task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #AWK | AWK | 1 |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Axe | Axe | :.PRGMNAME
: |
http://rosettacode.org/wiki/Enforced_immutability | Enforced immutability | Task
Demonstrate any means your language has to prevent the modification of values, or to create objects that cannot be modified after they have been created.
| #Wren | Wren | class A {
construct new(f) {
_f = f // sets field _f to the argument f
}
// getter property to allow access to _f
f { _f }
// setter property to allow _f to be mutated
f=(other) { _f = other }
}
var a = A.new(6)
System.print(a.f)
a.f = 8
System.print(a.f) |
http://rosettacode.org/wiki/Enforced_immutability | Enforced immutability | Task
Demonstrate any means your language has to prevent the modification of values, or to create objects that cannot be modified after they have been created.
| #Z80_Assembly | Z80 Assembly | List:
byte 2,3,4,5,6 ;this could be either mutable or immutable, it depends on the hardware. |
http://rosettacode.org/wiki/Enforced_immutability | Enforced immutability | Task
Demonstrate any means your language has to prevent the modification of values, or to create objects that cannot be modified after they have been created.
| #zkl | zkl | List(1,2,3).del(0) //--> L(2,3)
ROList(1,2,3).del(0) //-->SyntaxError : Can't find del, which means you can't call it
d:=Dictionary(); d.add("one",1)
D(one:1)
d.makeReadOnly(); d.add("2",2) //-->AccessError(This Dictionary is read only) |
http://rosettacode.org/wiki/Entropy | Entropy | Task
Calculate the Shannon entropy H of a given input string.
Given the discrete random variable
X
{\displaystyle X}
that is a string of
N
{\displaystyle N}
"symbols" (total characters) consisting of
n
{\displaystyle n}
different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is :
H
2
(
X
)
=
−
∑
i
=
1
n
c
o
u
n
t
i
N
log
2
(
c
o
u
n
t
i
N
)
{\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)}
where
c
o
u
n
t
i
{\displaystyle count_{i}}
is the count of character
n
i
{\displaystyle n_{i}}
.
For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer.
This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where
S
=
k
B
N
H
{\displaystyle S=k_{B}NH}
where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis.
The "total", "absolute", or "extensive" information entropy is
S
=
H
2
N
{\displaystyle S=H_{2}N}
bits
This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have
S
=
N
log
2
(
16
)
{\displaystyle S=N\log _{2}(16)}
bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits.
The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data.
Two other "entropies" are useful:
Normalized specific entropy:
H
n
=
H
2
∗
log
(
2
)
log
(
n
)
{\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}}
which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923.
Normalized total (extensive) entropy:
S
n
=
H
2
N
∗
log
(
2
)
log
(
n
)
{\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}}
which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23.
Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information".
In keeping with Landauer's limit, the physics entropy generated from erasing N bits is
S
=
H
2
N
k
B
ln
(
2
)
{\displaystyle S=H_{2}Nk_{B}\ln(2)}
if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents.
Related tasks
Fibonacci_word
Entropy/Narcissist
| #EchoLisp | EchoLisp |
(lib 'hash)
;; counter: hash-table[key]++
(define (count++ ht k )
(hash-set ht k (1+ (hash-ref! ht k 0))))
(define (hi count n )
(define pi (// count n))
(- (* pi (log2 pi))))
;; (H [string|list]) → entropy (bits)
(define (H info)
(define S (if(string? info) (string->list info) info))
(define ht (make-hash))
(define n (length S))
(for ((s S)) (count++ ht s))
(for/sum ((s (make-set S))) (hi (hash-ref ht s) n)))
|
http://rosettacode.org/wiki/Ethiopian_multiplication | Ethiopian multiplication | Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
Method:
Take two numbers to be multiplied and write them down at the top of two columns.
In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1.
In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1.
Examine the table produced and discard any row where the value in the left column is even.
Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together
For example: 17 × 34
17 34
Halving the first column:
17 34
8
4
2
1
Doubling the second column:
17 34
8 68
4 136
2 272
1 544
Strike-out rows whose first cell is even:
17 34
8 68
4 136
2 272
1 544
Sum the remaining numbers in the right-hand column:
17 34
8 --
4 ---
2 ---
1 544
====
578
So 17 multiplied by 34, by the Ethiopian method is 578.
Task
The task is to define three named functions/methods/procedures/subroutines:
one to halve an integer,
one to double an integer, and
one to state if an integer is even.
Use these functions to create a function that does Ethiopian multiplication.
References
Ethiopian multiplication explained (BBC Video clip)
A Night Of Numbers - Go Forth And Multiply (Video)
Russian Peasant Multiplication
Programming Praxis: Russian Peasant Multiplication
| #D | D | int ethiopian(int n1, int n2) pure nothrow @nogc
in {
assert(n1 >= 0, "Multiplier can't be negative");
} body {
static enum doubleNum = (in int n) pure nothrow @nogc => n * 2;
static enum halveNum = (in int n) pure nothrow @nogc => n / 2;
static enum isEven = (in int n) pure nothrow @nogc => !(n & 1);
int result;
while (n1 >= 1) {
if (!isEven(n1))
result += n2;
n1 = halveNum(n1);
n2 = doubleNum(n2);
}
return result;
} unittest {
assert(ethiopian(77, 54) == 77 * 54);
assert(ethiopian(8, 923) == 8 * 923);
assert(ethiopian(64, -4) == 64 * -4);
}
void main() {
import std.stdio;
writeln("17 ethiopian 34 is ", ethiopian(17, 34));
} |
http://rosettacode.org/wiki/Equilibrium_index | Equilibrium index | An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices.
For example, in a sequence
A
{\displaystyle A}
:
A
0
=
−
7
{\displaystyle A_{0}=-7}
A
1
=
1
{\displaystyle A_{1}=1}
A
2
=
5
{\displaystyle A_{2}=5}
A
3
=
2
{\displaystyle A_{3}=2}
A
4
=
−
4
{\displaystyle A_{4}=-4}
A
5
=
3
{\displaystyle A_{5}=3}
A
6
=
0
{\displaystyle A_{6}=0}
3 is an equilibrium index, because:
A
0
+
A
1
+
A
2
=
A
4
+
A
5
+
A
6
{\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}}
6 is also an equilibrium index, because:
A
0
+
A
1
+
A
2
+
A
3
+
A
4
+
A
5
=
0
{\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0}
(sum of zero elements is zero)
7 is not an equilibrium index, because it is not a valid index of sequence
A
{\displaystyle A}
.
Task;
Write a function that, given a sequence, returns its equilibrium indices (if any).
Assume that the sequence may be very long.
| #Logo | Logo | to equilibrium.iter :i :before :after :tail :ret
if equal? :before :after [make "ret lput :i :ret]
if empty? butfirst :tail [output :ret]
output equilibrium.iter :i+1 (:before+first :tail) (:after-first butfirst :tail) (butfirst :tail) :ret
end
to equilibrium.index :list
output equilibrium.iter 1 0 (apply "sum butfirst :list) :list []
end
show equilibrium_index [-7 1 5 2 -4 3 0] ; [4 7] |
http://rosettacode.org/wiki/Equilibrium_index | Equilibrium index | An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices.
For example, in a sequence
A
{\displaystyle A}
:
A
0
=
−
7
{\displaystyle A_{0}=-7}
A
1
=
1
{\displaystyle A_{1}=1}
A
2
=
5
{\displaystyle A_{2}=5}
A
3
=
2
{\displaystyle A_{3}=2}
A
4
=
−
4
{\displaystyle A_{4}=-4}
A
5
=
3
{\displaystyle A_{5}=3}
A
6
=
0
{\displaystyle A_{6}=0}
3 is an equilibrium index, because:
A
0
+
A
1
+
A
2
=
A
4
+
A
5
+
A
6
{\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}}
6 is also an equilibrium index, because:
A
0
+
A
1
+
A
2
+
A
3
+
A
4
+
A
5
=
0
{\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0}
(sum of zero elements is zero)
7 is not an equilibrium index, because it is not a valid index of sequence
A
{\displaystyle A}
.
Task;
Write a function that, given a sequence, returns its equilibrium indices (if any).
Assume that the sequence may be very long.
| #Lua | Lua |
function array_sum(t)
assert(type(t) == "table", "t must be a table!")
local sum = 0
for i=1, #t do sum = sum + t[i] end
return sum
end
function equilibrium_index(t)
assert(type(t) == "table", "t must be a table!")
local left, right, ret = 0, array_sum(t), -1
for i,j in pairs(t) do
right = right - j
if left == right then
ret = i
break
end
left = left + j
end
return ret
end
print(equilibrium_index({-7, 1, 5, 2, -4, 3, 0}))
|
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Python | Python | import os
os.environ['HOME'] |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #R | R | Sys.getenv("PATH") |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Racket | Racket |
#lang racket
(getenv "HOME")
|
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Raku | Raku | say %*ENV<HOME>; |
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture | Euler's sum of powers conjecture | There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin.
Euler's (disproved) sum of powers conjecture
At least k positive kth powers are required to sum to a kth power,
except for the trivial case of one kth power: yk = yk
In 1966, Leon J. Lander and Thomas R. Parkin used a brute-force search on a CDC 6600 computer restricting numbers to those less than 250.
Task
Write a program to search for an integer solution for:
x05 + x15 + x25 + x35 == y5
Where all xi's and y are distinct integers between 0 and 250 (exclusive).
Show an answer here.
Related tasks
Pythagorean quadruples.
Pythagorean triples.
| #JavaScript | JavaScript | var eulers_sum_of_powers = function (iMaxN) {
var aPow5 = [];
var oPow5ToN = {};
for (var iP = 0; iP <= iMaxN; iP++) {
var iPow5 = Math.pow(iP, 5);
aPow5.push(iPow5);
oPow5ToN[iPow5] = iP;
}
for (var i0 = 1; i0 <= iMaxN; i0++) {
for (var i1 = 1; i1 <= i0; i1++) {
for (var i2 = 1; i2 <= i1; i2++) {
for (var i3 = 1; i3 <= i2; i3++) {
var iPow5Sum = aPow5[i0] + aPow5[i1] + aPow5[i2] + aPow5[i3];
if (typeof oPow5ToN[iPow5Sum] != 'undefined') {
return {
i0: i0,
i1: i1,l
i2: i2,
i3: i3,
iSum: oPow5ToN[iPow5Sum]
};
}
}
}
}
}
};
var oResult = eulers_sum_of_powers(250);
console.log(oResult.i0 + '^5 + ' + oResult.i1 + '^5 + ' + oResult.i2 +
'^5 + ' + oResult.i3 + '^5 = ' + oResult.iSum + '^5'); |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #Octave | Octave | % built in factorial
printf("%d\n", factorial(50));
% let's define our recursive...
function fact = my_fact(n)
if ( n <= 1 )
fact = 1;
else
fact = n * my_fact(n-1);
endif
endfunction
printf("%d\n", my_fact(50));
% let's define our iterative
function fact = iter_fact(n)
fact = 1;
for i = 2:n
fact = fact * i;
endfor
endfunction
printf("%d\n", iter_fact(50)); |
http://rosettacode.org/wiki/Even_or_odd | Even or odd | Task
Test whether an integer is even or odd.
There is more than one way to solve this task:
Use the even and odd predicates, if the language provides them.
Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd.
Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd.
Use modular congruences:
i ≡ 0 (mod 2) iff i is even.
i ≡ 1 (mod 2) iff i is odd.
| #Delphi | Delphi |
program EvenOdd;
{$APPTYPE CONSOLE}
{$R *.res}
uses
System.SysUtils;
procedure IsOdd(aValue: Integer);
var
Odd: Boolean;
begin
Odd := aValue and 1 <> 0;
Write(Format('%d is ', [aValue]));
if Odd then
Writeln('odd')
else
Writeln('even');
end;
var
i: Integer;
begin
for i := -5 to 10 do
IsOdd(i);
Readln;
end.
|
http://rosettacode.org/wiki/Euler_method | Euler method | Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value. It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page.
The ODE has to be provided in the following form:
d
y
(
t
)
d
t
=
f
(
t
,
y
(
t
)
)
{\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))}
with an initial value
y
(
t
0
)
=
y
0
{\displaystyle y(t_{0})=y_{0}}
To get a numeric solution, we replace the derivative on the LHS with a finite difference approximation:
d
y
(
t
)
d
t
≈
y
(
t
+
h
)
−
y
(
t
)
h
{\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}}
then solve for
y
(
t
+
h
)
{\displaystyle y(t+h)}
:
y
(
t
+
h
)
≈
y
(
t
)
+
h
d
y
(
t
)
d
t
{\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}}
which is the same as
y
(
t
+
h
)
≈
y
(
t
)
+
h
f
(
t
,
y
(
t
)
)
{\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))}
The iterative solution rule is then:
y
n
+
1
=
y
n
+
h
f
(
t
n
,
y
n
)
{\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})}
where
h
{\displaystyle h}
is the step size, the most relevant parameter for accuracy of the solution. A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand.
