.Println(i) } prev = curr } }
http://rosettacode.org/wiki/Van_der_Corput_sequence
Van der Corput sequence
When counting integers in binary, if you put a (binary) point to the righEasyLangt of the count then the column immediately to the left denotes a digit with a multiplier of 2 0 {\displaystyle 2^{0}} ; the digit in the next column to the left has a multiplier of 2 1 {\displaystyle 2^{1}} ; and so on. So in the following table: 0. 1. 10. 11. ... the binary number "10" is 1 Γ— 2 1 + 0 Γ— 2 0 {\displaystyle 1\times 2^{1}+0\times 2^{0}} . You can also have binary digits to the right of the β€œpoint”, just as in the decimal number system. In that case, the digit in the place immediately to the right of the point has a weight of 2 βˆ’ 1 {\displaystyle 2^{-1}} , or 1 / 2 {\displaystyle 1/2} . The weight for the second column to the right of the point is 2 βˆ’ 2 {\displaystyle 2^{-2}} or 1 / 4 {\displaystyle 1/4} . And so on. If you take the integer binary count of the first table, and reflect the digits about the binary point, you end up with the van der Corput sequence of numbers in base 2. .0 .1 .01 .11 ... The third member of the sequence, binary 0.01, is therefore 0 Γ— 2 βˆ’ 1 + 1 Γ— 2 βˆ’ 2 {\displaystyle 0\times 2^{-1}+1\times 2^{-2}} or 1 / 4 {\displaystyle 1/4} . Distribution of 2500 points each: Van der Corput (top) vs pseudorandom 0 ≀ x < 1 {\displaystyle 0\leq x<1} Monte Carlo simulations This sequence is also a superset of the numbers representable by the "fraction" field of an old IEEE floating point standard. In that standard, the "fraction" field represented the fractional part of a binary number beginning with "1." e.g. 1.101001101. Hint A hint at a way to generate members of the sequence is to modify a routine used to change the base of an integer: >>> def base10change(n, base): digits = [] while n: n,remainder = divmod(n, base) digits.insert(0, remainder) return digits Β  >>> base10change(11, 2) [1, 0, 1, 1] the above showing that 11 in decimal is 1 Γ— 2 3 + 0 Γ— 2 2 + 1 Γ— 2 1 + 1 Γ— 2 0 {\displaystyle 1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}} . Reflected this would become .1101 or 1 Γ— 2 βˆ’ 1 + 1 Γ— 2 βˆ’ 2 + 0 Γ— 2 βˆ’ 3 + 1 Γ— 2 βˆ’ 4 {\displaystyle 1\times 2^{-1}+1\times 2^{-2}+0\times 2^{-3}+1\times 2^{-4}} Task description Create a function/method/routine that given n, generates the n'th term of the van der Corput sequence in base 2. Use the function to compute and display the first ten members of the sequence. (The first member of the sequence is for n=0). As a stretch goal/extra credit, compute and show members of the sequence for bases other than 2. See also The Basic Low Discrepancy Sequences Non-decimal radices/Convert Van der Corput sequence
#11l
11l
F vdc(=n, base = 2) V (vdc, denom) = (0.0, 1) L nΒ != 0 denom *= base (n, V remainder) = divmod(n, base) vdc += Float(remainder) / denom R vdc Β  print((0.<10).map(i -> vdc(i))) print((0.<10).map(i -> vdc(i, 3)))
http://rosettacode.org/wiki/Variables
Variables
Task Demonstrate a language's methods of: Β  variable declaration Β  initialization Β  assignment Β  datatypes Β  scope Β  referencing, Β  Β  and Β  other variable related facilities
#68000_Assembly
68000 Assembly
MyVar: DC.L 0 ;reserves 4 bytes of storage. The label MyVar represents the address of the four 0 bytes shown here. Β  MyOtherVar: DC.L $C0 ;reserves 8 bytes of storage. The first four bytes are initialized to 00 00 00 C0 and the second four to $00 $00 $01 $F4. DC.L 500 ;MyOtherVar points to the first four bytes, you'll need pointer arithmetic to get to the second four.
