task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Peloton
Peloton
<@ SAYFCTLIT>5</@>
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#Factor
Factor
( scratchpad ) 20 even? . t ( scratchpad ) 35 even? . f ( scratchpad ) 20 odd? . f ( scratchpad ) 35 odd? . t
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#Fish
Fish
<v"Please enter a number:"a >l0)?!vo v < v o< ^ >i:a=?v>i:a=?v$a*+^>"The number is even."ar>l0=?!^> > >2%0=?^"The number is odd."ar ^
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Phix
Phix
global function choose(integer n, k) atom res = 1 for i=1 to k do res = (res*(n-i+1))/i end for return res end function
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#PHP
PHP
<?php $n=5; $k=3; function factorial($val){ for($f=2;$val-1>1;$f*=$val--); return $f; } $binomial_coefficient=factorial($n)/(factorial($k)*factorial($n-$k)); echo $binomial_coefficient; ?>
http://rosettacode.org/wiki/Emirp_primes
Emirp primes
An   emirp   (prime spelled backwards)   are primes that when reversed   (in their decimal representation)   are a different prime. (This rules out palindromic primes.) Task   show the first   twenty   emirps   show all emirps between   7,700   and   8,000   show the   10,000th   emirp In each list, the numbers should be in order. Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes. The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer. See also   Wikipedia, Emirp.   The Prime Pages, emirp.   Wolfram MathWorld™, Emirp.   The On‑Line Encyclopedia of Integer Sequences, emirps (A6567).
#Groovy
Groovy
class Emirp {   //trivial prime algorithm, sub in whatever algorithm you want static boolean isPrime(long x) { if (x < 2) return false if (x == 2) return true if ((x & 1) == 0) return false   for (long i = 3; i <= Math.sqrt(x); i += 2) { if (x % i == 0) return false }   return true }   static boolean isEmirp(long x) { String xString = Long.toString(x) if (xString.length() == 1) return false if (xString.matches("[24568].*") || xString.matches(".*[24568]")) return false //eliminate some easy rejects long xR = Long.parseLong(new StringBuilder(xString).reverse().toString()) if (xR == x) return false return isPrime(x) && isPrime(xR) }   static void main(String[] args) { int count = 0 long x = 1   println("First 20 emirps:") while (count < 20) { if (isEmirp(x)) { count++ print(x + " ") } x++ }   println("\nEmirps between 7700 and 8000:") for (x = 7700; x <= 8000; x++) { if (isEmirp(x)) { print(x + " ") } }   println("\n10,000th emirp:") x = 1 count = 0 for (; count < 10000; x++) { if (isEmirp(x)) { count++ } } //--x to fix the last increment from the loop println(--x) } }
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Ring
Ring
  apple = 0 banana = 1 cherry = 2 see "apple : " + apple + nl see "banana : " + banana + nl see "cherry : " + cherry + nl  
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Ruby
Ruby
module Fruits APPLE = 0 BANANA = 1 CHERRY = 2 end   # It is possible to use a symbol if the value is unrelated.   FRUITS = [:apple, :banana, :cherry] val = :banana FRUITS.include?(val) #=> true
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Rust
Rust
enum Fruits { Apple, Banana, Cherry }   enum FruitsWithNumbers { Strawberry = 0, Pear = 27, }   fn main() { // Access to numerical value by conversion println!("{}", FruitsWithNumbers::Pear as u8); }
http://rosettacode.org/wiki/Empty_string
Empty string
Languages may have features for dealing specifically with empty strings (those containing no characters). Task   Demonstrate how to assign an empty string to a variable.   Demonstrate how to check that a string is empty.   Demonstrate how to check that a string is not empty. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Dart
Dart
main() { var empty = '';   if (empty.isEmpty) { print('it is empty'); }   if (empty.isNotEmpty) { print('it is not empty'); } }
http://rosettacode.org/wiki/Empty_string
Empty string
Languages may have features for dealing specifically with empty strings (those containing no characters). Task   Demonstrate how to assign an empty string to a variable.   Demonstrate how to check that a string is empty.   Demonstrate how to check that a string is not empty. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Delphi
Delphi
program EmptyString;   {$APPTYPE CONSOLE}   uses SysUtils;   function StringIsEmpty(const aString: string): Boolean; begin Result := aString = ''; end;   var s: string; begin s := ''; Writeln(StringIsEmpty(s)); // True   s := 'abc'; Writeln(StringIsEmpty(s)); // False end.
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#PicoLisp
PicoLisp
(prinl "myDir is" (and (dir "myDir") " not") " empty")
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#PowerShell
PowerShell
  $path = "C:\Users" if((Dir $path).Count -eq 0) { "$path is empty" } else { "$path is not empty" }  
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#Prolog
Prolog
non_empty_file('.'). non_empty_file('..').   empty_dir(Dir) :- directory_files(Dir, Files), maplist(non_empty_file, Files).
http://rosettacode.org/wiki/Empty_program
Empty program
Task Create the simplest possible program that is still considered "correct."
#Clojure
Clojure
start_up = proc () end start_up
http://rosettacode.org/wiki/Empty_program
Empty program
Task Create the simplest possible program that is still considered "correct."
#CLU
CLU
start_up = proc () end start_up
http://rosettacode.org/wiki/Entropy
Entropy
Task Calculate the Shannon entropy   H   of a given input string. Given the discrete random variable X {\displaystyle X} that is a string of N {\displaystyle N} "symbols" (total characters) consisting of n {\displaystyle n} different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is : H 2 ( X ) = − ∑ i = 1 n c o u n t i N log 2 ⁡ ( c o u n t i N ) {\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)} where c o u n t i {\displaystyle count_{i}} is the count of character n i {\displaystyle n_{i}} . For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer. This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where S = k B N H {\displaystyle S=k_{B}NH} where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis. The "total", "absolute", or "extensive" information entropy is S = H 2 N {\displaystyle S=H_{2}N} bits This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have S = N log 2 ⁡ ( 16 ) {\displaystyle S=N\log _{2}(16)} bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits. The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data. Two other "entropies" are useful: Normalized specific entropy: H n = H 2 ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}} which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923. Normalized total (extensive) entropy: S n = H 2 N ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}} which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23. Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information". In keeping with Landauer's limit, the physics entropy generated from erasing N bits is S = H 2 N k B ln ⁡ ( 2 ) {\displaystyle S=H_{2}Nk_{B}\ln(2)} if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents. Related tasks Fibonacci_word Entropy/Narcissist
#friendly_interactive_shell
friendly interactive shell
function entropy for arg in $argv set name count_$arg if not count $$name > /dev/null set $name 0 set values $values $arg end set $name (math $$name + 1) end set entropy 0 for value in $values set name count_$value set entropy (echo " scale = 50 p = "$$name" / "(count $argv)" $entropy - p * l(p) " | bc -l) end echo "$entropy / l(2)" | bc -l end entropy (echo 1223334444 | fold -w1)
http://rosettacode.org/wiki/Entropy
Entropy
