task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Fibonacci_word/fractal
Fibonacci word/fractal
The Fibonacci word may be represented as a fractal as described here: (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.) For F_wordm start with F_wordCharn=1 Draw a segment forward If current F_wordChar is 0 Turn left if n is even Turn right if n is odd next n and iterate until end of F_word Task Create and display a fractal similar to Fig 1. (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.)
#Processing
Processing
  int n = 18; String f1 = "1"; String f2 = "0"; String f3;     void setup(){ size(600,600); background(255); translate(10, 10); createSeries(); }   void createSeries(){ for(int i=0; i<n; i++){ f3 = f2+f1; f1 = f2; f2 = f3; } drawFractal(); }   void drawFractal(){ char[] a = f3.toCharArray(); for(int i=0; i<a.length; i++){ if(a[i]=='0'){ if(i%2==0){ rotate(PI/2); } else{ rotate(-PI/2); } } line(0,0,2,0); translate(2,0); } }  
http://rosettacode.org/wiki/Fibonacci_word/fractal
Fibonacci word/fractal
The Fibonacci word may be represented as a fractal as described here: (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.) For F_wordm start with F_wordCharn=1 Draw a segment forward If current F_wordChar is 0 Turn left if n is even Turn right if n is odd next n and iterate until end of F_word Task Create and display a fractal similar to Fig 1. (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.)
#Python
Python
from functools import wraps from turtle import *   def memoize(obj): cache = obj.cache = {} @wraps(obj) def memoizer(*args, **kwargs): key = str(args) + str(kwargs) if key not in cache: cache[key] = obj(*args, **kwargs) return cache[key] return memoizer   @memoize def fibonacci_word(n): assert n > 0 if n == 1: return "1" if n == 2: return "0" return fibonacci_word(n - 1) + fibonacci_word(n - 2)   def draw_fractal(word, step): for i, c in enumerate(word, 1): forward(step) if c == "0": if i % 2 == 0: left(90) else: right(90)   def main(): n = 25 # Fibonacci Word to use. step = 1 # Segment length. width = 1050 # Width of plot area. height = 1050 # Height of plot area. w = fibonacci_word(n)   setup(width=width, height=height) speed(0) setheading(90) left(90) penup() forward(500) right(90) backward(500) pendown() tracer(10000) hideturtle()   draw_fractal(w, step)   # Save Poscript image. getscreen().getcanvas().postscript(file="fibonacci_word_fractal.eps") exitonclick()   if __name__ == '__main__': main()
http://rosettacode.org/wiki/Find_common_directory_path
Find common directory path
Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories. Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths: '/home/user1/tmp/coverage/test' '/home/user1/tmp/covert/operator' '/home/user1/tmp/coven/members' Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'. If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#MATLAB_.2F_Octave
MATLAB / Octave
  function lcp = longest_common_dirpath(varargin) ix = find(varargin{1}=='/'); ca = char(varargin); flag = all(ca==ca(1,:),1); for k = length(ix):-1:1, if all(flag(1:ix(k))); break; end end lcp = ca(1,1:ix(k)); end   longest_common_dirpath('/home/user1/tmp/coverage/test', '/home/user1/tmp/covert/operator', '/home/user1/tmp/coven/members')  
http://rosettacode.org/wiki/Find_common_directory_path
Find common directory path
Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories. Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths: '/home/user1/tmp/coverage/test' '/home/user1/tmp/covert/operator' '/home/user1/tmp/coven/members' Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'. If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Maxima
Maxima
scommon(a, b) := block([n: min(slength(a), slength(b))], substring(a, 1, catch(for i thru n do ( if not cequal(charat(a, i), charat(b, i)) then throw(i)), n + 1)))$   commonpath(u, [l]) := block([s: lreduce(scommon, u), c, n], n: sposition(if length(l) = 0 then "/" else l[1], sreverse(s)), if integerp(n) then substring(s, 1, slength(s) - n) else "" )$   commonpath(["c:/files/banister.jpg", "c:/files/bank.xls", "c:/files/banana-recipes.txt"]); "c:/files"
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#Clojure
Clojure
;; range and filter create lazy seq's (filter even? (range 0 100)) ;; vec will convert any type of seq to an array (vec (filter even? (vec (range 0 100))))
http://rosettacode.org/wiki/Find_limit_of_recursion
Find limit of recursion
Find limit of recursion is part of Short Circuit's Console Program Basics selection. Task Find the limit of recursion.
#Pascal
Pascal
my $x = 0; recurse($x);   sub recurse ($x) { print ++$x,"\n"; recurse($x); }
http://rosettacode.org/wiki/Find_limit_of_recursion
Find limit of recursion
Find limit of recursion is part of Short Circuit's Console Program Basics selection. Task Find the limit of recursion.
#Perl
Perl
my $x = 0; recurse($x);   sub recurse ($x) { print ++$x,"\n"; recurse($x); }
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#GFA_Basic
GFA Basic
  ' Fizz Buzz ' FOR i%=1 TO 100 IF i% MOD 15=0 PRINT "FizzBuzz" ELSE IF i% MOD 3=0 PRINT "Fizz" ELSE IF i% MOD 5=0 PRINT "Buzz" ELSE PRINT i% ENDIF NEXT i%  
http://rosettacode.org/wiki/File_size
File size
Verify the size of a file called     input.txt     for a file in the current working directory, and another one in the file system root.
#Lua
Lua
function GetFileSize( filename ) local fp = io.open( filename ) if fp == nil then return nil end local filesize = fp:seek( "end" ) fp:close() return filesize end
http://rosettacode.org/wiki/File_size
File size
Verify the size of a file called     input.txt     for a file in the current working directory, and another one in the file system root.
#Maple
Maple
FileTools:-Size( "input.txt" )
http://rosettacode.org/wiki/File_size
File size
Verify the size of a file called     input.txt     for a file in the current working directory, and another one in the file system root.
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
  FileByteCount["input.txt"] FileByteCount[FileNameJoin[{$RootDirectory, "input.txt"}]]
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Emacs_Lisp
Emacs Lisp
(defvar input (with-temp-buffer (insert-file-contents "input.txt") (buffer-string)))   (with-temp-file "output.txt" (insert input))  
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Erlang
Erlang
  -module( file_io ).   -export( [task/0] ).   task() -> {ok, Contents} = file:read_file( "input.txt" ), ok = file:write_file( "output.txt", Contents ).  
http://rosettacode.org/wiki/Fibonacci_word
Fibonacci word
The   Fibonacci Word   may be created in a manner analogous to the   Fibonacci Sequence   as described here: Define   F_Word1   as   1 Define   F_Word2   as   0 Form     F_Word3   as   F_Word2     concatenated with   F_Word1   i.e.:   01 Form     F_Wordn   as   F_Wordn-1   concatenated with   F_wordn-2 Task Perform the above steps for     n = 37. You may display the first few but not the larger values of   n. {Doing so will get the task's author into trouble with them what be (again!).} Instead, create a table for   F_Words   1   to   37   which shows:   The number of characters in the word   The word's Entropy Related tasks   Fibonacci word/fractal   Entropy   Entropy/Narcissist
#Factor
Factor
USING: assocs combinators formatting kernel math math.functions math.ranges math.statistics namespaces pair-rocket sequences ; IN: rosetta-code.fibonacci-word   SYMBOL: 37th-fib-word   : fib ( n -- m ) { 1 => [ 1 ] 2 => [ 1 ] [ [ 1 - fib ] [ 2 - fib ] bi + ] } case ;   : fib-word ( n -- seq ) { 1 => [ "1" ] 2 => [ "0" ] [ [ 1 - fib-word ] [ 2 - fib-word ] bi append ] } case ;   : nth-fib-word ( n -- seq ) dup 1 = [ drop "1" ] [ 37th-fib-word get swap fib head ] if ;   : entropy ( seq -- entropy ) [ length ] [ histogram >alist [ second ] map ] bi [ swap / ] with map [ dup log 2 log / * ] map-sum dup 0. = [ neg ] unless ;   37 fib-word 37th-fib-word set "N" "Length" "Entropy" "%2s  %8s  %10s\n" printf 37 [1,b] [ dup nth-fib-word [ length ] [ entropy ] bi "%2d  %8d  %.8f\n" printf ] each
http://rosettacode.org/wiki/Fibonacci_word
Fibonacci word
The   Fibonacci Word   may be created in a manner analogous to the   Fibonacci Sequence   as described here: Define   F_Word1   as   1 Define   F_Word2   as   0 Form     F_Word3   as   F_Word2     concatenated with   F_Word1   i.e.:   01 Form     F_Wordn   as   F_Wordn-1   concatenated with   F_wordn-2 Task Perform the above steps for     n = 37. You may display the first few but not the larger values of   n. {Doing so will get the task's author into trouble with them what be (again!).} Instead, create a table for   F_Words   1   to   37   which shows:   The number of characters in the word   The word's Entropy Related tasks   Fibonacci word/fractal   Entropy   Entropy/Narcissist
#FreeBASIC
FreeBASIC
' version 25-06-2015 ' compile with: fbc -s console   Function calc_entropy(source As String, base_ As Integer) As Double   Dim As Integer i, sourcelen = Len(source), totalchar(255) Dim As Double prop, entropy   For i = 0 To sourcelen -1 totalchar(source[i]) += 1 Next   For i = 0 To 255 If totalchar(i) = 0 Then Continue For prop = totalchar(i) / sourcelen entropy = entropy - (prop * Log (prop) / Log(base_)) Next   Return entropy   End Function   ' ------=< MAIN >=------   Dim As String fw1 = "1" , fw2 = "0", fw3 Dim As Integer i, n   Print" N Length Entropy Word" n = 1 Print Using " ###";n; : Print Using " ###########"; Len(fw1); Print Using " ##.############### "; calc_entropy(fw1,2); Print fw1 n = 2 Print Using " ###";n ;: Print Using " ###########"; Len(fw2); Print Using " ##.############### "; calc_entropy(fw2,2); Print fw2     For n = 1 To 35   fw1 = "1" : fw2 = "0" ' construct string For i = 1 To n fw3 = fw2 + fw1 Swap fw1, fw2 ' swap pointers of fw1 and fw2 Swap fw2, fw3 ' swap pointers of fw2 and fw3 Next fw1 = "" : fw3 = "" ' free up memory   Print Using " ### ########### ##.############### "; n +2; Len(fw2);_ calc_entropy(fw2, 2); If Len(fw2) < 55 Then Print fw2 Else Print   Next   Print   ' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/FASTA_format
FASTA format
In bioinformatics, long character strings are often encoded in a format called FASTA. A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line. Task Write a program that reads a FASTA file such as: >Rosetta_Example_1 THERECANBENOSPACE >Rosetta_Example_2 THERECANBESEVERAL LINESBUTTHEYALLMUST BECONCATENATED Output: Rosetta_Example_1: THERECANBENOSPACE Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
#Crystal
Crystal
  # create tmp fasta file in /tmp/ tmpfile = "/tmp/tmp"+Random.rand.to_s+".fasta" File.write(tmpfile, ">Rosetta_Example_1 THERECANBENOSPACE >Rosetta_Example_2 THERECANBESEVERAL LINESBUTTHEYALLMUST BECONCATENATED")   # read tmp fasta file and store to hash ref = tmpfile id = seq = "" fasta = {} of String => String File.each_line(ref) do |line| if line.starts_with?(">") fasta[id] = seq.sub(/\s/, "") if id != "" id = line.split(/\s/)[0].lstrip(">") seq = "" else seq += line end end fasta[id] = seq.sub(/\s/, "")   # show fasta component fasta.each { |k,v| puts "#{k}: #{v}"}  
http://rosettacode.org/wiki/FASTA_format
FASTA format
In bioinformatics, long character strings are often encoded in a format called FASTA. A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line. Task Write a program that reads a FASTA file such as: >Rosetta_Example_1 THERECANBENOSPACE >Rosetta_Example_2 THERECANBESEVERAL LINESBUTTHEYALLMUST BECONCATENATED Output: Rosetta_Example_1: THERECANBENOSPACE Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