http://rosettacode.org/wiki/Van_Eck_sequence
Van Eck sequence
The sequence is generated by following this pseudo-code: A: The first term is zero. Repeatedly apply: If the last term is *new* to the sequence so far then: B: The next term is zero. Otherwise: C: The next term is how far back this last term occured previously. Example Using A: 0 Using B: 0 0 Using C: 0 0 1 Using B: 0 0 1 0 Using C: (zero last occurred two steps back - before the one) 0 0 1 0 2 Using B: 0 0 1 0 2 0 Using C: (two last occurred two steps back - before the zero) 0 0 1 0 2 0 2 2 Using C: (two last occurred one step back) 0 0 1 0 2 0 2 2 1 Using C: (one last appeared six steps back) 0 0 1 0 2 0 2 2 1 6 ... Task Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers. Use it to display here, on this page: The first ten terms of the sequence. Terms 991 - to - 1000 of the sequence. References Don't Know (the Van Eck Sequence) - Numberphile video. Wikipedia Article: Van Eck's Sequence. OEIS sequence: A181391.
#AArch64_Assembly
AArch64 Assembly
Β  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program vanEckSerie64.s */ Β  /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeConstantesARM64.inc" Β  .equ MAXI, 1000 Β  /*********************************/ /* Initialized data */ /*********************************/ .data sMessResultElement: .asciz " @ " szCarriageReturn: .asciz "\n" Β  /*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 TableVanEck: .skip 8 * MAXI /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program mov x2,#0 // begin first element mov x3,#0 // current counter ldr x4,qAdrTableVanEck // table address str x2,[x4,x3,lsl 3] // store first zΓ©ro 1: // begin loop mov x5,x3 // init current indice 2: sub x5,x5,1 // decrement cmp x5,0 // end tableΒ ? blt 3f ldr x6,[x4,x5,lsl 3] // load element cmp x6,x2 // and compare with the last element bne 2b // not equal sub x2,x3,x5 // else compute gap b 4f 3: mov x2,#0 // first, move zero to next element 4: add x3,x3,#1 // increment counter str x2,[x4,x3,lsl 3] // and store new element cmp x3,MAXI blt 1b Β  mov x2,0 5: // loop display ten elements ldr x0,[x4,x2,lsl 3] ldr x1,qAdrsZoneConv bl conversion10 // call dΓ©cimal conversion ldr x0,qAdrsMessResultElement ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc mov x1,0 // final zΓ©ro strb w1,[x0,5] // bl affichageMess // display message add x2,x2,1 // increment indice cmp x2,10 // endΒ ? blt 5b // no -> loop ldr x0,qAdrszCarriageReturn bl affichageMess Β  mov x2,MAXI - 10 6: // loop display ten elements 990-999 ldr x0,[x4,x2,lsl 3] ldr x1,qAdrsZoneConv bl conversion10 // call dΓ©cimal conversion ldr x0,qAdrsMessResultElement ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc mov x1,0 // final zΓ©ro strb w1,[x0,5] // bl affichageMess // display message add x2,x2,1 // increment indice cmp x2,MAXI // endΒ ? blt 6b // no -> loop ldr x0,qAdrszCarriageReturn bl affichageMess Β  100: // standard end of the program mov x0, 0 // return code mov x8, EXIT // request to exit program svc 0 // perform the system call qAdrszCarriageReturn: .quad szCarriageReturn qAdrsMessResultElement: .quad sMessResultElement qAdrsZoneConv: .quad sZoneConv qAdrTableVanEck: .quad TableVanEck /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc" Β 
http://rosettacode.org/wiki/Van_Eck_sequence
Van Eck sequence
The sequence is generated by following this pseudo-code: A: The first term is zero. Repeatedly apply: If the last term is *new* to the sequence so far then: B: The next term is zero. Otherwise: C: The next term is how far back this last term occured previously. Example Using A: 0 Using B: 0 0 Using C: 0 0 1 Using B: 0 0 1 0 Using C: (zero last occurred two steps back - before the one) 0 0 1 0 2 Using B: 0 0 1 0 2 0 Using C: (two last occurred two steps back - before the zero) 0 0 1 0 2 0 2 2 Using C: (two last occurred one step back) 0 0 1 0 2 0 2 2 1 Using C: (one last appeared six steps back) 0 0 1 0 2 0 2 2 1 6 ... Task Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers. Use it to display here, on this page: The first ten terms of the sequence. Terms 991 - to - 1000 of the sequence. References Don't Know (the Van Eck Sequence) - Numberphile video. Wikipedia Article: Van Eck's Sequence. OEIS sequence: A181391.
