task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#BASIC256
BASIC256
function Sum (x, y) Sum = x + y # using name of function end function   function SumR (x, y) return x + y # using Return keyword which always returns immediately end function   print Sum (1, 2) print SumR(2, 3)
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Clojure
Clojure
  user=> 3 3 user=> (Math/pow *1 2) 9.0 user=> (Math/pow *2 0.5) 1.7320508075688772  
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Erlang
Erlang
7> 1 + 2. 3 8> v(-1). 3
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Forth
Forth
: myloop 11 1 do i . loop cr ; myloop
http://rosettacode.org/wiki/Towers_of_Hanoi
Towers of Hanoi
Task Solve the   Towers of Hanoi   problem with recursion.
#11l
11l
F hanoi(ndisks, startPeg = 1, endPeg = 3) -> N I ndisks hanoi(ndisks - 1, startPeg, 6 - startPeg - endPeg) print(‘Move disk #. from peg #. to peg #.’.format(ndisks, startPeg, endPeg)) hanoi(ndisks - 1, 6 - startPeg - endPeg, endPeg)   hanoi(ndisks' 3)
http://rosettacode.org/wiki/Total_circles_area
Total circles area
Total circles area You are encouraged to solve this task according to the task description, using any language you may know. Example circles Example circles filtered Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once. One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome. To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii   (11 disks are fully contained inside other disks): xc yc radius 1.6417233788 1.6121789534 0.0848270516 -1.4944608174 1.2077959613 1.1039549836 0.6110294452 -0.6907087527 0.9089162485 0.3844862411 0.2923344616 0.2375743054 -0.2495892950 -0.3832854473 1.0845181219 1.7813504266 1.6178237031 0.8162655711 -0.1985249206 -0.8343333301 0.0538864941 -1.7011985145 -0.1263820964 0.4776976918 -0.4319462812 1.4104420482 0.7886291537 0.2178372997 -0.9499557344 0.0357871187 -0.6294854565 -1.3078893852 0.7653357688 1.7952608455 0.6281269104 0.2727652452 1.4168575317 1.0683357171 1.1016025378 1.4637371396 0.9463877418 1.1846214562 -0.5263668798 1.7315156631 1.4428514068 -1.2197352481 0.9144146579 1.0727263474 -0.1389358881 0.1092805780 0.7350208828 1.5293954595 0.0030278255 1.2472867347 -0.5258728625 1.3782633069 1.3495508831 -0.1403562064 0.2437382535 1.3804956588 0.8055826339 -0.0482092025 0.3327165165 -0.6311979224 0.7184578971 0.2491045282 1.4685857879 -0.8347049536 1.3670667538 -0.6855727502 1.6465021616 1.0593087096 0.0152957411 0.0638919221 0.9771215985 The result is   21.56503660... . Related task   Circles of given radius through two points. See also http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/ http://stackoverflow.com/a/1667789/10562
#11l
11l
T Circle Float x, y, r F (x, y, r) .x = x .y = y .r = r   V circles = [ Circle(1.6417233788, 1.6121789534, 0.0848270516), Circle(-1.4944608174, 1.2077959613, 1.1039549836), Circle(0.6110294452, -0.6907087527, 0.9089162485), Circle(0.3844862411, 0.2923344616, 0.2375743054), Circle(-0.2495892950, -0.3832854473, 1.0845181219), Circle(1.7813504266, 1.6178237031, 0.8162655711), Circle(-0.1985249206, -0.8343333301, 0.0538864941), Circle(-1.7011985145, -0.1263820964, 0.4776976918), Circle(-0.4319462812, 1.4104420482, 0.7886291537), Circle(0.2178372997, -0.9499557344, 0.0357871187), Circle(-0.6294854565, -1.3078893852, 0.7653357688), Circle(1.7952608455, 0.6281269104, 0.2727652452), Circle(1.4168575317, 1.0683357171, 1.1016025378), Circle(1.4637371396, 0.9463877418, 1.1846214562), Circle(-0.5263668798, 1.7315156631, 1.4428514068), Circle(-1.2197352481, 0.9144146579, 1.0727263474), Circle(-0.1389358881, 0.1092805780, 0.7350208828), Circle(1.5293954595, 0.0030278255, 1.2472867347), Circle(-0.5258728625, 1.3782633069, 1.3495508831), Circle(-0.1403562064, 0.2437382535, 1.3804956588), Circle(0.8055826339, -0.0482092025, 0.3327165165), Circle(-0.6311979224, 0.7184578971, 0.2491045282), Circle(1.4685857879, -0.8347049536, 1.3670667538), Circle(-0.6855727502, 1.6465021616, 1.0593087096), Circle(0.0152957411, 0.0638919221, 0.9771215985)]   V x_min = min(circles.map(c -> c.x - c.r)) V x_max = max(circles.map(c -> c.x + c.r)) V y_min = min(circles.map(c -> c.y - c.r)) V y_max = max(circles.map(c -> c.y + c.r))   V box_side = 500   V dx = (x_max - x_min) / box_side V dy = (y_max - y_min) / box_side   V count = 0   L(r) 0 .< box_side V y = y_min + r * dy L(c) 0 .< box_side V x = x_min + c * dx I any(circles.map(circle -> (@x - circle.x) ^ 2 + (@y - circle.y) ^ 2 <= (circle.r ^ 2))) count++   print(‘Approximated area: ’(count * dx * dy))
http://rosettacode.org/wiki/Universal_Turing_machine
Universal Turing machine
One of the foundational mathematical constructs behind computer science is the universal Turing Machine. (Alan Turing introduced the idea of such a machine in 1936–1937.) Indeed one way to definitively prove that a language is turing-complete is to implement a universal Turing machine in it. Task Simulate such a machine capable of taking the definition of any other Turing machine and executing it. Of course, you will not have an infinite tape, but you should emulate this as much as is possible. The three permissible actions on the tape are "left", "right" and "stay". To test your universal Turing machine (and prove your programming language is Turing complete!), you should execute the following two Turing machines based on the following definitions. Simple incrementer States: q0, qf Initial state: q0 Terminating states: qf Permissible symbols: B, 1 Blank symbol: B Rules: (q0, 1, 1, right, q0) (q0, B, 1, stay, qf) The input for this machine should be a tape of 1 1 1 Three-state busy beaver States: a, b, c, halt Initial state: a Terminating states: halt Permissible symbols: 0, 1 Blank symbol: 0 Rules: (a, 0, 1, right, b) (a, 1, 1, left, c) (b, 0, 1, left, a) (b, 1, 1, right, b) (c, 0, 1, left, b) (c, 1, 1, stay, halt) The input for this machine should be an empty tape. Bonus: 5-state, 2-symbol probable Busy Beaver machine from Wikipedia States: A, B, C, D, E, H Initial state: A Terminating states: H Permissible symbols: 0, 1 Blank symbol: 0 Rules: (A, 0, 1, right, B) (A, 1, 1, left, C) (B, 0, 1, right, C) (B, 1, 1, right, B) (C, 0, 1, right, D) (C, 1, 0, left, E) (D, 0, 1, left, A) (D, 1, 1, left, D) (E, 0, 1, stay, H) (E, 1, 0, left, A) The input for this machine should be an empty tape. This machine runs for more than 47 millions steps.
#CLU
CLU
% Bidirectional 'infinite' tape tape = cluster [T: type] is make, left, right, get_cell, set_cell, elements, get_size rep = record[ blank: T, loc: int, data: array[T] ]    % Make a new tape with a given blank value and initial value make = proc (blank: T, init: sequence[T]) returns (cvt) data: array[T] if sequence[T]$empty(init) then data := array[T]$[blank] else data := sequence[T]$s2a(init) end return(rep${ blank: blank, loc: 1, data: data }) end make    % Move the tape head left left = proc (tap: cvt) tap.loc := tap.loc - 1 if tap.loc < array[T]$low(tap.data) then array[T]$addl(tap.data,tap.blank) end end left    % Move the tape head right right = proc (tap: cvt) tap.loc := tap.loc + 1 if tap.loc > array[T]$high(tap.data) then array[T]$addh(tap.data,tap.blank) end end right    % Get the value of the current cell get_cell = proc (tap: cvt) returns (T) return(tap.data[tap.loc]) end get_cell    % Set the value of the current cell set_cell = proc (tap: cvt, val: T) tap.data[tap.loc] := val end set_cell    % Retrieve all touched values, one by one, from left to right elements = iter (tap: cvt) yields (T) for v: T in array[T]$elements(tap.data) do yield(v) end end elements    % Get the current size of the tape get_size = proc (tap: cvt) returns (int) return(array[T]$size(tap.data)) end get_size end tape   % Turing machine state table turing = cluster [T: type] is make, add_rule, run where T has equal: proctype (T,T) returns (bool) A_LEFT = 'L' A_RIGHT = 'R' A_STAY = 'S'   state = record[name: string, term: bool] rule = struct[ cur_state: int, read_sym, write_sym: T, action: char, next_state: int ]   rep = struct[ states: array[state], rules: array[rule], init_state: int ]    % Find the index of a state given its name find_state = proc (states: array[state], name: string) returns (int) signals (bad_state) for i: int in array[state]$indexes(states) do if states[i].name = name then return(i) end end signal bad_state end find_state    % Make a new Turing machine given a list of states make = proc (state_seq: sequence[string], init: string, term: sequence[string]) returns (cvt) signals (bad_state) states: array[state] := array[state]$[] for s: string in sequence[string]$elements(state_seq) do array[state]$addh(states, state${name: s, term: false} ) end   init_n: int := find_state(states, init) resignal bad_state for s: string in sequence[string]$elements(term) do term_n: int := find_state(states, s) resignal bad_state states[term_n].term := true end return(rep${states: states, init_state: init_n, rules: array[rule]$[]}) end make    % Add a rule to the Turing machine add_rule = proc (tur: cvt, in_state: string, read_sym, write_sym: T, action: string, out_state: string) signals (bad_state, bad_action) cur_state: int := find_state(tur.states, in_state) resignal bad_state next_state: int := find_state(tur.states, out_state) resignal bad_state   act: char if action = "left" then act := A_LEFT elseif action = "right" then act := A_RIGHT elseif action = "stay" then act := A_STAY else signal bad_action end   array[rule]$addh(tur.rules, rule${cur_state: cur_state, read_sym: read_sym, write_sym: write_sym, action: act, next_state: next_state}) end add_rule    % Find first matching rule find_rule = proc (rules: array[rule], st: int, sym: T) returns (rule) signals (no_rule) for r: rule in array[rule]$elements(rules) do if r.cur_state = st & r.read_sym = sym then return(r) end end signal no_rule end find_rule    % Run the Turing machine on a given tape until it terminates run = proc (tur: cvt, tap: tape[T]) signals (no_rule) cur: int := tur.init_state while ~tur.states[cur].term do r: rule := find_rule(tur.rules, cur, tap.cell) resignal no_rule tap.cell := r.write_sym if r.action = A_LEFT then tape[T]$left(tap) elseif r.action = A_RIGHT then tape[T]$right(tap) end cur := r.next_state end end run end turing     % Simple incrementer simple_incrementer = proc () returns (turing[char]) tc = turing[char] t: tc := tc$make( sequence[string]$["q0", "qf"], "q0", sequence[string]$["qf"] )   tc$add_rule(t, "q0", '1', '1', "right", "q0") tc$add_rule(t, "q0", 'B', '1', "stay", "qf") return(t) end simple_incrementer   % Three state beaver three_state_beaver = proc () returns (turing[char]) tc = turing[char] t: tc := tc$make( sequence[string]$["a", "b", "c", "halt"], "a", sequence[string]$["halt"] )   tc$add_rule(t, "a", '0', '1', "right", "b") tc$add_rule(t, "a", '1', '1', "left", "c") tc$add_rule(t, "b", '0', '1', "left", "a") tc$add_rule(t, "b", '1', '1', "right", "b") tc$add_rule(t, "c", '0', '1', "left", "b") tc$add_rule(t, "c", '1', '1', "stay", "halt") return(t) end three_state_beaver   % Five state beaver five_state_beaver = proc () returns (turing[char]) tc = turing[char] t: tc := tc$make( sequence[string]$["A", "B", "C", "D", "E", "H"], "A", sequence[string]$["H"] )   tc$add_rule(t, "A", '0', '1', "right", "B") tc$add_rule(t, "A", '1', '1', "left", "C") tc$add_rule(t, "B", '0', '1', "right", "C") tc$add_rule(t, "B", '1', '1', "right", "B") tc$add_rule(t, "C", '0', '1', "right", "D") tc$add_rule(t, "C", '1', '0', "left", "E") tc$add_rule(t, "D", '0', '1', "left", "A") tc$add_rule(t, "D", '1', '1', "left", "D") tc$add_rule(t, "E", '0', '1', "stay", "H") tc$add_rule(t, "E", '1', '0', "left", "A") return(t) end five_state_beaver   % Print the first 32 touched symbols on a tape print_tape = proc (s: stream, t: tape[char]) n: int := 32 for c: char in tape[char]$elements(t) do stream$putc(s, c) n := n - 1 if n=0 then break end end   if n=0 then stream$puts(s, "... (length: " || int$unparse(t.size) || ")") end stream$putl(s, "") end print_tape   % Run the three Turing machines and show the results start_up = proc () turing_factory = proctype () returns (turing[char]) test = record[name: string, tf: turing_factory, tap: tape[char]] stest = sequence[test] sc = sequence[char]   tests: stest := stest$[ test${name: "Simple incrementer", tf: simple_incrementer, tap: tape[char]$make('B', sc$['1','1','1'])}, test${name: "Three-state busy beaver", tf: three_state_beaver, tap: tape[char]$make('0', sc$[])}, test${name: "Five-state probable busy beaver", tf: five_state_beaver, tap: tape[char]$make('0', sc$[])}]   po: stream := stream$primary_output() for t: test in stest$elements(tests) do stream$puts(po, t.name || ": ") tm: turing[char] := t.tf() turing[char]$run(tm, t.tap) print_tape(po, t.tap) end end start_up
