task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Vim_Script | Vim Script | Sub Main()
End Sub |
http://rosettacode.org/wiki/Eban_numbers | Eban numbers |
Definition
An eban number is a number that has no letter e in it when the number is spelled in English.
Or more literally, spelled numbers that contain the letter e are banned.
The American version of spelling numbers will be used here (as opposed to the British).
2,000,000,000 is two billion, not two milliard.
Only numbers less than one sextillion (1021) will be considered in/for this task.
This will allow optimizations to be used.
Task
show all eban numbers ≤ 1,000 (in a horizontal format), and a count
show all eban numbers between 1,000 and 4,000 (inclusive), and a count
show a count of all eban numbers up and including 10,000
show a count of all eban numbers up and including 100,000
show a count of all eban numbers up and including 1,000,000
show a count of all eban numbers up and including 10,000,000
show all output here.
See also
The MathWorld entry: eban numbers.
The OEIS entry: A6933, eban numbers.
| #Factor | Factor | USING: arrays formatting fry io kernel math math.functions
math.order math.ranges prettyprint sequences ;
: eban? ( n -- ? )
1000000000 /mod 1000000 /mod 1000 /mod
[ dup 30 66 between? [ 10 mod ] when ] tri@ 4array
[ { 0 2 4 6 } member? ] all? ;
: .eban ( m n -- ) "eban numbers in [%d, %d]: " printf ;
: eban ( m n q -- o ) '[ 2dup .eban [a,b] [ eban? ] @ ] call ; inline
: .eban-range ( m n -- ) [ filter ] eban "%[%d, %]\n" printf ;
: .eban-count ( m n -- ) "count of " write [ count ] eban . ;
1 1000 1000 4000 [ .eban-range ] 2bi@
4 9 [a,b] [ [ 1 10 ] dip ^ .eban-count ] each |
http://rosettacode.org/wiki/Eban_numbers | Eban numbers |
Definition
An eban number is a number that has no letter e in it when the number is spelled in English.
Or more literally, spelled numbers that contain the letter e are banned.
The American version of spelling numbers will be used here (as opposed to the British).
2,000,000,000 is two billion, not two milliard.
Only numbers less than one sextillion (1021) will be considered in/for this task.
This will allow optimizations to be used.
Task
show all eban numbers ≤ 1,000 (in a horizontal format), and a count
show all eban numbers between 1,000 and 4,000 (inclusive), and a count
show a count of all eban numbers up and including 10,000
show a count of all eban numbers up and including 100,000
show a count of all eban numbers up and including 1,000,000
show a count of all eban numbers up and including 10,000,000
show all output here.
See also
The MathWorld entry: eban numbers.
The OEIS entry: A6933, eban numbers.
| #FreeBASIC | FreeBASIC |
' Eban_numbers
' Un número eban es un número que no tiene la letra e cuando el número está escrito en inglés.
' O más literalmente, los números escritos que contienen la letra e están prohibidos.
'
' Usaremos la versión americana de los números de ortografía (a diferencia de los británicos).
' 2000000000 son dos billones, no dos millardos (mil millones).
'
Data 2, 1000, 1
Data 1000, 4000, 1
Data 2, 10000, 0
Data 2, 100000, 0
Data 2, 1000000, 0
Data 2, 10000000, 0
Data 2, 100000000, 0
Data 0, 0, 0
Dim As Double tiempo = Timer
Dim As Integer start, ended, printable, count
Dim As Long i, b, r, m, t
Do
Read start, ended, printable
If start = 0 Then Exit Do
If start = 2 Then
Print "eban numbers up to and including"; ended; ":"
Else
Print "eban numbers between "; start; " and "; ended; " (inclusive):"
End If
count = 0
For i = start To ended Step 2
b = Int(i / 1000000000)
r = (i Mod 1000000000)
m = Int(r / 1000000)
r = (i Mod 1000000)
t = Int(r / 1000)
r = (r Mod 1000)
If m >= 30 And m <= 66 Then m = (m Mod 10)
If t >= 30 And t <= 66 Then t = (t Mod 10)
If r >= 30 And r <= 66 Then r = (r Mod 10)
If b = 0 Or b = 2 Or b = 4 Or b = 6 Then
If m = 0 Or m = 2 Or m = 4 Or m = 6 Then
If t = 0 Or t = 2 Or t = 4 Or t = 6 Then
If r = 0 Or r = 2 Or r = 4 Or r = 6 Then
If printable Then Print i;
count += 1
End If
End If
End If
End If
Next i
If printable Then Print
Print "count = "; count & Chr(10)
Loop
tiempo = Timer - tiempo
Print "Run time: " & (tiempo) & " seconds."
End
|
http://rosettacode.org/wiki/Element-wise_operations | Element-wise operations | This task is similar to:
Matrix multiplication
Matrix transposition
Task
Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks.
Implement:
addition
subtraction
multiplication
division
exponentiation
Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
| #Groovy | Groovy | class NaiveMatrix {
List<List<Number>> contents = []
NaiveMatrix(Iterable<Iterable<Number>> elements) {
contents.addAll(elements.collect{ row -> row.collect{ cell -> cell } })
assertWellFormed()
}
void assertWellFormed() {
assert contents != null
assert contents.size() > 0
def nCols = contents[0].size()
assert nCols > 0
assert contents.every { it != null && it.size() == nCols }
}
Map getOrder() { [r: contents.size() , c: contents[0].size()] }
void assertConformable(NaiveMatrix that) { assert this.order == that.order }
NaiveMatrix unaryOp(Closure op) {
new NaiveMatrix(contents.collect{ row -> row.collect{ cell -> op(cell) } } )
}
NaiveMatrix binaryOp(NaiveMatrix m, Closure op) {
assertConformable(m)
new NaiveMatrix(
(0..<(this.order.r)).collect{ i ->
(0..<(this.order.c)).collect{ j -> op(this.contents[i][j],m.contents[i][j]) }
}
)
}
NaiveMatrix binaryOp(Number n, Closure op) {
assert n != null
new NaiveMatrix(contents.collect{ row -> row.collect{ cell -> op(cell,n) } } )
}
def plus = this.&binaryOp.rcurry { a, b -> a+b }
def minus = this.&binaryOp.rcurry { a, b -> a-b }
def multiply = this.&binaryOp.rcurry { a, b -> a*b }
def div = this.&binaryOp.rcurry { a, b -> a/b }
def mod = this.&binaryOp.rcurry { a, b -> a%b }
def power = this.&binaryOp.rcurry { a, b -> a**b }
def negative = this.&unaryOp.curry { - it }
def recip = this.&unaryOp.curry { 1/it }
String toString() {
contents.toString()
}
boolean equals(Object other) {
if (other == null || ! other instanceof NaiveMatrix) return false
def that = other as NaiveMatrix
this.contents == that.contents
}
int hashCode() {
contents.hashCode()
}
} |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #Factor | Factor | 42 readln set |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #Forth | Forth | s" VARIABLE " pad swap move
." Variable name: " pad 9 + 80 accept
pad swap 9 + evaluate |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #FreeBASIC | FreeBASIC | ' FB 1.05.0 Win64
Type DynamicVariable
As String name
As String value
End Type
Function FindVariableIndex(a() as DynamicVariable, v as String, nElements As Integer) As Integer
v = LCase(Trim(v))
For i As Integer = 1 To nElements
If a(i).name = v Then Return i
Next
Return 0
End Function
Dim As Integer n, index
Dim As String v
Cls
Do
Input "How many variables do you want to create (max 5) "; n
Loop Until n > 0 AndAlso n < 6
Dim a(1 To n) As DynamicVariable
Print
Print "OK, enter the variable names and their values, below"
For i As Integer = 1 to n
Print
Print " Variable"; i
Input " Name : ", a(i).name
a(i).name = LCase(Trim(a(i).name)) ' variable names are not case sensitive in FB
If i > 0 Then
index = FindVariableIndex(a(), a(i).name, i - 1)
If index > 0 Then
Print " Sorry, you've already created a variable of that name, try again"
i -= 1
Continue For
End If
End If
Input " Value : ", a(i).value
a(i).value = LCase(Trim(a(i).value))
Next
Print
Print "Press q to quit"
Do
Print
Input "Which variable do you want to inspect "; v
If v = "q" OrElse v = "Q" Then Exit Do
index = FindVariableIndex(a(), v, n)
If index = 0 Then
Print "Sorry there's no variable of that name, try again"
Else
Print "It's value is "; a(index).value
End If
Loop
End |
http://rosettacode.org/wiki/Draw_a_pixel | Draw a pixel | Task
Create a window and draw a pixel in it, subject to the following:
the window is 320 x 240
the color of the pixel must be red (255,0,0)
the position of the pixel is x = 100, y = 100 | #AutoHotkey | AutoHotkey | Gui, Add, Picture, x100 y100 w2 h2 +0x4E +HWNDhPicture
CreatePixel("FF0000", hPicture)
Gui, Show, w320 h240, Example
return
CreatePixel(Color, Handle) {
VarSetCapacity(BMBITS, 4, 0), Numput("0x" . Color, &BMBITS, 0, "UInt")
hBM := DllCall("Gdi32.dll\CreateBitmap", "Int", 1, "Int", 1, "UInt", 1, "UInt", 24, "Ptr", 0, "Ptr")
hBM := DllCall("User32.dll\CopyImage", "Ptr", hBM, "UInt", 0, "Int", 0, "Int", 0, "UInt", 0x2008, "Ptr")
DllCall("Gdi32.dll\SetBitmapBits", "Ptr", hBM, "UInt", 3, "Ptr", &BMBITS)
DllCall("User32.dll\SendMessage", "Ptr", Handle, "UInt", 0x172, "Ptr", 0, "Ptr", hBM)
} |
http://rosettacode.org/wiki/Egyptian_division | Egyptian division | Egyptian division is a method of dividing integers using addition and
doubling that is similar to the algorithm of Ethiopian multiplication
Algorithm:
Given two numbers where the dividend is to be divided by the divisor:
Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column.
Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order.
Continue with successive i’th rows of 2^i and 2^i * divisor.
Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend.
We now assemble two separate sums that both start as zero, called here answer and accumulator
Consider each row of the table, in the reverse order of its construction.
If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer.
When the first row has been considered as above, then the integer division of dividend by divisor is given by answer.
(And the remainder is given by the absolute value of accumulator - dividend).
Example: 580 / 34
Table creation:
powers_of_2
doublings
1
34
2
68
4
136
8
272
16
544
Initialization of sums:
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
0
0
Considering table rows, bottom-up:
When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations.
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
16
544
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
16
544
4
136
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
17
578
2
68
4
136
8
272
16
544
Answer
So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2.
Task
The task is to create a function that does Egyptian division. The function should
closely follow the description above in using a list/array of powers of two, and
another of doublings.
Functions should be clear interpretations of the algorithm.
Use the function to divide 580 by 34 and show the answer here, on this page.
Related tasks
Egyptian fractions
References
Egyptian Number System
| #FreeBASIC | FreeBASIC | ' version 09-08-2017
' compile with: fbc -s console
Data 580, 34
Dim As UInteger dividend, divisor, answer, accumulator, i
ReDim As UInteger table(1 To 32, 1 To 2)
Read dividend, divisor
i = 1
table(i, 1) = 1 : table(i, 2) = divisor
While table(i, 2) < dividend
i += 1
table(i, 1) = table(i -1, 1) * 2
table(i, 2) = table(i -1, 2) * 2
Wend
i -= 1
answer = table(i, 1)
accumulator = table(i, 2)
While i > 1
i -= 1
If table(i,2)+ accumulator <= dividend Then
answer += table(i, 1)
accumulator += table(i, 2)
End If
Wend
Print Str(dividend); " divided by "; Str(divisor); " using Egytian division";
Print " returns "; Str(answer); " mod(ulus) "; Str(dividend-accumulator)
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End |
http://rosettacode.org/wiki/Egyptian_fractions | Egyptian fractions | An Egyptian fraction is the sum of distinct unit fractions such as:
1
2
+
1
3
+
1
16
(
=
43
48
)
{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{16}}\,(={\tfrac {43}{48}})}
Each fraction in the expression has a numerator equal to 1 (unity) and a denominator that is a positive integer, and all the denominators are distinct (i.e., no repetitions).
Fibonacci's Greedy algorithm for Egyptian fractions expands the fraction
x
y
{\displaystyle {\tfrac {x}{y}}}
to be represented by repeatedly performing the replacement
x
y
=
1
⌈
y
/
x
⌉
+
(
−
y
)
mod
x
y
⌈
y
/
x
⌉
{\displaystyle {\frac {x}{y}}={\frac {1}{\lceil y/x\rceil }}+{\frac {(-y)\!\!\!\!\mod x}{y\lceil y/x\rceil }}}
(simplifying the 2nd term in this replacement as necessary, and where
⌈
x
⌉
{\displaystyle \lceil x\rceil }
is the ceiling function).
For this task, Proper and improper fractions must be able to be expressed.
Proper fractions are of the form
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive integers, such that
a
<
b
{\displaystyle a<b}
, and
improper fractions are of the form
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive integers, such that a ≥ b.
(See the REXX programming example to view one method of expressing the whole number part of an improper fraction.)
For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [n].
Task requirements
show the Egyptian fractions for:
43
48
{\displaystyle {\tfrac {43}{48}}}
and
5
121
{\displaystyle {\tfrac {5}{121}}}
and
2014
59
{\displaystyle {\tfrac {2014}{59}}}
for all proper fractions,
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has:
the largest number of terms,
the largest denominator.
for all one-, two-, and three-digit integers, find and show (as above). {extra credit}
Also see
Wolfram MathWorld™ entry: Egyptian fraction
| #Haskell | Haskell | import Data.Ratio (Ratio, (%), denominator, numerator)
egyptianFraction :: Integral a => Ratio a -> [Ratio a]
egyptianFraction n
| n < 0 = map negate (egyptianFraction (-n))
| n == 0 = []
| x == 1 = [n]
| x > y = (x `div` y % 1) : egyptianFraction (x `mod` y % y)
| otherwise = (1 % r) : egyptianFraction ((-y) `mod` x % (y * r))
where
x = numerator n
y = denominator n
r = y `div` x + 1 |
http://rosettacode.org/wiki/Ethiopian_multiplication | Ethiopian multiplication | Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
Method:
Take two numbers to be multiplied and write them down at the top of two columns.
In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1.
In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1.
Examine the table produced and discard any row where the value in the left column is even.
Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together
For example: 17 × 34
17 34
Halving the first column:
17 34
8
4
2
1
Doubling the second column:
17 34
8 68
4 136
2 272
1 544
Strike-out rows whose first cell is even:
17 34
8 68
4 136
2 272
1 544
Sum the remaining numbers in the right-hand column:
17 34
8 --
4 ---
2 ---
1 544
====
578
So 17 multiplied by 34, by the Ethiopian method is 578.
Task
The task is to define three named functions/methods/procedures/subroutines:
one to halve an integer,
one to double an integer, and
one to state if an integer is even.
Use these functions to create a function that does Ethiopian multiplication.
References
Ethiopian multiplication explained (BBC Video clip)
A Night Of Numbers - Go Forth And Multiply (Video)
Russian Peasant Multiplication
Programming Praxis: Russian Peasant Multiplication
| #Rust | Rust | fn double(a: i32) -> i32 {
2*a
}
fn halve(a: i32) -> i32 {
a/2
}
fn is_even(a: i32) -> bool {
a % 2 == 0
}
fn ethiopian_multiplication(mut x: i32, mut y: i32) -> i32 {
let mut sum = 0;
while x >= 1 {
print!("{} \t {}", x, y);
match is_even(x) {
true => println!("\t Not Kept"),
false => {
println!("\t Kept");
sum += y;
}
}
x = halve(x);
y = double(y);
}
sum
}
fn main() {
let output = ethiopian_multiplication(17, 34);
println!("---------------------------------");
println!("\t {}", output);
} |
http://rosettacode.org/wiki/Elementary_cellular_automaton | Elementary cellular automaton | An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits.
The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101.
Task
Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice.
The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally.
This task is basically a generalization of one-dimensional cellular automata.
See also
Cellular automata (natureofcode.com)
| #Lua | Lua | local CA = {
state = "..............................#..............................",
bstr = { [0]="...", "..#", ".#.", ".##", "#..", "#.#", "##.", "###" },
new = function(self, rule)
local inst = setmetatable({rule=rule}, self)
for b = 0,7 do
inst[inst.bstr[b]] = rule%2==0 and "." or "#"
rule = math.floor(rule/2)
end
return inst
end,
evolve = function(self)
local n, state, newstate = #self.state, self.state, ""
for i = 1,n do
local nbhd = state:sub((i+n-2)%n+1,(i+n-2)%n+1) .. state:sub(i,i) .. state:sub(i%n+1,i%n+1)
newstate = newstate .. self[nbhd]
end
self.state = newstate
end,
}
CA.__index = CA
ca = { CA:new(18), CA:new(30), CA:new(73), CA:new(129) }
for i = 1, 63 do
print(string.format("%-66s%-66s%-66s%-61s", ca[1].state, ca[2].state, ca[3].state, ca[4].state))
for j = 1, 4 do ca[j]:evolve() end
end |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #Ursala | Ursala | #import nat
good_factorial = ~&?\1! product:-1^lrtPC/~& iota
better_factorial = ~&?\1! ^T(~&lSL,@rS product:-1)+ ~&Z-~^*lrtPC/~& iota |
http://rosettacode.org/wiki/Even_or_odd | Even or odd | Task
Test whether an integer is even or odd.
There is more than one way to solve this task:
Use the even and odd predicates, if the language provides them.
Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd.
Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd.
Use modular congruences:
i ≡ 0 (mod 2) iff i is even.
i ≡ 1 (mod 2) iff i is odd.
| #Zoea_Visual | Zoea Visual |
module Main;
var
x: integer;
s: set;
begin
x := 10;writeln(x:3," is odd?",odd(x));
s := set(s);writeln(x:3," is odd?",0 in s); (* check right bit *)
x := 11;writeln(x:3," is odd?",odd(x));
s := set(x);writeln(x:3," is odd?",0 in s); (* check right bit *)
end Main.
|
http://rosettacode.org/wiki/Even_or_odd | Even or odd | Task
Test whether an integer is even or odd.