Task Calculate the Shannon entropy   H   of a given input string. Given the discrete random variable X {\displaystyle X} that is a string of N {\displaystyle N} "symbols" (total characters) consisting of n {\displaystyle n} different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is : H 2 ( X ) = − ∑ i = 1 n c o u n t i N log 2 ⁡ ( c o u n t i N ) {\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)} where c o u n t i {\displaystyle count_{i}} is the count of character n i {\displaystyle n_{i}} . For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer. This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where S = k B N H {\displaystyle S=k_{B}NH} where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis. The "total", "absolute", or "extensive" information entropy is S = H 2 N {\displaystyle S=H_{2}N} bits This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have S = N log 2 ⁡ ( 16 ) {\displaystyle S=N\log _{2}(16)} bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits. The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data. Two other "entropies" are useful: Normalized specific entropy: H n = H 2 ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}} which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923. Normalized total (extensive) entropy: S n = H 2 N ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}} which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23. Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information". In keeping with Landauer's limit, the physics entropy generated from erasing N bits is S = H 2 N k B ln ⁡ ( 2 ) {\displaystyle S=H_{2}Nk_{B}\ln(2)} if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents. Related tasks Fibonacci_word Entropy/Narcissist
#F.C5.8Drmul.C3.A6
Fōrmulæ
package main   import ( "fmt" "math" "strings" )   func main(){ fmt.Println(H("1223334444")) }   func H(data string) (entropy float64) { if data == "" { return 0 } for i := 0; i < 256; i++ { px := float64(strings.Count(data, string(byte(i)))) / float64(len(data)) if px > 0 { entropy += -px * math.Log2(px) } } return entropy }
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#Elixir
Elixir
defmodule Ethiopian do def halve(n), do: div(n, 2)   def double(n), do: n * 2   def even(n), do: rem(n, 2) == 0   def multiply(lhs, rhs) when is_integer(lhs) and lhs > 0 and is_integer(rhs) and rhs > 0 do multiply(lhs, rhs, 0) end   def multiply(1, rhs, acc), do: rhs + acc def multiply(lhs, rhs, acc) do if even(lhs), do: multiply(halve(lhs), double(rhs), acc), else: multiply(halve(lhs), double(rhs), acc+rhs) end end   IO.inspect Ethiopian.multiply(17, 34)
http://rosettacode.org/wiki/Equilibrium_index
Equilibrium index
An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices. For example, in a sequence   A {\displaystyle A} :   A 0 = − 7 {\displaystyle A_{0}=-7}   A 1 = 1 {\displaystyle A_{1}=1}   A 2 = 5 {\displaystyle A_{2}=5}   A 3 = 2 {\displaystyle A_{3}=2}   A 4 = − 4 {\displaystyle A_{4}=-4}   A 5 = 3 {\displaystyle A_{5}=3}   A 6 = 0 {\displaystyle A_{6}=0} 3   is an equilibrium index, because:   A 0 + A 1 + A 2 = A 4 + A 5 + A 6 {\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}} 6   is also an equilibrium index, because:   A 0 + A 1 + A 2 + A 3 + A 4 + A 5 = 0 {\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0} (sum of zero elements is zero) 7   is not an equilibrium index, because it is not a valid index of sequence A {\displaystyle A} . Task; Write a function that, given a sequence, returns its equilibrium indices (if any). Assume that the sequence may be very long.
#Phix
Phix
with javascript_semantics function equilibrium(sequence s) atom lower_sum = 0, higher_sum = sum(s) sequence res = {} for i=1 to length(s) do higher_sum -= s[i] if lower_sum=higher_sum then res &= i end if lower_sum += s[i] end for return res end function ?equilibrium({-7,1,5,2,-4,3,0})
http://rosettacode.org/wiki/Equilibrium_index
Equilibrium index
An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices. For example, in a sequence   A {\displaystyle A} :   A 0 = − 7 {\displaystyle A_{0}=-7}   A 1 = 1 {\displaystyle A_{1}=1}   A 2 = 5 {\displaystyle A_{2}=5}   A 3 = 2 {\displaystyle A_{3}=2}   A 4 = − 4 {\displaystyle A_{4}=-4}   A 5 = 3 {\displaystyle A_{5}=3}   A 6 = 0 {\displaystyle A_{6}=0} 3   is an equilibrium index, because:   A 0 + A 1 + A 2 = A 4 + A 5 + A 6 {\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}} 6   is also an equilibrium index, because:   A 0 + A 1 + A 2 + A 3 + A 4 + A 5 = 0 {\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0} (sum of zero elements is zero) 7   is not an equilibrium index, because it is not a valid index of sequence A {\displaystyle A} . Task; Write a function that, given a sequence, returns its equilibrium indices (if any). Assume that the sequence may be very long.
#PHP
PHP
<?php $arr = array(-7, 1, 5, 2, -4, 3, 0);   function getEquilibriums($arr) { $right = array_sum($arr); $left = 0; $equilibriums = array(); foreach($arr as $key => $value){ $right -= $value; if($left == $right) $equilibriums[] = $key; $left += $value; } return $equilibriums; }   echo "# results:\n"; foreach (getEquilibriums($arr) as $r) echo "$r, "; ?>
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#Nim
Nim
  # Brute force approach   import times   # assumes an array of non-decreasing positive integers proc binarySearch(a : openArray[int], target : int) : int = var left, right, mid : int left = 0 right = len(a) - 1 while true : if left > right : return 0 # no match found mid = (left + right) div 2 if a[mid] < target : left = mid + 1 elif a[mid] > target : right = mid - 1 else : return mid # match found   var p5 : array[250, int] sum = 0 y, t1 : int   let t0 = cpuTime()   for i in 1 .. 249 : p5[i] = i * i * i * i * i   for x0 in 1 .. 249 : for x1 in 1 .. x0 - 1 : for x2 in 1 .. x1 - 1 : for x3 in 1 .. x2 - 1 : sum = p5[x0] + p5[x1] + p5[x2] + p5[x3] y = binarySearch(p5, sum) if y > 0 : t1 = int((cputime() - t0) * 1000.0) echo "Time : ", t1, " milliseconds" echo $x0 & "^5 + " & $x1 & "^5 + " & $x2 & "^5 + " & $x3 & "^5 = " & $y & "^5" quit()   if y == 0 : echo "No solution was found"  
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Perl
Perl
sub factorial { my $n = shift; my $result = 1; for (my $i = 1; $i <= $n; ++$i) { $result *= $i; }; $result; }   # using a .. range sub factorial { my $r = 1; $r *= $_ for 1..shift; $r; }
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#Forth
Forth
: odd? ( n -- ? ) 1 and ;
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#Fortran
Fortran
  !-*- mode: compilation; default-directory: "/tmp/" -*- !Compilation started at Tue May 21 20:22:56 ! !a=./f && make $a && OMP_NUM_THREADS=2 $a < unixdict.txt !gfortran -std=f2008 -Wall -ffree-form -fall-intrinsics f.f08 -o f ! n odd even !-6 F T !-5 T F !-4 F T !-3 T F !-2 F T !-1 T F ! 0 F T ! 1 T F ! 2 F T ! 3 T F ! 4 F T ! 5 T F ! 6 F T ! -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 n ! F T F T F T F T F T F T F odd ! T F T F T F T F T F T F T even ! !Compilation finished at Tue May 21 20:22:56     module bit0parity   interface odd module procedure odd_scalar, odd_list end interface   interface even module procedure even_scalar, even_list end interface   contains   logical function odd_scalar(a) implicit none integer, intent(in) :: a odd_scalar = btest(a, 0) end function odd_scalar   logical function even_scalar(a) implicit none integer, intent(in) :: a even_scalar = .not. odd_scalar(a) end function even_scalar   function odd_list(a) result(rv) implicit none integer, dimension(:), intent(in) :: a logical, dimension(size(a)) :: rv rv = btest(a, 0) end function odd_list   function even_list(a) result(rv) implicit none integer, dimension(:), intent(in) :: a logical, dimension(size(a)) :: rv rv = .not. odd_list(a) end function even_list   end module bit0parity   program oe use bit0parity implicit none integer :: i integer, dimension(13) :: j write(6,'(a2,2a8)') 'n', 'odd', 'even' write(6, '(i2,2l5)') (i, odd_scalar(i), even_scalar(i), i=-6,6) do i=-6, 6 j(i+7) = i end do write(6, '((13i3),a8/(13l3),a8/(13l3),a8)') j, 'n', odd(j), 'odd', even(j), 'even' end program oe  
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Picat
Picat
binomial_it(N,K) = Res => if K < 0 ; K > N then R = 0 else R = 1, foreach(I in 0..K-1) R := R * (N-I) // (I+1) end end, Res = R.
