task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Draw_a_rotating_cube
Draw a rotating cube
Task Draw a rotating cube. It should be oriented with one vertex pointing straight up, and its opposite vertex on the main diagonal (the one farthest away) straight down. It can be solid or wire-frame, and you can use ASCII art if your language doesn't have graphical capabilities. Perspective is optional. Related tasks Draw a cuboid write language name in 3D ASCII
#Go
Go
package main   import ( "image" "image/color" "image/gif" "log" "math" "os" )   const ( width, height = 640, 640 offset = height / 2 fileName = "rotatingCube.gif" )   var nodes = [][]float64{{-100, -100, -100}, {-100, -100, 100}, {-100, 100, -100}, {-100, 100, 100}, {100, -100, -100}, {100, -100, 100}, {100, 100, -100}, {100, 100, 100}} var edges = [][]int{{0, 1}, {1, 3}, {3, 2}, {2, 0}, {4, 5}, {5, 7}, {7, 6}, {6, 4}, {0, 4}, {1, 5}, {2, 6}, {3, 7}}   func main() { var images []*image.Paletted fgCol := color.RGBA{0xff, 0x00, 0xff, 0xff} var palette = []color.Color{color.RGBA{0x00, 0x00, 0x00, 0xff}, fgCol} var delays []int   imgFile, err := os.Create(fileName) if err != nil { log.Fatal(err) } defer imgFile.Close()   rotateCube(math.Pi/4, math.Atan(math.Sqrt(2))) var frame float64 for frame = 0; frame < 360; frame++ { img := image.NewPaletted(image.Rect(0, 0, width, height), palette) images = append(images, img) delays = append(delays, 5) for _, edge := range edges { xy1 := nodes[edge[0]] xy2 := nodes[edge[1]] drawLine(int(xy1[0])+offset, int(xy1[1])+offset, int(xy2[0])+offset, int(xy2[1])+offset, img, fgCol) } rotateCube(math.Pi/180, 0) } if err := gif.EncodeAll(imgFile, &gif.GIF{Image: images, Delay: delays}); err != nil { imgFile.Close() log.Fatal(err) }   }   func rotateCube(angleX, angleY float64) { sinX := math.Sin(angleX) cosX := math.Cos(angleX) sinY := math.Sin(angleY) cosY := math.Cos(angleY) for _, node := range nodes { x := node[0] y := node[1] z := node[2] node[0] = x*cosX - z*sinX node[2] = z*cosX + x*sinX z = node[2] node[1] = y*cosY - z*sinY node[2] = z*cosY + y*sinY } }   func drawLine(x0, y0, x1, y1 int, img *image.Paletted, col color.RGBA) { dx := abs(x1 - x0) dy := abs(y1 - y0) var sx, sy int = -1, -1 if x0 < x1 { sx = 1 } if y0 < y1 { sy = 1 } err := dx - dy for { img.Set(x0, y0, col) if x0 == x1 && y0 == y1 { break } e2 := 2 * err if e2 > -dy { err -= dy x0 += sx } if e2 < dx { err += dx y0 += sy } } }   func abs(x int) int { if x < 0 { return -x } return x }
http://rosettacode.org/wiki/Element-wise_operations
Element-wise operations
This task is similar to:   Matrix multiplication   Matrix transposition Task Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks. Implement:   addition   subtraction   multiplication   division   exponentiation Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
#MATLAB
MATLAB
a = rand; b = rand(10,10); scalar_matrix = a * b; component_wise = b .* b;
http://rosettacode.org/wiki/Draw_a_sphere
Draw a sphere
Task Draw a sphere. The sphere can be represented graphically, or in ASCII art, depending on the language capabilities. Either static or rotational projection is acceptable for this task. Related tasks draw a cuboid draw a rotating cube write language name in 3D ASCII draw a Deathstar
#Arendelle
Arendelle
[ #j , [ #i , { ( #x - 19 ) ^ 2 + ( #y - 14 ) ^ 2 < 125 , p } r ] [ #i , l ] d ]
http://rosettacode.org/wiki/Doubly-linked_list/Element_insertion
Doubly-linked list/Element insertion
Doubly-Linked List (element) This is much like inserting into a Singly-Linked List, but with added assignments so that the backwards-pointing links remain correct. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#C.2B.2B
C++
template <typename T> void insert_after(Node<T>* N, T&& data) { auto node = new Node<T>{N, N->next, std::forward(data)}; if(N->next != nullptr) N->next->prev = node; N->next = node; }
http://rosettacode.org/wiki/Doubly-linked_list/Element_insertion
Doubly-linked list/Element insertion
Doubly-Linked List (element) This is much like inserting into a Singly-Linked List, but with added assignments so that the backwards-pointing links remain correct. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Clojure
Clojure
(defrecord Node [prev next data])   (defn new-node [prev next data] (Node. (ref prev) (ref next) data))   (defn new-list [head tail] (List. (ref head) (ref tail)))   (defn insert-between [node1 node2 new-node] (dosync (ref-set (:next node1) new-node) (ref-set (:prev new-node) node1) (ref-set (:next new-node) node2) (ref-set (:prev node2) new-node)))   (set! *print-level* 1)   ;; warning: depending on the value of *print-level* ;; this could cause a stack overflow when printing   (let [h (new-node nil nil :A) t (new-node nil nil :B)] (insert-between h t (new-node nil nil :C)) (new-list h t))
http://rosettacode.org/wiki/Doubly-linked_list/Traversal
Doubly-linked list/Traversal
Traverse from the beginning of a doubly-linked list to the end, and from the end to the beginning. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#AutoHotkey
AutoHotkey
LINK(L₁,1)→A LINK(L₁+10,2)→B LINK(L₁+50,3)→C   INSERT(A,B) INSERT(A,C)   A→I While I≠0 Disp VALUE(I)▶Dec,i NEXT(I)→I End   Disp "-----",i   B→I While I≠0 Disp VALUE(I)▶Dec,i PREV(I)→I End
http://rosettacode.org/wiki/Doubly-linked_list/Traversal
Doubly-linked list/Traversal
Traverse from the beginning of a doubly-linked list to the end, and from the end to the beginning. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Axe
Axe
LINK(L₁,1)→A LINK(L₁+10,2)→B LINK(L₁+50,3)→C   INSERT(A,B) INSERT(A,C)   A→I While I≠0 Disp VALUE(I)▶Dec,i NEXT(I)→I End   Disp "-----",i   B→I While I≠0 Disp VALUE(I)▶Dec,i PREV(I)→I End
http://rosettacode.org/wiki/Doubly-linked_list/Traversal
Doubly-linked list/Traversal
Traverse from the beginning of a doubly-linked list to the end, and from the end to the beginning. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#BBC_BASIC
BBC BASIC
DIM node{pPrev%, pNext%, iData%} DIM a{} = node{}, b{} = node{}, c{} = node{}   a.pNext% = b{} a.iData% = 123 b.pPrev% = a{} b.iData% = 789 c.iData% = 456   PROCinsert(a{}, c{})   PRINT "Traverse forwards:" pnode% = a{} REPEAT  !(^node{}+4) = pnode% PRINT node.iData% pnode% = node.pNext% UNTIL pnode% = 0   PRINT "Traverse backwards:" pnode% = b{} REPEAT  !(^node{}+4) = pnode% PRINT node.iData% pnode% = node.pPrev% UNTIL pnode% = 0   END   DEF PROCinsert(here{}, new{}) LOCAL temp{} : DIM temp{} = node{} new.pNext% = here.pNext% new.pPrev% = here{}  !(^temp{}+4) = new.pNext% temp.pPrev% = new{} here.pNext% = new{} ENDPROC  
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
Doubly-linked list/Element definition
Task Define the data structure for a doubly-linked list element. The element should include a data member to hold its value and pointers to both the next element in the list and the previous element in the list. The pointers should be mutable. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Action.21
Action!
DEFINE PTR="CARD"   TYPE ListNode=[ BYTE data PTR prv,nxt]
http://rosettacode.org/wiki/Dutch_national_flag_problem
Dutch national flag problem
The Dutch national flag is composed of three coloured bands in the order:   red     (top)   then white,   and   lastly blue   (at the bottom). The problem posed by Edsger Dijkstra is: Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag. When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ... Task Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag. Sort the balls in a way idiomatic to your language. Check the sorted balls are in the order of the Dutch national flag. C.f. Dutch national flag problem Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
#BaCon
BaCon
DECLARE color$[] = { "red", "white", "blue" }   DOTIMES 16 ball$ = APPEND$(ball$, 0, color$[RANDOM(3)] ) DONE   PRINT "Unsorted: ", ball$   PRINT " Sorted: ", REPLACE$(SORT$(REPLACE$(ball$, "blue", "z")), "z", "blue")
http://rosettacode.org/wiki/Dutch_national_flag_problem
Dutch national flag problem
The Dutch national flag is composed of three coloured bands in the order:   red     (top)   then white,   and   lastly blue   (at the bottom). The problem posed by Edsger Dijkstra is: Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag. When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ... Task Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag. Sort the balls in a way idiomatic to your language. Check the sorted balls are in the order of the Dutch national flag. C.f. Dutch national flag problem Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
#BASIC256
BASIC256
arraybase 1 dim flag = {"Red","White","Blue"} dim balls(9)   print "Random: |"; for i = 1 to 9 kolor = (rand * 3) + 1 balls[i] = flag[kolor] print balls[i]; " |"; next i print   print "Sorted: |"; for i = 1 to 3 kolor = flag[i] for j = 1 to 9 if balls[j] = kolor then print balls[j]; " |"; next j next i
http://rosettacode.org/wiki/Draw_a_cuboid
Draw a cuboid
Task Draw a   cuboid   with relative dimensions of   2 × 3 × 4. The cuboid can be represented graphically, or in   ASCII art,   depending on the language capabilities. To fulfill the criteria of being a cuboid, three faces must be visible. Either static or rotational projection is acceptable for this task. Related tasks draw a sphere draw a rotating cube write language name in 3D ASCII draw a Deathstar
#AWK
AWK
  # syntax: GAWK -f DRAW_A_CUBOID.AWK [-v x=?] [-v y=?] [-v z=?] # example: GAWK -f DRAW_A_CUBOID.AWK -v x=12 -v y=4 -v z=6 # converted from VBSCRIPT BEGIN { init_sides() draw_cuboid(2,3,4) draw_cuboid(1,1,1) draw_cuboid(6,2,1) exit (errors == 0) ? 0 : 1 } function draw_cuboid(nx,ny,nz, esf,i,i_max,j,j_max,lx,ly,lz) { esf = errors # errors so far if (nx !~ /^[0-9]+$/ || nx <= 0) { error(nx,ny,nz,1) } if (ny !~ /^[0-9]+$/ || ny <= 0) { error(nx,ny,nz,2) } if (nz !~ /^[0-9]+$/ || nz <= 0) { error(nx,ny,nz,3) } if (errors > esf) { return } lx = x * nx ly = y * ny lz = z * nz # define the array size i_max = ly + lz j_max = lx + ly delete arr printf("%s %s %s (%d rows x %d columns)\n",nx,ny,nz,i_max+1,j_max+1) # draw lines for (i=0; i<=nz-1; i++) { draw_line(lx,0,z*i,"-") } for (i=0; i<=ny; i++) { draw_line(lx,y*i,lz+y*i,"-") } for (i=0; i<=nx-1; i++) { draw_line(lz,x*i,0,"|") } for (i=0; i<=ny; i++) { draw_line(lz,lx+y*i,y*i,"|") } for (i=0; i<=nz-1; i++) { draw_line(ly,lx,z*i,"/") } for (i=0; i<=nx; i++) { draw_line(ly,x*i,lz,"/") } # output the cuboid for (i=i_max; i>=0; i--) { for (j=0; j<=j_max; j++) { printf("%1s",arr[i,j]) } printf("\n") } } function draw_line(n,x,y,c, dx,dy,i,xi,yi) { if (c == "-") { dx = 1 ; dy = 0 } else if (c == "|") { dx = 0 ; dy = 1 } else if (c == "/") { dx = 1 ; dy = 1 } for (i=0; i<=n; i++) { xi = x + i * dx yi = y + i * dy arr[yi,xi] = (arr[yi,xi] ~ /^ ?$/) ? c : "+" } } function error(x,y,z,arg) { printf("error: '%s,%s,%s' argument %d is invalid\n",x,y,z,arg) errors++ } function init_sides() { # to change the defaults on the command line use: -v x=? -v y=? -v z=? if (x+0 < 2) { x = 6 } # top if (y+0 < 2) { y = 2 } # right if (z+0 < 2) { z = 3 } # front }  
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#Maxima
Maxima
/* Use :: for indirect assignment */ block([name: read("name?"), x: read("value?")], name :: x);
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#min
min
42 "Enter a variable name" ask define
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#MUMPS
MUMPS
USER>KILL ;Clean up workspace   USER>WRITE ;show all variables and definitions   USER>READ "Enter a variable name: ",A Enter a variable name: GIBBERISH USER>SET @A=3.14159   USER>WRITE   A="GIBBERISH" GIBBERISH=3.14159
http://rosettacode.org/wiki/Draw_a_pixel
Draw a pixel
Task Create a window and draw a pixel in it, subject to the following:  the window is 320 x 240  the color of the pixel must be red (255,0,0)  the position of the pixel is x = 100, y = 100
#Julia
Julia
using Gtk, Graphics   const can = @GtkCanvas() const win = GtkWindow(can, "Draw a Pixel", 320, 240)   draw(can) do widget ctx = getgc(can) set_source_rgb(ctx, 255, 0, 0) move_to(ctx, 100, 100) line_to(ctx, 101,100) stroke(ctx) end   show(can) const cond = Condition() endit(w) = notify(cond) signal_connect(endit, win, :destroy) wait(cond)  
http://rosettacode.org/wiki/Draw_a_pixel
Draw a pixel
Task Create a window and draw a pixel in it, subject to the following:  the window is 320 x 240  the color of the pixel must be red (255,0,0)  the position of the pixel is x = 100, y = 100
#Kotlin
Kotlin
// Version 1.2.41   import java.awt.Color import java.awt.Graphics import java.awt.image.BufferedImage   class BasicBitmapStorage(width: Int, height: Int) { val image = BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR)   fun fill(c: Color) { val g = image.graphics g.color = c g.fillRect(0, 0, image.width, image.height) }   fun setPixel(x: Int, y: Int, c: Color) = image.setRGB(x, y, c.getRGB())   fun getPixel(x: Int, y: Int) = Color(image.getRGB(x, y)) }   fun main(args: Array<String>) { val bbs = BasicBitmapStorage(320, 240) with (bbs) { fill(Color.white) // say setPixel(100, 100, Color.red) // check it worked val c = getPixel(100, 100) print("The color of the pixel at (100, 100) is ") println(if (c == Color.red) "red" else "white") } }
http://rosettacode.org/wiki/Egyptian_division
Egyptian division
Egyptian division is a method of dividing integers using addition and doubling that is similar to the algorithm of Ethiopian multiplication Algorithm: Given two numbers where the dividend is to be divided by the divisor: Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column. Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order. Continue with successive i’th rows of 2^i and 2^i * divisor. Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend. We now assemble two separate sums that both start as zero, called here answer and accumulator Consider each row of the table, in the reverse order of its construction. If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer. When the first row has been considered as above, then the integer division of dividend by divisor is given by answer. (And the remainder is given by the absolute value of accumulator - dividend). Example: 580 / 34 Table creation: powers_of_2 doublings 1 34 2 68 4 136 8 272 16 544 Initialization of sums: powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 0 0 Considering table rows, bottom-up: When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations. powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 16 544 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 16 544 4 136 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 17 578 2 68 4 136 8 272 16 544 Answer So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2. Task The task is to create a function that does Egyptian division. The function should closely follow the description above in using a list/array of powers of two, and another of doublings. Functions should be clear interpretations of the algorithm. Use the function to divide 580 by 34 and show the answer here, on this page. Related tasks   Egyptian fractions References   Egyptian Number System
#Phix
Phix
with javascript_semantics procedure egyptian_division(integer dividend, divisor) integer p2 = 1, dbl = divisor, ans = 0, accum = 0 sequence p2s = {}, dbls = {}, args while dbl<=dividend do p2s = append(p2s,p2) dbls = append(dbls,dbl) dbl += dbl p2 += p2 end while for i=length(p2s) to 1 by -1 do if accum+dbls[i]<=dividend then accum += dbls[i] ans += p2s[i] end if end for args = {dividend,divisor,ans,abs(accum-dividend)} printf(1,"%d divided by %d is: %d remainder %d\n",args) end procedure egyptian_division(580,34)
http://rosettacode.org/wiki/Egyptian_fractions
Egyptian fractions
An   Egyptian fraction   is the sum of distinct unit fractions such as: 1 2 + 1 3 + 1 16 ( = 43 48 ) {\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{16}}\,(={\tfrac {43}{48}})} Each fraction in the expression has a numerator equal to   1   (unity)   and a denominator that is a positive integer,   and all the denominators are distinct   (i.e., no repetitions). Fibonacci's   Greedy algorithm for Egyptian fractions   expands the fraction   x y {\displaystyle {\tfrac {x}{y}}}   to be represented by repeatedly performing the replacement x y = 1 ⌈ y / x ⌉ + ( − y ) mod x y ⌈ y / x ⌉ {\displaystyle {\frac {x}{y}}={\frac {1}{\lceil y/x\rceil }}+{\frac {(-y)\!\!\!\!\mod x}{y\lceil y/x\rceil }}} (simplifying the 2nd term in this replacement as necessary, and where   ⌈ x ⌉ {\displaystyle \lceil x\rceil }   is the   ceiling   function). For this task,   Proper and improper fractions   must be able to be expressed. Proper  fractions   are of the form   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive integers, such that   a < b {\displaystyle a<b} ,     and improper fractions are of the form   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive integers, such that   a ≥ b. (See the REXX programming example to view one method of expressing the whole number part of an improper fraction.) For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [n]. Task requirements   show the Egyptian fractions for: 43 48 {\displaystyle {\tfrac {43}{48}}} and 5 121 {\displaystyle {\tfrac {5}{121}}} and 2014 59 {\displaystyle {\tfrac {2014}{59}}}   for all proper fractions,   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has:   the largest number of terms,   the largest denominator.   for all one-, two-, and three-digit integers,   find and show (as above).     {extra credit} Also see   Wolfram MathWorld™ entry: Egyptian fraction