There is more than one way to solve this task:
Use the even and odd predicates, if the language provides them.
Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd.
Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd.
Use modular congruences:
i ≡ 0 (mod 2) iff i is even.
i ≡ 1 (mod 2) iff i is odd.
| #zonnon | zonnon |
module Main;
var
x: integer;
s: set;
begin
x := 10;writeln(x:3," is odd?",odd(x));
s := set(s);writeln(x:3," is odd?",0 in s); (* check right bit *)
x := 11;writeln(x:3," is odd?",odd(x));
s := set(x);writeln(x:3," is odd?",0 in s); (* check right bit *)
end Main.
|
http://rosettacode.org/wiki/Echo_server | Echo server | Create a network service that sits on TCP port 12321, which accepts connections on that port, and which echoes complete lines (using a carriage-return/line-feed sequence as line separator) back to clients. No error handling is required. For the purposes of testing, it is only necessary to support connections from localhost (127.0.0.1 or perhaps ::1). Logging of connection information to standard output is recommended.
The implementation must be able to handle simultaneous connections from multiple clients. A multi-threaded or multi-process solution may be used. Each connection must be able to echo more than a single line.
The implementation must not stop responding to other clients if one client sends a partial line or stops reading responses.
| #Lua | Lua | local socket = require("socket")
local function has_value(tab, value)
for i, v in ipairs(tab) do
if v == value then return i end
end
return false
end
local function checkOn(client)
local line, err = client:receive()
if line then
client:send(line .. "\n")
end
if err and err ~= "timeout" then
print(tostring(client) .. " " .. err)
client:close()
return true -- end this connection
end
return false -- do not end this connection
end
local server = assert(socket.bind("*",12321))
server:settimeout(0) -- make non-blocking
local connections = { } -- a list of the client connections
while true do
local newClient = server:accept()
if newClient then
newClient:settimeout(0) -- make non-blocking
table.insert(connections, newClient)
end
local readList = socket.select({server, table.unpack(connections)})
for _, conn in ipairs(readList) do
if conn ~= server and checkOn(conn) then
table.remove(connections, has_value(connections, conn))
end
end
end |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Visual_Basic | Visual Basic | Sub Main()
End Sub |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Visual_Basic_.NET | Visual Basic .NET | Module General
Sub Main()
End Sub
End Module |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Vlang | Vlang | |
http://rosettacode.org/wiki/Eban_numbers | Eban numbers |
Definition
An eban number is a number that has no letter e in it when the number is spelled in English.
Or more literally, spelled numbers that contain the letter e are banned.
The American version of spelling numbers will be used here (as opposed to the British).
2,000,000,000 is two billion, not two milliard.
Only numbers less than one sextillion (1021) will be considered in/for this task.
This will allow optimizations to be used.
Task
show all eban numbers ≤ 1,000 (in a horizontal format), and a count
show all eban numbers between 1,000 and 4,000 (inclusive), and a count
show a count of all eban numbers up and including 10,000
show a count of all eban numbers up and including 100,000
show a count of all eban numbers up and including 1,000,000
show a count of all eban numbers up and including 10,000,000
show all output here.
See also
The MathWorld entry: eban numbers.
The OEIS entry: A6933, eban numbers.
| #F.C5.8Drmul.C3.A6 | Fōrmulæ | package main
import "fmt"
type Range struct {
start, end uint64
print bool
}
func main() {
rgs := []Range{
{2, 1000, true},
{1000, 4000, true},
{2, 1e4, false},
{2, 1e5, false},
{2, 1e6, false},
{2, 1e7, false},
{2, 1e8, false},
{2, 1e9, false},
}
for _, rg := range rgs {
if rg.start == 2 {
fmt.Printf("eban numbers up to and including %d:\n", rg.end)
} else {
fmt.Printf("eban numbers between %d and %d (inclusive):\n", rg.start, rg.end)
}
count := 0
for i := rg.start; i <= rg.end; i += 2 {
b := i / 1000000000
r := i % 1000000000
m := r / 1000000
r = i % 1000000
t := r / 1000
r %= 1000
if m >= 30 && m <= 66 {
m %= 10
}
if t >= 30 && t <= 66 {
t %= 10
}
if r >= 30 && r <= 66 {
r %= 10
}
if b == 0 || b == 2 || b == 4 || b == 6 {
if m == 0 || m == 2 || m == 4 || m == 6 {
if t == 0 || t == 2 || t == 4 || t == 6 {
if r == 0 || r == 2 || r == 4 || r == 6 {
if rg.print {
fmt.Printf("%d ", i)
}
count++
}
}
}
}
}
if rg.print {
fmt.Println()
}
fmt.Println("count =", count, "\n")
}
} |
http://rosettacode.org/wiki/Draw_a_rotating_cube | Draw a rotating cube | Task
Draw a rotating cube.
It should be oriented with one vertex pointing straight up, and its opposite vertex on the main diagonal (the one farthest away) straight down. It can be solid or wire-frame, and you can use ASCII art if your language doesn't have graphical capabilities. Perspective is optional.
Related tasks
Draw a cuboid
write language name in 3D ASCII
| #Ada | Ada | with Ada.Numerics.Elementary_Functions;
with SDL.Video.Windows.Makers;
with SDL.Video.Renderers.Makers;
with SDL.Events.Events;
procedure Rotating_Cube is
Width : constant := 500;
Height : constant := 500;
Offset : constant := 500.0 / 2.0;
Window : SDL.Video.Windows.Window;
Renderer : SDL.Video.Renderers.Renderer;
Event : SDL.Events.Events.Events;
Quit : Boolean := False;
type Node_Id is new Natural;
type Point_3D is record X, Y, Z : Float; end record;
type Edge_Type is record A, B : Node_Id; end record;
Nodes : array (Node_Id range <>) of Point_3D :=
((-100.0, -100.0, -100.0), (-100.0, -100.0, 100.0), (-100.0, 100.0, -100.0),
(-100.0, 100.0, 100.0), (100.0, -100.0, -100.0), (100.0, -100.0, 100.0),
(100.0, 100.0, -100.0), (100.0, 100.0, 100.0));
Edges : constant array (Positive range <>) of Edge_Type :=
((0, 1), (1, 3), (3, 2), (2, 0), (4, 5), (5, 7),
(7, 6), (6, 4), (0, 4), (1, 5), (2, 6), (3, 7));
use Ada.Numerics.Elementary_Functions;
procedure Rotate_Cube (AngleX, AngleY : in Float) is
SinX : constant Float := Sin (AngleX);
CosX : constant Float := Cos (AngleX);
SinY : constant Float := Sin (AngleY);
CosY : constant Float := Cos (AngleY);
X, Y, Z : Float;
begin
for Node of Nodes loop
X := Node.X;
Y := Node.Y;
Z := Node.Z;
Node.X := X * CosX - Z * SinX;
Node.Z := Z * CosX + X * SinX;
Z := Node.Z;
Node.Y := Y * CosY - Z * SinY;
Node.Z := Z * CosY + Y * SinY;
end loop;
end Rotate_Cube;
function Poll_Quit return Boolean is
use type SDL.Events.Event_Types;
begin
while SDL.Events.Events.Poll (Event) loop
if Event.Common.Event_Type = SDL.Events.Quit then
return True;
end if;
end loop;
return False;
end Poll_Quit;
procedure Draw_Cube (Quit : out Boolean) is
use SDL.C;
Pi : constant := Ada.Numerics.Pi;
Xy1, Xy2 : Point_3D;
begin
Rotate_Cube (Pi / 4.0, Arctan (Sqrt (2.0)));
for Frame in 0 .. 359 loop
Renderer.Set_Draw_Colour ((0, 0, 0, 255));
Renderer.Fill (Rectangle => (0, 0, Width, Height));
Renderer.Set_Draw_Colour ((0, 220, 0, 255));
for Edge of Edges loop
Xy1 := Nodes (Edge.A);
Xy2 := Nodes (Edge.B);
Renderer.Draw (Line => ((int (Xy1.X + Offset), int (Xy1.Y + Offset)),
(int (Xy2.X + Offset), int (Xy2.Y + Offset))));
end loop;
Rotate_Cube (Pi / 180.0, 0.0);
Window.Update_Surface;
Quit := Poll_Quit;
exit when Quit;
delay 0.020;
end loop;
end Draw_Cube;
begin
if not SDL.Initialise (Flags => SDL.Enable_Screen) then
return;
end if;
SDL.Video.Windows.Makers.Create (Win => Window,
Title => "Rotating cube",
Position => SDL.Natural_Coordinates'(X => 10, Y => 10),
Size => SDL.Positive_Sizes'(Width, Height),
Flags => 0);
SDL.Video.Renderers.Makers.Create (Renderer, Window.Get_Surface);
while not Quit loop
Draw_Cube (Quit);
end loop;
Window.Finalize;
SDL.Finalise;
end Rotating_Cube; |
http://rosettacode.org/wiki/Element-wise_operations | Element-wise operations | This task is similar to:
Matrix multiplication
Matrix transposition
Task
Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks.
Implement:
addition
subtraction
multiplication
division
exponentiation
Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
| #Haskell | Haskell | {-# OPTIONS_GHC -fno-warn-duplicate-constraints #-}
{-# LANGUAGE RankNTypes #-}
import Data.Array (Array, Ix)
import Data.Array.Base
-- | Element-wise combine the values of two arrays 'a' and 'b' with 'f'.
-- 'a' and 'b' must have the same bounds.
zipWithA :: (IArray arr a, IArray arr b, IArray arr c, Ix i) =>
(a -> b -> c) -> arr i a -> arr i b -> arr i c
zipWithA f a b =
case bounds a of
ba ->
if ba /= bounds b
then error "elemwise: bounds mismatch"
else
let n = numElements a
in unsafeArray ba [ (i, f (unsafeAt a i) (unsafeAt b i))
| i <- [0 .. n - 1]]
-- Convenient aliases for matrix-matrix element-wise operations.
type ElemOp a b c = (IArray arr a, IArray arr b, IArray arr c, Ix i) =>
arr i a -> arr i b -> arr i c
type ElemOp1 a = ElemOp a a a
infixl 6 +:, -:
infixl 7 *:, /:, `divE`
(+:), (-:), (*:) :: (Num a) => ElemOp1 a
(+:) = zipWithA (+)
(-:) = zipWithA (-)
(*:) = zipWithA (*)
divE :: (Integral a) => ElemOp1 a
divE = zipWithA div
(/:) :: (Fractional a) => ElemOp1 a
(/:) = zipWithA (/)
infixr 8 ^:, **:, ^^:
(^:) :: (Num a, Integral b) => ElemOp a b a
(^:) = zipWithA (^)
(**:) :: (Floating a) => ElemOp1 a
(**:) = zipWithA (**)
(^^:) :: (Fractional a, Integral b) => ElemOp a b a
(^^:) = zipWithA (^^)
-- Convenient aliases for matrix-scalar element-wise operations.
type ScalarOp a b c = (IArray arr a, IArray arr c, Ix i) =>
arr i a -> b -> arr i c
type ScalarOp1 a = ScalarOp a a a
samap :: (IArray arr a, IArray arr c, Ix i) =>
(a -> b -> c) -> arr i a -> b -> arr i c
samap f a s = amap (`f` s) a
infixl 6 +., -.
infixl 7 *., /., `divS`
(+.), (-.), (*.) :: (Num a) => ScalarOp1 a
(+.) = samap (+)
(-.) = samap (-)
(*.) = samap (*)
divS :: (Integral a) => ScalarOp1 a
divS = samap div
(/.) :: (Fractional a) => ScalarOp1 a
(/.) = samap (/)
infixr 8 ^., **., ^^.
(^.) :: (Num a, Integral b) => ScalarOp a b a
(^.) = samap (^)
(**.) :: (Floating a) => ScalarOp1 a
(**.) = samap (**)
(^^.) :: (Fractional a, Integral b) => ScalarOp a b a
(^^.) = samap (^^)
main :: IO ()
main = do
let m1, m2 :: (forall a. (Enum a, Num a) => Array (Int, Int) a)
m1 = listArray ((0, 0), (2, 3)) [1..]
m2 = listArray ((0, 0), (2, 3)) [10..]
s :: (forall a. Num a => a)
s = 99
putStrLn "m1"
print m1
putStrLn "m2"
print m2
putStrLn "s"
print s
putStrLn "m1 + m2"
print $ m1 +: m2
putStrLn "m1 - m2"
print $ m1 -: m2
putStrLn "m1 * m2"
print $ m1 *: m2
putStrLn "m1 `div` m2"
print $ m1 `divE` m2
putStrLn "m1 / m2"
print $ m1 /: m2
putStrLn "m1 ^ m2"
print $ m1 ^: m2
putStrLn "m1 ** m2"
print $ m1 **: m2
putStrLn "m1 ^^ m2"
print $ m1 ^^: m2
putStrLn "m1 + s"
print $ m1 +. s
putStrLn "m1 - s"
print $ m1 -. s
putStrLn "m1 * s"
print $ m1 *. s
putStrLn "m1 `div` s"
print $ m1 `divS` s
putStrLn "m1 / s"
print $ m1 /. s
putStrLn "m1 ^ s"
print $ m1 ^. s
putStrLn "m1 ** s"
print $ m1 **. s
putStrLn "m1 ^^ s"
print $ m1 ^^. s |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #GAP | GAP | # As is, will not work if val is a String
Assign := function(var, val)
Read(InputTextString(Concatenation(var, " := ", String(val), ";")));
end; |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #Genyris | Genyris | defvar (intern 'This is not a pipe.') 42
define |<weird>| 2009 |
http://rosettacode.org/wiki/Draw_a_pixel | Draw a pixel | Task
Create a window and draw a pixel in it, subject to the following:
the window is 320 x 240
the color of the pixel must be red (255,0,0)
the position of the pixel is x = 100, y = 100 | #BASIC256 | BASIC256 |
rem http://rosettacode.org/wiki/Draw_a_pixel
graphsize 320, 240
color red
plot 100, 100
|
http://rosettacode.org/wiki/Draw_a_pixel | Draw a pixel | Task
Create a window and draw a pixel in it, subject to the following:
the window is 320 x 240
the color of the pixel must be red (255,0,0)
the position of the pixel is x = 100, y = 100 | #BBC_BASIC | BBC BASIC | VDU 23, 22, 320; 240; 8, 8, 8, 0, 18, 0, 1, 25, 69, 100; 100; |
http://rosettacode.org/wiki/Egyptian_division | Egyptian division | Egyptian division is a method of dividing integers using addition and
doubling that is similar to the algorithm of Ethiopian multiplication
Algorithm:
Given two numbers where the dividend is to be divided by the divisor:
Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column.
Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order.
Continue with successive i’th rows of 2^i and 2^i * divisor.
Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend.
We now assemble two separate sums that both start as zero, called here answer and accumulator
Consider each row of the table, in the reverse order of its construction.
If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer.
When the first row has been considered as above, then the integer division of dividend by divisor is given by answer.
(And the remainder is given by the absolute value of accumulator - dividend).
Example: 580 / 34
Table creation:
powers_of_2
doublings
1
34
2
68
4
136
8
272
16
544
Initialization of sums:
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
0
0
Considering table rows, bottom-up:
When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations.
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
16
544
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
16
544
4
136
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
17
578
2
68
4
136
8
272
16
544
Answer
So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2.
Task
The task is to create a function that does Egyptian division. The function should
closely follow the description above in using a list/array of powers of two, and
another of doublings.
Functions should be clear interpretations of the algorithm.
Use the function to divide 580 by 34 and show the answer here, on this page.
Related tasks
Egyptian fractions
References
Egyptian Number System
| #Go | Go | package main
import "fmt"
func egyptianDivide(dividend, divisor int) (quotient, remainder int) {
if dividend < 0 || divisor <= 0 {
panic("Invalid argument(s)")
}
if dividend < divisor {
return 0, dividend
}
powersOfTwo := []int{1}
doublings := []int{divisor}
doubling := divisor
for {
doubling *= 2
if doubling > dividend {
break
}
l := len(powersOfTwo)
powersOfTwo = append(powersOfTwo, powersOfTwo[l-1]*2)
doublings = append(doublings, doubling)
}
answer := 0
accumulator := 0
for i := len(doublings) - 1; i >= 0; i-- {
if accumulator+doublings[i] <= dividend {
accumulator += doublings[i]
answer += powersOfTwo[i]
if accumulator == dividend {
break
}
}
}
return answer, dividend - accumulator
}
func main() {
dividend := 580
divisor := 34
quotient, remainder := egyptianDivide(dividend, divisor)
fmt.Println(dividend, "divided by", divisor, "is", quotient, "with remainder", remainder)
} |
http://rosettacode.org/wiki/Egyptian_fractions | Egyptian fractions | An Egyptian fraction is the sum of distinct unit fractions such as:
1
2
+
1
3
+
1
16
(
=
43
48
)
{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{16}}\,(={\tfrac {43}{48}})}
Each fraction in the expression has a numerator equal to 1 (unity) and a denominator that is a positive integer, and all the denominators are distinct (i.e., no repetitions).
Fibonacci's Greedy algorithm for Egyptian fractions expands the fraction
x
y
{\displaystyle {\tfrac {x}{y}}}
to be represented by repeatedly performing the replacement
x
y
=
1
⌈
y
/
x
⌉
+
(
−
y
)
mod
x
y
⌈
y
/
x
⌉
{\displaystyle {\frac {x}{y}}={\frac {1}{\lceil y/x\rceil }}+{\frac {(-y)\!\!\!\!\mod x}{y\lceil y/x\rceil }}}
(simplifying the 2nd term in this replacement as necessary, and where
⌈
x
⌉
{\displaystyle \lceil x\rceil }
is the ceiling function).