http://rosettacode.org/wiki/Totient_function
Totient function
The   totient   function is also known as:   Euler's totient function   Euler's phi totient function   phi totient function   Φ   function   (uppercase Greek phi)   φ    function   (lowercase Greek phi) Definitions   (as per number theory) The totient function:   counts the integers up to a given positive integer   n   that are relatively prime to   n   counts the integers   k   in the range   1 ≤ k ≤ n   for which the greatest common divisor   gcd(n,k)   is equal to   1   counts numbers   ≤ n   and   prime to   n If the totient number   (for N)   is one less than   N,   then   N   is prime. Task Create a   totient   function and:   Find and display   (1 per line)   for the 1st   25   integers:   the integer   (the index)   the totient number for that integer   indicate if that integer is prime   Find and display the   count   of the primes up to          100   Find and display the   count   of the primes up to       1,000   Find and display the   count   of the primes up to     10,000   Find and display the   count   of the primes up to   100,000     (optional) Show all output here. Related task   Perfect totient numbers Also see   Wikipedia: Euler's totient function.   MathWorld: totient function.   OEIS: Euler totient function phi(n).
#APL
APL
task←{ totient ← 1+.=⍳∨⊢ prime ← totient=-∘1   ⎕←'Index' 'Totient' 'Prime',(⊢⍪totient¨,[÷2]prime¨)⍳25 {⎕←'There are' (+/prime¨⍳⍵) 'primes below' ⍵}¨100 1000 10000 }
http://rosettacode.org/wiki/Topswops
Topswops
Topswops is a card game created by John Conway in the 1970's. Assume you have a particular permutation of a set of   n   cards numbered   1..n   on both of their faces, for example the arrangement of four cards given by   [2, 4, 1, 3]   where the leftmost card is on top. A round is composed of reversing the first   m   cards where   m   is the value of the topmost card. Rounds are repeated until the topmost card is the number   1   and the number of swaps is recorded. For our example the swaps produce: [2, 4, 1, 3] # Initial shuffle [4, 2, 1, 3] [3, 1, 2, 4] [2, 1, 3, 4] [1, 2, 3, 4] For a total of four swaps from the initial ordering to produce the terminating case where   1   is on top. For a particular number   n   of cards,   topswops(n)   is the maximum swaps needed for any starting permutation of the   n   cards. Task The task is to generate and show here a table of   n   vs   topswops(n)   for   n   in the range   1..10   inclusive. Note Topswops   is also known as   Fannkuch   from the German word   Pfannkuchen   meaning   pancake. Related tasks   Number reversal game   Sorting algorithms/Pancake sort
#Eiffel
Eiffel
  class TOPSWOPS   create make   feature   make (n: INTEGER) -- Topswop game. local perm, ar: ARRAY [INTEGER] tcount, count: INTEGER do create perm_sol.make_empty create solution.make_empty across 1 |..| n as c loop create ar.make_filled (0, 1, c.item) across 1 |..| c.item as d loop ar [d.item] := d.item end permute (ar, 1) across 1 |..| perm_sol.count as e loop tcount := 0 from until perm_sol.at (e.item).at (1) = 1 loop perm_sol.at (e.item) := reverse_array (perm_sol.at (e.item)) tcount := tcount + 1 end if tcount > count then count := tcount end end solution.force (count, c.item) end end   solution: ARRAY [INTEGER]   feature {NONE}   perm_sol: ARRAY [ARRAY [INTEGER]]   reverse_array (ar: ARRAY [INTEGER]): ARRAY [INTEGER] -- Array with 'ar[1]' elements reversed. require ar_not_void: ar /= Void local i, j: INTEGER do create Result.make_empty Result.deep_copy (ar) from i := 1 j := ar [1] until i > j loop Result [i] := ar [j] Result [j] := ar [i] i := i + 1 j := j - 1 end ensure same_elements: across ar as a all Result.has (a.item) end end   permute (a: ARRAY [INTEGER]; k: INTEGER) -- All permutations of array 'a' stored in perm_sol. require ar_not_void: a.count >= 1 k_valid_index: k > 0 local i, t: INTEGER temp: ARRAY [INTEGER] do create temp.make_empty if k = a.count then across a as ar loop temp.force (ar.item, temp.count + 1) end perm_sol.force (temp, perm_sol.count + 1) else from i := k until i > a.count loop t := a [k] a [k] := a [i] a [i] := t permute (a, k + 1) t := a [k] a [k] := a [i] a [i] := t i := i + 1 end end end   end  
http://rosettacode.org/wiki/Trigonometric_functions
Trigonometric functions
Task If your language has a library or built-in functions for trigonometry, show examples of:   sine   cosine   tangent   inverses   (of the above) using the same angle in radians and degrees. For the non-inverse functions,   each radian/degree pair should use arguments that evaluate to the same angle   (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle). For the inverse functions,   use the same number and convert its answer to radians and degrees. If your language does not have trigonometric functions available or only has some available,   write functions to calculate the functions based on any   known approximation or identity.
#Autolisp
Autolisp
  (defun rad_to_deg (rad)(* 180.0 (/ rad PI))) (defun deg_to_rad (deg)(* PI (/ deg 180.0)))   (defun asin (x) (cond ((and(> x -1.0)(< x 1.0)) (atan (/ x (sqrt (- 1.0 (* x x)))))) ((= x -1.0) (* -1.0 (/ pi 2))) ((= x 1) (/ pi 2)) ) )   (defun acos (x) (cond ((and(>= x -1.0)(<= x 1.0)) (-(* pi 0.5) (asin x))) ) )   (list (list "cos PI/6" (cos (/ pi 6)) "cos 30 deg" (cos (deg_to_rad 30))) (list "sin PI/4" (sin (/ pi 4)) "sin 45 deg" (sin (deg_to_rad 45))) (list "tan PI/3" (tan (/ pi 3))"tan 60 deg" (tan (deg_to_rad 60))) (list "asin 1 rad" (asin 1.0) "asin 1 rad (deg)" (rad_to_deg (asin 1.0))) (list "acos 1/2 rad" (acos (/ 1 2.0)) "acos 1/2 rad (deg)" (rad_to_deg (acos (/ 1 2.0)))) (list "atan pi/12" (atan (/ pi 12)) "atan 15 deg" (rad_to_deg(atan(deg_to_rad 15)))) )  
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm
Trabb Pardo–Knuth algorithm
The TPK algorithm is an early example of a programming chrestomathy. It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages. The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm. From the wikipedia entry: ask for 11 numbers to be read into a sequence S reverse sequence S for each item in sequence S result := call a function to do an operation if result overflows alert user else print result The task is to implement the algorithm: Use the function:     f ( x ) = | x | 0.5 + 5 x 3 {\displaystyle f(x)=|x|^{0.5}+5x^{3}} The overflow condition is an answer of greater than 400. The 'user alert' should not stop processing of other items of the sequence. Print a prompt before accepting eleven, textual, numeric inputs. You may optionally print the item as well as its associated result, but the results must be in reverse order of input. The sequence   S   may be 'implied' and so not shown explicitly. Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
#BASIC256
BASIC256
dim s(11) print 'enter 11 numbers' for i = 0 to 10 input i + ">" , s[i] next i   for i = 10 to 0 step -1 print "f(" + s[i] + ")="; x = f(s[i]) if x > 400 then print "-=< overflow >=-" else print x endif next i end   function f(n) return sqrt(abs(n))+5*n^3 end function
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm
Trabb Pardo–Knuth algorithm
The TPK algorithm is an early example of a programming chrestomathy. It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages. The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm. From the wikipedia entry: ask for 11 numbers to be read into a sequence S reverse sequence S for each item in sequence S result := call a function to do an operation if result overflows alert user else print result The task is to implement the algorithm: Use the function:     f ( x ) = | x | 0.5 + 5 x 3 {\displaystyle f(x)=|x|^{0.5}+5x^{3}} The overflow condition is an answer of greater than 400. The 'user alert' should not stop processing of other items of the sequence. Print a prompt before accepting eleven, textual, numeric inputs. You may optionally print the item as well as its associated result, but the results must be in reverse order of input. The sequence   S   may be 'implied' and so not shown explicitly. Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
#C
C
  #include<math.h> #include<stdio.h>   int main () { double inputs[11], check = 400, result; int i;   printf ("\nPlease enter 11 numbers :");   for (i = 0; i < 11; i++) { scanf ("%lf", &inputs[i]); }   printf ("\n\n\nEvaluating f(x) = |x|^0.5 + 5x^3 for the given inputs :");   for (i = 10; i >= 0; i--) { result = sqrt (fabs (inputs[i])) + 5 * pow (inputs[i], 3);   printf ("\nf(%lf) = ");   if (result > check) { printf ("Overflow!"); }   else { printf ("%lf", result); } }   return 0; }  
http://rosettacode.org/wiki/Twelve_statements
Twelve statements
This puzzle is borrowed from   math-frolic.blogspot. Given the following twelve statements, which of them are true? 1. This is a numbered list of twelve statements. 2. Exactly 3 of the last 6 statements are true. 3. Exactly 2 of the even-numbered statements are true. 4. If statement 5 is true, then statements 6 and 7 are both true. 5. The 3 preceding statements are all false. 6. Exactly 4 of the odd-numbered statements are true. 7. Either statement 2 or 3 is true, but not both. 8. If statement 7 is true, then 5 and 6 are both true. 9. Exactly 3 of the first 6 statements are true. 10. The next two statements are both true. 11. Exactly 1 of statements 7, 8 and 9 are true. 12. Exactly 4 of the preceding statements are true. Task When you get tired of trying to figure it out in your head, write a program to solve it, and print the correct answer or answers. Extra credit Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
#Nim
Nim