#Action.21
Action!
INT FUNC LastPos(INT ARRAY a INT count,value) INT pos Β  pos=count-1 WHILE pos>=0 AND a(pos)#value DO pos==-1 OD RETURN (pos) Β  PROC Main() DEFINE MAX="1000" INT ARRAY seq(MAX) INT i,pos Β  seq(0)=0 FOR i=1 TO MAX-1 DO pos=LastPos(seq,i-1,seq(i-1)) IF pos>=0 THEN seq(i)=i-1-pos ELSE seq(i)=0 FI OD Β  PrintE("Van Eck first 10 terms:") FOR i=0 TO 9 DO PrintI(seq(i)) Put(32) OD PutE() PutE() Β  PrintE("Van Eck terms 991-1000:") FOR i=990 TO 999 DO PrintI(seq(i)) Put(32) OD RETURN
http://rosettacode.org/wiki/Vampire_number
Vampire number
A vampire number is a natural decimal number with an even number of digits, Β  that can be factored into two integers. These two factors are called the Β  fangs, Β  and must have the following properties: Β  they each contain half the number of the decimal digits of the original number Β  together they consist of exactly the same decimal digits as the original number Β  at most one of them has a trailing zero An example of a vampire number and its fangs: Β  1260Β : (21, 60) Task Print the first Β  25 Β  vampire numbers and their fangs. Check if the following numbers are vampire numbers and, Β  if so, Β  print them and their fangs: 16758243290880, 24959017348650, 14593825548650 Note that a vampire number can have more than one pair of fangs. See also numberphile.com. vampire search algorithm vampire numbers on OEIS
#AutoHotkey
AutoHotkey
SetBatchLines -1 ; used to improve performance ; (you can make it much faster by removing the informative tooltips) Β  ;******************** ; CONFIG ;******************** StartingNumber := 10 NumberLimit := 126030 CounterLimit := 25 ; calculations stop when one of these limits is reached AdditionalNumbers := "16758243290880,24959017348650,14593825548650" ;******************** Β  CurrentCounter := 0, CurrentNumber := StartingNumber Β  Loop { ifΒ !Mod(A_Index,75) ; informative tooltip (every 75 calculations, to avoid slowing down) ToolTip,Β % "Checking numbers...`nNumber: " CurrentNumber . "/" NumberLimit "`nFound: " CurrentCounter "/" CounterLimit if ( CurrentCounter >= CounterLimit ) || ( CurrentNumber >= NumberLimit ) Break if Mod(StrLen(CurrentNumber),2) CurrentNumber *= 10 else if ( ( CurrentResult := GetFangs(CurrentNumber) ) <> "" ) Output .= "`n" CurrentNumber ":`t" CurrentResult, CurrentCounter++ CurrentNumber++ } ToolTip ; hide informative tooltip Β  MsgBoxΒ % SubStr(Output,2) ; show output (first part) Β  Output := "" Loop, Parse, AdditionalNumbers,Β % "," { ToolTip,Β % "Getting fangs for " A_LoopField " ..." ; informative tooltip Output .= "`n" A_LoopField ":`n`t" GetFangs(A_LoopField) "`n" } ToolTip ; hide informative tooltip Β  MsgBoxΒ % SubStr(Output,2) ; show output (second part - additional numbers) ExitApp Β  ;---------------------------------------------------------------------------------- Β  CharSorter(Input) { ; required by GetFangs() Loop, Parse, Input Output .= A_LoopField "`n" Sort, Output StringReplace, Output, Output,Β % "`n",, All Return Output } Β  ;---------------------------------------------------------------------------------- Β  GetFangs(CurrentNumber) { ; requires CharSorter() ResultIndex := 1 Length := StrLen(CurrentNumber) Power := (Length//2)-1 if Mod(Length,2) ORΒ !Power Return "" NumberLimit := Floor(Sqrt(CurrentNumber)) Lower := 10 ** Power Loop,Β % NumberLimit - Lower { ifΒ !Mod(CurrentNumber,Lower) { FactorTwo := CurrentNumber//Lower if (Β !Mod(Lower,10) &&Β !Mod(FactorTwo,10) ) Return "" Check := CharSorter( Lower . FactorTwo ) if (CharSorter(CurrentNumber) = Check) && (StrLen(Lower) = StrLen(FactorTwo)) Output .= "`n`t[" Lower "," FactorTwo "]" } Lower++ } Return SubStr(Output,3) ; 3 = 1 + length of "`n`t" }