#Phix
Phix
with javascript_semantics include mpfr.e function egyptian(integer num, denom) mpz n = mpz_init(num), d = mpz_init(denom), t = mpz_init() sequence result = {} while mpz_cmp_si(n,0)!=0 do mpz_cdiv_q(t, d, n) result = append(result,"1/"&mpz_get_str(t)) mpz_neg(d,d) mpz_mod(n,d,n) mpz_neg(d,d) mpz_mul(d,d,t) end while {n,d} = mpz_free({n,d}) return result end function procedure efrac(integer num, denom) string fraction = sprintf("%d/%d",{num,denom}), prefix = "" if num>=denom then integer whole = floor(num/denom) num -= whole*denom prefix = sprintf("[%d] + ",whole) end if string e = join(egyptian(num, denom)," + ") printf(1,"%s -> %s%s\n",{fraction,prefix,e}) end procedure efrac(43,48) efrac(5,121) efrac(2014,59) integer maxt = 0, maxd = 0 string maxts = "", maxds = "", maxda = "" for r=98 to 998 by 900 do -- (iterates just twice!) sequence sieve = repeat(repeat(false,r+1),r) -- to eliminate duplicates for n=1 to r do for d=n+1 to r+1 do if sieve[n][d]=false then string term = sprintf("%d/%d",{n,d}) sequence terms = egyptian(n,d) integer nterms = length(terms) if nterms>maxt then maxt = nterms maxts = term elsif nterms=maxt then maxts &= ", " & term end if integer mlen = length(terms[$])-2 if mlen>maxd then maxd = mlen maxds = term maxda = terms[$] elsif mlen=maxd then maxds &= ", " & term end if if n<r/2 then for k=2 to 9999 do if d*k > r+1 then exit end if sieve[n*k][d*k] = true end for end if end if end for end for printf(1,"\nfor proper fractions with 1 to %d digits\n",{length(sprint(r))}) printf(1,"Largest number of terms is %d for %s\n",{maxt,maxts}) maxda = maxda[3..$] -- (strip the "1/") maxda[6..-6]="..." -- (show only first/last 5 digits) printf(1,"Largest size for denominator is %d digits (%s) for %s\n",{maxd,maxda,maxds}) end for
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#Swift
Swift
import Darwin   func ethiopian(var #int1:Int, var #int2:Int) -> Int { var lhs = [int1], rhs = [int2]   func isEven(#n:Int) -> Bool {return n % 2 == 0} func double(#n:Int) -> Int {return n * 2} func halve(#n:Int) -> Int {return n / 2}   while int1 != 1 { lhs.append(halve(n: int1)) rhs.append(double(n: int2)) int1 = halve(n: int1) int2 = double(n: int2) }   var returnInt = 0 for (a,b) in zip(lhs, rhs) { if (!isEven(n: a)) { returnInt += b } } return returnInt }   println(ethiopian(int1: 17, int2: 34))
http://rosettacode.org/wiki/Elementary_cellular_automaton
Elementary cellular automaton
An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits. The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101. Task Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice. The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally. This task is basically a generalization of one-dimensional cellular automata. See also Cellular automata (natureofcode.com)
#Rust
Rust
  fn main() { struct ElementaryCA { rule: u8, state: u64, } impl ElementaryCA { fn new(rule: u8) -> (u64, ElementaryCA) { let out = ElementaryCA { rule, state: 1, }; (out.state, out) } fn next(&mut self) -> u64 { let mut next_state = 0u64; let state = self.state; for i in 0..64 { next_state |= (((self.rule as u64)>>(7 & (state.rotate_left(1).rotate_right(i as u32)))) & 1)<<i; } self.state = next_state; self.state } } fn rep_u64(val: u64) -> String { let mut out = String::new(); for i in (0..64).rev() { if 1<<i & val != 0 { out = out + "\u{2588}"; } else { out = out + "-"; } } out }   let (i, mut thirty) = ElementaryCA::new(154); println!("{}",rep_u64(i)); for _ in 0..32 { let s = thirty.next(); println!("{}", rep_u64(s)); } }  
http://rosettacode.org/wiki/Elementary_cellular_automaton
Elementary cellular automaton
An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits. The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101. Task Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice. The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally. This task is basically a generalization of one-dimensional cellular automata. See also Cellular automata (natureofcode.com)
#Scala
Scala
import java.awt._ import java.awt.event.ActionEvent   import javax.swing._   object ElementaryCellularAutomaton extends App {   SwingUtilities.invokeLater(() => new JFrame("Elementary Cellular Automaton") {   class ElementaryCellularAutomaton extends JPanel { private val dim = new Dimension(900, 450) private val cells = Array.ofDim[Byte](dim.height, dim.width) private var rule = 0   private def ruleSet = Seq(30, 45, 50, 57, 62, 70, 73, 75, 86, 89, 90, 99, 101, 105, 109, 110, 124, 129, 133, 135, 137, 139, 141, 164, 170, 232)   override def paintComponent(gg: Graphics): Unit = { def drawCa(g: Graphics2D): Unit = {   def rules(lhs: Int, mid: Int, rhs: Int) = { val idx = lhs << 2 | mid << 1 | rhs (ruleSet(rule) >> idx & 1).toByte }   g.setColor(Color.black) for (r <- 0 until cells.length - 1; c <- 1 until cells(r).length - 1; lhs = cells(r)(c - 1); mid = cells(r)(c); rhs = cells(r)(c + 1)) { cells(r + 1)(c) = rules(lhs, mid, rhs) // next generation if (cells(r)(c) == 1) g.fillRect(c, r, 1, 1) } }   def drawLegend(g: Graphics2D): Unit = { val s = ruleSet(rule).toString val sw = g.getFontMetrics.stringWidth(ruleSet(rule).toString) g.setColor(Color.white) g.fillRect(16, 5, 55, 30) g.setColor(Color.darkGray) g.drawString(s, 16 + (55 - sw) / 2, 30) }   super.paintComponent(gg) val g = gg.asInstanceOf[Graphics2D] g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON) drawCa(g) drawLegend(g) }   new Timer(5000, (_: ActionEvent) => { rule += 1 if (rule == ruleSet.length) rule = 0 repaint() }).start() cells(0)(dim.width / 2) = 1 setBackground(Color.white) setFont(new Font("SansSerif", Font.BOLD, 28)) setPreferredSize(dim) }   add(new ElementaryCellularAutomaton, BorderLayout.CENTER) pack() setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE) setLocationRelativeTo(null) setResizable(false) setVisible(true) })   }
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Wart
Wart
def (fact n) if (n = 0) 1 (n * (fact n-1))
http://rosettacode.org/wiki/Echo_server
Echo server
Create a network service that sits on TCP port 12321, which accepts connections on that port, and which echoes complete lines (using a carriage-return/line-feed sequence as line separator) back to clients. No error handling is required. For the purposes of testing, it is only necessary to support connections from localhost (127.0.0.1 or perhaps ::1). Logging of connection information to standard output is recommended. The implementation must be able to handle simultaneous connections from multiple clients. A multi-threaded or multi-process solution may be used. Each connection must be able to echo more than a single line. The implementation must not stop responding to other clients if one client sends a partial line or stops reading responses.
#PureBasic
PureBasic
NewMap RecData.s() OpenWindow(0, 100, 200, 200, 100, "Echo Server", #PB_Window_SystemMenu | #PB_Window_MinimizeGadget ) InitNetwork() CreateNetworkServer(1, 12321)   Repeat Event = NetworkServerEvent() ClientID = EventClient()   If Event = #PB_NetworkEvent_Connect ; When a new client has been connected... AddMapElement(RecData(), Str(ClientID))   ElseIf Event = #PB_NetworkEvent_Data *Buffer = AllocateMemory(20000) count = ReceiveNetworkData(ClientID, *Buffer, 20000) For i = 1 To count RecData(Str(ClientID)) + Mid( PeekS(*Buffer, count), i , 1) If Right( RecData(Str(ClientID)), 2) = #CRLF$ SendNetworkString (ClientID, RecData(Str(ClientID))) Debug IPString(GetClientIP(ClientID)) + ":" + Str(GetClientPort(ClientID)) + " " + RecData(Str(ClientID)) RecData(Str(ClientID)) = "" EndIf Next FreeMemory(*Buffer)   ElseIf Event = #PB_NetworkEvent_Disconnect ; When a client has closed the connection... DeleteMapElement(RecData(), Str(ClientID)) EndIf   Event = WaitWindowEvent(10) Until Event = #PB_Event_CloseWindow
http://rosettacode.org/wiki/Eban_numbers
Eban numbers
Definition An   eban   number is a number that has no letter   e   in it when the number is spelled in English. Or more literally,   spelled numbers that contain the letter   e   are banned. The American version of spelling numbers will be used here   (as opposed to the British). 2,000,000,000   is two billion,   not   two milliard. Only numbers less than   one sextillion   (1021)   will be considered in/for this task. This will allow optimizations to be used. Task   show all eban numbers   ≤   1,000   (in a horizontal format),   and a count   show all eban numbers between   1,000   and   4,000   (inclusive),   and a count   show a count of all eban numbers up and including           10,000   show a count of all eban numbers up and including         100,000   show a count of all eban numbers up and including      1,000,000   show a count of all eban numbers up and including    10,000,000   show all output here. See also   The MathWorld entry:   eban numbers.   The OEIS entry:   A6933, eban numbers.
#Phix
Phix
with javascript_semantics function count_eban(integer p10) -- returns the count of eban numbers 1..power(10,p10) integer n = p10-floor(p10/3), p5 = floor(n/2), p4 = floor((n+1)/2) return power(5,p5)*power(4,p4)-1 end function function eban(integer n) -- returns true if n is an eban number (only fully tested to 10e9) if n=0 then return false end if while n do integer thou = remainder(n,1000) if floor(thou/100)!=0 then return false end if if not find(floor(thou/10),{0,3,4,5,6}) then return false end if if not find(remainder(thou,10),{0,2,4,6}) then return false end if n = floor(n/1000) end while return true end function sequence s = {} for i=0 to 1000 do if eban(i) then s = append(s,sprint(i)) end if end for printf(1,"eban to 1000 : %s\n\n",{join(shorten(s,"items",8))}) s = {} for i=1000 to 4000 do if eban(i) then s = append(s,sprint(i)) end if end for printf(1,"eban 1000..4000 : %s\n\n",{join(shorten(s,"items",4))}) atom t0 = time() for i=0 to 21 do printf(1,"count_eban(10^%d) : %,d\n",{i,count_eban(i)}) end for ?elapsed(time()-t0)
http://rosettacode.org/wiki/Draw_a_rotating_cube
Draw a rotating cube
Task Draw a rotating cube. It should be oriented with one vertex pointing straight up, and its opposite vertex on the main diagonal (the one farthest away) straight down. It can be solid or wire-frame, and you can use ASCII art if your language doesn't have graphical capabilities. Perspective is optional. Related tasks Draw a cuboid write language name in 3D ASCII
#Haskell
Haskell
{-# LANGUAGE RecursiveDo #-} import Reflex.Dom import Data.Map as DM (Map, lookup, insert, empty, fromList) import Data.Matrix import Data.Time.Clock import Control.Monad.Trans   size = 500 updateFrequency = 0.2 rotationStep = pi/10   data Color = Red | Green | Blue | Yellow | Orange | Purple | Black deriving (Show,Eq,Ord,Enum)   zRot :: Float -> Matrix Float zRot rotation = let c = cos rotation s = sin rotation in fromLists [[ c, s, 0, 0 ] ,[-s, c, 0, 0 ] ,[ 0, 0, 1, 0 ] ,[ 0, 0, 0, 1 ] ]   xRot :: Float -> Matrix Float xRot rotation = let c = cos rotation s = sin rotation in fromLists [[ 1, 0, 0, 0 ] ,[ 0, c, s, 0 ] ,[ 0, -s, c, 0 ] ,[ 0, 0, 0, 1 ] ]   yRot :: Float -> Matrix Float yRot rotation = let c = cos rotation s = sin rotation in fromLists [[ c, 0, -s, 0 ] ,[ 0, 1, 0, 0 ] ,[ s, 0, c, 0 ] ,[ 0, 0, 0, 1 ] ]   translation :: (Float,Float,Float) -> Matrix Float translation (x,y,z) = fromLists [[ 1, 0, 0, 0 ] ,[ 0, 1, 0, 0 ] ,[ 0, 0, 1, 0 ] ,[ x, y, z, 1 ] ]   scale :: Float -> Matrix Float scale s = fromLists [[ s, 0, 0, 0 ] ,[ 0, s, 0, 0 ] ,[ 0, 0, s, 0 ] ,[ 0, 0, 0, 1 ] ]   -- perspective transformation; perspective :: Matrix Float perspective = fromLists [[ 1, 0, 0, 0 ] ,[ 0, 1, 0, 0 ] ,[ 0, 0, 1, 1 ] ,[ 0, 0, 1, 1 ] ]   transformPoints :: Matrix Float -> Matrix Float -> [(Float,Float)] transformPoints transform points = let result4d = points `multStd2` transform result2d = (\[x,y,z,w] -> (x/w,y/w)) <$> toLists result4d in result2d   showRectangle :: MonadWidget t m => Float -> Float -> Float -> Float -> Color -> Dynamic t (Matrix Float) -> m () showRectangle x0 y0 x1 y1 faceColor dFaceView = do let points = fromLists [[x0,y0,0,1],[x0,y1,0,1],[x1,y1,0,1],[x1,y0,0,1]] pointsToString = concatMap (\(x,y) -> show x ++ ", " ++ show y ++ " ") dAttrs <- mapDyn (\fvk -> DM.fromList [ ("fill", show faceColor) , ("points", pointsToString (transformPoints fvk points)) ] ) dFaceView elDynAttrSVG "polygon" dAttrs $ return ()   showUnitSquare :: MonadWidget t m => Color -> Float -> Dynamic t (Matrix Float) -> m () showUnitSquare faceColor margin dFaceView = showRectangle margin margin (1.0 - margin) (1.0 - margin) faceColor dFaceView   -- show colored square on top of black square for outline effect showFace :: MonadWidget t m => Color -> Dynamic t (Matrix Float) -> m () showFace faceColor dFaceView = do showUnitSquare Black 0 dFaceView showUnitSquare faceColor 0.03 dFaceView   facingCamera :: [Float] -> Matrix Float -> Bool facingCamera viewPoint modelTransform = let cross [x0,y0,z0] [x1,y1,z1] = [y0*z1-z0*y1, z0*x1-x0*z1, x0*y1-y0*x1 ] dot v0 v1 = sum $ zipWith (*) v0 v1 vMinus = zipWith (-)   untransformedPoints = fromLists [ [0,0,0,1] -- lower left , [1,0,0,1] -- lower right , [0,1,0,1] ] -- upper left   transformedPoints = toLists $ untransformedPoints `multStd2` modelTransform pt00 = take 3 $ head transformedPoints -- transformed lower left pt10 = take 3 $ transformedPoints !! 1 -- transformed upper right pt01 = take 3 $ transformedPoints !! 2 -- transformed upper left   tVec_10_00 = pt10 `vMinus` pt00 -- lower right to lower left tVec_01_00 = pt01 `vMinus` pt00 -- upper left to lower left perpendicular = tVec_10_00 `cross` tVec_01_00 -- perpendicular to face cameraToPlane = pt00 `vMinus` viewPoint -- line of sight to face   -- Perpendicular points away from surface; -- Camera vector points towards surface -- Opposed vectors means that face will be visible. in cameraToPlane `dot` perpendicular < 0   faceView :: Matrix Float -> Matrix Float -> (Bool, Matrix Float) faceView modelOrientation faceOrientation = let modelTransform = translation (-1/2,-1/2,1/2) -- unit square to origin + z offset `multStd2` faceOrientation -- orientation specific to each face `multStd2` scale (1/2) -- shrink cube to fit in view. `multStd2` modelOrientation -- position the entire cube     isFacingCamera = facingCamera [0,0,-1] modelTransform -- backface elimination   -- combine to get single transform from 2d face to 2d display viewTransform = modelTransform `multStd2` perspective `multStd2` scale size -- scale up to svg box scale `multStd2` translation (size/2, size/2, 0) -- move to center of svg box   in (isFacingCamera, viewTransform)   updateFaceViews :: Matrix Float -> Map Color (Matrix Float) -> (Color, Matrix Float) -> Map Color (Matrix Float) updateFaceViews modelOrientation prevCollection (faceColor, faceOrientation) = let (isVisible, newFaceView) = faceView modelOrientation faceOrientation in if isVisible then insert faceColor newFaceView prevCollection else prevCollection   faceViews :: Matrix Float -> Map Color (Matrix Float) faceViews modelOrientation = foldl (updateFaceViews modelOrientation) empty [ (Purple , xRot (0.0) ) , (Yellow , xRot (pi/2) ) , (Red , yRot (pi/2) ) , (Green , xRot (-pi/2) ) , (Blue , yRot (-pi/2) ) , (Orange , xRot (pi) ) ]   viewModel :: MonadWidget t m => Dynamic t (Matrix Float) -> m () viewModel modelOrientation = do faceMap <- mapDyn faceViews modelOrientation listWithKey faceMap showFace return ()   view :: MonadWidget t m => Dynamic t (Matrix Float) -> m () view modelOrientation = do el "h1" $ text "Rotating Cube" elDynAttrSVG "svg" (constDyn $ DM.fromList [ ("width", show size), ("height", show size) ]) $ viewModel modelOrientation   main = mainWidget $ do let initialOrientation = xRot (pi/4) `multStd2` zRot (atan(1/sqrt(2))) update _ modelOrientation = modelOrientation `multStd2` (yRot (rotationStep) )   tick <- tickLossy updateFrequency =<< liftIO getCurrentTime rec view modelOrientation modelOrientation <- foldDyn update initialOrientation tick return ()   -- At end because of Rosetta Code handling of unmatched quotes. elDynAttrSVG a2 a3 a4 = do elDynAttrNS' (Just "http://www.w3.org/2000/svg") a2 a3 a4 return ()
http://rosettacode.org/wiki/Element-wise_operations
Element-wise operations