#Delphi
Delphi
USING: formatting io kernel sequences ; IN: rosetta-code.fasta   : process-fasta-line ( str -- ) dup ">" head? [ rest "\n%s: " printf ] [ write ] if ;   : main ( -- ) readln rest "%s: " printf [ process-fasta-line ] each-line ;   MAIN: main
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#ALGOL_68
ALGOL 68
BEGIN # construct some Farey Sequences and calculate their lengths # # prints an element of a Farey Sequence # PROC print element = ( INT a, b )VOID: print( ( " ", whole( a, 0 ), "/", whole( b, 0 ) ) ); # returns the length of the Farey Sequence of order n, optionally # # printing it # PROC farey sequence length = ( INT n, BOOL print sequence )INT: IF n < 1 THEN 0 ELSE INT a := 0, b := 1, c := 1, d := n; IF print sequence THEN print( ( whole( n, -2 ), ":" ) ); print element( a, b ) FI; INT length := 1; WHILE c <= n DO INT k = ( n + b ) OVER d; INT old a = a, old b = b; a := c; b := d; c := ( k * c ) - old a; d := ( k * d ) - old b; IF print sequence THEN print element( a, b ) FI; length +:= 1 OD; IF print sequence THEN print( ( newline ) ) FI; length FI # farey sequence length # ; # task # FOR i TO 11 DO farey sequence length( i, TRUE ) OD; FOR n FROM 100 BY 100 TO 1 000 DO print( ( "Farey Sequence of order ", whole( n, -4 ) , " has length: ", whole( farey sequence length( n, FALSE ), -6 ) , newline ) ) OD END
http://rosettacode.org/wiki/Fairshare_between_two_and_more
Fairshare between two and more
The Thue-Morse sequence is a sequence of ones and zeros that if two people take turns in the given order, the first persons turn for every '0' in the sequence, the second for every '1'; then this is shown to give a fairer, more equitable sharing of resources. (Football penalty shoot-outs for example, might not favour the team that goes first as much if the penalty takers take turns according to the Thue-Morse sequence and took 2^n penalties) The Thue-Morse sequence of ones-and-zeroes can be generated by: "When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence" Sharing fairly between two or more Use this method: When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people. Task Counting from zero;   using a function/method/routine to express an integer count in base b, sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people. Show the first 25 terms of the fairshare sequence:   For two people:   For three people   For five people   For eleven people Related tasks   Non-decimal radices/Convert   Thue-Morse See also   A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
#AppleScript
AppleScript
-- thueMorse :: Int -> [Int] on thueMorse(base) -- Non-finite sequence of Thue-Morse terms for a given base. fmapGen(baseDigitsSumModBase(base), enumFrom(0)) end thueMorse     -- baseDigitsSumModBase :: Int -> Int -> Int on baseDigitsSumModBase(b) script on |λ|(n) script go on |λ|(x) if 0 < x then Just(Tuple(x mod b, x div b)) else Nothing() end if end |λ| end script sum(unfoldl(go, n)) mod b end |λ| end script end baseDigitsSumModBase     -------------------------- TEST --------------------------- on run script rjust on |λ|(x) justifyRight(2, space, str(x)) end |λ| end script   script test on |λ|(n) |λ|(n) of rjust & " -> " & ¬ showList(map(rjust, take(25, thueMorse(n)))) end |λ| end script   unlines({"First 25 fairshare terms for N players:"} & ¬ map(test, {2, 3, 5, 11})) end run     -------------------- GENERIC FUNCTIONS --------------------   -- Just :: a -> Maybe a on Just(x) -- Constructor for an inhabited Maybe (option type) value. -- Wrapper containing the result of a computation. {type:"Maybe", Nothing:false, Just:x} end Just     -- Nothing :: Maybe a on Nothing() -- Constructor for an empty Maybe (option type) value. -- Empty wrapper returned where a computation is not possible. {type:"Maybe", Nothing:true} end Nothing     -- Tuple (,) :: a -> b -> (a, b) on Tuple(a, b) -- Constructor for a pair of values, possibly of two different types. {type:"Tuple", |1|:a, |2|:b, length:2} end Tuple     -- enumFrom :: Enum a => a -> [a] on enumFrom(x) script property v : missing value property blnNum : class of x is not text on |λ|() if missing value is not v then if blnNum then set v to 1 + v else set v to succ(v) end if else set v to x end if return v end |λ| end script end enumFrom     -- fmapGen <$> :: (a -> b) -> Gen [a] -> Gen [b] on fmapGen(f, gen) script property g : mReturn(f) on |λ|() set v to gen's |λ|() if v is missing value then v else g's |λ|(v) end if end |λ| end script end fmapGen     -- foldl :: (a -> b -> a) -> a -> [b] -> a on foldl(f, startValue, xs) tell mReturn(f) set v to startValue set lng to length of xs repeat with i from 1 to lng set v to |λ|(v, item i of xs, i, xs) end repeat return v end tell end foldl     -- intercalateS :: String -> [String] -> String on intercalate(delim, xs) set {dlm, my text item delimiters} to ¬ {my text item delimiters, delim} set s to xs as text set my text item delimiters to dlm s end intercalate     -- justifyRight :: Int -> Char -> String -> String on justifyRight(n, cFiller, s) if n > length of s then text -n thru -1 of ((replicate(n, cFiller) as text) & s) else s end if end justifyRight     -- map :: (a -> b) -> [a] -> [b] on map(f, xs) -- The list obtained by applying f -- to each element of xs. tell mReturn(f) set lng to length of xs set lst to {} repeat with i from 1 to lng set end of lst to |λ|(item i of xs, i, xs) end repeat return lst end tell end map     -- mReturn :: First-class m => (a -> b) -> m (a -> b) on mReturn(f) -- 2nd class handler function lifted into 1st class script wrapper. if script is class of f then f else script property |λ| : f end script end if end mReturn     -- Egyptian multiplication - progressively doubling a list, appending -- stages of doubling to an accumulator where needed for binary -- assembly of a target length -- replicate :: Int -> a -> [a] on replicate(n, a) set out to {} if 1 > n then return out set dbl to {a}   repeat while (1 < n) if 0 < (n mod 2) then set out to out & dbl set n to (n div 2) set dbl to (dbl & dbl) end repeat return out & dbl end replicate     -- showList :: [a] -> String on showList(xs) "[" & intercalate(",", map(my str, xs)) & "]" end showList     -- str :: a -> String on str(x) x as string end str     -- sum :: [Num] -> Num on sum(xs) script add on |λ|(a, b) a + b end |λ| end script   foldl(add, 0, xs) end sum     -- take :: Int -> [a] -> [a] -- take :: Int -> String -> String on take(n, xs) set c to class of xs if list is c then if 0 < n then items 1 thru min(n, length of xs) of xs else {} end if else if string is c then if 0 < n then text 1 thru min(n, length of xs) of xs else "" end if else if script is c then set ys to {} repeat with i from 1 to n set v to |λ|() of xs if missing value is v then return ys else set end of ys to v end if end repeat return ys else missing value end if end take     -- > unfoldl (\b -> if b == 0 then Nothing else Just (b, b-1)) 10 -- > [1,2,3,4,5,6,7,8,9,10] -- unfoldl :: (b -> Maybe (b, a)) -> b -> [a] on unfoldl(f, v) set xr to Tuple(v, v) -- (value, remainder) set xs to {} tell mReturn(f) repeat -- Function applied to remainder. set mb to |λ|(|2| of xr) if Nothing of mb then exit repeat else -- New (value, remainder) tuple, set xr to Just of mb -- and value appended to output list. set xs to ({|1| of xr} & xs) end if end repeat end tell return xs end unfoldl     -- unlines :: [String] -> String on unlines(xs) -- A single string formed by the intercalation -- of a list of strings with the newline character. set {dlm, my text item delimiters} to ¬ {my text item delimiters, linefeed} set s to xs as text set my text item delimiters to dlm s end unlines
http://rosettacode.org/wiki/Faulhaber%27s_triangle
Faulhaber's triangle
Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula: ∑ k = 1 n k p = 1 p + 1 ∑ j = 0 p ( p + 1 j ) B j n p + 1 − j {\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}} where B n {\displaystyle B_{n}} is the nth-Bernoulli number. The first 5 rows of Faulhaber's triangle, are: 1 1/2 1/2 1/6 1/2 1/3 0 1/4 1/2 1/4 -1/30 0 1/3 1/2 1/5 Using the third row of the triangle, we have: ∑ k = 1 n k 2 = 1 6 n + 1 2 n 2 + 1 3 n 3 {\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}} Task show the first 10 rows of Faulhaber's triangle. using the 18th row of Faulhaber's triangle, compute the sum: ∑ k = 1 1000 k 17 {\displaystyle \sum _{k=1}^{1000}k^{17}} (extra credit). See also Bernoulli numbers Evaluate binomial coefficients Faulhaber's formula (Wikipedia) Faulhaber's triangle (PDF)
#D
D
import std.algorithm : fold; import std.conv : to; import std.exception : enforce; import std.format : formattedWrite; import std.numeric : cmp, gcd; import std.range : iota; import std.stdio; import std.traits;   auto abs(T)(T val) if (isNumeric!T) { if (val < 0) { return -val; } return val; }   struct Frac { long num; long denom;   enum ZERO = Frac(0, 1); enum ONE = Frac(1, 1);   this(long n, long d) in { enforce(d != 0, "Parameter d may not be zero."); } body { auto nn = n; auto dd = d; if (nn == 0) { dd = 1; } else if (dd < 0) { nn = -nn; dd = -dd; } auto g = gcd(abs(nn), abs(dd)); if (g > 1) { nn /= g; dd /= g; } num = nn; denom = dd; }   auto opBinary(string op)(Frac rhs) const { static if (op == "+" || op == "-") { return mixin("Frac(num*rhs.denom"~op~"denom*rhs.num, rhs.denom*denom)"); } else if (op == "*") { return Frac(num*rhs.num, denom*rhs.denom); } }   auto opUnary(string op : "-")() const { return Frac(-num, denom); }   int opCmp(Frac rhs) const { return cmp(cast(real) this, cast(real) rhs); }   bool opEquals(Frac rhs) const { return num == rhs.num && denom == rhs.denom; }   void toString(scope void delegate(const(char)[]) sink) const { if (denom == 1) { formattedWrite(sink, "%d", num); } else { formattedWrite(sink, "%d/%s", num, denom); } }   T opCast(T)() const if (isFloatingPoint!T) { return cast(T) num / denom; } }   auto abs(Frac f) { if (f.num >= 0) { return f; } return -f; }   auto bernoulli(int n) in { enforce(n >= 0, "Parameter n must not be negative."); } body { Frac[] a; a.length = n+1; a[0] = Frac.ZERO; foreach (m; 0..n+1) { a[m] = Frac(1, m+1); foreach_reverse (j; 1..m+1) { a[j-1] = (a[j-1] - a[j]) * Frac(j, 1); } } if (n != 1) { return a[0]; } return -a[0]; }   auto binomial(int n, int k) in { enforce(n>=0 && k>=0 && n>=k); } body { if (n==0 || k==0) return 1; auto num = iota(k+1, n+1).fold!"a*b"(1); auto den = iota(2, n-k+1).fold!"a*b"(1); return num / den; }   Frac[] faulhaberTriangle(int p) { Frac[] coeffs; coeffs.length = p+1; coeffs[0] = Frac.ZERO; auto q = Frac(1, p+1); auto sign = -1; foreach (j; 0..p+1) { sign *= -1; coeffs[p - j] = q * Frac(sign, 1) * Frac(binomial(p+1, j), 1) * bernoulli(j); } return coeffs; }   void main() { foreach (i; 0..10) { auto coeffs = faulhaberTriangle(i); foreach (coeff; coeffs) { writef("%5s ", coeff.to!string); } writeln; } writeln; }
http://rosettacode.org/wiki/Faulhaber%27s_formula
Faulhaber's formula
In mathematics,   Faulhaber's formula,   named after Johann Faulhaber,   expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n,   the coefficients involving Bernoulli numbers. Task Generate the first 10 closed-form expressions, starting with p = 0. Related tasks   Bernoulli numbers.   evaluate binomial coefficients. See also   The Wikipedia entry:   Faulhaber's formula.   The Wikipedia entry:   Bernoulli numbers.   The Wikipedia entry:   binomial coefficients.
