task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Toka
Toka
( source dest -- ) { value| source dest size buffer | { { [ "W" file.open to dest ] is open-dest [ "R" file.open to source ] is open-source [ open-dest open-source ] } is open-files { [ source file.size to size ] is obtain-size [ size malloc to buffer ] is allocate-buffer [ obtain-size allocate-buffer ] } is create-buffer [ source dest and 0 <> ] is check [ open-files create-buffer check ] } is prepare [ source buffer size file.read drop ] is read-source [ dest buffer size file.write drop ] is write-dest [ source file.close dest file.close ] is close-files [ prepare [ read-source write-dest close-files ] ifTrue ] } is copy-file
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#TUSCRIPT
TUSCRIPT
  $$ MODE TUSCRIPT ERROR/STOP CREATE ("input.txt", seq-o,-std-) ERROR/STOP CREATE ("output.txt",seq-o,-std-)   FILE/ERASE "input.txt" = "Some irrelevant content" path2input =FULLNAME(TUSTEP,"input.txt", -std-) status=READ (path2input,contentinput)   path2output=FULLNAME(TUSTEP,"output.txt",-std-) status=WRITE(path2output,contentinput)  
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#BCPL
BCPL
get "libhdr"   let fib(n) = n<=1 -> n, valof $( let a=0 and b=1 for i=2 to n $( let c=a a := b b := a+c $) resultis b $)   let start() be for i=0 to 10 do writef("F_%N*T= %N*N", i, fib(i))
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Dyalect
Dyalect
func Iterator.Where(pred) { for x in this when pred(x) { yield x } }   func Integer.Factors() { (1..this).Where(x => this % x == 0) }   for x in 45.Factors() { print(x) }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Prolog
Prolog
:- dynamic twiddles/2. %_______________________________________________________________ % Arithemetic for complex numbers; only the needed rules add(cx(R1,I1),cx(R2,I2),cx(R,I)) :- R is R1+R2, I is I1+I2. sub(cx(R1,I1),cx(R2,I2),cx(R,I)) :- R is R1-R2, I is I1-I2. mul(cx(R1,I1),cx(R2,I2),cx(R,I)) :- R is R1*R2-I1*I2, I is R1*I2+R2*I1. polar_cx(Mag, Theta, cx(R, I)) :- % Euler R is Mag * cos(Theta), I is Mag * sin(Theta). %___________________________________________________ % FFT Implementation. Note: K rdiv N is a rational number, % making the lookup in dynamic database predicate twiddles/2 very % efficient. Also, polar_cx/2 gets called only when necessary- in % this case (N=8), exactly 3 times: (where Tf=1/4, 1/8, or 3/8). tw(0,cx(1,0)) :- !. % Calculate e^(-2*pi*k/N) tw(Tf, Cx) :- twiddles(Tf, Cx), !. % dynamic match? tw(Tf, Cx) :- polar_cx(1.0, -2*pi*Tf, Cx), assert(twiddles(Tf, Cx)).   fftVals(N, Even, Odd, V0, V1) :- % solves all V0,V1 for N,Even,Odd nth0(K,Even,E), nth0(K,Odd,O), Tf is K rdiv N, tw(Tf,Cx), mul(Cx,O,M), add(E,M,V0), sub(E,M,V1).   split([],[],[]). % split [[a0,b0],[a1,b1],...] into [a0,a1,...] and [b0,b1,...] split([[V0,V1]|T], [V0|T0], [V1|T1]) :- !, split(T, T0, T1).   fft([H], [H]). fft([H|T], List) :- length([H|T],N), findall(Ve, (nth0(I,[H|T],Ve),I mod 2 =:= 0), EL), !, fft(EL, Even), findall(Vo, (nth0(I,T,Vo),I mod 2 =:= 0),OL), !, fft(OL, Odd), findall([V0,V1],fftVals(N,Even,Odd,V0,V1),FFTVals), % calc FFT split(FFTVals,L0,L1), append(L0,L1,List). %___________________________________________________ test :- D=[cx(1,0),cx(1,0),cx(1,0),cx(1,0),cx(0,0),cx(0,0),cx(0,0),cx(0,0)], time(fft(D,DRes)), writef('fft=['), P is 10^3, !, (member(cx(Ri,Ii), DRes), R is integer(Ri*P)/P, I is integer(Ii*P)/P, write(R), (I>=0, write('+'),fail;write(I)), write('j, '), fail; write(']'), nl).  
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#zkl
zkl
var [const] BN=Import("zklBigNum"); // libGMP   // M = 2^P - 1 , P prime // Look for a prime divisor q such as: // q < M.sqrt(), q = 1 or 7 modulo 8, q = 1 + 2kP // q is divisor if 2.powmod(P,q) == 1 // m-divisor returns q or False fcn m_divisor(P){ // must limit the search as M.sqrt() may be HUGE and I'm slow maxPrime:='wrap{ BN(2).pow(P).sqrt().min(0d5_000_000) }; t,b2:=BN(0),BN(2); // so I can do some in place BigInt math foreach q in (maxPrime(P*2)){ // 0..maxPrime -1, faster than just odd #s if((q%8==1 or q%8==7) and t.set(q).probablyPrime() and b2.powm(P,q)==1) return(q); } False }
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#PureBasic
PureBasic
    Procedure.i FibonacciLike(k,n=2,p.s="",d.s=".") Protected i,r if k<0:ProcedureReturn 0:endif if p.s n=CountString(p.s,d.s)+1 for i=0 to n-1 if k=i:ProcedureReturn val(StringField(p.s,i+1,d.s)):endif next else if k=0:ProcedureReturn 1:endif if k=1:ProcedureReturn 1:endif endif for i=1 to n r+FibonacciLike(k-i,n,p.s,d.s) next ProcedureReturn r EndProcedure   ; The fact that PureBasic supports default values for procedure parameters ; is very useful in a case such as this. ; Since: ; k=4 ; Debug FibonacciLike(k)  ;good old Fibonacci   ; Debug FibonacciLike(k,3)  ;here we specified n=3 [Tribonacci] ; Debug FibonacciLike(k,3,"1.1.2")  ;using the default delimiter "." ; Debug FibonacciLike(k,3,"1,1,2",",") ;using a different delimiter "," ; the last three all produce the same result.   ; as do the following two for the Lucas series: ; Debug FibonacciLike(k,2,"2.1")  ;using the default delimiter "." ; Debug FibonacciLike(k,2,"2,1",",") ;using a different delimiter ","   m=10 t.s=lset("n",5) for k=0 to m t.s+lset(str(k),5) next Debug t.s for n=2 to 10 t.s=lset(str(n),5) for k=0 to m t.s+lset(str(FibonacciLike(k,n)),5) next Debug t.s next Debug "" p.s="2.1" t.s=lset(p.s,5) for k=0 to m t.s+lset(str(FibonacciLike(k,n,p.s)),5) next Debug t.s Debug ""    
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
Select[{4, 5, Pi, 2, 1.3, 7, 6, 8.0}, EvenQ]
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Logo
Logo
to fizzbuzz :n output cond [ [[equal? 0 modulo :n 15] "FizzBuzz] [[equal? 0 modulo :n 5] "Buzz] [[equal? 0 modulo :n 3] "Fizz] [else :n] ] end   repeat 100 [print fizzbuzz #]
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#TXR
TXR
(let ((var (file-get-string "input.txt"))) (file-put-string "output.txt" var))
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#UNIX_Shell
UNIX Shell
#!/bin/sh while IFS= read -r a; do printf '%s\n' "$a" done <input.txt >output.txt
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#beeswax
beeswax
#>'#{; _`Enter n: `TN`Fib(`{`)=`X~P~K#{; #>~P~L#MM@>+@'q@{; b~@M<
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#E
E
def factors(x :(int > 0)) { var xfactors := [] for f ? (x % f <=> 0) in 1..x { xfactors with= f } return xfactors }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Python
Python
from cmath import exp, pi   def fft(x): N = len(x) if N <= 1: return x even = fft(x[0::2]) odd = fft(x[1::2]) T= [exp(-2j*pi*k/N)*odd[k] for k in range(N//2)] return [even[k] + T[k] for k in range(N//2)] + \ [even[k] - T[k] for k in range(N//2)]   print( ' '.join("%5.3f" % abs(f) for f in fft([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0])) )