Example: Newton's Cooling Law
Newton's cooling law describes how an object of initial temperature
T
(
t
0
)
=
T
0
{\displaystyle T(t_{0})=T_{0}}
cools down in an environment of temperature
T
R
{\displaystyle T_{R}}
:
d
T
(
t
)
d
t
=
−
k
Δ
T
{\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T}
or
d
T
(
t
)
d
t
=
−
k
(
T
(
t
)
−
T
R
)
{\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})}
It says that the cooling rate
d
T
(
t
)
d
t
{\displaystyle {\frac {dT(t)}{dt}}}
of the object is proportional to the current temperature difference
Δ
T
=
(
T
(
t
)
−
T
R
)
{\displaystyle \Delta T=(T(t)-T_{R})}
to the surrounding environment.
The analytical solution, which we will compare to the numerical approximation, is
T
(
t
)
=
T
R
+
(
T
0
−
T
R
)
e
−
k
t
{\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}}
Task
Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:
2 s
5 s and
10 s
and to compare with the analytical solution.
Initial values
initial temperature
T
0
{\displaystyle T_{0}}
shall be 100 °C
room temperature
T
R
{\displaystyle T_{R}}
shall be 20 °C
cooling constant
k
{\displaystyle k}
shall be 0.07
time interval to calculate shall be from 0 s ──► 100 s
A reference solution (Common Lisp) can be seen below. We see that bigger step sizes lead to reduced approximation accuracy.
| #Vlang | Vlang | import math
// Fdy is a type for fntion f used in Euler's method.
type Fdy = fn(f64, f64) f64
// euler_step computes a single new value using Euler's method.
// Note that step size h is a parameter, so a variable step size
// could be used.
fn euler_step(f Fdy, x f64, y f64, h f64) f64 {
return y + h*f(x, y)
}
// Definition of cooling rate. Note that this has general utility and
// is not specific to use in Euler's method.
// new_cooling_rate returns a fntion that computes cooling rate
// for a given cooling rate constant k.
fn new_cooling_rate(k f64) fn(f64) f64 {
return fn[k](delta_temp f64) f64 {
return -k * delta_temp
}
}
// new_temp_func returns a fntion that computes the analytical solution
// of cooling rate integrated over time.
fn new_temp_func(k f64, ambient_temp f64, initial_temp f64) fn(f64) f64 {
return fn[ambient_temp,initial_temp,k](time f64) f64 {
return ambient_temp + (initial_temp-ambient_temp)*math.exp(-k*time)
}
}
// new_cooling_rate_dy returns a fntion of the kind needed for Euler's method.
// That is, a fntion representing dy(x, y(x)).
//
// Parameters to new_cooling_rate_dy are cooling constant k and ambient
// temperature.
fn new_cooling_rate_dy(k f64, ambient_temp f64) Fdy {
// note that result is dependent only on the object temperature.
// there are no additional dependencies on time, so the x parameter
// provided by euler_step is unused.
return fn[k,ambient_temp](_ f64, object_temp f64) f64 {
return new_cooling_rate(k)(object_temp - ambient_temp)
}
}
fn main() {
k := .07
temp_room := 20.0
temp_object := 100.0
fcr := new_cooling_rate_dy(k, temp_room)
analytic := new_temp_func(k, temp_room, temp_object)
for delta_time in [2.0, 5, 10] {
println("Step size = ${delta_time:.1f}")
println(" Time Euler's Analytic")
mut temp := temp_object
for time := 0.0; time <= 100; time += delta_time {
println("${time:5.1f} ${temp:7.3f} ${analytic(time):7.3f}")
temp = euler_step(fcr, time, temp, delta_time)
}
println('')
}
} |
http://rosettacode.org/wiki/Evaluate_binomial_coefficients | Evaluate binomial coefficients | This programming task, is to calculate ANY binomial coefficient.
However, it has to be able to output
(
5
3
)
{\displaystyle {\binom {5}{3}}}
, which is 10.
This formula is recommended:
(
n
k
)
=
n
!
(
n
−
k
)
!
k
!
=
n
(
n
−
1
)
(
n
−
2
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
(
k
−
2
)
…
1
{\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}}
See Also:
Combinations and permutations
Pascal's triangle
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #MATLAB_.2F_Octave | MATLAB / Octave | >> nchoosek(5,3)
ans =
10 |
http://rosettacode.org/wiki/Evaluate_binomial_coefficients | Evaluate binomial coefficients | This programming task, is to calculate ANY binomial coefficient.
However, it has to be able to output
(
5
3
)
{\displaystyle {\binom {5}{3}}}
, which is 10.
This formula is recommended:
(
n
k
)
=
n
!
(
n
−
k
)
!
k
!
=
n
(
n
−
1
)
(
n
−
2
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
(
k
−
2
)
…
1
{\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}}
See Also:
Combinations and permutations
Pascal's triangle
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Maxima | Maxima | binomial( 5, 3); /* 10 */
binomial(-5, 3); /* -35 */
binomial( 5, -3); /* 0 */
binomial(-5, -3); /* 0 */
binomial( 3, 5); /* 0 */
binomial(x, 3); /* ((x - 2)*(x - 1)*x)/6 */
binomial(3, 1/2); /* binomial(3, 1/2) */
makegamma(%); /* 32/(5*%pi) */
binomial(a, b); /* binomial(a, b) */
makegamma(%); /* gamma(a + 1)/(gamma(-b + a + 1)*gamma(b + 1)) */ |
http://rosettacode.org/wiki/Emirp_primes | Emirp primes | An emirp (prime spelled backwards) are primes that when reversed (in their decimal representation) are a different prime.
(This rules out palindromic primes.)
Task
show the first twenty emirps
show all emirps between 7,700 and 8,000
show the 10,000th emirp
In each list, the numbers should be in order.
Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes.
The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer.
See also
Wikipedia, Emirp.
The Prime Pages, emirp.
Wolfram MathWorld™, Emirp.
The On‑Line Encyclopedia of Integer Sequences, emirps (A6567).
| #D | D | bool isEmirp(uint n) pure nothrow @nogc {
bool isPrime(in uint n) pure nothrow @nogc {
if (n == 2 || n == 3)
return true;
else if (n < 2 || n % 2 == 0 || n % 3 == 0)
return false;
for (uint div = 5, inc = 2; div ^^ 2 <= n;
div += inc, inc = 6 - inc)
if (n % div == 0)
return false;
return true;
}
uint reverse(uint n) pure nothrow @nogc {
uint r;
for (r = 0; n; n /= 10)
r = r * 10 + (n % 10);
return r;
}
immutable r = reverse(n);
return r != n && isPrime(n) && isPrime(r);
}
void main() {
import std.stdio, std.algorithm, std.range;
auto uints = uint.max.iota;
writeln("First 20:\n", uints.filter!isEmirp.take(20));
writeln("Between 7700 and 8000:\n",
iota(7_700, 8_001).filter!isEmirp);
writeln("10000th: ", uints.filter!isEmirp.drop(9_999).front);
} |
http://rosettacode.org/wiki/Elliptic_curve_arithmetic | Elliptic curve arithmetic | Elliptic curves are sometimes used in cryptography as a way to perform digital signatures.
The purpose of this task is to implement a simplified (without modular arithmetic) version of the elliptic curve arithmetic which is required by the elliptic curve DSA protocol.
In a nutshell, an elliptic curve is a bi-dimensional curve defined by the following relation between the x and y coordinates of any point on the curve:
y
2
=
x
3
+
a
x
+
b
{\displaystyle y^{2}=x^{3}+ax+b}
a and b are arbitrary parameters that define the specific curve which is used.
For this particular task, we'll use the following parameters:
a=0, b=7
The most interesting thing about elliptic curves is the fact that it is possible to define a group structure on it.
To do so we define an internal composition rule with an additive notation +, such that for any three distinct points P, Q and R on the curve, whenever these points are aligned, we have:
P + Q + R = 0
Here 0 (zero) is the infinity point, for which the x and y values are not defined. It's basically the same kind of point which defines the horizon in projective geometry.
We'll also assume here that this infinity point is unique and defines the neutral element of the addition.
This was not the definition of the addition, but only its desired property. For a more accurate definition, we proceed as such:
Given any three aligned points P, Q and R, we define the sum S = P + Q as the point (possibly the infinity point) such that S, R and the infinity point are aligned.
Considering the symmetry of the curve around the x-axis, it's easy to convince oneself that two points S and R can be aligned with the infinity point if and only if S and R are symmetric of one another towards the x-axis (because in that case there is no other candidate than the infinity point to complete the alignment triplet).
S is thus defined as the symmetric of R towards the x axis.
The task consists in defining the addition which, for any two points of the curve, returns the sum of these two points. You will pick two random points on the curve, compute their sum and show that the symmetric of the sum is aligned with the two initial points.
You will use the a and b parameters of secp256k1, i.e. respectively zero and seven.
Hint: You might need to define a "doubling" function, that returns P+P for any given point P.
Extra credit: define the full elliptic curve arithmetic (still not modular, though) by defining a "multiply" function that returns,
for any point P and integer n, the point P + P + ... + P (n times).
| #Racket | Racket |
#lang racket
(define a 0) (define b 7)
(define (ε? x) (<= (abs x) 1e-14))
(define (== p q) (for/and ([pi p] [qi q]) (ε? (- pi qi))))
(define zero #(0 0))
(define (zero? p) (== p zero))
(define (neg p) (match-define (vector x y) p) (vector x (- y)))
(define (⊕ p q)
(cond [(== q (neg p)) zero]
[else
(match-define (vector px py) p)
(match-define (vector qx qy) q)
(define (done λ px py qx)
(define x (- (* λ λ) px qx))
(vector x (- (+ (* λ (- x px)) py))))
(cond [(and (== p q) (ε? py)) zero]
[(or (== p q) (ε? (- px qx)))
(done (/ (+ (* 3 px px) a) (* 2 py)) px py qx)]
[(done (/ (- py qy) (- px qx)) px py qx)])]))
(define (⊗ p n)
(cond [(= n 0) zero]
[(= n 1) p]
[(= n 2) (⊕ p p)]
[(negative? n) (neg (⊗ p (- n)))]
[(even? n) (⊗ (⊗ p (/ n 2)) 2)]
[(odd? n) (⊕ p (⊗ p (- n 1)))]))
|
http://rosettacode.org/wiki/Elliptic_curve_arithmetic | Elliptic curve arithmetic | Elliptic curves are sometimes used in cryptography as a way to perform digital signatures.
The purpose of this task is to implement a simplified (without modular arithmetic) version of the elliptic curve arithmetic which is required by the elliptic curve DSA protocol.
In a nutshell, an elliptic curve is a bi-dimensional curve defined by the following relation between the x and y coordinates of any point on the curve:
y
2
=
x
3
+
a
x
+
b
{\displaystyle y^{2}=x^{3}+ax+b}
a and b are arbitrary parameters that define the specific curve which is used.
For this particular task, we'll use the following parameters:
a=0, b=7
The most interesting thing about elliptic curves is the fact that it is possible to define a group structure on it.
To do so we define an internal composition rule with an additive notation +, such that for any three distinct points P, Q and R on the curve, whenever these points are aligned, we have:
P + Q + R = 0
Here 0 (zero) is the infinity point, for which the x and y values are not defined. It's basically the same kind of point which defines the horizon in projective geometry.
We'll also assume here that this infinity point is unique and defines the neutral element of the addition.
This was not the definition of the addition, but only its desired property. For a more accurate definition, we proceed as such:
Given any three aligned points P, Q and R, we define the sum S = P + Q as the point (possibly the infinity point) such that S, R and the infinity point are aligned.
Considering the symmetry of the curve around the x-axis, it's easy to convince oneself that two points S and R can be aligned with the infinity point if and only if S and R are symmetric of one another towards the x-axis (because in that case there is no other candidate than the infinity point to complete the alignment triplet).
S is thus defined as the symmetric of R towards the x axis.
The task consists in defining the addition which, for any two points of the curve, returns the sum of these two points. You will pick two random points on the curve, compute their sum and show that the symmetric of the sum is aligned with the two initial points.
You will use the a and b parameters of secp256k1, i.e. respectively zero and seven.
Hint: You might need to define a "doubling" function, that returns P+P for any given point P.