import bitops, sequtils, strformat, strutils, sugar   type Bools = array[1..12, bool]   const Predicates = [1: (b: Bools) => b.len == 12, 2: (b: Bools) => b[7..12].count(true) == 3, 3: (b: Bools) => toSeq(countup(2, 12, 2)).mapIt(b[it]).count(true) == 2, 4: (b: Bools) => not b[5] or b[6] and b[7], 5: (b: Bools) => not b[2] and not b[3] and not b[4], 6: (b: Bools) => toSeq(countup(1, 12, 2)).mapIt(b[it]).count(true) == 4, 7: (b: Bools) => b[2] xor b[3], 8: (b: Bools) => not b[7] or b[5] and b[6], 9: (b: Bools) => b[1..6].count(true) == 3, 10: (b: Bools) => b[11] and b[12], 11: (b: Bools) => b[7..9].count(true) == 1, 12: (b: Bools) => b[1..11].count(true) == 4]     proc `$`(b: Bools): string = toSeq(1..12).filterIt(b[it]).join(" ")     echo "Exacts hits:" var bools: Bools for n in 0..4095: block check: for i in 1..12: bools[i] = n.testBit(12 - i) for i, predicate in Predicates: if predicate(bools) != bools[i]: break check echo " ", bools   echo "\nNear misses:" for n in 0..4095: for i in 1..12: bools[i] = n.testBit(12 - i) var count = 0 for i, predicate in Predicates: if predicate(bools) == bools[i]: inc count if count == 11: for i, predicate in Predicates: if predicate(bools) != bools[i]: echo &" (Fails at statement {i:2}) {bools}" break
http://rosettacode.org/wiki/Twelve_statements
Twelve statements
This puzzle is borrowed from   math-frolic.blogspot. Given the following twelve statements, which of them are true? 1. This is a numbered list of twelve statements. 2. Exactly 3 of the last 6 statements are true. 3. Exactly 2 of the even-numbered statements are true. 4. If statement 5 is true, then statements 6 and 7 are both true. 5. The 3 preceding statements are all false. 6. Exactly 4 of the odd-numbered statements are true. 7. Either statement 2 or 3 is true, but not both. 8. If statement 7 is true, then 5 and 6 are both true. 9. Exactly 3 of the first 6 statements are true. 10. The next two statements are both true. 11. Exactly 1 of statements 7, 8 and 9 are true. 12. Exactly 4 of the preceding statements are true. Task When you get tired of trying to figure it out in your head, write a program to solve it, and print the correct answer or answers. Extra credit Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
#Pascal
Pascal
PROGRAM TwelveStatements;   { This program searches through the 4095 possible sets of 12 statements for any which may be self-consistent. }   CONST max12b = 4095; { Largest 12 byte number. }   TYPE statnum = 1..12; { statement numbers } statset = set of statnum; { sets of statements }   VAR { global variables for use in main algorithm } trialNumber: integer; trialSet, testResults: statset;   function Convert(n: integer): statset; { Converts an integer into a set of statements. For each "1" in the last 12 bits of the integer's binary representation, a statement number is put into the set. } var i: statnum; s: statset; begin s := []; { Empty set. } for i := 12 downto 1 do begin if (n mod 2) = 1 then s := s + [i]; n := n div 2 end; Convert := s end;   procedure Express(truths: statset); { Writes the statement number of each "truth", with at least one space in front, all on one line. } var n: statnum; begin for n := 1 to 12 do if n in truths then write(n:3); writeln end;   function Count(truths: statset): integer; { Counts the statement numbers in the set. } var s: statnum; i: integer; begin i := 0; for s := 1 to 12 do if s in truths then i := i + 1; Count := i end;   function Test(truths: statset): statset; { Starts with a set of supposedly true statements and checks which of the 12 statements can actually be confirmed about the set itself. } var evens, odds, confirmations: statset; begin evens := [2, 4, 6, 8, 10, 12]; odds := [1, 3, 5, 7, 9, 11];   { Statement 1 is necessarily true. } confirmations := [1];   { Statement 2 } if Count(truths * [7..12]) = 3 then confirmations := confirmations + [2];   { Statement 3 } if Count(truths * evens) = 2 then confirmations := confirmations + [3];   { Statement 4 is true if 6 and 7 are true, or if 5 is false. } if ([6, 7] <= truths) or not (5 in truths) then confirmations := confirmations + [4];   { Statement 5 } if [2, 3, 4] <= truths then confirmations := confirmations + [5];   { Statement 6 } if Count(truths * odds) = 4 then confirmations := confirmations + [6];   { Statement 7 } if (2 in truths) xor (3 in truths) then confirmations := confirmations + [7];   { Statement 8 is true if 5 and 6 are true, or if 7 is false. } if ([5, 6] <= truths) or not (7 in truths) then confirmations := confirmations + [8];   { Statement 9 } if Count(truths * [1..6]) = 3 then confirmations := confirmations + [9];   { Statement 10 } if [11, 12] <= truths then confirmations := confirmations + [10];   { Statement 11 } if Count(truths * [7, 8, 9]) = 1 then confirmations := confirmations + [11];   { Statement 12 } if Count(truths - [12]) = 4 then confirmations := confirmations + [12];   Test := confirmations end;   BEGIN { Main algorithm. } for trialNumber := 1 to max12b do begin trialSet := Convert(trialNumber); testResults := Test(trialSet); if testResults = trialSet then Express(trialSet) end; writeln('Done. Press ENTER.'); readln END.
http://rosettacode.org/wiki/Truth_table
Truth table
A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function. Task Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function. (One can assume that the user input is correct). Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function. Either reverse-polish or infix notation expressions are allowed. Related tasks   Boolean values   Ternary logic See also   Wolfram MathWorld entry on truth tables.   some "truth table" examples from Google.
#Liberty_BASIC
Liberty BASIC
  print print " TRUTH TABLES" print print " Input a valid Boolean expression for creating the truth table " print " Use lowercase 'and', 'or', 'xor', '(', 'not(' and ')'." print print " Take special care to precede closing bracket with a space." print print " You can use any alphanumeric variable names, but no spaces." print " You can refer again to a variable used already." print " Program assumes <8 variables will be used.." print print " eg 'A xor B and not( C or A )'" print " or 'Too_High xor not( Fuel_Out )'"   print   [start] input " "; expression$ if expression$ ="" then [start]   print   'used$ ="" numVariables =0 ' count of detected variable names variableNames$ ="" ' filled with detected variable names i =1 ' index to space-delimited word in the expression$   [parse] m$ =word$( expression$, i, " ") if m$ ="" then [analyse] ' is it a reserved word, or a variable name already met? if m$ <>"and" and m$ <>"or" and m$ <>"not(" and m$ <>")" and m$ <>"xor"_ and not( instr( variableNames$, m$)) then variableNames$ =variableNames$ +m$ +" ": numVariables =numVariables +1 end if   i =i +1 goto [parse]   [analyse] for i =1 to numVariables ex$ =FindReplace$( expression$, word$( variableNames$, i, " "), chr$( 64 +i), 1) expression$ =ex$ next i   'print " "; numVariables; " variables, simplifying to "; expression$   print ,; for j =1 to numVariables print word$( variableNames$, j, " "), next j print "Result" print   for i =0 to ( 2^numVariables) -1 print ,; A =i mod 2: print A, if numVariables >1 then B =int( i /2) mod 2: print B, if numVariables >2 then C =int( i /4) mod 2: print C, if numVariables >3 then D =int( i /4) mod 2: print D, if numVariables >4 then E =int( i /4) mod 2: print E, if numVariables >5 then F =int( i /4) mod 2: print F, if numVariables >6 then G =int( i /4) mod 2: print G, ' .......................... etc   'e =eval( expression$) if eval( expression$) <>0 then e$ ="1" else e$ ="0" print "==> "; e$ next i   print   goto [start]   end   function FindReplace$( FindReplace$, find$, replace$, replaceAll) if ( ( FindReplace$ <>"") and ( find$ <>"")) then fLen = len( find$) rLen = len( replace$) do fPos = instr( FindReplace$, find$, fPos) if not( fPos) then exit function pre$ = left$( FindReplace$, fPos -1) post$ = mid$( FindReplace$, fPos +fLen) FindReplace$ = pre$ +replace$ +post$ fPos = fPos +(rLen -fLen) +1 loop while ( replaceAll) end if end function  
http://rosettacode.org/wiki/Ulam_spiral_(for_primes)
Ulam spiral (for primes)
An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1),   constructed on a square grid, starting at the "center". An Ulam spiral is also known as a   prime spiral. The first grid (green) is shown with sequential integers,   starting at   1. In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk),   and all non-primes as shown as a blank   (or some other whitespace). Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables). Normally, the spiral starts in the "center",   and the   2nd   number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction. There are other geometric shapes that are used as well, including clock-wise spirals. Also, some spirals (for the   2nd   number)   is viewed upwards from the   1st   number instead of to the right, but that is just a matter of orientation. Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities). [A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals   (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)]. Then, in the next phase in the transformation of the Ulam prime spiral,   the non-primes are translated to blanks. In the orange grid below,   the primes are left intact,   and all non-primes are changed to blanks. Then, in the final transformation of the Ulam spiral (the yellow grid),   translate the primes to a glyph such as a   •   or some other suitable glyph. 65 64 63 62 61 60 59 58 57 66 37 36 35 34 33 32 31 56 67 38 17 16 15 14 13 30 55 68 39 18 5 4 3 12 29 54 69 40 19 6 1 2 11 28 53 70 41 20 7 8 9 10 27 52 71 42 21 22 23 24 25 26 51 72 43 44 45 46 47 48 49 50 73 74 75 76 77 78 79 80 81 61 59 37 31 67 17 13 5 3 29 19 2 11 53 41 7 71 23 43 47 73 79 • • • • • • • • • • • • • • • • • • • • • • The Ulam spiral becomes more visually obvious as the grid increases in size. Task For any sized   N × N   grid,   construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number   (the default would be 1),   with some suitably   dotty   (glyph) representation to indicate primes,   and the absence of dots to indicate non-primes. You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen. Related tasks   Spiral matrix   Zig-zag matrix   Identity matrix   Sequence of primes by Trial Division See also Wikipedia entry:   Ulam spiral MathWorld™ entry:   Prime Spiral
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
ClearAll[iCCWSpiralEast] iCCWSpiralEast[n_Integer]:=Table[(1/2 (-1)^# ({1,-1} (Abs[#^2-t]-#)+#^2-t-Mod[#,2])&)[Round[Sqrt[t]]],{t,0,n-1}] n=20 start=1; pts=iCCWSpiralEast[n^2]; pts=Pick[pts,PrimeQ[start+Range[n^2]-1],True]; grid=Table[({i,j}/.(Alternatives@@pts)->"#")/.{_,_}->" ",{j,Round[n/2],-Round[n/2],-1},{i,-Round[n/2],Round[n/2],1}]; Grid[grid]
http://rosettacode.org/wiki/Truncatable_primes
Truncatable primes
A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number. Examples The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime. The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime. No zeroes are allowed in truncatable primes. Task The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied). Related tasks Find largest left truncatable prime in a given base Sieve of Eratosthenes See also Truncatable Prime from MathWorld.]