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Python
Python
>>> def fiblike(start): addnum = len(start) memo = start[:] def fibber(n): try: return memo[n] except IndexError: ans = sum(fibber(i) for i in range(n-addnum, n)) memo.append(ans) return ans return fibber   >>> fibo = fiblike([1,1]) >>> [fibo(i) for i in range(10)] [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> lucas = fiblike([2,1]) >>> [lucas(i) for i in range(10)] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76] >>> for n, name in zip(range(2,11), 'fibo tribo tetra penta hexa hepta octo nona deca'.split()) : fibber = fiblike([1] + [2**i for i in range(n-1)]) print('n=%2i, %5snacci -> %s ...' % (n, name, ' '.join(str(fibber(i)) for i in range(15))))     n= 2, fibonacci -> 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... n= 3, tribonacci -> 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... n= 4, tetranacci -> 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... n= 5, pentanacci -> 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... n= 6, hexanacci -> 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... n= 7, heptanacci -> 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... n= 8, octonacci -> 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... n= 9, nonanacci -> 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... n=10, decanacci -> 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... >>>
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#MATLAB
MATLAB
function evens = selectEvenNumbers(list)   evens = list( mod(list,2) == 0 );   end
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#LOLCODE
LOLCODE
1* FIZZBUZZ en L.S.E. 10 CHAINE FB 20 FAIRE 45 POUR I_1 JUSQUA 100 30 FB_SI &MOD(I,3)=0 ALORS SI &MOD(I,5)=0 ALORS 'FIZZBUZZ' SINON 'FIZZ' SINON SI &MOD(I,5)=0 ALORS 'BUZZ' SINON '' 40 AFFICHER[U,/] SI FB='' ALORS I SINON FB 45*FIN BOUCLE 50 TERMINER 100 PROCEDURE &MOD(A,B) LOCAL A,B 110 RESULTAT A-B*ENT(A/B)
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Ursa
Ursa
decl file input output decl string contents input.open "input.txt" output.create "output.txt" output.open "output.txt" set contents (input.readall) out contents output
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Ursala
Ursala
#import std   #executable ('parameterized','')   fileio = ~command.files; &h.path.&h:= 'output.txt'!
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Befunge
Befunge
00:.1:.>:"@"8**++\1+:67+`#@_v ^ .:\/*8"@"\%*8"@":\ <
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#EasyLang
EasyLang
n = 720 for i = 1 to n if n mod i = 0 factors[] &= i . . print factors[]
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#R
R
fft(c(1,1,1,1,0,0,0,0))
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Racket
Racket
  #lang racket (require math) (array-fft (array #[1. 1. 1. 1. 0. 0. 0. 0.]))  
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Quackery
Quackery
[ 0 swap witheach + ] is sum ( [ --> n )   [ tuck size - dup 0 < iff [ split drop ] else [ dip [ dup size negate swap ] times [ over split dup sum join join ] nip ] ] is n-step ( n [ --> [ )   [ ' [ 1 1 ] n-step ] is fibonacci ( n --> [ )   [ ' [ 1 1 2 ] n-step ] is tribonacci ( n --> [ )   [ ' [ 1 1 2 4 ] n-step ] is tetranacci ( n --> [ )   [ ' [ 2 1 ] n-step ] is lucas ( n --> [ )   ' [ fibonacci tribonacci tetranacci lucas ] witheach [ dup echo say ": " 10 swap do echo cr ]
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#Maxima
Maxima
a: makelist(i, i, 1, 20); [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]   sublist(a, evenp); [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]   sublist(a, lambda([n], mod(n, 3) = 0)); [3, 6, 9, 12, 15, 18]
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#LSE
LSE
1* FIZZBUZZ en L.S.E. 10 CHAINE FB 20 FAIRE 45 POUR I_1 JUSQUA 100 30 FB_SI &MOD(I,3)=0 ALORS SI &MOD(I,5)=0 ALORS 'FIZZBUZZ' SINON 'FIZZ' SINON SI &MOD(I,5)=0 ALORS 'BUZZ' SINON '' 40 AFFICHER[U,/] SI FB='' ALORS I SINON FB 45*FIN BOUCLE 50 TERMINER 100 PROCEDURE &MOD(A,B) LOCAL A,B 110 RESULTAT A-B*ENT(A/B)
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#VBA
VBA
Option Explicit   Sub Main() Dim s As String, FF As Integer   'read a file line by line FF = FreeFile Open "C:\Users\" & Environ("username") & "\Desktop\input.txt" For Input As #FF While Not EOF(FF) Line Input #FF, s Debug.Print s Wend Close #FF   'read a file FF = FreeFile Open "C:\Users\" & Environ("username") & "\Desktop\input.txt" For Input As #FF s = Input(LOF(1), #FF) Close #FF Debug.Print s   'write a file FF = FreeFile Open "C:\Users\" & Environ("username") & "\Desktop\output.txt" For Output As #FF Print #FF, s Close #FF End Sub
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#VBScript
VBScript
CreateObject("Scripting.FileSystemObject").OpenTextFile("output.txt",2,-2).Write CreateObject("Scripting.FileSystemObject").OpenTextFile("input.txt", 1, -2).ReadAll
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#BlitzMax
BlitzMax
local a:int = 0, b:int = 1, c:int = 1, n:int   n = int(input( "Enter n: ")) if n = 0 then print 0 end else if n = 1 print 1 end end if   while n>2 a = b b = c c = a + b n = n - 1 wend print c
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#EchoLisp
EchoLisp
  ;; ppows ;; input : a list g of grouped prime factors ( 3 3 3 ..) ;; returns (1 3 9 27 ...)   (define (ppows g (mult 1)) (for/fold (ppows '(1)) ((a g)) (set! mult (* mult a)) (cons mult ppows)))   ;; factors ;; decomp n into ((2 2 ..) ( 3 3 ..) ) prime factors groups ;; combines (1 2 4 8 ..) (1 3 9 ..) lists   (define (factors n) (list-sort < (if (<= n 1) '(1) (for/fold (divs'(1)) ((g (map ppows (group (prime-factors n))))) (for*/list ((a divs) (b g)) (* a b))))))  
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Raku
Raku
sub fft { return @_ if @_ == 1; my @evn = fft( @_[0, 2 ... *] ); my @odd = fft( @_[1, 3 ... *] ) Z* map &cis, (0, -tau / @_ ... *); return flat @evn »+« @odd, @evn »-« @odd; }   .say for fft <1 1 1 1 0 0 0 0>;
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Racket
Racket
#lang racket   ;; fib-list : [Listof Nat] x Nat -> [Listof Nat] ;; Given a non-empty list of natural numbers, the length of the list ;; becomes the size of the step; return the first n numbers of the ;; sequence; assume n >= (length lon) (define (fib-list lon n) (define len (length lon)) (reverse (for/fold ([lon (reverse lon)]) ([_ (in-range (- n len))]) (cons (apply + (take lon len)) lon))))   ;; Show the series ... (define (show-fibs name l) (printf "~a: " name) (for ([n (in-list (fib-list l 20))]) (printf "~a, " n)) (printf "...\n"))   ;; ... with initial 2-powers lists (for ([n (in-range 2 11)]) (show-fibs (format "~anacci" (case n [(2) 'fibo] [(3) 'tribo] [(4) 'tetra] [(5) 'penta] [(6) 'hexa] [(7) 'hepta] [(8) 'octo] [(9) 'nona] [(10) 'deca])) (cons 1 (build-list (sub1 n) (curry expt 2))))) ;; and with an initial (2 1) (show-fibs "lucas" '(2 1))