Extra credit: define the full elliptic curve arithmetic (still not modular, though) by defining a "multiply" function that returns,
for any point P and integer n, the point P + P + ... + P (n times).
| #Raku | Raku | unit module EC;
our ($A, $B) = (0, 7);
role Horizon { method gist { 'EC Point at horizon' } }
class Point {
has ($.x, $.y);
multi method new(
$x, $y where $y**2 ~~ $x**3 + $A*$x + $B
) { self.bless(:$x, :$y) }
multi method new(Horizon $) { self.bless but Horizon }
method gist { "EC Point at x=$.x, y=$.y" }
}
multi prefix:<->(Point $p) { Point.new: x => $p.x, y => -$p.y }
multi prefix:<->(Horizon $) { Horizon }
multi infix:<->(Point $a, Point $b) { $a + -$b }
multi infix:<+>(Horizon $, Point $p) { $p }
multi infix:<+>(Point $p, Horizon) { $p }
multi infix:<*>(Point $u, Int $n) { $n * $u }
multi infix:<*>(Int $n, Horizon) { Horizon }
multi infix:<*>(0, Point) { Horizon }
multi infix:<*>(1, Point $p) { $p }
multi infix:<*>(2, Point $p) {
my $l = (3*$p.x**2 + $A) / (2 *$p.y);
my $y = $l*($p.x - my $x = $l**2 - 2*$p.x) - $p.y;
$p.bless(:$x, :$y);
}
multi infix:<*>(Int $n where $n > 2, Point $p) {
2 * ($n div 2 * $p) + $n % 2 * $p;
}
multi infix:<+>(Point $p, Point $q) {
if $p.x ~~ $q.x {
return $p.y ~~ $q.y ?? 2 * $p !! Horizon;
}
else {
my $slope = ($q.y - $p.y) / ($q.x - $p.x);
my $y = $slope*($p.x - my $x = $slope**2 - $p.x - $q.x) - $p.y;
return $p.new(:$x, :$y);
}
}
say my $p = Point.new: x => $_, y => sqrt(abs($_**3 + $A*$_ + $B)) given 1;
say my $q = Point.new: x => $_, y => sqrt(abs($_**3 + $A*$_ + $B)) given 2;
say my $s = $p + $q;
say "checking alignment: ", abs ($p.x - $q.x)*(-$s.y - $q.y) - ($p.y - $q.y)*($s.x - $q.x); |
http://rosettacode.org/wiki/Enumerations | Enumerations | Task
Create an enumeration of constants with and without explicit values.
| #OxygenBasic | OxygenBasic |
enum fruits
apple
pear
orange = 14
banana
mango
end enum
print banana '15
'fruits values:
' apple 0
' pear 1
' orange 14
' banana 15
' mango 16
|
http://rosettacode.org/wiki/Enumerations | Enumerations | Task
Create an enumeration of constants with and without explicit values.
| #Oz | Oz | declare
fun {IsFruit A}
{Member A [apple banana cherry]}
end
in
{Show {IsFruit banana}} |
http://rosettacode.org/wiki/Empty_string | Empty string | Languages may have features for dealing specifically with empty strings
(those containing no characters).
Task
Demonstrate how to assign an empty string to a variable.
Demonstrate how to check that a string is empty.
Demonstrate how to check that a string is not empty.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #C | C | #include <string.h>
/* ... */
/* assign an empty string */
const char *str = "";
/* to test a null string */
if (str) { ... }
/* to test if string is empty */
if (str[0] == '\0') { ... }
/* or equivalently use strlen function
strlen will seg fault on NULL pointer, so check first */
if ( (str == NULL) || (strlen(str) == 0)) { ... }
/* or compare to a known empty string, same thing. "== 0" means strings are equal */
if (strcmp(str, "") == 0) { ... }
|
http://rosettacode.org/wiki/Empty_directory | Empty directory | Starting with a path to some directory, determine whether the directory is empty.
An empty directory contains no files nor subdirectories.
With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
| #Liberty_BASIC | Liberty BASIC |
dim info$(10, 10)
files "c:\", info$()
qtyFiles=val(info$(0,0))
n = qtyFiles+1 'begin directory info
folder$ = info$(n,0) 'path to first directory in c:
files folder$, info$() 're-fill array with data from sub folder
if val(info$(0,0)) + val(info$(0, 1)) <> 0 then
print "Folder ";folder$;" is not empty."
else
print "Folder ";folder$;" is empty."
end if
|
http://rosettacode.org/wiki/Empty_directory | Empty directory | Starting with a path to some directory, determine whether the directory is empty.
An empty directory contains no files nor subdirectories.
With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
| #Lingo | Lingo | on isDirEmpty (dir)
return getNthFileNameInFolder(dir, 1) = EMPTY
end |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #BASIC | BASIC | |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Batch_File | Batch File | |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #BaCon | BaCon | |
http://rosettacode.org/wiki/Entropy | Entropy | Task
Calculate the Shannon entropy H of a given input string.
Given the discrete random variable
X
{\displaystyle X}
that is a string of
N
{\displaystyle N}
"symbols" (total characters) consisting of
n
{\displaystyle n}
different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is :
H
2
(
X
)
=
−
∑
i
=
1
n
c
o
u
n
t
i
N
log
2
(
c
o
u
n
t
i
N
)
{\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)}
where
c
o
u
n
t
i
{\displaystyle count_{i}}
is the count of character
n
i
{\displaystyle n_{i}}
.
For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer.
This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where
S
=
k
B
N
H
{\displaystyle S=k_{B}NH}
where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis.
The "total", "absolute", or "extensive" information entropy is
S
=
H
2
N
{\displaystyle S=H_{2}N}
bits
This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have
S
=
N
log
2
(
16
)
{\displaystyle S=N\log _{2}(16)}
bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits.
The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data.
Two other "entropies" are useful:
Normalized specific entropy:
H
n
=
H
2
∗
log
(
2
)
log
(
n
)
{\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}}
which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923.
Normalized total (extensive) entropy:
S
n
=
H
2
N
∗
log
(
2
)
log
(
n
)
{\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}}
which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23.
Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information".
In keeping with Landauer's limit, the physics entropy generated from erasing N bits is
S
=
H
2
N
k
B
ln
(
2
)
{\displaystyle S=H_{2}Nk_{B}\ln(2)}
if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents.
Related tasks
Fibonacci_word
Entropy/Narcissist
| #Elena | Elena | import system'math;
import system'collections;
import system'routines;
import extensions;
extension op
{
logTwo()
= self.ln() / 2.ln();
}
public program()
{
var input := console.readLine();
var infoC := 0.0r;
var table := Dictionary.new();
input.forEach:(ch)
{
var n := table[ch];
if (nil == n)
{
table[ch] := 1
}
else
{
table[ch] := n + 1
}
};
var freq := 0;
table.forEach:(letter)
{
freq := letter.toInt().realDiv(input.Length);
infoC += (freq * freq.logTwo())
};
infoC *= -1;
console.printLine("The Entropy of ", input, " is ", infoC)
} |
http://rosettacode.org/wiki/Entropy | Entropy | Task
Calculate the Shannon entropy H of a given input string.
Given the discrete random variable
X
{\displaystyle X}
that is a string of
N
{\displaystyle N}
"symbols" (total characters) consisting of
n
{\displaystyle n}
different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is :
H
2
(
X
)
=
−
∑
i
=
1
n
c
o
u
n
t
i
N
log
2
(
c
o
u
n
t
i
N
)
{\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)}
where
c
o
u
n
t
i
{\displaystyle count_{i}}
is the count of character
n
i
{\displaystyle n_{i}}
.
For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer.
This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where
S
=
k
B
N
H
{\displaystyle S=k_{B}NH}
where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis.
The "total", "absolute", or "extensive" information entropy is
S
=
H
2
N
{\displaystyle S=H_{2}N}
bits
This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have
S
=
N
log
2
(
16
)
{\displaystyle S=N\log _{2}(16)}
bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits.
The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data.
Two other "entropies" are useful:
Normalized specific entropy:
H
n
=
H
2
∗
log
(
2
)
log
(
n
)
{\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}}
which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923.
Normalized total (extensive) entropy:
S
n
=
H
2
N
∗
log
(
2
)
log
(
n
)
{\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}}
which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23.
Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information".
In keeping with Landauer's limit, the physics entropy generated from erasing N bits is
S
=
H
2
N
k
B
ln
(
2
)
{\displaystyle S=H_{2}Nk_{B}\ln(2)}
if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents.
Related tasks
Fibonacci_word
Entropy/Narcissist
| #Elixir | Elixir | defmodule RC do
def entropy(str) do
leng = String.length(str)
String.graphemes(str)
|> Enum.group_by(&(&1))
|> Enum.map(fn{_,value} -> length(value) end)
|> Enum.reduce(0, fn count, entropy ->
freq = count / leng
entropy - freq * :math.log2(freq)
end)
end
end
IO.inspect RC.entropy("1223334444") |
http://rosettacode.org/wiki/Ethiopian_multiplication | Ethiopian multiplication | Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
Method:
Take two numbers to be multiplied and write them down at the top of two columns.
In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1.
In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1.
Examine the table produced and discard any row where the value in the left column is even.
Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together
For example: 17 × 34
17 34
Halving the first column:
17 34
8
4
2
1
Doubling the second column:
17 34
8 68
4 136
2 272
1 544
Strike-out rows whose first cell is even:
17 34
8 68
4 136
2 272
1 544
Sum the remaining numbers in the right-hand column:
17 34
8 --
4 ---
2 ---
1 544
====
578
So 17 multiplied by 34, by the Ethiopian method is 578.
Task
The task is to define three named functions/methods/procedures/subroutines:
one to halve an integer,
one to double an integer, and
one to state if an integer is even.
Use these functions to create a function that does Ethiopian multiplication.
References
Ethiopian multiplication explained (BBC Video clip)
A Night Of Numbers - Go Forth And Multiply (Video)
Russian Peasant Multiplication
Programming Praxis: Russian Peasant Multiplication
| #dc | dc | 0k [ Make sure we're doing integer division ]sx
[ 2 / ] sH [ Define "halve" function in register H ]sx
[ 2 * ] sD [ Define "double" function in register D ]sx
[ 2 % 1 r - ] sE [ Define "even?" function in register E ]sx
[ Entry into the main Ethiopian multiplication function is register M ]sx
[ Keeps running value for the product in register p ]sx
[ 0 sp lLx lp ] sM
[ The body of the main loop is in register L ]sx
[
sb sa [ First thing we do is cheat and store the parameters in
registers, which is safe because the only recursion is of
the tail variety. This avoids tricky stack
manipulations, which dc doesn't have good support for
(unlike, say, Forth). ]sx
la lEx sr [ r = even?(a) ]sx
lr 0 =S [ if r = 0 then call s]sx
la lHx d [ a = halve(a)]sx
lb lDx [ b = double(b)]sx
r 0 !=L [ if a !=0 then recurse ]
] sL
[ Utility macro that just adds the current value of b to the total in p ]sx
[ lp lb + sp ]sS
[ Demo by multiplying 17 and 34 ]sx
17 34 lMx p |
http://rosettacode.org/wiki/Equilibrium_index | Equilibrium index | An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices.
For example, in a sequence
A
{\displaystyle A}
:
A
0
=
−
7
{\displaystyle A_{0}=-7}
A
1
=
1
{\displaystyle A_{1}=1}
A
2
=
5
{\displaystyle A_{2}=5}
A
3
=
2
{\displaystyle A_{3}=2}
A
4
=
−
4
{\displaystyle A_{4}=-4}
A
5
=
3
{\displaystyle A_{5}=3}
A
6
=
0
{\displaystyle A_{6}=0}
3 is an equilibrium index, because:
A
0
+
A
1
+
A
2
=
A
4
+
A
5
+
A
6
{\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}}
6 is also an equilibrium index, because:
A
0
+
A
1
+
A
2
+
A
3
+
A
4
+
A
5
=
0
{\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0}
(sum of zero elements is zero)
7 is not an equilibrium index, because it is not a valid index of sequence
A
{\displaystyle A}
.
Task;
Write a function that, given a sequence, returns its equilibrium indices (if any).
Assume that the sequence may be very long.
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | equilibriumIndex[data_]:=Reap[
Do[If[Total[data[[;; n - 1]]] == Total[data[[n + 1 ;;]]],Sow[n]],
{n, Length[data]}]][[2, 1]] |
http://rosettacode.org/wiki/Equilibrium_index | Equilibrium index | An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices.
For example, in a sequence
A
{\displaystyle A}
:
A
0
=
−
7
{\displaystyle A_{0}=-7}
A
1
=
1
{\displaystyle A_{1}=1}
A
2
=
5
{\displaystyle A_{2}=5}
A
3
=
2
{\displaystyle A_{3}=2}
A
4
=
−
4
{\displaystyle A_{4}=-4}
A
5
=
3
{\displaystyle A_{5}=3}
A
6
=
0
{\displaystyle A_{6}=0}
3 is an equilibrium index, because:
A
0
+
A
1
+
A
2
=
A
4
+
A
5
+
A
6
{\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}}
6 is also an equilibrium index, because:
A
0
+
A
1
+
A
2
+
A
3
+
A
4
+
A
5
=
0
{\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0}
(sum of zero elements is zero)
7 is not an equilibrium index, because it is not a valid index of sequence
A
{\displaystyle A}
.