This task is similar to:   Matrix multiplication   Matrix transposition Task Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks. Implement:   addition   subtraction   multiplication   division   exponentiation Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
#Maxima
Maxima
a: matrix([1, 2], [3, 4]); b: matrix([2, 4], [3, 1]);   a * b; a / b; a + b; a - b; a^3; a^b; /* won't work */ fullmapl("^", a, b); sin(a);
http://rosettacode.org/wiki/Element-wise_operations
Element-wise operations
This task is similar to:   Matrix multiplication   Matrix transposition Task Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks. Implement:   addition   subtraction   multiplication   division   exponentiation Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
#Nim
Nim
import math, strutils   type Matrix[height, width: static Positive; T: SomeNumber] = array[height, array[width, T]]   ####################################################################################################   proc `$`(m: Matrix): string = for i, row in m: var line = "[" for j, val in row: line.addSep(" ", 1) line.add($val) line.add("]\n") result.add(line)   #################################################################################################### # Templates.   template elementWise(m1, m2: Matrix; op: proc(v1, v2: m1.T): auto): untyped = var result: Matrix[m1.height, m1.width, m1.T] for i in 0..<m1.height: for j in 0..<m1.width: result[i][j] = op(m1[i][j], m2[i][j]) result   template scalarOp(m: Matrix; val: SomeNumber; op: proc(v1, v2: SomeNumber): auto): untyped = var result: Matrix[m.height, m.width, m.T] for i in 0..<m.height: for j in 0..<m.width: result[i][j] = op(m[i][j], val) result   template scalarOp(val: SomeNumber; m: Matrix; op: proc(v1, v2: SomeNumber): auto): untyped = var result: Matrix[m.height, m.width, m.T] for i in 0..<m.height: for j in 0..<m.width: result[i][j] = op(val, m[i][j]) result   #################################################################################################### # Access functions.   func `[]`(m: Matrix; i, j: int): m.T = m[i][j]   func `[]=`(m: var Matrix; i, j: int; val: SomeNumber) = m[i][j] = val   #################################################################################################### # Elementwise operations.   func `+`(m1, m2: Matrix): Matrix = elementWise(m1, m2, `+`)   func `-`(m1, m2: Matrix): Matrix = elementWise(m1, m2, `-`)   func `*`(m1, m2: Matrix): Matrix = elementWise(m1, m2, `*`)   func `div`(m1, m2: Matrix): Matrix = elementWise(m1, m2, `div`)   func `mod`(m1, m2: Matrix): Matrix = elementWise(m1, m2, `mod`)   func `/`(m1, m2: Matrix): Matrix = elementWise(m1, m2, `/`)   func `^`(m1, m2: Matrix): Matrix = # Cannot use "elementWise" template as it requires both operator arguments # to be of type "m1.T" (and second argument of `^` is "Natural", not "int"). for i in 0..<m1.height: for j in 0..<m1.width: result[i][j] = m1[i][j] ^ m2[i][j]   func pow(m1, m2: Matrix): Matrix = elementWise(m1, m2, pow)   #################################################################################################### # Matrix-scalar and scalar-matrix operations.   func `+`(m: Matrix; val: SomeNumber): Matrix = scalarOp(m, val, `+`)   func `+`(val: SomeNumber; m: Matrix): Matrix = scalarOp(val, m, `+`)   func `-`(m: Matrix; val: SomeNumber): Matrix = scalarOp(m, val, `-`)   func `-`(val: SomeNumber; m: Matrix): Matrix = scalarOp(val, m, `-`)   func `*`(m: Matrix; val: SomeNumber): Matrix = scalarOp(m, val, `*`)   func `*`(val: SomeNumber; m: Matrix): Matrix = scalarOp(val, m, `*`)   func `div`(m: Matrix; val: SomeNumber): Matrix = scalarOp(m, val, `div`)   func `div`(val: SomeNumber; m: Matrix): Matrix = scalarOp(val, m, `div`)   func `mod`(m: Matrix; val: m.T): Matrix = scalarOp(m, val, `mod`)   func `mod`(val: SomeNumber; m: Matrix): Matrix = scalarOp(val, m, `mod`)   proc `/`(m: Matrix; val: SomeNumber): Matrix = scalarOp(m, val, `/`)   func `/`(val: SomeNumber; m: Matrix): Matrix = scalarOp(val, m, `/`)   func `^`(m: Matrix; val: Natural): Matrix = # Cannot use "elementWise" template as it requires both operator arguments # to be of type "m.T" (and second argument of `^` is "Natural", not "int"). for i in 0..<m.height: for j in 0..<m.width: result[i][j] = m[i][j] ^ val   func `^`(val: Natural; m: Matrix): Matrix = # Cannot use "elementWise" template as it requires both operator arguments # to be of type "m.T" (and second argument of `^` is "Natural", not "int"). for i in 0..<m.height: for j in 0..<m.width: result[i][j] = val ^ m[i][j]   func pow(m: Matrix; val: SomeNumber): Matrix = scalarOp(m, val, pow)   func `pow`(val: SomeNumber; m: Matrix): Matrix = scalarOp(val, m, `pow`)   #———————————————————————————————————————————————————————————————————————————————————————————————————   # Operations on integer matrices. let mint1: Matrix[2, 2, int] = [[1, 2], [3, 4]] let mint2: Matrix[2, 2, int] = [[2, 1], [4, 2]] echo "Integer matrices" echo "----------------\n" echo "m1:" echo mint1 echo "m2:" echo mint2 echo "m1 + m2" echo mint1 + mint2 echo "m1 - m2" echo mint1 - mint2 echo "m1 * m2" echo mint1 * mint2 echo "m1 div m2" echo mint1 div mint2 echo "m1 mod m2" echo mint1 mod mint2 echo "m1^m2" echo mint1^mint2 echo "2 * m1" echo 2 * mint1 echo "m1 * 2" echo mint1 * 2 echo "m1^2" echo mint1 ^ 2 echo "2^m1" echo 2 ^ mint1   # Operations on float matrices. let mfloat1: Matrix[2, 3, float] = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]] let mfloat2: Matrix[2, 3, float] = [[2.0, 2.0, 2.0], [3.0, 3.0, 3.0]] echo "\nFloat matrices" echo "--------------\n" echo "m1" echo mfloat1 echo "m2" echo mfloat2 echo "m1 + m2" echo mfloat1 + mfloat2 echo "m1 - m2" echo mfloat1 - mfloat2 echo "m1 * m2" echo mfloat1 * mfloat2 echo "m1 / m2" echo mfloat1 / mfloat2 echo "pow(m1, m2)" echo pow(mfloat1, mfloat2) echo "pow(m1, 2.0)" echo pow(mfloat1, 2.0) echo "pow(2.0, m1)" echo pow(2.0, mfloat1)
http://rosettacode.org/wiki/Draw_a_sphere
Draw a sphere
Task Draw a sphere. The sphere can be represented graphically, or in ASCII art, depending on the language capabilities. Either static or rotational projection is acceptable for this task. Related tasks draw a cuboid draw a rotating cube write language name in 3D ASCII draw a Deathstar
#ATS
ATS
  (* ** Solution to Draw_a_sphere.dats *)   (* ****** ****** *) // #include "share/atspre_define.hats" // defines some names #include "share/atspre_staload.hats" // for targeting C #include "share/HATS/atspre_staload_libats_ML.hats" // for ... #include "share/HATS/atslib_staload_libats_libc.hats" // for libc // (* ****** ****** *)   extern fun Draw_a_sphere ( R: double, k: double, ambient: double ) : void // end of [Draw_a_sphere]   (* ****** ****** *)   implement Draw_a_sphere ( R: double, k: double, ambient: double ) = let fun normalize(v0: double, v1: double, v2: double): (double, double, double) = let val len = sqrt(v0*v0+v1*v1+v2*v2) in (v0/len, v1/len, v2/len) end // end of [normalize]   fun dot(v0: double, v1: double, v2: double, x0: double, x1: double, x2: double): double = let val d = v0*x0+v1*x1+v2*x2 val sgn = gcompare_val_val<double> (d, 0.0) in if sgn < 0 then ~d else 0.0 end // end of [dot]   fun print_char(i: int): void = if i = 0 then print!(".") else if i = 1 then print!(":") else if i = 2 then print!("!") else if i = 3 then print!("*") else if i = 4 then print!("o") else if i = 5 then print!("e") else if i = 6 then print!("&") else if i = 7 then print!("#") else if i = 8 then print!("%") else if i = 9 then print!("@") else print!(" ")   val i_start = floor(~R) val i_end = ceil(R) val j_start = floor(~2 * R) val j_end = ceil(2 * R) val (l0, l1, l2) = normalize(30.0, 30.0, ~50.0)   fun loopj(j: int, j_end: int, x: double): void = let val y = j / 2.0 + 0.5; val sgn = gcompare_val_val<double> (x*x + y*y, R*R) val (v0, v1, v2) = normalize(x, y, sqrt(R*R - x*x - y*y)) val b = pow(dot(l0, l1, l2, v0, v1, v2), k) + ambient val intensity = 9.0 - 9.0*b val sgn2 = gcompare_val_val<double> (intensity, 0.0) val sgn3 = gcompare_val_val<double> (intensity, 9.0) in ( if sgn > 0 then print_char(10) else if sgn2 < 0 then print_char(0) else if sgn3 >= 0 then print_char(8) else print_char(g0float2int(intensity)); if j < j_end then loopj(j+1, j_end, x) ) end // end of [loopj]   fun loopi(i: int, i_end: int, j: int, j_end: int): void = let val x = i + 0.5 val () = loopj(j, j_end, x) val () = println!() in if i < i_end then loopi(i+1, i_end, j, j_end) end // end of [loopi]   in loopi(g0float2int(i_start), g0float2int(i_end), g0float2int(j_start), g0float2int(j_end)) end   (* ****** ****** *)   implement main0() = () where { val () = DrawSphere(20.0, 4.0, .1) val () = DrawSphere(10.0, 2.0, .4) } (* end of [main0] *)   (* ****** ****** *)  
http://rosettacode.org/wiki/Doubly-linked_list/Element_insertion
Doubly-linked list/Element insertion
Doubly-Linked List (element) This is much like inserting into a Singly-Linked List, but with added assignments so that the backwards-pointing links remain correct. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Common_Lisp
Common Lisp
import std.stdio;   struct Node(T) { T data; typeof(this)* prev, next; }   /// If prev is null, prev gets to point to a new node. void insertAfter(T)(ref Node!T* prev, T item) pure nothrow { if (prev) { auto newNode = new Node!T(item, prev, prev.next); prev.next = newNode; if (newNode.next) newNode.next.prev = newNode; } else prev = new Node!T(item); }   void show(T)(Node!T* list) { while (list) { write(list.data, " "); list = list.next; } writeln; }   void main() { Node!(string)* list; insertAfter(list, "A"); list.show; insertAfter(list, "B"); list.show; insertAfter(list, "C"); list.show; }
http://rosettacode.org/wiki/Doubly-linked_list/Element_insertion
Doubly-linked list/Element insertion
Doubly-Linked List (element) This is much like inserting into a Singly-Linked List, but with added assignments so that the backwards-pointing links remain correct. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#D
D
import std.stdio;   struct Node(T) { T data; typeof(this)* prev, next; }   /// If prev is null, prev gets to point to a new node. void insertAfter(T)(ref Node!T* prev, T item) pure nothrow { if (prev) { auto newNode = new Node!T(item, prev, prev.next); prev.next = newNode; if (newNode.next) newNode.next.prev = newNode; } else prev = new Node!T(item); }   void show(T)(Node!T* list) { while (list) { write(list.data, " "); list = list.next; } writeln; }   void main() { Node!(string)* list; insertAfter(list, "A"); list.show; insertAfter(list, "B"); list.show; insertAfter(list, "C"); list.show; }
http://rosettacode.org/wiki/Doubly-linked_list/Traversal
Doubly-linked list/Traversal
Traverse from the beginning of a doubly-linked list to the end, and from the end to the beginning. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#C
C
// A doubly linked list of strings; #include <stdio.h> #include <stdlib.h> #include <string.h>   typedef struct sListEntry { const char *value; struct sListEntry *next; struct sListEntry *prev; } *ListEntry, *LinkedList;   typedef struct sListIterator{ ListEntry link; LinkedList head; } *LIterator;   LinkedList NewList() { ListEntry le = malloc(sizeof(struct sListEntry)); if (le) { le->value = NULL; le->next = le->prev = NULL; } return le; }   int LL_Append(LinkedList ll, const char *newVal) { ListEntry le = malloc(sizeof(struct sListEntry)); if (le) { le->value = strdup(newVal); le->prev = ll->prev; le->next = NULL; if (le->prev) le->prev->next = le; else ll->next = le; ll->prev = le; } return (le!= NULL); }   int LI_Insert(LIterator iter, const char *newVal) { ListEntry crnt = iter->link; ListEntry le = malloc(sizeof(struct sListEntry)); if (le) { le->value = strdup(newVal); if ( crnt == iter->head) { le->prev = NULL; le->next = crnt->next; crnt->next = le; if (le->next) le->next->prev = le; else crnt->prev = le; } else { le->prev = ( crnt == NULL)? iter->head->prev : crnt->prev; le->next = crnt; if (le->prev) le->prev->next = le; else iter->head->next = le; if (crnt) crnt->prev = le; else iter->head->prev = le; } } return (le!= NULL); }   LIterator LL_GetIterator(LinkedList ll ) { LIterator liter = malloc(sizeof(struct sListIterator)); liter->head = ll; liter->link = ll; return liter; }   #define LLI_Delete( iter ) \ {free(iter); \ iter = NULL;}   int LLI_AtEnd(LIterator iter) { return iter->link == NULL; } const char *LLI_Value(LIterator iter) { return (iter->link)? iter->link->value: NULL; } int LLI_Next(LIterator iter) { if (iter->link) iter->link = iter->link->next; return(iter->link != NULL); } int LLI_Prev(LIterator iter) { if (iter->link) iter->link = iter->link->prev; return(iter->link != NULL); }   int main() { static const char *contents[] = {"Read", "Orage", "Yeller", "Glean", "Blew", "Burple"}; int ix; LinkedList ll = NewList(); //new linked list LIterator iter;   for (ix=0; ix<6; ix++) //insert contents LL_Append(ll, contents[ix]);   iter = LL_GetIterator(ll); //get an iterator printf("forward\n"); while(LLI_Next(iter)) //iterate forward printf("value=%s\n", LLI_Value(iter)); LLI_Delete(iter); //delete iterator   printf("\nreverse\n"); iter = LL_GetIterator(ll); while(LLI_Prev(iter)) //iterate reverse printf("value=%s\n", LLI_Value(iter)); LLI_Delete(iter); //uhhh-- delete list?? return 0; }
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
Doubly-linked list/Element definition
Task Define the data structure for a doubly-linked list element. The element should include a data member to hold its value and pointers to both the next element in the list and the previous element in the list. The pointers should be mutable. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Ada
Ada
type Link; type Link_Access is access Link; type Link is record Next : Link_Access := null; Prev : Link_Access := null; Data : Integer; end record;
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
Doubly-linked list/Element definition
Task Define the data structure for a doubly-linked list element. The element should include a data member to hold its value and pointers to both the next element in the list and the previous element in the list. The pointers should be mutable. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#ALGOL_68
ALGOL 68
# -*- coding: utf-8 -*- # CO REQUIRES: MODE OBJVALUE = ~ # Mode/type of actual obj to be queued # END CO   MODE OBJLINK = STRUCT( REF OBJLINK next, REF OBJLINK prev, OBJVALUE value # ... etc. required # );   PROC obj link new = REF OBJLINK: HEAP OBJLINK;   PROC obj link free = (REF OBJLINK free)VOID: prev OF free := next OF free := obj queue empty # give the garbage collector a big hint #
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
Doubly-linked list/Element definition
Task Define the data structure for a doubly-linked list element. The element should include a data member to hold its value and pointers to both the next element in the list and the previous element in the list. The pointers should be mutable. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#ALGOL_W
ALGOL W
 % record type to hold an element of a doubly linked list of integers  % record DListIElement ( reference(DListIElement) prev  ; integer iValue  ; reference(DListIElement) next );  % additional record types would be required for other element types  %
http://rosettacode.org/wiki/Dutch_national_flag_problem
Dutch national flag problem
The Dutch national flag is composed of three coloured bands in the order:   red     (top)   then white,   and   lastly blue   (at the bottom). The problem posed by Edsger Dijkstra is: Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag. When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ... Task Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag. Sort the balls in a way idiomatic to your language. Check the sorted balls are in the order of the Dutch national flag. C.f. Dutch national flag problem Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
#BBC_BASIC
BBC BASIC
INSTALL @lib$+"SORTLIB" Sort% = FN_sortinit(0,0)   nBalls% = 12 DIM Balls$(nBalls%-1), Weight%(nBalls%-1), DutchFlag$(2) DutchFlag$() = "Red ", "White ", "Blue "   REM. Generate random list of balls, ensuring not sorted: REPEAT prev% = 0 : sorted% = TRUE FOR ball% = 0 TO nBalls%-1 index% = RND(3) - 1 Balls$(ball%) = DutchFlag$(index%) IF index% < prev% THEN sorted% = FALSE prev% = index% NEXT UNTIL NOT sorted% PRINT "Random list: " SUM(Balls$())   REM. Assign Dutch Flag weightings to ball colours: DutchFlag$ = SUM(DutchFlag$()) FOR ball% = 0 TO nBalls%-1 Weight%(ball%) = INSTR(DutchFlag$, Balls$(ball%)) NEXT   REM. Sort into Dutch Flag colour sequence: C% = nBalls% CALL Sort%, Weight%(0), Balls$(0) PRINT "Sorted list: " SUM(Balls$())   REM Final check: prev% = 0 : sorted% = TRUE FOR ball% = 0 TO nBalls%-1 weight% = INSTR(DutchFlag$, Balls$(ball%)) IF weight% < prev% THEN sorted% = FALSE prev% = weight% NEXT IF NOT sorted% PRINT "Error: Balls are not in correct order!"