#Factor
Factor
USING: formatting kernel math math.combinatorics math.extras math.functions regexp sequences ;   : faulhaber ( p -- seq ) 1 + dup recip swap dup <iota> [ [ nCk ] [ -1 swap ^ ] [ bernoulli ] tri * * * ] 2with map ;   : (poly>str) ( seq -- str ) reverse [ 1 + "%un^%d" sprintf ] map-index reverse " + " join ;   : clean-up ( str -- str' ) R/ n\^1\z/ "n" re-replace  ! Change n^1 to n. R/ 1n/ "n" re-replace  ! Change 1n to n. R/ \+ -/ "- " re-replace  ! Change + - to - . R/ [+-] 0n(\^\d+ )?/ "" re-replace ; ! Remove terms of zero.   : poly>str ( seq -- str ) (poly>str) clean-up ;   10 [ dup faulhaber poly>str "%d: %s\n" printf ] each-integer
http://rosettacode.org/wiki/Fermat_numbers
Fermat numbers
In mathematics, a Fermat number, named after Pierre de Fermat who first studied them, is a positive integer of the form Fn = 22n + 1 where n is a non-negative integer. Despite the simplicity of generating Fermat numbers, they have some powerful mathematical properties and are extensively used in cryptography & pseudo-random number generation, and are often linked to other number theoric fields. As of this writing, (mid 2019), there are only five known prime Fermat numbers, the first five (F0 through F4). Only the first twelve Fermat numbers have been completely factored, though many have been partially factored. Task Write a routine (function, procedure, whatever) to generate Fermat numbers. Use the routine to find and display here, on this page, the first 10 Fermat numbers - F0 through F9. Find and display here, on this page, the prime factors of as many Fermat numbers as you have patience for. (Or as many as can be found in five minutes or less of processing time). Note: if you make it past F11, there may be money, and certainly will be acclaim in it for you. See also Wikipedia - Fermat numbers OEIS:A000215 - Fermat numbers OEIS:A019434 - Fermat primes
#PicoLisp
PicoLisp
(seed (in "/dev/urandom" (rd 8))) (de **Mod (X Y N) (let M 1 (loop (when (bit? 1 Y) (setq M (% (* M X) N)) ) (T (=0 (setq Y (>> 1 Y))) M ) (setq X (% (* X X) N)) ) ) ) (de isprime (N) (cache '(NIL) N (if (== N 2) T (and (> N 1) (bit? 1 N) (let (Q (dec N) N1 (dec N) K 0 X) (until (bit? 1 Q) (setq Q (>> 1 Q) K (inc K) ) ) (catch 'composite (do 16 (loop (setq X (**Mod (rand 2 (min (dec N) 1000000000000)) Q N ) ) (T (or (=1 X) (= X N1))) (T (do K (setq X (**Mod X 2 N)) (when (=1 X) (throw 'composite)) (T (= X N1) T) ) ) (throw 'composite) ) ) (throw 'composite T) ) ) ) ) ) ) (de gcd (A B) (until (=0 B) (let M (% A B) (setq A B B M) ) ) (abs A) ) (de g (A) (% (+ (% (* A A) N) C) N) ) (de pollard-brent (N) (let (A (dec N) Y (rand 1 (min A 1000000000000000000)) C (rand 1 (min A 1000000000000000000)) M (rand 1 (min A 1000000000000000000)) G 1 R 1 Q 1 ) (ifn (bit? 1 N) 2 (loop (NIL (=1 G)) (setq X Y) (do R (setq Y (g Y)) ) (zero K) (loop (NIL (and (> R K) (=1 G))) (setq YS Y) (do (min M (- R K)) (setq Y (g Y) Q (% (* Q (abs (- X Y))) N) ) ) (setq G (gcd Q N) K (+ K M) ) ) (setq R (* R 2)) ) (when (== G N) (loop (NIL (> G 1)) (setq YS (g YS) G (gcd (abs (- X YS)) N) ) ) ) (if (== G N) NIL G ) ) ) ) (de factors (N) (sort (make (loop (setq N (/ N (link (pollard-brent N)))) (T (isprime N)) ) (link N) ) ) ) (de fermat (N) (inc (** 2 (** 2 N))) ) (for (N 0 (>= 8 N) (inc N)) (println N ': (fermat N)) ) (prinl) (for (N 0 (>= 8 N) (inc N)) (let N (fermat N) (println N ': (if (isprime N) 'PRIME (factors N)) ) ) )
http://rosettacode.org/wiki/Fermat_numbers
Fermat numbers
In mathematics, a Fermat number, named after Pierre de Fermat who first studied them, is a positive integer of the form Fn = 22n + 1 where n is a non-negative integer. Despite the simplicity of generating Fermat numbers, they have some powerful mathematical properties and are extensively used in cryptography & pseudo-random number generation, and are often linked to other number theoric fields. As of this writing, (mid 2019), there are only five known prime Fermat numbers, the first five (F0 through F4). Only the first twelve Fermat numbers have been completely factored, though many have been partially factored. Task Write a routine (function, procedure, whatever) to generate Fermat numbers. Use the routine to find and display here, on this page, the first 10 Fermat numbers - F0 through F9. Find and display here, on this page, the prime factors of as many Fermat numbers as you have patience for. (Or as many as can be found in five minutes or less of processing time). Note: if you make it past F11, there may be money, and certainly will be acclaim in it for you. See also Wikipedia - Fermat numbers OEIS:A000215 - Fermat numbers OEIS:A019434 - Fermat primes
#Python
Python
def factors(x): factors = [] i = 2 s = int(x ** 0.5) while i < s: if x % i == 0: factors.append(i) x = int(x / i) s = int(x ** 0.5) i += 1 factors.append(x) return factors   print("First 10 Fermat numbers:") for i in range(10): fermat = 2 ** 2 ** i + 1 print("F{} = {}".format(chr(i + 0x2080) , fermat))   print("\nFactors of first few Fermat numbers:") for i in range(10): fermat = 2 ** 2 ** i + 1 fac = factors(fermat) if len(fac) == 1: print("F{} -> IS PRIME".format(chr(i + 0x2080))) else: print("F{} -> FACTORS: {}".format(chr(i + 0x2080), fac))
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#BASIC256
BASIC256
# Rosetta Code problem: https://www.rosettacode.org/wiki/Fibonacci_n-step_number_sequences # by Jjuanhdez, 06/2022   arraybase 1 print " fibonacci =>"; dim a = {1,1} call fib (a) print " tribonacci =>"; dim a = {1,1,2} call fib (a) print " tetranacci =>"; dim a = {1,1,2,4} call fib (a) print " pentanacci =>"; dim a = {1,1,2,4,8} call fib (a) print " hexanacci =>"; dim a = {1,1,2,4,8,16} call fib (a) print " heptanacci =>"; dim a = {1,1,2,4,8,16,32} call fib (a) print " octonacci =>"; dim a = {1,1,2,4,8,16,32,64} call fib (a) print " nonanacci =>"; dim a = {1,1,2,4,8,16,32,64,128} call fib (a) print " decanacci =>"; dim a = {1,1,2,4,8,16,32,64,128,256} call fib (a) print " lucas =>"; dim a = {2,1} call fib (a) end   subroutine fib (a) dim f(24) fill 0 b = 0 for x = 1 to a[?] b += 1 f[x] = a[x] next x for i = b to 13 + b print rjust(f[i-b+1], 5); if i <> 13 + b then print ","; else print ", ..." for j = (i-b+1) to i f[i+1] = f[i+1] + f[j] next j next i end subroutine
http://rosettacode.org/wiki/Feigenbaum_constant_calculation
Feigenbaum constant calculation
Task Calculate the Feigenbaum constant. See   Details in the Wikipedia article:   Feigenbaum constant.
#Perl
Perl
use strict; use warnings; use Math::AnyNum 'sqr';   my $a1 = 1.0; my $a2 = 0.0; my $d1 = 3.2;   print " i δ\n";   for my $i (2..13) { my $a = $a1 + ($a1 - $a2)/$d1; for (1..10) { my $x = 0; my $y = 0; for (1 .. 2**$i) { $y = 1 - 2 * $y * $x; $x = $a - sqr($x); } $a -= $x/$y; }   $d1 = ($a1 - $a2) / ($a - $a1); ($a2, $a1) = ($a1, $a); printf "%2d %17.14f\n", $i, $d1; }
http://rosettacode.org/wiki/Feigenbaum_constant_calculation
Feigenbaum constant calculation
Task Calculate the Feigenbaum constant. See   Details in the Wikipedia article:   Feigenbaum constant.
#Phix
Phix
constant maxIt = 13, maxItJ = 10 atom a1 = 1.0, a2 = 0.0, d1 = 3.2 puts(1," i d\n") for i=2 to maxIt do atom a = a1 + (a1 - a2) / d1 for j=1 to maxItJ do atom x = 0, y = 0 for k=1 to power(2,i) do y = 1 - 2*y*x x = a - x*x end for a = a - x/y end for atom d = (a1-a2)/(a-a1) printf(1,"%2d %.8f\n",{i,d}) d1 = d a2 = a1 a1 = a end for
http://rosettacode.org/wiki/File_extension_is_in_extensions_list
File extension is in extensions list
File extension is in extensions list You are encouraged to solve this task according to the task description, using any language you may know. Filename extensions are a rudimentary but commonly used way of identifying files types. Task Given an arbitrary filename and a list of extensions, tell whether the filename has one of those extensions. Notes: The check should be case insensitive. The extension must occur at the very end of the filename, and be immediately preceded by a dot (.). You may assume that none of the given extensions are the empty string, and none of them contain a dot. Other than that they may be arbitrary strings. Extra credit: Allow extensions to contain dots. This way, users of your function/program have full control over what they consider as the extension in cases like: archive.tar.gz Please state clearly whether or not your solution does this. Test cases The following test cases all assume this list of extensions:   zip, rar, 7z, gz, archive, A## Filename Result MyData.a## true MyData.tar.Gz true MyData.gzip false MyData.7z.backup false MyData... false MyData false If your solution does the extra credit requirement, add tar.bz2 to the list of extensions, and check the following additional test cases: Filename Result MyData_v1.0.tar.bz2 true MyData_v1.0.bz2 false Motivation Checking if a file is in a certain category of file formats with known extensions (e.g. archive files, or image files) is a common problem in practice, and may be approached differently from extracting and outputting an arbitrary extension (see e.g. FileNameExtensionFilter in Java). It also requires less assumptions about the format of an extension, because the calling code can decide what extensions are valid. For these reasons, this task exists in addition to the Extract file extension task. Related tasks Extract file extension String matching
#Ring
Ring
  # Project : File extension is in extensions list   extensions = [".zip", ".rar", ".7z", ".gz", ".archive", ".a##", ".tar.bz2"]   filenames = ["MyData.a##", "MyData.tar.gz", "MyData.gzip", "MyData.7z.backup", "MyData...", "MyData", "MyData_v1.0.tar.bz2", "MyData_v1.0.bz2"]   for n = 1 to len(filenames) flag = 0 for m = 1 to len(extensions) if right(filenames[n], len(extensions[m])) = extensions[m] flag = 1 see filenames[n] + " -> " + extensions[m] + " -> " + " true" + nl exit ok next if flag = 0 see filenames[n] + " -> " + "false" + nl ok next  
http://rosettacode.org/wiki/File_extension_is_in_extensions_list
File extension is in extensions list
File extension is in extensions list You are encouraged to solve this task according to the task description, using any language you may know. Filename extensions are a rudimentary but commonly used way of identifying files types. Task Given an arbitrary filename and a list of extensions, tell whether the filename has one of those extensions. Notes: The check should be case insensitive. The extension must occur at the very end of the filename, and be immediately preceded by a dot (.). You may assume that none of the given extensions are the empty string, and none of them contain a dot. Other than that they may be arbitrary strings. Extra credit: Allow extensions to contain dots. This way, users of your function/program have full control over what they consider as the extension in cases like: archive.tar.gz Please state clearly whether or not your solution does this. Test cases The following test cases all assume this list of extensions:   zip, rar, 7z, gz, archive, A## Filename Result MyData.a## true MyData.tar.Gz true MyData.gzip false MyData.7z.backup false MyData... false MyData false If your solution does the extra credit requirement, add tar.bz2 to the list of extensions, and check the following additional test cases: Filename Result MyData_v1.0.tar.bz2 true MyData_v1.0.bz2 false Motivation Checking if a file is in a certain category of file formats with known extensions (e.g. archive files, or image files) is a common problem in practice, and may be approached differently from extracting and outputting an arbitrary extension (see e.g. FileNameExtensionFilter in Java). It also requires less assumptions about the format of an extension, because the calling code can decide what extensions are valid. For these reasons, this task exists in addition to the Extract file extension task. Related tasks Extract file extension String matching
#Ruby
Ruby
def is_ext(filename, extensions) if filename.respond_to?(:each) filename.each do |fn| is_ext(fn, extensions) end else fndc = filename.downcase extensions.each do |ext| bool = fndc.end_with?(?. + ext.downcase) puts "%20s : %s" % [filename, bool] if bool end end end  
http://rosettacode.org/wiki/File_modification_time
File modification time
Task Get and set the modification time of a file.
#PowerShell
PowerShell
  $modificationTime = (Get-ChildItem file.txt).LastWriteTime Set-ItemProperty file.txt LastWriteTime (Get-Date)   $LastReadTime = (Get-ChildItem file.txt).LastAccessTime Set-ItemProperty file.txt LastAccessTime(Get-Date)   $CreationTime = (Get-ChildItem file.txt).CreationTime Set-ItemProperty file.txt CreationTime(Get-Date)  
http://rosettacode.org/wiki/File_modification_time
File modification time
Task Get and set the modification time of a file.
#PureBasic
PureBasic
Debug FormatDate("%yyyy/%mm/%dd", GetFileDate("file.txt",#PB_Date_Modified)) SetFileDate("file.txt",#PB_Date_Modified,Date(1987, 10, 23, 06, 43, 15)) Debug FormatDate("%yyyy/%mm/%dd - %hh:%ii:%ss", GetFileDate("file.txt",#PB_Date_Modified))
http://rosettacode.org/wiki/File_modification_time
File modification time
Task Get and set the modification time of a file.
#Python
Python
import os   #Get modification time: modtime = os.path.getmtime('filename')   #Set the access and modification times: os.utime('path', (actime, mtime))   #Set just the modification time: os.utime('path', (os.path.getatime('path'), mtime))   #Set the access and modification times to the current time: os.utime('path', None)
http://rosettacode.org/wiki/Fibonacci_word/fractal
Fibonacci word/fractal
The Fibonacci word may be represented as a fractal as described here: (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.) For F_wordm start with F_wordCharn=1 Draw a segment forward If current F_wordChar is 0 Turn left if n is even Turn right if n is odd next n and iterate until end of F_word Task Create and display a fractal similar to Fig 1. (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.)
#R
R
  ## Fibonacci word/fractal 2/20/17 aev ## Create Fibonacci word order n fibow <- function(n) { t2="0"; t1="01"; t=""; if(n<2) {n=2} for (i in 2:n) {t=paste0(t1,t2); t2=t1; t1=t} return(t) } ## Plot Fibonacci word/fractal: ## n - word order, w - width, h - height, d - segment size, clr - color. pfibofractal <- function(n, w, h, d, clr) { dx=d; x=y=x2=y2=tx=dy=nr=0; if(n<2) {n=2} fw=fibow(n); nf=nchar(fw); pf = paste0("FiboFractR", n, ".png"); ttl=paste0("Fibonacci word/fractal, n=",n); cat(ttl,"nf=", nf, "pf=", pf,"\n"); plot(NA, xlim=c(0,w), ylim=c(-h,0), xlab="", ylab="", main=ttl) for (i in 1:nf) { fwi=substr(fw, i, i); x2=x+dx; y2=y+dy; segments(x, y, x2, y2, col=clr); x=x2; y=y2; if(fwi=="0") {tx=dx; nr=i%%2; if(nr==0) {dx=-dy;dy=tx} else {dx=dy;dy=-tx}} } dev.copy(png, filename=pf, width=w, height=h); # plot to png-file dev.off(); graphics.off(); # Cleaning }   ## Executing: pfibofractal(23, 1000, 1000, 1, "navy") pfibofractal(25, 2300, 1000, 1, "red")  
http://rosettacode.org/wiki/Fibonacci_word/fractal
Fibonacci word/fractal
The Fibonacci word may be represented as a fractal as described here: (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.) For F_wordm start with F_wordCharn=1 Draw a segment forward If current F_wordChar is 0 Turn left if n is even Turn right if n is odd next n and iterate until end of F_word Task Create and display a fractal similar to Fig 1. (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.)