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#PicoLisp
PicoLisp
(de binomial (N K) (let f '((N) (if (=0 N) 1 (apply * (range 1 N))) ) (/ (f N) (* (f (- N K)) (f K)) ) ) )
http://rosettacode.org/wiki/Emirp_primes
Emirp primes
An   emirp   (prime spelled backwards)   are primes that when reversed   (in their decimal representation)   are a different prime. (This rules out palindromic primes.) Task   show the first   twenty   emirps   show all emirps between   7,700   and   8,000   show the   10,000th   emirp In each list, the numbers should be in order. Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes. The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer. See also   Wikipedia, Emirp.   The Prime Pages, emirp.   Wolfram MathWorld™, Emirp.   The On‑Line Encyclopedia of Integer Sequences, emirps (A6567).
#Haskell
Haskell
#!/usr/bin/env runghc   import Data.HashSet (HashSet, fromList, member) import Data.List import Data.Numbers.Primes import System.Environment import System.Exit import System.IO   -- optimization mentioned on the talk page startDigOK :: Integer -> Bool startDigOK n = head (show n) `elem` "1379"   -- infinite list of primes that have an acceptable first digit filtPrimes :: [Integer] filtPrimes = filter startDigOK primes   -- finite list of primes that have an acceptable first digit and -- are the specified number of digits in length nDigsFPr :: Integer -> [Integer] nDigsFPr n = takeWhile (< hi) $ dropWhile (< lo) filtPrimes where lo = 10 ^ (n - 1) hi = 10 ^ n   -- hash set of the filtered primes of the specified number of digits nDigsFPrHS :: Integer -> HashSet Integer nDigsFPrHS n = fromList $ nDigsFPr n   -- infinite list of hash sets, where each hash set contains primes of -- a specific number of digits, i. e. index 2 contains 2 digit primes, -- index 3 contains 3 digit primes, etc. -- Don't access index 0, because it will return an error fPrByDigs :: [HashSet Integer] fPrByDigs = map nDigsFPrHS [0 ..]   isEmirp :: Integer -> Bool isEmirp n = let revStr = reverse $ show n reversed = read revStr hs = fPrByDigs !! length revStr in (startDigOK n) && (reversed /= n) && (reversed `member` hs)   emirps :: [Integer] emirps = filter isEmirp primes   emirpSlice :: Integer -> Integer -> [Integer] emirpSlice from to = genericTake numToTake $ genericDrop numToDrop emirps where numToDrop = from - 1 numToTake = 1 + to - from   emirpValues :: Integer -> Integer -> [Integer] emirpValues lo hi = dropWhile (< lo) $ takeWhile (<= hi) emirps   usage = do name <- getProgName putStrLn $ "usage: " ++ name ++ " lo hi [slice | values]" exitFailure   main = do hSetBuffering stdout NoBuffering args <- getArgs fixedArgs <- case length args of 1 -> return $ args ++ args ++ ["slice"] 2 -> return $ args ++ ["slice"] 3 -> return args _ -> usage let lo = read $ fixedArgs !! 0 hi = read $ fixedArgs !! 1 case fixedArgs !! 2 of "slice" -> print $ emirpSlice lo hi "values" -> print $ emirpValues lo hi _ -> usage
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Scala
Scala
sealed abstract class Fruit case object Apple extends Fruit case object Banana extends Fruit case object Cherry extends Fruit  
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Scheme
Scheme
(define apple 0) (define banana 1) (define cherry 2)   (define (fruit? atom) (or (equal? 'apple atom) (equal? 'banana atom) (equal? 'cherry atom)))
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Seed7
Seed7
const type: fruits is new enum apple, banana, cherry end enum;
http://rosettacode.org/wiki/Empty_string
Empty string
Languages may have features for dealing specifically with empty strings (those containing no characters). Task   Demonstrate how to assign an empty string to a variable.   Demonstrate how to check that a string is empty.   Demonstrate how to check that a string is not empty. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#DWScript
DWScript
var s : String;   s := ''; // assign an empty string (can also use "")   if s = '' then PrintLn('empty');   s := 'hello';   if s <> '' then PrintLn('not empty');
http://rosettacode.org/wiki/Empty_string
Empty string
Languages may have features for dealing specifically with empty strings (those containing no characters). Task   Demonstrate how to assign an empty string to a variable.   Demonstrate how to check that a string is empty.   Demonstrate how to check that a string is not empty. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Dyalect
Dyalect
var str = ""
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#PureBasic
PureBasic
Procedure isDirEmpty(path$) If Right(path$, 1) <> "\": path$ + "\": EndIf Protected dirID = ExamineDirectory(#PB_Any, path$, "*.*") Protected result   If dirID result = 1 While NextDirectoryEntry(dirID) If DirectoryEntryType(dirID) = #PB_DirectoryEntry_File Or (DirectoryEntryName(dirID) <> "." And DirectoryEntryName(dirID) <> "..") result = 0 Break EndIf Wend FinishDirectory(dirID) EndIf ProcedureReturn result EndProcedure   Define path$, result$   path$ = PathRequester("Choose a path", "C:\") If path$ If isDirEmpty(path$) result$ = " is empty." Else result$ = " is not empty." EndIf MessageRequester("Empty directory test", #DQUOTE$ + path$ + #DQUOTE$ + result$) EndIf
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#Python
Python
import os; if os.listdir(raw_input("directory")): print "not empty" else: print "empty"  
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#R
R
  is_dir_empty <- function(path){ if(length(list.files(path)) == 0) print("This folder is empty") }   is_dir_empty(path)  
http://rosettacode.org/wiki/Empty_program
Empty program
Task Create the simplest possible program that is still considered "correct."
#COBOL
COBOL
 
http://rosettacode.org/wiki/Empty_program
Empty program
Task Create the simplest possible program that is still considered "correct."