http://rosettacode.org/wiki/Dutch_national_flag_problem
Dutch national flag problem
The Dutch national flag is composed of three coloured bands in the order:   red     (top)   then white,   and   lastly blue   (at the bottom). The problem posed by Edsger Dijkstra is: Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag. When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ... Task Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag. Sort the balls in a way idiomatic to your language. Check the sorted balls are in the order of the Dutch national flag. C.f. Dutch national flag problem Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
#C
C
#include <stdio.h> //printf() #include <stdlib.h> //srand(), rand(), RAND_MAX, qsort() #include <stdbool.h> //true, false #include <time.h> //time()   #define NUMBALLS 5 //NUMBALLS>1   int compar(const void *a, const void *b){ char c1=*(const char*)a, c2=*(const char*)b; //first cast void* to char*, then dereference return c1-c2; }   _Bool issorted(char *balls){ int i,state; state=0; for(i=0;i<NUMBALLS;i++){ if(balls[i]<state)return false; if(balls[i]>state)state=balls[i]; } return true; }   void printout(char *balls){ int i; char str[NUMBALLS+1]; for(i=0;i<NUMBALLS;i++)str[i]=balls[i]==0?'r':balls[i]==1?'w':'b'; printf("%s\n",str); }   int main(void) { char balls[NUMBALLS]; //0=r, 1=w, 2=b int i; srand(time(NULL)); //not a good seed but good enough for the example rand(); //rand() always starts with the same values for certain seeds, making // testing pretty irritating // Generate balls for(i=0;i<NUMBALLS;i++)balls[i]=(double)rand()/RAND_MAX*3; while(issorted(balls)){ //enforce that we start with non-sorted balls printf("Accidentally still sorted: "); printout(balls); for(i=0;i<NUMBALLS;i++)balls[i]=(double)rand()/RAND_MAX*3; } printf("Non-sorted: "); printout(balls); qsort(balls,NUMBALLS,sizeof(char),compar); //sort them using quicksort (stdlib) if(issorted(balls)){ //unnecessary check but task enforces it printf("Sorted: "); printout(balls); } else { printf("Sort failed: "); printout(balls); } return 0; }
http://rosettacode.org/wiki/Draw_a_cuboid
Draw a cuboid
Task Draw a   cuboid   with relative dimensions of   2 × 3 × 4. The cuboid can be represented graphically, or in   ASCII art,   depending on the language capabilities. To fulfill the criteria of being a cuboid, three faces must be visible. Either static or rotational projection is acceptable for this task. Related tasks draw a sphere draw a rotating cube write language name in 3D ASCII draw a Deathstar
#BBC_BASIC
BBC BASIC
ORIGIN 100, 100 PROCcuboid(200, 300, 400) END   DEF PROCcuboid(x, y, z) MOVE 0, 0 : MOVE 0, y GCOL 1 : PLOT 117, x, y GCOL 2 : PLOT 117, x + z * 0.4, y + z * 0.4 GCOL 4 : PLOT 117, x + z * 0.4, z * 0.4 ENDPROC  
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#Nanoquery
Nanoquery
print "Enter a variable name: " name = input()   print name + " = " exec(name + " = 42") exec("println " + name)
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#Nim
Nim
import tables   var theVar: int = 5 varMap = initTable[string, pointer]()   proc ptrToInt(p: pointer): int = result = cast[ptr int](p)[]   proc main() = write(stdout, "Enter a var name: ") let sVar = readLine(stdin) varMap[$svar] = theVar.addr echo "Variable ", sVar, " is ", ptrToInt(varMap[$sVar])   when isMainModule: main()
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#Octave
Octave
varname = input ("Enter variable name: ", "s"); value = input ("Enter value: ", "s"); eval([varname,"=",value]);
http://rosettacode.org/wiki/Draw_a_pixel
Draw a pixel
Task Create a window and draw a pixel in it, subject to the following:  the window is 320 x 240  the color of the pixel must be red (255,0,0)  the position of the pixel is x = 100, y = 100
#Lambdatalk
Lambdatalk
  1) html/css   {div {@ style="position:relative; left:0; top:0; width:320px; height:240px; border:1px solid #000;"} {div {@ style="position:absolute; left:100px; top:100px; width:1px; height:1px; background:#f00; border:0;"}}}   2) svg   {svg {@ width="320" height="240" style="border:1px solid #000;"} {rect {@ x="100" y="100" width="1" height="1" style="fill:#f00; stroke-width:0; stroke:#f00;"}}}   3) canvas   {canvas {@ id="canvas" width="320" height="240" style="border:1px solid #000;"}}   {script var canvas_pixel = function(x, y, canvas) { var ctx = document.getElementById( canvas ) .getContext( "2d" ); ctx.fillStyle = "#f00"; ctx.fillRect(x,y,1,1); };   setTimeout( canvas_pixel, 1, 100, 100, "canvas" ) }    
http://rosettacode.org/wiki/Egyptian_division
Egyptian division
Egyptian division is a method of dividing integers using addition and doubling that is similar to the algorithm of Ethiopian multiplication Algorithm: Given two numbers where the dividend is to be divided by the divisor: Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column. Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order. Continue with successive i’th rows of 2^i and 2^i * divisor. Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend. We now assemble two separate sums that both start as zero, called here answer and accumulator Consider each row of the table, in the reverse order of its construction. If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer. When the first row has been considered as above, then the integer division of dividend by divisor is given by answer. (And the remainder is given by the absolute value of accumulator - dividend). Example: 580 / 34 Table creation: powers_of_2 doublings 1 34 2 68 4 136 8 272 16 544 Initialization of sums: powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 0 0 Considering table rows, bottom-up: When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations. powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 16 544 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 16 544 4 136 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 17 578 2 68 4 136 8 272 16 544 Answer So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2. Task The task is to create a function that does Egyptian division. The function should closely follow the description above in using a list/array of powers of two, and another of doublings. Functions should be clear interpretations of the algorithm. Use the function to divide 580 by 34 and show the answer here, on this page. Related tasks   Egyptian fractions References   Egyptian Number System
#PicoLisp
PicoLisp
(seed (in "/dev/urandom" (rd 8)))   (de divmod (Dend Disor) (cons (/ Dend Disor) (% Dend Disor)) ) (de egyptian (Dend Disor) (let (P 0 D Disor S (make (while (>= Dend (setq @@ (+ D D))) (yoke (cons (** 2 (swap 'P (inc P))) (swap 'D @@) ) ) ) ) P (** 2 P) ) (mapc '((L) (and (>= Dend (+ D (cdr L))) (inc 'P (car L)) (inc 'D (cdr L)) ) ) S ) (cons P (abs (- Dend D))) ) ) (for N 1000 (let (A (rand 1 1000) B (rand 1 A)) (test (divmod A B) (egyptian A B)) ) ) (println (egyptian 580 34))
http://rosettacode.org/wiki/Egyptian_division
Egyptian division
Egyptian division is a method of dividing integers using addition and doubling that is similar to the algorithm of Ethiopian multiplication Algorithm: Given two numbers where the dividend is to be divided by the divisor: Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column. Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order. Continue with successive i’th rows of 2^i and 2^i * divisor. Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend. We now assemble two separate sums that both start as zero, called here answer and accumulator Consider each row of the table, in the reverse order of its construction. If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer. When the first row has been considered as above, then the integer division of dividend by divisor is given by answer. (And the remainder is given by the absolute value of accumulator - dividend). Example: 580 / 34 Table creation: powers_of_2 doublings 1 34 2 68 4 136 8 272 16 544 Initialization of sums: powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 0 0 Considering table rows, bottom-up: When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations. powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 16 544 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 16 544 4 136 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 17 578 2 68 4 136 8 272 16 544 Answer So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2. Task The task is to create a function that does Egyptian division. The function should closely follow the description above in using a list/array of powers of two, and another of doublings. Functions should be clear interpretations of the algorithm. Use the function to divide 580 by 34 and show the answer here, on this page. Related tasks   Egyptian fractions References   Egyptian Number System
#Prolog
Prolog
egyptian_divide(Dividend, Divisor, Quotient, Remainder):- powers2_multiples(Dividend, [1], Powers, [Divisor], Multiples), accumulate(Dividend, Powers, Multiples, 0, Quotient, 0, Acc), Remainder is Dividend - Acc.   powers2_multiples(Dividend, Powers, Powers, Multiples, Multiples):- Multiples = [M|_], 2 * M > Dividend, !. powers2_multiples(Dividend, [Power|P], Powers, [Multiple|M], Multiples):- Power2 is 2 * Power, Multiple2 is 2 * Multiple, powers2_multiples(Dividend, [Power2,Power|P], Powers, [Multiple2, Multiple|M], Multiples).   accumulate(_, [], [], Ans, Ans, Acc, Acc):-!. accumulate(Dividend, [P|Powers], [M|Multiples], Ans1, Answer, Acc1, Acc):- Acc1 + M =< Dividend, !, Acc2 is Acc1 + M, Ans2 is Ans1 + P, accumulate(Dividend, Powers, Multiples, Ans2, Answer, Acc2, Acc). accumulate(Dividend, [_|Powers], [_|Multiples], Ans1, Answer, Acc1, Acc):- accumulate(Dividend, Powers, Multiples, Ans1, Answer, Acc1, Acc).   test_egyptian_divide(Dividend, Divisor):- egyptian_divide(Dividend, Divisor, Quotient, Remainder), writef('%w / %w = %w, remainder = %w\n', [Dividend, Divisor, Quotient, Remainder]).   main:- test_egyptian_divide(580, 34).
http://rosettacode.org/wiki/Egyptian_fractions
Egyptian fractions
An   Egyptian fraction   is the sum of distinct unit fractions such as: 1 2 + 1 3 + 1 16 ( = 43 48 ) {\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{16}}\,(={\tfrac {43}{48}})} Each fraction in the expression has a numerator equal to   1   (unity)   and a denominator that is a positive integer,   and all the denominators are distinct   (i.e., no repetitions). Fibonacci's   Greedy algorithm for Egyptian fractions   expands the fraction   x y {\displaystyle {\tfrac {x}{y}}}   to be represented by repeatedly performing the replacement x y = 1 ⌈ y / x ⌉ + ( − y ) mod x y ⌈ y / x ⌉ {\displaystyle {\frac {x}{y}}={\frac {1}{\lceil y/x\rceil }}+{\frac {(-y)\!\!\!\!\mod x}{y\lceil y/x\rceil }}} (simplifying the 2nd term in this replacement as necessary, and where   ⌈ x ⌉ {\displaystyle \lceil x\rceil }   is the   ceiling   function). For this task,   Proper and improper fractions   must be able to be expressed. Proper  fractions   are of the form   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive integers, such that   a < b {\displaystyle a<b} ,     and improper fractions are of the form   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive integers, such that   a ≥ b. (See the REXX programming example to view one method of expressing the whole number part of an improper fraction.) For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [n]. Task requirements   show the Egyptian fractions for: 43 48 {\displaystyle {\tfrac {43}{48}}} and 5 121 {\displaystyle {\tfrac {5}{121}}} and 2014 59 {\displaystyle {\tfrac {2014}{59}}}   for all proper fractions,   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has:   the largest number of terms,   the largest denominator.   for all one-, two-, and three-digit integers,   find and show (as above).     {extra credit} Also see   Wolfram MathWorld™ entry: Egyptian fraction
#Prolog
Prolog
count_digits(Number, Count):- atom_number(A, Number), atom_length(A, Count).   integer_to_atom(Number, Atom):- atom_number(A, Number), atom_length(A, Count), (Count =< 20 -> Atom = A ; sub_atom(A, 0, 10, _, A1), P is Count - 10, sub_atom(A, P, 10, _, A2), atom_concat(A1, '...', A3), atom_concat(A3, A2, Atom) ).   egyptian(0, _, []):- !. egyptian(X, Y, [Z|E]):- Z is (Y + X - 1)//X, X1 is -Y mod X, Y1 is Y * Z, egyptian(X1, Y1, E).   print_egyptian([]):- !. print_egyptian([N|List]):- integer_to_atom(N, A), write(1/A), (List = [] -> true; write(' + ')), print_egyptian(List).   print_egyptian(X, Y):- writef('Egyptian fraction for %t/%t: ', [X, Y]), (X > Y -> N is X//Y, writef('[%t] ', [N]), X1 is X mod Y ; X1 = X ), egyptian(X1, Y, E), print_egyptian(E), nl.   max_terms_and_denominator1(D, Max_terms, Max_denom, Max_terms1, Max_denom1):- max_terms_and_denominator1(D, 1, Max_terms, Max_denom, Max_terms1, Max_denom1).   max_terms_and_denominator1(D, D, Max_terms, Max_denom, Max_terms, Max_denom):- !. max_terms_and_denominator1(D, N, Max_terms, Max_denom, Max_terms1, Max_denom1):- Max_terms1 = f(_, _, _, Len1), Max_denom1 = f(_, _, _, Max1), egyptian(N, D, E), length(E, Len), last(E, Max), (Len > Len1 -> Max_terms2 = f(N, D, E, Len) ; Max_terms2 = Max_terms1 ), (Max > Max1 -> Max_denom2 = f(N, D, E, Max) ; Max_denom2 = Max_denom1 ), N1 is N + 1, max_terms_and_denominator1(D, N1, Max_terms, Max_denom, Max_terms2, Max_denom2).   max_terms_and_denominator(N, Max_terms, Max_denom):- max_terms_and_denominator(N, 1, Max_terms, Max_denom, f(0, 0, [], 0), f(0, 0, [], 0)).   max_terms_and_denominator(N, N, Max_terms, Max_denom, Max_terms, Max_denom):-!. max_terms_and_denominator(N, N1, Max_terms, Max_denom, Max_terms1, Max_denom1):- max_terms_and_denominator1(N1, Max_terms2, Max_denom2, Max_terms1, Max_denom1), N2 is N1 + 1, max_terms_and_denominator(N, N2, Max_terms, Max_denom, Max_terms2, Max_denom2).   show_max_terms_and_denominator(N):- writef('Proper fractions with most terms and largest denominator, limit = %t:\n', [N]), max_terms_and_denominator(N, f(N_max_terms, D_max_terms, E_max_terms, Len), f(N_max_denom, D_max_denom, E_max_denom, Max)), writef('Most terms (%t): %t/%t = ', [Len, N_max_terms, D_max_terms]), print_egyptian(E_max_terms), nl, count_digits(Max, Digits), writef('Largest denominator (%t digits): %t/%t = ', [Digits, N_max_denom, D_max_denom]), print_egyptian(E_max_denom), nl.   main:- print_egyptian(43, 48), print_egyptian(5, 121), print_egyptian(2014, 59), nl, show_max_terms_and_denominator(100), nl, show_max_terms_and_denominator(1000).