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#Nim
Nim
import strformat Β  proc toSeq(x: uint64): seq[uint8] = var x = x var f = 0u64 for i in countdown(9u64, 1): if (x and 127'u64 shl (i * 7)) > 0: f = i break for j in 0u64..f: result.add uint8((x shr ((f - j) * 7)) and 127) or 128 Β  result[f] = result[f] xor 128'u8 Β  proc fromSeq(xs: openArray[uint8]): uint64 = for x in xs: result = (result shl 7) or (x and 127) Β  for x in [0x7f'u64, 0x4000'u64, 0'u64, 0x3ffffe'u64, 0x1fffff'u64, 0x200000'u64, 0x3311a1234df31413'u64]: let c = toSeq(x) echo &"seq from {x}: {c} back: {fromSeq(c)}"
http://rosettacode.org/wiki/Variable-length_quantity
Variable-length quantity
Implement some operations on variable-length quantities, at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and vice versa. Any variants are acceptable. Task With above operations, convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte); display these sequences of octets; convert these sequences of octets back to numbers, and check that they are equal to original numbers.
#OCaml
OCaml
let to_vlq n = let a, b = n lsr 7, n land 0x7F in let rec aux n acc = let x = (n land 0x7F) lor 0x80 and xs = n lsr 7 in if xs > 0 then aux xs (x::acc) else x::acc in aux a [b] Β  let to_num = List.fold_left (fun n x -> n lsl 7 + (x land 0x7F)) 0 Β  let v_rep n = Printf.printf "%d ->" n; let seq = to_vlq n in List.iter (Printf.printf " 0x%02X") seq; let num = to_num seq in Printf.printf "->Β %d\n%!" num; assert (n = num) Β  let _ = v_rep 0x200000; v_rep 0x1FFFFF Β 
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#Common_Lisp
Common Lisp
(defun example (&rest args) (dolist (arg args) (print arg))) Β  (example "Mary" "had" "a" "little" "lamb") Β  (let ((args '("Mary" "had" "a" "little" "lamb"))) (apply #'example args))
http://rosettacode.org/wiki/Variadic_function
Variadic function
Task Create a function which takes in a variable number of arguments and prints each one on its own line. Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime. Functions of this type are also known as Variadic Functions. Related task Β  Call a function
#Coq
Coq
Β  Fixpoint Arity (A B: Set) (n: nat): SetΒ := match n with |O => B |S n' => A -> (Arity A B n') end. Β 
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#Delphi
Delphi
i := sizeof({any variable or data type identifier});
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#Elixir
Elixir
list = [1,2,3] IO.puts length(list) #=> 3 Β  tuple = {1,2,3,4} IO.puts tuple_size(tuple) #=> 4 Β  string = "Elixir" IO.puts String.length(string) #=> 6 IO.puts byte_size(string) #=> 6 IO.puts bit_size(string) #=> 48 Β  utf8 = "β—‹Γ—β–³" IO.puts String.length(utf8) #=> 3 IO.puts byte_size(utf8) #=> 8 IO.puts bit_size(utf8) #=> 64 Β  bitstring = <<3Β :: 2>> IO.puts byte_size(bitstring) #=> 1 IO.puts bit_size(bitstring) #=> 2 Β  map = Map.new([{:b, 1}, {:a, 2}]) IO.puts map_size(map) #=> 2
http://rosettacode.org/wiki/Variable_size/Get
Variable size/Get
Demonstrate how to get the size of a variable. See also: Host introspection
#Erlang
Erlang
24> erlang:tuple_size( {1,2,3} ). 3 25> erlang:length( [1,2,3] ). 3 29> erlang:bit_size( <<1:11>> ). 11 30> erlang:byte_size( <<1:11>> ). 2
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#J
J
5 7+2 3 7 10 5 7-2 3 3 4 5 7*11 55 77 5 7%2 2.5 3.5
http://rosettacode.org/wiki/Vector
Vector