#CoffeeScript
CoffeeScript
 
http://rosettacode.org/wiki/Entropy
Entropy
Task Calculate the Shannon entropy   H   of a given input string. Given the discrete random variable X {\displaystyle X} that is a string of N {\displaystyle N} "symbols" (total characters) consisting of n {\displaystyle n} different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is : H 2 ( X ) = − ∑ i = 1 n c o u n t i N log 2 ⁡ ( c o u n t i N ) {\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)} where c o u n t i {\displaystyle count_{i}} is the count of character n i {\displaystyle n_{i}} . For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer. This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where S = k B N H {\displaystyle S=k_{B}NH} where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis. The "total", "absolute", or "extensive" information entropy is S = H 2 N {\displaystyle S=H_{2}N} bits This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have S = N log 2 ⁡ ( 16 ) {\displaystyle S=N\log _{2}(16)} bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits. The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data. Two other "entropies" are useful: Normalized specific entropy: H n = H 2 ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}} which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923. Normalized total (extensive) entropy: S n = H 2 N ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}} which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23. Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information". In keeping with Landauer's limit, the physics entropy generated from erasing N bits is S = H 2 N k B ln ⁡ ( 2 ) {\displaystyle S=H_{2}Nk_{B}\ln(2)} if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents. Related tasks Fibonacci_word Entropy/Narcissist
#Go
Go
package main   import ( "fmt" "math" "strings" )   func main(){ fmt.Println(H("1223334444")) }   func H(data string) (entropy float64) { if data == "" { return 0 } for i := 0; i < 256; i++ { px := float64(strings.Count(data, string(byte(i)))) / float64(len(data)) if px > 0 { entropy += -px * math.Log2(px) } } return entropy }
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#Emacs_Lisp
Emacs Lisp
(defun even-p (n) (= (mod n 2) 0)) (defun halve (n) (floor n 2)) (defun double (n) (* n 2)) (defun ethiopian-multiplication (l r) (let ((sum 0)) (while (>= l 1) (unless (even-p l) (setq sum (+ r sum))) (setq l (halve l)) (setq r (double r))) sum))
http://rosettacode.org/wiki/Equilibrium_index
Equilibrium index
An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices. For example, in a sequence   A {\displaystyle A} :   A 0 = − 7 {\displaystyle A_{0}=-7}   A 1 = 1 {\displaystyle A_{1}=1}   A 2 = 5 {\displaystyle A_{2}=5}   A 3 = 2 {\displaystyle A_{3}=2}   A 4 = − 4 {\displaystyle A_{4}=-4}   A 5 = 3 {\displaystyle A_{5}=3}   A 6 = 0 {\displaystyle A_{6}=0} 3   is an equilibrium index, because:   A 0 + A 1 + A 2 = A 4 + A 5 + A 6 {\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}} 6   is also an equilibrium index, because:   A 0 + A 1 + A 2 + A 3 + A 4 + A 5 = 0 {\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0} (sum of zero elements is zero) 7   is not an equilibrium index, because it is not a valid index of sequence A {\displaystyle A} . Task; Write a function that, given a sequence, returns its equilibrium indices (if any). Assume that the sequence may be very long.
#Picat
Picat
equilibrium_index1(A, Ix) => append(Front, [_|Back], A), sum(Front) = sum(Back), Ix = length(Front)+1. % give 1 based index
http://rosettacode.org/wiki/Equilibrium_index
Equilibrium index
An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices. For example, in a sequence   A {\displaystyle A} :   A 0 = − 7 {\displaystyle A_{0}=-7}   A 1 = 1 {\displaystyle A_{1}=1}   A 2 = 5 {\displaystyle A_{2}=5}   A 3 = 2 {\displaystyle A_{3}=2}   A 4 = − 4 {\displaystyle A_{4}=-4}   A 5 = 3 {\displaystyle A_{5}=3}   A 6 = 0 {\displaystyle A_{6}=0} 3   is an equilibrium index, because:   A 0 + A 1 + A 2 = A 4 + A 5 + A 6 {\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}} 6   is also an equilibrium index, because:   A 0 + A 1 + A 2 + A 3 + A 4 + A 5 = 0 {\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0} (sum of zero elements is zero) 7   is not an equilibrium index, because it is not a valid index of sequence A {\displaystyle A} . Task; Write a function that, given a sequence, returns its equilibrium indices (if any). Assume that the sequence may be very long.
#PicoLisp
PicoLisp
(de equilibria (Lst) (make (let Sum 0 (for ((I . L) Lst L (cdr L)) (and (= Sum (sum prog (cdr L))) (link I)) (inc 'Sum (car L)) ) ) ) )
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#Oforth
Oforth
: eulerSum | i j k l ip jp kp | 250 loop: i [ i 5 pow ->ip i 1 + 250 for: j [ j 5 pow ip + ->jp j 1 + 250 for: k [ k 5 pow jp + ->kp k 1 + 250 for: l [ kp l 5 pow + 0.2 powf dup asInteger == ifTrue: [ [ i, j, k, l ] println ] ] ] ] ] ;
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Peylang
Peylang
  -- calculate factorial   chiz a = 5; chiz n = 1;   ta a >= 2 { n *= a; a -= 1; }   chaap n;  
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64   Dim n As Integer   Do Print "Enter an integer or 0 to finish : "; Input "", n If n = 0 Then Exit Do ElseIf n Mod 2 = 0 Then Print "Your number is even" Print Else Print "Your number is odd" Print End if Loop   End
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#PL.2FI
PL/I
  binomial_coefficients: procedure options (main); declare (n, k) fixed;   get (n, k); put (coefficient(n, k));   coefficient: procedure (n, k) returns (fixed decimal (15)); declare (n, k) fixed; return (fact(n)/ (fact(n-k) * fact(k)) ); end coefficient;   fact: procedure (n) returns (fixed decimal (15)); declare n fixed; declare i fixed, f fixed decimal (15); f = 1; do i = 1 to n; f = f * i; end; return (f); end fact; end binomial_coefficients;  
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#PowerShell
PowerShell
  function choose($n,$k) { if($k -le $n -and 0 -le $k) { $numerator = $denominator = 1 0..($k-1) | foreach{ $numerator *= ($n-$_) $denominator *= ($_ + 1) } $numerator/$denominator } else { "$k is greater than $n or lower than 0" } } choose 5 3 choose 2 1 choose 10 10 choose 10 2 choose 10 8  
http://rosettacode.org/wiki/Emirp_primes
Emirp primes
An   emirp   (prime spelled backwards)   are primes that when reversed   (in their decimal representation)   are a different prime. (This rules out palindromic primes.) Task   show the first   twenty   emirps   show all emirps between   7,700   and   8,000   show the   10,000th   emirp In each list, the numbers should be in order. Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes. The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer. See also   Wikipedia, Emirp.   The Prime Pages, emirp.   Wolfram MathWorld™, Emirp.   The On‑Line Encyclopedia of Integer Sequences, emirps (A6567).
#J
J
emirp =: (] #~ ~: *. 1 p: ]) |.&.:":"0 NB. Input is array of primes
http://rosettacode.org/wiki/Emirp_primes
Emirp primes
An   emirp   (prime spelled backwards)   are primes that when reversed   (in their decimal representation)   are a different prime. (This rules out palindromic primes.) Task   show the first   twenty   emirps   show all emirps between   7,700   and   8,000   show the   10,000th   emirp In each list, the numbers should be in order. Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes. The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer. See also   Wikipedia, Emirp.   The Prime Pages, emirp.   Wolfram MathWorld™, Emirp.   The On‑Line Encyclopedia of Integer Sequences, emirps (A6567).