#Racket
Racket
#lang racket (require "Fibonacci-word.rkt") (require graphics/value-turtles)   (define word-order 23) ; is a 3k+2 fractal, shaped like an n (define height 420) (define width 600)   (define the-word (parameterize ((f-word-max-length #f)) (F-Word word-order)))   (for/fold ((T (turtles width height 0 height ; in BL corner (/ pi -2)))) ; point north ((i (in-naturals)) (j (in-string (f-word-str the-word)))) (match* (i j) ((_ #\1) (draw 1 T)) (((? even?) #\0) (turn -90 (draw 1 T))) ((_ #\0) (turn 90 (draw 1 T)))))
http://rosettacode.org/wiki/Find_common_directory_path
Find common directory path
Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories. Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths: '/home/user1/tmp/coverage/test' '/home/user1/tmp/covert/operator' '/home/user1/tmp/coven/members' Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'. If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#MUMPS
MUMPS
FCD NEW D,SEP,EQ,LONG,DONE,I,J,K,RETURN SET D(1)="/home/user1/tmp/coverage/test" SET D(2)="/home/user1/tmp/covert/operator" SET D(3)="/home/user1/tmp/coven/members" SET SEP="/" SET LONG=D(1) SET DONE=0 FOR I=1:1:$LENGTH(LONG,SEP) QUIT:DONE SET EQ(I)=1 FOR J=2:1:3 SET EQ(I)=($PIECE(D(J),SEP,I)=$PIECE(LONG,SEP,I))&EQ(I) SET DONE='EQ(I) QUIT:'EQ(I) SET RETURN="" FOR K=1:1:I-1 Q:'EQ(K) SET:EQ(K) $PIECE(RETURN,SEP,K)=$PIECE(LONG,SEP,K) WRITE !,"For the paths:" FOR I=1:1:3 WRITE !,D(I) WRITE !,"The longest common directory is: ",RETURN KILL D,SEP,EQ,LONG,DONE,I,J,K,RETURN QUIT
http://rosettacode.org/wiki/Find_common_directory_path
Find common directory path
Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories. Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths: '/home/user1/tmp/coverage/test' '/home/user1/tmp/covert/operator' '/home/user1/tmp/coven/members' Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'. If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Nim
Nim
import strutils   proc commonprefix(paths: openarray[string], sep = "/"): string = if paths.len == 0: return "" block outer: for i in 0 ..< paths[0].len: result = paths[0][0 .. i] for path in paths: if not path.startsWith(result): break outer result = result[0 .. result.rfind(sep)]   echo commonprefix(@["/home/user1/tmp/coverage/test", "/home/user1/tmp/covert/operator", "/home/user1/tmp/coven/members"])
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#CoffeeScript
CoffeeScript
[1..10].filter (x) -> not (x%2)
http://rosettacode.org/wiki/Find_limit_of_recursion
Find limit of recursion
Find limit of recursion is part of Short Circuit's Console Program Basics selection. Task Find the limit of recursion.
#Phix
Phix
atom t1 = time()+1 integer depth = 0 procedure recurse() if time()>t1 then ?depth t1 = time()+1 end if depth += 1 -- only 1 of these will ever get called, of course... recurse() recurse() recurse() end procedure recurse()
http://rosettacode.org/wiki/Find_limit_of_recursion
Find limit of recursion
Find limit of recursion is part of Short Circuit's Console Program Basics selection. Task Find the limit of recursion.
#PHP
PHP
<?php function a() { static $i = 0; print ++$i . "\n"; a(); } a();
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Gleam
Gleam
import gleam/int import gleam/io import gleam/iterator   pub fn main() { iterator.range(1, 101) |> iterator.map(to_fizzbuzz) |> iterator.map(io.println) |> iterator.run }   fn to_fizzbuzz(n: Int) -> String { case n % 3, n % 5 { 0, 0 -> "FizzBuzz" 0, _ -> "Fizz" _, 0 -> "Buzz" _, _ -> int.to_string(n) } }
http://rosettacode.org/wiki/File_size
File size
Verify the size of a file called     input.txt     for a file in the current working directory, and another one in the file system root.
#MATLAB_.2F_Octave
MATLAB / Octave
d1 = dir('input.txt'); d2 = dir('/input.txt'); fprintf('Size of input.txt is %d bytes\n', d1.bytes) fprintf('Size of /input.txt is %d bytes\n', d2.bytes)
http://rosettacode.org/wiki/File_size
File size
Verify the size of a file called     input.txt     for a file in the current working directory, and another one in the file system root.
#MAXScript
MAXScript
-- Returns filesize in bytes or 0 if the file is missing getFileSize "index.txt" getFileSize "\index.txt"
http://rosettacode.org/wiki/File_size
File size
Verify the size of a file called     input.txt     for a file in the current working directory, and another one in the file system root.
#Mirah
Mirah
import java.io.File   puts File.new('file-size.mirah').length() puts File.new("./#{File.separator}file-size.mirah").length()
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Euphoria
Euphoria
include std/io.e write_lines("output.txt", read_lines("input.txt"))
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#F.23
F#
open System.IO   let copyFile fromTextFileName toTextFileName = let inputContent = File.ReadAllText fromTextFileName inputContent |> fun text -> File.WriteAllText(toTextFileName, text)   [<EntryPoint>] let main argv = copyFile "input.txt" "output.txt" 0  
http://rosettacode.org/wiki/Fibonacci_word
Fibonacci word
The   Fibonacci Word   may be created in a manner analogous to the   Fibonacci Sequence   as described here: Define   F_Word1   as   1 Define   F_Word2   as   0 Form     F_Word3   as   F_Word2     concatenated with   F_Word1   i.e.:   01 Form     F_Wordn   as   F_Wordn-1   concatenated with   F_wordn-2 Task Perform the above steps for     n = 37. You may display the first few but not the larger values of   n. {Doing so will get the task's author into trouble with them what be (again!).} Instead, create a table for   F_Words   1   to   37   which shows:   The number of characters in the word   The word's Entropy Related tasks   Fibonacci word/fractal   Entropy   Entropy/Narcissist
#F.C5.8Drmul.C3.A6
Fōrmulæ
package main   import ( "fmt" "math" )   // From http://rosettacode.org/wiki/Entropy#Go func entropy(s string) float64 { m := map[rune]float64{} for _, r := range s { m[r]++ } hm := 0. for _, c := range m { hm += c * math.Log2(c) } l := float64(len(s)) return math.Log2(l) - hm/l }   const F_Word1 = "1" const F_Word2 = "0"   func FibonacciWord(n int) string { a, b := F_Word1, F_Word2 for ; n > 1; n-- { a, b = b, b+a } return a }   func FibonacciWordGen() <-chan string { ch := make(chan string) go func() { a, b := F_Word1, F_Word2 for { ch <- a a, b = b, b+a } }() return ch }   func main() { fibWords := FibonacciWordGen() fmt.Printf("%3s %9s  %-18s  %s\n", "N", "Length", "Entropy", "Word") n := 1 for ; n < 10; n++ { s := <-fibWords // Just to show the function and generator do the same thing: if s2 := FibonacciWord(n); s != s2 { fmt.Printf("For %d, generator produced %q, function produced %q\n", n, s, s2) } fmt.Printf("%3d %9d  %.16f  %s\n", n, len(s), entropy(s), s) } for ; n <= 37; n++ { s := <-fibWords fmt.Printf("%3d %9d  %.16f\n", n, len(s), entropy(s)) } }
http://rosettacode.org/wiki/FASTA_format
FASTA format
In bioinformatics, long character strings are often encoded in a format called FASTA. A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line. Task Write a program that reads a FASTA file such as: >Rosetta_Example_1 THERECANBENOSPACE >Rosetta_Example_2 THERECANBESEVERAL LINESBUTTHEYALLMUST BECONCATENATED Output: Rosetta_Example_1: THERECANBENOSPACE Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
#Factor
Factor
USING: formatting io kernel sequences ; IN: rosetta-code.fasta   : process-fasta-line ( str -- ) dup ">" head? [ rest "\n%s: " printf ] [ write ] if ;   : main ( -- ) readln rest "%s: " printf [ process-fasta-line ] each-line ;   MAIN: main
http://rosettacode.org/wiki/FASTA_format
FASTA format
In bioinformatics, long character strings are often encoded in a format called FASTA. A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line. Task Write a program that reads a FASTA file such as: >Rosetta_Example_1 THERECANBENOSPACE >Rosetta_Example_2 THERECANBESEVERAL LINESBUTTHEYALLMUST BECONCATENATED Output: Rosetta_Example_1: THERECANBENOSPACE Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
#Forth
Forth
1024 constant max-Line char > constant marker   : read-lines begin pad max-line >r over r> swap read-line throw while pad dup c@ marker = if cr 1+ swap type ."  : " else swap type then repeat drop  ;   : Test s" ./FASTA.txt" r/o open-file throw read-lines close-file throw cr ; Test  
http://rosettacode.org/wiki/FASTA_format
FASTA format
In bioinformatics, long character strings are often encoded in a format called FASTA. A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line. Task Write a program that reads a FASTA file such as: >Rosetta_Example_1 THERECANBENOSPACE >Rosetta_Example_2 THERECANBESEVERAL LINESBUTTHEYALLMUST BECONCATENATED Output: Rosetta_Example_1: THERECANBENOSPACE Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64   Function checkNoSpaces(s As String) As Boolean For i As UInteger = 0 To Len(s) - 1 If s[i] = 32 OrElse s[i] = 9 Then Return False '' check for spaces or tabs Next Return True End Function   Open "input.fasta" For Input As # 1   Dim As String ln, seq Dim first As Boolean = True   While Not Eof(1) Line Input #1, ln If Left(ln, 1) = ">" Then If Not first Then Print Print Mid(ln, 2); ": "; If first Then first = False ElseIf first Then Print: Print "Error : File does not begin with '>'"; Exit While Else If checkNoSpaces(ln) Then Print ln; Else Print : Print "Error : Sequence contains space(s)"; Exit While End If End If Wend   Close #1   Print : Print Print "Press any key to quit" Sleep
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#11l
11l
F fft(x) V n = x.len I n <= 1 R x V even = fft(x[(0..).step(2)]) V odd = fft(x[(1..).step(2)]) V t = (0 .< n I/ 2).map(k -> exp(-2i * math:pi * k / @n) * @odd[k]) R (0 .< n I/ 2).map(k -> @even[k] + @t[k]) [+] (0 .< n I/ 2).map(k -> @even[k] - @t[k])   print(fft([Complex(1.0), 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]).map(f -> ‘#1.3’.format(abs(f))).join(‘ ’))
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#APL
APL
  farey←{{⍵[⍋⍵]}∪∊{(0,⍳⍵)÷⍵}¨⍳⍵} fract←{1∧(0(⍵=0)+⊂⍵)*1 ¯1} print←{{(⍕⍺),'/',(⍕⍵),' '}⌿↑fract farey ⍵}  
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#AWK
AWK
  # syntax: GAWK -f FAREY_SEQUENCE.AWK BEGIN { for (i=1; i<=11; i++) { farey(i); printf("\n") } for (i=100; i<=1000; i+=100) { printf(" %d items\n",farey(i)) } exit(0) } function farey(n, a,aa,b,bb,c,cc,d,dd,items,k) { a = 0; b = 1; c = 1; d = n printf("%d:",n) if (n <= 11) { printf(" %d/%d",a,b) } while (c <= n) { k = int((n+b)/d) aa = c; bb = d; cc = k*c-a; dd = k*d-b a = aa; b = bb; c = cc; d = dd items++ if (n <= 11) { printf(" %d/%d",a,b) } } return(1+items) }  
http://rosettacode.org/wiki/Fairshare_between_two_and_more
Fairshare between two and more
The Thue-Morse sequence is a sequence of ones and zeros that if two people take turns in the given order, the first persons turn for every '0' in the sequence, the second for every '1'; then this is shown to give a fairer, more equitable sharing of resources. (Football penalty shoot-outs for example, might not favour the team that goes first as much if the penalty takers take turns according to the Thue-Morse sequence and took 2^n penalties) The Thue-Morse sequence of ones-and-zeroes can be generated by: "When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence" Sharing fairly between two or more Use this method: When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people. Task Counting from zero;   using a function/method/routine to express an integer count in base b, sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people. Show the first 25 terms of the fairshare sequence:   For two people:   For three people   For five people   For eleven people Related tasks   Non-decimal radices/Convert   Thue-Morse See also   A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
#Arturo
Arturo
thueMorse: function [base, howmany][ i: 0 result: new [] while [howmany > size result][ 'result ++ (sum digits.base:base i) % base i: i + 1 ]   return result ]   loop [2 3 5 11] 'b -> print [ (pad.right "Base "++(to :string b) 7)++" =>" join.with:" " map to [:string] thueMorse b 25 'x -> pad x 2 ]
http://rosettacode.org/wiki/Fairshare_between_two_and_more
Fairshare between two and more
The Thue-Morse sequence is a sequence of ones and zeros that if two people take turns in the given order, the first persons turn for every '0' in the sequence, the second for every '1'; then this is shown to give a fairer, more equitable sharing of resources. (Football penalty shoot-outs for example, might not favour the team that goes first as much if the penalty takers take turns according to the Thue-Morse sequence and took 2^n penalties) The Thue-Morse sequence of ones-and-zeroes can be generated by: "When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence" Sharing fairly between two or more Use this method: When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people. Task Counting from zero;   using a function/method/routine to express an integer count in base b, sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people. Show the first 25 terms of the fairshare sequence:   For two people:   For three people   For five people   For eleven people Related tasks   Non-decimal radices/Convert   Thue-Morse See also   A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
#C
C
#include <stdio.h> #include <stdlib.h>   int turn(int base, int n) { int sum = 0; while (n != 0) { int rem = n % base; n = n / base; sum += rem; } return sum % base; }   void fairshare(int base, int count) { int i;   printf("Base %2d:", base); for (i = 0; i < count; i++) { int t = turn(base, i); printf(" %2d", t); } printf("\n"); }   void turnCount(int base, int count) { int *cnt = calloc(base, sizeof(int)); int i, minTurn, maxTurn, portion;   if (NULL == cnt) { printf("Failed to allocate space to determine the spread of turns.\n"); return; }   for (i = 0; i < count; i++) { int t = turn(base, i); cnt[t]++; }   minTurn = INT_MAX; maxTurn = INT_MIN; portion = 0; for (i = 0; i < base; i++) { if (cnt[i] > 0) { portion++; } if (cnt[i] < minTurn) { minTurn = cnt[i]; } if (cnt[i] > maxTurn) { maxTurn = cnt[i]; } }   printf(" With %d people: ", base); if (0 == minTurn) { printf("Only %d have a turn\n", portion); } else if (minTurn == maxTurn) { printf("%d\n", minTurn); } else { printf("%d or %d\n", minTurn, maxTurn); }   free(cnt); }   int main() { fairshare(2, 25); fairshare(3, 25); fairshare(5, 25); fairshare(11, 25);   printf("How many times does each get a turn in 50000 iterations?\n"); turnCount(191, 50000); turnCount(1377, 50000); turnCount(49999, 50000); turnCount(50000, 50000); turnCount(50001, 50000);   return 0; }
http://rosettacode.org/wiki/Faulhaber%27s_triangle
Faulhaber's triangle
Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula: ∑ k = 1 n k p = 1 p + 1 ∑ j = 0 p ( p + 1 j ) B j n p + 1 − j {\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}} where B n {\displaystyle B_{n}} is the nth-Bernoulli number. The first 5 rows of Faulhaber's triangle, are: 1 1/2 1/2 1/6 1/2 1/3 0 1/4 1/2 1/4 -1/30 0 1/3 1/2 1/5 Using the third row of the triangle, we have: ∑ k = 1 n k 2 = 1 6 n + 1 2 n 2 + 1 3 n 3 {\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}} Task show the first 10 rows of Faulhaber's triangle. using the 18th row of Faulhaber's triangle, compute the sum: ∑ k = 1 1000 k 17 {\displaystyle \sum _{k=1}^{1000}k^{17}} (extra credit). See also Bernoulli numbers Evaluate binomial coefficients Faulhaber's formula (Wikipedia) Faulhaber's triangle (PDF)
#F.23
F#
  // Generate Faulhaber's Triangle. Nigel Galloway: May 8th., 2018 let Faulhaber=let fN n = (1N - List.sum n)::n let rec Faul a b=seq{let t = fN (List.mapi(fun n g->b*g/BigRational.FromInt(n+2)) a) yield t yield! Faul t (b+1N)} Faul [] 0N  
http://rosettacode.org/wiki/Faulhaber%27s_formula
Faulhaber's formula
In mathematics,   Faulhaber's formula,   named after Johann Faulhaber,   expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n,   the coefficients involving Bernoulli numbers. Task Generate the first 10 closed-form expressions, starting with p = 0. Related tasks   Bernoulli numbers.   evaluate binomial coefficients. See also   The Wikipedia entry:   Faulhaber's formula.   The Wikipedia entry:   Bernoulli numbers.   The Wikipedia entry:   binomial coefficients.