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#MAXScript
MAXScript
arr = #(1, 2, 3, 4, 5, 6, 7, 8, 9) newArr = for i in arr where (mod i 2 == 0) collect i
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Lua
Lua
for i = 1, 100 do if i % 15 == 0 then print("FizzBuzz") elseif i % 3 == 0 then print("Fizz") elseif i % 5 == 0 then print("Buzz") else print(i) end end
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Vedit_macro_language
Vedit macro language
File_Open("input.txt") File_Save_As("output.txt", NOMSG) Buf_Close(NOMSG)
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Visual_Basic_.NET
Visual Basic .NET
'byte copy My.Computer.FileSystem.WriteAllBytes("output.txt", _ My.Computer.FileSystem.ReadAllBytes("input.txt"), False)   'text copy Using input = IO.File.OpenText("input.txt"), _ output As New IO.StreamWriter(IO.File.OpenWrite("output.txt")) output.Write(input.ReadToEnd) End Using   'Line by line text copy Using input = IO.File.OpenText("input.txt"), _ output As New IO.StreamWriter(IO.File.OpenWrite("output.txt")) Do Until input.EndOfStream output.WriteLine(input.ReadLine) Loop End Using
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Blue
Blue
  : fib ( nth:ecx -- result:edi ) 1 0 : compute ( times:ecx accum:eax scratch:edi -- result:edi ) xadd latest loop ;   : example ( -- ) 11 fib drop ;  
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#EDSAC_order_code
EDSAC order code
  [Factors of an integer, from Rosetta Code website.] [EDSAC program, Initial Orders 2.]   [The numbers to be factorized are read in by library subroutine R2 (Wilkes, Wheeler and Gill, 1951 edition, pp.96-97, 148).] [The address of the integers is placed in location 46, so they can be referred to by the N parameter (or we could have used 45 and H, etc.)] T 46 K P 600 F [address of integers] [Subroutine R2] GKT20FVDL8FA40DUDTFI40FA40FS39FG@S2FG23FA5@T5@E4@E13Z T #N [pass address of integers to R2]   [List of integers to be factorized; edit ad lib. R2 requires 'F' after each integer except the last, and '#' (pi) after the last. This program uses 0 to mark the end of the list.] 42000F999999F0# T Z [resume normal loading]   [Modified library subroutine P7.] [Prints signed integer; up to 10 digits, left-justified.] [Input: 0D = integer,] [54 locations. Load at even address. Workspace 4D.] T 56 K GKA3FT42@A49@T31@ADE10@T31@A48@T31@SDTDH44#@NDYFLDT4DS43@ TFH17@S17@A43@G23@UFS43@T1FV4DAFG50@SFLDUFXFOFFFSFL4FT4DA49@ T31@A1FA43@G20@XFP1024FP610D@524D!FO46@O26@XFSFL8FT4DE39@   [Division subroutine for positive long integers. 35-bit dividend and divisor (max 2^34 - 1) returning quotient and remainder. Input: dividend at 4D, divisor at 6D Output: remainder at 4D, quotient at 6D. 37 locations; working locations 0D, 8D.] T 110 K GKA3FT35@A6DU8DTDA4DRDSDG13@T36@ADLDE4@T36@T6DA4DSDG23@ T4DA6DYFYFT6DT36@A8DSDE35@T36@ADRDTDA6DLDT6DE15@EFPF   [********************** ROSETTA CODE TASK **********************] [Subroutine to find and print factors of a positive integer. Input: 0D = integer, maximum 10 decimal digits. Load at even address.] T 148 K G K A 3 F [form and plant link for return] T 55 @ A D [load integer whose factors are to be found] T 56#@ [store] A 62#@ [load 1] T 58#@ [possible factor := 1] S 65 @ [negative count of items per line] T 64 @ [initialize count]   [Start of loop round possible factors] [8] T F [clear acc] A 56#@ [load integer] T 4 D [to 4F for division] A 58#@ [load possible factor] T 6 D [to 6F for division] A 13 @ [for return from next] G 110 F [do division; clears acc] A 6 D [save quotient (6F may be changed below)] T 60#@ S 4 D [load negative of remainder] G 44 @ [skip if remainder > 0]   [Here if m is a factor of n.] [Print m and the quotient together] T F [clear acc] A 64 @ [test count of items per line] G 26 @ [skip if not start of line] S 65 @ [start of line, reset count] T 64 @ O 70 @ [and print CR, LF] O 71 @ [26] T F [clear acc] O 67 @ [print '('] A 58#@ [load factor] T D [to 0D for printing] A 30 @ [for return from next] G 56 F [print factor; clears acc] O 69 @ [print comma] A 60#@ [load quotient] T D [to 0D for printing] A 35 @ [for return from next] G 56 F [print quotient; clears acc] O 68 @ [print ')'] A 64 @ [negative counter for items per line] A 2 F [inc] E 43 @ [skip if end of line] O 66 @ [not end of line, print 2 spaces] O 66 @ [43] T 64 @ [update counter]   [Common code after testing possible factor] [44] T F [clear acc] A 58#@ [load possible factor] A 62#@ [inc by 1] U 58#@ [store back] S 60#@ [compare with quotient] G 8 @ [loop if (new factor) < (old quotient)]   [Here when found all factors] O 70 @ [print CR, LF twice] O 71 @ O 70 @ O 71 @ T F [exit with acc = 0] [55] E F [return] [--------] [56] PF PF [number whose factors are to be found] [58] PF PF [possible factor] [60] PF PF [integer part of (number/factor)] T62#Z PF [clear sandwich digit in 35-bit constant 1] T 62 Z [resume normal loading] [62] PD PF [35-bit constant 1] [64] P F [negative counter for items per line] [65] P 4 F [items per line, in address field] [66]  ! F [space] [67] K F [left parenthesis (in figures mode)] [68] L F [right parenthesis (in figures mode)] [69] N F [comma (in figures mode)] [70] @ F [carriage return] [71] & F [line feed]   [Main routine for demonstrating subroutine.] T 400 K G K [0] # F [set figures mode] [1] K 4096 F [null char] [2] S #N [order to load negative of first number] [3] P 2 F [to inc address by 2 for next number]   [Enter with acc = 0] [4] O @ [set teleprinter to figures] A 2 @ [load order for first integer] [6] T 7 @ [plant in next order] [7] S D [load negative of 35-bit integer] E 17 @ [exit if number is 0] T D [negative to 0D] S D [convert to positive] T D [pass to subroutine] A 12 @ [call subroutine to find and print factors] G 148 F A 7 @ [modify order above, for next integer] A 3 @ E 6 @ [always jump, since S = 12 > 0] [--------] [17] O 1 @ [done, print null to flush printer buffer] Z F [stop]   E 4 Z [define entry point] P F [acc = 0 on entry]  
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#REXX
REXX