#Elixir
Elixir
defmodule Prime do defp left_truncatable?(n, prime) do func = fn i when i<=9 -> 0 i -> to_string(i) |> String.slice(1..-1) |> String.to_integer end truncatable?(n, prime, func) end   defp right_truncatable?(n, prime) do truncatable?(n, prime, fn i -> div(i, 10) end) end   defp truncatable?(n, prime, trunc_func) do if to_string(n) |> String.match?(~r/0/), do: false, else: trunc_loop(trunc_func.(n), prime, trunc_func) end   defp trunc_loop(0, _prime, _trunc_func), do: true defp trunc_loop(n, prime, trunc_func) do if elem(prime,n), do: trunc_loop(trunc_func.(n), prime, trunc_func), else: false end   def eratosthenes(limit) do # descending order Enum.to_list(2..limit) |> sieve(:math.sqrt(limit), []) end   defp sieve([h|_]=list, max, sieved) when h>max, do: Enum.reverse(list, sieved) defp sieve([h | t], max, sieved) do list = for x <- t, rem(x,h)>0, do: x sieve(list, max, [h | sieved]) end   defp prime_table(_, [], list), do: [false, false | list] defp prime_table(n, [n|t], list), do: prime_table(n-1, t, [true|list]) defp prime_table(n, prime, list), do: prime_table(n-1, prime, [false|list])   def task(limit \\ 1000000) do prime = eratosthenes(limit) prime_tuple = prime_table(limit, prime, []) |> List.to_tuple left = Enum.find(prime, fn n -> left_truncatable?(n, prime_tuple) end) IO.puts "Largest left-truncatable prime : #{left}" right = Enum.find(prime, fn n -> right_truncatable?(n, prime_tuple) end) IO.puts "Largest right-truncatable prime: #{right}" end end   Prime.task
http://rosettacode.org/wiki/Truncate_a_file
Truncate a file
Task Truncate a file to a specific length.   This should be implemented as a routine that takes two parameters: the filename and the required file length (in bytes). Truncation can be achieved using system or library calls intended for such a task, if such methods exist, or by creating a temporary file of a reduced size and renaming it, after first deleting the original file, if no other method is available.   The file may contain non human readable binary data in an unspecified format, so the routine should be "binary safe", leaving the contents of the untruncated part of the file unchanged. If the specified filename does not exist, or the provided length is not less than the current file length, then the routine should raise an appropriate error condition. On some systems, the provided file truncation facilities might not change the file or may extend the file, if the specified length is greater than the current length of the file. This task permits the use of such facilities.   However, such behaviour should be noted, or optionally a warning message relating to an non change or increase in file size may be implemented.
#XPL0
XPL0
int I, Size, FD; char C, FN(80), Array; [I:= 0; \get file name from command line loop [C:= ChIn(8); if C = $20 \space\ then quit; FN(I):= C; I:= I+1; ]; FN(I):= 0; Size:= IntIn(8); \get number of bytes from command line if Size = 0 then [Text(0, "Length not found (or zero)"); exit 1];   Trap(false); \disable abort on errors FD:= FOpen(FN, 0); \open specified file for input FSet(FD, ^i); OpenI(3); if GetErr then [Text(0, "File not found"); exit 1];   Array:= Reserve(0); \64MB available if no procedures are called for I:= 0 to Size-1 do \read specified number of bytes [Array(I):= ChIn(3); if GetErr then [Text(0, "File is too short"); exit 1]; ]; \if end of file encountered, show error FClose(FD);   FD:= FOpen(FN, 1); \open file by same name for output FSet(FD, ^o); OpenO(3); if GetErr then [Text(0, "Output error"); exit 1]; for I:= 0 to Size-1 do ChOut(3, Array(I)); Close(3); ]
http://rosettacode.org/wiki/Truncate_a_file
Truncate a file
Task Truncate a file to a specific length.   This should be implemented as a routine that takes two parameters: the filename and the required file length (in bytes). Truncation can be achieved using system or library calls intended for such a task, if such methods exist, or by creating a temporary file of a reduced size and renaming it, after first deleting the original file, if no other method is available.   The file may contain non human readable binary data in an unspecified format, so the routine should be "binary safe", leaving the contents of the untruncated part of the file unchanged. If the specified filename does not exist, or the provided length is not less than the current file length, then the routine should raise an appropriate error condition. On some systems, the provided file truncation facilities might not change the file or may extend the file, if the specified length is greater than the current length of the file. This task permits the use of such facilities.   However, such behaviour should be noted, or optionally a warning message relating to an non change or increase in file size may be implemented.
#ZX_Spectrum_Basic
ZX Spectrum Basic
10 CLEAR 29999 20 INPUT "Which file do you want to truncate?";f$ 30 PRINT "Start tape to load file to truncate." 40 LOAD f$ CODE 30000 50 "Input how many bytes do you want to keep?";n 60 PRINT "Please rewind the tape and press record." 70 SAVE f$ CODE 30000,n 80 STOP
http://rosettacode.org/wiki/Tree_traversal
Tree traversal
Task Implement a binary tree where each node carries an integer,   and implement:   pre-order,   in-order,   post-order,     and   level-order   traversal. Use those traversals to output the following tree: 1 / \ / \ / \ 2 3 / \ / 4 5 6 / / \ 7 8 9 The correct output should look like this: preorder: 1 2 4 7 5 3 6 8 9 inorder: 7 4 2 5 1 8 6 9 3 postorder: 7 4 5 2 8 9 6 3 1 level-order: 1 2 3 4 5 6 7 8 9 See also   Wikipedia article:   Tree traversal.
#ACL2
ACL2
(defun flatten-preorder (tree) (if (endp tree) nil (append (list (first tree)) (flatten-preorder (second tree)) (flatten-preorder (third tree)))))   (defun flatten-inorder (tree) (if (endp tree) nil (append (flatten-inorder (second tree)) (list (first tree)) (flatten-inorder (third tree)))))   (defun flatten-postorder (tree) (if (endp tree) nil (append (flatten-postorder (second tree)) (flatten-postorder (third tree)) (list (first tree)))))   (defun flatten-level-r1 (tree level levels) (if (endp tree) levels (let ((curr (cdr (assoc level levels)))) (flatten-level-r1 (second tree) (1+ level) (flatten-level-r1 (third tree) (1+ level) (put-assoc level (append curr (list (first tree))) levels))))))   (defun flatten-level-r2 (levels max-level) (declare (xargs :measure (nfix (1+ max-level)))) (if (zp (1+ max-level)) nil (append (flatten-level-r2 levels (1- max-level)) (reverse (cdr (assoc max-level levels))))))     (defun flatten-level (tree) (let ((levels (flatten-level-r1 tree 0 nil))) (flatten-level-r2 levels (len levels))))
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64   ' Three different ways of returning a value from a function   Function Sum (x As Integer, y As Integer) As Integer Sum = x + y '' using name of function End Function   Function Sum2 (x As Integer, y As Integer) As Integer Function = x + y '' using Function keyword End Function   Function Sum3 (x As Integer, y As Integer) As Integer Return x + y '' using Return keyword which always returns immediately End Function   Print Sum (1, 2) Print Sum2(2, 3) Print Sum3(3, 4) Sleep
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Go
Go
package main   import ( "math" "os" "strconv" "text/template" )   func sqr(x string) string { f, err := strconv.ParseFloat(x, 64) if err != nil { return "NA" } return strconv.FormatFloat(f*f, 'f', -1, 64) }   func sqrt(x string) string { f, err := strconv.ParseFloat(x, 64) if err != nil { return "NA" } return strconv.FormatFloat(math.Sqrt(f), 'f', -1, 64) }   func main() { f := template.FuncMap{"sqr": sqr, "sqrt": sqrt} t := template.Must(template.New("").Funcs(f).Parse(`. = {{.}} square: {{sqr .}} square root: {{sqrt .}} `)) t.Execute(os.Stdout, "3") }
http://rosettacode.org/wiki/Towers_of_Hanoi
Towers of Hanoi
Task Solve the   Towers of Hanoi   problem with recursion.