#F.C5.8Drmul.C3.A6
Fōrmulæ
n := X(Rationals, "n"); sum1 := p -> Sum([0 .. p], k -> Stirling2(p, k) * Product([0 .. k], j -> n + 1 - j) / (k + 1)) + 2 * Bernoulli(2 * p + 1); sum2 := p -> Sum([0 .. p], j -> (-1)^j * Binomial(p + 1, j) * Bernoulli(j) * n^(p + 1 - j)) / (p + 1); ForAll([0 .. 20], k -> sum1(k) = sum2(k));   for p in [0 .. 9] do Print(sum1(p), "\n"); od;   n 1/2*n^2+1/2*n 1/3*n^3+1/2*n^2+1/6*n 1/4*n^4+1/2*n^3+1/4*n^2 1/5*n^5+1/2*n^4+1/3*n^3-1/30*n 1/6*n^6+1/2*n^5+5/12*n^4-1/12*n^2 1/7*n^7+1/2*n^6+1/2*n^5-1/6*n^3+1/42*n 1/8*n^8+1/2*n^7+7/12*n^6-7/24*n^4+1/12*n^2 1/9*n^9+1/2*n^8+2/3*n^7-7/15*n^5+2/9*n^3-1/30*n 1/10*n^10+1/2*n^9+3/4*n^8-7/10*n^6+1/2*n^4-3/20*n^2
http://rosettacode.org/wiki/Fermat_numbers
Fermat numbers
In mathematics, a Fermat number, named after Pierre de Fermat who first studied them, is a positive integer of the form Fn = 22n + 1 where n is a non-negative integer. Despite the simplicity of generating Fermat numbers, they have some powerful mathematical properties and are extensively used in cryptography & pseudo-random number generation, and are often linked to other number theoric fields. As of this writing, (mid 2019), there are only five known prime Fermat numbers, the first five (F0 through F4). Only the first twelve Fermat numbers have been completely factored, though many have been partially factored. Task Write a routine (function, procedure, whatever) to generate Fermat numbers. Use the routine to find and display here, on this page, the first 10 Fermat numbers - F0 through F9. Find and display here, on this page, the prime factors of as many Fermat numbers as you have patience for. (Or as many as can be found in five minutes or less of processing time). Note: if you make it past F11, there may be money, and certainly will be acclaim in it for you. See also Wikipedia - Fermat numbers OEIS:A000215 - Fermat numbers OEIS:A019434 - Fermat primes
#Raku
Raku
use ntheory:from<Perl5> <factor>;   my @Fermats = (^Inf).map: 2 ** 2 ** * + 1;   my $sub = '₀'; say "First 10 Fermat numbers:"; printf "F%s = %s\n", $sub++, $_ for @Fermats[^10];   $sub = '₀'; say "\nFactors of first few Fermat numbers:"; for @Fermats[^9].map( {"$_".&factor} ) -> $f { printf "Factors of F%s: %s %s\n", $sub++, $f.join(' '), $f.elems == 1 ?? '- prime' !! '' }
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Batch_File
Batch File
  @echo off   echo Fibonacci Sequence: call:nfib 1 1 echo.   echo Tribonacci Sequence: call:nfib 1 1 2 echo.   echo Tetranacci Sequence: call:nfib 1 1 2 4 echo.   echo Lucas Numbers: call:nfib 2 1 echo.   pause>nul exit /b   :nfib setlocal enabledelayedexpansion   for %%i in (%*) do ( set /a count+=1 set seq=!seq! %%i ) set "seq=%seq% ^| " set n=-%count% set /a n+=1 for %%i in (%*) do ( set F!n!=%%i set /a n+=1 )   for /l %%i in (1,1,10) do ( set /a termstart=%%i-%count%% set /a termend=%%i-1 for /l %%j in (!termstart!,1,!termend!) do ( set /a F%%i+=!F%%j! ) set seq=!seq! !F%%i! ) echo %seq%   endlocal exit /b  
http://rosettacode.org/wiki/Feigenbaum_constant_calculation
Feigenbaum constant calculation
Task Calculate the Feigenbaum constant. See   Details in the Wikipedia article:   Feigenbaum constant.
#Python
Python
max_it = 13 max_it_j = 10 a1 = 1.0 a2 = 0.0 d1 = 3.2 a = 0.0   print " i d" for i in range(2, max_it + 1): a = a1 + (a1 - a2) / d1 for j in range(1, max_it_j + 1): x = 0.0 y = 0.0 for k in range(1, (1 << i) + 1): y = 1.0 - 2.0 * y * x x = a - x * x a = a - x / y d = (a1 - a2) / (a - a1) print("{0:2d} {1:.8f}".format(i, d)) d1 = d a2 = a1 a1 = a
http://rosettacode.org/wiki/Feigenbaum_constant_calculation
Feigenbaum constant calculation
Task Calculate the Feigenbaum constant. See   Details in the Wikipedia article:   Feigenbaum constant.
#Racket
Racket
#lang racket (define (feigenbaum #:max-it (max-it 13) #:max-it-j (max-it-j 10)) (displayln " i d" (current-error-port)) (define-values (_a _a1 d) (for/fold ((a 1) (a1 0) (d 3.2)) ((i (in-range 2 (add1 max-it)))) (let* ((a′ (for/fold ((a (+ a (/ (- a a1) d)))) ((j (in-range max-it-j))) (let-values (([x y] (for/fold ((x 0) (y 0)) ((k (expt 2 i))) (values (- a (* x x)) (- 1 (* 2 y x)))))) (- a (/ x y))))) (d′ (/ (- a a1) (- a′ a)))) (eprintf "~a ~a\n" (~a i #:width 2) (real->decimal-string d′ 8)) (values a′ a d′)))) d)   (module+ main (feigenbaum))
http://rosettacode.org/wiki/Feigenbaum_constant_calculation
Feigenbaum constant calculation
Task Calculate the Feigenbaum constant. See   Details in the Wikipedia article:   Feigenbaum constant.
#Raku
Raku
my $a1 = 1; my $a2 = 0; my $d = 3.2;   say ' i d';   for 2 .. 13 -> $exp { my $a = $a1 + ($a1 - $a2) / $d; do { my $x = 0; my $y = 0; for ^2 ** $exp { $y = 1 - 2 * $y * $x; $x = $a - $x²; } $a -= $x / $y; } xx 10; $d = ($a1 - $a2) / ($a - $a1); ($a2, $a1) = ($a1, $a); printf "%2d %.8f\n", $exp, $d; }
http://rosettacode.org/wiki/File_extension_is_in_extensions_list
File extension is in extensions list
File extension is in extensions list You are encouraged to solve this task according to the task description, using any language you may know. Filename extensions are a rudimentary but commonly used way of identifying files types. Task Given an arbitrary filename and a list of extensions, tell whether the filename has one of those extensions. Notes: The check should be case insensitive. The extension must occur at the very end of the filename, and be immediately preceded by a dot (.). You may assume that none of the given extensions are the empty string, and none of them contain a dot. Other than that they may be arbitrary strings. Extra credit: Allow extensions to contain dots. This way, users of your function/program have full control over what they consider as the extension in cases like: archive.tar.gz Please state clearly whether or not your solution does this. Test cases The following test cases all assume this list of extensions:   zip, rar, 7z, gz, archive, A## Filename Result MyData.a## true MyData.tar.Gz true MyData.gzip false MyData.7z.backup false MyData... false MyData false If your solution does the extra credit requirement, add tar.bz2 to the list of extensions, and check the following additional test cases: Filename Result MyData_v1.0.tar.bz2 true MyData_v1.0.bz2 false Motivation Checking if a file is in a certain category of file formats with known extensions (e.g. archive files, or image files) is a common problem in practice, and may be approached differently from extracting and outputting an arbitrary extension (see e.g. FileNameExtensionFilter in Java). It also requires less assumptions about the format of an extension, because the calling code can decide what extensions are valid. For these reasons, this task exists in addition to the Extract file extension task. Related tasks Extract file extension String matching
#Rust
Rust
fn main() { let exts = ["zip", "rar", "7z", "gz", "archive", "A##", "tar.bz2"]; let filenames = [ "MyData.a##", "MyData.tar.Gz", "MyData.gzip", "MyData.7z.backup", "MyData...", "MyData", "MyData_v1.0.tar.bz2", "MyData_v1.0.bz2", ];   println!("extenstions: {:?}\n", exts);   for filename in filenames.iter() { let check = exts.iter().any(|ext| { filename .to_lowercase() .ends_with(&format!(".{}", ext.to_lowercase())) }); println!("{:20} {}", filename, check); } }  
http://rosettacode.org/wiki/File_extension_is_in_extensions_list
File extension is in extensions list
File extension is in extensions list You are encouraged to solve this task according to the task description, using any language you may know. Filename extensions are a rudimentary but commonly used way of identifying files types. Task Given an arbitrary filename and a list of extensions, tell whether the filename has one of those extensions. Notes: The check should be case insensitive. The extension must occur at the very end of the filename, and be immediately preceded by a dot (.). You may assume that none of the given extensions are the empty string, and none of them contain a dot. Other than that they may be arbitrary strings. Extra credit: Allow extensions to contain dots. This way, users of your function/program have full control over what they consider as the extension in cases like: archive.tar.gz Please state clearly whether or not your solution does this. Test cases The following test cases all assume this list of extensions:   zip, rar, 7z, gz, archive, A## Filename Result MyData.a## true MyData.tar.Gz true MyData.gzip false MyData.7z.backup false MyData... false MyData false If your solution does the extra credit requirement, add tar.bz2 to the list of extensions, and check the following additional test cases: Filename Result MyData_v1.0.tar.bz2 true MyData_v1.0.bz2 false Motivation Checking if a file is in a certain category of file formats with known extensions (e.g. archive files, or image files) is a common problem in practice, and may be approached differently from extracting and outputting an arbitrary extension (see e.g. FileNameExtensionFilter in Java). It also requires less assumptions about the format of an extension, because the calling code can decide what extensions are valid. For these reasons, this task exists in addition to the Extract file extension task. Related tasks Extract file extension String matching
#Scala
Scala
def isExt(fileName: String, extensions: List[String]): Boolean = { extensions.map { _.toLowerCase }.exists { fileName.toLowerCase endsWith "." + _ } }  
http://rosettacode.org/wiki/File_modification_time
File modification time
Task Get and set the modification time of a file.
#R
R
# Get the value file.info(filename)$mtime   #To set the value, we need to rely on shell commands. The following works under windows. shell("copy /b /v filename +,,>nul") # and on Unix (untested) shell("touch -m filename")
http://rosettacode.org/wiki/File_modification_time
File modification time
Task Get and set the modification time of a file.
#Racket
Racket
  #lang racket (file-or-directory-modify-seconds "foo.rkt")  
http://rosettacode.org/wiki/File_modification_time
File modification time
Task Get and set the modification time of a file.
#Raku
Raku
use NativeCall;   class utimbuf is repr('CStruct') { has int $.actime; has int $.modtime;   submethod BUILD(:$atime, :$mtime) { $!actime = $atime; $!modtime = $mtime.to-posix[0].round; } }   sub sysutime(Str, utimbuf --> int32) is native is symbol('utime') {*}   sub MAIN (Str $file) { my $mtime = $file.IO.modified orelse .die;   my $ubuff = utimbuf.new(:atime(time),:mtime($mtime));   sysutime($file, $ubuff); }
http://rosettacode.org/wiki/Fibonacci_word/fractal
Fibonacci word/fractal
The Fibonacci word may be represented as a fractal as described here: (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.) For F_wordm start with F_wordCharn=1 Draw a segment forward If current F_wordChar is 0 Turn left if n is even Turn right if n is odd next n and iterate until end of F_word Task Create and display a fractal similar to Fig 1. (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.)