/*REXX program performs a fast Fourier transform (FFT) on a set of complex numbers. */ numeric digits length( pi() ) - length(.) /*limited by the PI function result. */ arg data /*ARG verb uppercases the DATA from CL.*/ if data='' then data= 1 1 1 1 0 /*Not specified? Then use the default.*/ size=words(data); pad= left('', 5) /*PAD: for indenting and padding SAYs.*/ do p=0 until 2**p>=size  ; end /*number of args exactly a power of 2? */ do j=size+1 to 2**p; data= data 0; end /*add zeroes to DATA 'til a power of 2.*/ size= words(data); ph= p % 2  ; call hdr /*╔═══════════════════════════╗*/ /* [↓] TRANSLATE allows I & J*/ /*║ Numbers in data can be in ║*/ do j=0 for size /*║ seven formats: real ║*/ _= translate( word(data, j+1), 'J', "I") /*║ real,imag ║*/ parse var _ #.1.j '' $ 1 "," #.2.j /*║ ,imag ║*/ if $=='J' then parse var #.1.j #2.j "J" #.1.j /*║ nnnJ ║*/ /*║ nnnj ║*/ do m=1 for 2; #.m.j= word(#.m.j 0, 1) /*║ nnnI ║*/ end /*m*/ /*omitted part? [↑] */ /*║ nnni ║*/ /*╚═══════════════════════════╝*/ say pad ' FFT in ' center(j+1, 7) pad fmt(#.1.j) fmt(#.2.j, "i") end /*j*/ say tran= pi()*2 / 2**p;  !.=0; hp= 2**p %2; A= 2**(p-ph); ptr= A; dbl= 1 say do p-ph; halfPtr=ptr % 2 do i=halfPtr by ptr to A-halfPtr; _= i - halfPtr;  !.i= !._ + dbl end /*i*/ ptr= halfPtr; dbl= dbl + dbl end /*p-ph*/   do j=0 to 2**p%4; cmp.j= cos(j*tran); _= hp - j; cmp._= -cmp.j _= hp + j; cmp._= -cmp.j end /*j*/ B= 2**ph do i=0 for A; q= i * B do j=0 for B; h=q+j; _= !.j*B+!.i; if _<=h then iterate parse value #.1._ #.1.h #.2._ #.2.h with #.1.h #.1._ #.2.h #.2._ end /*j*/ /* [↑] swap two sets of values. */ end /*i*/ dbl= 1 do p  ; w= hp % dbl do k=0 for dbl  ; Lb= w * k  ; Lh= Lb + 2**p % 4 do j=0 for w  ; a= j * dbl * 2 + k  ; b= a + dbl r= #.1.a; i= #.2.a ; c1= cmp.Lb * #.1.b  ; c4= cmp.Lb * #.2.b c2= cmp.Lh * #.2.b  ; c3= cmp.Lh * #.1.b #.1.a= r + c1 - c2  ; #.2.a= i + c3 + c4 #.1.b= r - c1 + c2  ; #.2.b= i - c3 - c4 end /*j*/ end /*k*/ dbl= dbl + dbl end /*p*/ call hdr do z=0 for size say pad " FFT out " center(z+1,7) pad fmt(#.1.z) fmt(#.2.z,'j') end /*z*/ /*[↑] #s are shown with ≈20 dec. digits*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ cos: procedure; parse arg x; q= r2r(x)**2; z=1; _=1; p=1 /*bare bones COS. */ do k=2 by 2; _=-_*q/(k*(k-1)); z=z+_; if z=p then return z; p=z; end /*k*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ fmt: procedure; parse arg y,j; y= y/1 /*prettifies complex numbers for output*/ if abs(y) < '1e-'digits() %4 then y= 0; if y=0 & j\=='' then return '' dp= digits()%3; y= format(y, dp%6+1, dp); if pos(.,y)\==0 then y= strip(y, 'T', 0) y= strip(y, 'T', .); return left(y || j, dp) /*──────────────────────────────────────────────────────────────────────────────────────*/ hdr: _=pad '   data    num' pad "  real─part  " pad pad '        imaginary─part       ' say _; say translate(_, " "copies('═', 256), " "xrange()); return /*──────────────────────────────────────────────────────────────────────────────────────*/ pi: return 3.1415926535897932384626433832795028841971693993751058209749445923078164062862 r2r: return arg(1) // ( pi() * 2 ) /*reduce the radians to a unit circle. */
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Raku
Raku
sub nacci ( $s = 2, :@start = (1,) ) { my @seq = |@start, { state $n = +@start; @seq[ ($n - $s .. $n++ - 1).grep: * >= 0 ].sum } … *; }   put "{.fmt: '%2d'}-nacci: ", nacci($_)[^20] for 2..12 ;   put "Lucas: ", nacci(:start(2,1))[^20];
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#min
min
(1 2 3 4 5 6 7 8 9 10) 'even? filter print
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Luck
Luck
for i in range(1,101) do ( if i%15 == 0 then print("FizzBuzz") else if i%3 == 0 then print("Fizz") else if i%5 == 0 then print("Buzz") else print(i) )
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Wart
Wart
with infile "input.txt" with outfile "output.txt" whilet line (read_line) prn line
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Wren
Wren
import "io" for File   var contents = File.read("input.txt") File.create("output.txt") {|file| file.writeBytes(contents) }
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#BQN
BQN
Fib ← {𝕩>1 ? (𝕊 𝕩-1) + 𝕊 𝕩-2; 𝕩}
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Ela
Ela
open list   factors m = filter (\x -> m % x == 0) [1..m]
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Ruby
Ruby
def fft(vec) return vec if vec.size <= 1 evens_odds = vec.partition.with_index{|_,i| i.even?} evens, odds = evens_odds.map{|even_odd| fft(even_odd)*2} evens.zip(odds).map.with_index do |(even, odd),i| even + odd * Math::E ** Complex(0, -2 * Math::PI * i / vec.size) end end   fft([1,1,1,1,0,0,0,0]).each{|c| puts "%9.6f %+9.6fi" % c.rect}
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#REXX
REXX
/*REXX program calculates and displays a N-step Fibonacci sequence(s). */ parse arg FibName values /*allows a Fibonacci name, starter vals*/ if FibName\='' then do; call nStepFib FibName,values; signal done; end /* [↓] no args specified, show a bunch*/ call nStepFib 'Lucas' , 2 1 call nStepFib 'fibonacci' , 1 1 call nStepFib 'tribonacci' , 1 1 2 call nStepFib 'tetranacci' , 1 1 2 4 call nStepFib 'pentanacci' , 1 1 2 4 8 call nStepFib 'hexanacci' , 1 1 2 4 8 16 call nStepFib 'heptanacci' , 1 1 2 4 8 16 32 call nStepFib 'octonacci' , 1 1 2 4 8 16 32 64 call nStepFib 'nonanacci' , 1 1 2 4 8 16 32 64 128 call nStepFib 'decanacci' , 1 1 2 4 8 16 32 64 128 256 call nStepFib 'undecanacci' , 1 1 2 4 8 16 32 64 128 256 512 call nStepFib 'dodecanacci' , 1 1 2 4 8 16 32 64 128 256 512 1024 call nStepFib '13th-order' , 1 1 2 4 8 16 32 64 128 256 512 1024 2048 done: exit /*stick a fork in it, we're all done. */ /*────────────────────────────────────────────────────────────────────────────*/ nStepFib: procedure; parse arg Fname,vals,m; if m=='' then m=30; L= N=words(vals) do pop=1 for N /*use N initial values. */ @.pop=word(vals,pop) /*populate initial numbers*/ end /*pop*/ do j=1 for m /*calculate M Fib numbers.*/ if j>N then do; @.j=0 /*initialize the sum to 0.*/ do k=j-N for N /*sum the last N numbers.*/ @[email protected][email protected] /*add the [N-j]th number.*/ end /*k*/ end L=L @.j /*append Fib number──►list*/ end /*j*/   say right(Fname,11)'[sum'right(N,3) "terms]:" strip(L) '···' return
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#MiniScript
MiniScript
list.filter = function(f) result = [] for item in self if f(item) then result.push item end for return result end function   isEven = function(x) return x % 2 == 0 end function   nums = [1, 2, 3, 4, 5, 6, 7, 9, 12, 15, 18, 21] print nums.filter(@isEven)
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#M2000_Interpreter
M2000 Interpreter
  \\ one line, hard to read For i=1 to 100 {If i mod 3=0 Then {if i mod 5=0 Then Print "FizzBuzz", Else Print "Fizz",} Else {if i mod 5=0 Then Print "Buzz", else print i, } } : Print   \\ Better code For i=1 to 100 { Push str$(i,0)+". "+if$(i mod 3=0->"Fizz","")+if$(i mod 5=0->"Buzz","") If stackitem$()="" then Drop : Continue Print Letter$ }   \\ Far Better Code For i=1 to 100 { Printme(if$(i mod 3=0->"Fizz","")+if$(i mod 5=0->"Buzz","")) } Print Sub Printme(a$) If a$<>"" Then Print a$, else Print i, End Sub  
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#XPL0
XPL0