Task Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented. The Vector may be initialized in any reasonable way. Start and end points, and direction Angular coefficient and value (length) The four operations to be implemented are: Vector + Vector addition Vector - Vector subtraction Vector * scalar multiplication Vector / scalar division
#Java
Java
import java.util.Locale; Β  public class Test { Β  public static void main(String[] args) { System.out.println(new Vec2(5, 7).add(new Vec2(2, 3))); System.out.println(new Vec2(5, 7).sub(new Vec2(2, 3))); System.out.println(new Vec2(5, 7).mult(11)); System.out.println(new Vec2(5, 7).div(2)); } } Β  class Vec2 { final double x, y; Β  Vec2(double x, double y) { this.x = x; this.y = y; } Β  Vec2 add(Vec2 v) { return new Vec2(x + v.x, y + v.y); } Β  Vec2 sub(Vec2 v) { return new Vec2(x - v.x, y - v.y); } Β  Vec2 div(double val) { return new Vec2(x / val, y / val); } Β  Vec2 mult(double val) { return new Vec2(x * val, y * val); } Β  @Override public String toString() { return String.format(Locale.US, "[%s,Β %s]", x, y); } }
http://rosettacode.org/wiki/Verify_distribution_uniformity/Chi-squared_test
Verify distribution uniformity/Chi-squared test
Task Write a function to verify that a given distribution of values is uniform by using the Ο‡ 2 {\displaystyle \chi ^{2}} test to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce. Reference Β  an entry at the MathWorld website: Β  chi-squared distribution.
#Sidef
Sidef
# Confluent hypergeometric function of the first kind F_1(a;b;z) func F1(a, b, z, limit=100) { sum(0..limit, {|k| rising_factorial(a, k) / rising_factorial(b, k) * z**k / k! }) } Β  func Ξ³(a,x) { # lower incomplete gamma function Ξ³(a,x) #a**(-1) * x**a * F1(a, a+1, -x) # simpler formula a**(-1) * x**a * exp(-x) * F1(1, a+1, x) # slightly better convergence } Β  func P(a,z) { # regularized gamma function P(a,z) Ξ³(a,z) / Ξ“(a) } Β  func chi_squared_cdf (k, x) { var f = (k<20Β ? 20Β : 10) given(x) { when (0) { 0 } case (. < (k + f*sqrt(k))) { P(k/2, x/2) } else { 1 } } } Β  func chi_squared_test(arr, significance = 0.05) { var n = arr.len var N = arr.sum var expected = N/n var Ο‡_squared = arr.sum_by {|v| (v-expected)**2 / expected } var p_value = (1 - chi_squared_cdf(n-1, Ο‡_squared)) [Ο‡_squared, p_value, p_value > significance] } Β  [ %n< 199809 200665 199607 200270 199649 >, %n< 522573 244456 139979 71531 21461 >, ].each {|dataset| var r = chi_squared_test(dataset) say "data: #{dataset}" say "χ² = #{r[0]}, p-value = #{r[1].round(-4)}, uniform = #{r[2]}\n" }
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
Vigenère cipher
Task Implement a   Vigenère cypher,   both encryption and decryption. The program should handle keys and text of unequal length, and should capitalize everything and discard non-alphabetic characters. (If your program handles non-alphabetic characters in another way, make a note of it.) Related tasks   Caesar cipher   Rot-13   Substitution Cipher
#Liberty_BASIC
Liberty BASIC
Β  ori$ = "Beware the Jabberwock, my son! The jaws that bite, the claws that catch!" key$ = filter$("vigenerecipher") print ori$ print key$ enc$ = encrypt$(ori$, key$) print enc$ dec$ = decrypt$(enc$, key$) print dec$ Β  end Β  function encrypt$(text$, key$) flt$ = filter$(text$) encrypt$ = "" j = 1 for i = 1 to len(flt$) m$ = mid$(flt$, i, 1) m = asc(m$)-asc("A") k$ = mid$(key$, j, 1) k = asc(k$)-asc("A") j = (j mod len(key$)) + 1 c = (m + k) mod 26 c$=chr$(asc("A")+c) encrypt$=encrypt$+c$ next end function Β  function decrypt$(flt$, key$) decrypt$ = "" j = 1 for i = 1 to len(flt$) m$ = mid$(flt$, i, 1) m = asc(m$)-asc("A") k$ = mid$(key$, j, 1) k = asc(k$)-asc("A") j = (j mod len(key$)) + 1 c = (m - k + 26) mod 26 c$=chr$(asc("A")+c) decrypt$=decrypt$+c$ next end function Β  function filter$(ori$) 'a..z A..Z go caps, other skipped filter$="" for i = 1 to len(ori$) c$ = upper$(mid$(ori$,i,1)) if instr("ABCDEFGHIJKLMNOPQRSTUVWXYZ", c$) then filter$ = filter$ + c$ next end function Β 