#Raku
Raku
constant @fib-word = '1', '0', { $^b ~ $^a } ... *;   sub MAIN($m = 17, $scale = 3) { (my %world){0}{0} = 1; my $loc = 0+0i; my $dir = i; my $n = 1;   for @fib-word[$m].comb { when '0' { step; if $n %% 2 { turn-left } else { turn-right; } } $n++; }   braille-graphics %world;   sub step { for ^$scale { $loc += $dir; %world{$loc.im}{$loc.re} = 1; } }   sub turn-left { $dir *= i; } sub turn-right { $dir *= -i; }   }   sub braille-graphics (%a) { my ($ylo, $yhi, $xlo, $xhi); for %a.keys -> $y { $ylo min= +$y; $yhi max= +$y; for %a{$y}.keys -> $x { $xlo min= +$x; $xhi max= +$x; } }   for $ylo, $ylo + 4 ...^ * > $yhi -> \y { for $xlo, $xlo + 2 ...^ * > $xhi -> \x { my $cell = 0x2800; $cell += 1 if %a{y + 0}{x + 0}; $cell += 2 if %a{y + 1}{x + 0}; $cell += 4 if %a{y + 2}{x + 0}; $cell += 8 if %a{y + 0}{x + 1}; $cell += 16 if %a{y + 1}{x + 1}; $cell += 32 if %a{y + 2}{x + 1}; $cell += 64 if %a{y + 3}{x + 0}; $cell += 128 if %a{y + 3}{x + 1}; print chr($cell); } print "\n"; } }
http://rosettacode.org/wiki/Find_common_directory_path
Find common directory path
Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories. Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths: '/home/user1/tmp/coverage/test' '/home/user1/tmp/covert/operator' '/home/user1/tmp/coven/members' Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'. If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#OCaml
OCaml
let rec aux acc paths = if List.mem [] paths then (List.rev acc) else let heads = List.map List.hd paths in let item = List.hd heads in let all_the_same = List.for_all ((=) item) (List.tl heads) in if all_the_same then aux (item::acc) (List.map List.tl paths) else (List.rev acc)   let common_prefix sep = function | [] -> invalid_arg "common_prefix" | dirs -> let paths = List.map (Str.split (Str.regexp_string sep)) dirs in let res = aux [] paths in (sep ^ (String.concat sep res))   let () = let dirs = [ "/home/user1/tmp/coverage/test"; "/home/user1/tmp/covert/operator"; "/home/user1/tmp/coven/members"; ] in print_endline (common_prefix "/" dirs); ;;
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#Common_Lisp
Common Lisp
(remove-if-not #'evenp '(1 2 3 4 5 6 7 8 9 10)) > (2 4 6 8 10)
http://rosettacode.org/wiki/Find_limit_of_recursion
Find limit of recursion
Find limit of recursion is part of Short Circuit's Console Program Basics selection. Task Find the limit of recursion.
#PicoLisp
PicoLisp
$ ulimit -s 8192 $ pil + : (let N 0 (recur (N) (recurse (msg (inc N))))) ... 730395 730396 730397 Segmentation fault
http://rosettacode.org/wiki/Find_limit_of_recursion
Find limit of recursion
Find limit of recursion is part of Short Circuit's Console Program Basics selection. Task Find the limit of recursion.
#PL.2FI
PL/I
  recurs: proc options (main) reorder; dcl sysprint file; dcl mod builtin;   dcl ri fixed bin(31) init (0);   recursive: proc recursive; ri += 1; if mod(ri, 1024) = 1 then put data(ri);   call recursive(); end recursive;   call recursive(); end recurs;  
http://rosettacode.org/wiki/Find_limit_of_recursion
Find limit of recursion
Find limit of recursion is part of Short Circuit's Console Program Basics selection. Task Find the limit of recursion.
#PowerShell
PowerShell
  function TestDepth ( $N ) { $N TestDepth ( $N + 1 ) }   try { TestDepth 1 | ForEach { $Depth = $_ } } catch { "Exception message: " + $_.Exception.Message } "Last level before error: " + $Depth  
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Go
Go
package main   import "fmt"   func main() { for i := 1; i <= 100; i++ { switch { case i%15==0: fmt.Println("FizzBuzz") case i%3==0: fmt.Println("Fizz") case i%5==0: fmt.Println("Buzz") default: fmt.Println(i) } } }
http://rosettacode.org/wiki/File_size
File size
Verify the size of a file called     input.txt     for a file in the current working directory, and another one in the file system root.
#mIRC_Scripting_Language
mIRC Scripting Language
echo -ag $file(input.txt).size bytes echo -ag $file(C:\input.txt).size bytes
http://rosettacode.org/wiki/File_size
File size
Verify the size of a file called     input.txt     for a file in the current working directory, and another one in the file system root.
#Modula-3
Modula-3
MODULE FSize EXPORTS Main;   IMPORT IO, Fmt, FS, File, OSError;   VAR fstat: File.Status;   BEGIN TRY fstat := FS.Status("input.txt"); IO.Put("Size of input.txt: " & Fmt.LongInt(fstat.size) & "\n"); fstat := FS.Status("/input.txt"); IO.Put("Size of /input.txt: " & Fmt.LongInt(fstat.size) & "\n"); EXCEPT | OSError.E => IO.Put("ERROR: Could not get file status.\n"); END; END FSize.
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Factor
Factor
"input.txt" binary file-contents "output.txt" binary set-file-contents
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Forth
Forth
\ <to> <from> copy-file : copy-file ( a1 n1 a2 n2 -- ) r/o open-file throw >r w/o create-file throw r> begin pad maxstring 2 pick read-file throw  ?dup while pad swap 3 pick write-file throw repeat close-file throw close-file throw ;   \ Invoke it like this: s" output.txt" s" input.txt" copy-file
http://rosettacode.org/wiki/Fibonacci_word
Fibonacci word
The   Fibonacci Word   may be created in a manner analogous to the   Fibonacci Sequence   as described here: Define   F_Word1   as   1 Define   F_Word2   as   0 Form     F_Word3   as   F_Word2     concatenated with   F_Word1   i.e.:   01 Form     F_Wordn   as   F_Wordn-1   concatenated with   F_wordn-2 Task Perform the above steps for     n = 37. You may display the first few but not the larger values of   n. {Doing so will get the task's author into trouble with them what be (again!).} Instead, create a table for   F_Words   1   to   37   which shows:   The number of characters in the word   The word's Entropy Related tasks   Fibonacci word/fractal   Entropy   Entropy/Narcissist
#Go
Go
package main   import ( "fmt" "math" )   // From http://rosettacode.org/wiki/Entropy#Go func entropy(s string) float64 { m := map[rune]float64{} for _, r := range s { m[r]++ } hm := 0. for _, c := range m { hm += c * math.Log2(c) } l := float64(len(s)) return math.Log2(l) - hm/l }   const F_Word1 = "1" const F_Word2 = "0"   func FibonacciWord(n int) string { a, b := F_Word1, F_Word2 for ; n > 1; n-- { a, b = b, b+a } return a }   func FibonacciWordGen() <-chan string { ch := make(chan string) go func() { a, b := F_Word1, F_Word2 for { ch <- a a, b = b, b+a } }() return ch }   func main() { fibWords := FibonacciWordGen() fmt.Printf("%3s %9s  %-18s  %s\n", "N", "Length", "Entropy", "Word") n := 1 for ; n < 10; n++ { s := <-fibWords // Just to show the function and generator do the same thing: if s2 := FibonacciWord(n); s != s2 { fmt.Printf("For %d, generator produced %q, function produced %q\n", n, s, s2) } fmt.Printf("%3d %9d  %.16f  %s\n", n, len(s), entropy(s), s) } for ; n <= 37; n++ { s := <-fibWords fmt.Printf("%3d %9d  %.16f\n", n, len(s), entropy(s)) } }
http://rosettacode.org/wiki/FASTA_format
FASTA format
In bioinformatics, long character strings are often encoded in a format called FASTA. A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line. Task Write a program that reads a FASTA file such as: >Rosetta_Example_1 THERECANBENOSPACE >Rosetta_Example_2 THERECANBESEVERAL LINESBUTTHEYALLMUST BECONCATENATED Output: Rosetta_Example_1: THERECANBENOSPACE Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
#Gambas
Gambas
Public Sub Main() Dim sList As String = File.Load("../FASTA") Dim sTemp, sOutput As String   For Each sTemp In Split(sList, gb.NewLine) If sTemp Begins ">" Then If sOutput Then Print sOutput sOutput = Right(sTemp, -1) & ": " Else sOutput &= sTemp Endif Next   Print sOutput   End
http://rosettacode.org/wiki/FASTA_format
FASTA format
In bioinformatics, long character strings are often encoded in a format called FASTA. A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line. Task Write a program that reads a FASTA file such as: >Rosetta_Example_1 THERECANBENOSPACE >Rosetta_Example_2 THERECANBESEVERAL LINESBUTTHEYALLMUST BECONCATENATED Output: Rosetta_Example_1: THERECANBENOSPACE Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
#Go
Go
package main   import ( "bufio" "fmt" "os" )   func main() { f, err := os.Open("rc.fasta") if err != nil { fmt.Println(err) return } defer f.Close() s := bufio.NewScanner(f) headerFound := false for s.Scan() { line := s.Text() switch { case line == "": continue case line[0] != '>': if !headerFound { fmt.Println("missing header") return } fmt.Print(line) case headerFound: fmt.Println() fallthrough default: fmt.Printf("%s: ", line[1:]) headerFound = true } } if headerFound { fmt.Println() } if err := s.Err(); err != nil { fmt.Println(err) } }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Ada
Ada
  with Ada.Numerics.Generic_Complex_Arrays;   generic with package Complex_Arrays is new Ada.Numerics.Generic_Complex_Arrays (<>); use Complex_Arrays; function Generic_FFT (X : Complex_Vector) return Complex_Vector;  
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#11l
11l
F is_prime(a) I a == 2 {R 1B} I a < 2 | a % 2 == 0 {R 0B} L(i) (3 .. Int(sqrt(a))).step(2) I a % i == 0 R 0B R 1B   F m_factor(p) V max_k = 16384 I/ p L(k) 0 .< max_k V q = 2 * p * k + 1 I !is_prime(q) L.continue E I q % 8 != 1 & q % 8 != 7 L.continue E I pow(2, p, q) == 1 R q R 0   V exponent = Int(input(‘Enter exponent of Mersenne number: ’)) I !is_prime(exponent) print(‘Exponent is not prime: #.’.format(exponent)) E V factor = m_factor(exponent) I factor == 0 print(‘No factor found for M#.’.format(exponent)) E print(‘M#. has a factor: #.’.format(exponent, factor))
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#BASIC256
BASIC256
for i = 1 to 11 print "F"; i; " = "; call farey(i, FALSE) next i print for i = 100 to 1000 step 100 print "F"; i; if i <> 1000 then print " "; else print ""; print " = "; call farey(i, FALSE) next i end   subroutine farey(n, descending) a = 0 : b = 1 : c = 1 : d = n : k = 0 cont = 0   if descending = TRUE then a = 1 : c = n -1 end if   cont += 1 if n < 12 then print a; "/"; b; " ";   while ((c <= n) and not descending) or ((a > 0) and descending) aa = a : bb = b : cc = c : dd = d k = (n + b) \ d a = cc : b = dd : c = k * cc - aa : d = k * dd - bb cont += 1 if n < 12 then print a; "/"; b; " "; end while   if n < 12 then print else print rjust(cont,7) end subroutine
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#C
C
#include <stdio.h> #include <stdlib.h> #include <string.h>   void farey(int n) { typedef struct { int d, n; } frac; frac f1 = {0, 1}, f2 = {1, n}, t; int k;   printf("%d/%d %d/%d", 0, 1, 1, n); while (f2.n > 1) { k = (n + f1.n) / f2.n; t = f1, f1 = f2, f2 = (frac) { f2.d * k - t.d, f2.n * k - t.n }; printf(" %d/%d", f2.d, f2.n); }   putchar('\n'); }   typedef unsigned long long ull; ull *cache; size_t ccap;   ull farey_len(int n) { if (n >= ccap) { size_t old = ccap; if (!ccap) ccap = 16; while (ccap <= n) ccap *= 2; cache = realloc(cache, sizeof(ull) * ccap); memset(cache + old, 0, sizeof(ull) * (ccap - old)); } else if (cache[n]) return cache[n];   ull len = (ull)n*(n + 3) / 2; int p, q = 0; for (p = 2; p <= n; p = q) { q = n/(n/p) + 1; len -= farey_len(n/p) * (q - p); }   cache[n] = len; return len; }   int main(void) { int n; for (n = 1; n <= 11; n++) { printf("%d: ", n); farey(n); }   for (n = 100; n <= 1000; n += 100) printf("%d: %llu items\n", n, farey_len(n));   n = 10000000; printf("\n%d: %llu items\n", n, farey_len(n)); return 0; }
http://rosettacode.org/wiki/Fairshare_between_two_and_more
Fairshare between two and more
The Thue-Morse sequence is a sequence of ones and zeros that if two people take turns in the given order, the first persons turn for every '0' in the sequence, the second for every '1'; then this is shown to give a fairer, more equitable sharing of resources. (Football penalty shoot-outs for example, might not favour the team that goes first as much if the penalty takers take turns according to the Thue-Morse sequence and took 2^n penalties) The Thue-Morse sequence of ones-and-zeroes can be generated by: "When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence" Sharing fairly between two or more Use this method: When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people. Task Counting from zero;   using a function/method/routine to express an integer count in base b, sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people. Show the first 25 terms of the fairshare sequence:   For two people:   For three people   For five people   For eleven people Related tasks   Non-decimal radices/Convert   Thue-Morse See also   A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