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#Tcl
Tcl
# This is how to declare functions - the mathematical entities - as opposed to procedures proc function {name arguments body} { uplevel 1 [list proc tcl::mathfunc::$name $arguments [list expr $body]] }   function double n {$n * 2} function halve n {$n / 2} function even n {($n & 1) == 0} function mult {a b} { $a < 1 ? 0 : even($a) ? [logmult STRUCK] + mult(halve($a), double($b))  : [logmult KEPT] + mult(halve($a), double($b)) + $b }   # Wrapper to set up the logging proc ethiopianMultiply {a b {tutor false}} { if {$tutor} { set wa [expr {[string length $a]+1}] set wb [expr {$wa+[string length $b]-1}] puts stderr "Ethiopian multiplication of $a and $b" interp alias {} logmult {} apply {{wa wb msg} { upvar 1 a a b b puts stderr [format "%*d %*d %s" $wa $a $wb $b $msg] return 0 }} $wa $wb } else { proc logmult args {return 0} } return [expr {mult($a,$b)}] }
http://rosettacode.org/wiki/Elementary_cellular_automaton
Elementary cellular automaton
An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits. The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101. Task Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice. The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally. This task is basically a generalization of one-dimensional cellular automata. See also Cellular automata (natureofcode.com)
#Scheme
Scheme
; uses SRFI-1 library http://srfi.schemers.org/srfi-1/srfi-1.html   (define (evolve ls r) (unfold (lambda (x) (null? (cddr x))) (lambda (x) (vector-ref r (+ (* 4 (first x)) (* 2 (second x)) (third x)))) cdr (cons (last ls) (append ls (list (car ls))))))   (define (automaton s r n) (define (*automaton s0 rv n) (for-each (lambda (x) (display (if (zero? x) #\. #\#))) s0) (newline) (if (not (zero? n)) (let ((s1 (evolve s0 rv))) (*automaton s1 rv (- n 1))))) (display "Rule ") (display r) (newline) (*automaton s (list->vector (append (int->bin r) (make-list (- 7 (floor (/ (log r) (log 2)))) 0))) n))   (automaton '(0 1 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1) 30 20)
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#WDTE
WDTE
let max a b => a { < b => b };   let ! n => n { > 1 => - n 1 -> ! -> * n } -> max 1;
http://rosettacode.org/wiki/Echo_server
Echo server
Create a network service that sits on TCP port 12321, which accepts connections on that port, and which echoes complete lines (using a carriage-return/line-feed sequence as line separator) back to clients. No error handling is required. For the purposes of testing, it is only necessary to support connections from localhost (127.0.0.1 or perhaps ::1). Logging of connection information to standard output is recommended. The implementation must be able to handle simultaneous connections from multiple clients. A multi-threaded or multi-process solution may be used. Each connection must be able to echo more than a single line. The implementation must not stop responding to other clients if one client sends a partial line or stops reading responses.
#Python
Python
import SocketServer   HOST = "localhost" PORT = 12321   # this server uses ThreadingMixIn - one thread per connection # replace with ForkMixIn to spawn a new process per connection   class EchoServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer): # no need to override anything - default behavior is just fine pass   class EchoRequestHandler(SocketServer.StreamRequestHandler): """ Handles one connection to the client. """ def handle(self): print "connection from %s" % self.client_address[0] while True: line = self.rfile.readline() if not line: break print "%s wrote: %s" % (self.client_address[0], line.rstrip()) self.wfile.write(line) print "%s disconnected" % self.client_address[0]     # Create the server server = EchoServer((HOST, PORT), EchoRequestHandler)   # Activate the server; this will keep running until you # interrupt the program with Ctrl-C print "server listening on %s:%s" % server.server_address server.serve_forever()
http://rosettacode.org/wiki/Eban_numbers
Eban numbers
Definition An   eban   number is a number that has no letter   e   in it when the number is spelled in English. Or more literally,   spelled numbers that contain the letter   e   are banned. The American version of spelling numbers will be used here   (as opposed to the British). 2,000,000,000   is two billion,   not   two milliard. Only numbers less than   one sextillion   (1021)   will be considered in/for this task. This will allow optimizations to be used. Task   show all eban numbers   ≤   1,000   (in a horizontal format),   and a count   show all eban numbers between   1,000   and   4,000   (inclusive),   and a count   show a count of all eban numbers up and including           10,000   show a count of all eban numbers up and including         100,000   show a count of all eban numbers up and including      1,000,000   show a count of all eban numbers up and including    10,000,000   show all output here. See also   The MathWorld entry:   eban numbers.   The OEIS entry:   A6933, eban numbers.
#PicoLisp
PicoLisp
(de _eban? (N) (let (B (/ N 1000000000) R (% N 1000000000) M (/ R 1000000) R (% N 1000000) Z (/ R 1000) R (% R 1000) ) (and (>= M 30) (<= M 66) (setq M (% M 10)) ) (and (>= Z 30) (<= Z 66) (setq Z (% Z 10)) ) (and (>= R 30) (<= R 66) (setq R (% R 10)) ) (fully '((S) (unless (bit? 1 (val S)) (>= 6 (val S)) ) ) '(B M Z R) ) ) ) (de eban (B A) (default A 2) (let R (cons 0 (cons)) (for (N A (>= B N) (+ N 2)) (and (_eban? N) (inc R) (push (cdr R) N) ) ) (con R (flip (cadr R))) R ) ) (off R) (prinl "eban numbers up to an including 1000:") (setq R (eban 1000)) (println (cdr R)) (prinl "count: " (car R)) (prinl) (prinl "eban numbers between 1000 and 4000") (setq R (eban 4000 1000)) (println (cdr R)) (prinl "count: " (car R)) (prinl) (prinl "eban numbers up to an including 10000:") (prinl "count: " (car (eban 10000))) (prinl) (prinl "eban numbers up to an including 100000:") (prinl "count: " (car (eban 100000))) (prinl) (prinl "eban numbers up to an including 1000000:") (prinl "count: " (car (eban 1000000))) (prinl) (prinl "eban numbers up to an including 10000000:") (prinl "count: " (car (eban 10000000)))
http://rosettacode.org/wiki/Eban_numbers
Eban numbers
Definition An   eban   number is a number that has no letter   e   in it when the number is spelled in English. Or more literally,   spelled numbers that contain the letter   e   are banned. The American version of spelling numbers will be used here   (as opposed to the British). 2,000,000,000   is two billion,   not   two milliard. Only numbers less than   one sextillion   (1021)   will be considered in/for this task. This will allow optimizations to be used. Task   show all eban numbers   ≤   1,000   (in a horizontal format),   and a count   show all eban numbers between   1,000   and   4,000   (inclusive),   and a count   show a count of all eban numbers up and including           10,000   show a count of all eban numbers up and including         100,000   show a count of all eban numbers up and including      1,000,000   show a count of all eban numbers up and including    10,000,000   show all output here. See also   The MathWorld entry:   eban numbers.   The OEIS entry:   A6933, eban numbers.
#Python
Python
  # Use inflect   """   show all eban numbers <= 1,000 (in a horizontal format), and a count show all eban numbers between 1,000 and 4,000 (inclusive), and a count show a count of all eban numbers up and including 10,000 show a count of all eban numbers up and including 100,000 show a count of all eban numbers up and including 1,000,000 show a count of all eban numbers up and including 10,000,000   """   import inflect import time   before = time.perf_counter()   p = inflect.engine()   # eban numbers <= 1000   print(' ') print('eban numbers up to and including 1000:') print(' ')   count = 0   for i in range(1,1001): if not 'e' in p.number_to_words(i): print(str(i)+' ',end='') count += 1   print(' ') print(' ') print('count = '+str(count)) print(' ')   # eban numbers 1000 to 4000   print(' ') print('eban numbers between 1000 and 4000 (inclusive):') print(' ')   count = 0   for i in range(1000,4001): if not 'e' in p.number_to_words(i): print(str(i)+' ',end='') count += 1   print(' ') print(' ') print('count = '+str(count)) print(' ')   # eban numbers up to 10000   print(' ') print('eban numbers up to and including 10000:') print(' ')   count = 0   for i in range(1,10001): if not 'e' in p.number_to_words(i): count += 1   print(' ') print('count = '+str(count)) print(' ')   # eban numbers up to 100000   print(' ') print('eban numbers up to and including 100000:') print(' ')   count = 0   for i in range(1,100001): if not 'e' in p.number_to_words(i): count += 1   print(' ') print('count = '+str(count)) print(' ')   # eban numbers up to 1000000   print(' ') print('eban numbers up to and including 1000000:') print(' ')   count = 0   for i in range(1,1000001): if not 'e' in p.number_to_words(i): count += 1   print(' ') print('count = '+str(count)) print(' ')   # eban numbers up to 10000000   print(' ') print('eban numbers up to and including 10000000:') print(' ')   count = 0   for i in range(1,10000001): if not 'e' in p.number_to_words(i): count += 1   print(' ') print('count = '+str(count)) print(' ')   after = time.perf_counter()   print(" ") print("Run time in seconds: "+str(after - before))  
http://rosettacode.org/wiki/Draw_a_rotating_cube
Draw a rotating cube
Task Draw a rotating cube. It should be oriented with one vertex pointing straight up, and its opposite vertex on the main diagonal (the one farthest away) straight down. It can be solid or wire-frame, and you can use ASCII art if your language doesn't have graphical capabilities. Perspective is optional. Related tasks Draw a cuboid write language name in 3D ASCII
#J
J
require'gl2 gles ide/qt/opengl' coinsert'jgl2 jgles qtopengl'   rotcube=: {{ if.0=nc<'sprog'do.return.end. fixosx=. 'opengl';'opengl',('DARWIN'-:UNAME)#' version 4.1' wd 'pc rot; minwh 300 300; cc cube opengl flush' rplc fixosx HD=: ".wd 'qhwndc cube' wd 'ptimer 17; pshow' }}   rot_close=: {{ wd 'ptimer 0' glDeleteBuffers ::0: 2; vbo glDeleteProgram ::0: sprog erase 'sprog' wd 'pclose' }}   cstr=: {{if.y do.memr y,0 _1 2 else.EMPTY end.}} gstr=: {{cstr>{.glGetString y}} diag=: {{p[echo y,': ',p=.gstr".y}}   blitf=: {{ dat=. 1 fc,y NB. short floats glBindBuffer GL_ARRAY_BUFFER; x{vbo glBufferData GL_ARRAY_BUFFER; (#dat); (symdat<'dat'); GL_STATIC_DRAW }}   rot_cube_initialize=: {{ erase'sprog' if.0=#diag 'GL_VERSION' do.echo 'cannot retrieve GL_VERSION' return.end. diag each;:'GL_VENDOR GL_RENDERER GL_SHADING_LANGUAGE_VERSION' GLSL=:wglGLSL'' wglPROC'' 'err program'=. gl_makeprogram VSRC ;&fixversion FSRC if.#err do. echo 'err: ', err return.end. if. GLSL>120 do.vao=: >{:glGenVertexArrays 1;,_1 end. assert _1~:vertexAttr=: >{.glGetAttribLocation program;'vertex' assert _1~:colorAttr=: >{.glGetAttribLocation program;'color' assert _1~:mvpUni=: >{.glGetUniformLocation program;'mvp' vbo=: >{:glGenBuffers 2;2#_1 0 blitf vertexData 1 blitf colorData sprog=: program }}   VSRC=: {{)n #version $version $v_in $highp vec3 vertex; $v_in $lowp vec3 color; $v_out $lowp vec4 v_color; uniform mat4 mvp; void main(void) { gl_Position= mvp * vec4(vertex,1.0); v_color= vec4(color,1.0); } }}   FSRC=: {{)n #version $version $f_in $lowp vec4 v_color; $fragColor void main(void) { $gl_fragColor= v_color; } }}   fixversion=: {{ NB. cope with host shader language version r=. '$version';GLSL,&":;(GLSL>:300)#(*GLES_VERSION){' core';' es' f1=. GLSL<:120 r=.r, '$v_in';f1{'in';'attribute' r=.r, '$v_out';f1{'out';'varying' r=.r, '$f_in';f1{'in';'varying' r=.r, '$highp ';f1#(*GLES_VERSION)#'highp' r=.r, '$lowp ';f1#(*GLES_VERSION)#'lowp' f2=.(330<:GLSL)+.(300<:GLSL)**GLES_VERSION r=.r, '$gl_fragColor';f2{'gl_FragColor';'fragColor' r=.r, '$fragColor';f2#'out vec4 fragColor;' y rplc r }}   rot_timer=: {{ try. gl_sel HD gl_paint'' catch. echo 'error in rot_timer',LF,13!:12'' wd'ptimer 0' end. }}   zeroVAttr=: {{ glEnableVertexAttribArray y glBindBuffer GL_ARRAY_BUFFER; x{vbo glVertexAttribPointer y; 3; GL_FLOAT; 0; 0; 0 }}   mp=: +/ .* ref=: (gl_Translate 0 0 _10) mp glu_LookAt 0 0 1,0 0 0,1 0 0 rot_cube_paint=: {{ try. if.nc<'sprog' do.return.end. wh=. gl_qwh'' glClear GL_COLOR_BUFFER_BIT+GL_DEPTH_BUFFER_BIT [glClearColor 0 0 0 0+%3 glUseProgram sprog glEnable each GL_DEPTH_TEST, GL_CULL_FACE, GL_BLEND glBlendFunc GL_SRC_ALPHA; GL_ONE_MINUS_SRC_ALPHA mvp=. (gl_Rotate (360|60*6!:1''),1 0 0)mp ref mp gl_Perspective 30, (%/wh),1 20 glUniformMatrix4fv mvpUni; 1; GL_FALSE; mvp if. GLSL>120 do. glBindVertexArray {.vao end. 0 zeroVAttr vertexAttr 1 zeroVAttr colorAttr glDrawArrays GL_TRIANGLES; 0; 36 glUseProgram 0 catch. echo 'error in rot_cube_paint',LF,13!:12'' wd'ptimer 0' end. }}   NB. oriented triangle representation of unit cube unitCube=: #:(0 1 2, 2 1 3)&{@".;._2 {{)n 2 3 0 1 NB. unit cube corner indices 3 7 1 5 NB. 0: origin 4 0 5 1 NB. 1, 2, 4: unit distance along each axis 6 2 4 0 NB. 3, 5, 6, 7: combinations of axes 7 6 5 4 7 3 6 2 }}   NB. orient cube so diagonal is along first axis daxis=: (_1^5 6 e.~i.3 3)*%:6%~2 0 4,2 3 1,:2 3 1 vertexData=:(_1^unitCube)mp daxis NB. cube with center at origin colorData=: unitCube NB. corresponding colors   rotcube''
http://rosettacode.org/wiki/Element-wise_operations
Element-wise operations
This task is similar to:   Matrix multiplication   Matrix transposition Task Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks. Implement:   addition   subtraction   multiplication   division   exponentiation Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
#PARI.2FGP
PARI/GP
multMM(A,B)=matrix(#A[,1],#A,i,j,A[i,j]*B[i,j]); divMM(A,B)=matrix(#A[,1],#A,i,j,A[i,j]/B[i,j]); powMM(A,B)=matrix(#A[,1],#A,i,j,A[i,j]^B[i,j]);
http://rosettacode.org/wiki/Draw_a_sphere
Draw a sphere
Task Draw a sphere. The sphere can be represented graphically, or in ASCII art, depending on the language capabilities. Either static or rotational projection is acceptable for this task. Related tasks draw a cuboid draw a rotating cube write language name in 3D ASCII draw a Deathstar
#AutoHotkey
AutoHotkey
#NoEnv SetBatchLines, -1 #SingleInstance, Force   ; Uncomment if Gdip.ahk is not in your standard library #Include, Gdip.ahk   ; Settings X := 200, Y := 200, Width := 200, Height := 200 ; Location and size of sphere rotation := -30 ; degrees ARGB := 0xFFFF0000 ; Color=Solid Red   If !pToken := Gdip_Startup() ; Start gdi+ { MsgBox, 48, gdiplus error!, Gdiplus failed to start. Please ensure you have gdiplus on your system ExitApp } OnExit, Exit   Gui, -Caption +E0x80000 +LastFound +AlwaysOnTop +ToolWindow +OwnDialogs ; Create GUI Gui, Show, NA ; Show GUI hwnd1 := WinExist() ; Get a handle to this window we have created in order to update it later hbm := CreateDIBSection(A_ScreenWidth, A_ScreenHeight) ; Create a gdi bitmap drawing area hdc := CreateCompatibleDC() ; Get a device context compatible with the screen obm := SelectObject(hdc, hbm) ; Select the bitmap into the device context pGraphics := Gdip_GraphicsFromHDC(hdc) ; Get a pointer to the graphics of the bitmap, for use with drawing functions Gdip_SetSmoothingMode(pGraphics, 4) ; Set the smoothing mode to antialias = 4 to make shapes appear smother   Gdip_TranslateWorldTransform(pGraphics, X, Y) Gdip_RotateWorldTransform(pGraphics, rotation)   ; Base ellipse pBrush := Gdip_CreateLineBrushFromRect(0, 0, Width, Height, ARGB, 0xFF000000) Gdip_FillEllipse(pGraphics, pBrush, 0, 0, Width, Height)   ; First highlight ellipse pBrush := Gdip_CreateLineBrushFromRect(Width*0.1, Height*0.01, Width*0.8, Height*0.6, 0x33FFFFFF, 0x00FFFFFF) Gdip_FillEllipse(pGraphics, pBrush, Width*0.1, Height*0.01, Width*0.8, Height*0.6)   ; Second highlight ellipse pBrush := Gdip_CreateLineBrushFromRect(Width*0.3, Height*0.02, Width*0.3, Height*0.2, 0xBBFFFFFF, 0x00FFFFFF) Gdip_FillEllipse(pGraphics, pBrush, Width*0.3, Height*0.02, Width*0.3, Height*0.2)     UpdateLayeredWindow(hwnd1, hdc, 0, 0, A_ScreenWidth, A_ScreenHeight) SelectObject(hdc, obm) ; Select the object back into the hdc Gdip_DeletePath(Path) Gdip_DeleteBrush(pBrush) DeleteObject(hbm) ; Now the bitmap may be deleted DeleteDC(hdc) ; Also the device context related to the bitmap may be deleted Gdip_DeleteGraphics(G) ; The graphics may now be deleted Return   Exit: ; gdi+ may now be shutdown on exiting the program Gdip_Shutdown(pToken) ExitApp
http://rosettacode.org/wiki/Doubly-linked_list/Element_insertion
Doubly-linked list/Element insertion
Doubly-Linked List (element) This is much like inserting into a Singly-Linked List, but with added assignments so that the backwards-pointing links remain correct. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Delphi
Delphi
  program Element_insertion;   {$APPTYPE CONSOLE}   uses System.SysUtils,Boost.LinkedList;   var List:TLinkedList<Integer>; Node:TLinkedListNode<Integer>; begin List := TLinkedList<Integer>.Create; Node:= List.Add(5); List.AddAfter(Node,7); List.AddAfter(Node,15); Writeln(List.ToString); List.Free; Readln; end.