#360_Assembly
360 Assembly
* Towers of Hanoi 08/09/2015 HANOITOW CSECT USING HANOITOW,R12 r12 : base register LR R12,R15 establish base register ST R14,SAVE14 save r14 BEGIN LH R2,=H'4' n <=== L R3,=C'123 ' stating position BAL R14,MOVE r1=move(m,n) RETURN L R14,SAVE14 restore r14 BR R14 return to caller SAVE14 DS F static save r14 PG DC CL44'xxxxxxxxxxxx Move disc from pole X to pole Y' NN DC F'0' POLEX DS F current poles POLEN DS F new poles * .... recursive subroutine move(n, poles) [r2,r3] MOVE LR R10,R11 save stackptr (r11) in r10 temp LA R1,STACKLEN amount of storage required GETMAIN RU,LV=(R1) allocate storage for stack USING STACKDS,R11 make storage addressable LR R11,R1 establish stack addressability ST R14,SAVE14M save previous r14 ST R10,SAVE11M save previous r11 LR R1,R5 restore saved argument r5 BEGINM STM R2,R3,STACK push arguments to stack ST R3,POLEX CH R2,=H'1' if n<>1 BNE RECURSE then goto recurse L R1,NN LA R1,1(R1) nn=nn+1 ST R1,NN XDECO R1,PG nn MVC PG+33(1),POLEX+0 from MVC PG+43(1),POLEX+1 to XPRNT PG,44 print "move disk from to" B RETURNM RECURSE L R2,N n BCTR R2,0 n=n-1 MVC POLEN+0(1),POLES+0 from MVC POLEN+1(1),POLES+2 via MVC POLEN+2(1),POLES+1 to L R3,POLEN new poles BAL R14,MOVE call move(n-1,from,via,to) LA R2,1 n=1 MVC POLEN,POLES L R3,POLEN new poles BAL R14,MOVE call move(1,from,to,via) L R2,N n BCTR R2,0 n=n-1 MVC POLEN+0(1),POLES+2 via MVC POLEN+1(1),POLES+1 to MVC POLEN+2(1),POLES+0 from L R3,POLEN new poles BAL R14,MOVE call move(n-1,via,to,from) RETURNM LM R2,R3,STACK pull arguments from stack LR R1,R11 current stack L R14,SAVE14M restore r14 L R11,SAVE11M restore r11 LA R0,STACKLEN amount of storage to free FREEMAIN A=(R1),LV=(R0) free allocated storage BR R14 return to caller LTORG DROP R12 base no longer needed STACKDS DSECT dynamic area SAVE14M DS F saved r14 SAVE11M DS F saved r11 STACK DS 0F stack N DS F r2 n POLES DS F r3 poles STACKLEN EQU *-STACKDS YREGS END HANOITOW
http://rosettacode.org/wiki/Total_circles_area
Total circles area
Total circles area You are encouraged to solve this task according to the task description, using any language you may know. Example circles Example circles filtered Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once. One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome. To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii   (11 disks are fully contained inside other disks): xc yc radius 1.6417233788 1.6121789534 0.0848270516 -1.4944608174 1.2077959613 1.1039549836 0.6110294452 -0.6907087527 0.9089162485 0.3844862411 0.2923344616 0.2375743054 -0.2495892950 -0.3832854473 1.0845181219 1.7813504266 1.6178237031 0.8162655711 -0.1985249206 -0.8343333301 0.0538864941 -1.7011985145 -0.1263820964 0.4776976918 -0.4319462812 1.4104420482 0.7886291537 0.2178372997 -0.9499557344 0.0357871187 -0.6294854565 -1.3078893852 0.7653357688 1.7952608455 0.6281269104 0.2727652452 1.4168575317 1.0683357171 1.1016025378 1.4637371396 0.9463877418 1.1846214562 -0.5263668798 1.7315156631 1.4428514068 -1.2197352481 0.9144146579 1.0727263474 -0.1389358881 0.1092805780 0.7350208828 1.5293954595 0.0030278255 1.2472867347 -0.5258728625 1.3782633069 1.3495508831 -0.1403562064 0.2437382535 1.3804956588 0.8055826339 -0.0482092025 0.3327165165 -0.6311979224 0.7184578971 0.2491045282 1.4685857879 -0.8347049536 1.3670667538 -0.6855727502 1.6465021616 1.0593087096 0.0152957411 0.0638919221 0.9771215985 The result is   21.56503660... . Related task   Circles of given radius through two points. See also http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/ http://stackoverflow.com/a/1667789/10562
#Arturo
Arturo
circles: @[ @[ 1.6417233788 1.6121789534 0.0848270516] @[neg 1.4944608174 1.2077959613 1.1039549836] @[ 0.6110294452 neg 0.6907087527 0.9089162485] @[ 0.3844862411 0.2923344616 0.2375743054] @[neg 0.2495892950 neg 0.3832854473 1.0845181219] @[ 1.7813504266 1.6178237031 0.8162655711] @[neg 0.1985249206 neg 0.8343333301 0.0538864941] @[neg 1.7011985145 neg 0.1263820964 0.4776976918] @[neg 0.4319462812 1.4104420482 0.7886291537] @[ 0.2178372997 neg 0.9499557344 0.0357871187] @[neg 0.6294854565 neg 1.3078893852 0.7653357688] @[ 1.7952608455 0.6281269104 0.2727652452] @[ 1.4168575317 1.0683357171 1.1016025378] @[ 1.4637371396 0.9463877418 1.1846214562] @[neg 0.5263668798 1.7315156631 1.4428514068] @[neg 1.2197352481 0.9144146579 1.0727263474] @[neg 0.1389358881 0.1092805780 0.7350208828] @[ 1.5293954595 0.0030278255 1.2472867347] @[neg 0.5258728625 1.3782633069 1.3495508831] @[neg 0.1403562064 0.2437382535 1.3804956588] @[ 0.8055826339 neg 0.0482092025 0.3327165165] @[neg 0.6311979224 0.7184578971 0.2491045282] @[ 1.4685857879 neg 0.8347049536 1.3670667538] @[neg 0.6855727502 1.6465021616 1.0593087096] @[ 0.0152957411 0.0638919221 0.9771215985] ]   xMin: min map circles 'c -> c\0 - c\2 xMax: max map circles 'c -> c\0 + c\2 yMin: min map circles 'c -> c\1 - c\2 yMax: max map circles 'c -> c\1 + c\2   boxSide: 500   dx: (xMax - xMin) / boxSide dy: (yMax - yMin) / boxSide   count: 0   loop 0..dec boxSide 'r [ y: yMin + r * dy loop 0..dec boxSide 'c [ x: xMin + c * dx loop circles 'circle [ if (add (x - first circle)*(x - first circle) (y - circle\1)*(y - circle\1)) =< (last circle)*(last circle) [ count: count + 1 break ] ] ] ]   print ["Approximated area: " count * dx * dy]
http://rosettacode.org/wiki/Universal_Turing_machine
Universal Turing machine
One of the foundational mathematical constructs behind computer science is the universal Turing Machine. (Alan Turing introduced the idea of such a machine in 1936–1937.) Indeed one way to definitively prove that a language is turing-complete is to implement a universal Turing machine in it. Task Simulate such a machine capable of taking the definition of any other Turing machine and executing it. Of course, you will not have an infinite tape, but you should emulate this as much as is possible. The three permissible actions on the tape are "left", "right" and "stay". To test your universal Turing machine (and prove your programming language is Turing complete!), you should execute the following two Turing machines based on the following definitions. Simple incrementer States: q0, qf Initial state: q0 Terminating states: qf Permissible symbols: B, 1 Blank symbol: B Rules: (q0, 1, 1, right, q0) (q0, B, 1, stay, qf) The input for this machine should be a tape of 1 1 1 Three-state busy beaver States: a, b, c, halt Initial state: a Terminating states: halt Permissible symbols: 0, 1 Blank symbol: 0 Rules: (a, 0, 1, right, b) (a, 1, 1, left, c) (b, 0, 1, left, a) (b, 1, 1, right, b) (c, 0, 1, left, b) (c, 1, 1, stay, halt) The input for this machine should be an empty tape. Bonus: 5-state, 2-symbol probable Busy Beaver machine from Wikipedia States: A, B, C, D, E, H Initial state: A Terminating states: H Permissible symbols: 0, 1 Blank symbol: 0 Rules: (A, 0, 1, right, B) (A, 1, 1, left, C) (B, 0, 1, right, C) (B, 1, 1, right, B) (C, 0, 1, right, D) (C, 1, 0, left, E) (D, 0, 1, left, A) (D, 1, 1, left, D) (E, 0, 1, stay, H) (E, 1, 0, left, A) The input for this machine should be an empty tape. This machine runs for more than 47 millions steps.
#Common_Lisp
Common Lisp
(defun turing (initial terminal blank rules tape &optional (verbose NIL)) (labels ((combine (front back) (if front (combine (cdr front) (cons (car front) back)) back))   (update-tape (old-front old-back new-content move) (cond ((eq move 'right) (list (cons new-content old-front) (cdr old-back))) ((eq move 'left) (list (cdr old-front) (list* (car old-front) new-content (cdr old-back)))) (T (list old-front (cons new-content (cdr old-back))))))   (show-tape (front back) (format T "~{~a~}[~a]~{~a~}~%" (nreverse (subseq front 0 (min 10 (length front)))) (or (car back) blank) (subseq (cdr back) 0 (min 10 (length (cdr back)))))))   (loop for back = tape then new-back for front = '() then new-front for state = initial then new-state for content = (or (car back) blank) for (new-state new-content move) = (gethash (cons state content) rules) for (new-front new-back) = (update-tape front back new-content move) until (equal state terminal) do (when verbose (show-tape front back)) finally (progn (when verbose (show-tape front back)) (return (combine front back))))))
http://rosettacode.org/wiki/Totient_function
Totient function
The   totient   function is also known as:   Euler's totient function   Euler's phi totient function   phi totient function   Φ   function   (uppercase Greek phi)   φ    function   (lowercase Greek phi) Definitions   (as per number theory) The totient function:   counts the integers up to a given positive integer   n   that are relatively prime to   n   counts the integers   k   in the range   1 ≤ k ≤ n   for which the greatest common divisor   gcd(n,k)   is equal to   1   counts numbers   ≤ n   and   prime to   n If the totient number   (for N)   is one less than   N,   then   N   is prime. Task Create a   totient   function and:   Find and display   (1 per line)   for the 1st   25   integers:   the integer   (the index)   the totient number for that integer   indicate if that integer is prime   Find and display the   count   of the primes up to          100   Find and display the   count   of the primes up to       1,000   Find and display the   count   of the primes up to     10,000   Find and display the   count   of the primes up to   100,000     (optional) Show all output here. Related task   Perfect totient numbers Also see   Wikipedia: Euler's totient function.   MathWorld: totient function.   OEIS: Euler totient function phi(n).