include c:\cxpl\codes; int I, C; char IntermediateVariable; [IntermediateVariable:= GetHp; I:= 0; repeat C:= ChIn(1); IntermediateVariable(I):= C; I:= I+1; until C = $1A; \EOF I:= 0; repeat C:= IntermediateVariable(I); I:= I+1; ChOut(0, C); until C = $1A; \EOF ]
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#zkl
zkl
var d=File("input.txt").read(); (f:=File("output.txt","w")).write(d); f.close(); // one read, one write copy File("output.txt").pump(Console); // verify by printing
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Bracmat
Bracmat
fib=.!arg:<2|fib$(!arg+-2)+fib$(!arg+-1)
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Elixir
Elixir
defmodule RC do def factor(1), do: [1] def factor(n) do (for i <- 1..div(n,2), rem(n,i)==0, do: i) ++ [n] end   # Recursive (faster version); def divisor(n), do: divisor(n, 1, []) |> Enum.sort   defp divisor(n, i, factors) when n < i*i , do: factors defp divisor(n, i, factors) when n == i*i , do: [i | factors] defp divisor(n, i, factors) when rem(n,i)==0, do: divisor(n, i+1, [i, div(n,i) | factors]) defp divisor(n, i, factors) , do: divisor(n, i+1, factors) end   Enum.each([45, 53, 60, 64], fn n -> IO.puts "#{n}: #{inspect RC.factor(n)}" end)   IO.puts "\nRange: #{inspect range = 1..10000}" funs = [ factor: &RC.factor/1, divisor: &RC.divisor/1 ] Enum.each(funs, fn {name, fun} -> {time, value} = :timer.tc(fn -> Enum.count(range, &length(fun.(&1))==2) end) IO.puts "#{name}\t prime count : #{value},\t#{time/1000000} sec" end)  
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Run_BASIC
Run BASIC
cnt = 8 sig = int(log(cnt) /log(2) +0.9999)   pi = 3.14159265 real1 = 2^sig   real = real1 -1 real2 = int(real1 / 2) real4 = int(real1 / 4) real3 = real4 +real2   dim rel(real1) dim img(real1) dim cmp(real3)   for i = 0 to cnt -1 read rel(i) read img(i) next i   data 1,0, 1,0, 1,0, 1,0, 0,0, 0,0, 0,0, 0,0   sig2 = int(sig / 2) sig1 = sig -sig2 cnt1 = 2^sig1 cnt2 = 2^sig2   dim v(cnt1 -1) v(0) = 0 dv = 1 ptr = cnt1   for j = 1 to sig1 hlfPtr = int(ptr / 2) pt = cnt1 - hlfPtr for i = hlfPtr to pt step ptr v(i) = v(i -hlfPtr) + dv next i dv = dv + dv ptr = hlfPtr next j   k = 2 *pi /real1   for x = 0 to real4 cmp(x) = cos(k *x) cmp(real2 - x) = 0 - cmp(x) cmp(real2 + x) = 0 - cmp(x) next x   print "fft: bit reversal"   for i = 0 to cnt1 -1 ip = i *cnt2 for j = 0 to cnt2 -1 h = ip +j g = v(j) *cnt2 +v(i) if g >h then temp = rel(g) rel(g) = rel(h) rel(h) = temp temp = img(g) img(g) = img(h) img(h) = temp end if next j next i   t = 1 for stage = 1 to sig print " stage:- "; stage d = int(real2 / t) for ii = 0 to t -1 l = d *ii ls = l +real4 for i = 0 to d -1 a = 2 *i *t +ii b = a +t f1 = rel(a) f2 = img(a) cnt1 = cmp(l) *rel(b) cnt2 = cmp(ls) *img(b) cnt3 = cmp(ls) *rel(b) cnt4 = cmp(l) *img(b) rel(a) = f1 + cnt1 - cnt2 img(a) = f2 + cnt3 + cnt4 rel(b) = f1 - cnt1 + cnt2 img(b) = f2 - cnt3 - cnt4 next i next ii t = t +t next stage   print " Num real imag" for i = 0 to real if abs(rel(i)) <10^-5 then rel(i) = 0 if abs(img(i)) <10^-5 then img(i) = 0 print " "; i;" ";using("##.#",rel(i));" ";img(i) next i end
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Rust
Rust
extern crate num; use num::complex::Complex; use std::f64::consts::PI;   const I: Complex<f64> = Complex { re: 0.0, im: 1.0 };   pub fn fft(input: &[Complex<f64>]) -> Vec<Complex<f64>> { fn fft_inner( buf_a: &mut [Complex<f64>], buf_b: &mut [Complex<f64>], n: usize, // total length of the input array step: usize, // precalculated values for t ) { if step >= n { return; }   fft_inner(buf_b, buf_a, n, step * 2); fft_inner(&mut buf_b[step..], &mut buf_a[step..], n, step * 2); // create a slice for each half of buf_a: let (left, right) = buf_a.split_at_mut(n / 2);   for i in (0..n).step_by(step * 2) { let t = (-I * PI * (i as f64) / (n as f64)).exp() * buf_b[i + step]; left[i / 2] = buf_b[i] + t; right[i / 2] = buf_b[i] - t; } }   // round n (length) up to a power of 2: let n_orig = input.len(); let n = n_orig.next_power_of_two(); // copy the input into a buffer: let mut buf_a = input.to_vec(); // right pad with zeros to a power of two: buf_a.append(&mut vec![Complex { re: 0.0, im: 0.0 }; n - n_orig]); // alternate between buf_a and buf_b to avoid allocating a new vector each time: let mut buf_b = buf_a.clone(); fft_inner(&mut buf_a, &mut buf_b, n, 1); buf_a }   fn show(label: &str, buf: &[Complex<f64>]) { println!("{}", label); let string = buf .into_iter() .map(|x| format!("{:.4}{:+.4}i", x.re, x.im)) .collect::<Vec<_>>() .join(", "); println!("{}", string); }   fn main() { let input: Vec<_> = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0] .into_iter() .map(|x| Complex::from(x)) .collect(); show("input:", &input); let output = fft(&input); show("output:", &output); }
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Ring
Ring
  # Project : Fibonacci n-step number sequences   f = list(12)   see "Fibonacci:" + nl f2 = [1,1] for nr2 = 1 to 10 see "" + f2[1] + " " fibn(f2) next showarray(f2) see " ..." + nl + nl   see "Tribonacci:" + nl f3 = [1,1,2] for nr3 = 1 to 9 see "" + f3[1] + " " fibn(f3) next showarray(f3) see " ..." + nl + nl   see "Tetranacci:" + nl f4 = [1,1,2,4] for nr4 = 1 to 8 see "" + f4[1] + " " fibn(f4) next showarray(f4) see " ..." + nl + nl   see "Lucas:" + nl f5 = [2,1] for nr5 = 1 to 10 see "" + f5[1] + " " fibn(f5) next showarray(f5) see " ..." + nl + nl   func fibn(fs) s = sum(fs) for i = 2 to len(fs) fs[i-1] = fs[i] next fs[i-1] = s return fs   func sum(arr) sm = 0 for sn = 1 to len(arr) sm = sm + arr[sn] next return sm   func showarray(fn) svect = "" for p = 1 to len(fn) svect = svect + fn[p] + " " next see svect  
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#ML
ML
val ary = [1,2,3,4,5,6]; List.filter (fn x => x mod 2 = 0) ary
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#M4
M4
define(`for', `ifelse($#,0,``$0'', `ifelse(eval($2<=$3),1, `pushdef(`$1',$2)$5`'popdef(`$1')$0(`$1',eval($2+$4),$3,$4,`$5')')')')   for(`x',1,100,1, `ifelse(eval(x%15==0),1,FizzBuzz, `ifelse(eval(x%3==0),1,Fizz, `ifelse(eval(x%5==0),1,Buzz,x)')') ')
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Zig
Zig
const std = @import("std");   pub fn main() !void { var in = try std.fs.cwd().openFile("input.txt", .{}); defer in.close(); var out = try std.fs.cwd().openFile("output.txt", .{ .mode = .write_only }); defer out.close(); var file_reader = in.reader(); var file_writer = out.writer(); var buf: [100]u8 = undefined; var read: usize = 1; while (read > 0) { read = try file_reader.readAll(&buf); try file_writer.writeAll(buf[0..read]); } }
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Brainf.2A.2A.2A
Brainf***
++++++++++ >>+<<[->[->+>+<<]>[-<+>]>[-<+>]<<<]
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Erlang
Erlang
factors(N) -> [I || I <- lists:seq(1,trunc(N/2)), N rem I == 0]++[N].