For this task, Proper and improper fractions must be able to be expressed.
Proper fractions are of the form
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive integers, such that
a
<
b
{\displaystyle a<b}
, and
improper fractions are of the form
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive integers, such that a ≥ b.
(See the REXX programming example to view one method of expressing the whole number part of an improper fraction.)
For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [n].
Task requirements
show the Egyptian fractions for:
43
48
{\displaystyle {\tfrac {43}{48}}}
and
5
121
{\displaystyle {\tfrac {5}{121}}}
and
2014
59
{\displaystyle {\tfrac {2014}{59}}}
for all proper fractions,
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has:
the largest number of terms,
the largest denominator.
for all one-, two-, and three-digit integers, find and show (as above). {extra credit}
Also see
Wolfram MathWorld™ entry: Egyptian fraction
| #J | J | ef =: [: (}.~ 0={.) [: (, r2ef)/ 0 1 #: x:
r2ef =: (<(<0);0) { ((] , -) >:@:<.&.%)^:((~:<.)@:%)@:{:^:a: |
http://rosettacode.org/wiki/Ethiopian_multiplication | Ethiopian multiplication | Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
Method:
Take two numbers to be multiplied and write them down at the top of two columns.
In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1.
In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1.
Examine the table produced and discard any row where the value in the left column is even.
Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together
For example: 17 × 34
17 34
Halving the first column:
17 34
8
4
2
1
Doubling the second column:
17 34
8 68
4 136
2 272
1 544
Strike-out rows whose first cell is even:
17 34
8 68
4 136
2 272
1 544
Sum the remaining numbers in the right-hand column:
17 34
8 --
4 ---
2 ---
1 544
====
578
So 17 multiplied by 34, by the Ethiopian method is 578.
Task
The task is to define three named functions/methods/procedures/subroutines:
one to halve an integer,
one to double an integer, and
one to state if an integer is even.
Use these functions to create a function that does Ethiopian multiplication.
References
Ethiopian multiplication explained (BBC Video clip)
A Night Of Numbers - Go Forth And Multiply (Video)
Russian Peasant Multiplication
Programming Praxis: Russian Peasant Multiplication
| #S-BASIC | S-BASIC |
$constant true = 0FFFFH
$constant false = 0
function half(n = integer) = integer
end = n / 2
function twice(n = integer) = integer
end = n + n
rem - return true (-1) if n is even, otherwise false
function even(n = integer) = integer
var one = integer
one = 1 rem - only variables are compared bitwise
end = ((n and one) = 0)
rem - return i * j, optionally showing steps
function ethiopian(i, j, show = integer) = integer
var p = integer
p = 0
while i >= 1 do
begin
if even(i) then
begin
if show then print i;" ---";j
end
else
begin
if show then print i;" ";j;"+"
p = p + j
end
i = half(i)
j = twice(j)
end
if show then
begin
print "----------"
print " =";
end
end = p
rem - exercise the function
print "Multiplying 17 times 34"
print ethiopian(17,34,true)
end |
http://rosettacode.org/wiki/Elementary_cellular_automaton | Elementary cellular automaton | An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits.
The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101.
Task
Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice.
The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally.
This task is basically a generalization of one-dimensional cellular automata.
See also
Cellular automata (natureofcode.com)
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | ArrayPlot[CellularAutomaton[30, {0, 0, 0, 0, 1, 0, 0, 0}, 100]] |
http://rosettacode.org/wiki/Elementary_cellular_automaton | Elementary cellular automaton | An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits.
The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101.
Task
Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice.
The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally.
This task is basically a generalization of one-dimensional cellular automata.
See also
Cellular automata (natureofcode.com)
| #MATLAB | MATLAB | function init = cellularAutomaton(rule, init, n)
init(n + 1, :) = 0;
for k = 1 : n
init(k + 1, :) = bitget(rule, 1 + filter2([4 2 1], init(k, :)));
end |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #VBA | VBA | Public Function factorial(n As Integer) As Long
factorial = WorksheetFunction.Fact(n)
End Function |
http://rosettacode.org/wiki/Even_or_odd | Even or odd | Task
Test whether an integer is even or odd.
There is more than one way to solve this task:
Use the even and odd predicates, if the language provides them.
Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd.
Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd.
Use modular congruences:
i ≡ 0 (mod 2) iff i is even.
i ≡ 1 (mod 2) iff i is odd.
| #ZX_Spectrum_Basic | ZX Spectrum Basic | 10 FOR n=-3 TO 4: GO SUB 30: NEXT n
20 STOP
30 LET odd=FN m(n,2)
40 PRINT n;" is ";("Even" AND odd=0)+("Odd" AND odd=1)
50 RETURN
60 DEF FN m(a,b)=a-INT (a/b)*b |
http://rosettacode.org/wiki/Echo_server | Echo server | Create a network service that sits on TCP port 12321, which accepts connections on that port, and which echoes complete lines (using a carriage-return/line-feed sequence as line separator) back to clients. No error handling is required. For the purposes of testing, it is only necessary to support connections from localhost (127.0.0.1 or perhaps ::1). Logging of connection information to standard output is recommended.
The implementation must be able to handle simultaneous connections from multiple clients. A multi-threaded or multi-process solution may be used. Each connection must be able to echo more than a single line.
The implementation must not stop responding to other clients if one client sends a partial line or stops reading responses.
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | server = SocketOpen[12321];
SocketListen[server, Function[{assoc},
With[{client = assoc["SourceSocket"], input = assoc["Data"]},
WriteString[client, ByteArrayToString[input]];
]
]] |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Wart | Wart | |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #WDTE | WDTE | (module
;;The entry point for WASI is called _start
(func $main (export "_start")
)
)
|
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #WebAssembly | WebAssembly | (module
;;The entry point for WASI is called _start
(func $main (export "_start")
)
)
|
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Wee_Basic | Wee Basic | |
http://rosettacode.org/wiki/Eban_numbers | Eban numbers |
Definition
An eban number is a number that has no letter e in it when the number is spelled in English.
Or more literally, spelled numbers that contain the letter e are banned.
The American version of spelling numbers will be used here (as opposed to the British).
2,000,000,000 is two billion, not two milliard.
Only numbers less than one sextillion (1021) will be considered in/for this task.
This will allow optimizations to be used.
Task
show all eban numbers ≤ 1,000 (in a horizontal format), and a count
show all eban numbers between 1,000 and 4,000 (inclusive), and a count
show a count of all eban numbers up and including 10,000
show a count of all eban numbers up and including 100,000
show a count of all eban numbers up and including 1,000,000
show a count of all eban numbers up and including 10,000,000
show all output here.
See also
The MathWorld entry: eban numbers.
The OEIS entry: A6933, eban numbers.
| #Go | Go | package main
import "fmt"
type Range struct {
start, end uint64
print bool
}
func main() {
rgs := []Range{
{2, 1000, true},
{1000, 4000, true},
{2, 1e4, false},
{2, 1e5, false},
{2, 1e6, false},
{2, 1e7, false},
{2, 1e8, false},
{2, 1e9, false},
}
for _, rg := range rgs {
if rg.start == 2 {
fmt.Printf("eban numbers up to and including %d:\n", rg.end)
} else {
fmt.Printf("eban numbers between %d and %d (inclusive):\n", rg.start, rg.end)
}
count := 0
for i := rg.start; i <= rg.end; i += 2 {
b := i / 1000000000
r := i % 1000000000
m := r / 1000000
r = i % 1000000
t := r / 1000
r %= 1000
if m >= 30 && m <= 66 {
m %= 10
}
if t >= 30 && t <= 66 {
t %= 10
}
if r >= 30 && r <= 66 {
r %= 10
}
if b == 0 || b == 2 || b == 4 || b == 6 {
if m == 0 || m == 2 || m == 4 || m == 6 {
if t == 0 || t == 2 || t == 4 || t == 6 {
if r == 0 || r == 2 || r == 4 || r == 6 {
if rg.print {
fmt.Printf("%d ", i)
}
count++
}
}
}
}
}
if rg.print {
fmt.Println()
}
fmt.Println("count =", count, "\n")
}
} |
http://rosettacode.org/wiki/Draw_a_rotating_cube | Draw a rotating cube | Task
Draw a rotating cube.
It should be oriented with one vertex pointing straight up, and its opposite vertex on the main diagonal (the one farthest away) straight down. It can be solid or wire-frame, and you can use ASCII art if your language doesn't have graphical capabilities. Perspective is optional.
Related tasks
Draw a cuboid
write language name in 3D ASCII
| #AutoHotkey | AutoHotkey | ; ---------------------------------------------------------------
cubeSize := 200
deltaX := A_ScreenWidth/2
deltaY := A_ScreenHeight/2
keyStep := 1
mouseStep := 0.2
zoomStep := 1.1
playSpeed := 1
playTimer := 10
penSize := 5
/*
HotKeys:
!p:: Play/Stop
!x:: change play to x-axis
!y:: change play to y-axis
!z:: change play to z-axis
!NumpadAdd:: Zoom in
!WheelUp:: Zoom in
!NumpadSub:: Zoom out
!WheelDown:: Zoom out
!LButton:: Rotate X-axis, follow mouse
!Up:: Rotate X-axis, CCW
!Down:: Rotate X-axis, CW
!LButton:: Rotate Y-axis, follow mouse
!Right:: Rotate Y-axis, CCW
!Left:: Rotate Y-axis, CW
!RButton:: Rotate Z-axis, follow mouse
!PGUP:: Rotate Z-axis, CW
!PGDN:: Rotate Z-axis, CCW
+LButton:: Move, follow mouse
^esc:: Exitapp
*/
visualCube =
(
1+--------+5
|\ \
| 2+--------+6
| | |
3+ | 7+ |
\ | |
4+--------+8
)
SetBatchLines, -1
coord := cubeSize/2
nodes :=[[-coord, -coord, -coord]
, [-coord, -coord, coord]
, [-coord, coord, -coord]
, [-coord, coord, coord]
, [ coord, -coord, -coord]
, [ coord, -coord, coord]
, [ coord, coord, -coord]
, [ coord, coord, coord]]
edges := [[1, 2], [2, 4], [4, 3], [3, 1]
, [5, 6], [6, 8], [8, 7], [7, 5]
, [1, 5], [2, 6], [3, 7], [4, 8]]
faces := [[1,2,4,3], [2,4,8,6], [1,2,6,5], [1,3,7,5], [5,7,8,6], [3,4,8,7]]
CP := [(nodes[8,1]+nodes[1,1])/2 , (nodes[8,2]+nodes[1,2])/2]
rotateX3D(-30)
rotateY3D(30)
Gdip1()
draw()
return
; --------------------------------------------------------------
draw() {
global
D := ""
for i, n in nodes
D .= Sqrt((n.1-CP.1)**2 + (n.2-CP.2)**2) "`t:" i ":`t" n.3 "`n"
Sort, D, N
p1 := StrSplit(StrSplit(D, "`n", "`r").1, ":").2
p2 := StrSplit(StrSplit(D, "`n", "`r").2, ":").2
hiddenNode := nodes[p1,3] < nodes[p2,3] ? p1 : p2
; Draw Faces
loop % faces.count() {
n1 := faces[A_Index, 1]
n2 := faces[A_Index, 2]
n3 := faces[A_Index, 3]
n4 := faces[A_Index, 4]
if (n1 = hiddenNode) || (n2 = hiddenNode) || (n3 = hiddenNode) || (n4 = hiddenNode)
continue
points := nodes[n1,1]+deltaX "," nodes[n1,2]+deltaY
. "|" nodes[n2,1]+deltaX "," nodes[n2,2]+deltaY
. "|" nodes[n3,1]+deltaX "," nodes[n3,2]+deltaY
. "|" nodes[n4,1]+deltaX "," nodes[n4,2]+deltaY
Gdip_FillPolygon(G, FaceBrush%A_Index%, Points)
}
; Draw Node-Numbers
;~ loop % nodes.count() {
;~ Gdip_FillEllipse(G, pBrush, nodes[A_Index, 1]+deltaX, nodes[A_Index, 2]+deltaY, 4, 4)
;~ Options := "x" nodes[A_Index, 1]+deltaX " y" nodes[A_Index, 2]+deltaY "c" TextColor " Bold s" size
;~ Gdip_TextToGraphics(G, A_Index, Options, Font)
;~ }
; Draw Edges
loop % edges.count() {
n1 := edges[A_Index, 1]
n2 := edges[A_Index, 2]
if (n1 = hiddenNode) || (n2 = hiddenNode)
continue
Gdip_DrawLine(G, pPen, nodes[n1,1]+deltaX, nodes[n1,2]+deltaY, nodes[n2,1]+deltaX, nodes[n2,2]+deltaY)
}
UpdateLayeredWindow(hwnd1, hdc, 0, 0, Width, Height)
}
; ---------------------------------------------------------------
rotateZ3D(theta) { ; Rotate shape around the z-axis
global
theta *= 3.141592653589793/180
sinTheta := sin(theta)
cosTheta := cos(theta)
loop % nodes.count() {
x := nodes[A_Index,1]
y := nodes[A_Index,2]
nodes[A_Index,1] := x*cosTheta - y*sinTheta
nodes[A_Index,2] := y*cosTheta + x*sinTheta
}
Redraw()
}
; ---------------------------------------------------------------
rotateX3D(theta) { ; Rotate shape around the x-axis
global
theta *= 3.141592653589793/180
sinTheta := sin(theta)
cosTheta := cos(theta)
loop % nodes.count() {
y := nodes[A_Index, 2]
z := nodes[A_Index, 3]
nodes[A_Index, 2] := y*cosTheta - z*sinTheta
nodes[A_Index, 3] := z*cosTheta + y*sinTheta
}
Redraw()
}
; ---------------------------------------------------------------
rotateY3D(theta) { ; Rotate shape around the y-axis
global
theta *= 3.141592653589793/180
sinTheta := sin(theta)
cosTheta := cos(theta)
loop % nodes.count() {
x := nodes[A_Index, 1]
z := nodes[A_Index, 3]
nodes[A_Index, 1] := x*cosTheta + z*sinTheta
nodes[A_Index, 3] := z*cosTheta - x*sinTheta
}
Redraw()
}
; ---------------------------------------------------------------
Redraw(){
global
gdip2()
gdip1()
draw()
}
; ---------------------------------------------------------------
gdip1(){
global
If !pToken := Gdip_Startup()
{
MsgBox, 48, gdiplus error!, Gdiplus failed to start. Please ensure you have gdiplus on your system
ExitApp
}
OnExit, Exit
Width := A_ScreenWidth, Height := A_ScreenHeight
Gui, 1: -Caption +E0x80000 +LastFound +OwnDialogs +Owner +AlwaysOnTop
Gui, 1: Show, NA
hwnd1 := WinExist()
hbm := CreateDIBSection(Width, Height)
hdc := CreateCompatibleDC()
obm := SelectObject(hdc, hbm)
G := Gdip_GraphicsFromHDC(hdc)
Gdip_SetSmoothingMode(G, 4)
TextColor:="FFFFFF00", size := 18
Font := "Arial"
Gdip_FontFamilyCreate(Font)
pBrush := Gdip_BrushCreateSolid(0xFFFF00FF)
FaceBrush1 := Gdip_BrushCreateSolid(0xFF0000FF) ; blue
FaceBrush2 := Gdip_BrushCreateSolid(0xFFFF0000) ; red
FaceBrush3 := Gdip_BrushCreateSolid(0xFFFFFF00) ; yellow
FaceBrush4 := Gdip_BrushCreateSolid(0xFFFF7518) ; orange
FaceBrush5 := Gdip_BrushCreateSolid(0xFF00FF00) ; lime
FaceBrush6 := Gdip_BrushCreateSolid(0xFFFFFFFF) ; white
pPen := Gdip_CreatePen(0xFF000000, penSize)
}
; ---------------------------------------------------------------
gdip2(){
global
Gdip_DeleteBrush(pBrush)
Gdip_DeletePen(pPen)
SelectObject(hdc, obm)
DeleteObject(hbm)
DeleteDC(hdc)
Gdip_DeleteGraphics(G)
}
; Viewing Hotkeys ----------------------------------------------
; HotKey Play/Stop ---------------------------------------------
!p::
SetTimer, rotateTimer, % (toggle:=!toggle)?playTimer:"off"
return
rotateTimer:
axis := !axis ? "Y" : axis
rotate%axis%3D(playSpeed)
return
!x::
!y::
!z::
axis := SubStr(A_ThisHotkey, 2, 1)
return
; HotKey Zoom in/out -------------------------------------------
!NumpadAdd::
!NumpadSub::
!WheelUp::
!WheelDown::
loop % nodes.count()
{
nodes[A_Index, 1] := nodes[A_Index, 1] * (InStr(A_ThisHotkey, "Add") || InStr(A_ThisHotkey, "Up") ? zoomStep : 1/zoomStep)
nodes[A_Index, 2] := nodes[A_Index, 2] * (InStr(A_ThisHotkey, "Add") || InStr(A_ThisHotkey, "Up") ? zoomStep : 1/zoomStep)
nodes[A_Index, 3] := nodes[A_Index, 3] * (InStr(A_ThisHotkey, "Add") || InStr(A_ThisHotkey, "Up") ? zoomStep : 1/zoomStep)
}
Redraw()
return
; HotKey Rotate around Y-Axis ----------------------------------
!Right::
!Left::
rotateY3D(keyStep * (InStr(A_ThisHotkey,"right") ? 1 : -1))
return
; HotKey Rotate around X-Axis ----------------------------------
!Up::
!Down::
rotateX3D(keyStep * (InStr(A_ThisHotkey, "Up") ? 1 : -1))
return
; HotKey Rotate around Z-Axis ----------------------------------
!PGUP::
!PGDN::
rotateZ3D(keyStep * (InStr(A_ThisHotkey, "UP") ? 1 : -1))
return
; HotKey, Rotate around X/Y-Axis -------------------------------
!LButton::
MouseGetPos, pmouseX, pmouseY
while GetKeyState("Lbutton", "P")
{
MouseGetPos, mouseX, mouseY
DeltaMX := mouseX - pmouseX
DeltaMY := pmouseY - mouseY
if (DeltaMX || DeltaMY)
{
MouseGetPos, pmouseX, pmouseY
rotateY3D(DeltaMX)
rotateX3D(DeltaMY)
}
}
return
; HotKey Rotate around Z-Axis ----------------------------------
!RButton::
MouseGetPos, pmouseX, pmouseY
while GetKeyState("Rbutton", "P")
{
MouseGetPos, mouseX, mouseY
DeltaMX := mouseX - pmouseX
DeltaMY := mouseY - pmouseY
DeltaMX *= mouseY < deltaY ? mouseStep : -mouseStep
DeltaMY *= mouseX > deltaX ? mouseStep : -mouseStep
if (DeltaMX || DeltaMY)
{
MouseGetPos, pmouseX, pmouseY
rotateZ3D(DeltaMX)
rotateZ3D(DeltaMY)
}
}
return
; HotKey, Move -------------------------------------------------
+LButton::
MouseGetPos, pmouseX, pmouseY
while GetKeyState("Lbutton", "P")
{
MouseGetPos, mouseX, mouseY
deltaX += mouseX - pmouseX
deltaY += mouseY - pmouseY
pmouseX := mouseX
pmouseY := mouseY
Redraw()
}
return
; ---------------------------------------------------------------
^esc::
Exit:
gdip2()
Gdip_Shutdown(pToken)
ExitApp
Return
; --------------------------------------------------------------- |
http://rosettacode.org/wiki/Element-wise_operations | Element-wise operations | This task is similar to:
Matrix multiplication
Matrix transposition
Task
Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks.