#ARM_Assembly
ARM Assembly
  /* ARM assembly Raspberry PI or android with termux */ /* program totient.s */   /* REMARK 1 : this program use routines in a include file see task Include a file language arm assembly for the routine affichageMess conversion10 see at end of this program the instruction include */ /* for constantes see task include a file in arm assembly */ /************************************/ /* Constantes */ /************************************/ .include "../constantes.inc" .equ MAXI, 25   /*********************************/ /* Initialized data */ /*********************************/ .data szMessNumber: .asciz " number @ totient @ @ \n" szCarriageReturn: .asciz "\n" szMessPrime: .asciz " is prime." szMessSpace: .asciz " " szMessCounterPrime: .asciz "Number of primes to @ : @ \n" /*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 /*********************************/ /* code section */ /*********************************/ .text .global main main: mov r4,#1 @ start number 1: mov r0,r4 bl totient @ compute totient mov r5,r0 mov r0,r4 bl isPrime @ control if number is prime mov r6,r0 mov r0,r4 @ display result ldr r1,iAdrsZoneConv bl conversion10 @ call décimal conversion ldr r0,iAdrszMessNumber ldr r1,iAdrsZoneConv @ insert conversion in message bl strInsertAtCharInc mov r7,r0 mov r0,r5 ldr r1,iAdrsZoneConv bl conversion10 @ call décimal conversion mov r0,r7 ldr r1,iAdrsZoneConv @ insert conversion in message bl strInsertAtCharInc mov r7,r0 cmp r6,#1 ldreq r1,iAdrszMessPrime ldrne r1,iAdrszMessSpace mov r0,r7 bl strInsertAtCharInc bl affichageMess @ display message   add r4,r4,#1 @ increment number cmp r4,#MAXI @ maxi ? ble 1b @ and loop   mov r4,#2 @ first number mov r5,#0 @ prime counter ldr r6,iCst1000 @ load constantes ldr r7,iCst10000 ldr r8,iCst100000 2: mov r0,r4 bl isPrime cmp r0,#0 beq 3f add r5,r5,#1 3: add r4,r4,#1 cmp r4,#100 bne 4f mov r0,#100 mov r1,r5 bl displayCounter b 7f 4: cmp r4,r6 @ 1000 bne 5f mov r0,r6 mov r1,r5 bl displayCounter b 7f 5: cmp r4,r7 @ 10000 bne 6f mov r0,r7 mov r1,r5 bl displayCounter b 7f 6: cmp r4,r8 @ 100000 bne 7f mov r0,r8 mov r1,r5 bl displayCounter 7: cmp r4,r8 ble 2b @ and loop   100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc #0 @ perform the system call iAdrszCarriageReturn: .int szCarriageReturn iAdrsZoneConv: .int sZoneConv iAdrszMessNumber: .int szMessNumber iAdrszMessCounterPrime: .int szMessCounterPrime iAdrszMessPrime: .int szMessPrime iAdrszMessSpace: .int szMessSpace iCst1000: .int 1000 iCst10000: .int 10000 iCst100000: .int 100000 /******************************************************************/ /* display counter */ /******************************************************************/ /* r0 contains limit */ /* r1 contains counter */ displayCounter: push {r1-r3,lr} @ save registers mov r2,r1 ldr r1,iAdrsZoneConv bl conversion10 @ call décimal conversion ldr r0,iAdrszMessCounterPrime ldr r1,iAdrsZoneConv @ insert conversion in message bl strInsertAtCharInc mov r3,r0 mov r0,r2 ldr r1,iAdrsZoneConv bl conversion10 @ call décimal conversion mov r0,r3 ldr r1,iAdrsZoneConv @ insert conversion in message bl strInsertAtCharInc bl affichageMess 100: pop {r1-r3,pc} @ restaur registers /******************************************************************/ /* compute totient of number */ /******************************************************************/ /* r0 contains number */ totient: push {r1-r5,lr} @ save registers mov r4,r0 @ totient mov r5,r0 @ save number mov r1,#0 @ for first divisor 1: @ begin loop mul r3,r1,r1 @ compute square cmp r3,r5 @ compare number bgt 4f @ end add r1,r1,#2 @ next divisor mov r0,r5 bl division cmp r3,#0 @ remainder null ? bne 3f 2: @ begin loop 2 mov r0,r5 bl division cmp r3,#0 moveq r5,r2 @ new value = quotient beq 2b   mov r0,r4 @ totient bl division sub r4,r4,r2 @ compute new totient 3: cmp r1,#2 @ first divisor ? moveq r1,#1 @ divisor = 1 b 1b @ and loop 4: cmp r5,#1 @ final value > 1 ble 5f mov r0,r4 @ totient mov r1,r5 @ divide by value bl division sub r4,r4,r2 @ compute new totient 5:   mov r0,r4 100: pop {r1-r5,pc} @ restaur registers   /***************************************************/ /* check if a number is prime */ /***************************************************/ /* r0 contains the number */ /* r0 return 1 if prime 0 else */ @2147483647 @4294967297 @131071 isPrime: push {r1-r6,lr} @ save registers cmp r0,#0 beq 90f cmp r0,#17 bhi 1f cmp r0,#3 bls 80f @ for 1,2,3 return prime cmp r0,#5 beq 80f @ for 5 return prime cmp r0,#7 beq 80f @ for 7 return prime cmp r0,#11 beq 80f @ for 11 return prime cmp r0,#13 beq 80f @ for 13 return prime cmp r0,#17 beq 80f @ for 17 return prime 1: tst r0,#1 @ even ? beq 90f @ yes -> not prime mov r2,r0 @ save number sub r1,r0,#1 @ exposant n - 1 mov r0,#3 @ base bl moduloPuR32 @ compute base power n - 1 modulo n cmp r0,#1 bne 90f @ if <> 1 -> not prime   mov r0,#5 bl moduloPuR32 cmp r0,#1 bne 90f   mov r0,#7 bl moduloPuR32 cmp r0,#1 bne 90f   mov r0,#11 bl moduloPuR32 cmp r0,#1 bne 90f   mov r0,#13 bl moduloPuR32 cmp r0,#1 bne 90f   mov r0,#17 bl moduloPuR32 cmp r0,#1 bne 90f 80: mov r0,#1 @ is prime b 100f 90: mov r0,#0 @ no prime 100: @ fin standard de la fonction pop {r1-r6,lr} @ restaur des registres bx lr @ retour de la fonction en utilisant lr /********************************************************/ /* Calcul modulo de b puissance e modulo m */ /* Exemple 4 puissance 13 modulo 497 = 445 */ /* */ /********************************************************/ /* r0 nombre */ /* r1 exposant */ /* r2 modulo */ /* r0 return result */ moduloPuR32: push {r1-r7,lr} @ save registers cmp r0,#0 @ verif <> zero beq 100f cmp r2,#0 @ verif <> zero beq 100f @ TODO: vérifier les cas erreur 1: mov r4,r2 @ save modulo mov r5,r1 @ save exposant mov r6,r0 @ save base mov r3,#1 @ start result   mov r1,#0 @ division de r0,r1 par r2 bl division32R mov r6,r2 @ base <- remainder 2: tst r5,#1 @ exposant even or odd beq 3f umull r0,r1,r6,r3 mov r2,r4 bl division32R mov r3,r2 @ result <- remainder 3: umull r0,r1,r6,r6 mov r2,r4 bl division32R mov r6,r2 @ base <- remainder   lsr r5,#1 @ left shift 1 bit cmp r5,#0 @ end ? bne 2b mov r0,r3 100: @ fin standard de la fonction pop {r1-r7,lr} @ restaur des registres bx lr @ retour de la fonction en utilisant lr   /***************************************************/ /* division number 64 bits in 2 registers by number 32 bits */ /***************************************************/ /* r0 contains lower part dividende */ /* r1 contains upper part dividende */ /* r2 contains divisor */ /* r0 return lower part quotient */ /* r1 return upper part quotient */ /* r2 return remainder */ division32R: push {r3-r9,lr} @ save registers mov r6,#0 @ init upper upper part remainder  !! mov r7,r1 @ init upper part remainder with upper part dividende mov r8,r0 @ init lower part remainder with lower part dividende mov r9,#0 @ upper part quotient mov r4,#0 @ lower part quotient mov r5,#32 @ bits number 1: @ begin loop lsl r6,#1 @ shift upper upper part remainder lsls r7,#1 @ shift upper part remainder orrcs r6,#1 lsls r8,#1 @ shift lower part remainder orrcs r7,#1 lsls r4,#1 @ shift lower part quotient lsl r9,#1 @ shift upper part quotient orrcs r9,#1 @ divisor sustract upper part remainder subs r7,r2 sbcs r6,#0 @ and substract carry bmi 2f @ négative ?   @ positive or equal orr r4,#1 @ 1 -> right bit quotient b 3f 2: @ negative orr r4,#0 @ 0 -> right bit quotient adds r7,r2 @ and restaur remainder adc r6,#0 3: subs r5,#1 @ decrement bit size bgt 1b @ end ? mov r0,r4 @ lower part quotient mov r1,r9 @ upper part quotient mov r2,r7 @ remainder 100: @ function end pop {r3-r9,lr} @ restaur registers bx lr     /***************************************************/ /* ROUTINES INCLUDE */ /***************************************************/ .include "../affichage.inc"  
http://rosettacode.org/wiki/Topswops
Topswops
Topswops is a card game created by John Conway in the 1970's. Assume you have a particular permutation of a set of   n   cards numbered   1..n   on both of their faces, for example the arrangement of four cards given by   [2, 4, 1, 3]   where the leftmost card is on top. A round is composed of reversing the first   m   cards where   m   is the value of the topmost card. Rounds are repeated until the topmost card is the number   1   and the number of swaps is recorded. For our example the swaps produce: [2, 4, 1, 3] # Initial shuffle [4, 2, 1, 3] [3, 1, 2, 4] [2, 1, 3, 4] [1, 2, 3, 4] For a total of four swaps from the initial ordering to produce the terminating case where   1   is on top. For a particular number   n   of cards,   topswops(n)   is the maximum swaps needed for any starting permutation of the   n   cards. Task The task is to generate and show here a table of   n   vs   topswops(n)   for   n   in the range   1..10   inclusive. Note Topswops   is also known as   Fannkuch   from the German word   Pfannkuchen   meaning   pancake. Related tasks   Number reversal game   Sorting algorithms/Pancake sort
#Elixir
Elixir
defmodule Topswops do def get_1_first( [1 | _t] ), do: 0 def get_1_first( list ), do: 1 + get_1_first( swap(list) )   defp swap( [n | _t]=list ) do {swaps, remains} = Enum.split( list, n ) Enum.reverse( swaps, remains ) end   def task do IO.puts "N\ttopswaps" Enum.map(1..10, fn n -> {n, permute(Enum.to_list(1..n))} end) |> Enum.map(fn {n, n_permutations} -> {n, get_1_first_many(n_permutations)} end) |> Enum.map(fn {n, n_swops} -> {n, Enum.max(n_swops)} end) |> Enum.each(fn {n, max} -> IO.puts "#{n}\t#{max}" end) end   def get_1_first_many( n_permutations ), do: (for x <- n_permutations, do: get_1_first(x))   defp permute([]), do: [[]] defp permute(list), do: for x <- list, y <- permute(list -- [x]), do: [x|y] end   Topswops.task
http://rosettacode.org/wiki/Topswops
Topswops
Topswops is a card game created by John Conway in the 1970's. Assume you have a particular permutation of a set of   n   cards numbered   1..n   on both of their faces, for example the arrangement of four cards given by   [2, 4, 1, 3]   where the leftmost card is on top. A round is composed of reversing the first   m   cards where   m   is the value of the topmost card. Rounds are repeated until the topmost card is the number   1   and the number of swaps is recorded. For our example the swaps produce: [2, 4, 1, 3] # Initial shuffle [4, 2, 1, 3] [3, 1, 2, 4] [2, 1, 3, 4] [1, 2, 3, 4] For a total of four swaps from the initial ordering to produce the terminating case where   1   is on top. For a particular number   n   of cards,   topswops(n)   is the maximum swaps needed for any starting permutation of the   n   cards. Task The task is to generate and show here a table of   n   vs   topswops(n)   for   n   in the range   1..10   inclusive. Note Topswops   is also known as   Fannkuch   from the German word   Pfannkuchen   meaning   pancake. Related tasks   Number reversal game   Sorting algorithms/Pancake sort
#Erlang
Erlang
  -module( topswops ).   -export( [get_1_first/1, swap/1, task/0] ).   get_1_first( [1 | _T] ) -> 0; get_1_first( List ) -> 1 + get_1_first( swap(List) ).   swap( [N | _T]=List ) -> {Swaps, Remains} = lists:split( N, List ), lists:reverse( Swaps ) ++ Remains.   task() -> Permutations = [{X, permute:permute(lists:seq(1, X))} || X <- lists:seq(1, 10)], Swops = [{N, get_1_first_many(N_permutations)} || {N, N_permutations} <- Permutations], Topswops = [{N, lists:max(N_swops)} || {N, N_swops} <- Swops], io:fwrite( "N topswaps~n" ), [io:fwrite("~p ~p~n", [N, Max]) || {N, Max} <- Topswops].       get_1_first_many( N_permutations ) -> [get_1_first(X) || X <- N_permutations].  
http://rosettacode.org/wiki/Trigonometric_functions
Trigonometric functions
Task If your language has a library or built-in functions for trigonometry, show examples of:   sine   cosine   tangent   inverses   (of the above) using the same angle in radians and degrees. For the non-inverse functions,   each radian/degree pair should use arguments that evaluate to the same angle   (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle). For the inverse functions,   use the same number and convert its answer to radians and degrees. If your language does not have trigonometric functions available or only has some available,   write functions to calculate the functions based on any   known approximation or identity.