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Scala
Scala
import scala.math.{ Pi, cos, sin, cosh, sinh, abs }   case class Complex(re: Double, im: Double) { def +(x: Complex): Complex = Complex(re + x.re, im + x.im) def -(x: Complex): Complex = Complex(re - x.re, im - x.im) def *(x: Double): Complex = Complex(re * x, im * x) def *(x: Complex): Complex = Complex(re * x.re - im * x.im, re * x.im + im * x.re) def /(x: Double): Complex = Complex(re / x, im / x)   override def toString(): String = { val a = "%1.3f" format re val b = "%1.3f" format abs(im) (a,b) match { case (_, "0.000") => a case ("0.000", _) => b + "i" case (_, _) if im > 0 => a + " + " + b + "i" case (_, _) => a + " - " + b + "i" } } }   def exp(c: Complex) : Complex = { val r = (cosh(c.re) + sinh(c.re)) Complex(cos(c.im), sin(c.im)) * r }
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Ruby
Ruby
def anynacci(start_sequence, count) n = start_sequence.length # Get the n-step for the type of fibonacci sequence result = start_sequence.dup # Create a new result array with the values copied from the array that was passed by reference (count-n).times do # Loop for the remaining results up to count result << result.last(n).sum # Get the last n element from result and append its total to Array end result end   naccis = { lucas: [2,1], fibonacci: [1,1], tribonacci: [1,1,2], tetranacci: [1,1,2,4], pentanacci: [1,1,2,4,8], hexanacci: [1,1,2,4,8,16], heptanacci: [1,1,2,4,8,16,32], octonacci: [1,1,2,4,8,16,32,64], nonanacci: [1,1,2,4,8,16,32,64,128], decanacci: [1,1,2,4,8,16,32,64,128,256] }   naccis.each {|name, seq| puts "%12s : %p" % [name, anynacci(seq, 15)]}
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#MUMPS
MUMPS
FILTERARRAY  ;NEW I,J,A,B - Not making new, so we can show the values  ;Populate array A FOR I=1:1:10 SET A(I)=I  ;Move even numbers into B SET J=0 FOR I=1:1:10 SET:A(I)#2=0 B($INCREMENT(J))=A(I) QUIT
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#make
make
MOD3 = 0 MOD5 = 0 ALL != jot 100   all: say-100   .for NUMBER in $(ALL)   MOD3 != expr \( $(MOD3) + 1 \) % 3; true MOD5 != expr \( $(MOD5) + 1 \) % 5; true   . if "$(NUMBER)" > 1 PRED != expr $(NUMBER) - 1 say-$(NUMBER): say-$(PRED) . else say-$(NUMBER): . endif . if "$(MOD3)$(MOD5)" == "00" @echo FizzBuzz . elif "$(MOD3)" == "0" @echo Fizz . elif "$(MOD5)" == "0" @echo Buzz . else @echo $(NUMBER) . endif   .endfor
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Brat
Brat
fibonacci = { x | true? x < 2, x, { fibonacci(x - 1) + fibonacci(x - 2) } }
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#ERRE
ERRE
  PROGRAM FACTORS   !$DOUBLE   PROCEDURE FACTORLIST(N->L$)   LOCAL C%,I,FLIPS%,I% LOCAL DIM L[32] FOR I=1 TO SQR(N) DO IF N=I*INT(N/I) THEN L[C%]=I C%=C%+1 IF N<>I*I THEN L[C%]=INT(N/I) C%=C%+1 END IF END IF END FOR    ! BUBBLE SORT ARRAY L[] FLIPS%=1 WHILE FLIPS%>0 DO FLIPS%=0 FOR I%=0 TO C%-2 DO IF L[I%]>L[I%+1] THEN SWAP(L[I%],L[I%+1]) FLIPS%=1 END FOR END WHILE   L$="" FOR I%=0 TO C%-1 DO L$=L$+STR$(L[I%])+"," END FOR L$=LEFT$(L$,LEN(L$)-1)   END PROCEDURE   BEGIN PRINT(CHR$(12);) ! CLS FACTORLIST(45->L$) PRINT("The factors of 45 are ";L$) FACTORLIST(12345->L$) PRINT("The factors of 12345 are ";L$) END PROGRAM  
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Scheme
Scheme
; Compute and return the FFT of the given input vector using the Cooley-Tukey Radix-2 ; Decimation-in-Time (DIT) algorithm. The input is assumed to be a vector of complex ; numbers that is a power of two in length greater than zero.   (define fft-r2dit (lambda (in-vec) ; The constant ( -2 * pi * i ). (define -2*pi*i (* -2.0i (atan 0 -1))) ; The Cooley-Tukey Radix-2 Decimation-in-Time (DIT) procedure. (define fft-r2dit-aux (lambda (vec start leng stride) (if (= leng 1) (vector (vector-ref vec start)) (let* ((leng/2 (truncate (/ leng 2))) (evns (fft-r2dit-aux vec 0 leng/2 (* stride 2))) (odds (fft-r2dit-aux vec stride leng/2 (* stride 2))) (dft (make-vector leng))) (do ((inx 0 (1+ inx))) ((>= inx leng/2) dft) (let ((e (vector-ref evns inx)) (o (* (vector-ref odds inx) (exp (* inx (/ -2*pi*i leng)))))) (vector-set! dft inx (+ e o)) (vector-set! dft (+ inx leng/2) (- e o)))))))) ; Call the Cooley-Tukey Radix-2 Decimation-in-Time (DIT) procedure w/ appropriate ; arguments as derived from the argument to the fft-r2dit procedure. (fft-r2dit-aux in-vec 0 (vector-length in-vec) 1)))   ; Test using a simple pulse.   (let* ((inp (vector 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0)) (dft (fft-r2dit inp))) (printf "In: ~a~%" inp) (printf "DFT: ~a~%" dft))
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Run_BASIC
Run BASIC
a = fib(" fibonacci ", "1,1") a = fib("tribonacci ", "1,1,2") a = fib("tetranacci ", "1,1,2,4") a = fib(" pentanacc ", "1,1,2,4,8") a = fib(" hexanacci ", "1,1,2,4,8,16") a = fib(" lucas ", "2,1")   function fib(f$, s$) dim f(20) while word$(s$,b+1,",") <> "" b = b + 1 f(b) = val(word$(s$,b,",")) wend PRINT f$; "=>"; for i = b to 13 + b print " "; f(i-b+1); ","; for j = (i - b) + 1 to i f(i+1) = f(i+1) + f(j) next j next i print end function
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#Nemerle
Nemerle
def original = $[1 .. 100]; def filtered = original.Filter(fun(n) {n % 2 == 0}); WriteLine($"$filtered");
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Maple
Maple
seq(print(`if`(modp(n,3)=0,`if`(modp(n,15)=0,"FizzBuzz","Fizz"),`if`(modp(n,5)=0,"Buzz",n))),n=1..100):
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Burlesque
Burlesque
  {0 1}{^^++[+[-^^-]\/}30.*\[e!vv  
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Excel
Excel
=LAMBDA(n, IF(1 < n, LET( froot, SQRT(n), nroot, FLOOR.MATH(froot), lows, FILTERP( LAMBDA(x, 0 = MOD(n, x)) )( ENUMFROMTO(1)(nroot) ), APPEND(lows)( LAMBDA(x, n / x)( REVERSE( IF(froot <> nroot, lows, INIT(lows) ) ) ) ) ), IF(1 = n, {1}, NA()) ) )
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Scilab
Scilab
fft([1,1,1,1,0,0,0,0]')
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Rust
Rust
  struct GenFibonacci { buf: Vec<u64>, sum: u64, idx: usize, }   impl Iterator for GenFibonacci { type Item = u64; fn next(&mut self) -> Option<u64> { let result = Some(self.sum); self.sum -= self.buf[self.idx]; self.buf[self.idx] += self.sum; self.sum += self.buf[self.idx]; self.idx = (self.idx + 1) % self.buf.len(); result } }   fn print(buf: Vec<u64>, len: usize) { let mut sum = 0; for &elt in buf.iter() { sum += elt; print!("\t{}", elt); } let iter = GenFibonacci { buf: buf, sum: sum, idx: 0 }; for x in iter.take(len) { print!("\t{}", x); } }     fn main() { print!("Fib2:"); print(vec![1,1], 10 - 2);   print!("\nFib3:"); print(vec![1,1,2], 10 - 3);   print!("\nFib4:"); print(vec![1,1,2,4], 10 - 4);   print!("\nLucas:"); print(vec![2,1], 10 - 2); }  