Implement:
addition
subtraction
multiplication
division
exponentiation
Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
| #Icon_and_Unicon | Icon and Unicon | procedure main()
a := [[1,2,3],[4,5,6],[7,8,9]]
b := [[9,8,7],[6,5,4],[3,2,1]]
showMat(" a: ",a)
showMat(" b: ",b)
showMat("a+b: ",mmop("+",a,b))
showMat("a-b: ",mmop("-",a,b))
showMat("a*b: ",mmop("*",a,b))
showMat("a/b: ",mmop("/",a,b))
showMat("a^b: ",mmop("^",a,b))
showMat("a+2: ",msop("+",a,2))
showMat("a-2: ",msop("-",a,2))
showMat("a*2: ",msop("*",a,2))
showMat("a/2: ",msop("/",a,2))
showMat("a^2: ",msop("^",a,2))
end
procedure mmop(op,A,B)
if (*A = *B) & (*A[1] = *B[1]) then {
C := [: |list(*A[1])\*A[1] :]
a1 := create !!A
b1 := create !!B
every (!!C) := op(@a1,@b1)
return C
}
end
procedure msop(op,A,s)
C := [: |list(*A[1])\*A[1] :]
a1 := create !!A
every (!!C) := op(@a1,s)
return C
end
procedure showMat(label, m)
every writes(label | right(!!m,5) | "\n")
end |
http://rosettacode.org/wiki/Dutch_national_flag_problem | Dutch national flag problem |
The Dutch national flag is composed of three coloured bands in the order:
red (top)
then white, and
lastly blue (at the bottom).
The problem posed by Edsger Dijkstra is:
Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag.
When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ...
Task
Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag.
Sort the balls in a way idiomatic to your language.
Check the sorted balls are in the order of the Dutch national flag.
C.f.
Dutch national flag problem
Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
| #11l | 11l | V colours_in_order = ‘Red White Blue’.split(‘ ’)
F dutch_flag_sort3(items)
[String] r
L(colour) :colours_in_order
r.extend([colour] * items.count(colour))
R r
V balls = [‘Red’, ‘Red’, ‘Blue’, ‘Blue’, ‘Blue’, ‘Red’, ‘Red’, ‘Red’, ‘White’, ‘Blue’]
print(‘Original Ball order: ’balls)
V sorted_balls = dutch_flag_sort3(balls)
print(‘Sorted Ball Order: ’sorted_balls) |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #Go | Go | package main
import (
"bufio"
"fmt"
"log"
"os"
"strconv"
"strings"
)
func check(err error) {
if err != nil {
log.Fatal(err)
}
}
func main() {
scanner := bufio.NewScanner(os.Stdin)
n := 0
for n < 1 || n > 5 {
fmt.Print("How many integer variables do you want to create (max 5) : ")
scanner.Scan()
n, _ = strconv.Atoi(scanner.Text())
check(scanner.Err())
}
vars := make(map[string]int)
fmt.Println("OK, enter the variable names and their values, below")
for i := 1; i <= n; {
fmt.Println("\n Variable", i)
fmt.Print(" Name : ")
scanner.Scan()
name := scanner.Text()
check(scanner.Err())
if _, ok := vars[name]; ok {
fmt.Println(" Sorry, you've already created a variable of that name, try again")
continue
}
var value int
var err error
for {
fmt.Print(" Value : ")
scanner.Scan()
value, err = strconv.Atoi(scanner.Text())
check(scanner.Err())
if err != nil {
fmt.Println(" Not a valid integer, try again")
} else {
break
}
}
vars[name] = value
i++
}
fmt.Println("\nEnter q to quit")
for {
fmt.Print("\nWhich variable do you want to inspect : ")
scanner.Scan()
name := scanner.Text()
check(scanner.Err())
if s := strings.ToLower(name); s == "q" {
return
}
v, ok := vars[name]
if !ok {
fmt.Println("Sorry there's no variable of that name, try again")
} else {
fmt.Println("It's value is", v)
}
}
} |
http://rosettacode.org/wiki/Draw_a_pixel | Draw a pixel | Task
Create a window and draw a pixel in it, subject to the following:
the window is 320 x 240
the color of the pixel must be red (255,0,0)
the position of the pixel is x = 100, y = 100 | #C | C |
#include<graphics.h>
int main()
{
initwindow(320,240,"Red Pixel");
putpixel(100,100,RED);
getch();
return 0;
}
|
http://rosettacode.org/wiki/Draw_a_pixel | Draw a pixel | Task
Create a window and draw a pixel in it, subject to the following:
the window is 320 x 240
the color of the pixel must be red (255,0,0)
the position of the pixel is x = 100, y = 100 | #Commodore_BASIC | Commodore BASIC | 10 COLOR 0,0,2,2: REM BLACK BACKGROUND AND BORDER, RED TEXT AND EXTRA COLOR
20 GRAPHIC 2:SCNCLR:REM SELECT HI-RES GRAPHICS AND CLEAR THE SCREEN
30 POINT 2,640,640:REM DRAW A POINT AT 640/1024*160,640/1024*160
40 GET K$:IF K$="" THEN 40: REM WAIT FOR KEYPRESS
50 GRAPHIC 0:REM BACK TO TEXT MODE |
http://rosettacode.org/wiki/Egyptian_division | Egyptian division | Egyptian division is a method of dividing integers using addition and
doubling that is similar to the algorithm of Ethiopian multiplication
Algorithm:
Given two numbers where the dividend is to be divided by the divisor:
Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column.
Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order.
Continue with successive i’th rows of 2^i and 2^i * divisor.
Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend.
We now assemble two separate sums that both start as zero, called here answer and accumulator
Consider each row of the table, in the reverse order of its construction.
If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer.
When the first row has been considered as above, then the integer division of dividend by divisor is given by answer.
(And the remainder is given by the absolute value of accumulator - dividend).
Example: 580 / 34
Table creation:
powers_of_2
doublings
1
34
2
68
4
136
8
272
16
544
Initialization of sums:
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
0
0
Considering table rows, bottom-up:
When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations.
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
16
544
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
16
544
4
136
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
17
578
2
68
4
136
8
272
16
544
Answer
So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2.
Task
The task is to create a function that does Egyptian division. The function should
closely follow the description above in using a list/array of powers of two, and
another of doublings.
Functions should be clear interpretations of the algorithm.
Use the function to divide 580 by 34 and show the answer here, on this page.
Related tasks
Egyptian fractions
References
Egyptian Number System
| #Groovy | Groovy | class EgyptianDivision {
/**
* Runs the method and divides 580 by 34
*
* @param args not used
*/
static void main(String[] args) {
divide(580, 34)
}
/**
* Divides <code>dividend</code> by <code>divisor</code> using the Egyptian Division-Algorithm and prints the
* result to the console
*
* @param dividend
* @param divisor
*/
static void divide(int dividend, int divisor) {
List<Integer> powersOf2 = new ArrayList<>()
List<Integer> doublings = new ArrayList<>()
//populate the powersof2- and doublings-columns
int line = 0
while ((Math.pow(2, line) * divisor) <= dividend) { //<- could also be done with a for-loop
int powerOf2 = (int) Math.pow(2, line)
powersOf2.add(powerOf2)
doublings.add(powerOf2 * divisor)
line++
}
int answer = 0
int accumulator = 0
//Consider the rows in reverse order of their construction (from back to front of the List<>s)
for (int i = powersOf2.size() - 1; i >= 0; i--) {
if (accumulator + doublings.get(i) <= dividend) {
accumulator += doublings.get(i)
answer += powersOf2.get(i)
}
}
println(String.format("%d, remainder %d", answer, dividend - accumulator))
}
} |
http://rosettacode.org/wiki/Egyptian_fractions | Egyptian fractions | An Egyptian fraction is the sum of distinct unit fractions such as:
1
2
+
1
3
+
1
16
(
=
43
48
)
{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{16}}\,(={\tfrac {43}{48}})}
Each fraction in the expression has a numerator equal to 1 (unity) and a denominator that is a positive integer, and all the denominators are distinct (i.e., no repetitions).
Fibonacci's Greedy algorithm for Egyptian fractions expands the fraction
x
y
{\displaystyle {\tfrac {x}{y}}}
to be represented by repeatedly performing the replacement
x
y
=
1
⌈
y
/
x
⌉
+
(
−
y
)
mod
x
y
⌈
y
/
x
⌉
{\displaystyle {\frac {x}{y}}={\frac {1}{\lceil y/x\rceil }}+{\frac {(-y)\!\!\!\!\mod x}{y\lceil y/x\rceil }}}
(simplifying the 2nd term in this replacement as necessary, and where
⌈
x
⌉
{\displaystyle \lceil x\rceil }
is the ceiling function).
For this task, Proper and improper fractions must be able to be expressed.
Proper fractions are of the form
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive integers, such that
a
<
b
{\displaystyle a<b}
, and
improper fractions are of the form
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive integers, such that a ≥ b.
(See the REXX programming example to view one method of expressing the whole number part of an improper fraction.)
For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [n].
Task requirements
show the Egyptian fractions for:
43
48
{\displaystyle {\tfrac {43}{48}}}
and
5
121
{\displaystyle {\tfrac {5}{121}}}
and
2014
59
{\displaystyle {\tfrac {2014}{59}}}
for all proper fractions,
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has:
the largest number of terms,
the largest denominator.
for all one-, two-, and three-digit integers, find and show (as above). {extra credit}
Also see
Wolfram MathWorld™ entry: Egyptian fraction
| #Java | Java | import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class EgyptianFractions {
private static BigInteger gcd(BigInteger a, BigInteger b) {
if (b.equals(BigInteger.ZERO)) {
return a;
}
return gcd(b, a.mod(b));
}
private static class Frac implements Comparable<Frac> {
private BigInteger num, denom;
public Frac(BigInteger n, BigInteger d) {
if (d.equals(BigInteger.ZERO)) {
throw new IllegalArgumentException("Parameter d may not be zero.");
}
BigInteger nn = n;
BigInteger dd = d;
if (nn.equals(BigInteger.ZERO)) {
dd = BigInteger.ONE;
} else if (dd.compareTo(BigInteger.ZERO) < 0) {
nn = nn.negate();
dd = dd.negate();
}
BigInteger g = gcd(nn, dd).abs();
if (g.compareTo(BigInteger.ZERO) > 0) {
nn = nn.divide(g);
dd = dd.divide(g);
}
num = nn;
denom = dd;
}
public Frac(int n, int d) {
this(BigInteger.valueOf(n), BigInteger.valueOf(d));
}
public Frac plus(Frac rhs) {
return new Frac(
num.multiply(rhs.denom).add(denom.multiply(rhs.num)),
rhs.denom.multiply(denom)
);
}
public Frac unaryMinus() {
return new Frac(num.negate(), denom);
}
public Frac minus(Frac rhs) {
return plus(rhs.unaryMinus());
}
@Override
public int compareTo(Frac rhs) {
BigDecimal diff = this.toBigDecimal().subtract(rhs.toBigDecimal());
if (diff.compareTo(BigDecimal.ZERO) < 0) {
return -1;
}
if (BigDecimal.ZERO.compareTo(diff) < 0) {
return 1;
}
return 0;
}
@Override
public boolean equals(Object obj) {
if (null == obj || !(obj instanceof Frac)) {
return false;
}
Frac rhs = (Frac) obj;
return compareTo(rhs) == 0;
}
@Override
public String toString() {
if (denom.equals(BigInteger.ONE)) {
return num.toString();
}
return String.format("%s/%s", num, denom);
}
public BigDecimal toBigDecimal() {
BigDecimal bdn = new BigDecimal(num);
BigDecimal bdd = new BigDecimal(denom);
return bdn.divide(bdd, MathContext.DECIMAL128);
}
public List<Frac> toEgyptian() {
if (num.equals(BigInteger.ZERO)) {
return Collections.singletonList(this);
}
List<Frac> fracs = new ArrayList<>();
if (num.abs().compareTo(denom.abs()) >= 0) {
Frac div = new Frac(num.divide(denom), BigInteger.ONE);
Frac rem = this.minus(div);
fracs.add(div);
toEgyptian(rem.num, rem.denom, fracs);
} else {
toEgyptian(num, denom, fracs);
}
return fracs;
}
public void toEgyptian(BigInteger n, BigInteger d, List<Frac> fracs) {
if (n.equals(BigInteger.ZERO)) {
return;
}
BigDecimal n2 = new BigDecimal(n);
BigDecimal d2 = new BigDecimal(d);
BigDecimal[] divRem = d2.divideAndRemainder(n2, MathContext.UNLIMITED);
BigInteger div = divRem[0].toBigInteger();
if (divRem[1].compareTo(BigDecimal.ZERO) > 0) {
div = div.add(BigInteger.ONE);
}
fracs.add(new Frac(BigInteger.ONE, div));
BigInteger n3 = d.negate().mod(n);
if (n3.compareTo(BigInteger.ZERO) < 0) {
n3 = n3.add(n);
}
BigInteger d3 = d.multiply(div);
Frac f = new Frac(n3, d3);
if (f.num.equals(BigInteger.ONE)) {
fracs.add(f);
return;
}
toEgyptian(f.num, f.denom, fracs);
}
}
public static void main(String[] args) {
List<Frac> fracs = List.of(
new Frac(43, 48),
new Frac(5, 121),
new Frac(2014, 59)
);
for (Frac frac : fracs) {
List<Frac> list = frac.toEgyptian();
Frac first = list.get(0);
if (first.denom.equals(BigInteger.ONE)) {
System.out.printf("%s -> [%s] + ", frac, first);
} else {
System.out.printf("%s -> %s", frac, first);
}
for (int i = 1; i < list.size(); ++i) {
System.out.printf(" + %s", list.get(i));
}
System.out.println();
}
for (Integer r : List.of(98, 998)) {
if (r == 98) {
System.out.println("\nFor proper fractions with 1 or 2 digits:");
} else {
System.out.println("\nFor proper fractions with 1, 2 or 3 digits:");
}
int maxSize = 0;
List<Frac> maxSizeFracs = new ArrayList<>();
BigInteger maxDen = BigInteger.ZERO;
List<Frac> maxDenFracs = new ArrayList<>();
boolean[][] sieve = new boolean[r + 1][];
for (int i = 0; i < r + 1; ++i) {
sieve[i] = new boolean[r + 2];
}
for (int i = 1; i < r; ++i) {
for (int j = i + 1; j < r + 1; ++j) {
if (sieve[i][j]) continue;
Frac f = new Frac(i, j);
List<Frac> list = f.toEgyptian();
int listSize = list.size();
if (listSize > maxSize) {
maxSize = listSize;
maxSizeFracs.clear();
maxSizeFracs.add(f);
} else if (listSize == maxSize) {
maxSizeFracs.add(f);
}
BigInteger listDen = list.get(list.size() - 1).denom;
if (listDen.compareTo(maxDen) > 0) {
maxDen = listDen;
maxDenFracs.clear();
maxDenFracs.add(f);
} else if (listDen.equals(maxDen)) {
maxDenFracs.add(f);
}
if (i < r / 2) {
int k = 2;
while (true) {
if (j * k > r + 1) break;
sieve[i * k][j * k] = true;
k++;
}
}
}
}
System.out.printf(" largest number of items = %s\n", maxSize);
System.out.printf("fraction(s) with this number : %s\n", maxSizeFracs);
String md = maxDen.toString();
System.out.printf(" largest denominator = %s digits, ", md.length());
System.out.printf("%s...%s\n", md.substring(0, 20), md.substring(md.length() - 20, md.length()));
System.out.printf("fraction(s) with this denominator : %s\n", maxDenFracs);
}
}
} |
http://rosettacode.org/wiki/Ethiopian_multiplication | Ethiopian multiplication | Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
Method:
Take two numbers to be multiplied and write them down at the top of two columns.
In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1.
In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1.
Examine the table produced and discard any row where the value in the left column is even.
Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together
For example: 17 × 34
17 34
Halving the first column:
17 34
8
4
2
1
Doubling the second column:
17 34
8 68
4 136
2 272
1 544
Strike-out rows whose first cell is even:
17 34
8 68
4 136
2 272
1 544
Sum the remaining numbers in the right-hand column:
17 34
8 --
4 ---
2 ---
1 544
====
578
So 17 multiplied by 34, by the Ethiopian method is 578.