#Java
Java
public class Emirp{   //trivial prime algorithm, sub in whatever algorithm you want public static boolean isPrime(long x){ if(x < 2) return false; if(x == 2) return true; if((x & 1) == 0) return false;   for(long i = 3; i <= Math.sqrt(x);i+=2){ if(x % i == 0) return false; }   return true; }   public static boolean isEmirp(long x){ String xString = Long.toString(x); if(xString.length() == 1) return false; if(xString.matches("[24568].*") || xString.matches(".*[24568]")) return false; //eliminate some easy rejects long xR = Long.parseLong(new StringBuilder(xString).reverse().toString()); if(xR == x) return false; return isPrime(x) && isPrime(xR); }   public static void main(String[] args){ int count = 0; long x = 1;   System.out.println("First 20 emirps:"); while(count < 20){ if(isEmirp(x)){ count++; System.out.print(x + " "); } x++; }   System.out.println("\nEmirps between 7700 and 8000:"); for(x = 7700; x <= 8000; x++){ if(isEmirp(x)){ System.out.print(x +" "); } }   System.out.println("\n10,000th emirp:"); for(x = 1, count = 0;count < 10000; x++){ if(isEmirp(x)){ count++; } } //--x to fix the last increment from the loop System.out.println(--x); } }
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Shen
Shen
(tc +)   (datatype fruit   if (element? Fruit [apple banana cherry]) _____________ Fruit : fruit;)
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Sidef
Sidef
enum {Apple, Banana, Cherry}; # numbered 0 through 2
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Slate
Slate
define: #Fruit &parents: {Cloneable}. Fruit traits define: #Apple -> Fruit clone. Fruit traits define: #Banana -> Fruit clone. Fruit traits define: #Cherry -> Fruit clone.
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Standard_ML
Standard ML
datatype fruit = Apple | Banana | Cherry
http://rosettacode.org/wiki/Empty_string
Empty string
Languages may have features for dealing specifically with empty strings (those containing no characters). Task   Demonstrate how to assign an empty string to a variable.   Demonstrate how to check that a string is empty.   Demonstrate how to check that a string is not empty. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#D.C3.A9j.C3.A0_Vu
Déjà Vu
local :e ""   if not e:  !print "an empty string"   if e:  !print "not an empty string"
http://rosettacode.org/wiki/Empty_string
Empty string
Languages may have features for dealing specifically with empty strings (those containing no characters). Task   Demonstrate how to assign an empty string to a variable.   Demonstrate how to check that a string is empty.   Demonstrate how to check that a string is not empty. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#EasyLang
EasyLang
a$ = "" if a$ = "" print "empty" . if a$ <> "" print "no empty" .
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#Racket
Racket
  #lang racket (empty? (directory-list "some-directory"))  
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#Raku
Raku
sub dir-is-empty ($d) { not dir $d }
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#REXX
REXX
/*REXX pgm checks to see if a directory is empty; if not, lists entries.*/ parse arg xdir; if xdir='' then xdir='\someDir' /*Any DIR? Use default.*/ @.=0 /*default in case ADDRESS fails. */ trace off /*suppress REXX err msg for fails*/ address system 'DIR' xdir '/b' with output stem @. /*issue the DIR cmd.*/ if rc\==0 then do /*an error happened?*/ say '***error!*** from DIR' xDIR /*indicate que pasa.*/ say 'return code=' rc /*show the ret Code.*/ exit rc /*exit with the RC.*/ end /* [↑] bad address.*/ #[email protected] /*number of entries.*/ if #==0 then #=' no ' /*use a word, ¬zero.*/ say center('directory ' xdir " has " # ' entries.',79,'─') exit @.0+rc /*stick a fork in it, we're done.*/
http://rosettacode.org/wiki/Empty_program
Empty program
Task Create the simplest possible program that is still considered "correct."
#Common_Lisp
Common Lisp
()
http://rosettacode.org/wiki/Empty_program
Empty program
Task Create the simplest possible program that is still considered "correct."
#Component_Pascal
Component Pascal
  MODULE Main; END Main.  
http://rosettacode.org/wiki/Entropy
Entropy
Task Calculate the Shannon entropy   H   of a given input string. Given the discrete random variable X {\displaystyle X} that is a string of N {\displaystyle N} "symbols" (total characters) consisting of n {\displaystyle n} different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is : H 2 ( X ) = − ∑ i = 1 n c o u n t i N log 2 ⁡ ( c o u n t i N ) {\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)} where c o u n t i {\displaystyle count_{i}} is the count of character n i {\displaystyle n_{i}} . For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer. This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where S = k B N H {\displaystyle S=k_{B}NH} where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis. The "total", "absolute", or "extensive" information entropy is S = H 2 N {\displaystyle S=H_{2}N} bits This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have S = N log 2 ⁡ ( 16 ) {\displaystyle S=N\log _{2}(16)} bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits. The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data. Two other "entropies" are useful: Normalized specific entropy: H n = H 2 ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}} which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923. Normalized total (extensive) entropy: S n = H 2 N ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}} which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23. Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information". In keeping with Landauer's limit, the physics entropy generated from erasing N bits is S = H 2 N k B ln ⁡ ( 2 ) {\displaystyle S=H_{2}Nk_{B}\ln(2)} if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents. Related tasks Fibonacci_word Entropy/Narcissist
#Groovy
Groovy
String.metaClass.getShannonEntrophy = { -delegate.inject([:]) { map, v -> map[v] = (map[v] ?: 0) + 1; map }.values().inject(0.0) { sum, v -> def p = (BigDecimal)v / delegate.size() sum + p * Math.log(p) / Math.log(2) } }
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#Erlang
Erlang
-module(ethopian). -export([multiply/2]).   halve(N) -> N div 2.   double(N) -> N * 2.   even(N) -> (N rem 2) == 0.   multiply(LHS,RHS) when is_integer(Lhs) and Lhs > 0 and is_integer(Rhs) and Rhs > 0 -> multiply(LHS,RHS,0).   multiply(1,RHS,Acc) -> RHS+Acc; multiply(LHS,RHS,Acc) -> case even(LHS) of true -> multiply(halve(LHS),double(RHS),Acc); false -> multiply(halve(LHS),double(RHS),Acc+RHS) end.
http://rosettacode.org/wiki/Equilibrium_index
Equilibrium index
An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices. For example, in a sequence   A {\displaystyle A} :   A 0 = − 7 {\displaystyle A_{0}=-7}   A 1 = 1 {\displaystyle A_{1}=1}   A 2 = 5 {\displaystyle A_{2}=5}   A 3 = 2 {\displaystyle A_{3}=2}   A 4 = − 4 {\displaystyle A_{4}=-4}   A 5 = 3 {\displaystyle A_{5}=3}   A 6 = 0 {\displaystyle A_{6}=0} 3   is an equilibrium index, because:   A 0 + A 1 + A 2 = A 4 + A 5 + A 6 {\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}} 6   is also an equilibrium index, because:   A 0 + A 1 + A 2 + A 3 + A 4 + A 5 = 0 {\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0} (sum of zero elements is zero) 7   is not an equilibrium index, because it is not a valid index of sequence A {\displaystyle A} . Task; Write a function that, given a sequence, returns its equilibrium indices (if any). Assume that the sequence may be very long.
#PowerShell
PowerShell
  function Get-EquilibriumIndex ( $Sequence ) { $Indexes = 0..($Sequence.Count - 1) $EqulibriumIndex = @()   ForEach ( $TestIndex in $Indexes ) { $Left = 0 $Right = 0 ForEach ( $Index in $Indexes ) { If ( $Index -lt $TestIndex ) { $Left += $Sequence[$Index] } ElseIf ( $Index -gt $TestIndex ) { $Right += $Sequence[$Index] } }   If ( $Left -eq $Right ) { $EqulibriumIndex += $TestIndex } } return $EqulibriumIndex }  
http://rosettacode.org/wiki/Equilibrium_index
Equilibrium index
An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices. For example, in a sequence   A {\displaystyle A} :   A 0 = − 7 {\displaystyle A_{0}=-7}   A 1 = 1 {\displaystyle A_{1}=1}   A 2 = 5 {\displaystyle A_{2}=5}   A 3 = 2 {\displaystyle A_{3}=2}   A 4 = − 4 {\displaystyle A_{4}=-4}   A 5 = 3 {\displaystyle A_{5}=3}   A 6 = 0 {\displaystyle A_{6}=0} 3   is an equilibrium index, because:   A 0 + A 1 + A 2 = A 4 + A 5 + A 6 {\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}} 6   is also an equilibrium index, because:   A 0 + A 1 + A 2 + A 3 + A 4 + A 5 = 0 {\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0} (sum of zero elements is zero) 7   is not an equilibrium index, because it is not a valid index of sequence A {\displaystyle A} . Task; Write a function that, given a sequence, returns its equilibrium indices (if any). Assume that the sequence may be very long.