http://rosettacode.org/wiki/Visualize_a_tree
Visualize a tree
A tree structure Β  (i.e. a rooted, connected acyclic graph) Β  is often used in programming. It's often helpful to visually examine such a structure. There are many ways to represent trees to a reader, such as: Β  indented text Β  (Γ  la unix tree command) Β  nested HTML tables Β  hierarchical GUI widgets Β  2D Β  or Β  3D Β  images Β  etc. Task Write a program to produce a visual representation of some tree. The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly. Make do with the vague term "friendly" the best you can.
#REXX
REXX
/* REXX *************************************************************** * 10.05.2014 Walter Pachl using the tree and the output format of C **********************************************************************/ Call mktree Say node.1.0name Call tt 1,'' Exit Β  tt: Procedure Expose node. /********************************************************************** * show a subtree (recursively) **********************************************************************/ Parse Arg k,st Do i=1 To node.k.0 If i=node.k.0 Then s='`--' Else s='|--' c=node.k.i If st<>'' Then st=left(st,length(st)-2)' ' st=changestr('` ',st,' ') Say st||s||node.c.0name Call tt c,st||s End Return Exit Β  mktree: Procedure Expose node. root /********************************************************************** * build the tree according to the task **********************************************************************/ node.=0 r=mknode('R'); a=mknode('A'); Call attchild a,r b=mknode('B'); Call attchild b,a c=mknode('C'); Call attchild c,a d=mknode('D'); Call attchild d,b e=mknode('E'); Call attchild e,b f=mknode('F'); Call attchild f,b g=mknode('G'); Call attchild g,b h=mknode('H'); Call attchild h,d i=mknode('I'); Call attchild i,h j=mknode('J'); Call attchild j,i k=mknode('K'); Call attchild k,j l=mknode('L'); Call attchild l,j m=mknode('M'); Call attchild m,e n=mknode('N'); Call attchild n,e Return Β  mknode: Procedure Expose node. /********************************************************************** * create a new node **********************************************************************/ Parse Arg name z=node.0+1 node.z.0name=name node.0=z Return z /* number of the node just created */ Β  attchild: Procedure Expose node. /********************************************************************** * make a the next child of father **********************************************************************/ Parse Arg a,father node.a.0father=father z=node.father.0+1 node.father.z=a node.father.0=z node.a.0level=node.father.0level+1 Return Β 
http://rosettacode.org/wiki/Walk_a_directory/Recursively
Walk a directory/Recursively
Task Walk a given directory tree and print files matching a given pattern. Note: This task is for recursive methods. Β  These tasks should read an entire directory tree, not a single directory. Note: Please be careful when running any code examples found here. Related task Β  Walk a directory/Non-recursively Β  (read a single directory).