Task
The task is to define three named functions/methods/procedures/subroutines:
one to halve an integer,
one to double an integer, and
one to state if an integer is even.
Use these functions to create a function that does Ethiopian multiplication.
References
Ethiopian multiplication explained (BBC Video clip)
A Night Of Numbers - Go Forth And Multiply (Video)
Russian Peasant Multiplication
Programming Praxis: Russian Peasant Multiplication
| #Scala | Scala |
def ethiopian(i:Int, j:Int):Int=
pairIterator(i,j).filter(x=> !isEven(x._1)).map(x=>x._2).foldLeft(0){(x,y)=>x+y}
def ethiopian2(i:Int, j:Int):Int=
pairIterator(i,j).map(x=>if(isEven(x._1)) 0 else x._2).foldLeft(0){(x,y)=>x+y}
def ethiopian3(i:Int, j:Int):Int=
{
var res=0;
for((h,d) <- pairIterator(i,j) if !isEven(h)) res+=d;
res
}
def ethiopian4(i: Int, j: Int): Int = if (i == 1) j else ethiopian(halve(i), double(j)) + (if (isEven(i)) 0 else j)
def isEven(x:Int)=(x&1)==0
def halve(x:Int)=x>>>1
def double(x:Int)=x<<1
// generates pairs of values (halve,double)
def pairIterator(x:Int, y:Int)=new Iterator[(Int, Int)]
{
var i=(x, y)
def hasNext=i._1>0
def next={val r=i; i=(halve(i._1), double(i._2)); r}
}
|
http://rosettacode.org/wiki/Elementary_cellular_automaton | Elementary cellular automaton | An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits.
The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101.
Task
Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice.
The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally.
This task is basically a generalization of one-dimensional cellular automata.
See also
Cellular automata (natureofcode.com)
| #Nim | Nim | import bitops
const
Size = 32
LastBit = Size - 1
Lines = Size div 2
Rule = 90
type State = int # State is represented as an int and will be used as a bit string.
#---------------------------------------------------------------------------------------------------
template bitVal(state: State; n: typed): int =
## Return the value of a bit as an int rather than a bool.
ord(state.testBit(n))
#---------------------------------------------------------------------------------------------------
proc ruleTest(x: int): bool =
## Return true if a bit must be set.
(Rule and 1 shl (7 and x)) != 0
#---------------------------------------------------------------------------------------------------
proc evolve(state: var State) =
## Compute next state.
var newState: State # All bits cleared by default.
if ruleTest(state.bitVal(0) shl 2 or state.bitVal(LastBit) shl 1 or state.bitVal(LastBit-1)):
newState.setBit(LastBit)
if ruleTest(state.bitVal(1) shl 2 or state.bitVal(0) shl 1 or state.bitVal(LastBit)):
newState.setBit(0)
for i in 1..<LastBit:
if ruleTest(state.bitVal(i + 1) shl 2 or state.bitVal(i) shl 1 or state.bitVal(i - 1)):
newState.setBit(i)
state = newState
#---------------------------------------------------------------------------------------------------
proc show(state: State) =
## Show the current state.
for i in countdown(LastBit, 0):
stdout.write if state.testbit(i): '*' else: ' '
echo ""
#———————————————————————————————————————————————————————————————————————————————————————————————————
var state: State
state.setBit(Lines)
echo "Rule ", Rule
for _ in 1..Lines:
show(state)
evolve(state) |
http://rosettacode.org/wiki/Elementary_cellular_automaton | Elementary cellular automaton | An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits.
The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101.
Task
Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice.
The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally.
This task is basically a generalization of one-dimensional cellular automata.
See also
Cellular automata (natureofcode.com)
| #Octave | Octave | clear all
E=200;
idx=round(E/2);
z(1:1:E^2)=0; % init lattice
z(idx)=1; % seed apex of triangle with a single cell
A=2; % Number of bits-1 rule30 uses 3 so A=2
for n=1:1:E^2/2-E-2; % n=lines
theta=0; % theta
for a=0:1:A;
theta=theta+2^a*z(n+A-a);
endfor
x=(asin(sin (pi/4*(theta-3/4))));
z(n+E+1)=round( (4*x+pi)/(2*pi) );
endfor
imagesc(reshape(z,E,E)'); % Medland map
|
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #VBScript | VBScript | Dim lookupTable(170), returnTable(170), currentPosition, input
currentPosition = 0
Do While True
input = InputBox("Please type a number (-1 to quit):")
MsgBox "The factorial of " & input & " is " & factorial(CDbl(input))
Loop
Function factorial (x)
If x = -1 Then
WScript.Quit 0
End If
Dim temp
temp = lookup(x)
If x <= 1 Then
factorial = 1
ElseIf temp <> 0 Then
factorial = temp
Else
temp = factorial(x - 1) * x
store x, temp
factorial = temp
End If
End Function
Function lookup (x)
Dim i
For i = 0 To currentPosition - 1
If lookupTable(i) = x Then
lookup = returnTable(i)
Exit Function
End If
Next
lookup = 0
End Function
Function store (x, y)
lookupTable(currentPosition) = x
returnTable(currentPosition) = y
currentPosition = currentPosition + 1
End Function |
http://rosettacode.org/wiki/Echo_server | Echo server | Create a network service that sits on TCP port 12321, which accepts connections on that port, and which echoes complete lines (using a carriage-return/line-feed sequence as line separator) back to clients. No error handling is required. For the purposes of testing, it is only necessary to support connections from localhost (127.0.0.1 or perhaps ::1). Logging of connection information to standard output is recommended.
The implementation must be able to handle simultaneous connections from multiple clients. A multi-threaded or multi-process solution may be used. Each connection must be able to echo more than a single line.
The implementation must not stop responding to other clients if one client sends a partial line or stops reading responses.
| #Nim | Nim | import asyncnet, asyncdispatch
proc processClient(client: AsyncSocket) {.async.} =
while true:
let line = await client.recvLine()
await client.send(line & "\c\L")
proc serve() {.async.} =
var server = newAsyncSocket()
server.bindAddr(Port(12321))
server.listen()
while true:
let client = await server.accept()
echo "Accepting connection from client", client.getLocalAddr[0]
discard processClient(client)
discard serve()
runForever() |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Wren | Wren | |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #X86_Assembly | X86 Assembly | section .text
global _start
_start:
mov eax, 1
int 0x80
ret |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #XPL0 | XPL0 | |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #XQuery | XQuery | . |
http://rosettacode.org/wiki/Eban_numbers | Eban numbers |
Definition
An eban number is a number that has no letter e in it when the number is spelled in English.
Or more literally, spelled numbers that contain the letter e are banned.
The American version of spelling numbers will be used here (as opposed to the British).
2,000,000,000 is two billion, not two milliard.
Only numbers less than one sextillion (1021) will be considered in/for this task.
This will allow optimizations to be used.
Task
show all eban numbers ≤ 1,000 (in a horizontal format), and a count
show all eban numbers between 1,000 and 4,000 (inclusive), and a count
show a count of all eban numbers up and including 10,000
show a count of all eban numbers up and including 100,000
show a count of all eban numbers up and including 1,000,000
show a count of all eban numbers up and including 10,000,000
show all output here.
See also
The MathWorld entry: eban numbers.
The OEIS entry: A6933, eban numbers.
| #Groovy | Groovy | class Main {
private static class Range {
int start
int end
boolean print
Range(int s, int e, boolean p) {
start = s
end = e
print = p
}
}
static void main(String[] args) {
List<Range> rgs = Arrays.asList(
new Range(2, 1000, true),
new Range(1000, 4000, true),
new Range(2, 10_000, false),
new Range(2, 100_000, false),
new Range(2, 1_000_000, false),
new Range(2, 10_000_000, false),
new Range(2, 100_000_000, false),
new Range(2, 1_000_000_000, false)
)
for (Range rg : rgs) {
if (rg.start == 2) {
println("eban numbers up to and including $rg.end")
} else {
println("eban numbers between $rg.start and $rg.end")
}
int count = 0
for (int i = rg.start; i <= rg.end; ++i) {
int b = (int) (i / 1_000_000_000)
int r = i % 1_000_000_000
int m = (int) (r / 1_000_000)
r = i % 1_000_000
int t = (int) (r / 1_000)
r %= 1_000
if (m >= 30 && m <= 66) m %= 10
if (t >= 30 && t <= 66) t %= 10
if (r >= 30 && r <= 66) r %= 10
if (b == 0 || b == 2 || b == 4 || b == 6) {
if (m == 0 || m == 2 || m == 4 || m == 6) {
if (t == 0 || t == 2 || t == 4 || t == 6) {
if (r == 0 || r == 2 || r == 4 || r == 6) {
if (rg.print) {
print("$i ")
}
count++
}
}
}
}
}
if (rg.print) {
println()
}
println("count = $count")
println()
}
}
} |
http://rosettacode.org/wiki/Draw_a_rotating_cube | Draw a rotating cube | Task
Draw a rotating cube.
It should be oriented with one vertex pointing straight up, and its opposite vertex on the main diagonal (the one farthest away) straight down. It can be solid or wire-frame, and you can use ASCII art if your language doesn't have graphical capabilities. Perspective is optional.
Related tasks
Draw a cuboid
write language name in 3D ASCII
| #BASIC256 | BASIC256 | global escala
global tam
global zoff
global cylr
escala = 50
tam = 320
zoff = 0.5773502691896257645091487805019574556
cylr = 1.6329931618554520654648560498039275946
clg
graphsize tam, tam
dim x(6)
theta = 0.0
dtheta = 1.5
dt = 1.0 / 30
dim cylphi = {PI/6, 5*PI/6, 3*PI/2, 11*PI/6, PI/2, 7*PI/6}
while key = ""
lasttime = msec
for i = 0 to 5
x[i] = tam/2 + escala *cylr * cos(cylphi[i] + theta)
next i
clg
call drawcube(x)
while msec < lasttime + dt
end while
theta += dtheta*(msec-lasttime)
pause .4
call drawcube(x)
end while
subroutine drawcube(x)
for i = 0 to 2
color rgb(0,0,0) #black
line tam/2, tam/2 - escala / zoff, x[i], tam/2 - escala * zoff
line tam/2, tam/2 + escala / zoff, x[5-i], tam/2 + escala * zoff
line x[i], tam/2 - escala * zoff, x[(i % 3) + 3], tam/2 + escala * zoff
line x[i], tam/2 - escala * zoff, x[((i+1)%3) + 3], tam/2 + escala * zoff
next i
end subroutine |
http://rosettacode.org/wiki/Element-wise_operations | Element-wise operations | This task is similar to:
Matrix multiplication
Matrix transposition
Task
Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks.
Implement:
addition
subtraction
multiplication
division
exponentiation
Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
| #J | J | scalar =: 10
vector =: 2 3 5
matrix =: 3 3 $ 7 11 13 17 19 23 29 31 37
scalar * scalar
100
scalar * vector
20 30 50
scalar * matrix
70 110 130
170 190 230
290 310 370
vector * vector
4 9 25
vector * matrix
14 22 26
51 57 69
145 155 185
matrix * matrix
49 121 169
289 361 529
841 961 1369 |
http://rosettacode.org/wiki/Dutch_national_flag_problem | Dutch national flag problem |
The Dutch national flag is composed of three coloured bands in the order:
red (top)
then white, and
lastly blue (at the bottom).
The problem posed by Edsger Dijkstra is:
Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag.
When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ...
Task
Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag.
Sort the balls in a way idiomatic to your language.
Check the sorted balls are in the order of the Dutch national flag.
C.f.
Dutch national flag problem
Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
| #ABAP | ABAP |
report z_dutch_national_flag_problem.
interface sorting_problem.
methods:
generate_unsorted_sequence
importing
lenght_of_sequence type int4
returning
value(unsorted_sequence) type string,
sort_sequence
changing
sequence_to_be_sorted type string,
is_sorted
importing
sequence_to_check type string
returning
value(sorted) type abap_bool.
endinterface.
class dutch_national_flag_problem definition.
public section.
interfaces:
sorting_problem.
constants:
begin of dutch_flag_colors,
red type char1 value 'R',
white type char1 value 'W',
blue type char1 value 'B',
end of dutch_flag_colors.
endclass.
class dutch_national_flag_problem implementation.
method sorting_problem~generate_unsorted_sequence.
data(random_int_generator) = cl_abap_random_int=>create(
seed = cl_abap_random=>seed( )
min = 0
max = 2 ).
do lenght_of_sequence - 1 times.
data(random_int) = random_int_generator->get_next( ).
data(next_color) = cond char1(
when random_int eq 0 then dutch_flag_colors-red
when random_int eq 1 then dutch_flag_colors-white
when random_int eq 2 then dutch_flag_colors-blue ).
unsorted_sequence = |{ unsorted_sequence }{ next_color }|.
enddo.
if strlen( unsorted_sequence ) > 0.
random_int = random_int_generator->get_next( ).
next_color = cond char1(
when random_int eq 0 or random_int eq 2 then dutch_flag_colors-red
when random_int eq 1 then dutch_flag_colors-white ).
unsorted_sequence = |{ unsorted_sequence }{ next_color }|.
endif.
endmethod.
method sorting_problem~sort_sequence.
data(low_index) = 0.
data(middle_index) = 0.
data(high_index) = strlen( sequence_to_be_sorted ) - 1.
while middle_index <= high_index.
data(current_color) = sequence_to_be_sorted+middle_index(1).
if current_color eq dutch_flag_colors-red.
data(buffer) = sequence_to_be_sorted+low_index(1).
sequence_to_be_sorted = replace(
val = sequence_to_be_sorted
off = middle_index
len = 1
with = buffer ).
sequence_to_be_sorted = replace(
val = sequence_to_be_sorted
off = low_index
len = 1
with = current_color ).
low_index = low_index + 1.
middle_index = middle_index + 1.
elseif current_color eq dutch_flag_colors-blue.
buffer = sequence_to_be_sorted+high_index(1).
sequence_to_be_sorted = replace(
val = sequence_to_be_sorted
off = middle_index
len = 1
with = buffer ).
sequence_to_be_sorted = replace(
val = sequence_to_be_sorted
off = high_index
len = 1
with = current_color ).
high_index = high_index - 1.
else.
middle_index = middle_index + 1.
endif.
endwhile.
endmethod.
method sorting_problem~is_sorted.
sorted = abap_true.
do strlen( sequence_to_check ) - 1 times.
data(current_character_index) = sy-index - 1.
data(current_color) = sequence_to_check+current_character_index(1).
data(next_color) = sequence_to_check+sy-index(1).
sorted = cond abap_bool(
when ( current_color eq dutch_flag_colors-red and
( next_color eq current_color or
next_color eq dutch_flag_colors-white or
next_color eq dutch_flag_colors-blue ) )
or
( current_color eq dutch_flag_colors-white and
( next_color eq current_color or
next_color eq dutch_flag_colors-blue ) )
or
( current_color eq dutch_flag_colors-blue and
current_color eq next_color )
then sorted
else abap_false ).
check sorted eq abap_false.
return.
enddo.
endmethod.
endclass.
start-of-selection.
data dutch_national_flag_problem type ref to sorting_problem.
dutch_national_flag_problem = new dutch_national_flag_problem( ).
data(sequence) = dutch_national_flag_problem->generate_unsorted_sequence( 20 ).
write:|{ sequence }, is sorted? -> { dutch_national_flag_problem->is_sorted( sequence ) }|, /.
dutch_national_flag_problem->sort_sequence( changing sequence_to_be_sorted = sequence ).
write:|{ sequence }, is sorted? -> { dutch_national_flag_problem->is_sorted( sequence ) }|, /.
|
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #Groovy | Groovy | def varname = 'foo'
def value = 42
new GroovyShell(this.binding).evaluate("${varname} = ${value}")
assert foo == 42 |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #Haskell | Haskell | data Var a = Var String a deriving Show
main = do
putStrLn "please enter you variable name"
vName <- getLine
let var = Var vName 42
putStrLn $ "this is your variable: " ++ show var |
http://rosettacode.org/wiki/Draw_a_pixel | Draw a pixel | Task
Create a window and draw a pixel in it, subject to the following:
the window is 320 x 240
the color of the pixel must be red (255,0,0)
the position of the pixel is x = 100, y = 100 | #Delphi | Delphi |
program Draw_a_pixel;
{$APPTYPE CONSOLE}
{$R *.res}
uses
Windows,
Messages,
SysUtils;
var
Msg: TMSG;
LWndClass: TWndClass;
hMainHandle: HWND;
procedure Paint(Handle: hWnd); forward;
procedure ReleaseResources;
begin
PostQuitMessage(0);
end;
function WindowProc(hWnd, Msg: Longint; wParam: wParam; lParam: lParam): Longint; stdcall;
begin
case Msg of
WM_PAINT:
Paint(hWnd);
WM_DESTROY:
ReleaseResources;
end;
Result := DefWindowProc(hWnd, Msg, wParam, lParam);
end;
procedure CreateWin(W, H: Integer);
begin
LWndClass.hInstance := hInstance;
with LWndClass do
begin
lpszClassName := 'OneRedPixel';
Style := CS_PARENTDC or CS_BYTEALIGNCLIENT;
hIcon := LoadIcon(hInstance, 'MAINICON');
lpfnWndProc := @WindowProc;
hbrBackground := COLOR_BTNFACE + 1;
hCursor := LoadCursor(0, IDC_ARROW);
end;
RegisterClass(LWndClass);
hMainHandle := CreateWindow(LWndClass.lpszClassName,
'Draw a red pixel on (100,100)', WS_CAPTION or WS_MINIMIZEBOX or WS_SYSMENU
or WS_VISIBLE, ((GetSystemMetrics(SM_CXSCREEN) - W) div 2), ((GetSystemMetrics
(SM_CYSCREEN) - H) div 2), W, H, 0, 0, hInstance, nil);
end;
procedure ShowModal;
begin
while GetMessage(Msg, 0, 0, 0) do
begin
TranslateMessage(Msg);
DispatchMessage(Msg);
end;
end;
procedure Paint(Handle: hWnd);
var
ps: PAINTSTRUCT;
Dc: HDC;
begin
Dc := BeginPaint(Handle, ps);
// Fill bg with white
FillRect(Dc, ps.rcPaint, CreateSolidBrush($FFFFFF));
// Do the magic
SetPixel(Dc, 100, 100, $FF);
EndPaint(Handle, ps);
end;
begin
CreateWin(320, 240);
ShowModal();
end.
|
http://rosettacode.org/wiki/Egyptian_division | Egyptian division | Egyptian division is a method of dividing integers using addition and
doubling that is similar to the algorithm of Ethiopian multiplication
Algorithm:
Given two numbers where the dividend is to be divided by the divisor:
Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column.
Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order.
Continue with successive i’th rows of 2^i and 2^i * divisor.
Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend.
We now assemble two separate sums that both start as zero, called here answer and accumulator
Consider each row of the table, in the reverse order of its construction.
If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer.
When the first row has been considered as above, then the integer division of dividend by divisor is given by answer.
(And the remainder is given by the absolute value of accumulator - dividend).
Example: 580 / 34
Table creation:
powers_of_2
doublings
1
34
2
68
4
136
8
272
16
544
Initialization of sums:
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
0
0
Considering table rows, bottom-up:
When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations.
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
16
544
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
16
544
4
136
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
17
578
2
68
4
136
8
272
16
544
Answer
So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2.
Task
The task is to create a function that does Egyptian division. The function should
closely follow the description above in using a list/array of powers of two, and
another of doublings.
Functions should be clear interpretations of the algorithm.
Use the function to divide 580 by 34 and show the answer here, on this page.
Related tasks
Egyptian fractions
References
Egyptian Number System
| #Haskell | Haskell | import Data.List (unfoldr)
egyptianQuotRem :: Integer -> Integer -> (Integer, Integer)
egyptianQuotRem m n =
let expansion (i, x)
| x > m = Nothing
| otherwise = Just ((i, x), (i + i, x + x))
collapse (i, x) (q, r)
| x < r = (q + i, r - x)
| otherwise = (q, r)
in foldr collapse (0, m) $ unfoldr expansion (1, n)
main :: IO ()
main = print $ egyptianQuotRem 580 34 |
http://rosettacode.org/wiki/Egyptian_fractions | Egyptian fractions | An Egyptian fraction is the sum of distinct unit fractions such as:
1
2
+
1
3
+
1
16
(
=
43
48
)
{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{16}}\,(={\tfrac {43}{48}})}
Each fraction in the expression has a numerator equal to 1 (unity) and a denominator that is a positive integer, and all the denominators are distinct (i.e., no repetitions).
Fibonacci's Greedy algorithm for Egyptian fractions expands the fraction
x
y
{\displaystyle {\tfrac {x}{y}}}
to be represented by repeatedly performing the replacement
x
y
=
1
⌈
y
/
x
⌉
+
(
−
y
)
mod
x
y
⌈
y
/
x
⌉
{\displaystyle {\frac {x}{y}}={\frac {1}{\lceil y/x\rceil }}+{\frac {(-y)\!\!\!\!\mod x}{y\lceil y/x\rceil }}}
(simplifying the 2nd term in this replacement as necessary, and where
⌈
x
⌉
{\displaystyle \lceil x\rceil }
is the ceiling function).
For this task, Proper and improper fractions must be able to be expressed.
Proper fractions are of the form
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive integers, such that
a
<
b
{\displaystyle a<b}
, and
improper fractions are of the form
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive integers, such that a ≥ b.
(See the REXX programming example to view one method of expressing the whole number part of an improper fraction.)
For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [n].
Task requirements
show the Egyptian fractions for:
43
48
{\displaystyle {\tfrac {43}{48}}}
and
5
121
{\displaystyle {\tfrac {5}{121}}}
and
2014
59
{\displaystyle {\tfrac {2014}{59}}}
for all proper fractions,
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has:
the largest number of terms,
the largest denominator.
for all one-, two-, and three-digit integers, find and show (as above). {extra credit}
Also see
Wolfram MathWorld™ entry: Egyptian fraction
| #Julia | Julia | struct EgyptianFraction{T<:Integer} <: Real
int::T
frac::NTuple{N,Rational{T}} where N
end
Base.show(io::IO, ef::EgyptianFraction) = println(io, "[", ef.int, "] ", join(ef.frac, " + "))
Base.length(ef::EgyptianFraction) = !iszero(ef.int) + length(ef.frac)
function Base.convert(::Type{EgyptianFraction{T}}, fr::Rational) where T
fr, int::T = modf(fr)
fractions = Vector{Rational{T}}(0)
x::T, y::T = numerator(fr), denominator(fr)
iszero(x) && return EgyptianFraction{T}(int, (x // y,))
while x != one(x)
push!(fractions, one(T) // cld(y, x))
x, y = mod1(-y, x), y * cld(y, x)
d = gcd(x, y)
x ÷= d
y ÷= d
end
push!(fractions, x // y)
return EgyptianFraction{T}(int, tuple(fractions...))
end
Base.convert(::Type{EgyptianFraction}, fr::Rational{T}) where T = convert(EgyptianFraction{T}, fr)
Base.convert(::Type{EgyptianFraction{T}}, fr::EgyptianFraction) where T = EgyptianFraction{T}(convert(T, fr.int), convert.(Rational{T}, fr.frac))
Base.convert(::Type{Rational{T}}, fr::EgyptianFraction) where T = T(fr.int) + sum(convert.(Rational{T}, fr.frac))
Base.convert(::Type{Rational}, fr::EgyptianFraction{T}) where T = convert(Rational{T}, fr)
@show EgyptianFraction(43 // 48)
@show EgyptianFraction{BigInt}(5 // 121)
@show EgyptianFraction(2014 // 59)
function task(fractions::AbstractVector)
fracs = convert(Vector{EgyptianFraction{BigInt}}, fractions)
local frlenmax::EgyptianFraction{BigInt}
local lenmax = 0
local frdenmax::EgyptianFraction{BigInt}
local denmax = 0
for f in fracs
if length(f) ≥ lenmax
lenmax = length(f)
frlenmax = f
end
if denominator(last(f.frac)) ≥ denmax
denmax = denominator(last(f.frac))
frdenmax = f
end
end
return frlenmax, lenmax, frdenmax, denmax
end
fr = collect((x // y) for x in 1:100 for y in 1:100 if x != y) |> unique
frlenmax, lenmax, frdenmax, denmax = task(fr)
println("Longest fraction, with length $lenmax: \n", Rational(frlenmax), "\n = ", frlenmax)
println("Fraction with greatest denominator\n(that is $denmax):\n", Rational(frdenmax), "\n = ", frdenmax)
println("\n# For 1 digit-integers:")
fr = collect((x // y) for x in 1:10 for y in 1:10 if x != y) |> unique
frlenmax, lenmax, frdenmax, denmax = task(fr)
println("Longest fraction, with length $lenmax: \n", Rational(frlenmax), "\n = ", frlenmax)
println("Fraction with greatest denominator\n(that is $denmax):\n", Rational(frdenmax), "\n = ", frdenmax)
println("# For 3 digit-integers:")
fr = collect((x // y) for x in 1:1000 for y in 1:1000 if x != y) |> unique
frlenmax, lenmax, frdenmax, denmax = task(fr)
println("Longest fraction, with length $lenmax: \n", Rational(frlenmax), "\n = ", frlenmax)
println("Fraction with greatest denominator\n(that is $denmax):\n", Rational(frdenmax), "\n = ", frdenmax) |
http://rosettacode.org/wiki/Ethiopian_multiplication | Ethiopian multiplication | Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
Method:
Take two numbers to be multiplied and write them down at the top of two columns.
In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1.
In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1.
Examine the table produced and discard any row where the value in the left column is even.
Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together
For example: 17 × 34
17 34
Halving the first column:
17 34
8
4
2
1
Doubling the second column:
17 34
8 68
4 136
2 272
1 544
Strike-out rows whose first cell is even:
17 34
8 68
4 136
2 272
1 544
Sum the remaining numbers in the right-hand column:
17 34
8 --
4 ---
2 ---
1 544
====
578
So 17 multiplied by 34, by the Ethiopian method is 578.
Task
The task is to define three named functions/methods/procedures/subroutines:
one to halve an integer,
one to double an integer, and
one to state if an integer is even.
Use these functions to create a function that does Ethiopian multiplication.
References
Ethiopian multiplication explained (BBC Video clip)
A Night Of Numbers - Go Forth And Multiply (Video)
Russian Peasant Multiplication
Programming Praxis: Russian Peasant Multiplication
| #Scheme | Scheme | (define (halve num)
(quotient num 2))
(define (double num)
(* num 2))
(define (*mul-eth plier plicand acc)
(cond ((zero? plier) acc)
((even? plier) (*mul-eth (halve plier) (double plicand) acc))
(else (*mul-eth (halve plier) (double plicand) (+ acc plicand)))))
(define (mul-eth plier plicand)
(*mul-eth plier plicand 0))
(display (mul-eth 17 34))
(newline) |
http://rosettacode.org/wiki/Elementary_cellular_automaton | Elementary cellular automaton | An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits.
The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101.
Task
Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice.
The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally.
This task is basically a generalization of one-dimensional cellular automata.
See also
Cellular automata (natureofcode.com)
| #Perl | Perl | use strict;
use warnings;
package Automaton {
sub new {
my $class = shift;
my $rule = [ reverse split //, sprintf "%08b", shift ];
return bless { rule => $rule, cells => [ @_ ] }, $class;
}
sub next {
my $this = shift;
my @previous = @{$this->{cells}};
$this->{cells} = [
@{$this->{rule}}[
map {
4*$previous[($_ - 1) % @previous]
+ 2*$previous[$_]
+ $previous[($_ + 1) % @previous]
} 0 .. @previous - 1
]
];
return $this;
}
use overload
q{""} => sub {
my $this = shift;
join '', map { $_ ? '#' : ' ' } @{$this->{cells}}
};
}
my @a = map 0, 1 .. 91; $a[45] = 1;
my $a = Automaton->new(90, @a);
for (1..40) {
print "|$a|\n"; $a->next;
} |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #Verbexx | Verbexx | // ----------------
// recursive method (requires INTV_T input parm)
// ----------------
fact_r @FN [n]
{
@CASE
when:(n < 0iv) {-1iv }
when:(n == 0iv) { 1iv }
else: { n * (@fact_r n-1iv) }
};
// ----------------
// iterative method (requires INTV_T input parm)
// ----------------
fact_i @FN [n]
{
@CASE
when:(n < 0iv) {-1iv }
when:(n == 0iv) { 1iv }
else: {
@VAR i fact = 1iv 1iv;
@LOOP while:(i <= n) { fact *= i++ };
}
};
// ------------------
// Display factorials
// ------------------
@VAR i = -1iv;
@LOOP times:15
{
@SAY «recursive » i «! = » (@fact_r i) between:"";
@SAY «iterative » i «! = » (@fact_i i) between:"";
i = 5iv * i / 4iv + 1iv;
};
/]=========================================================================================
Output:
recursive -1! = -1
iterative -1! = -1
recursive 0! = 1
iterative 0! = 1
recursive 1! = 1
iterative 1! = 1
recursive 2! = 2
iterative 2! = 2
recursive 3! = 6
iterative 3! = 6
recursive 4! = 24
iterative 4! = 24
recursive 6! = 720
iterative 6! = 720
recursive 8! = 40320
iterative 8! = 40320
recursive 11! = 39916800
iterative 11! = 39916800
recursive 14! = 87178291200
iterative 14! = 87178291200
recursive 18! = 6402373705728000
iterative 18! = 6402373705728000
recursive 23! = 25852016738884976640000
iterative 23! = 25852016738884976640000
recursive 29! = 8841761993739701954543616000000
iterative 29! = 8841761993739701954543616000000
recursive 37! = 13763753091226345046315979581580902400000000
iterative 37! = 13763753091226345046315979581580902400000000
recursive 47! = 258623241511168180642964355153611979969197632389120000000000
iterative 47! = 258623241511168180642964355153611979969197632389120000000000 |
http://rosettacode.org/wiki/Echo_server | Echo server | Create a network service that sits on TCP port 12321, which accepts connections on that port, and which echoes complete lines (using a carriage-return/line-feed sequence as line separator) back to clients. No error handling is required. For the purposes of testing, it is only necessary to support connections from localhost (127.0.0.1 or perhaps ::1). Logging of connection information to standard output is recommended.
The implementation must be able to handle simultaneous connections from multiple clients. A multi-threaded or multi-process solution may be used. Each connection must be able to echo more than a single line.
The implementation must not stop responding to other clients if one client sends a partial line or stops reading responses.
| #Objeck | Objeck |
use Net;
use Concurrency;
bundle Default {
class SocketServer {
id : static : Int;
function : Main(args : String[]) ~ Nil {
server := TCPSocketServer->New(12321);
if(server->Listen(5)) {
while(true) {
client := server->Accept();
service := Service->New(id->ToString());
service->Execute(client);
id += 1;
};
};
server->Close();
}
}
class Service from Thread {
New(name : String) {
Parent(name);
}
method : public : Run(param : Base) ~ Nil {
client := param->As(TCPSocket);
line := client->ReadString();
while(line->Size() > 0) {
line->PrintLine();
line := client->ReadString();
};
}
}
}
|
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #XSLT | XSLT | <?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<!-- code goes here -->
</xsl:stylesheet> |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #xTalk | xTalk | on startup
end startup
|
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #XUL | XUL |
<?xml version="1.0"?>
|
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Yabasic | Yabasic | |
http://rosettacode.org/wiki/Eban_numbers | Eban numbers |
Definition
An eban number is a number that has no letter e in it when the number is spelled in English.
Or more literally, spelled numbers that contain the letter e are banned.
The American version of spelling numbers will be used here (as opposed to the British).
2,000,000,000 is two billion, not two milliard.
Only numbers less than one sextillion (1021) will be considered in/for this task.
This will allow optimizations to be used.
Task
show all eban numbers ≤ 1,000 (in a horizontal format), and a count
show all eban numbers between 1,000 and 4,000 (inclusive), and a count
show a count of all eban numbers up and including 10,000
show a count of all eban numbers up and including 100,000
show a count of all eban numbers up and including 1,000,000
show a count of all eban numbers up and including 10,000,000
show all output here.
See also
The MathWorld entry: eban numbers.
The OEIS entry: A6933, eban numbers.
| #Haskell | Haskell | {-# LANGUAGE NumericUnderscores #-}
import Data.List (intercalate)
import Text.Printf (printf)
import Data.List.Split (chunksOf)
isEban :: Int -> Bool
isEban n = all (`elem` [0, 2, 4, 6]) z
where
(b, r1) = n `quotRem` (10 ^ 9)
(m, r2) = r1 `quotRem` (10 ^ 6)
(t, r3) = r2 `quotRem` (10 ^ 3)
z = b : map (\x -> if x >= 30 && x <= 66 then x `mod` 10 else x) [m, t, r3]
ebans = map f
where
f x = (thousands x, thousands $ length $ filter isEban [1..x])
thousands:: Int -> String
thousands = reverse . intercalate "," . chunksOf 3 . reverse . show
main :: IO ()
main = do
uncurry (printf "eban numbers up to and including 1000: %2s\n%s\n\n") $ r [1..1000]
uncurry (printf "eban numbers between 1000 and 4000: %2s\n%s\n\n") $ r [1000..4000]
mapM_ (uncurry (printf "eban numbers up and including %13s: %5s\n")) ebanCounts
where
ebanCounts = ebans [ 10_000
, 100_000
, 1_000_000
, 10_000_000
, 100_000_000
, 1_000_000_000 ]
r = ((,) <$> thousands . length <*> show) . filter isEban |
http://rosettacode.org/wiki/Draw_a_rotating_cube | Draw a rotating cube | Task
Draw a rotating cube.
It should be oriented with one vertex pointing straight up, and its opposite vertex on the main diagonal (the one farthest away) straight down. It can be solid or wire-frame, and you can use ASCII art if your language doesn't have graphical capabilities. Perspective is optional.
Related tasks
Draw a cuboid
write language name in 3D ASCII
| #C | C |
#include<gl/freeglut.h>
double rot = 0;
float matCol[] = {1,0,0,0};
void display(){
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glRotatef(30,1,1,0);
glRotatef(rot,0,1,1);
glMaterialfv(GL_FRONT,GL_DIFFUSE,matCol);
glutWireCube(1);
glPopMatrix();
glFlush();
}
void onIdle(){
rot += 0.1;
glutPostRedisplay();
}
void reshape(int w,int h){
float ar = (float) w / (float) h ;
glViewport(0,0,(GLsizei)w,(GLsizei)h);
glTranslatef(0,0,-10);
glMatrixMode(GL_PROJECTION);
gluPerspective(70,(GLfloat)w/(GLfloat)h,1,12);
glLoadIdentity();
glFrustum ( -1.0, 1.0, -1.0, 1.0, 10.0, 100.0 ) ;
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
void init(){
float pos[] = {1,1,1,0};
float white[] = {1,1,1,0};
float shini[] = {70};
glClearColor(.5,.5,.5,0);
glShadeModel(GL_SMOOTH);
glLightfv(GL_LIGHT0,GL_AMBIENT,white);
glLightfv(GL_LIGHT0,GL_DIFFUSE,white);
glMaterialfv(GL_FRONT,GL_SHININESS,shini);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);
}
int main(int argC, char* argV[])
{
glutInit(&argC,argV);
glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);
glutInitWindowSize(600,500);
glutCreateWindow("Rossetta's Rotating Cube");
init();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutIdleFunc(onIdle);
glutMainLoop();
return 0;
}
|
http://rosettacode.org/wiki/Element-wise_operations | Element-wise operations | This task is similar to:
Matrix multiplication
Matrix transposition
Task
Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks.