#Prolog
Prolog
equilibrium_index(List, Index) :- append(Front, [_|Back], List), sumlist(Front, Sum), sumlist(Back, Sum), length(Front, Len), Index is Len.
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#PARI.2FGP
PARI/GP
forvec(v=vector(4,i,[0,250]), if(ispower(v[1]^5+v[2]^5+v[3]^5+v[4]^5,5,&n), print(n" "v)), 2)
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Phix
Phix
global function factorial(integer n) atom res = 1 while n>1 do res *= n n -= 1 end while return res end function
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#Frink
Frink
isEven[x is isInteger] := getBit[x,0] == 0 isOdd[x is isInteger] := getBit[x,0] == 1
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#Futhark
Futhark
  fun main(x: int): bool = (x & 1) == 0  
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#PureBasic
PureBasic
Procedure Factor(n) Protected Result=1 While n>0 Result*n n-1 Wend ProcedureReturn Result EndProcedure   Macro C(n,k) (Factor(n)/(Factor(k)*factor(n-k))) EndMacro   If OpenConsole() Print("Enter value n: "): n=Val(Input()) Print("Enter value k: "): k=Val(Input()) PrintN("C(n,k)= "+str(C(n,k)))   Print("Press ENTER to quit"): Input() CloseConsole() EndIf
http://rosettacode.org/wiki/Emirp_primes
Emirp primes
An   emirp   (prime spelled backwards)   are primes that when reversed   (in their decimal representation)   are a different prime. (This rules out palindromic primes.) Task   show the first   twenty   emirps   show all emirps between   7,700   and   8,000   show the   10,000th   emirp In each list, the numbers should be in order. Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes. The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer. See also   Wikipedia, Emirp.   The Prime Pages, emirp.   Wolfram MathWorld™, Emirp.   The On‑Line Encyclopedia of Integer Sequences, emirps (A6567).
#JavaScript
JavaScript
function isPrime(n) { if (!(n % 2) || !(n % 3)) return 0;   var p = 1; while (p * p < n) { if (n % (p += 4) == 0 || n % (p += 2) == 0) { return false } } return true }   function isEmirp(n) { var s = n.toString(); var r = s.split("").reverse().join(""); return r != n && isPrime(n) && isPrime(r); }   function main() { var out = document.getElementById("content");   var c = 0; var x = 11; var last; var str;   while (c < 10000) { if (isEmirp(x)) { c += 1;   // first twenty emirps if (c == 1) { str = "<p>" + x; } else if (c < 20) { str += " " + x; } else if (c == 20) { out.innerHTML = str + " " + x + "</p>"; }   // all emirps between 7,700 and 8,000 else if (7700 <= x && x <= 8001) { if (last < 7700) { str = "<p>" + x; } else { str += " " + x; } } else if (x > 7700 && last < 8001) { out.innerHTML += str + "</p>"; }   // the 10,000th emirp else if (c == 10000) { out.innerHTML += "<p>" + x + "</p>"; }   last = x; } x += 2; } }  
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Swift
Swift
enum Fruit { case Apple case Banana case Cherry } // or enum Fruit { case Apple, Banana, Cherry }   enum Season : Int { case Winter = 1 case Spring = 2 case Summer = 3 case Autumn = 4 }
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Tcl
Tcl
proc enumerate {name values} { interp alias {} $name: {} lsearch $values interp alias {} $name@ {} lindex $values }
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Toka
Toka
needs enum 0 enum| apple banana carrot | 10 enum| foo bar baz |
http://rosettacode.org/wiki/Empty_string
Empty string
Languages may have features for dealing specifically with empty strings (those containing no characters). Task   Demonstrate how to assign an empty string to a variable.   Demonstrate how to check that a string is empty.   Demonstrate how to check that a string is not empty. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Elena
Elena
import extensions;   public program() { auto s := emptyString;   if (s.isEmpty()) { console.printLine("'", s, "' is empty") };   if (s.isNonempty()) { console.printLine("'", s, "' is not empty") } }
http://rosettacode.org/wiki/Empty_string
Empty string
Languages may have features for dealing specifically with empty strings (those containing no characters). Task   Demonstrate how to assign an empty string to a variable.   Demonstrate how to check that a string is empty.   Demonstrate how to check that a string is not empty. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Elixir
Elixir
  empty_string = "" not_empty_string = "a"   empty_string == "" # => true String.length(empty_string) == 0 # => true byte_size(empty_string) == 0 # => true   not_empty_string == "" # => false String.length(not_empty_string) == 0 # => false byte_size(not_empty_string) == 0 # => false  
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#Ring
Ring
  myList = dir("C:\Ring\bin") if len(myList) > 0 see "C:\Ring\bin is not empty" + nl else see "C:\Ring\bin is empty" + nl ok  
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#Ruby
Ruby
Dir.entries("testdir").empty?
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#Run_BASIC
Run BASIC
files #f, DefaultDir$ + "\*.*" ' open some directory.   print "hasanswer: ";#f HASANSWER() ' if it has an answer it is not MT print "rowcount: ";#f ROWCOUNT() ' if not MT, how many files?
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#Rust
Rust
use std::fs::read_dir; use std::error::Error;   fn main() { for path in std::env::args().skip(1) { // iterate over the arguments, skipping the first (which is the executable) match read_dir(path.as_str()) { // try to read the directory specified Ok(contents) => { let len = contents.collect::<Vec<_>>().len(); // calculate the amount of items in the directory if len == 0 { println!("{} is empty", path); } else { println!("{} is not empty", path); } }, Err(e) => { // If the attempt failed, print the corresponding error msg println!("Failed to read directory \"{}\": {}", path, e.description()); } } } }
http://rosettacode.org/wiki/Empty_program
Empty program
Task Create the simplest possible program that is still considered "correct."
#Computer.2Fzero_Assembly
Computer/zero Assembly
STP
http://rosettacode.org/wiki/Empty_program
Empty program
Task Create the simplest possible program that is still considered "correct."
#Crystal
Crystal
 
http://rosettacode.org/wiki/Empty_program
Empty program
Task Create the simplest possible program that is still considered "correct."