Task;
Write a function that, given a sequence, returns its equilibrium indices (if any).
Assume that the sequence may be very long.
| #MATLAB | MATLAB | function indicies = equilibriumIndex(list)
indicies = [];
for i = (1:numel(list))
if ( sum(-list(1:i)) == sum(-list(i:end)) )
indicies = [indicies i];
end
end
end |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #REBOL | REBOL | print get-env "HOME" |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Retro | Retro | here "HOME" getEnv
here puts |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #REXX | REXX | /*REXX program shows how to get an environmental variable under Windows*/
x=value('TEMP',,'SYSTEM') |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Ring | Ring |
see get("path")
|
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture | Euler's sum of powers conjecture | There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin.
Euler's (disproved) sum of powers conjecture
At least k positive kth powers are required to sum to a kth power,
except for the trivial case of one kth power: yk = yk
In 1966, Leon J. Lander and Thomas R. Parkin used a brute-force search on a CDC 6600 computer restricting numbers to those less than 250.
Task
Write a program to search for an integer solution for:
x05 + x15 + x25 + x35 == y5
Where all xi's and y are distinct integers between 0 and 250 (exclusive).
Show an answer here.
Related tasks
Pythagorean quadruples.
Pythagorean triples.
| #jq | jq | # Search for y in 1 .. maxn (inclusive) for a solution to SIGMA (xi ^ 5) = y^5
# and for each solution with x0<=x1<=...<x3, print [x0, x1, x3, x3, y]
#
def sum_of_powers_conjecture(maxn):
def p5: . as $in | (.*.) | ((.*.) * $in);
def fifth: log / 5 | exp;
# return the fifth root if . is a power of 5
def integral_fifth_root: fifth | if . == floor then . else false end;
(maxn | p5) as $uber
| range(1; maxn) as $x0
| ($x0 | p5) as $s0
| if $s0 < $uber then range($x0; ($uber - $s0 | fifth) + 1) as $x1
| ($s0 + ($x1 | p5)) as $s1
| if $s1 < $uber then range($x1; ($uber - $s1 | fifth) + 1) as $x2
| ($s1 + ($x2 | p5)) as $s2
| if $s2 < $uber then range($x2; ($uber - $s2 | fifth) + 1) as $x3
| ($s2 + ($x3 | p5)) as $sumx
| ($sumx | integral_fifth_root)
| if . then [$x0,$x1,$x2,$x3,.] else empty end
else empty
end
else empty
end
else empty
end ; |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #Oforth | Oforth | : fact(n) n ifZero: [ 1 ] else: [ n n 1- fact * ] ; |
http://rosettacode.org/wiki/Even_or_odd | Even or odd | Task
Test whether an integer is even or odd.
There is more than one way to solve this task:
Use the even and odd predicates, if the language provides them.
Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd.
Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd.
Use modular congruences:
i ≡ 0 (mod 2) iff i is even.
i ≡ 1 (mod 2) iff i is odd.
| #DWScript | DWScript | var isOdd := Odd(i); |
http://rosettacode.org/wiki/Even_or_odd | Even or odd | Task
Test whether an integer is even or odd.
There is more than one way to solve this task:
Use the even and odd predicates, if the language provides them.
Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd.
Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd.
Use modular congruences:
i ≡ 0 (mod 2) iff i is even.
i ≡ 1 (mod 2) iff i is odd.
| #D.C3.A9j.C3.A0_Vu | Déjà Vu | even n:
= 0 % n 2
odd:
not even
!. odd 0
!. even 0
!. odd 7
!. even 7
|
http://rosettacode.org/wiki/Euler_method | Euler method | Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value. It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page.
The ODE has to be provided in the following form:
d
y
(
t
)
d
t
=
f
(
t
,
y
(
t
)
)
{\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))}
with an initial value
y
(
t
0
)
=
y
0
{\displaystyle y(t_{0})=y_{0}}
To get a numeric solution, we replace the derivative on the LHS with a finite difference approximation:
d
y
(
t
)
d
t
≈
y
(
t
+
h
)
−
y
(
t
)
h
{\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}}
then solve for
y
(
t
+
h
)
{\displaystyle y(t+h)}
:
y
(
t
+
h
)
≈
y
(
t
)
+
h
d
y
(
t
)
d
t
{\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}}
which is the same as
y
(
t
+
h
)
≈
y
(
t
)
+
h
f
(
t
,
y
(
t
)
)
{\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))}
The iterative solution rule is then:
y
n
+
1
=
y
n
+
h
f
(
t
n
,
y
n
)
{\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})}
where
h
{\displaystyle h}
is the step size, the most relevant parameter for accuracy of the solution. A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand.
Example: Newton's Cooling Law
Newton's cooling law describes how an object of initial temperature
T
(
t
0
)
=
T
0
{\displaystyle T(t_{0})=T_{0}}
cools down in an environment of temperature
T
R
{\displaystyle T_{R}}
:
d
T
(
t
)
d
t
=
−
k
Δ
T
{\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T}
or
d
T
(
t
)
d
t
=
−
k
(
T
(
t
)
−
T
R
)
{\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})}
It says that the cooling rate
d
T
(
t
)
d
t
{\displaystyle {\frac {dT(t)}{dt}}}
of the object is proportional to the current temperature difference
Δ
T
=
(
T
(
t
)
−
T
R
)
{\displaystyle \Delta T=(T(t)-T_{R})}
to the surrounding environment.
The analytical solution, which we will compare to the numerical approximation, is
T
(
t
)
=
T
R
+
(
T
0
−
T
R
)
e
−
k
t
{\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}}
Task
Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:
2 s
5 s and
10 s
and to compare with the analytical solution.
Initial values
initial temperature
T
0
{\displaystyle T_{0}}
shall be 100 °C
room temperature
T
R
{\displaystyle T_{R}}
shall be 20 °C
cooling constant
k
{\displaystyle k}
shall be 0.07
time interval to calculate shall be from 0 s ──► 100 s
A reference solution (Common Lisp) can be seen below. We see that bigger step sizes lead to reduced approximation accuracy.
| #XPL0 | XPL0 | include c:\cxpl\codes; \intrinsic 'code' declarations
proc Euler(Step); \Display cooling temperatures using Euler's method
int Step;
int Time; real Temp;
[Text(0, "Step "); IntOut(0, Step); Text(0, " ");
Time:= 0; Temp:= 100.0;
repeat if rem(Time/10) = 0 then RlOut(0, Temp);
Temp:= Temp + float(Step) * (-0.07*(Temp-20.0));
Time:= Time + Step;
until Time > 100;
CrLf(0);
];
real Time, Temp;
[Format(6,0); \display time heading
Text(0, "Time ");
Time:= 0.0;
while Time <= 100.1 do \(.1 avoids possible rounding error)
[RlOut(0, Time);
Time:= Time + 10.0;
];
CrLf(0);
Format(3,2); \display cooling temps using differential eqn.
Text(0, "Dif eq "); \ dTemp(time)/dtime = -k*�Temp
Time:= 0.0;
while Time <= 100.1 do
[Temp:= 20.0 + (100.0-20.0) * Exp(-0.07*Time);
RlOut(0, Temp);
Time:= Time + 10.0;
];
CrLf(0);
Euler(2); \display cooling temps for various time steps
Euler(5);
Euler(10);
] |
http://rosettacode.org/wiki/Euler_method | Euler method | Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value. It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page.
The ODE has to be provided in the following form:
d
y
(
t
)
d
t
=
f
(
t
,
y
(
t
)
)
{\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))}
with an initial value
y
(
t
0
)
=
y
0
{\displaystyle y(t_{0})=y_{0}}
To get a numeric solution, we replace the derivative on the LHS with a finite difference approximation:
d
y
(
t
)
d
t
≈
y
(
t
+
h
)
−
y
(
t
)
h
{\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}}
then solve for
y
(
t
+
h
)
{\displaystyle y(t+h)}
:
y
(
t
+
h
)
≈
y
(
t
)
+
h
d
y
(
t
)
d
t
{\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}}
which is the same as
y
(
t
+
h
)
≈
y
(
t
)
+
h
f
(
t
,
y
(
t
)
)
{\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))}
The iterative solution rule is then:
y
n
+
1
=
y
n
+
h
f
(
t
n
,
y
n
)
{\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})}
where
h
{\displaystyle h}
is the step size, the most relevant parameter for accuracy of the solution. A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand.
Example: Newton's Cooling Law
Newton's cooling law describes how an object of initial temperature
T
(
t
0
)
=
T
0
{\displaystyle T(t_{0})=T_{0}}
cools down in an environment of temperature
T
R
{\displaystyle T_{R}}
:
d
T
(
t
)
d
t
=
−
k
Δ
T
{\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T}
or
d
T
(
t
)
d
t
=
−
k
(
T
(
t
)
−
T
R
)
{\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})}
It says that the cooling rate
d
T
(
t
)
d
t
{\displaystyle {\frac {dT(t)}{dt}}}
of the object is proportional to the current temperature difference
Δ
T
=
(
T
(
t
)
−
T
R
)
{\displaystyle \Delta T=(T(t)-T_{R})}
to the surrounding environment.
The analytical solution, which we will compare to the numerical approximation, is
T
(
t
)
=
T
R
+
(
T
0
−
T
R
)
e
−
k
t
{\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}}
Task
Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:
2 s
5 s and
10 s
and to compare with the analytical solution.
Initial values
initial temperature
T
0
{\displaystyle T_{0}}
shall be 100 °C
room temperature
T
R
{\displaystyle T_{R}}
shall be 20 °C
cooling constant
k
{\displaystyle k}
shall be 0.07
time interval to calculate shall be from 0 s ──► 100 s
A reference solution (Common Lisp) can be seen below. We see that bigger step sizes lead to reduced approximation accuracy.
| #Wren | Wren | import "/fmt" for Fmt
import "/trait" for Stepped
var euler = Fn.new { |f, y, step, end|
Fmt.write(" Step $2d: ", step)
for (t in Stepped.new(0..end, step)) {
if (t%10 == 0) Fmt.write(" $7.3f", y)
y = y + step * f.call(y)
}
System.print()
}
var analytic = Fn.new {
System.write(" Time: ")
for (t in Stepped.new(0..100, 10)) Fmt.write(" $7d", t)
System.write("\nAnalytic: ")
for (t in Stepped.new(0..100, 10)) {
Fmt.write(" $7.3f", 20 + 80 * (-0.07*t).exp)
}
System.print()
}
var cooling = Fn.new { |temp| -0.07 * (temp - 20) }
analytic.call()
for (i in [2, 5, 10]) euler.call(cooling, 100, i, 100) |
http://rosettacode.org/wiki/Evaluate_binomial_coefficients | Evaluate binomial coefficients | This programming task, is to calculate ANY binomial coefficient.
However, it has to be able to output
(
5
3
)
{\displaystyle {\binom {5}{3}}}
, which is 10.
This formula is recommended:
(
n
k
)
=
n
!
(
n
−
k
)
!
k
!
=
n
(
n
−
1
)
(
n
−
2
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
(
k
−
2
)
…
1
{\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}}
See Also:
Combinations and permutations
Pascal's triangle
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #min | min | ((dup 0 ==) 'succ (dup pred) '* linrec) :fact
('dup dip dup ((fact) () (- fact) (fact * div)) spread) :binomial
5 3 binomial puts! |
http://rosettacode.org/wiki/Evaluate_binomial_coefficients | Evaluate binomial coefficients | This programming task, is to calculate ANY binomial coefficient.
However, it has to be able to output
(
5
3
)
{\displaystyle {\binom {5}{3}}}
, which is 10.
This formula is recommended:
(
n
k
)
=
n
!
(
n
−
k
)
!
k
!
=
n
(
n
−
1
)
(
n
−
2
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
(
k
−
2
)
…
1
{\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}}
See Also:
Combinations and permutations
Pascal's triangle
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #MINIL | MINIL | // Number of combinations nCr
00 0E Go: ENT R0 // n
01 1E ENT R1 // r
02 2C CLR R2
03 2A Loop: ADD1 R2
04 0D DEC R0
05 1D DEC R1
06 C3 JNZ Loop
07 3C CLR R3 // for result
08 3A ADD1 R3
09 0A Next: ADD1 R0
0A 1A ADD1 R1
0B 50 R5 = R0
0C 5D DEC R5
0D 63 R6 = R3
0E 46 Mult: R4 = R6
0F 3A Add: ADD1 R3
10 4D DEC R4
11 CF JNZ Add
12 5D DEC R5
13 CE JNZ Mult
14 61 Divide:R6 = R1
15 5A ADD1 R5
16 3D Sub: DEC R3
17 9B JZ Exact
18 6D DEC R6
19 D6 JNZ Sub
1A 94 JZ Divide
1B 35 Exact: R3 = R5
1C 2D DEC R2
1D C9 JNZ Next
1E 03 R0 = R3
1F 80 JZ Go // Display result |
http://rosettacode.org/wiki/Emirp_primes | Emirp primes | An emirp (prime spelled backwards) are primes that when reversed (in their decimal representation) are a different prime.