#AWK
AWK
# tan(x) = tangent of x function tan(x) { return sin(x) / cos(x) }   # asin(y) = arcsine of y, domain [-1, 1], range [-pi/2, pi/2] function asin(y) { return atan2(y, sqrt(1 - y * y)) }   # acos(x) = arccosine of x, domain [-1, 1], range [0, pi] function acos(x) { return atan2(sqrt(1 - x * x), x) }   # atan(y) = arctangent of y, range (-pi/2, pi/2) function atan(y) { return atan2(y, 1) }   BEGIN { pi = atan2(0, -1) degrees = pi / 180   print "Using radians:" print " sin(-pi / 6) =", sin(-pi / 6) print " cos(3 * pi / 4) =", cos(3 * pi / 4) print " tan(pi / 3) =", tan(pi / 3) print " asin(-1 / 2) =", asin(-1 / 2) print " acos(-sqrt(2) / 2) =", acos(-sqrt(2) / 2) print " atan(sqrt(3)) =", atan(sqrt(3))   print "Using degrees:" print " sin(-30) =", sin(-30 * degrees) print " cos(135) =", cos(135 * degrees) print " tan(60) =", tan(60 * degrees) print " asin(-1 / 2) =", asin(-1 / 2) / degrees print " acos(-sqrt(2) / 2) =", acos(-sqrt(2) / 2) / degrees print " atan(sqrt(3)) =", atan(sqrt(3)) / degrees }
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm
Trabb Pardo–Knuth algorithm
The TPK algorithm is an early example of a programming chrestomathy. It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages. The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm. From the wikipedia entry: ask for 11 numbers to be read into a sequence S reverse sequence S for each item in sequence S result := call a function to do an operation if result overflows alert user else print result The task is to implement the algorithm: Use the function:     f ( x ) = | x | 0.5 + 5 x 3 {\displaystyle f(x)=|x|^{0.5}+5x^{3}} The overflow condition is an answer of greater than 400. The 'user alert' should not stop processing of other items of the sequence. Print a prompt before accepting eleven, textual, numeric inputs. You may optionally print the item as well as its associated result, but the results must be in reverse order of input. The sequence   S   may be 'implied' and so not shown explicitly. Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
#C.2B.2B
C++
  #include <iostream> #include <cmath> #include <vector> #include <algorithm> #include <iomanip>   int main( ) { std::vector<double> input( 11 ) , results( 11 ) ; std::cout << "Please enter 11 numbers!\n" ; for ( int i = 0 ; i < input.size( ) ; i++ ) std::cin >> input[i];   std::transform( input.begin( ) , input.end( ) , results.begin( ) , [ ]( double n )-> double { return sqrt( abs( n ) ) + 5 * pow( n , 3 ) ; } ) ; for ( int i = 10 ; i > -1 ; i-- ) { std::cout << "f( " << std::setw( 3 ) << input[ i ] << " ) : " ; if ( results[ i ] > 400 ) std::cout << "too large!" ; else std::cout << results[ i ] << " !" ; std::cout << std::endl ; } return 0 ; }
http://rosettacode.org/wiki/Twelve_statements
Twelve statements
This puzzle is borrowed from   math-frolic.blogspot. Given the following twelve statements, which of them are true? 1. This is a numbered list of twelve statements. 2. Exactly 3 of the last 6 statements are true. 3. Exactly 2 of the even-numbered statements are true. 4. If statement 5 is true, then statements 6 and 7 are both true. 5. The 3 preceding statements are all false. 6. Exactly 4 of the odd-numbered statements are true. 7. Either statement 2 or 3 is true, but not both. 8. If statement 7 is true, then 5 and 6 are both true. 9. Exactly 3 of the first 6 statements are true. 10. The next two statements are both true. 11. Exactly 1 of statements 7, 8 and 9 are true. 12. Exactly 4 of the preceding statements are true. Task When you get tired of trying to figure it out in your head, write a program to solve it, and print the correct answer or answers. Extra credit Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
#Perl
Perl
use List::Util 'sum';   my @condition = ( sub { 0 }, # dummy sub for index 0 sub { 13==@_ }, sub { 3==sum @_[7..12] }, sub { 2==sum @_[2,4,6,8,10,12] }, sub { $_[5] ? ($_[6] and $_[7]) : 1 }, sub { !$_[2] and !$_[3] and !$_[4] }, sub { 4==sum @_[1,3,5,7,9,11] }, sub { $_[2]==1-$_[3] }, sub { $_[7] ? ($_[5] and $_[6]) : 1 }, sub { 3==sum @_[1..6] }, sub { 2==sum @_[11..12] }, sub { 1==sum @_[7,8,9] }, sub { 4==sum @_[1..11] }, );   sub miss { return grep { $condition[$_]->(@_) != $_[$_] } 1..12; }   for (0..2**12-1) { my @truth = split //, sprintf "0%012b", $_; my @no = miss @truth; print "Solution: true statements are ", join( " ", grep { $truth[$_] } 1..12), "\n" if 0 == @no; print "1 miss (",$no[0],"): true statements are ", join( " ", grep { $truth[$_] } 1..12), "\n" if 1 == @no; }  
http://rosettacode.org/wiki/Truth_table
Truth table
A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function. Task Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function. (One can assume that the user input is correct). Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function. Either reverse-polish or infix notation expressions are allowed. Related tasks   Boolean values   Ternary logic See also   Wolfram MathWorld entry on truth tables.   some "truth table" examples from Google.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
VariableNames[data_] := Module[ {TokenRemoved}, TokenRemoved = StringSplit[data,{"~And~","~Or~","~Xor~","!","(",")"}]; Union[Select[Map[StringTrim,TokenRemoved] , Not[StringMatchQ[#,""]]&]] ]   TruthTable[BooleanEquation_] := Module[ {TestDataSet}, TestDataSet = MapThread[Rule,{ToExpression@VariableNames[BooleanEquation],#}]&/@ Tuples[{False,True}, Length[VariableNames[BooleanEquation]]];   Join[List[Flatten[{VariableNames[BooleanEquation],BooleanEquation}]], Flatten[{#/.Rule[x_,y_] -> y,ReplaceAll[ToExpression[BooleanEquation],#]}]&/@TestDataSet]//Grid ]
http://rosettacode.org/wiki/Ulam_spiral_(for_primes)
Ulam spiral (for primes)
An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1),   constructed on a square grid, starting at the "center". An Ulam spiral is also known as a   prime spiral. The first grid (green) is shown with sequential integers,   starting at   1. In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk),   and all non-primes as shown as a blank   (or some other whitespace). Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables). Normally, the spiral starts in the "center",   and the   2nd   number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction. There are other geometric shapes that are used as well, including clock-wise spirals. Also, some spirals (for the   2nd   number)   is viewed upwards from the   1st   number instead of to the right, but that is just a matter of orientation. Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities). [A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals   (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)]. Then, in the next phase in the transformation of the Ulam prime spiral,   the non-primes are translated to blanks. In the orange grid below,   the primes are left intact,   and all non-primes are changed to blanks. Then, in the final transformation of the Ulam spiral (the yellow grid),   translate the primes to a glyph such as a   •   or some other suitable glyph. 65 64 63 62 61 60 59 58 57 66 37 36 35 34 33 32 31 56 67 38 17 16 15 14 13 30 55 68 39 18 5 4 3 12 29 54 69 40 19 6 1 2 11 28 53 70 41 20 7 8 9 10 27 52 71 42 21 22 23 24 25 26 51 72 43 44 45 46 47 48 49 50 73 74 75 76 77 78 79 80 81 61 59 37 31 67 17 13 5 3 29 19 2 11 53 41 7 71 23 43 47 73 79 • • • • • • • • • • • • • • • • • • • • • • The Ulam spiral becomes more visually obvious as the grid increases in size. Task For any sized   N × N   grid,   construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number   (the default would be 1),   with some suitably   dotty   (glyph) representation to indicate primes,   and the absence of dots to indicate non-primes. You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen. Related tasks   Spiral matrix   Zig-zag matrix   Identity matrix   Sequence of primes by Trial Division See also Wikipedia entry:   Ulam spiral MathWorld™ entry:   Prime Spiral
#Nim
Nim
import strutils   const N = 51 # Grid width and height.   type Vec2 = tuple[x, y: int] Grid = array[N, array[N, string]]   const Deltas: array[4, Vec2] = [(0, 1), (-1, 0), (0, -1), (1, 0)]     proc `+`(v1, v2: Vec2): Vec2 = ## Vector addition. (v1.x + v2.x, v1.y + v2.y)     proc isPrime(n: Positive): bool = ## Check if a number is prime. if n == 1: return false if (n and 1) == 0: return n == 2 if (n mod 3) == 0: return n == 3 var delta = 2 var d = 5 while d * d <= n: if n mod d == 0: return false inc d, delta delta = 6 - delta return true     proc fill(grid: var Grid; start: Positive = 1) = ## Fill the grid using Ulam algorithm.   template isEmpty(pos: Vec2): bool = grid[pos.x][pos.y].len == 0   # Fill the grid with successive numbers (as strings). var pos: Vec2 = (N div 2, N div 2) grid[pos.x][pos.y] = $start var currIdx = 3 for n in (start + 1)..<(start + N * N): let nextIdx = (currIdx + 1) and 3 var nextPos = pos + Deltas[nextIdx] if nextPos.isEmpty(): # Direction change is OK. currIdx = nextIdx else: # Continue in same direction. nextPos = pos + Deltas[currIdx] pos = move(nextPos) grid[pos.x][pos.y] = $n   # Replace the values with a symbol (if prime) or a space (if composite). for row in 0..<N: for col in 0..<N: grid[row][col] = if grid[row][col].parseInt().isPrime(): "• " else: " "     var grid: Grid grid.fill() for row in grid: echo row.join()
http://rosettacode.org/wiki/Truncatable_primes
Truncatable primes
A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number. Examples The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime. The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime. No zeroes are allowed in truncatable primes. Task The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied). Related tasks Find largest left truncatable prime in a given base Sieve of Eratosthenes See also Truncatable Prime from MathWorld.]
#Factor
Factor
USING: formatting fry grouping.extras kernel literals math math.parser math.primes sequences ; IN: rosetta-code.truncatable-primes   CONSTANT: primes $[ 1,000,000 primes-upto reverse ]   : number>digits ( n -- B{} ) number>string string>digits ;   : no-zeros? ( seq -- ? ) [ zero? not ] all? ;   : all-prime? ( seq -- ? ) [ prime? ] all? ;   : truncate ( seq quot -- seq' ) call( seq -- seq' ) [ 10 digits>integer ] map ;   : truncate-right ( seq -- seq' ) [ head-clump ] truncate ;   : truncate-left ( seq -- seq' ) [ tail-clump ] truncate ;   : truncatable-prime? ( n quot -- ? ) [ number>digits ] dip '[ @ all-prime? ] [ no-zeros? ] bi and ; inline   : right-truncatable-prime? ( n -- ? ) [ truncate-right ] truncatable-prime? ;   : left-truncatable-prime? ( n -- ? ) [ truncate-left ] truncatable-prime? ;   : find-truncatable-primes ( -- ltp rtp ) primes [ [ left-truncatable-prime? ] find nip ] [ [ right-truncatable-prime? ] find nip ] bi ;   : main ( -- ) find-truncatable-primes "Left: %d\nRight: %d\n" printf ;   MAIN: main
http://rosettacode.org/wiki/Tree_traversal
Tree traversal
Task Implement a binary tree where each node carries an integer,   and implement:   pre-order,   in-order,   post-order,     and   level-order   traversal. Use those traversals to output the following tree: 1 / \ / \ / \ 2 3 / \ / 4 5 6 / / \ 7 8 9 The correct output should look like this: preorder: 1 2 4 7 5 3 6 8 9 inorder: 7 4 2 5 1 8 6 9 3 postorder: 7 4 5 2 8 9 6 3 1 level-order: 1 2 3 4 5 6 7 8 9 See also   Wikipedia article:   Tree traversal.