#PureBasic
PureBasic
Procedure.s WalkRecursive(dir,path.s,Pattern.s="\.txt$") Static RegularExpression If Not RegularExpression RegularExpression=CreateRegularExpression(#PB_Any,Pattern) EndIf Β  While NextDirectoryEntry(dir) If DirectoryEntryType(dir)=#PB_DirectoryEntry_Directory If DirectoryEntryName(dir)<>"." And DirectoryEntryName(dir)<>".." If ExamineDirectory(dir+1,path+DirectoryEntryName(dir),"") WalkRecursive(dir+1,path+DirectoryEntryName(dir)+"\",Pattern) FinishDirectory(dir+1) Else Debug "Error in "+path+DirectoryEntryName(dir) EndIf EndIf Else ; e.g. #PB_DirectoryEntry_File If MatchRegularExpression(RegularExpression,DirectoryEntryName(dir)) Debug DirectoryEntryName(dir) EndIf EndIf Wend EndProcedure
http://rosettacode.org/wiki/Water_collected_between_towers
Water collected between towers
Task In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains, completely filling all convex enclosures in the chart with water. 9 β–ˆβ–ˆ 9 β–ˆβ–ˆ 8 β–ˆβ–ˆ 8 β–ˆβ–ˆ 7 β–ˆβ–ˆ β–ˆβ–ˆ 7 β–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 6 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ 6 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ 5 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆ β–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 4 β–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 3 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆ 2 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ‰ˆβ‰ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 1 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water. Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart. Calculate the number of water units that could be collected by bar charts representing each of the following seven series: [[1, 5, 3, 7, 2], [5, 3, 7, 2, 6, 4, 5, 9, 1, 2], [2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1], [5, 5, 5, 5], [5, 6, 7, 8], [8, 7, 7, 6], [6, 7, 10, 7, 6]] See, also: Four Solutions to a Trivial Problem – a Google Tech Talk by Guy Steele Water collected between towers on Stack Overflow, from which the example above is taken) An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
#Ruby
Ruby
Β  def a(array) n=array.length left={} right={} left[0]=array[0] i=1 loop do break if i >=n left[i]=[left[i-1],array[i]].max i += 1 end right[n-1]=array[n-1] i=n-2 loop do break if i<0 right[i]=[right[i+1],array[i]].max i-=1 end i=0 water=0 loop do break if i>=n water+=[left[i],right[i]].min-array[i] i+=1 end puts water end Β  a([ 5, 3, 7, 2, 6, 4, 5, 9, 1, 2 ]) a([ 2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1 ]) a([ 5, 5, 5, 5 ]) a([ 5, 6, 7, 8 ]) a([ 8, 7, 7, 6 ]) a([ 6, 7, 10, 7, 6 ]) return
http://rosettacode.org/wiki/Vector_products
Vector products
A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: Β  (X, Y, Z). If you imagine a graph with the Β  x Β  and Β  y Β  axis being at right angles to each other and having a third, Β  z Β  axis coming out of the page, then a triplet of numbers, Β  (X, Y, Z) Β  would represent a point in the region, Β  and a vector from the origin to the point. Given the vectors: A = (a1, a2, a3) B = (b1, b2, b3) C = (c1, c2, c3) then the following common vector products are defined: The dot product Β  Β  Β  (a scalar quantity) A β€’ B = a1b1 Β  + Β  a2b2 Β  + Β  a3b3 The cross product Β  Β  Β  (a vector quantity) A x B = (a2b3Β  - Β  a3b2, Β  Β  a3b1 Β  - Β  a1b3, Β  Β  a1b2 Β  - Β  a2b1) The scalar triple product Β  Β  Β  (a scalar quantity) A β€’ (B x C) The vector triple product Β  Β  Β  (a vector quantity) A x (B x C) Task Given the three vectors: a = ( 3, 4, 5) b = ( 4, 3, 5) c = (-5, -12, -13) Create a named function/subroutine/method to compute the dot product of two vectors. Create a function to compute the cross product of two vectors. Optionally create a function to compute the scalar triple product of three vectors. Optionally create a function to compute the vector triple product of three vectors. Compute and display: a β€’ b Compute and display: a x b Compute and display: a β€’ (b x c), the scalar triple product. Compute and display: a x (b x c), the vector triple product. References Β  A starting page on Wolfram MathWorld is Β  Vector Multiplication . Β  Wikipedia Β  dot product. Β  Wikipedia Β  cross product. Β  Wikipedia Β  triple product. Related tasks Β  Dot product Β  Quaternion type