(This rules out palindromic primes.)
Task
show the first twenty emirps
show all emirps between 7,700 and 8,000
show the 10,000th emirp
In each list, the numbers should be in order.
Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes.
The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer.
See also
Wikipedia, Emirp.
The Prime Pages, emirp.
Wolfram MathWorld™, Emirp.
The On‑Line Encyclopedia of Integer Sequences, emirps (A6567).
| #Delphi | Delphi | defmodule Emirp do
defp prime?(2), do: true
defp prime?(n) when n<2 or rem(n,2)==0, do: false
defp prime?(n), do: prime?(n,3)
defp prime?(n,k) when n<k*k, do: true
defp prime?(n,k) when rem(n,k)==0, do: false
defp prime?(n,k), do: prime?(n,k+2)
def emirp?(n) do
if prime?(n) do
reverse = to_string(n) |> String.reverse |> String.to_integer
n != reverse and prime?(reverse)
end
end
def task do
emirps = Stream.iterate(1, &(&1+1)) |> Stream.filter(&emirp?/1)
first = Enum.take(emirps,20) |> Enum.join(" ")
IO.puts "First 20 emirps: #{first}"
between = Enum.reduce_while(emirps, [], fn x,acc ->
cond do
x < 7700 -> {:cont, acc}
x in 7700..8000 -> {:cont, [x | acc]}
true -> {:halt, Enum.reverse(acc)}
end
end) |> Enum.join(" ")
IO.puts "Emirps between 7,700 and 8,000: #{between}"
IO.puts "10,000th emirp: #{Enum.at(emirps, 9999)}"
end
end
Emirp.task |
http://rosettacode.org/wiki/Emirp_primes | Emirp primes | An emirp (prime spelled backwards) are primes that when reversed (in their decimal representation) are a different prime.
(This rules out palindromic primes.)
Task
show the first twenty emirps
show all emirps between 7,700 and 8,000
show the 10,000th emirp
In each list, the numbers should be in order.
Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes.
The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer.
See also
Wikipedia, Emirp.
The Prime Pages, emirp.
Wolfram MathWorld™, Emirp.
The On‑Line Encyclopedia of Integer Sequences, emirps (A6567).
| #Elixir | Elixir | defmodule Emirp do
defp prime?(2), do: true
defp prime?(n) when n<2 or rem(n,2)==0, do: false
defp prime?(n), do: prime?(n,3)
defp prime?(n,k) when n<k*k, do: true
defp prime?(n,k) when rem(n,k)==0, do: false
defp prime?(n,k), do: prime?(n,k+2)
def emirp?(n) do
if prime?(n) do
reverse = to_string(n) |> String.reverse |> String.to_integer
n != reverse and prime?(reverse)
end
end
def task do
emirps = Stream.iterate(1, &(&1+1)) |> Stream.filter(&emirp?/1)
first = Enum.take(emirps,20) |> Enum.join(" ")
IO.puts "First 20 emirps: #{first}"
between = Enum.reduce_while(emirps, [], fn x,acc ->
cond do
x < 7700 -> {:cont, acc}
x in 7700..8000 -> {:cont, [x | acc]}
true -> {:halt, Enum.reverse(acc)}
end
end) |> Enum.join(" ")
IO.puts "Emirps between 7,700 and 8,000: #{between}"
IO.puts "10,000th emirp: #{Enum.at(emirps, 9999)}"
end
end
Emirp.task |
http://rosettacode.org/wiki/Elliptic_curve_arithmetic | Elliptic curve arithmetic | Elliptic curves are sometimes used in cryptography as a way to perform digital signatures.
The purpose of this task is to implement a simplified (without modular arithmetic) version of the elliptic curve arithmetic which is required by the elliptic curve DSA protocol.
In a nutshell, an elliptic curve is a bi-dimensional curve defined by the following relation between the x and y coordinates of any point on the curve:
y
2
=
x
3
+
a
x
+
b
{\displaystyle y^{2}=x^{3}+ax+b}
a and b are arbitrary parameters that define the specific curve which is used.
For this particular task, we'll use the following parameters:
a=0, b=7
The most interesting thing about elliptic curves is the fact that it is possible to define a group structure on it.
To do so we define an internal composition rule with an additive notation +, such that for any three distinct points P, Q and R on the curve, whenever these points are aligned, we have:
P + Q + R = 0
Here 0 (zero) is the infinity point, for which the x and y values are not defined. It's basically the same kind of point which defines the horizon in projective geometry.
We'll also assume here that this infinity point is unique and defines the neutral element of the addition.
This was not the definition of the addition, but only its desired property. For a more accurate definition, we proceed as such:
Given any three aligned points P, Q and R, we define the sum S = P + Q as the point (possibly the infinity point) such that S, R and the infinity point are aligned.
Considering the symmetry of the curve around the x-axis, it's easy to convince oneself that two points S and R can be aligned with the infinity point if and only if S and R are symmetric of one another towards the x-axis (because in that case there is no other candidate than the infinity point to complete the alignment triplet).
S is thus defined as the symmetric of R towards the x axis.
The task consists in defining the addition which, for any two points of the curve, returns the sum of these two points. You will pick two random points on the curve, compute their sum and show that the symmetric of the sum is aligned with the two initial points.
You will use the a and b parameters of secp256k1, i.e. respectively zero and seven.
Hint: You might need to define a "doubling" function, that returns P+P for any given point P.
Extra credit: define the full elliptic curve arithmetic (still not modular, though) by defining a "multiply" function that returns,
for any point P and integer n, the point P + P + ... + P (n times).
| #REXX | REXX | /*REXX program defines (for any 2 points on the curve), returns the sum of the 2 points.*/
numeric digits 100 /*try to ensure a min. of accuracy loss*/
a= func(1) ; say ' a = ' show(a)
b= func(2) ; say ' b = ' show(b)
c= add(a, b) ; say ' c = (a+b) =' show(c)
d= neg(c) ; say ' d = -c =' show(d)
e= add(c, d) ; say ' e = (c+d) =' show(e)
g= add(a, add(b, d)) ; say ' g = (a+b+d) =' show(g)
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
cbrt: procedure; parse arg x; return root(x,3)
conv: procedure; arg z; if isZ(z) then return 'zero'; return left('',z>=0)format(z,,5)/1
root: procedure; parse arg x,y; if x=0 | y=1 then return x/1; d=5; return rootI()/1
rootG: parse value format(x,2,1,,0) 'E0' with ? 'E' _ .; return (?/y'E'_ %y) + (x>1)
func: procedure; parse arg y,k; if k=='' then k=7; return cbrt(y**2-k) y
inf: return '1e' || (digits()%2)
isZ: procedure; parse arg px . ; return abs(px) >= inf()
neg: procedure; parse arg px py; return px (-py)
show: procedure; parse arg x y ; return conv(x) conv(y)
zero: return inf() inf()
/*──────────────────────────────────────────────────────────────────────────────────────*/
add: procedure; parse arg px py, qx qy; if px=qx & py=qy then return dbl(px py)
if isZ(px py) then return qx qy; if isZ(qx qy) then return px py
z= qx - px; if z=0 then do; $= inf(); rx= inf(); end
else do; $= (qy-py) / z; rx= $*$ - px - qx; end
ry= $ * (px-rx) - py; return rx ry
/*──────────────────────────────────────────────────────────────────────────────────────*/
dbl: procedure; parse arg px py; if isZ(px py) then return px py; z= py+py
if z=0 then $= inf()
else $= (3*px*py) / (py+py)
rx= $*$ - px*px; ry= $ * (px-rx) - py; return rx ry
/*──────────────────────────────────────────────────────────────────────────────────────*/
rootI: ox=x; oy=y; x=abs(x); y=abs(y); a=digits()+5; numeric form; g=rootG(); m=y-1
do until d==a; d=min(d+d,a); numeric digits d; o=0
do until o=g; o=g; g=format((m*g**y+x)/y/g**m,,d-2); end /*until o=g*/
end /*until d==a*/; _=g*sign(ox); if oy<0 then _=1/_; return _ |
http://rosettacode.org/wiki/Enumerations | Enumerations | Task
Create an enumeration of constants with and without explicit values.
| #Pascal | Pascal | type
phase = (red, green, blue); |
http://rosettacode.org/wiki/Enumerations | Enumerations | Task
Create an enumeration of constants with and without explicit values.
| #Perl | Perl | # Using an array
my @fruits = qw(apple banana cherry);
# Using a hash
my %fruits = ( apple => 0, banana => 1, cherry => 2 ); |
http://rosettacode.org/wiki/Enumerations | Enumerations | Task
Create an enumeration of constants with and without explicit values.
| #Phix | Phix | enum apple, banana, orange
enum apple=5, banana=10, orange=
|
http://rosettacode.org/wiki/Empty_string | Empty string | Languages may have features for dealing specifically with empty strings
(those containing no characters).
Task
Demonstrate how to assign an empty string to a variable.
Demonstrate how to check that a string is empty.
Demonstrate how to check that a string is not empty.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #C.23 | C# | using System;
class Program {
static void Main (string[] args) {
string example = string.Empty;
if (string.IsNullOrEmpty(example)) { }
if (!string.IsNullOrEmpty(example)) { }
}
} |
http://rosettacode.org/wiki/Empty_directory | Empty directory | Starting with a path to some directory, determine whether the directory is empty.
An empty directory contains no files nor subdirectories.
With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
| #Lua | Lua |
function scandir(directory)
local i, t, popen = 0, {}, io.popen
local pfile = popen('ls -a "'..directory..'"')
for filename in pfile:lines() do
if filename ~= '.' and filename ~= '..' then
i = i + 1
t[i] = filename
end
end
pfile:close()
return t
end
function isemptydir(directory)
return #scandir(directory) == 0
end
|
http://rosettacode.org/wiki/Empty_directory | Empty directory | Starting with a path to some directory, determine whether the directory is empty.
An empty directory contains no files nor subdirectories.
With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
| #Maple | Maple |
emptydirectory := proc (dir)
is(listdir(dir) = [".", ".."]);
end proc;
|
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #BASIC256 | BASIC256 | |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #BBC_BASIC | BBC BASIC | |
http://rosettacode.org/wiki/Entropy | Entropy | Task
Calculate the Shannon entropy H of a given input string.
Given the discrete random variable
X
{\displaystyle X}
that is a string of
N
{\displaystyle N}
"symbols" (total characters) consisting of
n
{\displaystyle n}
different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is :
H
2
(
X
)
=
−
∑
i
=
1
n
c
o
u
n
t
i
N
log
2
(
c
o
u
n
t
i
N
)
{\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)}
where
c
o
u
n
t
i
{\displaystyle count_{i}}
is the count of character
n
i
{\displaystyle n_{i}}
.
For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer.
This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where
S
=
k
B
N
H
{\displaystyle S=k_{B}NH}
where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis.
The "total", "absolute", or "extensive" information entropy is
S
=
H
2
N
{\displaystyle S=H_{2}N}
bits
This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have
S
=
N
log
2
(
16
)
{\displaystyle S=N\log _{2}(16)}
bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits.
The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data.
Two other "entropies" are useful:
Normalized specific entropy:
H
n
=
H
2
∗
log
(
2
)
log
(
n
)
{\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}}
which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923.
Normalized total (extensive) entropy:
S
n
=
H
2
N
∗
log
(
2
)
log
(
n
)
{\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}}
which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23.
Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information".
In keeping with Landauer's limit, the physics entropy generated from erasing N bits is
S
=
H
2
N
k
B
ln
(
2
)
{\displaystyle S=H_{2}Nk_{B}\ln(2)}
if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents.
Related tasks
Fibonacci_word
Entropy/Narcissist
| #Emacs_Lisp | Emacs Lisp | (defun shannon-entropy (input)
(let ((freq-table (make-hash-table))
(entropy 0)
(length (+ (length input) 0.0)))
(mapcar (lambda (x)
(puthash x
(+ 1 (gethash x freq-table 0))
freq-table))
input)
(maphash (lambda (k v)
(set 'entropy (+ entropy
(* (/ v length)
(log (/ v length) 2)))))
freq-table)
(- entropy))) |
http://rosettacode.org/wiki/Ethiopian_multiplication | Ethiopian multiplication | Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
Method:
Take two numbers to be multiplied and write them down at the top of two columns.
In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1.
In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1.
Examine the table produced and discard any row where the value in the left column is even.
Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together
For example: 17 × 34
17 34
Halving the first column:
17 34
8
4
2
1
Doubling the second column:
17 34
8 68
4 136
2 272
1 544
Strike-out rows whose first cell is even:
17 34
8 68
4 136
2 272
1 544
Sum the remaining numbers in the right-hand column:
17 34
8 --
4 ---
2 ---
1 544
====
578
So 17 multiplied by 34, by the Ethiopian method is 578.