http://rosettacode.org/wiki/Doubly-linked_list/Element_insertion
Doubly-linked list/Element insertion
Doubly-Linked List (element) This is much like inserting into a Singly-Linked List, but with added assignments so that the backwards-pointing links remain correct. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#E
E
def insert(after, value) { def newNode := makeElement(value, after, after.getNext()) after.getNext().setPrev(newNode) after.setNext(newNode) }
http://rosettacode.org/wiki/Doubly-linked_list/Element_insertion
Doubly-linked list/Element insertion
Doubly-Linked List (element) This is much like inserting into a Singly-Linked List, but with added assignments so that the backwards-pointing links remain correct. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Erlang
Erlang
2> doubly_linked_list:task(). foreach_next a foreach_next c foreach_next b foreach_previous b foreach_previous c foreach_previous a
http://rosettacode.org/wiki/Doubly-linked_list/Traversal
Doubly-linked list/Traversal
Traverse from the beginning of a doubly-linked list to the end, and from the end to the beginning. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#C.23
C#
using System; using System.Collections.Generic;   namespace RosettaCode.DoublyLinkedList { internal static class Program { private static void Main() { var list = new LinkedList<char>("hello");   var current = list.First; do { Console.WriteLine(current.Value); } while ((current = current.Next) != null);   Console.WriteLine();   current = list.Last; do { Console.WriteLine(current.Value); } while ((current = current.Previous) != null); } } }
http://rosettacode.org/wiki/Doubly-linked_list/Traversal
Doubly-linked list/Traversal
Traverse from the beginning of a doubly-linked list to the end, and from the end to the beginning. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#C.2B.2B
C++
#include <iostream> #include <list>   int main () { std::list<int> numbers {1, 5, 7, 0, 3, 2}; for(const auto& i: numbers) std::cout << i << ' '; std::cout << '\n'; }
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
Doubly-linked list/Element definition
Task Define the data structure for a doubly-linked list element. The element should include a data member to hold its value and pointers to both the next element in the list and the previous element in the list. The pointers should be mutable. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#ARM_Assembly
ARM Assembly
    /* ARM assembly Raspberry PI */   /* structure Node Doublylinked List*/ .struct 0 NDlist_next: @ next element .struct NDlist_next + 4 NDlist_prev: @ previous element .struct NDlist_prev + 4 NDlist_value: @ element value or key .struct NDlist_value + 4 NDlist_fin:  
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
Doubly-linked list/Element definition
Task Define the data structure for a doubly-linked list element. The element should include a data member to hold its value and pointers to both the next element in the list and the previous element in the list. The pointers should be mutable. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#AutoHotkey
AutoHotkey
Lbl LINK r₂→{r₁}ʳ 0→{r₁+2}ʳ 0→{r₁+4}ʳ r₁ Return   Lbl NEXT {r₁+2}ʳ Return   Lbl PREV {r₁+4}ʳ Return   Lbl VALUE {r₁}ʳ Return
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
Doubly-linked list/Element definition
Task Define the data structure for a doubly-linked list element. The element should include a data member to hold its value and pointers to both the next element in the list and the previous element in the list. The pointers should be mutable. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Axe
Axe
Lbl LINK r₂→{r₁}ʳ 0→{r₁+2}ʳ 0→{r₁+4}ʳ r₁ Return   Lbl NEXT {r₁+2}ʳ Return   Lbl PREV {r₁+4}ʳ Return   Lbl VALUE {r₁}ʳ Return
http://rosettacode.org/wiki/Dutch_national_flag_problem
Dutch national flag problem
The Dutch national flag is composed of three coloured bands in the order:   red     (top)   then white,   and   lastly blue   (at the bottom). The problem posed by Edsger Dijkstra is: Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag. When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ... Task Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag. Sort the balls in a way idiomatic to your language. Check the sorted balls are in the order of the Dutch national flag. C.f. Dutch national flag problem Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
#C.2B.2B
C++
#include <algorithm> #include <iostream>   // Dutch national flag problem template <typename BidIt, typename T> void dnf_partition(BidIt first, BidIt last, const T& low, const T& high) { for (BidIt next = first; next != last; ) { if (*next < low) { std::iter_swap(first++, next++); } else if (!(*next < high)) { std::iter_swap(next, --last); } else { ++next; } } }   enum Colors { RED, WHITE, BLUE };   void print(const Colors *balls, size_t size) { static const char *label[] = { "red", "white", "blue" };   std::cout << "Balls:"; for (size_t i = 0; i < size; ++i) { std::cout << ' ' << label[balls[i]]; } std::cout << "\nSorted: " << std::boolalpha << std::is_sorted(balls, balls + size) << '\n'; }   int main() { Colors balls[] = { RED, WHITE, BLUE, RED, WHITE, BLUE, RED, WHITE, BLUE };   std::random_shuffle(balls, balls + 9); print(balls, 9);   dnf_partition(balls, balls + 9, WHITE, BLUE); print(balls, 9); }
http://rosettacode.org/wiki/Draw_a_cuboid
Draw a cuboid
Task Draw a   cuboid   with relative dimensions of   2 × 3 × 4. The cuboid can be represented graphically, or in   ASCII art,   depending on the language capabilities. To fulfill the criteria of being a cuboid, three faces must be visible. Either static or rotational projection is acceptable for this task. Related tasks draw a sphere draw a rotating cube write language name in 3D ASCII draw a Deathstar
#Befunge
Befunge
"  :htdiW">:#,_>&>00p" :thgieH">:#,_>&>:10p0"  :htpeD">:#,_$>&>:20p55+,+:1`*:vv v\-*`0:-g01\++*`\0:-\-1g01:\-*`0:-g02\+*`\0:-\-1g02<:::::<\g3`\g01:\1\+55\1-1_v >":"\1\:20g\`!3g:30p\00g2*\::20g\`\20g1-\`+1+3g\1\30g\:20g-::0\`\2*1+*-\48*\:^v /\_ @_\#!:!#$>#$_\#!:,#-\#1 <+1\<*84g02"_"+1*2g00+551$<
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#Oforth
Oforth
: createVar(varname) "tvar: " varname + eval ;   "myvar" createVar   12 myvar put myvar at .
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#PARI.2FGP
PARI/GP
eval(Str(input(), "=34"))
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#Pascal
Pascal
  PROGRAM ExDynVar;   {$IFDEF FPC} {$mode objfpc}{$H+}{$J-}{R+} {$ELSE} {$APPTYPE CONSOLE} {$ENDIF}   (*) Free Pascal Compiler version 3.2.0 [2020/06/14] for x86_64 The free and readable alternative at C/C++ speeds compiles natively to almost any platform, including raspberry PI   This demo uses a dictionary because it is compiled: it cannot make dynamic variables at runtime. (*)   USES Generics.Collections, SysUtils, Variants;   TYPE   Tdict = {$IFDEF FPC} specialize {$ENDIF} TDictionary < ansistring, variant > ;   VAR VarName: ansistring; strValue: ansistring; VarValue: variant; D: Tdict;   FUNCTION SetType ( strVal: ansistring ) : variant ;   (*) If the value is numeric, store it as numeric, otherwise store it as ansistring (*)   BEGIN   TRY SetType := StrToFloat ( strVal ) ; EXCEPT SetType := strVal ; END;   END;   BEGIN   D := TDict.Create; REPEAT Write ( 'Enter variable name : ' ) ; ReadLn ( VarName ) ; Write ( 'Enter variable Value : ' ) ; ReadLn ( strValue ) ; VarValue := SetType ( strValue ) ; TRY BEGIN D.AddOrSetValue ( VarName, VarValue ) ; Write ( VarName ) ; Write ( ' = ' ) ; WriteLn ( D [ VarName ] ) ; END; EXCEPT WriteLn ( 'Something went wrong.. Try again' ) ; END; UNTIL ( strValue = '' ) ; D.Free;   END.  
http://rosettacode.org/wiki/Draw_a_pixel
Draw a pixel
Task Create a window and draw a pixel in it, subject to the following:  the window is 320 x 240  the color of the pixel must be red (255,0,0)  the position of the pixel is x = 100, y = 100
#Lua
Lua
local SDL = require "SDL"   local ret = SDL.init { SDL.flags.Video } local window = SDL.createWindow { title = "Pixel", height = 320, width = 240 }   local renderer = SDL.createRenderer(window, 0, 0)   renderer:clear() renderer:setDrawColor(0xFF0000) renderer:drawPoint({x = 100,y = 100}) renderer:present()   SDL.delay(5000)  
http://rosettacode.org/wiki/Draw_a_pixel
Draw a pixel
Task Create a window and draw a pixel in it, subject to the following:  the window is 320 x 240  the color of the pixel must be red (255,0,0)  the position of the pixel is x = 100, y = 100
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
CreateWindow[PaletteNotebook[{Graphics[{Red, Point[{100, 100}]}]}], WindowSize -> {320, 240}]
http://rosettacode.org/wiki/Egyptian_division
Egyptian division
Egyptian division is a method of dividing integers using addition and doubling that is similar to the algorithm of Ethiopian multiplication Algorithm: Given two numbers where the dividend is to be divided by the divisor: Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column. Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order. Continue with successive i’th rows of 2^i and 2^i * divisor. Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend. We now assemble two separate sums that both start as zero, called here answer and accumulator Consider each row of the table, in the reverse order of its construction. If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer. When the first row has been considered as above, then the integer division of dividend by divisor is given by answer. (And the remainder is given by the absolute value of accumulator - dividend). Example: 580 / 34 Table creation: powers_of_2 doublings 1 34 2 68 4 136 8 272 16 544 Initialization of sums: powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 0 0 Considering table rows, bottom-up: When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations. powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 16 544 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 16 544 4 136 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 17 578 2 68 4 136 8 272 16 544 Answer So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2. Task The task is to create a function that does Egyptian division. The function should closely follow the description above in using a list/array of powers of two, and another of doublings. Functions should be clear interpretations of the algorithm. Use the function to divide 580 by 34 and show the answer here, on this page. Related tasks   Egyptian fractions References   Egyptian Number System
#Python
Python
from itertools import product   def egyptian_divmod(dividend, divisor): assert divisor != 0 pwrs, dbls = [1], [divisor] while dbls[-1] <= dividend: pwrs.append(pwrs[-1] * 2) dbls.append(pwrs[-1] * divisor) ans, accum = 0, 0 for pwr, dbl in zip(pwrs[-2::-1], dbls[-2::-1]): if accum + dbl <= dividend: accum += dbl ans += pwr return ans, abs(accum - dividend)   if __name__ == "__main__": # Test it gives the same results as the divmod built-in for i, j in product(range(13), range(1, 13)): assert egyptian_divmod(i, j) == divmod(i, j) # Mandated result i, j = 580, 34 print(f'{i} divided by {j} using the Egyption method is %i remainder %i'  % egyptian_divmod(i, j))
http://rosettacode.org/wiki/Egyptian_fractions
Egyptian fractions
An   Egyptian fraction   is the sum of distinct unit fractions such as: 1 2 + 1 3 + 1 16 ( = 43 48 ) {\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{16}}\,(={\tfrac {43}{48}})} Each fraction in the expression has a numerator equal to   1   (unity)   and a denominator that is a positive integer,   and all the denominators are distinct   (i.e., no repetitions). Fibonacci's   Greedy algorithm for Egyptian fractions   expands the fraction   x y {\displaystyle {\tfrac {x}{y}}}   to be represented by repeatedly performing the replacement x y = 1 ⌈ y / x ⌉ + ( − y ) mod x y ⌈ y / x ⌉ {\displaystyle {\frac {x}{y}}={\frac {1}{\lceil y/x\rceil }}+{\frac {(-y)\!\!\!\!\mod x}{y\lceil y/x\rceil }}} (simplifying the 2nd term in this replacement as necessary, and where   ⌈ x ⌉ {\displaystyle \lceil x\rceil }   is the   ceiling   function). For this task,   Proper and improper fractions   must be able to be expressed. Proper  fractions   are of the form   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive integers, such that   a < b {\displaystyle a<b} ,     and improper fractions are of the form   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive integers, such that   a ≥ b. (See the REXX programming example to view one method of expressing the whole number part of an improper fraction.) For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [n]. Task requirements   show the Egyptian fractions for: 43 48 {\displaystyle {\tfrac {43}{48}}} and 5 121 {\displaystyle {\tfrac {5}{121}}} and 2014 59 {\displaystyle {\tfrac {2014}{59}}}   for all proper fractions,   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has:   the largest number of terms,   the largest denominator.   for all one-, two-, and three-digit integers,   find and show (as above).     {extra credit} Also see   Wolfram MathWorld™ entry: Egyptian fraction
#Python
Python
from fractions import Fraction from math import ceil   class Fr(Fraction): def __repr__(self): return '%s/%s' % (self.numerator, self.denominator)   def ef(fr): ans = [] if fr >= 1: if fr.denominator == 1: return [[int(fr)], Fr(0, 1)] intfr = int(fr) ans, fr = [[intfr]], fr - intfr x, y = fr.numerator, fr.denominator while x != 1: ans.append(Fr(1, ceil(1/fr))) fr = Fr(-y % x, y* ceil(1/fr)) x, y = fr.numerator, fr.denominator ans.append(fr) return ans   if __name__ == '__main__': for fr in [Fr(43, 48), Fr(5, 121), Fr(2014, 59)]: print('%r ─► %s' % (fr, ' '.join(str(x) for x in ef(fr)))) lenmax = denommax = (0, None) for fr in set(Fr(a, b) for a in range(1,100) for b in range(1, 100)): e = ef(fr) #assert sum((f[0] if type(f) is list else f) for f in e) == fr, 'Whoops!' elen, edenom = len(e), e[-1].denominator if elen > lenmax[0]: lenmax = (elen, fr, e) if edenom > denommax[0]: denommax = (edenom, fr, e) print('Term max is %r with %i terms' % (lenmax[1], lenmax[0])) dstr = str(denommax[0]) print('Denominator max is %r with %i digits %s...%s' % (denommax[1], len(dstr), dstr[:5], dstr[-5:]))
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#TUSCRIPT
TUSCRIPT
  $$ MODE TUSCRIPT ASK "insert number1", nr1="" ASK "insert number2", nr2=""   SET nrs=APPEND(nr1,nr2),size_nrs=SIZE(nrs) IF (size_nrs!=2) ERROR/STOP "insert two numbers" LOOP n=nrs IF (n!='digits') ERROR/STOP n, " is not a digit" ENDLOOP   PRINT "ethopian multiplication of ",nr1," and ",nr2   SET sum=0 SECTION checkifeven SET even=MOD(nr1,2) IF (even==0) THEN SET action="struck" ELSE SET action="kept" SET sum=APPEND (sum,nr2) ENDIF SET nr1=CENTER (nr1,+6),nr2=CENTER (nr2,+6),action=CENTER (action,8) PRINT nr1,nr2,action ENDSECTION   SECTION halve_i SET nr1=nr1/2 ENDSECTION   SECTION double_i nr2=nr2*2 ENDSECTION   DO checkifeven   LOOP DO halve_i DO double_i DO checkifeven IF (nr1==1) EXIT ENDLOOP   SET line=REPEAT ("=",20), sum = sum(sum),sum=CENTER (sum,+12) PRINT line PRINT sum  
http://rosettacode.org/wiki/Elementary_cellular_automaton
Elementary cellular automaton
An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits. The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101. Task Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice. The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally. This task is basically a generalization of one-dimensional cellular automata. See also Cellular automata (natureofcode.com)
#Sidef
Sidef
class Automaton(rule, cells) {   method init { rule = sprintf("%08b", rule).chars.map{.to_i}.reverse }   method next { var previous = cells.map{_} var len = previous.len cells[] = rule[ previous.range.map { |i| 4*previous[i-1 % len] + 2*previous[i] + previous[i+1 % len] } ] }   method to_s { cells.map { _ ? '#' : ' ' }.join } }   var size = 20 var arr = size.of(0) arr[size/2] = 1   var auto = Automaton(90, arr)   (size/2).times { print "|#{auto}|\n" auto.next }
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#WebAssembly
WebAssembly
  (module  ;; recursive (func $fac (param f64) (result f64) get_local 0 f64.const 1 f64.lt if (result f64) f64.const 1 else get_local 0 get_local 0 f64.const 1 f64.sub call $fac f64.mul end) (export "fac" (func $fac)))  
http://rosettacode.org/wiki/Echo_server
Echo server
Create a network service that sits on TCP port 12321, which accepts connections on that port, and which echoes complete lines (using a carriage-return/line-feed sequence as line separator) back to clients. No error handling is required. For the purposes of testing, it is only necessary to support connections from localhost (127.0.0.1 or perhaps ::1). Logging of connection information to standard output is recommended. The implementation must be able to handle simultaneous connections from multiple clients. A multi-threaded or multi-process solution may be used. Each connection must be able to echo more than a single line. The implementation must not stop responding to other clients if one client sends a partial line or stops reading responses.
#Racket
Racket
  #lang racket (define listener (tcp-listen 12321)) (let echo-server () (define-values [I O] (tcp-accept listener)) (thread (λ() (copy-port I O) (close-output-port O))) (echo-server))  
http://rosettacode.org/wiki/Eban_numbers
Eban numbers
Definition An   eban   number is a number that has no letter   e   in it when the number is spelled in English. Or more literally,   spelled numbers that contain the letter   e   are banned. The American version of spelling numbers will be used here   (as opposed to the British). 2,000,000,000   is two billion,   not   two milliard. Only numbers less than   one sextillion   (1021)   will be considered in/for this task. This will allow optimizations to be used. Task   show all eban numbers   ≤   1,000   (in a horizontal format),   and a count   show all eban numbers between   1,000   and   4,000   (inclusive),   and a count   show a count of all eban numbers up and including           10,000   show a count of all eban numbers up and including         100,000   show a count of all eban numbers up and including      1,000,000   show a count of all eban numbers up and including    10,000,000   show all output here. See also   The MathWorld entry:   eban numbers.   The OEIS entry:   A6933, eban numbers.