#D
D
void main() {}
http://rosettacode.org/wiki/Entropy
Entropy
Task Calculate the Shannon entropy   H   of a given input string. Given the discrete random variable X {\displaystyle X} that is a string of N {\displaystyle N} "symbols" (total characters) consisting of n {\displaystyle n} different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is : H 2 ( X ) = − ∑ i = 1 n c o u n t i N log 2 ⁡ ( c o u n t i N ) {\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)} where c o u n t i {\displaystyle count_{i}} is the count of character n i {\displaystyle n_{i}} . For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer. This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where S = k B N H {\displaystyle S=k_{B}NH} where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis. The "total", "absolute", or "extensive" information entropy is S = H 2 N {\displaystyle S=H_{2}N} bits This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have S = N log 2 ⁡ ( 16 ) {\displaystyle S=N\log _{2}(16)} bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits. The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data. Two other "entropies" are useful: Normalized specific entropy: H n = H 2 ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}} which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923. Normalized total (extensive) entropy: S n = H 2 N ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}} which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23. Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information". In keeping with Landauer's limit, the physics entropy generated from erasing N bits is S = H 2 N k B ln ⁡ ( 2 ) {\displaystyle S=H_{2}Nk_{B}\ln(2)} if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents. Related tasks Fibonacci_word Entropy/Narcissist
#Haskell
Haskell
import Data.List   main = print $ entropy "1223334444"   entropy :: (Ord a, Floating c) => [a] -> c entropy = sum . map lg . fq . map genericLength . group . sort where lg c = -c * logBase 2 c fq c = let sc = sum c in map (/ sc) c
http://rosettacode.org/wiki/Entropy
Entropy
Task Calculate the Shannon entropy   H   of a given input string. Given the discrete random variable X {\displaystyle X} that is a string of N {\displaystyle N} "symbols" (total characters) consisting of n {\displaystyle n} different characters (n=2 for binary), the Shannon entropy of X in bits/symbol is : H 2 ( X ) = − ∑ i = 1 n c o u n t i N log 2 ⁡ ( c o u n t i N ) {\displaystyle H_{2}(X)=-\sum _{i=1}^{n}{\frac {count_{i}}{N}}\log _{2}\left({\frac {count_{i}}{N}}\right)} where c o u n t i {\displaystyle count_{i}} is the count of character n i {\displaystyle n_{i}} . For this task, use X="1223334444" as an example. The result should be 1.84644... bits/symbol. This assumes X was a random variable, which may not be the case, or it may depend on the observer. This coding problem calculates the "specific" or "intensive" entropy that finds its parallel in physics with "specific entropy" S0 which is entropy per kg or per mole, not like physical entropy S and therefore not the "information" content of a file. It comes from Boltzmann's H-theorem where S = k B N H {\displaystyle S=k_{B}NH} where N=number of molecules. Boltzmann's H is the same equation as Shannon's H, and it gives the specific entropy H on a "per molecule" basis. The "total", "absolute", or "extensive" information entropy is S = H 2 N {\displaystyle S=H_{2}N} bits This is not the entropy being coded here, but it is the closest to physical entropy and a measure of the information content of a string. But it does not look for any patterns that might be available for compression, so it is a very restricted, basic, and certain measure of "information". Every binary file with an equal number of 1's and 0's will have S=N bits. All hex files with equal symbol frequencies will have S = N log 2 ⁡ ( 16 ) {\displaystyle S=N\log _{2}(16)} bits of entropy. The total entropy in bits of the example above is S= 10*18.4644 = 18.4644 bits. The H function does not look for any patterns in data or check if X was a random variable. For example, X=000000111111 gives the same calculated entropy in all senses as Y=010011100101. For most purposes it is usually more relevant to divide the gzip length by the length of the original data to get an informal measure of how much "order" was in the data. Two other "entropies" are useful: Normalized specific entropy: H n = H 2 ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle H_{n}={\frac {H_{2}*\log(2)}{\log(n)}}} which varies from 0 to 1 and it has units of "entropy/symbol" or just 1/symbol. For this example, Hn<\sub>= 0.923. Normalized total (extensive) entropy: S n = H 2 N ∗ log ⁡ ( 2 ) log ⁡ ( n ) {\displaystyle S_{n}={\frac {H_{2}N*\log(2)}{\log(n)}}} which varies from 0 to N and does not have units. It is simply the "entropy", but it needs to be called "total normalized extensive entropy" so that it is not confused with Shannon's (specific) entropy or physical entropy. For this example, Sn<\sub>= 9.23. Shannon himself is the reason his "entropy/symbol" H function is very confusingly called "entropy". That's like calling a function that returns a speed a "meter". See section 1.7 of his classic A Mathematical Theory of Communication and search on "per symbol" and "units" to see he always stated his entropy H has units of "bits/symbol" or "entropy/symbol" or "information/symbol". So it is legitimate to say entropy NH is "information". In keeping with Landauer's limit, the physics entropy generated from erasing N bits is S = H 2 N k B ln ⁡ ( 2 ) {\displaystyle S=H_{2}Nk_{B}\ln(2)} if the bit storage device is perfectly efficient. This can be solved for H2*N to (arguably) get the number of bits of information that a physical entropy represents. Related tasks Fibonacci_word Entropy/Narcissist
#Icon_and_Unicon
Icon and Unicon
procedure main(a) s := !a | "1223334444" write(H(s)) end   procedure H(s) P := table(0.0) every P[!s] +:= 1.0/*s every (h := 0.0) -:= P[c := key(P)] * log(P[c],2) return h end
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#ERRE
ERRE
PROGRAM ETHIOPIAN_MULT   FUNCTION EVEN(A) EVEN=(A+1) MOD 2 END FUNCTION   FUNCTION HALF(A) HALF=INT(A/2) END FUNCTION   FUNCTION DOUBLE(A) DOUBLE=2*A END FUNCTION   BEGIN X=17 Y=34 TOT=0 WHILE X>=1 DO PRINT(X,) IF EVEN(X)=0 THEN TOT=TOT+Y PRINT(Y) ELSE PRINT END IF X=HALF(X) Y=DOUBLE(Y) END WHILE PRINT("=",TOT) END PROGRAM  
http://rosettacode.org/wiki/Equilibrium_index
Equilibrium index
An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices. For example, in a sequence   A {\displaystyle A} :   A 0 = − 7 {\displaystyle A_{0}=-7}   A 1 = 1 {\displaystyle A_{1}=1}   A 2 = 5 {\displaystyle A_{2}=5}   A 3 = 2 {\displaystyle A_{3}=2}   A 4 = − 4 {\displaystyle A_{4}=-4}   A 5 = 3 {\displaystyle A_{5}=3}   A 6 = 0 {\displaystyle A_{6}=0} 3   is an equilibrium index, because:   A 0 + A 1 + A 2 = A 4 + A 5 + A 6 {\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}} 6   is also an equilibrium index, because:   A 0 + A 1 + A 2 + A 3 + A 4 + A 5 = 0 {\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0} (sum of zero elements is zero) 7   is not an equilibrium index, because it is not a valid index of sequence A {\displaystyle A} . Task; Write a function that, given a sequence, returns its equilibrium indices (if any). Assume that the sequence may be very long.
#PureBasic
PureBasic
If OpenConsole() Define i, c=CountProgramParameters()-1 For i=0 To c Define j, LSum=0, RSum=0 For j=0 To c If j<i LSum+Val(ProgramParameter(j)) ElseIf j>i RSum+Val(ProgramParameter(j)) EndIf Next j If LSum=RSum: PrintN(Str(i)): EndIf Next i EndIf
http://rosettacode.org/wiki/Equilibrium_index
Equilibrium index
An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices. For example, in a sequence   A {\displaystyle A} :   A 0 = − 7 {\displaystyle A_{0}=-7}   A 1 = 1 {\displaystyle A_{1}=1}   A 2 = 5 {\displaystyle A_{2}=5}   A 3 = 2 {\displaystyle A_{3}=2}   A 4 = − 4 {\displaystyle A_{4}=-4}   A 5 = 3 {\displaystyle A_{5}=3}   A 6 = 0 {\displaystyle A_{6}=0} 3   is an equilibrium index, because:   A 0 + A 1 + A 2 = A 4 + A 5 + A 6 {\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}} 6   is also an equilibrium index, because:   A 0 + A 1 + A 2 + A 3 + A 4 + A 5 = 0 {\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0} (sum of zero elements is zero) 7   is not an equilibrium index, because it is not a valid index of sequence A {\displaystyle A} . Task; Write a function that, given a sequence, returns its equilibrium indices (if any). Assume that the sequence may be very long.