Task
The task is to define three named functions/methods/procedures/subroutines:
one to halve an integer,
one to double an integer, and
one to state if an integer is even.
Use these functions to create a function that does Ethiopian multiplication.
References
Ethiopian multiplication explained (BBC Video clip)
A Night Of Numbers - Go Forth And Multiply (Video)
Russian Peasant Multiplication
Programming Praxis: Russian Peasant Multiplication
| #Delphi | Delphi | proc nonrec halve(word n) word: n >> 1 corp
proc nonrec double(word n) word: n << 1 corp
proc nonrec even(word n) bool: n & 1 = 0 corp
proc nonrec emul(word a, b) word:
word total;
total := 0;
while a > 0 do
if not even(a) then total := total + b fi;
a := halve(a);
b := double(b)
od;
total
corp
proc nonrec main() void: writeln(emul(17, 34)) corp |
http://rosettacode.org/wiki/Equilibrium_index | Equilibrium index | An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices.
For example, in a sequence
A
{\displaystyle A}
:
A
0
=
−
7
{\displaystyle A_{0}=-7}
A
1
=
1
{\displaystyle A_{1}=1}
A
2
=
5
{\displaystyle A_{2}=5}
A
3
=
2
{\displaystyle A_{3}=2}
A
4
=
−
4
{\displaystyle A_{4}=-4}
A
5
=
3
{\displaystyle A_{5}=3}
A
6
=
0
{\displaystyle A_{6}=0}
3 is an equilibrium index, because:
A
0
+
A
1
+
A
2
=
A
4
+
A
5
+
A
6
{\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}}
6 is also an equilibrium index, because:
A
0
+
A
1
+
A
2
+
A
3
+
A
4
+
A
5
=
0
{\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0}
(sum of zero elements is zero)
7 is not an equilibrium index, because it is not a valid index of sequence
A
{\displaystyle A}
.
Task;
Write a function that, given a sequence, returns its equilibrium indices (if any).
Assume that the sequence may be very long.
| #NetRexx | NetRexx | /* NetRexx */
options replace format comments java crossref symbols nobinary
numeric digits 20
runSample(arg)
return
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- @see http://www.geeksforgeeks.org/equilibrium-index-of-an-array/
method equilibriumIndex(sequence) private static
es = ''
loop ix = 1 to sequence.words()
sum = 0
loop jx = 1 to sequence.words()
if jx < ix then sum = sum + sequence.word(jx)
if jx > ix then sum = sum - sequence.word(jx)
end jx
if sum = 0 then es = es ix
end ix
return es
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method runSample(arg) private static
-- Note: A Rexx object based list of "words" starts at index 1
sequences = [ -
'-7 1 5 2 -4 3 0', - -- 4 7
' 2 4 6' , - -- (no equilibrium point)
' 0 2 4 0 6 0' , - -- 4
' 2 9 2' , - -- 2
' 1 -1 1 -1 1 -1 1' - -- 1 2 3 4 5 6 7
]
loop sequence over sequences
say 'For sequence "'sequence.space(1, ',')'" the equilibrium indices are: \-'
say '"'equilibriumIndex(sequence).space(1, ',')'"'
end sequence
return
|
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Ruby | Ruby | ENV['HOME'] |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Run_BASIC | Run BASIC | ' ------- Major environment variables -------------------------------------------
'DefaultDir$ - The folder path where program files are read/written by default
'Platform$ - The operating system on which Run BASIC is being hosted
'UserInfo$ - This is information about the user's web browser
'UrlKeys$ - Contains informational parameters from the URL submitted when the user connected
'UserAddress$ - Contains the IP address of the user
'ProjectsRoot$ - The folder path where Run BASIC keeps programming projects
'ResourcesRoot$ - The folder path where Run BASIC keeps web-servable files
'Err$ - A description of the last runtime error
'Err - A numeric code for the last runtime error (errors that have no code use zero)
'EventKey$ - The id of the object that generated the last user event
'RowIndex - The numeric index of the table or database accessor link that generated the last user event
print "User Info is : ";UserInfo$
print "Platform is : ";Platform$
print "Url Keys is : ";UrlKeys$
print "User Address is: ";UserAddress$
print "Event Key is : ";EventKey$
print "Default Dir is : ";DefaultDir$ |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Rust | Rust | use std::env;
fn main() {
println!("{:?}", env::var("HOME"));
println!();
for (k, v) in env::vars().filter(|(k, _)| k.starts_with('P')) {
println!("{}: {}", k, v);
}
}
|
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Scala | Scala | sys.env.get("HOME") |
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture | Euler's sum of powers conjecture | There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin.
Euler's (disproved) sum of powers conjecture
At least k positive kth powers are required to sum to a kth power,
except for the trivial case of one kth power: yk = yk
In 1966, Leon J. Lander and Thomas R. Parkin used a brute-force search on a CDC 6600 computer restricting numbers to those less than 250.
Task
Write a program to search for an integer solution for:
x05 + x15 + x25 + x35 == y5
Where all xi's and y are distinct integers between 0 and 250 (exclusive).
Show an answer here.
Related tasks
Pythagorean quadruples.
Pythagorean triples.
| #Julia | Julia |
const lim = 250
const pwr = 5
const p = [i^pwr for i in 1:lim]
x = zeros(Int, pwr-1)
y = 0
for a in combinations(1:lim, pwr-1)
b = searchsorted(p, sum(p[a]))
0 < length(b) || continue
x = a
y = b[1]
break
end
if y == 0
println("No solution found for power = ", pwr, " and limit = ", lim, ".")
else
s = [@sprintf("%d^%d", i, pwr) for i in x]
s = join(s, " + ")
println("A solution is ", s, " = ", @sprintf("%d^%d", y, pwr), ".")
end
|
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #Order | Order | #include <order/interpreter.h>
#define ORDER_PP_DEF_8fac \
ORDER_PP_FN(8fn(8N, \
8if(8less_eq(8N, 0), \
1, \
8mul(8N, 8fac(8dec(8N))))))
ORDER_PP(8to_lit(8fac(8))) // 40320 |
http://rosettacode.org/wiki/Even_or_odd | Even or odd | Task
Test whether an integer is even or odd.
There is more than one way to solve this task:
Use the even and odd predicates, if the language provides them.
Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd.
Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd.
Use modular congruences:
i ≡ 0 (mod 2) iff i is even.
i ≡ 1 (mod 2) iff i is odd.
| #EDSAC_order_code | EDSAC order code | [ Even or odd
===========
A program for the EDSAC
Determines whether the number stored at
address 15@ is even or odd, and prints
'E' or 'O' accordingly
Works with Initial Orders 2 ]
T56K [ load point ]
GK [ base address ]
O11@ [ print letter shift ]
T10@ [ clear accumulator ]
H15@ [ multiplier := n ]
C12@ [ acc +:= mult AND 1 ]
S12@ [ acc -:= 1 ]
G8@ [ branch on negative ]
O14@ [ print 'O' ]
ZF [ halt ]
[ 8 ] O13@ [ print 'E' ]
ZF [ halt ]
[ 10 ] P0F [ used to clear acc ]
[ 11 ] *F [ letter shift character ]
[ 12 ] P0D [ const: 1 ]
[ 13 ] EF [ character 'E' ]
[ 14 ] OF [ character 'O' ]
[ 15 ] P18D [ number to test: 37 ]
EZPF [ branch to load point ] |
http://rosettacode.org/wiki/Even_or_odd | Even or odd | Task
Test whether an integer is even or odd.
There is more than one way to solve this task:
Use the even and odd predicates, if the language provides them.
Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd.
Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd.
Use modular congruences:
i ≡ 0 (mod 2) iff i is even.
i ≡ 1 (mod 2) iff i is odd.
| #Eiffel | Eiffel | --bit testing
if i.bit_and (1) = 0 then
-- i is even
end
--built-in bit testing (uses bit_and)
if i.bit_test (0) then
-- i is odd
end
--integer remainder (modulo)
if i \\ 2 = 0 then
-- i is even
end |
http://rosettacode.org/wiki/Euler_method | Euler method | Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value. It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page.
The ODE has to be provided in the following form:
d
y
(
t
)
d
t
=
f
(
t
,
y
(
t
)
)
{\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))}
with an initial value
y
(
t
0
)
=
y
0
{\displaystyle y(t_{0})=y_{0}}
To get a numeric solution, we replace the derivative on the LHS with a finite difference approximation:
d
y
(
t
)
d
t
≈
y
(
t
+
h
)
−
y
(
t
)
h
{\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}}
then solve for
y
(
t
+
h
)
{\displaystyle y(t+h)}
:
y
(
t
+
h
)
≈
y
(
t
)
+
h
d
y
(
t
)
d
t
{\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}}
which is the same as
y
(
t
+
h
)
≈
y
(
t
)
+
h
f
(
t
,
y
(
t
)
)
{\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))}
The iterative solution rule is then:
y
n
+
1
=
y
n
+
h
f
(
t
n
,
y
n
)
{\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})}
where
h
{\displaystyle h}
is the step size, the most relevant parameter for accuracy of the solution. A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand.
Example: Newton's Cooling Law
Newton's cooling law describes how an object of initial temperature
T
(
t
0
)
=
T
0
{\displaystyle T(t_{0})=T_{0}}
cools down in an environment of temperature
T
R
{\displaystyle T_{R}}
:
d
T
(
t
)
d
t
=
−
k
Δ
T
{\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T}
or
d
T
(
t
)
d
t
=
−
k
(
T
(
t
)
−
T
R
)
{\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})}
It says that the cooling rate
d
T
(
t
)
d
t
{\displaystyle {\frac {dT(t)}{dt}}}
of the object is proportional to the current temperature difference
Δ
T
=
(
T
(
t
)
−
T
R
)
{\displaystyle \Delta T=(T(t)-T_{R})}
to the surrounding environment.
The analytical solution, which we will compare to the numerical approximation, is
T
(
t
)
=
T
R
+
(
T
0
−
T
R
)
e
−
k
t
{\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}}
Task
Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:
2 s
5 s and
10 s
and to compare with the analytical solution.
Initial values
initial temperature
T
0
{\displaystyle T_{0}}
shall be 100 °C
room temperature
T
R
{\displaystyle T_{R}}
shall be 20 °C
cooling constant
k
{\displaystyle k}
shall be 0.07
time interval to calculate shall be from 0 s ──► 100 s
A reference solution (Common Lisp) can be seen below. We see that bigger step sizes lead to reduced approximation accuracy.
| #zkl | zkl | const FMT=" %7.3f";
fcn ivp_euler(f,y,step,end_t){
print(" Step %2d: ".fmt(step));
foreach t in ([0..end_t,step]){
if (t % 10 == 0) print(FMT.fmt(y));
y += f(t,y) * step;
}
println();
}
fcn analytic{
print(" Time: ");
foreach t in ([0..100,10]){ print(" %7g".fmt(t)) }
print("\nAnalytic: ");
foreach t in ([0..100,10]){ print(FMT.fmt(20.0 + 80.0 * (-0.07 * t).exp())) }
println();
}
fcn cooling(_,temp){ return(-0.07 * (temp - 20)) }
analytic();
ivp_euler(cooling, 100.0, 2, 100);
ivp_euler(cooling, 100.0, 5, 100);
ivp_euler(cooling, 100.0, 10, 100); |
http://rosettacode.org/wiki/Euler_method | Euler method | Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value. It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page.
The ODE has to be provided in the following form:
d
y
(
t
)
d
t
=
f
(
t
,
y
(
t
)
)
{\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))}
with an initial value
y
(
t
0
)
=
y
0
{\displaystyle y(t_{0})=y_{0}}
To get a numeric solution, we replace the derivative on the LHS with a finite difference approximation:
d
y
(
t
)
d
t
≈
y
(
t
+
h
)
−
y
(
t
)
h
{\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}}
then solve for
y
(
t
+
h
)
{\displaystyle y(t+h)}
:
y
(
t
+
h
)
≈
y
(
t
)
+
h
d
y
(
t
)
d
t
{\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}}
which is the same as
y
(
t
+
h
)
≈
y
(
t
)
+
h
f
(
t
,
y
(
t
)
)
{\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))}
The iterative solution rule is then:
y
n
+
1
=
y
n
+
h
f
(
t
n
,
y
n
)
{\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})}
where
h
{\displaystyle h}
is the step size, the most relevant parameter for accuracy of the solution. A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand.