#C.2B.2B
C++
#include <iostream> #include <vector>   int turn(int base, int n) { int sum = 0; while (n != 0) { int rem = n % base; n = n / base; sum += rem; } return sum % base; }   void fairshare(int base, int count) { printf("Base %2d:", base); for (int i = 0; i < count; i++) { int t = turn(base, i); printf(" %2d", t); } printf("\n"); }   void turnCount(int base, int count) { std::vector<int> cnt(base, 0);   for (int i = 0; i < count; i++) { int t = turn(base, i); cnt[t]++; }   int minTurn = INT_MAX; int maxTurn = INT_MIN; int portion = 0; for (int i = 0; i < base; i++) { if (cnt[i] > 0) { portion++; } if (cnt[i] < minTurn) { minTurn = cnt[i]; } if (cnt[i] > maxTurn) { maxTurn = cnt[i]; } }   printf(" With %d people: ", base); if (0 == minTurn) { printf("Only %d have a turn\n", portion); } else if (minTurn == maxTurn) { printf("%d\n", minTurn); } else { printf("%d or %d\n", minTurn, maxTurn); } }   int main() { fairshare(2, 25); fairshare(3, 25); fairshare(5, 25); fairshare(11, 25);   printf("How many times does each get a turn in 50000 iterations?\n"); turnCount(191, 50000); turnCount(1377, 50000); turnCount(49999, 50000); turnCount(50000, 50000); turnCount(50001, 50000);   return 0; }
http://rosettacode.org/wiki/Faulhaber%27s_triangle
Faulhaber's triangle
Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula: ∑ k = 1 n k p = 1 p + 1 ∑ j = 0 p ( p + 1 j ) B j n p + 1 − j {\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}} where B n {\displaystyle B_{n}} is the nth-Bernoulli number. The first 5 rows of Faulhaber's triangle, are: 1 1/2 1/2 1/6 1/2 1/3 0 1/4 1/2 1/4 -1/30 0 1/3 1/2 1/5 Using the third row of the triangle, we have: ∑ k = 1 n k 2 = 1 6 n + 1 2 n 2 + 1 3 n 3 {\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}} Task show the first 10 rows of Faulhaber's triangle. using the 18th row of Faulhaber's triangle, compute the sum: ∑ k = 1 1000 k 17 {\displaystyle \sum _{k=1}^{1000}k^{17}} (extra credit). See also Bernoulli numbers Evaluate binomial coefficients Faulhaber's formula (Wikipedia) Faulhaber's triangle (PDF)
#Factor
Factor
USING: kernel math math.combinatorics math.extras math.functions math.ranges prettyprint sequences ;   : faulhaber ( p -- seq ) 1 + dup recip swap dup 0 (a,b] [ [ nCk ] [ -1 swap ^ ] [ bernoulli ] tri * * * ] 2with map ;   10 [ faulhaber . ] each-integer
http://rosettacode.org/wiki/Faulhaber%27s_triangle
Faulhaber's triangle
Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula: ∑ k = 1 n k p = 1 p + 1 ∑ j = 0 p ( p + 1 j ) B j n p + 1 − j {\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}} where B n {\displaystyle B_{n}} is the nth-Bernoulli number. The first 5 rows of Faulhaber's triangle, are: 1 1/2 1/2 1/6 1/2 1/3 0 1/4 1/2 1/4 -1/30 0 1/3 1/2 1/5 Using the third row of the triangle, we have: ∑ k = 1 n k 2 = 1 6 n + 1 2 n 2 + 1 3 n 3 {\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}} Task show the first 10 rows of Faulhaber's triangle. using the 18th row of Faulhaber's triangle, compute the sum: ∑ k = 1 1000 k 17 {\displaystyle \sum _{k=1}^{1000}k^{17}} (extra credit). See also Bernoulli numbers Evaluate binomial coefficients Faulhaber's formula (Wikipedia) Faulhaber's triangle (PDF)
#FreeBASIC
FreeBASIC
' version 12-08-2017 ' compile with: fbc -s console ' uses GMP   #Include Once "gmp.bi"   #Define i_max 17   Dim As UInteger i, j, x Dim As String s Dim As ZString Ptr gmp_str : gmp_str = Allocate(100)   Dim As Mpq_ptr n, tmp1, tmp2, sum, one, zero n = Allocate(Len(__mpq_struct)) : Mpq_init(n) tmp1 = Allocate(Len(__mpq_struct)) : Mpq_init(tmp1) tmp2 = Allocate(Len(__mpq_struct)) : Mpq_init(tmp2) sum = Allocate(Len(__mpq_struct)) : Mpq_init(sum) zero = Allocate(Len(__mpq_struct)) : Mpq_init(zero) one = Allocate(Len(__mpq_struct)) : Mpq_init(one) Mpq_set_ui(zero, 0, 0) ' 0/0 = 0 Mpq_set_ui(one , 1, 1) ' 1/1 = 1   Dim As Mpq_ptr Faulhaber_triangle(0 To i_max, 1 To i_max +1) ' only initialize the variables we need For i = 0 To i_max For j = 1 To i +1 Faulhaber_triangle(i, j) = Allocate(Len(__Mpq_struct)) Mpq_init(Faulhaber_triangle(i, j)) Next Next   Mpq_set(Faulhaber_triangle(0, 1), one)   ' we calculate the first 18 rows For i = 1 To i_max Mpq_set(sum, zero) For j = i +1 To 2 Step -1 Mpq_set_ui(tmp1, i, j) ' i / j Mpq_set(tmp2, Faulhaber_triangle(i -1, j -1)) Mpq_mul(Faulhaber_triangle(i, j), tmp2, tmp1) Mpq_canonicalize(Faulhaber_triangle(i, j)) Mpq_add(sum, sum, Faulhaber_triangle(i, j)) Next Mpq_sub(Faulhaber_triangle(i, 1), one, sum) Next   Print "The first 10 rows" For i = 0 To 9 For j = 1 To i +1 Mpq_get_str(gmp_str, 10, Faulhaber_triangle(i, j)) s = Space(6) + *gmp_str + Space(6) x = InStr(s,"/") If x = 0 Then x = 7 ' in case of 0 or 1 Print Mid(s, x -3, 7); Next Print Next print   ' using the 17'the row Mpq_set(sum, zero) Mpq_set_ui(n, 1000, 1) ' 1000/1 = 1000 Mpq_set(tmp2, n) For j = 1 To 18 Mpq_mul(tmp1, n, Faulhaber_triangle(17, j)) Mpq_add(sum, sum, tmp1) Mpq_mul(n, n, tmp2) Next   Mpq_get_str(gmp_str, 10, sum) Print *gmp_str   ' free memory DeAllocate(gmp_str) Mpq_clear(tmp1) : Mpq_clear(tmp2) : Mpq_clear(n) Mpq_clear(zero) : Mpq_clear(one)  : Mpq_clear(sum)   For i = 0 To i_max For j = 1 To i +1 Mpq_clear(Faulhaber_triangle(i, j)) Next Next   ' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Faulhaber%27s_formula
Faulhaber's formula
In mathematics,   Faulhaber's formula,   named after Johann Faulhaber,   expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n,   the coefficients involving Bernoulli numbers. Task Generate the first 10 closed-form expressions, starting with p = 0. Related tasks   Bernoulli numbers.   evaluate binomial coefficients. See also   The Wikipedia entry:   Faulhaber's formula.   The Wikipedia entry:   Bernoulli numbers.   The Wikipedia entry:   binomial coefficients.
#GAP
GAP
n := X(Rationals, "n"); sum1 := p -> Sum([0 .. p], k -> Stirling2(p, k) * Product([0 .. k], j -> n + 1 - j) / (k + 1)) + 2 * Bernoulli(2 * p + 1); sum2 := p -> Sum([0 .. p], j -> (-1)^j * Binomial(p + 1, j) * Bernoulli(j) * n^(p + 1 - j)) / (p + 1); ForAll([0 .. 20], k -> sum1(k) = sum2(k));   for p in [0 .. 9] do Print(sum1(p), "\n"); od;   n 1/2*n^2+1/2*n 1/3*n^3+1/2*n^2+1/6*n 1/4*n^4+1/2*n^3+1/4*n^2 1/5*n^5+1/2*n^4+1/3*n^3-1/30*n 1/6*n^6+1/2*n^5+5/12*n^4-1/12*n^2 1/7*n^7+1/2*n^6+1/2*n^5-1/6*n^3+1/42*n 1/8*n^8+1/2*n^7+7/12*n^6-7/24*n^4+1/12*n^2 1/9*n^9+1/2*n^8+2/3*n^7-7/15*n^5+2/9*n^3-1/30*n 1/10*n^10+1/2*n^9+3/4*n^8-7/10*n^6+1/2*n^4-3/20*n^2
http://rosettacode.org/wiki/Fermat_numbers
Fermat numbers
In mathematics, a Fermat number, named after Pierre de Fermat who first studied them, is a positive integer of the form Fn = 22n + 1 where n is a non-negative integer. Despite the simplicity of generating Fermat numbers, they have some powerful mathematical properties and are extensively used in cryptography & pseudo-random number generation, and are often linked to other number theoric fields. As of this writing, (mid 2019), there are only five known prime Fermat numbers, the first five (F0 through F4). Only the first twelve Fermat numbers have been completely factored, though many have been partially factored. Task Write a routine (function, procedure, whatever) to generate Fermat numbers. Use the routine to find and display here, on this page, the first 10 Fermat numbers - F0 through F9. Find and display here, on this page, the prime factors of as many Fermat numbers as you have patience for. (Or as many as can be found in five minutes or less of processing time). Note: if you make it past F11, there may be money, and certainly will be acclaim in it for you. See also Wikipedia - Fermat numbers OEIS:A000215 - Fermat numbers OEIS:A019434 - Fermat primes
#REXX
REXX
/*REXX program to find and display Fermat numbers, and show factors of Fermat numbers.*/ parse arg n . /*obtain optional argument from the CL.*/ if n=='' | n=="," then n= 9 /*Not specified? Then use the default.*/ numeric digits 20 /*ensure enough decimal digits, for n=9*/   do j=0 to n; f= 2** (2**j) + 1 /*calculate a series of Fermat numbers.*/ say right('F'j, length(n) + 1)': ' f /*display a particular " " */ end /*j*/ say do k=0 to n; f= 2** (2**k) + 1; say /*calculate a series of Fermat numbers.*/ say center(' F'k": " f' ', 79, "═") /*display a particular " " */ p= factr(f) /*factor a Fermat number, given time. */ if words(p)==1 then say f ' is prime.' else say 'factors: ' p end /*k*/ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ factr: procedure; parse arg x 1 z,,? do k=1 to 11 by 2; j= k; if j==1 then j= 2; if j==9 then iterate call build /*add J to the factors list. */ end /*k*/ /* [↑] factor X with some low primes*/   do y=0 by 2; j= j + 2 + y // 4 /*ensure not ÷ by three. */ parse var j '' -1 _; if _==5 then iterate /*last digit a "5"? Skip it.*/ if j*j>x | j>z then leave call build /*add Y to the factors list. */ end /*y*/ /* [↑] factor X with other higher #s*/ j= z if z\==1 then ?= build() if ?='' then do; @.1= x;  ?= x; #= 1; end return ? /*──────────────────────────────────────────────────────────────────────────────────────*/ build: do while z//j==0; z= z % j;  ?= ? j; end; return strip(?)
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#BBC_BASIC
BBC BASIC
@% = 5 : REM Column width   PRINT "Fibonacci:" DIM f2%(1) : f2%() = 1,1 FOR i% = 1 TO 12 : PRINT f2%(0); : PROCfibn(f2%()) : NEXT : PRINT " ..."   PRINT "Tribonacci:" DIM f3%(2) : f3%() = 1,1,2 FOR i% = 1 TO 12 : PRINT f3%(0); : PROCfibn(f3%()) : NEXT : PRINT " ..."   PRINT "Tetranacci:" DIM f4%(3) : f4%() = 1,1,2,4 FOR i% = 1 TO 12 : PRINT f4%(0); : PROCfibn(f4%()) : NEXT : PRINT " ..."   PRINT "Lucas:" DIM fl%(1) : fl%() = 2,1 FOR i% = 1 TO 12 : PRINT fl%(0); : PROCfibn(fl%()) : NEXT : PRINT " ..." END   DEF PROCfibn(f%()) LOCAL i%, s% s% = SUM(f%()) FOR i% = 1 TO DIM(f%(),1) f%(i%-1) = f%(i%) NEXT f%(i%-1) = s% ENDPROC
http://rosettacode.org/wiki/Feigenbaum_constant_calculation
Feigenbaum constant calculation
Task Calculate the Feigenbaum constant. See   Details in the Wikipedia article:   Feigenbaum constant.
#REXX
REXX
/*REXX pgm calculates the (Mitchell) Feigenbaum bifurcation velocity, #digs can be given*/ parse arg digs maxi maxj . /*obtain optional argument from the CL.*/ if digs=='' | digs=="," then digs= 30 /*Not specified? Then use the default.*/ if maxi=='' | maxi=="," then maxi= 20 /* " " " " " " */ if maxJ=='' | maxJ=="," then maxJ= 10 /* " " " " " " */ #= 4.669201609102990671853203820466201617258185577475768632745651343004134330211314737138, || 68974402394801381716 /*◄──Feigenbaum's constant, true value.*/ numeric digits digs /*use the specified # of decimal digits*/ a1= 1 a2= 0 d1= 3.2 say 'Using ' maxJ " iterations for maxJ, with " digs ' decimal digits:' say say copies(' ', 9) center("correct", 11) copies(' ', digs+1) say center('i', 9, "─") center('digits' , 11, "─") center('d', digs+1, "─")   do i=2 for maxi-1 a= a1 + (a1 - a2) / d1 do maxJ x= 0; y= 0 do 2**i; y= 1 - 2 * x * y x= a - x*x end /*2**i*/ a= a - x / y end /*maxj*/ d= (a1 - a2) / (a - a1) /*compute the delta (D) of the function*/ t= max(0, compare(d, #) - 2) /*# true digs so far, ignore dec. point*/ say center(i, 9) center(t, 11) d /*display values for I & D ──►terminal*/ parse value d a1 a with d1 a2 a1 /*assign 3 variables with 3 new values.*/ end /*i*/ /*stick a fork in it, we're all done. */ say left('', 9 + 1 + 11 + 1 + t )"↑" /*show position of greatest accuracy. */ say ' true value= ' # / 1 /*true value of Feigenbaum's constant. */
http://rosettacode.org/wiki/Feigenbaum_constant_calculation
Feigenbaum constant calculation
Task Calculate the Feigenbaum constant. See   Details in the Wikipedia article:   Feigenbaum constant.