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#NetRexx
NetRexx
/* NetRexx */ options replace format comments java crossref symbols nobinary numeric digits 5000   -- ============================================================================= class RFilter public properties indirect filter = RFilter.ArrayFilter -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method main(args = String[]) public static arg = Rexx(args) RFilter().runSample(arg) return -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method runSample(arg) public sd1 = Rexx[] sd2 = Rexx[]   say 'Test data:' sd1 = makeSampleData(100) display(sd1) setFilter(RFilter.EvenNumberOnlyArrayFilter()) say say 'Option 1 (copy to a new array):' sd2 = getFilter().filter(sd1) display(sd2) say say 'Option 2 (replace the original array):' sd1 = getFilter().filter(sd1) display(sd1) return -- --------------------------------------------------------------------------- method display(sd = Rexx[]) public static say '-'.copies(80) loop i_ = 0 to sd.length - 1 say sd[i_] '\-' end i_ say return -- --------------------------------------------------------------------------- method makeSampleData(size) public static returns Rexx[] sd = Rexx[size] loop e_ = 0 to size - 1 sd[e_] = (e_ + 1 - size / 2) / 2 end e_ return sd   -- ============================================================================= class RFilter.ArrayFilter abstract -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ method filter(array = Rexx[]) public abstract returns Rexx[] -- = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = class RFilter.EvenNumberOnlyArrayFilter extends RFilter.ArrayFilter -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - method filter(array = Rexx[]) public returns Rexx[] clist = ArrayList(Arrays.asList(array)) li = clist.listIterator() loop while li.hasNext() e_ = Rexx li.next if \e_.datatype('w'), e_ // 2 \= 0 then li.remove() end ry = Rexx[] clist.toArray(Rexx[clist.size()]) return ry  
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
Do[Print[Which[Mod[i, 15] == 0, "FizzBuzz", Mod[i, 5] == 0, "Buzz", Mod[i, 3] == 0, "Fizz", True, i]], {i, 100}]
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#C
C
long long fibb(long long a, long long b, int n) { return (--n>0)?(fibb(b, a+b, n)):(a); }
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#F.23
F#
let factors number = seq { for divisor in 1 .. (float >> sqrt >> int) number do if number % divisor = 0 then yield divisor if number <> 1 then yield number / divisor //special case condition: when number=1 then divisor=(number/divisor), so don't repeat it }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#SequenceL
SequenceL
import <Utilities/Complex.sl>; import <Utilities/Math.sl>; import <Utilities/Sequence.sl>;   fft(x(1)) := let n := size(x);   top := fft(x[range(1,n-1,2)]); bottom := fft(x[range(2,n,2)]);   d[i] := makeComplex(cos(2.0*pi*i/n), -sin(2.0*pi*i/n)) foreach i within 0...(n / 2 - 1);   z := complexMultiply(d, bottom); in x when n <= 1 else complexAdd(top,z) ++ complexSubtract(top,z);
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Sidef
Sidef
func fft(arr) { arr.len == 1 && return arr   var evn = fft([arr[^arr -> grep { .is_even }]]) var odd = fft([arr[^arr -> grep { .is_odd }]]) var twd = (Num.tau.i / arr.len)   ^odd -> map {|n| odd[n] *= ::exp(twd * n)} (evn »+« odd) + (evn »-« odd) }   var cycles = 3 var sequence = 0..15 var wave = sequence.map {|n| ::sin(n * Num.tau / sequence.len * cycles) } say "wave:#{wave.map{|w| '%6.3f' % w }.join(' ')}" say "fft: #{fft(wave).map { '%6.3f' % .abs }.join(' ')}"
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Scala
Scala
  //we rely on implicit conversion from Int to BigInt. //BigInt is preferable since the numbers get very big, very fast. //(though for a small example of the first few numbers it's not needed) def fibStream(init: BigInt*): LazyList[BigInt] = { def inner(prev: Vector[BigInt]): LazyList[BigInt] = prev.head #:: inner(prev.tail :+ prev.sum)   inner(init.toVector) }  
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#NewLISP
NewLISP
> (filter (fn (x) (= (% x 2) 0)) '(1 2 3 4 5 6 7 8 9 10)) (2 4 6 8 10)  
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#MATLAB
MATLAB
function fizzBuzz() for i = (1:100) if mod(i,15) == 0 fprintf('FizzBuzz ') elseif mod(i,3) == 0 fprintf('Fizz ') elseif mod(i,5) == 0 fprintf('Buzz ') else fprintf('%i ',i)) end end fprintf('\n'); end
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#C.23
C#
  public static ulong Fib(uint n) { return (n < 2)? n : Fib(n - 1) + Fib(n - 2); }  
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Factor
Factor
USE: math.primes.factors ( scratchpad ) 24 divisors . { 1 2 3 4 6 8 12 24 }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Stata
Stata
. mata : a=1,2,3,4 : fft(a) 1 2 3 4 +-----------------------------------------+ 1 | 10 -2 - 2i -2 -2 + 2i | +-----------------------------------------+ : end
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Swift
Swift
import Foundation import Numerics   typealias Complex = Numerics.Complex<Double>   extension Complex { var exp: Complex { Complex(cos(imaginary), sin(imaginary)) * Complex(cosh(real), sinh(real)) }   var pretty: String { let fmt = { String(format: "%1.3f", $0) } let re = fmt(real) let im = fmt(abs(imaginary))   if im == "0.000" { return re } else if re == "0.000" { return im } else if imaginary > 0 { return re + " + " + im + "i" } else { return re + " - " + im + "i" } } }   func fft(_ array: [Complex]) -> [Complex] { _fft(array, direction: Complex(0.0, 2.0), scalar: 1) } func rfft(_ array: [Complex]) -> [Complex] { _fft(array, direction: Complex(0.0, -2.0), scalar: 2) }   private func _fft(_ arr: [Complex], direction: Complex, scalar: Double) -> [Complex] { guard arr.count > 1 else { return arr }   let n = arr.count let cScalar = Complex(scalar, 0)   precondition(n % 2 == 0, "The Cooley-Tukey FFT algorithm only works when the length of the input is even.")   var (evens, odds) = arr.lazy.enumerated().reduce(into: ([Complex](), [Complex]()), {res, cur in if cur.offset & 1 == 0 { res.0.append(cur.element) } else { res.1.append(cur.element) } })   evens = _fft(evens, direction: direction, scalar: scalar) odds = _fft(odds, direction: direction, scalar: scalar)   let (left, right) = (0 ..< n / 2).map({i -> (Complex, Complex) in let offset = (direction * Complex((.pi * Double(i) / Double(n)), 0)).exp * odds[i] / cScalar let base = evens[i] / cScalar   return (base + offset, base - offset) }).reduce(into: ([Complex](), [Complex]()), {res, cur in res.0.append(cur.0) res.1.append(cur.1) })   return left + right }   let dat = [Complex(1.0, 0.0), Complex(1.0, 0.0), Complex(1.0, 0.0), Complex(1.0, 0.0), Complex(0.0, 0.0), Complex(0.0, 2.0), Complex(0.0, 0.0), Complex(0.0, 0.0)]   print(fft(dat).map({ $0.pretty })) print(rfft(f).map({ $0.pretty }))