Example: Newton's Cooling Law
Newton's cooling law describes how an object of initial temperature
T
(
t
0
)
=
T
0
{\displaystyle T(t_{0})=T_{0}}
cools down in an environment of temperature
T
R
{\displaystyle T_{R}}
:
d
T
(
t
)
d
t
=
−
k
Δ
T
{\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T}
or
d
T
(
t
)
d
t
=
−
k
(
T
(
t
)
−
T
R
)
{\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})}
It says that the cooling rate
d
T
(
t
)
d
t
{\displaystyle {\frac {dT(t)}{dt}}}
of the object is proportional to the current temperature difference
Δ
T
=
(
T
(
t
)
−
T
R
)
{\displaystyle \Delta T=(T(t)-T_{R})}
to the surrounding environment.
The analytical solution, which we will compare to the numerical approximation, is
T
(
t
)
=
T
R
+
(
T
0
−
T
R
)
e
−
k
t
{\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}}
Task
Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:
2 s
5 s and
10 s
and to compare with the analytical solution.
Initial values
initial temperature
T
0
{\displaystyle T_{0}}
shall be 100 °C
room temperature
T
R
{\displaystyle T_{R}}
shall be 20 °C
cooling constant
k
{\displaystyle k}
shall be 0.07
time interval to calculate shall be from 0 s ──► 100 s
A reference solution (Common Lisp) can be seen below. We see that bigger step sizes lead to reduced approximation accuracy.
| #ZX_Spectrum_Basic | ZX Spectrum Basic | 10 LET d$="-0.07*(y-20)": LET y=100: LET a=0: LET b=100: LET s=10
20 LET t=a
30 IF t<=b THEN PRINT t;TAB 10;y: LET y=y+s*VAL d$: LET t=t+s: GO TO 30 |
http://rosettacode.org/wiki/Evaluate_binomial_coefficients | Evaluate binomial coefficients | This programming task, is to calculate ANY binomial coefficient.
However, it has to be able to output
(
5
3
)
{\displaystyle {\binom {5}{3}}}
, which is 10.
This formula is recommended:
(
n
k
)
=
n
!
(
n
−
k
)
!
k
!
=
n
(
n
−
1
)
(
n
−
2
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
(
k
−
2
)
…
1
{\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}}
See Also:
Combinations and permutations
Pascal's triangle
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #.D0.9C.D0.9A-61.2F52 | МК-61/52 | П1 <-> П0 ПП 22 П2 ИП1 ПП 22 П3
ИП0 ИП1 - ПП 22 ИП3 * П3 ИП2 ИП3
/ С/П ВП П0 1 ИП0 * L0 25 В/О |
http://rosettacode.org/wiki/Evaluate_binomial_coefficients | Evaluate binomial coefficients | This programming task, is to calculate ANY binomial coefficient.
However, it has to be able to output
(
5
3
)
{\displaystyle {\binom {5}{3}}}
, which is 10.
This formula is recommended:
(
n
k
)
=
n
!
(
n
−
k
)
!
k
!
=
n
(
n
−
1
)
(
n
−
2
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
(
k
−
2
)
…
1
{\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}}
See Also:
Combinations and permutations
Pascal's triangle
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Nanoquery | Nanoquery | def binomialCoeff(n, k)
result = 1
for i in range(1, k)
result = result * (n-i+1) / i
end
return result
end
if main
println binomialCoeff(5,3)
end |
http://rosettacode.org/wiki/Emirp_primes | Emirp primes | An emirp (prime spelled backwards) are primes that when reversed (in their decimal representation) are a different prime.
(This rules out palindromic primes.)
Task
show the first twenty emirps
show all emirps between 7,700 and 8,000
show the 10,000th emirp
In each list, the numbers should be in order.
Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes.
The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer.
See also
Wikipedia, Emirp.
The Prime Pages, emirp.
Wolfram MathWorld™, Emirp.
The On‑Line Encyclopedia of Integer Sequences, emirps (A6567).
| #F.23 | F# |
// Generate emirps. Nigel Galloway: November 19th., 2017
let emirp =
let rec fN n g = match n with |0->g |_->fN (n/10) (g*10+n%10)
let fG n g = n<>g && isPrime g
primes32() |> Seq.filter (fun n -> fG n (fN n 0))
|
http://rosettacode.org/wiki/Elliptic_curve_arithmetic | Elliptic curve arithmetic | Elliptic curves are sometimes used in cryptography as a way to perform digital signatures.
The purpose of this task is to implement a simplified (without modular arithmetic) version of the elliptic curve arithmetic which is required by the elliptic curve DSA protocol.
In a nutshell, an elliptic curve is a bi-dimensional curve defined by the following relation between the x and y coordinates of any point on the curve:
y
2
=
x
3
+
a
x
+
b
{\displaystyle y^{2}=x^{3}+ax+b}
a and b are arbitrary parameters that define the specific curve which is used.
For this particular task, we'll use the following parameters:
a=0, b=7
The most interesting thing about elliptic curves is the fact that it is possible to define a group structure on it.
To do so we define an internal composition rule with an additive notation +, such that for any three distinct points P, Q and R on the curve, whenever these points are aligned, we have:
P + Q + R = 0
Here 0 (zero) is the infinity point, for which the x and y values are not defined. It's basically the same kind of point which defines the horizon in projective geometry.
We'll also assume here that this infinity point is unique and defines the neutral element of the addition.
This was not the definition of the addition, but only its desired property. For a more accurate definition, we proceed as such:
Given any three aligned points P, Q and R, we define the sum S = P + Q as the point (possibly the infinity point) such that S, R and the infinity point are aligned.
Considering the symmetry of the curve around the x-axis, it's easy to convince oneself that two points S and R can be aligned with the infinity point if and only if S and R are symmetric of one another towards the x-axis (because in that case there is no other candidate than the infinity point to complete the alignment triplet).
S is thus defined as the symmetric of R towards the x axis.
The task consists in defining the addition which, for any two points of the curve, returns the sum of these two points. You will pick two random points on the curve, compute their sum and show that the symmetric of the sum is aligned with the two initial points.
You will use the a and b parameters of secp256k1, i.e. respectively zero and seven.
Hint: You might need to define a "doubling" function, that returns P+P for any given point P.
Extra credit: define the full elliptic curve arithmetic (still not modular, though) by defining a "multiply" function that returns,
for any point P and integer n, the point P + P + ... + P (n times).
| #Sage | Sage | Ellie = EllipticCurve(RR,[0,7]) # RR = field of real numbers
# a point (x,y) on Ellie, given y
def point ( y) :
x = var('x')
x = (y^2 - 7 - x^3).roots(x,ring=RR,multiplicities = False)[0]
P = Ellie([x,y])
return P
print(Ellie)
P = point(1)
print('P',P)
Q = point(2)
print('Q',Q)
S = P+Q
print('S = P + Q',S)
print('P+Q-S', P+Q-S)
print('P*12345' ,P*12345) |
http://rosettacode.org/wiki/Elliptic_curve_arithmetic | Elliptic curve arithmetic | Elliptic curves are sometimes used in cryptography as a way to perform digital signatures.
The purpose of this task is to implement a simplified (without modular arithmetic) version of the elliptic curve arithmetic which is required by the elliptic curve DSA protocol.
In a nutshell, an elliptic curve is a bi-dimensional curve defined by the following relation between the x and y coordinates of any point on the curve:
y
2
=
x
3
+
a
x
+
b
{\displaystyle y^{2}=x^{3}+ax+b}
a and b are arbitrary parameters that define the specific curve which is used.
For this particular task, we'll use the following parameters:
a=0, b=7
The most interesting thing about elliptic curves is the fact that it is possible to define a group structure on it.
To do so we define an internal composition rule with an additive notation +, such that for any three distinct points P, Q and R on the curve, whenever these points are aligned, we have:
P + Q + R = 0
Here 0 (zero) is the infinity point, for which the x and y values are not defined. It's basically the same kind of point which defines the horizon in projective geometry.
We'll also assume here that this infinity point is unique and defines the neutral element of the addition.
This was not the definition of the addition, but only its desired property. For a more accurate definition, we proceed as such:
Given any three aligned points P, Q and R, we define the sum S = P + Q as the point (possibly the infinity point) such that S, R and the infinity point are aligned.
Considering the symmetry of the curve around the x-axis, it's easy to convince oneself that two points S and R can be aligned with the infinity point if and only if S and R are symmetric of one another towards the x-axis (because in that case there is no other candidate than the infinity point to complete the alignment triplet).
S is thus defined as the symmetric of R towards the x axis.
The task consists in defining the addition which, for any two points of the curve, returns the sum of these two points. You will pick two random points on the curve, compute their sum and show that the symmetric of the sum is aligned with the two initial points.
You will use the a and b parameters of secp256k1, i.e. respectively zero and seven.
Hint: You might need to define a "doubling" function, that returns P+P for any given point P.
Extra credit: define the full elliptic curve arithmetic (still not modular, though) by defining a "multiply" function that returns,
for any point P and integer n, the point P + P + ... + P (n times).
| #Sidef | Sidef | module EC {
var A = 0
var B = 7
class Horizon {
method to_s {
"EC Point at horizon"
}
method *(_) {
self
}
method -(_) {
self
}
}
class Point(Number x, Number y) {
method to_s {
"EC Point at x=#{x}, y=#{y}"
}
method neg {
Point(x, -y)
}
method -(Point p) {
self + -p
}
method +(Point p) {
if (x == p.x) {
return (y == p.y ? self*2 : Horizon())
}
else {
var slope = (p.y - y)/(p.x - x)
var x2 = (slope**2 - x - p.x)
var y2 = (slope * (x - x2) - y)
Point(x2, y2)
}
}
method +(Horizon _) {
self
}
method *((0)) {
Horizon()
}
method *((1)) {
self
}
method *((2)) {
var l = (3 * x**2 + A)/(2 * y)
var x2 = (l**2 - 2*x)
var y2 = (l * (x - x2) - y)
Point(x2, y2)
}
method *(Number n) {
2*(self * (n>>1)) + self*(n % 2)
}
}
class Horizon {
method +(Point p) {
p
}
}
class Number {
method +(Point p) {
p + self
}
method *(Point p) {
p * self
}
method *(Horizon h) {
h
}
method -(Point p) {
-p + self
}
}
}
say var p = with(1) {|v| EC::Point(v, sqrt(abs(1 - v**3 - EC::A*v - EC::B))) }
say var q = with(2) {|v| EC::Point(v, sqrt(abs(1 - v**3 - EC::A*v - EC::B))) }
say var s = (p + q)
say ("checking alignment: ", abs((p.x - q.x)*(-s.y - q.y) - (p.y - q.y)*(s.x - q.x)) < 1e-20) |
http://rosettacode.org/wiki/Enumerations | Enumerations | Task
Create an enumeration of constants with and without explicit values.
| #PHP | PHP | // Using an array/hash
$fruits = array( "apple", "banana", "cherry" );
$fruits = array( "apple" => 0, "banana" => 1, "cherry" => 2 );
// If you are inside a class scope
class Fruit {
const APPLE = 0;
const BANANA = 1;
const CHERRY = 2;
}
// Then you can access them as such
$value = Fruit::APPLE;
// Or, you can do it using define()
define("FRUIT_APPLE", 0);
define("FRUIT_BANANA", 1);
define("FRUIT_CHERRY", 2); |
http://rosettacode.org/wiki/Enumerations | Enumerations | Task
Create an enumeration of constants with and without explicit values.
| #Picat | Picat | fruit(apple,1).
fruit(banana,2).
fruit(cherry,4).
print_fruit_name(N) :-
fruit(Name,N),
printf("It is %w\nn", Name). |
http://rosettacode.org/wiki/Empty_string | Empty string | Languages may have features for dealing specifically with empty strings
(those containing no characters).
Task
Demonstrate how to assign an empty string to a variable.
Demonstrate how to check that a string is empty.
Demonstrate how to check that a string is not empty.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #C.2B.2B | C++ | #include <string>
// ...
// empty string declaration
std::string str; // (default constructed)
std::string str(); // (default constructor, no parameters)
std::string str{}; // (default initialized)
std::string str(""); // (const char[] conversion)
std::string str{""}; // (const char[] initializer list)
if (str.empty()) { ... } // to test if string is empty
// we could also use the following
if (str.length() == 0) { ... }
if (str == "") { ... }
// make a std::string empty
str.clear(); // (builtin clear function)
str = ""; // replace contents with empty string
str = {}; // swap contents with temp string (empty),then destruct temp
// swap with empty string
std::string tmp{}; // temp empty string
str.swap(tmp); // (builtin swap function)
std::swap(str, tmp); // swap contents with tmp
// create an array of empty strings
std::string s_array[100]; // 100 initialized to "" (fixed size)
std::array<std::string, 100> arr; // 100 initialized to "" (fixed size)
std::vector<std::string>(100,""); // 100 initialized to "" (variable size, 100 starting size)
// create empty string as default parameter
void func( std::string& s = {} ); // {} generated default std:string instance
|
http://rosettacode.org/wiki/Empty_directory | Empty directory | Starting with a path to some directory, determine whether the directory is empty.
An empty directory contains no files nor subdirectories.