#Python
Python
def eqindex2Pass(data): "Two pass" suml, sumr, ddelayed = 0, sum(data), 0 for i, d in enumerate(data): suml += ddelayed sumr -= d ddelayed = d if suml == sumr: yield i
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#Pascal
Pascal
program Pot5Test; {$IFDEF FPC} {$MODE DELPHI}{$ELSE]{$APPTYPE CONSOLE}{$ENDIF} type tTest = double;//UInt64;{ On linux 32Bit double is faster than Uint64 } var Pot5 : array[0..255] of tTest; res,tmpSum : tTest; x0,x1,x2,x3, y : NativeUint;//= Uint32 or 64 depending on OS xx-Bit i : byte; BEGIN For i := 1 to 255 do Pot5[i] := (i*i*i*i)*Uint64(i);   For x0 := 1 to 250-3 do For x1 := x0+1 to 250-2 do For x2 := x1+1 to 250-1 do Begin //set y here only, because pot5 is strong monoton growing, //therefor the sum is strong monoton growing too. y := x2+2;// aka x3+1 tmpSum := Pot5[x0]+Pot5[x1]+Pot5[x2]; For x3 := x2+1 to 250 do Begin res := tmpSum+Pot5[x3]; while (y< 250) AND (res > Pot5[y]) do inc(y); IF y > 250 then BREAK; if res = Pot5[y] then writeln(x0,'^5+',x1,'^5+',x2,'^5+',x3,'^5 = ',y,'^5'); end; end; END.  
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Phixmonti
Phixmonti
/# recursive #/ def factorial dup 1 > if dup 1 - factorial * else drop 1 endif enddef   /# iterative #/ def factorial2 1 swap for * endfor enddef   0 22 2 tolist for "Factorial(" print dup print ") = " print factorial2 print nl endfor
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#F.C5.8Drmul.C3.A6
Fōrmulæ
Public Sub Form_Open() Dim sAnswer, sMessage As String   sAnswer = InputBox("Input an integer", "Odd or even")   If IsInteger(sAnswer) Then If Odd(Val(sAnswer)) Then sMessage = "' is an odd number" If Even(Val(sAnswer)) Then sMessage = "' is an even number" Else sMessage = "' does not compute!!" Endif   Print "'" & sAnswer & sMessage   End
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Python
Python
def binomialCoeff(n, k): result = 1 for i in range(1, k+1): result = result * (n-i+1) / i return result   if __name__ == "__main__": print(binomialCoeff(5, 3))
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Quackery
Quackery
[ tuck - over 1 swap times [ over i + 1+ * ] nip swap times [ i 1+ / ] ] is binomial ( n n --> )   5 3 binomial echo
http://rosettacode.org/wiki/Emirp_primes
Emirp primes
An   emirp   (prime spelled backwards)   are primes that when reversed   (in their decimal representation)   are a different prime. (This rules out palindromic primes.) Task   show the first   twenty   emirps   show all emirps between   7,700   and   8,000   show the   10,000th   emirp In each list, the numbers should be in order. Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes. The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer. See also   Wikipedia, Emirp.   The Prime Pages, emirp.   Wolfram MathWorld™, Emirp.   The On‑Line Encyclopedia of Integer Sequences, emirps (A6567).
#jq
jq
def is_prime: if . == 2 then true else 2 < . and . % 2 == 1 and (. as $in | (($in + 1) | sqrt) as $m | [false, 3] | until( .[0] or .[1] > $m; [$in % .[1] == 0, .[1] + 2]) | .[0] | not) end ;   def relatively_prime: .[0] as $n | .[1] as $primes | ($n | sqrt) as $s | (.[1] | length) as $length | [0, true] | until( .[0] > $length or ($primes[.[0]] > $s) or .[1] == false; [.[0] + 1, ($n % $primes[.[0]] != 0)] ) | .[1] ;   def primes: # The helper function, next, has arity 0 for tail recursion optimization; # its input must be an array of primes of length at least 2, # the last also being the greatest. def next: . as $previous | .[length-1] as $last | [(2 + $last), $previous] | until( relatively_prime ; .[0] += 2) as $nextp | ( $previous + [$nextp[0]] ); 2, ([2,3] | recurse( next ) | .[-1]) ;
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#VBA
VBA
  'this enumerates from 0 Enum fruits apple banana cherry End Enum   'here we use our own enumeration Enum fruits2 pear = 5 mango = 10 kiwi = 20 pineapple = 20 End Enum     Sub test() Dim f As fruits f = apple Debug.Print "apple equals "; f Debug.Print "kiwi equals "; kiwi Debug.Print "cherry plus kiwi plus pineapple equals "; cherry + kiwi + pineapple End Sub  
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Visual_Basic_.NET
Visual Basic .NET
' Is this valid?! Enum fruits apple banana cherry End Enum   ' This is correct Enum fruits apple = 0 banana = 1 cherry = 2 End Enum
http://rosettacode.org/wiki/Enumerations
Enumerations
Task Create an enumeration of constants with and without explicit values.
#Wren
Wren
var APPLE = 1 var ORANGE = 2 var PEAR = 3   var CHERRY = 4 var BANANA = CHERRY + 1 var GRAPE = BANANA + 1   System.print([APPLE, ORANGE, PEAR, CHERRY, BANANA, GRAPE])
http://rosettacode.org/wiki/Empty_string
Empty string
Languages may have features for dealing specifically with empty strings (those containing no characters). Task   Demonstrate how to assign an empty string to a variable.   Demonstrate how to check that a string is empty.   Demonstrate how to check that a string is not empty. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Emacs_Lisp
Emacs Lisp
(setq str "") ;; empty string literal   (if (= 0 (length str)) (message "string is empty")) (if (/= 0 (length str)) (message "string is not empty"))
http://rosettacode.org/wiki/Empty_string
Empty string
Languages may have features for dealing specifically with empty strings (those containing no characters). Task   Demonstrate how to assign an empty string to a variable.   Demonstrate how to check that a string is empty.   Demonstrate how to check that a string is not empty. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Erlang
Erlang
  1> S = "". % erlang strings are actually lists, so the empty string is the same as the empty list []. [] 2> length(S). 0 3> case S of [] -> empty; [H|T] -> not_empty end. empty 4> case "aoeu" of [] -> empty; [H|T] -> not_empty end. not_empty  
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#Scala
Scala
import java.io.File   def isDirEmpty(file:File) : Boolean = return file.exists && file.isDirectory && file.list.isEmpty
http://rosettacode.org/wiki/Empty_directory
Empty directory
Starting with a path to some directory, determine whether the directory is empty. An empty directory contains no files nor subdirectories. With Unix or Windows systems, every directory contains an entry for “.” and almost every directory contains “..” (except for a root directory); an empty directory contains no other entries.
#Seed7
Seed7
$ include "seed7_05.s7i"; include "osfiles.s7i";   const func boolean: dirEmpty (in string: dirName) is return fileType(dirName) = FILE_DIR and length(readDir(dirName)) = 0;   const proc: main is func begin writeln(dirEmpty("somedir")); end func;