#Raku
Raku
use Lingua::EN::Numbers;   sub nban ($seq, $n = 'e') { ($seq).map: { next if .&cardinal.contains(any($n.lc.comb)); $_ } }   sub enumerate ($n, $upto) { my @ban = [nban(1 .. 99, $n)],; my @orders; (2 .. $upto).map: -> $o { given $o % 3 { # Compensate for irregulars: 11 - 19 when 1 { @orders.push: [flat (10**($o - 1) X* 10 .. 19).map(*.&nban($n)), |(10**$o X* 2 .. 9).map: *.&nban($n)] } default { @orders.push: [flat (10**$o X* 1 .. 9).map: *.&nban($n)] } } } ^@orders .map: -> $o { @ban.push: [] and next unless +@orders[$o]; my @these; @orders[$o].map: -> $m { @these.push: $m; for ^@ban -> $b { next unless +@ban[$b]; @these.push: $_ for (flat @ban[$b]) »+» $m ; } } @ban.push: @these; } @ban.unshift(0) if nban(0, $n); flat @ban.map: *.flat; }   sub count ($n, $upto) { my @orders; (2 .. $upto).map: -> $o { given $o % 3 { # Compensate for irregulars: 11 - 19 when 1 { @orders.push: [flat (10**($o - 1) X* 10 .. 19).map(*.&nban($n)), |(10**$o X* 2 .. 9).map: *.&nban($n)] } default { @orders.push: [flat (10**$o X* 1 .. 9).map: *.&nban($n)] } } } my @count = +nban(1 .. 99, $n); ^@orders .map: -> $o { @count.push: 0 and next unless +@orders[$o]; my $prev = so (@orders[$o].first( { $_ ~~ /^ '1' '0'+ $/ } ) // 0 ); my $sum = @count.sum; my $these = +@orders[$o] * $sum + @orders[$o]; $these-- if $prev; @count[1 + $o] += $these; ++@count[$o] if $prev; } ++@count[0] if nban(0, $n); [\+] @count; }   #for < e o t tali subur tur ur cali i u > -> $n { # All of them for < e t subur > -> $n { # An assortment for demonstration my $upto = 21; # 1e21 my @bans = enumerate($n, 4); my @counts = count($n, $upto);   # DISPLAY my @k = @bans.grep: * < 1000; my @j = @bans.grep: 1000 <= * <= 4000; put "\n============= {$n}-ban: =============\n" ~ "{$n}-ban numbers up to 1000: {+@k}\n[{@k».&comma}]\n\n" ~ "{$n}-ban numbers between 1,000 & 4,000: {+@j}\n[{@j».&comma}]\n" ~ "\nCounts of {$n}-ban numbers up to {cardinal 10**$upto}" ;   my $s = max (1..$upto).map: { (10**$_).&cardinal.chars }; @counts.unshift: @bans.first: * > 10, :k; for ^$upto -> $c { printf "Up to and including %{$s}s: %s\n", cardinal(10**($c+1)), comma(@counts[$c]); } }
http://rosettacode.org/wiki/Draw_a_rotating_cube
Draw a rotating cube
Task Draw a rotating cube. It should be oriented with one vertex pointing straight up, and its opposite vertex on the main diagonal (the one farthest away) straight down. It can be solid or wire-frame, and you can use ASCII art if your language doesn't have graphical capabilities. Perspective is optional. Related tasks Draw a cuboid write language name in 3D ASCII
#Java
Java
import java.awt.*; import java.awt.event.ActionEvent; import static java.lang.Math.*; import javax.swing.*;   public class RotatingCube extends JPanel { double[][] nodes = {{-1, -1, -1}, {-1, -1, 1}, {-1, 1, -1}, {-1, 1, 1}, {1, -1, -1}, {1, -1, 1}, {1, 1, -1}, {1, 1, 1}};   int[][] edges = {{0, 1}, {1, 3}, {3, 2}, {2, 0}, {4, 5}, {5, 7}, {7, 6}, {6, 4}, {0, 4}, {1, 5}, {2, 6}, {3, 7}};   public RotatingCube() { setPreferredSize(new Dimension(640, 640)); setBackground(Color.white);   scale(100); rotateCube(PI / 4, atan(sqrt(2)));   new Timer(17, (ActionEvent e) -> { rotateCube(PI / 180, 0); repaint(); }).start(); }   final void scale(double s) { for (double[] node : nodes) { node[0] *= s; node[1] *= s; node[2] *= s; } }   final void rotateCube(double angleX, double angleY) { double sinX = sin(angleX); double cosX = cos(angleX);   double sinY = sin(angleY); double cosY = cos(angleY);   for (double[] node : nodes) { double x = node[0]; double y = node[1]; double z = node[2];   node[0] = x * cosX - z * sinX; node[2] = z * cosX + x * sinX;   z = node[2];   node[1] = y * cosY - z * sinY; node[2] = z * cosY + y * sinY; } }   void drawCube(Graphics2D g) { g.translate(getWidth() / 2, getHeight() / 2);   for (int[] edge : edges) { double[] xy1 = nodes[edge[0]]; double[] xy2 = nodes[edge[1]]; g.drawLine((int) round(xy1[0]), (int) round(xy1[1]), (int) round(xy2[0]), (int) round(xy2[1])); }   for (double[] node : nodes) g.fillOval((int) round(node[0]) - 4, (int) round(node[1]) - 4, 8, 8); }   @Override public void paintComponent(Graphics gg) { super.paintComponent(gg); Graphics2D g = (Graphics2D) gg; g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);   drawCube(g); }   public static void main(String[] args) { SwingUtilities.invokeLater(() -> { JFrame f = new JFrame(); f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); f.setTitle("Rotating Cube"); f.setResizable(false); f.add(new RotatingCube(), BorderLayout.CENTER); f.pack(); f.setLocationRelativeTo(null); f.setVisible(true); }); } }
http://rosettacode.org/wiki/Element-wise_operations
Element-wise operations
This task is similar to:   Matrix multiplication   Matrix transposition Task Implement basic element-wise matrix-matrix and scalar-matrix operations, which can be referred to in other, higher-order tasks. Implement:   addition   subtraction   multiplication   division   exponentiation Extend the task if necessary to include additional basic operations, which should not require their own specialised task.
#Perl
Perl
package Elementwise;   use Exporter 'import';   use overload '=' => sub { $_[0]->clone() }, '+' => sub { $_[0]->add($_[1]) }, '-' => sub { $_[0]->sub($_[1]) }, '*' => sub { $_[0]->mul($_[1]) }, '/' => sub { $_[0]->div($_[1]) }, '**' => sub { $_[0]->exp($_[1]) }, ;   sub new { my ($class, $v) = @_; return bless $v, $class; }   sub clone { my @ret = @{$_[0]}; return bless \@ret, ref($_[0]); }   sub add { new Elementwise ref($_[1]) ? [map { $_[0][$_] + $_[1][$_] } 0 .. $#{$_[0]} ] : [map { $_[0][$_] + $_[1] } 0 .. $#{$_[0]} ] } sub sub { new Elementwise ref($_[1]) ? [map { $_[0][$_] - $_[1][$_] } 0 .. $#{$_[0]} ] : [map { $_[0][$_] - $_[1] } 0 .. $#{$_[0]} ] } sub mul { new Elementwise ref($_[1]) ? [map { $_[0][$_] * $_[1][$_] } 0 .. $#{$_[0]} ] : [map { $_[0][$_] * $_[1] } 0 .. $#{$_[0]} ] } sub div { new Elementwise ref($_[1]) ? [map { $_[0][$_] / $_[1][$_] } 0 .. $#{$_[0]} ] : [map { $_[0][$_] / $_[1] } 0 .. $#{$_[0]} ] } sub exp { new Elementwise ref($_[1]) ? [map { $_[0][$_] ** $_[1][$_] } 0 .. $#{$_[0]} ] : [map { $_[0][$_] ** $_[1] } 0 .. $#{$_[0]} ] }   1;
http://rosettacode.org/wiki/Draw_a_sphere
Draw a sphere
Task Draw a sphere. The sphere can be represented graphically, or in ASCII art, depending on the language capabilities. Either static or rotational projection is acceptable for this task. Related tasks draw a cuboid draw a rotating cube write language name in 3D ASCII draw a Deathstar
#AWK
AWK
  # syntax: GAWK -f DRAW_A_SPHERE.AWK # converted from VBSCRIPT BEGIN { draw_sphere(20,4,0.1) draw_sphere(10,2,0.4) exit(0) } function draw_sphere(radius,k,ambient, b,i,intensity,j,leng_shades,light,line,shades,vec,x,y) { leng_shades = split0(".:!*oe&#%@",shades,"") split("30,30,-50",light,",") normalize(light) for (i=int(-radius); i<=ceil(radius); i++) { x = i + 0.5 line = "" for (j=int(-2*radius); j<=ceil(2*radius); j++) { y = j / 2 + 0.5 if (x*x + y*y <= radius*radius) { vec[1] = x vec[2] = y vec[3] = sqrt(radius*radius - x*x - y*y) normalize(vec) b = dot(light,vec) ^ k + ambient intensity = int((1-b) * leng_shades) if (intensity < 0) { intensity = 0 } if (intensity >= leng_shades) { intensity = leng_shades } line = line shades[intensity] } else { line = line " " } } printf("%s\n",line) } } function ceil(x, tmp) { tmp = int(x) return (tmp != x) ? tmp+1 : tmp } function dot(x,y, tmp) { tmp = x[1]*y[1] + x[2]*y[2] + x[3]*y[3] return (tmp < 0) ? -tmp : 0 } function normalize(v, tmp) { tmp = sqrt(v[1]*v[1] + v[2]*v[2] + v[3]*v[3]) v[1] /= tmp v[2] /= tmp v[3] /= tmp } function split0(str,array,fs, arr,i,n) { # same as split except indices start at zero n = split(str,arr,fs) for (i=1; i<=n; i++) { array[i-1] = arr[i] } return(n) }  
http://rosettacode.org/wiki/Doubly-linked_list/Element_insertion
Doubly-linked list/Element insertion
Doubly-Linked List (element) This is much like inserting into a Singly-Linked List, but with added assignments so that the backwards-pointing links remain correct. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Fortran
Fortran
module dlList public :: node, insertAfter, getNext   type node real :: data type( node ), pointer :: next => null() type( node ), pointer :: previous => null() end type node   contains subroutine insertAfter(nodeBefore, value) type( node ), intent(inout), target :: nodeBefore type( node ), pointer :: newNode real, intent(in) :: value   allocate( newNode ) newNode%data = value newNode%next => nodeBefore%next newNode%previous => nodeBefore   if (associated( newNode%next )) then newNode%next%previous => newNode end if newNode%previous%next => newNode end subroutine insertAfter   subroutine delete(current) type( node ), intent(inout), pointer :: current   if (associated( current%next )) current%next%previous => current%previous if (associated( current%previous )) current%previous%next => current%next deallocate(current) end subroutine delete end module dlList   program dlListTest use dlList type( node ), target :: head type( node ), pointer :: current, next   head%data = 1.0 current => head do i = 1, 20 call insertAfter(current, 2.0**i) current => current%next end do   current => head do while (associated(current)) print *, current%data next => current%next if (.not. associated(current, head)) call delete(current) current => next end do end program dlListTest
http://rosettacode.org/wiki/Doubly-linked_list/Traversal
Doubly-linked list/Traversal
Traverse from the beginning of a doubly-linked list to the end, and from the end to the beginning. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Clojure
Clojure
(def dl (double-list [:a :b :c :d])) ;=> #'user/dl   ((juxt seq rseq) dl) ;=> [(:a :b :c :d) (:d :c :b :a)]   (take-while identity (iterate get-next (get-head dl))) ;=> (#:double_list.Node{:prev nil,  :next #<Object...>, :data :a, :key #<Object...>} ;=> #:double_list.Node{:prev #<Object...>, :next #<Object...>, :data :b, :key #<Object...>} ;=> #:double_list.Node{:prev #<Object...>, :next #<Object...>, :data :c, :key #<Object...>} ;=> #:double_list.Node{:prev #<Object...>, :next nil,  :data :d, :key #<Object...>})   (take-while identity (iterate get-prev (get-tail dl)))   ;=> (#:double_list.Node{:prev #<Object...>, :next nil,  :data :d, :key #<Object...>} ;=> #:double_list.Node{:prev #<Object...>, :next #<Object...>, :data :c, :key #<Object...>} ;=> #:double_list.Node{:prev #<Object...>, :next #<Object...>, :data :b, :key #<Object...>} ;=> #:double_list.Node{:prev nil,  :next #<Object...>, :data :a, :key #<Object...>})
http://rosettacode.org/wiki/Doubly-linked_list/Traversal
Doubly-linked list/Traversal
Traverse from the beginning of a doubly-linked list to the end, and from the end to the beginning. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#D
D
void main() { import std.stdio, std.container, std.range;   auto dll = DList!dchar("DCBA"d.dup);   dll[].writeln; dll[].retro.writeln; }
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
Doubly-linked list/Element definition
Task Define the data structure for a doubly-linked list element. The element should include a data member to hold its value and pointers to both the next element in the list and the previous element in the list. The pointers should be mutable. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#BBC_BASIC
BBC BASIC
DIM node{pPrev%, pNext%, iData%}  
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
Doubly-linked list/Element definition
Task Define the data structure for a doubly-linked list element. The element should include a data member to hold its value and pointers to both the next element in the list and the previous element in the list. The pointers should be mutable. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Bracmat
Bracmat
link=(prev=) (next=) (data=)
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
Doubly-linked list/Element definition
Task Define the data structure for a doubly-linked list element. The element should include a data member to hold its value and pointers to both the next element in the list and the previous element in the list. The pointers should be mutable. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#C
C
struct Node { struct Node *next; struct Node *prev; void *data; };
http://rosettacode.org/wiki/Dutch_national_flag_problem
Dutch national flag problem
The Dutch national flag is composed of three coloured bands in the order:   red     (top)   then white,   and   lastly blue   (at the bottom). The problem posed by Edsger Dijkstra is: Given a number of red, blue and white balls in random order, arrange them in the order of the colours in the Dutch national flag. When the problem was first posed, Dijkstra then went on to successively refine a solution, minimising the number of swaps and the number of times the colour of a ball needed to determined and restricting the balls to end in an array, ... Task Generate a randomized order of balls ensuring that they are not in the order of the Dutch national flag. Sort the balls in a way idiomatic to your language. Check the sorted balls are in the order of the Dutch national flag. C.f. Dutch national flag problem Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-Mei Chen. (pdf)
#C_sharp
C_sharp
using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace RosettaCode { class Program { static void QuickSort(IComparable[] elements, int left, int right) { int i = left, j = right; IComparable pivot = elements[left + (right - left) / 2];   while (i <= j) { while (elements[i].CompareTo(pivot) < 0) i++; while (elements[j].CompareTo(pivot) > 0) j--;   if (i <= j) { // Swap IComparable tmp = elements[i]; elements[i] = elements[j]; elements[j] = tmp; i++; j--; } }   // Recursive calls if (left < j) QuickSort(elements, left, j); if (i < right) QuickSort(elements, i, right); } const int NUMBALLS = 5; static void Main(string[] args) { Func<string[], bool> IsSorted = (ballList) => { int state = 0; for (int i = 0; i < NUMBALLS; i++) { if (int.Parse(ballList[i]) < state) return false; if (int.Parse(ballList[i]) > state) state = int.Parse(ballList[i]); } return true; }; Func<string[], string> PrintOut = (ballList2) => { StringBuilder str = new StringBuilder(); for (int i = 0; i < NUMBALLS; i++) str.Append(int.Parse(ballList2[i]) == 0 ? "r" : int.Parse(ballList2[i]) == 1 ? "w" : "b"); return str.ToString(); }; bool continueLoop = true; string[] balls = new string[NUMBALLS]; // 0 = r, 1 = w, 2 = b Random numberGenerator = new Random(); do // Enforce that we start with non-sorted balls { // Generate balls for (int i = 0; i < NUMBALLS; i++) balls[i] = numberGenerator.Next(3).ToString();   continueLoop = IsSorted(balls); if (continueLoop) Console.WriteLine("Accidentally still sorted: {0}", PrintOut(balls)); } while (continueLoop); Console.WriteLine("Non-sorted: {0}", PrintOut(balls)); QuickSort(balls, 0, NUMBALLS - 1); // Sort them using quicksort Console.WriteLine("{0}: {1}", IsSorted(balls) ? "Sorted" : "Sort failed", PrintOut(balls)); } } }  
http://rosettacode.org/wiki/Draw_a_cuboid
Draw a cuboid
Task Draw a   cuboid   with relative dimensions of   2 × 3 × 4. The cuboid can be represented graphically, or in   ASCII art,   depending on the language capabilities. To fulfill the criteria of being a cuboid, three faces must be visible. Either static or rotational projection is acceptable for this task. Related tasks draw a sphere draw a rotating cube write language name in 3D ASCII draw a Deathstar
#Brlcad
Brlcad
opendb cuboid.g y # Create a database to hold our shapes units cm # Set the unit of measure in cuboid.s rpp 0 2 0 3 0 4 # Create a 2 x 3 x 4 cuboid named cuboid.s
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#Perl
Perl
print "Enter a variable name: "; $varname = <STDIN>; # type in "foo" on standard input chomp($varname); $$varname = 42; # when you try to dereference a string, it will be # treated as a "symbolic reference", where they # take the string as the name of the variable print "$foo\n"; # prints "42"
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#Phix
Phix
constant globals = new_dict()   while 1 do string name = prompt_string("Enter name or press Enter to quit:") if length(name)=0 then exit end if bool bExists = (getd_index(name,globals)!=NULL) string prompt = iff(not bExists?"No such name, enter a value:"  :sprintf("Already exists, new value[%s]:",{getd(name,globals)})) string data = prompt_string(prompt) if length(data) then setd(name,data,globals) end if end while
http://rosettacode.org/wiki/Dynamic_variable_names
Dynamic variable names
Task Create a variable with a user-defined name. The variable name should not be written in the program text, but should be taken from the user dynamically. See also   Eval in environment is a similar task.