#Ring
Ring
# Project : Feigenbaum constant calculation   decimals(8) see "Feigenbaum constant calculation:" + nl maxIt = 13 maxItJ = 10 a1 = 1.0 a2 = 0.0 d1 = 3.2 see "i " + "d" + nl for i = 2 to maxIt a = a1 + (a1 - a2) / d1 for j = 1 to maxItJ x = 0 y = 0 for k = 1 to pow(2,i) y = 1 - 2 * y * x x = a - x * x next a = a - x / y next d = (a1 - a2) / (a - a1) if i < 10 see "" + i + " " + d + nl else see "" + i + " " + d + nl ok d1 = d a2 = a1 a1 = a next
http://rosettacode.org/wiki/File_extension_is_in_extensions_list
File extension is in extensions list
File extension is in extensions list You are encouraged to solve this task according to the task description, using any language you may know. Filename extensions are a rudimentary but commonly used way of identifying files types. Task Given an arbitrary filename and a list of extensions, tell whether the filename has one of those extensions. Notes: The check should be case insensitive. The extension must occur at the very end of the filename, and be immediately preceded by a dot (.). You may assume that none of the given extensions are the empty string, and none of them contain a dot. Other than that they may be arbitrary strings. Extra credit: Allow extensions to contain dots. This way, users of your function/program have full control over what they consider as the extension in cases like: archive.tar.gz Please state clearly whether or not your solution does this. Test cases The following test cases all assume this list of extensions:   zip, rar, 7z, gz, archive, A## Filename Result MyData.a## true MyData.tar.Gz true MyData.gzip false MyData.7z.backup false MyData... false MyData false If your solution does the extra credit requirement, add tar.bz2 to the list of extensions, and check the following additional test cases: Filename Result MyData_v1.0.tar.bz2 true MyData_v1.0.bz2 false Motivation Checking if a file is in a certain category of file formats with known extensions (e.g. archive files, or image files) is a common problem in practice, and may be approached differently from extracting and outputting an arbitrary extension (see e.g. FileNameExtensionFilter in Java). It also requires less assumptions about the format of an extension, because the calling code can decide what extensions are valid. For these reasons, this task exists in addition to the Extract file extension task. Related tasks Extract file extension String matching
#Sidef
Sidef
func check_extension(filename, extensions) { filename ~~ Regex('\.(' + extensions.map { .escape }.join('|') + ')\z', :i) }
http://rosettacode.org/wiki/File_extension_is_in_extensions_list
File extension is in extensions list
File extension is in extensions list You are encouraged to solve this task according to the task description, using any language you may know. Filename extensions are a rudimentary but commonly used way of identifying files types. Task Given an arbitrary filename and a list of extensions, tell whether the filename has one of those extensions. Notes: The check should be case insensitive. The extension must occur at the very end of the filename, and be immediately preceded by a dot (.). You may assume that none of the given extensions are the empty string, and none of them contain a dot. Other than that they may be arbitrary strings. Extra credit: Allow extensions to contain dots. This way, users of your function/program have full control over what they consider as the extension in cases like: archive.tar.gz Please state clearly whether or not your solution does this. Test cases The following test cases all assume this list of extensions:   zip, rar, 7z, gz, archive, A## Filename Result MyData.a## true MyData.tar.Gz true MyData.gzip false MyData.7z.backup false MyData... false MyData false If your solution does the extra credit requirement, add tar.bz2 to the list of extensions, and check the following additional test cases: Filename Result MyData_v1.0.tar.bz2 true MyData_v1.0.bz2 false Motivation Checking if a file is in a certain category of file formats with known extensions (e.g. archive files, or image files) is a common problem in practice, and may be approached differently from extracting and outputting an arbitrary extension (see e.g. FileNameExtensionFilter in Java). It also requires less assumptions about the format of an extension, because the calling code can decide what extensions are valid. For these reasons, this task exists in addition to the Extract file extension task. Related tasks Extract file extension String matching
#Tcl
Tcl
    # This example includes the extra credit. # With a slight variation, a matching suffix can be identified. # Note that suffixes with two or more dots (ie a dot in suffix) are checked for each case. # This way, filename.1.txt will match for txt, and filename3.tar.gz.1 will match for tar.gz.1 for example.   # Example input data: set f_list [list \ "MyData.a##" \ MyData.tar.Gz \ MyData.gzip \ MyData.7z.backup \ "MyData..." \ MyData \ MyData_v1.0.tar.bz2 \ MyData_v1.0.bz2 ] set suffix_input_list [list zip rar 7z gz archive "A##" tar.bz2 ]   # Prefix a dot to any suffix that does not begin with a dot. set suffix_list [list ] foreach s $suffix_input_list { if { [string range $s 0 0] ne "." } { set s2 "." } else { set s2 "" } append s2 $s lappend suffix_list [string tolower $s2] }   # Check each filename foreach filename0 $f_list { set filename1 [string tolower [file tail $filename0]] set suffix1 [file extension $filename1] set file_suffix_list [list $suffix1] set filename2 [file rootname $filename1] set i 0 # i is an infinite loop breaker. In case there is some unforseen case.. while { $filename2 ne "" && $filename2 ne $filename1 && $i < 32} { # Another suffix is possible set suffix2 [file extension $filename2] if { $suffix2 ne "" } { # found another suffix append suffix2 $suffix1 lappend file_suffix_list $suffix2 } set suffix1 $suffix2 set filename1 $filename2 set filename2 [file rootname $filename2] incr i } set a_suffix_found_p 0 foreach file_suffix $file_suffix_list { if { $file_suffix in $suffix_list } { set a_suffix_found_p 1 } } puts -nonewline "${filename0}\t" if { $a_suffix_found_p } { puts "true" } else { puts "false" } }    
http://rosettacode.org/wiki/File_modification_time
File modification time
Task Get and set the modification time of a file.
#RapidQ
RapidQ
name$ = DIR$("input.txt", 0) PRINT "File date: "; FileRec.Date PRINT "File time: "; FileRec.Time
http://rosettacode.org/wiki/File_modification_time
File modification time
Task Get and set the modification time of a file.
#REALbasic
REALbasic
  Function getModDate(f As FolderItem) As Date Return f.ModificationDate End Function
http://rosettacode.org/wiki/File_modification_time
File modification time
Task Get and set the modification time of a file.
#REXX
REXX
/*REXX program obtains and displays a file's time of modification. */ parse arg $ . /*obtain required argument from the CL.*/ if $=='' then do; say "***error*** no filename was specified."; exit 13; end q=stream($, 'C', "QUERY TIMESTAMP") /*get file's modification time info. */ if q=='' then q="specified file doesn't exist." /*set an error indication message. */ say 'For file: ' $ /*display the file ID information. */ say 'timestamp of last modification: ' q /*display the modification time info. */ /*stick a fork in it, we're all done. */  
http://rosettacode.org/wiki/Fibonacci_word/fractal
Fibonacci word/fractal
The Fibonacci word may be represented as a fractal as described here: (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.) For F_wordm start with F_wordCharn=1 Draw a segment forward If current F_wordChar is 0 Turn left if n is even Turn right if n is odd next n and iterate until end of F_word Task Create and display a fractal similar to Fig 1. (Clicking on the above website   (hal.archives-ouvertes.fr)   will leave a cookie.)
#REXX
REXX
/*REXX program generates a Fibonacci word, then (normally) displays the fractal curve.*/ parse arg order . /*obtain optional arguments from the CL*/ if order=='' | order=="," then order= 23 /*Not specified? Then use the default*/ tell= order>=0 /*Negative order? Then don't display. */ s= FibWord( abs(order) ) /*obtain the order of Fibonacci word.*/ x= 0; maxX= 0; dx= 0; b= ' '; @. = b; xp= 0 y= 0; maxY= 0; dy= 1; @.0.0= .; yp= 0 do n=1 for length(s); x= x + dx; y= y + dy /*advance the plot for the next point. */ maxX= max(maxX, x); maxY= max(maxY, y) /*set the maximums for displaying plot.*/ c= '│' /*glyph (character) used for the plot. */ if dx\==0 then c= "─" /*if x+dx isn't zero, use this char.*/ if n==1 then c= '┌' /*is this the first part to be graphed?*/ @.x.y= c /*assign a plotting character for curve*/ if @(xp-1, yp)\==b then if @(xp, yp-1)\==b then call @ xp,yp,'┐' /*fix─up a corner*/ if @(xp-1, yp)\==b then if @(xp, yp+1)\==b then call @ xp,yp,'┘' /* " " " */ if @(xp+1, yp)\==b then if @(xp, yp-1)\==b then call @ xp,yp,'┌' /* " " " */ if @(xp+1, yp)\==b then if @(xp, yp+1)\==b then call @ xp,yp,'└' /* " " " */ xp= x; yp= y /*save the old x & y coördinates.*/ z= substr(s, n, 1) /*assign a plot character for the graph*/ if z==1 then iterate /*Is Z equal to unity? Then ignore it.*/ ox= dx; oy= dy /*save DX,DY as the old versions. */ dx= 0; dy= 0 /*define DX,DY " " new " */ d= -n//2; if d==0 then d= 1 /*determine the sign for the chirality.*/ if oy\==0 then dx= -sign(oy) * d /*Going north│south? Go east|west */ if ox\==0 then dy= sign(ox) * d /* " east│west? " south|north */ end /*n*/   call @ x, y, '∙' /*set the last point that was plotted. */   do r=maxY to 0 by -1; _= /*show single row at a time, top first.*/ do c=0 for maxX+1; _= _ || @.c.r /*add a plot character (glyph) to line.*/ end /*c*/ /* [↑] construct a line char by char. */ _= strip(_, 'T') /*construct a line of the graph. */ if _=='' then iterate /*Is the line blank? Then ignore it. */ if tell then say _ /*Display the line to the terminal ? */ call lineout "FIBFRACT.OUT", _ /*write graph to disk (FIBFRACT.OUT). */ end /*r*/ /* [↑] only display the non-blank rows*/ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ @: parse arg xx,yy,p; if arg(3)=='' then return @.xx.yy; @.xx.yy= p; return /*──────────────────────────────────────────────────────────────────────────────────────*/ FibWord: procedure; parse arg x; !.= 0;  !.1= 1 /*obtain the order of Fibonacci word. */ do k=3 to x /*generate the Kth " " */ k1= k-1; k2= k - 2 /*calculate the K-1 & K-2 shortcut.*/  !.k= !.k1 ||  !.k2 /*construct the next Fibonacci word. */ end /*k*/ /* [↑] generate a " " */ return !.x /*return the Xth " " */
http://rosettacode.org/wiki/Find_common_directory_path
Find common directory path
Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories. Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths: '/home/user1/tmp/coverage/test' '/home/user1/tmp/covert/operator' '/home/user1/tmp/coven/members' Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'. If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#OpenEdge.2FProgress
OpenEdge/Progress
FUNCTION findCommonDir RETURNS CHAR( i_cdirs AS CHAR, i_cseparator AS CHAR ):   DEF VAR idir AS INT. DEF VAR idepth AS INT. DEF VAR cdir AS CHAR EXTENT. DEF VAR lsame AS LOGICAL INITIAL TRUE. DEF VAR cresult AS CHAR.   EXTENT( cdir ) = NUM-ENTRIES( i_cdirs, '~n' ).   DO idir = 1 TO NUM-ENTRIES( i_cdirs, '~n' ): cdir[ idir ] = ENTRY( idir, i_cdirs, '~n' ). END.   DO idepth = 2 TO NUM-ENTRIES( cdir [ 1 ], i_cseparator ) WHILE lsame: DO idir = 1 TO EXTENT( cdir ) - 1 WHILE lsame: lsame = ( ENTRY( idepth, cdir [ idir ], i_cseparator ) = ENTRY( idepth, cdir [ idir + 1 ], i_cseparator ) ). END. IF lsame THEN cresult = cresult + i_cseparator + ENTRY( idepth, cdir [ 1 ], i_cseparator ). END.   RETURN cresult.   END FUNCTION.
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#Cowgol
Cowgol
include "cowgol.coh";   # Cowgol has strict typing and there are no templates either. # Defining the type this way makes it easy to change. typedef FilterT is uint32;   # In order to pass functions around, we need to define an # interface. The 'FilterPredicate' interface will take an argument # and return zero if it should be filtered out. interface FilterPredicate(x: FilterT): (keep: uint8);   # Filter an array and store it a new location. Returns the new length. sub Filter(f: FilterPredicate, items: [FilterT], length: intptr, result: [FilterT]): (newLength: intptr) is newLength := 0; while length > 0 loop var item := [items]; items := @next items; if f(item) != 0 then [result] := item; result := @next result; newLength := newLength + 1; end if; length := length - 1; end loop; end sub;   # Filter an array in place. Returns the new length. sub FilterInPlace(f: FilterPredicate, items: [FilterT], length: intptr): (newLength: intptr) is newLength := Filter(f, items, length, items); end sub;   # Filter that selects even numbers sub Even implements FilterPredicate is keep := (~ x as uint8) & 1; end sub;   # Filter an array var array: uint32[] := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; var filtered: uint32[@sizeof array]; var length := Filter(Even, &array[0], @sizeof array, &filtered[0]);   # Print result var i: uint8 := 0; while i < length as uint8 loop print_i32(filtered[i]); print_char(' '); i := i + 1; end loop; print_nl();   # Filter the result again in place for numbers less than 8 sub LessThan8 implements FilterPredicate is if x < 8 then keep := 1; else keep := 0; end if; end sub;   length := FilterInPlace(LessThan8, &filtered[0], length); i := 0; while i < length as uint8 loop print_i32(filtered[i]); print_char(' '); i := i + 1; end loop; print_nl();
http://rosettacode.org/wiki/Find_limit_of_recursion
Find limit of recursion
Find limit of recursion is part of Short Circuit's Console Program Basics selection. Task Find the limit of recursion.
#PureBasic
PureBasic
Procedure Recur(n) PrintN(str(n)) Recur(n+1) EndProcedure   Recur(1)