#AutoHotkey
AutoHotkey
V := {a: [3, 4, 5], b: [4, 3, 5], c: [-5, -12, -13]} Β  for key, val in V Out .= key " = (" val[1] ", " val[2] ", " val[3] ")`n" Β  CP := CrossProduct(V.a, V.b) VTP := VectorTripleProduct(V.a, V.b, V.c) Β  MsgBox,Β % Out "`na β€’ b = " DotProduct(V.a, V.b) "`n" . "a x b = (" CP[1] ", " CP[2] ", " CP[3] ")`n" . "a β€’ b x c = " ScalerTripleProduct(V.a, V.b, V.c) "`n" . "a x b x c = (" VTP[1] ", " VTP[2] ", " VTP[3] ")" Β  DotProduct(v1, v2) { return, v1[1] * v2[1] + v1[2] * v2[2] + v1[3] * v2[3] } Β  CrossProduct(v1, v2) { return, [v1[2] * v2[3] - v1[3] * v2[2] , v1[3] * v2[1] - v1[1] * v2[3] , v1[1] * v2[2] - v1[2] * v2[1]] } Β  ScalerTripleProduct(v1, v2, v3) { return, DotProduct(v1, CrossProduct(v2, v3)) } Β  VectorTripleProduct(v1, v2, v3) { return, CrossProduct(v1, CrossProduct(v2, v3)) }
http://rosettacode.org/wiki/Validate_International_Securities_Identification_Number
Validate International Securities Identification Number
An International Securities Identification Number (ISIN) is a unique international identifier for a financial security such as a stock or bond. Task Write a function or program that takes a string as input, and checks whether it is a valid ISIN. It is only valid if it has the correct format, Β  and Β  the embedded checksum is correct. Demonstrate that your code passes the test-cases listed below. Details The format of an ISIN is as follows: β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ a 2-character ISO country code (A-Z) β”‚Β β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ a 9-character security code (A-Z, 0-9) β”‚Β β”‚Β Β Β Β Β Β Β Β β”Œβ”€β”€ a checksum digit (0-9) AU0000XVGZA3 For this task, you may assume that any 2-character alphabetic sequence is a valid country code. The checksum can be validated as follows: Replace letters with digits, by converting each character from base 36 to base 10, e.g. AU0000XVGZA3 β†’1030000033311635103. Perform the Luhn test on this base-10 number. There is a separate task for this test: Luhn test of credit card numbers. You don't have to replicate the implementation of this test here Β  ─── Β  you can just call the existing function from that task. Β  (Add a comment stating if you did this.) Test cases ISIN Validity Comment US0378331005 valid US0373831005 not valid The transposition typo is caught by the checksum constraint. U50378331005 not valid The substitution typo is caught by the format constraint. US03378331005 not valid The duplication typo is caught by the format constraint. AU0000XVGZA3 valid AU0000VXGZA3 valid Unfortunately, not all transposition typos are caught by the checksum constraint. FR0000988040 valid (The comments are just informational. Β  Your function should simply return a Boolean result. Β  See #Raku for a reference solution.) Related task: Luhn test of credit card numbers Also see Interactive online ISIN validator Wikipedia article: International Securities Identification Number
#11l
11l
F check_isin(a) I a.lenΒ != 12 R 0B [Int] s L(c) a I c.is_digit() I L.index < 2 R 0B s.append(c.code - 48) E I c.is_uppercase() I L.index == 11 R 0B V (d, m) = divmod(c.code - 55, 10) s [+]= [d, m] E R 0B V v = sum(s[((len)-1..).step(-2)]) L(=k) s[((len)-2..).step(-2)] k = 2 * k v += I k > 9 {k - 9} E k R vΒ % 10 == 0 Β  print([β€˜US0378331005’, β€˜US0373831005’, β€˜U50378331005’, β€˜US03378331005’, β€˜AU0000XVGZA3’, β€˜AU0000VXGZA3’, β€˜FR0000988040’].map(s -> check_isin(s)))