Implement:
addition
subtraction
multiplication
division
exponentiation
Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
| #Java | Java |
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.function.BiFunction;
import java.util.stream.Stream;
@SuppressWarnings("serial")
public class ElementWiseOp {
static final Map<String, BiFunction<Double, Double, Double>> OPERATIONS = new HashMap<String, BiFunction<Double, Double, Double>>() {
{
put("add", (a, b) -> a + b);
put("sub", (a, b) -> a - b);
put("mul", (a, b) -> a * b);
put("div", (a, b) -> a / b);
put("pow", (a, b) -> Math.pow(a, b));
put("mod", (a, b) -> a % b);
}
};
public static Double[][] scalarOp(String op, Double[][] matr, Double scalar) {
BiFunction<Double, Double, Double> operation = OPERATIONS.getOrDefault(op, (a, b) -> a);
Double[][] result = new Double[matr.length][matr[0].length];
for (int i = 0; i < matr.length; i++) {
for (int j = 0; j < matr[i].length; j++) {
result[i][j] = operation.apply(matr[i][j], scalar);
}
}
return result;
}
public static Double[][] matrOp(String op, Double[][] matr, Double[][] scalar) {
BiFunction<Double, Double, Double> operation = OPERATIONS.getOrDefault(op, (a, b) -> a);
Double[][] result = new Double[matr.length][Stream.of(matr).mapToInt(a -> a.length).max().getAsInt()];
for (int i = 0; i < matr.length; i++) {
for (int j = 0; j < matr[i].length; j++) {
result[i][j] = operation.apply(matr[i][j], scalar[i % scalar.length][j
% scalar[i % scalar.length].length]);
}
}
return result;
}
public static void printMatrix(Double[][] matr) {
Stream.of(matr).map(Arrays::toString).forEach(System.out::println);
}
public static void main(String[] args) {
printMatrix(scalarOp("mul", new Double[][] {
{ 1.0, 2.0, 3.0 },
{ 4.0, 5.0, 6.0 },
{ 7.0, 8.0, 9.0 }
}, 3.0));
printMatrix(matrOp("div", new Double[][] {
{ 1.0, 2.0, 3.0 },
{ 4.0, 5.0, 6.0 },
{ 7.0, 8.0, 9.0 }
}, new Double[][] {
{ 1.0, 2.0},
{ 3.0, 4.0}
}));
}
}
|
http://rosettacode.org/wiki/Dutch_national_flag_problem | Dutch national flag problem |
The Dutch national flag is composed of three coloured bands in the order:
red (top)
then white, and
lastly blue (at the bottom).
The problem posed by Edsger Dijkstra is:
Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag.
When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ...
Task
Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag.
Sort the balls in a way idiomatic to your language.
Check the sorted balls are in the order of the Dutch national flag.
C.f.
Dutch national flag problem
Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
| #Action.21 | Action! | INCLUDE "D2:SORT.ACT" ;from the Action! Tool Kit
PROC PrintArray(BYTE ARRAY a BYTE len)
CHAR ARRAY colors(3)=['R 'W 'B]
BYTE i,index
FOR i=0 TO len-1
DO
index=a(i)
Put(colors(index))
OD
RETURN
BYTE FUNC IsSorted(BYTE ARRAY a BYTE len)
BYTE i
IF len<=1 THEN
RETURN (1)
FI
FOR i=0 TO len-2
DO
IF a(i)>a(i+1) THEN
RETURN (0)
FI
OD
RETURN (1)
PROC Randomize(BYTE ARRAY a BYTE len)
BYTE i
FOR i=0 TO len-1
DO
a(i)=Rand(3)
OD
RETURN
PROC Main()
DEFINE SIZE="30"
BYTE ARRAY a(SIZE)
Put(125) PutE() ;clear the screen
DO
Randomize(a,SIZE)
UNTIL IsSorted(a,SIZE)=0
OD
PrintE("Unsorted:") PrintArray(a,SIZE)
PutE() PutE()
SortB(a,SIZE,0)
PrintE("Sorted:") PrintArray(a,SIZE)
PutE() PutE()
IF IsSorted(a,SIZE) THEN
PrintE("Sorting is valid")
ELSE
PrintE("Sorting is invalid!")
FI
RETURN |
http://rosettacode.org/wiki/Dutch_national_flag_problem | Dutch national flag problem |
The Dutch national flag is composed of three coloured bands in the order:
red (top)
then white, and
lastly blue (at the bottom).
The problem posed by Edsger Dijkstra is:
Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag.
When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ...
Task
Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag.
Sort the balls in a way idiomatic to your language.
Check the sorted balls are in the order of the Dutch national flag.
C.f.
Dutch national flag problem
Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
| #Ada | Ada | with Ada.Text_IO, Ada.Numerics.Discrete_Random, Ada.Command_Line;
procedure Dutch_National_Flag is
type Colour_Type is (Red, White, Blue);
Number: Positive range 2 .. Positive'Last :=
Positive'Value(Ada.Command_Line.Argument(1));
-- no sorting if the Number of balls is less than 2
type Balls is array(1 .. Number) of Colour_Type;
function Is_Sorted(B: Balls) return Boolean is
-- checks if balls are in order
begin
for I in Balls'First .. Balls'Last-1 loop
if B(I) > B(I+1) then
return False;
end if;
end loop;
return True;
end Is_Sorted;
function Random_Balls return Balls is
-- generates an array of random balls, ensuring they are not in order
package Random_Colour is new Ada.Numerics.Discrete_Random(Colour_Type);
Gen: Random_Colour.Generator;
B: Balls;
begin
Random_Colour.Reset(Gen);
loop
for I in Balls'Range loop
B(I) := Random_Colour.Random(Gen);
end loop;
exit when (not Is_Sorted(B));
-- ... ensuring they are not in order
end loop;
return B;
end Random_Balls;
procedure Print(Message: String; B: Balls) is
begin
Ada.Text_IO.Put(Message);
for I in B'Range loop
Ada.Text_IO.Put(Colour_Type'Image(B(I)));
if I < B'Last then
Ada.Text_IO.Put(", ");
else
Ada.Text_IO.New_Line;
end if;
end loop;
end Print;
procedure Sort(Bls: in out Balls) is
-- sort Bls in O(1) time
Cnt: array(Colour_Type) of Natural := (Red => 0, White => 0, Blue => 0);
Col: Colour_Type;
procedure Move_Colour_To_Top(Bls: in out Balls;
Colour: Colour_Type;
Start: Positive;
Count: Natural) is
This: Positive := Start;
Tmp: Colour_Type;
begin
for N in Start .. Start+Count-1 loop
while Bls(This) /= Colour loop
This := This + 1;
end loop; -- This is the first index >= N with B(This) = Colour
Tmp := Bls(N); Bls(N) := Bls(This); Bls(This) := Tmp; -- swap
This := This + 1;
end loop;
end Move_Colour_To_Top;
begin
for Ball in Balls'Range loop
-- count how often each colour is found
Col := Bls(Ball);
Cnt(Col) := Cnt(Col) + 1;
end loop;
Move_Colour_To_Top(Bls, Red, Start => 1, Count => Cnt(Red));
Move_Colour_To_Top(Bls, White, Start => 1+Cnt(Red), Count => Cnt(White));
-- all the remaining balls are blue
end Sort;
A: Balls := Random_Balls;
begin
Print("Original Order: ", A);
pragma Assert(not Is_Sorted(A)); -- Check if A is unsorted
Sort(A); -- A = ((Red**Cnt(Red)= & (White**Cnt(White)) & (Blue**Cnt(Blue)))
pragma Assert(Is_Sorted(A)); -- Check if A is actually sorted
Print("After Sorting: ", A);
end Dutch_National_Flag; |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #J | J | require 'misc'
(prompt 'Enter variable name: ')=: 0 |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #Java | Java | public static void main(String... args){
HashMap<String, Integer> vars = new HashMap<String, Integer>();
//The variable name is stored as the String. The var type of the variable can be
//changed by changing the second data type mentiones. However, it must be an object
//or a wrapper class.
vars.put("Variable name", 3); //declaration of variables
vars.put("Next variable name", 5);
Scanner sc = new Scanner(System.in);
String str = sc.next();
vars.put(str, sc.nextInt()); //accpeting name and value from user
System.out.println(vars.get("Variable name")); //printing of values
System.out.println(vars.get(str));
}
|
http://rosettacode.org/wiki/Draw_a_pixel | Draw a pixel | Task
Create a window and draw a pixel in it, subject to the following:
the window is 320 x 240
the color of the pixel must be red (255,0,0)
the position of the pixel is x = 100, y = 100 | #F.23 | F# | open System.Windows.Forms
open System.Drawing
let f = new Form()
f.Size <- new Size(320,240)
f.Paint.Add(fun e -> e.Graphics.FillRectangle(Brushes.Red, 100, 100 ,1,1))
Application.Run(f) |
http://rosettacode.org/wiki/Draw_a_pixel | Draw a pixel | Task
Create a window and draw a pixel in it, subject to the following:
the window is 320 x 240
the color of the pixel must be red (255,0,0)
the position of the pixel is x = 100, y = 100 | #Factor | Factor | USING: accessors arrays images images.testing images.viewer
kernel literals math sequences ;
IN: rosetta-code.draw-pixel
: draw-pixel ( -- )
B{ 255 0 0 } 100 100 <rgb-image> 320 240 [ 2array >>dim ]
[ * ] 2bi [ { 0 0 0 } ] replicate B{ } concat-as >>bitmap
[ set-pixel-at ] keep image-window ;
MAIN: draw-pixel |
http://rosettacode.org/wiki/Egyptian_division | Egyptian division | Egyptian division is a method of dividing integers using addition and
doubling that is similar to the algorithm of Ethiopian multiplication
Algorithm:
Given two numbers where the dividend is to be divided by the divisor:
Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column.
Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order.
Continue with successive i’th rows of 2^i and 2^i * divisor.
Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend.
We now assemble two separate sums that both start as zero, called here answer and accumulator
Consider each row of the table, in the reverse order of its construction.
If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer.
When the first row has been considered as above, then the integer division of dividend by divisor is given by answer.
(And the remainder is given by the absolute value of accumulator - dividend).
Example: 580 / 34
Table creation:
powers_of_2
doublings
1
34
2
68
4
136
8
272
16
544
Initialization of sums:
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
0
0
Considering table rows, bottom-up:
When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations.
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
16
544
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
16
544
4
136
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
17
578
2
68
4
136
8
272
16
544
Answer
So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2.
Task
The task is to create a function that does Egyptian division. The function should
closely follow the description above in using a list/array of powers of two, and
another of doublings.
Functions should be clear interpretations of the algorithm.
Use the function to divide 580 by 34 and show the answer here, on this page.
Related tasks
Egyptian fractions
References
Egyptian Number System
| #J | J | doublings=:_1 }. (+:@]^:(> {:)^:a: (,~ 1:))
ansacc=: 1 }. (] + [ * {.@[ >: {:@:+)/@([,.doublings)
egydiv=: (0,[)+1 _1*ansacc |
http://rosettacode.org/wiki/Egyptian_division | Egyptian division | Egyptian division is a method of dividing integers using addition and
doubling that is similar to the algorithm of Ethiopian multiplication
Algorithm:
Given two numbers where the dividend is to be divided by the divisor:
Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column.
Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order.
Continue with successive i’th rows of 2^i and 2^i * divisor.
Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend.
We now assemble two separate sums that both start as zero, called here answer and accumulator
Consider each row of the table, in the reverse order of its construction.
If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer.
When the first row has been considered as above, then the integer division of dividend by divisor is given by answer.
(And the remainder is given by the absolute value of accumulator - dividend).
Example: 580 / 34
Table creation:
powers_of_2
doublings
1
34
2
68
4
136
8
272
16
544
Initialization of sums:
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
0
0
Considering table rows, bottom-up:
When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations.
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
8
272
16
544
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
4
136
16
544
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
2
68
16
544
4
136
8
272
16
544
powers_of_2
doublings
answer
accumulator
1
34
17
578
2
68
4
136
8
272
16
544
Answer
So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2.
Task
The task is to create a function that does Egyptian division. The function should
closely follow the description above in using a list/array of powers of two, and
another of doublings.
Functions should be clear interpretations of the algorithm.
Use the function to divide 580 by 34 and show the answer here, on this page.
Related tasks
Egyptian fractions
References
Egyptian Number System
| #Java | Java |
import java.util.ArrayList;
import java.util.List;
public class EgyptianDivision {
/**
* Runs the method and divides 580 by 34
*
* @param args not used
*/
public static void main(String[] args) {
divide(580, 34);
}
/**
* Divides <code>dividend</code> by <code>divisor</code> using the Egyptian Division-Algorithm and prints the
* result to the console
*
* @param dividend
* @param divisor
*/
public static void divide(int dividend, int divisor) {
List<Integer> powersOf2 = new ArrayList<>();
List<Integer> doublings = new ArrayList<>();
//populate the powersof2- and doublings-columns
int line = 0;
while ((Math.pow(2, line) * divisor) <= dividend) { //<- could also be done with a for-loop
int powerOf2 = (int) Math.pow(2, line);
powersOf2.add(powerOf2);
doublings.add(powerOf2 * divisor);
line++;
}
int answer = 0;
int accumulator = 0;
//Consider the rows in reverse order of their construction (from back to front of the List<>s)
for (int i = powersOf2.size() - 1; i >= 0; i--) {
if (accumulator + doublings.get(i) <= dividend) {
accumulator += doublings.get(i);
answer += powersOf2.get(i);
}
}
System.out.println(String.format("%d, remainder %d", answer, dividend - accumulator));
}
}
|
http://rosettacode.org/wiki/Egyptian_fractions | Egyptian fractions | An Egyptian fraction is the sum of distinct unit fractions such as:
1
2
+
1
3
+
1
16
(
=
43
48
)
{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{16}}\,(={\tfrac {43}{48}})}
Each fraction in the expression has a numerator equal to 1 (unity) and a denominator that is a positive integer, and all the denominators are distinct (i.e., no repetitions).
Fibonacci's Greedy algorithm for Egyptian fractions expands the fraction
x
y
{\displaystyle {\tfrac {x}{y}}}
to be represented by repeatedly performing the replacement
x
y
=
1
⌈
y
/
x
⌉
+
(
−
y
)
mod
x
y
⌈
y
/
x
⌉
{\displaystyle {\frac {x}{y}}={\frac {1}{\lceil y/x\rceil }}+{\frac {(-y)\!\!\!\!\mod x}{y\lceil y/x\rceil }}}
(simplifying the 2nd term in this replacement as necessary, and where
⌈
x
⌉
{\displaystyle \lceil x\rceil }
is the ceiling function).
For this task, Proper and improper fractions must be able to be expressed.
Proper fractions are of the form
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive integers, such that
a
<
b
{\displaystyle a<b}
, and
improper fractions are of the form
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive integers, such that a ≥ b.
(See the REXX programming example to view one method of expressing the whole number part of an improper fraction.)
For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [n].
Task requirements
show the Egyptian fractions for:
43
48
{\displaystyle {\tfrac {43}{48}}}
and
5
121
{\displaystyle {\tfrac {5}{121}}}
and
2014
59
{\displaystyle {\tfrac {2014}{59}}}
for all proper fractions,
a
b
{\displaystyle {\tfrac {a}{b}}}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has:
the largest number of terms,
the largest denominator.
for all one-, two-, and three-digit integers, find and show (as above). {extra credit}
Also see
Wolfram MathWorld™ entry: Egyptian fraction
| #Kotlin | Kotlin | // version 1.2.10
import java.math.BigInteger
import java.math.BigDecimal
import java.math.MathContext
val bigZero = BigInteger.ZERO
val bigOne = BigInteger.ONE
val bdZero = BigDecimal.ZERO
val context = MathContext.UNLIMITED
fun gcd(a: BigInteger, b: BigInteger): BigInteger
= if (b == bigZero) a else gcd(b, a % b)
class Frac : Comparable<Frac> {
val num: BigInteger
val denom: BigInteger
constructor(n: BigInteger, d: BigInteger) {
require(d != bigZero)
var nn = n
var dd = d
if (nn == bigZero) {
dd = bigOne
}
else if (dd < bigZero) {
nn = -nn
dd = -dd
}
val g = gcd(nn, dd).abs()
if (g > bigOne) {
nn /= g
dd /= g
}
num = nn
denom = dd
}
constructor(n: Int, d: Int) : this(n.toBigInteger(), d.toBigInteger())
operator fun plus(other: Frac) =
Frac(num * other.denom + denom * other.num, other.denom * denom)
operator fun unaryMinus() = Frac(-num, denom)
operator fun minus(other: Frac) = this + (-other)
override fun compareTo(other: Frac): Int {
val diff = this.toBigDecimal() - other.toBigDecimal()
return when {
diff < bdZero -> -1
diff > bdZero -> +1
else -> 0
}
}
override fun equals(other: Any?): Boolean {
if (other == null || other !is Frac) return false
return this.compareTo(other) == 0
}
override fun toString() = if (denom == bigOne) "$num" else "$num/$denom"
fun toBigDecimal() = num.toBigDecimal() / denom.toBigDecimal()
fun toEgyptian(): List<Frac> {
if (num == bigZero) return listOf(this)
val fracs = mutableListOf<Frac>()
if (num.abs() >= denom.abs()) {
val div = Frac(num / denom, bigOne)
val rem = this - div
fracs.add(div)
toEgyptian(rem.num, rem.denom, fracs)
}
else {
toEgyptian(num, denom, fracs)
}
return fracs
}
private tailrec fun toEgyptian(
n: BigInteger,
d: BigInteger,
fracs: MutableList<Frac>
) {
if (n == bigZero) return
val n2 = n.toBigDecimal()
val d2 = d.toBigDecimal()
var divRem = d2.divideAndRemainder(n2, context)
var div = divRem[0].toBigInteger()
if (divRem[1] > bdZero) div++
fracs.add(Frac(bigOne, div))
var n3 = (-d) % n
if (n3 < bigZero) n3 += n
val d3 = d * div
val f = Frac(n3, d3)
if (f.num == bigOne) {
fracs.add(f)
return
}
toEgyptian(f.num, f.denom, fracs)
}
}
fun main(args: Array<String>) {
val fracs = listOf(Frac(43, 48), Frac(5, 121), Frac(2014,59))
for (frac in fracs) {
val list = frac.toEgyptian()
if (list[0].denom == bigOne) {
val first = "[${list[0]}]"
println("$frac -> $first + ${list.drop(1).joinToString(" + ")}")
}
else {
println("$frac -> ${list.joinToString(" + ")}")
}
}
for (r in listOf(98, 998)) {
if (r == 98)
println("\nFor proper fractions with 1 or 2 digits:")
else
println("\nFor proper fractions with 1, 2 or 3 digits:")
var maxSize = 0
var maxSizeFracs = mutableListOf<Frac>()
var maxDen = bigZero
var maxDenFracs = mutableListOf<Frac>()
val sieve = List(r + 1) { BooleanArray(r + 2) } // to eliminate duplicates
for (i in 1..r) {
for (j in (i + 1)..(r + 1)) {
if (sieve[i][j]) continue
val f = Frac(i, j)
val list = f.toEgyptian()
val listSize = list.size
if (listSize > maxSize) {
maxSize = listSize
maxSizeFracs.clear()
maxSizeFracs.add(f)
}
else if (listSize == maxSize) {
maxSizeFracs.add(f)
}
val listDen = list[list.lastIndex].denom
if (listDen > maxDen) {
maxDen = listDen
maxDenFracs.clear()
maxDenFracs.add(f)
}
else if (listDen == maxDen) {
maxDenFracs.add(f)
}
if (i < r / 2) {
var k = 2
while (true) {
if (j * k > r + 1) break
sieve[i * k][j * k] = true
k++
}
}
}
}
println(" largest number of items = $maxSize")
println(" fraction(s) with this number : $maxSizeFracs")
val md = maxDen.toString()
print(" largest denominator = ${md.length} digits, ")
println("${md.take(20)}...${md.takeLast(20)}")
println(" fraction(s) with this denominator : $maxDenFracs")
}
} |
http://rosettacode.org/wiki/Ethiopian_multiplication | Ethiopian multiplication | Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
Method:
Take two numbers to be multiplied and write them down at the top of two columns.