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Scheme
Scheme
  (import (scheme base) (scheme write) (srfi 1))   ;; uses n-step sequence formula to ;; continue lst until of length num (define (n-fib lst num) (let ((n (length lst))) (do ((result (reverse lst) (cons (fold + 0 (take result n)) result))) ((= num (length result)) (reverse result)))))   ;; display examples (do ((i 2 (+ 1 i))) ((> i 4) ) (display (string-append "n = " (number->string i) ": ")) (display (n-fib (cons 1 (list-tabulate (- i 1) (lambda (n) (expt 2 n)))) 15)) (newline))   (display "Lucas: ") (display (n-fib '(2 1) 15)) (newline)  
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#NGS
NGS
F even(x:Int) x % 2 == 0   evens = Arr(1...10).filter(even)
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Maxima
Maxima
for n:1 thru 100 do if mod(n, 15) = 0 then (sprint("FizzBuzz"), newline()) elseif mod(n, 3) = 0 then (sprint("Fizz"), newline()) elseif mod(n,5) = 0 then (sprint("Buzz"), newline()) else (sprint(n), newline());
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#C.2B.2B
C++
#include <iostream>   int main() { unsigned int a = 1, b = 1; unsigned int target = 48; for(unsigned int n = 3; n <= target; ++n) { unsigned int fib = a + b; std::cout << "F("<< n << ") = " << fib << std::endl; a = b; b = fib; }   return 0; }
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#FALSE
FALSE
[1[\$@$@-][\$@$@$@$@\/*=[$." "]?1+]#.%]f: 45f;! 53f;! 64f;!
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#SystemVerilog
SystemVerilog
    package math_pkg; // Inspired by the post // https://community.cadence.com/cadence_blogs_8/b/fv/posts/create-a-sine-wave-generator-using-systemverilog // import functions directly from C library //import dpi task C Name = SV function name import "DPI" pure function real cos (input real rTheta); import "DPI" pure function real sin(input real y); import "DPI" pure function real atan2(input real y, input real x); endpackage : math_pkg     // Encapsulates the functions in a parameterized class // The FFT is implemented using floating point arithmetic (systemverilog real) // Complex values are represented as a real vector [1:0], the index 0 is the real part // and the index 1 is the imaginary part. class fft_fp #( parameter LOG2_NS = 7, parameter NS = 1<<LOG2_NS );     static function void bit_reverse_order(input real buffer_in[0:NS-1][1:0], output real buffer[0:NS-1][1:0]); begin for(reg [LOG2_NS:0] j = 0; j < NS; j = j + 1) begin reg [LOG2_NS-1:0] ij; ij = {<<{j[LOG2_NS-1:0]}}; // Right to left streaming buffer[j][0] = buffer_in[ij][0]; buffer[j][1] = buffer_in[ij][1]; end end endfunction // SystemVerilog FFT implementation translated from Java static function void transform(input real buffer_in[0:NS-1][1:0], output real buffer[0:NS-1][1:0]); begin static real pi = math_pkg::atan2(0.0, -1.0); bit_reverse_order(buffer_in, buffer); for(int N = 2; N <= NS; N = N << 1) begin for(int i = 0; i < NS; i = i + N) begin for(int k =0; k < N/2; k = k + 1) begin int evenIndex; int oddIndex; real theta; real wr, wi; real zr, zi; evenIndex = i + k; oddIndex = i + k + (N/2); theta = (-2.0*pi*k/real'(N)); // Call to the DPI C functions // (it could be memorized to save some calls but I dont think it worthes) // w = exp(-2j*pi*k/N); wr = math_pkg::cos(theta); wi = math_pkg::sin(theta); // x = w * buffer[oddIndex] zr = buffer[oddIndex][0] * wr - buffer[oddIndex][1] * wi; zi = buffer[oddIndex][0] * wi + buffer[oddIndex][1] * wr; // update oddIndex before evenIndex buffer[ oddIndex][0] = buffer[evenIndex][0] - zr; buffer[ oddIndex][1] = buffer[evenIndex][1] - zi; // because evenIndex is in the rhs buffer[evenIndex][0] = buffer[evenIndex][0] + zr; buffer[evenIndex][1] = buffer[evenIndex][1] + zi; end end end end endfunction // Implements the inverse FFT using the following identity // ifft(x) = conj(fft(conj(x))/NS; static function void invert(input real buffer_in[0:NS-1][1:0], output real buffer[0:NS-1][1:0]); real tmp[0:NS-1][1:0]; begin // Conjugates the input for(int i = 0; i < NS; i = i + 1) begin tmp[i][0] = buffer_in[i][0]; tmp[i][1] = -buffer_in[i][1]; end transform(tmp, buffer); // Conjugate and scale the output for(int i = 0; i < NS; i = i + 1) begin buffer[i][0] = buffer[i][0]/NS; buffer[i][1] = -buffer[i][1]/NS; end end endfunction   endclass  
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Seed7
Seed7
$ include "seed7_05.s7i";   const func array integer: bonacci (in array integer: start, in integer: arity, in integer: length) is func result var array integer: bonacciSequence is 0 times 0; local var integer: sum is 0; var integer: index is 0; begin bonacciSequence := start[.. length]; while length(bonacciSequence) < length do sum := 0; for index range max(1, length(bonacciSequence) - arity + 1) to length(bonacciSequence) do sum +:= bonacciSequence[index]; end for; bonacciSequence &:= [] (sum); end while; end func;   const proc: print (in string: name, in array integer: sequence) is func local var integer: index is 0; begin write((name <& ":") rpad 12); for index range 1 to pred(length(sequence)) do write(sequence[index] <& ", "); end for; writeln(sequence[length(sequence)]); end func;   const proc: main is func begin print("Fibonacci", bonacci([] (1, 1), 2, 10)); print("Tribonacci", bonacci([] (1, 1), 3, 10)); print("Tetranacci", bonacci([] (1, 1), 4, 10)); print("Lucas", bonacci([] (2, 1), 2, 10)); end func;
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#Nial
Nial
filter (= [0 first, mod [first, 2 first] ] ) 0 1 2 3 4 5 6 7 8 9 10 =0 2 4 6 8 10
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#MAXScript
MAXScript
for i in 1 to 100 do ( case of ( (mod i 15 == 0): (print "FizzBuzz") (mod i 5 == 0): (print "Buzz") (mod i 3 == 0): (print "Fizz") default: (print i) ) )
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Cat
Cat
define fib { dup 1 <= [] [dup 1 - fib swap 2 - fib +] if }
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Fish
Fish
0v >i:0(?v'0'%+a* >~a,:1:>r{%  ?vr:nr','ov ^:&:;?(&:+1r:< <