#PHP
PHP
<?php $varname = rtrim(fgets(STDIN)); # type in "foo" on standard input $$varname = 42; echo "$foo\n"; # prints "42" ?>
http://rosettacode.org/wiki/Draw_a_pixel
Draw a pixel
Task Create a window and draw a pixel in it, subject to the following:  the window is 320 x 240  the color of the pixel must be red (255,0,0)  the position of the pixel is x = 100, y = 100
#M2000_Interpreter
M2000 Interpreter
      Module CheckIt { Module PlotPixel (a as single, b as single) { Move a*TwipsX, b*TwipsX Draw TwipsX, TwipsY } Cls 5,0 \\ clear console with Magenta (5) and set split screen from 0 (no split screen) Pen #55FF77 { PlotPixel 1000, 200 } Wait 1000 Title "", 1 Declare DrawPixelForm Form With DrawPixelForm, "Title", "Draw a Pixel at 100,100" Layer DrawPixelForm { \\ 12 for 12pt fonts \\ use ; to center window Window 12, 320*twipsx, 240*twipsy; Cls #333333 Pen Color(255,0,0) { PlotPixel 100, 100 } } \\ code to show/hide console clicking form \\ console shown behind form k=0 Function DrawPixelForm.Click { Title "Rosetta Code Example", abs(k) if k then show k~ } Method DrawPixelForm, "Show", 1 Declare DrawPixelForm Nothing } CheckIt  
http://rosettacode.org/wiki/Draw_a_pixel
Draw a pixel
Task Create a window and draw a pixel in it, subject to the following:  the window is 320 x 240  the color of the pixel must be red (255,0,0)  the position of the pixel is x = 100, y = 100
#Nim
Nim
import rapid/gfx   var window = initRWindow() .size(320, 240) .title("Rosetta Code - draw a pixel") .open() surface = window.openGfx()   surface.loop: draw ctx, step: ctx.clear(gray(0)) ctx.begin() ctx.point((100.0, 100.0, rgb(255, 0, 0))) ctx.draw(prPoints) discard step # Prevent unused variable warnings update step: discard step
http://rosettacode.org/wiki/Egyptian_division
Egyptian division
Egyptian division is a method of dividing integers using addition and doubling that is similar to the algorithm of Ethiopian multiplication Algorithm: Given two numbers where the dividend is to be divided by the divisor: Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column. Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order. Continue with successive i’th rows of 2^i and 2^i * divisor. Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend. We now assemble two separate sums that both start as zero, called here answer and accumulator Consider each row of the table, in the reverse order of its construction. If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer. When the first row has been considered as above, then the integer division of dividend by divisor is given by answer. (And the remainder is given by the absolute value of accumulator - dividend). Example: 580 / 34 Table creation: powers_of_2 doublings 1 34 2 68 4 136 8 272 16 544 Initialization of sums: powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 0 0 Considering table rows, bottom-up: When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations. powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 16 544 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 16 544 4 136 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 17 578 2 68 4 136 8 272 16 544 Answer So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2. Task The task is to create a function that does Egyptian division. The function should closely follow the description above in using a list/array of powers of two, and another of doublings. Functions should be clear interpretations of the algorithm. Use the function to divide 580 by 34 and show the answer here, on this page. Related tasks   Egyptian fractions References   Egyptian Number System
#Quackery
Quackery
[ dup 0 = if [ $ "Cannot divide by zero." fail ] [] unrot [ 2dup < not while rot over swap join unrot dup + again ] drop swap dup size [] 1 rot times [ tuck swap join swap dup + ] drop temp put 0 swap witheach [ over + rot 2dup > iff [ nip swap 0 temp take i^ poke temp put ] else [ swap rot drop ] ] - 0 temp take witheach + swap ] is egyptian ( n n --> n n )   [ over echo say " divided by " dup echo say " is " egyptian swap echo say " remainder " echo say "." ] is task ( n n --> )   580 34 task
http://rosettacode.org/wiki/Egyptian_division
Egyptian division
Egyptian division is a method of dividing integers using addition and doubling that is similar to the algorithm of Ethiopian multiplication Algorithm: Given two numbers where the dividend is to be divided by the divisor: Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column. Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order. Continue with successive i’th rows of 2^i and 2^i * divisor. Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend. We now assemble two separate sums that both start as zero, called here answer and accumulator Consider each row of the table, in the reverse order of its construction. If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer. When the first row has been considered as above, then the integer division of dividend by divisor is given by answer. (And the remainder is given by the absolute value of accumulator - dividend). Example: 580 / 34 Table creation: powers_of_2 doublings 1 34 2 68 4 136 8 272 16 544 Initialization of sums: powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 0 0 Considering table rows, bottom-up: When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations. powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 8 272 16 544 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 4 136 16 544 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 2 68 16 544 4 136 8 272 16 544 powers_of_2 doublings answer accumulator 1 34 17 578 2 68 4 136 8 272 16 544 Answer So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2. Task The task is to create a function that does Egyptian division. The function should closely follow the description above in using a list/array of powers of two, and another of doublings. Functions should be clear interpretations of the algorithm. Use the function to divide 580 by 34 and show the answer here, on this page. Related tasks   Egyptian fractions References   Egyptian Number System
#R
R
Egyptian_division <- function(num, den){ pow2 = 0 row = 1   Table = data.frame(powers_of_2 = 2^pow2, doubling = den)   while(Table$doubling[nrow(Table)] < num){ row = row + 1 pow2 = pow2 + 1   Table[row, 1] <- 2^pow2 Table[row, 2] <- 2^pow2 * den }   Table <- Table[-nrow(Table),] #print(Table) to see the table   answer <- 0 accumulator <- 0   for (i in nrow(Table):1) { if (accumulator + Table$doubling[i] <= num) { accumulator <- accumulator + Table$doubling[i] answer <- answer + Table$powers_of_2[i] } }   remainder = abs(accumulator - num)   message(paste0("Answer is ", answer, ", remainder ", remainder))   }   Egyptian_division(580, 34) Egyptian_division(300, 2)  
http://rosettacode.org/wiki/Egyptian_fractions
Egyptian fractions
An   Egyptian fraction   is the sum of distinct unit fractions such as: 1 2 + 1 3 + 1 16 ( = 43 48 ) {\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{16}}\,(={\tfrac {43}{48}})} Each fraction in the expression has a numerator equal to   1   (unity)   and a denominator that is a positive integer,   and all the denominators are distinct   (i.e., no repetitions). Fibonacci's   Greedy algorithm for Egyptian fractions   expands the fraction   x y {\displaystyle {\tfrac {x}{y}}}   to be represented by repeatedly performing the replacement x y = 1 ⌈ y / x ⌉ + ( − y ) mod x y ⌈ y / x ⌉ {\displaystyle {\frac {x}{y}}={\frac {1}{\lceil y/x\rceil }}+{\frac {(-y)\!\!\!\!\mod x}{y\lceil y/x\rceil }}} (simplifying the 2nd term in this replacement as necessary, and where   ⌈ x ⌉ {\displaystyle \lceil x\rceil }   is the   ceiling   function). For this task,   Proper and improper fractions   must be able to be expressed. Proper  fractions   are of the form   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive integers, such that   a < b {\displaystyle a<b} ,     and improper fractions are of the form   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive integers, such that   a ≥ b. (See the REXX programming example to view one method of expressing the whole number part of an improper fraction.) For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [n]. Task requirements   show the Egyptian fractions for: 43 48 {\displaystyle {\tfrac {43}{48}}} and 5 121 {\displaystyle {\tfrac {5}{121}}} and 2014 59 {\displaystyle {\tfrac {2014}{59}}}   for all proper fractions,   a b {\displaystyle {\tfrac {a}{b}}}   where   a {\displaystyle a}   and   b {\displaystyle b}   are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has:   the largest number of terms,   the largest denominator.   for all one-, two-, and three-digit integers,   find and show (as above).     {extra credit} Also see   Wolfram MathWorld™ entry: Egyptian fraction
#Racket
Racket
#lang racket (define (real->egyptian-list R) (define (inr r rv) (match* ((exact-floor r) (numerator r) (denominator r)) [(0 0 1) (reverse rv)] [(0 1 d) (reverse (cons (/ d) rv))] [(0 x y) (let ((^y/x (exact-ceiling (/ y x)))) (inr (/ (modulo (- y) x) (* y ^y/x)) (cons (/ ^y/x) rv)))] [(flr _ _) (inr (- r flr) (cons flr rv))])) (inr R null))   (define (real->egyptian-string f) (define e.f.-list (real->egyptian-list f)) (define fmt-part (match-lambda [(? integer? (app number->string s)) s] [(app (compose number->string /) s) (format "/~a"s)])) (string-join (map fmt-part e.f.-list) " + "))   (define (stat-egyptian-fractions max-b+1) (define-values (max-l max-l-f max-d max-d-f) (for*/fold ((max-l 0) (max-l-f #f) (max-d 0) (max-d-f #f)) ((b (in-range 1 max-b+1)) (a (in-range 1 b)) #:when (= 1 (gcd a b))) (define f (/ a b)) (define e.f (real->egyptian-list (/ a b))) (define l (length e.f)) (define d (denominator (last e.f))) (values (max max-l l) (if (> l max-l) f max-l-f) (max max-d d) (if (> d max-d) f max-d-f)))) (printf #<<EOS max #terms: ~a has ~a [~.a] max denominator: ~a has ~a [~.a]   EOS max-l-f max-l (real->egyptian-string max-l-f) max-d-f max-d (real->egyptian-string max-d-f)))   (displayln (real->egyptian-string 43/48)) (displayln (real->egyptian-string 5/121)) (displayln (real->egyptian-string 2014/59)) (newline) (stat-egyptian-fractions 100) (newline) (stat-egyptian-fractions 1000)   (module+ test (require tests/eli-tester) (test (real->egyptian-list 43/48) => '(1/2 1/3 1/16)))
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#TypeScript
TypeScript
  // Ethiopian multiplication   function intToString(n: number, wdth: number): string { sn = Math.floor(n).toString(); len = sn.length; return (wdth < len ? "#".repeat(wdth) : " ".repeat(wdth - len) + sn); }   function double(a: number): number { return 2 * a; }   function halve(a: number): number { return Math.floor(a / 2); }   function isEven(a: number): bool { return a % 2 == 0; }   function showEthiopianMultiplication(x: number, y: number): void { var tot = 0; while (x >= 1) { process.stdout.write(intToString(x, 9) + " "); if (!isEven(x)) { tot += y; process.stdout.write(intToString(y, 9)); } console.log(); x = halve(x); y = double(y); } console.log("=" + " ".repeat(9) + intToString(tot, 9)); }   showEthiopianMultiplication(17, 34);  
http://rosettacode.org/wiki/Elementary_cellular_automaton
Elementary cellular automaton
An elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. Those three values can be encoded with three bits. The rules of evolution are then encoded with eight bits indicating the outcome of each of the eight possibilities 111, 110, 101, 100, 011, 010, 001 and 000 in this order. Thus for instance the rule 13 means that a state is updated to 1 only in the cases 011, 010 and 000, since 13 in binary is 0b00001101. Task Create a subroutine, program or function that allows to create and visualize the evolution of any of the 256 possible elementary cellular automaton of arbitrary space length and for any given initial state. You can demonstrate your solution with any automaton of your choice. The space state should wrap: this means that the left-most cell should be considered as the right neighbor of the right-most cell, and reciprocally. This task is basically a generalization of one-dimensional cellular automata. See also Cellular automata (natureofcode.com)
#Tcl
Tcl
package require Tcl 8.6   oo::class create ElementaryAutomaton { variable rules # Decode the rule number to get a collection of state mapping rules. # In effect, "compiles" the rule number constructor {ruleNumber} { set ins {111 110 101 100 011 010 001 000} set bits [split [string range [format %08b $ruleNumber] end-7 end] ""] foreach input {111 110 101 100 011 010 001 000} state $bits { dict set rules $input $state } }   # Apply the rule to an automaton state to get a new automaton state. # We wrap the edges; the state space is circular. method evolve {state} { set len [llength $state] for {set i 0} {$i < $len} {incr i} { lappend result [dict get $rules [ lindex $state [expr {($i-1)%$len}]][ lindex $state $i][ lindex $state [expr {($i+1)%$len}]]] } return $result }   # Simple driver method; omit the initial state to get a centred dot method run {steps {initialState ""}} { if {[llength [info level 0]] < 4} { set initialState "[string repeat . $steps]1[string repeat . $steps]" } set s [split [string map ". 0 # 1" $initialState] ""] for {set i 0} {$i < $steps} {incr i} { puts [string map "0 . 1 #" [join $s ""]] set s [my evolve $s] } puts [string map "0 . 1 #" [join $s ""]] } }
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Wortel
Wortel
@fac 10
http://rosettacode.org/wiki/Echo_server
Echo server
Create a network service that sits on TCP port 12321, which accepts connections on that port, and which echoes complete lines (using a carriage-return/line-feed sequence as line separator) back to clients. No error handling is required. For the purposes of testing, it is only necessary to support connections from localhost (127.0.0.1 or perhaps ::1). Logging of connection information to standard output is recommended. The implementation must be able to handle simultaneous connections from multiple clients. A multi-threaded or multi-process solution may be used. Each connection must be able to echo more than a single line. The implementation must not stop responding to other clients if one client sends a partial line or stops reading responses.
#Raku
Raku
my $socket = IO::Socket::INET.new: :localhost<localhost>, :localport<12321>, :listen;   while $socket.accept -> $conn { say "Accepted connection"; start { while $conn.recv -> $stuff { say "Echoing $stuff"; $conn.print($stuff); } $conn.close; } }
http://rosettacode.org/wiki/Eban_numbers
Eban numbers
Definition An   eban   number is a number that has no letter   e   in it when the number is spelled in English. Or more literally,   spelled numbers that contain the letter   e   are banned. The American version of spelling numbers will be used here   (as opposed to the British). 2,000,000,000   is two billion,   not   two milliard. Only numbers less than   one sextillion   (1021)   will be considered in/for this task. This will allow optimizations to be used. Task   show all eban numbers   ≤   1,000   (in a horizontal format),   and a count   show all eban numbers between   1,000   and   4,000   (inclusive),   and a count   show a count of all eban numbers up and including           10,000   show a count of all eban numbers up and including         100,000   show a count of all eban numbers up and including      1,000,000   show a count of all eban numbers up and including    10,000,000   show all output here. See also   The MathWorld entry:   eban numbers.   The OEIS entry:   A6933, eban numbers.
#REXX
REXX
/*REXX program to display eban numbers (those that don't have an "e" their English name)*/ numeric digits 20 /*support some gihugic numbers for pgm.*/ parse arg $ /*obtain optional arguments from the cL*/ if $='' then $= '1 1000 1000 4000 1 -10000 1 -100000 1 -1000000 1 -10000000'   do k=1 by 2 to words($) /*step through the list of numbers. */ call banE word($, k), word($, k+1) /*process the numbers, from low──►high.*/ end /*k*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ banE: procedure; parse arg x,y,_; z= reverse(x) /*obtain the number to be examined. */ tell= y>=0 /*Is HI non-negative? Display eban #s.*/ #= 0 /*the count of eban numbers (so far).*/ do j=x to abs(y) /*probably process a range of numbers. */ if hasE(j) then iterate /*determine if the number has an "e". */ #= # + 1 /*bump the counter of eban numbers. */ if tell then _= _ j /*maybe add to a list of eban numbers. */ end /*j*/ if _\=='' then say strip(_) /*display the list (if there is one). */ say; say # ' eban numbers found for: ' x " " y; say copies('═', 105) return /*──────────────────────────────────────────────────────────────────────────────────────*/ hasE: procedure; parse arg x; z= reverse(x) /*obtain the number to be examined. */ do k=1 by 3 /*while there're dec. digit to examine.*/ @= reverse( substr(z, k, 3) ) /*obtain 3 dec. digs (a period) from Z.*/ if @==' ' then return 0 /*we have reached the "end" of the num.*/ uni= right(@, 1) /*get units dec. digit of this period. */ if uni//2==1 then return 1 /*if an odd digit, then not an eban #. */ if uni==8 then return 1 /*if an eight, " " " " " */ tens=substr(@, 2, 1) /*get tens dec. digit of this period. */ if tens==1 then return 1 /*if teens, then not an eban #. */ if tens==2 then return 1 /*if twenties, " " " " " */ if tens>6 then return 1 /*if 70s, 80s, 90s, " " " " " */ hun= left(@, 1) /*get hundreds dec. dig of this period.*/ if hun==0 then iterate /*if zero, then there is more of number*/ if hun\==' ' then return 1 /*any hundrEd (not zero) has an "e". */ end /*k*/ /*A "period" is a group of 3 dec. digs */ return 0 /*in the number, grouped from the right*/