With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | EmptyDirectoryQ[x_] := (SetDirectory[x]; If[FileNames[] == {}, True, False])
Example use:
EmptyDirectoryQ["C:\\Program Files\\Wolfram Research\\Mathematica\\9"]
->True |
http://rosettacode.org/wiki/Empty_directory | Empty directory | Starting with a path to some directory, determine whether the directory is empty.
An empty directory contains no files nor subdirectories.
With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
| #MATLAB_.2F_Octave | MATLAB / Octave |
function x = isEmptyDirectory(p)
if isdir(p)
f = dir(p)
x = length(f)>2;
else
error('Error: %s is not a directory');
end;
end;
|
http://rosettacode.org/wiki/Empty_directory | Empty directory | Starting with a path to some directory, determine whether the directory is empty.
An empty directory contains no files nor subdirectories.
With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
| #min | min | (ls bool not) :empty-dir? |
http://rosettacode.org/wiki/Empty_directory | Empty directory | Starting with a path to some directory, determine whether the directory is empty.
An empty directory contains no files nor subdirectories.
With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
| #MS-DOS | MS-DOS | C:\>rd GAMES
Unable to remove: GAMES.
C:\> |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #bc | bc | * |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Beeswax | Beeswax | * |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Befunge | Befunge | @
|
http://rosettacode.org/wiki/Entropy | Entropy | Task
Calculate the Shannon entropy H of a given input string.
Given the discrete random variable
X
{\displaystyle X}
that is a string of
N
{\displaystyle N}
"symbols" (total characters) consisting of
n
{\displaystyle n}
different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is :
H
2
(
X
)
=
−
∑
i
=
1
n
c
o
u
n
t
i
N
log
2
(
c
o
u
n
t
i
N
)
{\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)}
where
c
o
u
n
t
i
{\displaystyle count_{i}}
is the count of character
n
i
{\displaystyle n_{i}}
.
For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer.
This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where
S
=
k
B
N
H
{\displaystyle S=k_{B}NH}
where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis.
The "total", "absolute", or "extensive" information entropy is
S
=
H
2
N
{\displaystyle S=H_{2}N}
bits
This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have
S
=
N
log
2
(
16
)
{\displaystyle S=N\log _{2}(16)}
bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits.
The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data.
Two other "entropies" are useful:
Normalized specific entropy:
H
n
=
H
2
∗
log
(
2
)
log
(
n
)
{\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}}
which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923.
Normalized total (extensive) entropy:
S
n
=
H
2
N
∗
log
(
2
)
log
(
n
)
{\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}}
which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23.
Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information".
In keeping with Landauer's limit, the physics entropy generated from erasing N bits is
S
=
H
2
N
k
B
ln
(
2
)
{\displaystyle S=H_{2}Nk_{B}\ln(2)}
if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents.
Related tasks
Fibonacci_word
Entropy/Narcissist
| #Erlang | Erlang |
-module( entropy ).
-export( [shannon/1, task/0] ).
shannon( String ) -> shannon_information_content( lists:foldl(fun count/2, dict:new(), String), erlang:length(String) ).
task() -> shannon( "1223334444" ).
count( Character, Dict ) -> dict:update_counter( Character, 1, Dict ).
shannon_information_content( Dict, String_length ) ->
{_String_length, Acc} = dict:fold( fun shannon_information_content/3, {String_length, 0.0}, Dict ),
Acc / math:log( 2 ).
shannon_information_content( _Character, How_many, {String_length, Acc} ) ->
Frequency = How_many / String_length,
{String_length, Acc - (Frequency * math:log(Frequency))}.
|
http://rosettacode.org/wiki/Ethiopian_multiplication | Ethiopian multiplication | Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
Method:
Take two numbers to be multiplied and write them down at the top of two columns.
In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1.
In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1.
Examine the table produced and discard any row where the value in the left column is even.
Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together
For example: 17 × 34
17 34
Halving the first column:
17 34
8
4
2
1
Doubling the second column:
17 34
8 68
4 136
2 272
1 544
Strike-out rows whose first cell is even:
17 34
8 68
4 136
2 272
1 544
Sum the remaining numbers in the right-hand column:
17 34
8 --
4 ---
2 ---
1 544
====
578
So 17 multiplied by 34, by the Ethiopian method is 578.
Task
The task is to define three named functions/methods/procedures/subroutines:
one to halve an integer,
one to double an integer, and
one to state if an integer is even.
Use these functions to create a function that does Ethiopian multiplication.
References
Ethiopian multiplication explained (BBC Video clip)
A Night Of Numbers - Go Forth And Multiply (Video)
Russian Peasant Multiplication
Programming Praxis: Russian Peasant Multiplication
| #Draco | Draco | proc nonrec halve(word n) word: n >> 1 corp
proc nonrec double(word n) word: n << 1 corp
proc nonrec even(word n) bool: n & 1 = 0 corp
proc nonrec emul(word a, b) word:
word total;
total := 0;
while a > 0 do
if not even(a) then total := total + b fi;
a := halve(a);
b := double(b)
od;
total
corp
proc nonrec main() void: writeln(emul(17, 34)) corp |
http://rosettacode.org/wiki/Equilibrium_index | Equilibrium index | An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices.
For example, in a sequence
A
{\displaystyle A}
:
A
0
=
−
7
{\displaystyle A_{0}=-7}
A
1
=
1
{\displaystyle A_{1}=1}
A
2
=
5
{\displaystyle A_{2}=5}
A
3
=
2
{\displaystyle A_{3}=2}
A
4
=
−
4
{\displaystyle A_{4}=-4}
A
5
=
3
{\displaystyle A_{5}=3}
A
6
=
0
{\displaystyle A_{6}=0}
3 is an equilibrium index, because:
A
0
+
A
1
+
A
2
=
A
4
+
A
5
+
A
6
{\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}}
6 is also an equilibrium index, because:
A
0
+
A
1
+
A
2
+
A
3
+
A
4
+
A
5
=
0
{\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0}
(sum of zero elements is zero)
7 is not an equilibrium index, because it is not a valid index of sequence
A
{\displaystyle A}
.
Task;
Write a function that, given a sequence, returns its equilibrium indices (if any).
Assume that the sequence may be very long.
| #Nim | Nim | import math, sequtils, strutils
iterator eqindex(data: openArray[int]): int =
var suml, ddelayed = 0
var sumr = sum(data)
for i,d in data:
suml += ddelayed
sumr -= d
ddelayed = d
if suml == sumr:
yield i
const d = @[@[-7, 1, 5, 2, -4, 3, 0],
@[2, 4, 6],
@[2, 9, 2],
@[1, -1, 1, -1, 1, -1, 1]]
for data in d:
echo "d = [", data.join(", "), ']'
echo "eqIndex(d) -> [", toSeq(eqindex(data)).join(", "), ']' |
http://rosettacode.org/wiki/Equilibrium_index | Equilibrium index | An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices.
For example, in a sequence
A
{\displaystyle A}
:
A
0
=
−
7
{\displaystyle A_{0}=-7}
A
1
=
1
{\displaystyle A_{1}=1}
A
2
=
5
{\displaystyle A_{2}=5}
A
3
=
2
{\displaystyle A_{3}=2}
A
4
=
−
4
{\displaystyle A_{4}=-4}
A
5
=
3
{\displaystyle A_{5}=3}
A
6
=
0
{\displaystyle A_{6}=0}
3 is an equilibrium index, because:
A
0
+
A
1
+
A
2
=
A
4
+
A
5
+
A
6
{\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}}
6 is also an equilibrium index, because:
A
0
+
A
1
+
A
2
+
A
3
+
A
4
+
A
5
=
0
{\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0}
(sum of zero elements is zero)
7 is not an equilibrium index, because it is not a valid index of sequence
A
{\displaystyle A}
.
Task;
Write a function that, given a sequence, returns its equilibrium indices (if any).
Assume that the sequence may be very long.
| #Objeck | Objeck | class Rosetta {
function : Main(args : String[]) ~ Nil {
sequence := [-7, 1, 5, 2, -4, 3, 0];
EqulibriumIndices(sequence);
}
function : EqulibriumIndices(sequence : Int[]) ~ Nil {
# find total sum
totalSum := 0;
each(i : sequence) {
totalSum += sequence[i];
};
# compare running sum to remaining sum to find equlibrium indices
runningSum := 0;
each(i : sequence) {
n := sequence[i];
if (totalSum - runningSum - n = runningSum) {
i->PrintLine();
};
runningSum += n;
};
}
} |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Seed7 | Seed7 | $ include "seed7_05.s7i";
const proc: main is func
begin
writeln(getenv("HOME"));
end func; |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Sidef | Sidef | say ENV{'HOME'}; |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Slate | Slate | Environment variables at: 'PATH'.
"==> '/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games'" |
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #Smalltalk | Smalltalk |
OSProcess thisOSProcess environment at: #HOME.
OSProcess thisOSProcess environment at: #PATH.
OSProcess thisOSProcess environment at: #USER.
|
http://rosettacode.org/wiki/Environment_variables | Environment variables | Task
Show how to get one of your process's environment variables.
The available variables vary by system; some of the common ones available on Unix include:
PATH
HOME
USER
| #SNOBOL4 | SNOBOL4 | output = host(4,'PATH')
end |
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture | Euler's sum of powers conjecture | There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin.
Euler's (disproved) sum of powers conjecture
At least k positive kth powers are required to sum to a kth power,
except for the trivial case of one kth power: yk = yk
In 1966, Leon J. Lander and Thomas R. Parkin used a brute-force search on a CDC 6600 computer restricting numbers to those less than 250.
Task
Write a program to search for an integer solution for:
x05 + x15 + x25 + x35 == y5
Where all xi's and y are distinct integers between 0 and 250 (exclusive).
Show an answer here.
Related tasks
Pythagorean quadruples.
Pythagorean triples.
| #Kotlin | Kotlin | fun main(args: Array<String>) {
val p5 = LongArray(250){ it.toLong() * it * it * it * it }
var sum: Long
var y: Int
var found = false
loop@ for (x0 in 0 .. 249)
for (x1 in 0 .. x0 - 1)
for (x2 in 0 .. x1 - 1)
for (x3 in 0 .. x2 - 1) {
sum = p5[x0] + p5[x1] + p5[x2] + p5[x3]
y = p5.binarySearch(sum)
if (y >= 0) {
println("$x0^5 + $x1^5 + $x2^5 + $x3^5 = $y^5")
found = true
break@loop
}
}
if (!found) println("No solution was found")
} |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #Oz | Oz | fun {Fac1 N}
{FoldL {List.number 1 N 1} Number.'*' 1}
end |
http://rosettacode.org/wiki/Even_or_odd | Even or odd | Task
Test whether an integer is even or odd.
There is more than one way to solve this task:
Use the even and odd predicates, if the language provides them.
Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd.
Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd.
Use modular congruences:
i ≡ 0 (mod 2) iff i is even.
i ≡ 1 (mod 2) iff i is odd.
| #Elixir | Elixir | defmodule RC do
import Integer
def even_or_odd(n) when is_even(n), do: "#{n} is even"
def even_or_odd(n) , do: "#{n} is odd"
# In second "def", the guard clauses of "is_odd(n)" is unnecessary.
# Another definition way
def even_or_odd2(n) do
if is_even(n), do: "#{n} is even", else: "#{n} is odd"
end
end
Enum.each(-2..3, fn n -> IO.puts RC.even_or_odd(n) end) |
http://rosettacode.org/wiki/Even_or_odd | Even or odd | Task
Test whether an integer is even or odd.
There is more than one way to solve this task:
Use the even and odd predicates, if the language provides them.
Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd.
Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd.
Use modular congruences:
i ≡ 0 (mod 2) iff i is even.
i ≡ 1 (mod 2) iff i is odd.
| #Emacs_Lisp | Emacs Lisp | (require 'cl-lib)
(defun even-or-odd-p (n)
(if (cl-evenp n) 'even 'odd))
(defun even-or-odd-p (n)
(if (zerop (% n 2)) 'even 'odd))
(message "%d is %s" 3 (even-or-oddp 3))
(message "%d is %s" 2 (even-or-oddp 2)) |
http://rosettacode.org/wiki/Evaluate_binomial_coefficients | Evaluate binomial coefficients | This programming task, is to calculate ANY binomial coefficient.
However, it has to be able to output
(
5
3
)
{\displaystyle {\binom {5}{3}}}
, which is 10.
This formula is recommended:
(
n
k
)
=
n
!
(
n
−
k
)
!
k
!
=
n
(
n
−
1
)
(
n
−
2
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
(
k
−
2
)
…
1
{\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}}
See Also:
Combinations and permutations
Pascal's triangle
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Nim | Nim | proc binomialCoeff(n, k: int): int =
result = 1
for i in 1..k:
result = result * (n-i+1) div i
echo binomialCoeff(5, 3) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.