In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1.
In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1.
Examine the table produced and discard any row where the value in the left column is even.
Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together
For example: 17 × 34
17 34
Halving the first column:
17 34
8
4
2
1
Doubling the second column:
17 34
8 68
4 136
2 272
1 544
Strike-out rows whose first cell is even:
17 34
8 68
4 136
2 272
1 544
Sum the remaining numbers in the right-hand column:
17 34
8 --
4 ---
2 ---
1 544
====
578
So 17 multiplied by 34, by the Ethiopian method is 578.
Task
The task is to define three named functions/methods/procedures/subroutines:
one to halve an integer,
one to double an integer, and
one to state if an integer is even.
Use these functions to create a function that does Ethiopian multiplication.
References
Ethiopian multiplication explained (BBC Video clip)
A Night Of Numbers - Go Forth And Multiply (Video)
Russian Peasant Multiplication
Programming Praxis: Russian Peasant Multiplication
| #Seed7 | Seed7 | const proc: double (inout integer: a) is func
begin
a *:= 2;
end func;
const proc: halve (inout integer: a) is func
begin
a := a div 2;
end func;
const func boolean: even (in integer: a) is
return not odd(a);
const func integer: peasantMult (in var integer: a, in var integer: b) is func
result
var integer: result is 0;
begin
while a <> 0 do
if not even(a) then
result +:= b;
end if;
halve(a);
double(b);
end while;
end func; |
http://rosettacode.org/wiki/Elementary_cellular_automaton | Elementary cellular automaton | An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits.
The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101.
Task
Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice.
The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally.
This task is basically a generalization of one-dimensional cellular automata.
See also
Cellular automata (natureofcode.com)
| #Phix | Phix | with javascript_semantics
string s = ".........#.........",
t = s, r = "........"
integer rule = 90, k, l = length(s)
for i=1 to 8 do
r[i] = iff(mod(rule,2)?'#':'.')
rule = floor(rule/2)
end for
for i=0 to 50 do
?s
for j=1 to l do
k = (s[iff(j=1?l:j-1)]='#')*4
+ (s[ j ]='#')*2
+ (s[iff(j=l?1:j+1)]='#')+1
t[j] = r[k]
end for
s = t
end for
|
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #Verilog | Verilog | module main;
function automatic [7:0] factorial;
input [7:0] i_Num;
begin
if (i_Num == 1)
factorial = 1;
else
factorial = i_Num * factorial(i_Num-1);
end
endfunction
initial
begin
$display("Factorial of 1 = %d", factorial(1));
$display("Factorial of 2 = %d", factorial(2));
$display("Factorial of 3 = %d", factorial(3));
$display("Factorial of 4 = %d", factorial(4));
$display("Factorial of 5 = %d", factorial(5));
end
endmodule |
http://rosettacode.org/wiki/Echo_server | Echo server | Create a network service that sits on TCP port 12321, which accepts connections on that port, and which echoes complete lines (using a carriage-return/line-feed sequence as line separator) back to clients. No error handling is required. For the purposes of testing, it is only necessary to support connections from localhost (127.0.0.1 or perhaps ::1). Logging of connection information to standard output is recommended.
The implementation must be able to handle simultaneous connections from multiple clients. A multi-threaded or multi-process solution may be used. Each connection must be able to echo more than a single line.
The implementation must not stop responding to other clients if one client sends a partial line or stops reading responses.
| #Ol | Ol |
(define (timestamp) (syscall 201 "%c"))
(define (on-accept name fd)
(lambda ()
(print "# " (timestamp) "> we got new visitor: " name)
(let*((ss1 ms1 (clock)))
(let loop ((str #null) (stream (force (port->bytestream fd))))
(cond
((null? stream)
#false)
((function? stream)
(let ((message (list->string (reverse str))))
(print "# " (timestamp) "> client " name " wrote " message)
(print-to fd message))
(loop #null (force stream)))
(else
(loop (cons (car stream) str) (cdr stream)))))
(syscall 3 fd)
(let*((ss2 ms2 (clock)))
(print "# " (timestamp) "> visitor leave us. It takes " (+ (* (- ss2 ss1) 1000) (- ms2 ms1)) "ms.")))))
(define (run port)
(let ((socket (syscall 41)))
; bind
(let loop ((port port))
(if (not (syscall 49 socket port)) ; bind
(loop (+ port 2))
(print "Server binded to " port)))
; listen
(if (not (syscall 50 socket)) ; listen
(shutdown (print "Can't listen")))
; accept
(let loop ()
(if (syscall 23 socket) ; select
(let ((fd (syscall 43 socket))) ; accept
(fork (on-accept (syscall 51 fd) fd))))
(sleep 0)
(loop))))
(run 12321)
|
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Yorick | Yorick | |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Z80_Assembly | Z80 Assembly | ret |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #Zig | Zig | pub fn main() void {} |
http://rosettacode.org/wiki/Empty_program | Empty program | Task
Create the simplest possible program that is still considered "correct."
| #zkl | zkl | |
http://rosettacode.org/wiki/Eban_numbers | Eban numbers |
Definition
An eban number is a number that has no letter e in it when the number is spelled in English.
Or more literally, spelled numbers that contain the letter e are banned.
The American version of spelling numbers will be used here (as opposed to the British).
2,000,000,000 is two billion, not two milliard.
Only numbers less than one sextillion (1021) will be considered in/for this task.
This will allow optimizations to be used.
Task
show all eban numbers ≤ 1,000 (in a horizontal format), and a count
show all eban numbers between 1,000 and 4,000 (inclusive), and a count
show a count of all eban numbers up and including 10,000
show a count of all eban numbers up and including 100,000
show a count of all eban numbers up and including 1,000,000
show a count of all eban numbers up and including 10,000,000
show all output here.
See also
The MathWorld entry: eban numbers.
The OEIS entry: A6933, eban numbers.
| #J | J |
Filter =: (#~`)(`:6)
itemAmend =: (29&< *. <&67)`(,: 10&|)}
iseban =: [: *./ 0 2 4 6 e.~ [: itemAmend [: |: (4#1000)&#:
(;~ #) iseban Filter >: i. 1000
┌──┬─────────────────────────────────────────────────────┐
│19│2 4 6 30 32 34 36 40 42 44 46 50 52 54 56 60 62 64 66│
└──┴─────────────────────────────────────────────────────┘
NB. INPUT are the correct integers, head and tail shown
({. , {:) INPUT =: 1000 + i. 3001
1000 4000
(;~ #) iseban Filter INPUT
┌──┬────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│21│2000 2002 2004 2006 2030 2032 2034 2036 2040 2042 2044 2046 2050 2052 2054 2056 2060 2062 2064 2066 4000│
└──┴────────────────────────────────────────────────────────────────────────────────────────────────────────┘
(, ([: +/ [: iseban [: >: i.))&> 10000 * 10 ^ i. +:2
10000 79
100000 399
1e6 399
1e7 1599
|
http://rosettacode.org/wiki/Draw_a_rotating_cube | Draw a rotating cube | Task
Draw a rotating cube.
It should be oriented with one vertex pointing straight up, and its opposite vertex on the main diagonal (the one farthest away) straight down. It can be solid or wire-frame, and you can use ASCII art if your language doesn't have graphical capabilities. Perspective is optional.
Related tasks
Draw a cuboid
write language name in 3D ASCII
| #C.23 | C# | using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;
using System.Windows.Threading;
namespace RotatingCube
{
public partial class Form1 : Form
{
double[][] nodes = {
new double[] {-1, -1, -1}, new double[] {-1, -1, 1}, new double[] {-1, 1, -1},
new double[] {-1, 1, 1}, new double[] {1, -1, -1}, new double[] {1, -1, 1},
new double[] {1, 1, -1}, new double[] {1, 1, 1} };
int[][] edges = {
new int[] {0, 1}, new int[] {1, 3}, new int[] {3, 2}, new int[] {2, 0}, new int[] {4, 5},
new int[] {5, 7}, new int[] {7, 6}, new int[] {6, 4}, new int[] {0, 4}, new int[] {1, 5},
new int[] {2, 6}, new int[] {3, 7}};
public Form1()
{
Width = Height = 640;
StartPosition = FormStartPosition.CenterScreen;
SetStyle(
ControlStyles.AllPaintingInWmPaint |
ControlStyles.UserPaint |
ControlStyles.DoubleBuffer,
true);
Scale(100, 100, 100);
RotateCuboid(Math.PI / 4, Math.Atan(Math.Sqrt(2)));
var timer = new DispatcherTimer();
timer.Tick += (s, e) => { RotateCuboid(Math.PI / 180, 0); Refresh(); };
timer.Interval = new TimeSpan(0, 0, 0, 0, 17);
timer.Start();
}
private void RotateCuboid(double angleX, double angleY)
{
double sinX = Math.Sin(angleX);
double cosX = Math.Cos(angleX);
double sinY = Math.Sin(angleY);
double cosY = Math.Cos(angleY);
foreach (var node in nodes)
{
double x = node[0];
double y = node[1];
double z = node[2];
node[0] = x * cosX - z * sinX;
node[2] = z * cosX + x * sinX;
z = node[2];
node[1] = y * cosY - z * sinY;
node[2] = z * cosY + y * sinY;
}
}
private void Scale(int v1, int v2, int v3)
{
foreach (var item in nodes)
{
item[0] *= v1;
item[1] *= v2;
item[2] *= v3;
}
}
protected override void OnPaint(PaintEventArgs args)
{
var g = args.Graphics;
g.SmoothingMode = SmoothingMode.HighQuality;
g.Clear(Color.White);
g.TranslateTransform(Width / 2, Height / 2);
foreach (var edge in edges)
{
double[] xy1 = nodes[edge[0]];
double[] xy2 = nodes[edge[1]];
g.DrawLine(Pens.Black, (int)Math.Round(xy1[0]), (int)Math.Round(xy1[1]),
(int)Math.Round(xy2[0]), (int)Math.Round(xy2[1]));
}
foreach (var node in nodes)
{
g.FillEllipse(Brushes.Black, (int)Math.Round(node[0]) - 4,
(int)Math.Round(node[1]) - 4, 8, 8);
}
}
}
} |
http://rosettacode.org/wiki/Element-wise_operations | Element-wise operations | This task is similar to:
Matrix multiplication
Matrix transposition
Task
Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks.
Implement:
addition
subtraction
multiplication
division
exponentiation
Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
| #jq | jq | # Occurrences of .[0] in "operator" will refer to an element in self,
# and occurrences of .[1] will refer to the corresponding element in other.
def elementwise( operator; other ):
length as $rows
| if $rows == 0 then .
else . as $self
| other as $other
| ($self[0]|length) as $cols
| reduce range(0; $rows) as $i
([]; reduce range(0; $cols) as $j
(.; .[$i][$j] = ([$self[$i][$j], $other[$i][$j]] | operator) ) )
end ; |
http://rosettacode.org/wiki/Dutch_national_flag_problem | Dutch national flag problem |
The Dutch national flag is composed of three coloured bands in the order:
red (top)
then white, and
lastly blue (at the bottom).
The problem posed by Edsger Dijkstra is:
Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag.
When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ...
Task
Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag.
Sort the balls in a way idiomatic to your language.
Check the sorted balls are in the order of the Dutch national flag.
C.f.
Dutch national flag problem
Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
| #ALGOL_68 | ALGOL 68 | BEGIN # Dutch national flag problem: sort a set of randomly arranged red, white and blue balls into order #
# ball sets are represented by STRING items, red by "R", white by "W" and blue by "B" #
# returns the balls sorted into red, white and blue order #
PROC sort balls = ( STRING balls )STRING:
BEGIN
[ 1 : ( UPB balls + 1 ) - LWB balls ]CHAR result, white, blue;
INT r pos := 0, w pos := 0, b pos := 0;
# copy the red balls into the result and split the white and blue #
# into separate lists #
FOR pos FROM LWB balls TO UPB balls DO
CHAR b = balls[ pos ];
IF b = "R" THEN
# red ball - add to the result #
result[ r pos +:= 1 ] := b
ELIF b = "W" THEN
# white ball #
white[ w pos +:= 1 ] := b
ELSE
# must be blue #
blue[ b pos +:= 1 ] := b
FI
OD;
# add the white balls to the list #
IF w pos > 0 THEN
# there were some white balls - add them to the result #
result[ r pos + 1 : r pos + w pos ] := white[ 1 : w pos ];
r pos +:= w pos
FI;
# add the blue balls to the list #
IF b pos > 0 THEN
# there were some blue balls - add them to the end of the result #
result[ r pos + 1 : r pos + b pos ] := blue[ 1 : b pos ];
r pos +:= b pos
FI;
result[ 1 : r pos ]
END # sort balls # ;
# returns TRUE if balls is sorted, FALSE otherwise #
PROC sorted balls = ( STRING balls )BOOL:
BEGIN
BOOL result := TRUE;
FOR i FROM LWB balls + 1 TO UPB balls
WHILE result := ( CHAR prev = balls[ i - 1 ];
CHAR curr = balls[ i ];
prev = curr
OR ( prev = "R" AND curr = "W" )
OR ( prev = "R" AND curr = "B" )
OR ( prev = "W" AND curr = "B" )
)
DO SKIP OD;
result
END # sorted balls # ;
# constructs an unsorted random string of n balls #
PROC random balls = ( INT n )STRING:
BEGIN
STRING result := n * "?";
WHILE FOR i TO n DO
result[ i ] := IF INT r = ENTIER( next random * 3 ) + 1;
r = 1
THEN "R"
ELIF r = 2
THEN "W"
ELSE "B"
FI
OD;
sorted balls( result )
DO SKIP OD;
result
END # random balls # ;
# tests #
FOR i FROM 11 BY 3 TO 17 DO
STRING balls;
balls := random balls( i );
print( ( "before: ", balls, IF sorted balls( balls ) THEN " initially sorted??" ELSE "" FI, newline ) );
balls := sort balls( balls );
print( ( "after: ", balls, IF sorted balls( balls ) THEN "" ELSE " NOT" FI, " sorted", newline ) )
OD
END |
http://rosettacode.org/wiki/Draw_a_cuboid | Draw a cuboid | Task
Draw a cuboid with relative dimensions of 2 × 3 × 4.
The cuboid can be represented graphically, or in ASCII art, depending on the language capabilities.
To fulfill the criteria of being a cuboid, three faces must be visible.
Either static or rotational projection is acceptable for this task.
Related tasks
draw a sphere
draw a rotating cube
write language name in 3D ASCII
draw a Deathstar
| #11l | 11l | F cline(n, x, y, cde)
print(String(cde[0]).rjust(n + 1)‘’
(cde[1] * (9 * x - 1))‘’
cde[0]‘’
(I cde.len > 2 {String(cde[2]).rjust(y + 1)} E ‘’))
F cuboid(x, y, z)
cline(y + 1, x, 0, ‘+-’)
L(i) 1 .. y
cline(y - i + 1, x, i - 1, ‘/ |’)
cline(0, x, y, ‘+-|’)
L 0 .. 4 * z - y - 3
cline(0, x, y, ‘| |’)
cline(0, x, y, ‘| +’)
L(i) (y - 1 .. 0).step(-1)
cline(0, x, i, ‘| /’)
cline(0, x, 0, "+-\n")
cuboid(2, 3, 4)
cuboid(1, 1, 1)
cuboid(6, 2, 1) |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #JavaScript | JavaScript | var varname = 'foo'; // pretend a user input that
var value = 42;
eval('var ' + varname + '=' + value); |
http://rosettacode.org/wiki/Dynamic_variable_names | Dynamic variable names | Task
Create a variable with a user-defined name.
The variable name should not be written in the program text, but should be taken from the user dynamically.
See also
Eval in environment is a similar task.
| #jq | jq | "Enter a variable name:",
(input as $var
| ("Enter a value:" ,
(input as $value | { ($var) : $value }))) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.