#Action.21
Action!
SET EndProg=*
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Haskell
Haskell
  Prelude> [1..10] [1,2,3,4,5,6,7,8,9,10] Prelude> map (^2) it [1,4,9,16,25,36,49,64,81,100]  
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#J
J
example=: *:, %: NB. *: is square, %: is square root example 3 9 1.73205
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#jq
jq
julia> 3 3 julia> ans * ans, ans - 1 (9, 2)
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Julia
Julia
julia> 3 3 julia> ans * ans, ans - 1 (9, 2)
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Kotlin
Kotlin
// version 1.1.2   fun main(args: Array<String>) { 3.let { println(it) println(it * it) println(Math.sqrt(it.toDouble())) } }
http://rosettacode.org/wiki/Towers_of_Hanoi
Towers of Hanoi
Task Solve the   Towers of Hanoi   problem with recursion.
#8080_Assembly
8080 Assembly
org 100h lhld 6 ; Top of CP/M usable memory sphl ; Put the stack there lxi b,0401h ; Set up first arguments to move() lxi d,0203h call move ; move(4, 1, 2, 3) rst 0 ; quit program ;;; Move B disks from C via D to E. move: dcr b ; One fewer disk in next iteration jz mvout ; If this was the last disk, print move and stop push b ; Otherwise, save registers, push d mov a,d ; First recursive call mov d,e mov e,a call move ; move(B-1, C, E, D) pop d ; Restore registers pop b call mvout ; Print current move mov a,c ; Second recursive call mov c,d mov d,a jmp move ; move(B-1, D, C, E) - tail call optimization ;;; Print move, saving registers. mvout: push b ; Save registers on stack push d mov a,c ; Store 'from' as ASCII digit in 'from' space adi '0' sta out1 mov a,e ; Store 'to' as ASCII digit in 'to' space adi '0' sta out2 lxi d,outstr mvi c,9 ; CP/M call to print the string call 5 pop d ; Restore register contents pop b ret ;;; Move output with placeholder for pole numbers outstr: db 'Move disk from pole ' out1: db '* to pole ' out2: db '*',13,10,'$'
http://rosettacode.org/wiki/Total_circles_area
Total circles area
Total circles area You are encouraged to solve this task according to the task description, using any language you may know. Example circles Example circles filtered Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once. One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome. To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii   (11 disks are fully contained inside other disks): xc yc radius 1.6417233788 1.6121789534 0.0848270516 -1.4944608174 1.2077959613 1.1039549836 0.6110294452 -0.6907087527 0.9089162485 0.3844862411 0.2923344616 0.2375743054 -0.2495892950 -0.3832854473 1.0845181219 1.7813504266 1.6178237031 0.8162655711 -0.1985249206 -0.8343333301 0.0538864941 -1.7011985145 -0.1263820964 0.4776976918 -0.4319462812 1.4104420482 0.7886291537 0.2178372997 -0.9499557344 0.0357871187 -0.6294854565 -1.3078893852 0.7653357688 1.7952608455 0.6281269104 0.2727652452 1.4168575317 1.0683357171 1.1016025378 1.4637371396 0.9463877418 1.1846214562 -0.5263668798 1.7315156631 1.4428514068 -1.2197352481 0.9144146579 1.0727263474 -0.1389358881 0.1092805780 0.7350208828 1.5293954595 0.0030278255 1.2472867347 -0.5258728625 1.3782633069 1.3495508831 -0.1403562064 0.2437382535 1.3804956588 0.8055826339 -0.0482092025 0.3327165165 -0.6311979224 0.7184578971 0.2491045282 1.4685857879 -0.8347049536 1.3670667538 -0.6855727502 1.6465021616 1.0593087096 0.0152957411 0.0638919221 0.9771215985 The result is   21.56503660... . Related task   Circles of given radius through two points. See also http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/ http://stackoverflow.com/a/1667789/10562
#C
C
#include <stdio.h> #include <stdlib.h> #include <math.h> #include <time.h> #include <stdbool.h>   typedef double Fp; typedef struct { Fp x, y, r; } Circle;   Circle circles[] = { { 1.6417233788, 1.6121789534, 0.0848270516}, {-1.4944608174, 1.2077959613, 1.1039549836}, { 0.6110294452, -0.6907087527, 0.9089162485}, { 0.3844862411, 0.2923344616, 0.2375743054}, {-0.2495892950, -0.3832854473, 1.0845181219}, { 1.7813504266, 1.6178237031, 0.8162655711}, {-0.1985249206, -0.8343333301, 0.0538864941}, {-1.7011985145, -0.1263820964, 0.4776976918}, {-0.4319462812, 1.4104420482, 0.7886291537}, { 0.2178372997, -0.9499557344, 0.0357871187}, {-0.6294854565, -1.3078893852, 0.7653357688}, { 1.7952608455, 0.6281269104, 0.2727652452}, { 1.4168575317, 1.0683357171, 1.1016025378}, { 1.4637371396, 0.9463877418, 1.1846214562}, {-0.5263668798, 1.7315156631, 1.4428514068}, {-1.2197352481, 0.9144146579, 1.0727263474}, {-0.1389358881, 0.1092805780, 0.7350208828}, { 1.5293954595, 0.0030278255, 1.2472867347}, {-0.5258728625, 1.3782633069, 1.3495508831}, {-0.1403562064, 0.2437382535, 1.3804956588}, { 0.8055826339, -0.0482092025, 0.3327165165}, {-0.6311979224, 0.7184578971, 0.2491045282}, { 1.4685857879, -0.8347049536, 1.3670667538}, {-0.6855727502, 1.6465021616, 1.0593087096}, { 0.0152957411, 0.0638919221, 0.9771215985}};   const size_t n_circles = sizeof(circles) / sizeof(Circle);   static inline Fp min(const Fp a, const Fp b) { return a <= b ? a : b; }   static inline Fp max(const Fp a, const Fp b) { return a >= b ? a : b; }   static inline Fp sq(const Fp a) { return a * a; }   // Return an uniform random value in [a, b). static inline double uniform(const double a, const double b) { const double r01 = rand() / (double)RAND_MAX; return a + (b - a) * r01; }   static inline bool is_inside_circles(const Fp x, const Fp y) { for (size_t i = 0; i < n_circles; i++) if (sq(x - circles[i].x) + sq(y - circles[i].y) < circles[i].r) return true; return false; }   int main() { // Initialize the bounding box (bbox) of the circles. Fp x_min = INFINITY, x_max = -INFINITY; Fp y_min = x_min, y_max = x_max;   // Compute the bounding box of the circles. for (size_t i = 0; i < n_circles; i++) { Circle *c = &circles[i]; x_min = min(x_min, c->x - c->r); x_max = max(x_max, c->x + c->r); y_min = min(y_min, c->y - c->r); y_max = max(y_max, c->y + c->r);   c->r *= c->r; // Square the radii to speed up testing. }   const Fp bbox_area = (x_max - x_min) * (y_max - y_min);   // Montecarlo sampling. srand(time(0)); size_t to_try = 1U << 16; size_t n_tries = 0; size_t n_hits = 0;   while (true) { n_hits += is_inside_circles(uniform(x_min, x_max), uniform(y_min, y_max)); n_tries++;   if (n_tries == to_try) { const Fp area = bbox_area * n_hits / n_tries; const Fp r = (Fp)n_hits / n_tries; const Fp s = area * sqrt(r * (1 - r) / n_tries); printf("%.4f +/- %.4f (%zd samples)\n", area, s, n_tries); if (s * 3 <= 1e-3) // Stop at 3 sigmas. break; to_try *= 2; } }   return 0; }
http://rosettacode.org/wiki/Universal_Turing_machine
Universal Turing machine
One of the foundational mathematical constructs behind computer science is the universal Turing Machine. (Alan Turing introduced the idea of such a machine in 1936–1937.) Indeed one way to definitively prove that a language is turing-complete is to implement a universal Turing machine in it. Task Simulate such a machine capable of taking the definition of any other Turing machine and executing it. Of course, you will not have an infinite tape, but you should emulate this as much as is possible. The three permissible actions on the tape are "left", "right" and "stay". To test your universal Turing machine (and prove your programming language is Turing complete!), you should execute the following two Turing machines based on the following definitions. Simple incrementer States: q0, qf Initial state: q0 Terminating states: qf Permissible symbols: B, 1 Blank symbol: B Rules: (q0, 1, 1, right, q0) (q0, B, 1, stay, qf) The input for this machine should be a tape of 1 1 1 Three-state busy beaver States: a, b, c, halt Initial state: a Terminating states: halt Permissible symbols: 0, 1 Blank symbol: 0 Rules: (a, 0, 1, right, b) (a, 1, 1, left, c) (b, 0, 1, left, a) (b, 1, 1, right, b) (c, 0, 1, left, b) (c, 1, 1, stay, halt) The input for this machine should be an empty tape. Bonus: 5-state, 2-symbol probable Busy Beaver machine from Wikipedia States: A, B, C, D, E, H Initial state: A Terminating states: H Permissible symbols: 0, 1 Blank symbol: 0 Rules: (A, 0, 1, right, B) (A, 1, 1, left, C) (B, 0, 1, right, C) (B, 1, 1, right, B) (C, 0, 1, right, D) (C, 1, 0, left, E) (D, 0, 1, left, A) (D, 1, 1, left, D) (E, 0, 1, stay, H) (E, 1, 0, left, A) The input for this machine should be an empty tape. This machine runs for more than 47 millions steps.
#Cowgol
Cowgol
include "cowgol.coh"; include "strings.coh"; include "malloc.coh";   ############################################################################### ########################## Turing machine definition ########################## ############################################################################### typedef Symbol is uint8; # 256 symbols ought to be enough for everyone   const LEFT := 1; const RIGHT := 2; const STAY := 3; typedef Action is int(LEFT, STAY);   # Linked list record Linked is next: [Linked]; end record;   record DoublyLinked: Linked is prev: [DoublyLinked]; end record;   sub FreeLinked(r: [Linked]) is while r != 0 as [Linked] loop var v := r.next; Free(r as [uint8]); r := v; end loop; end sub;   sub FreeDoublyLinked(r: [DoublyLinked]) is FreeLinked(r.next); while r != 0 as [DoublyLinked] loop var v := r.prev; Free(r as [uint8]); r := v; end loop; end sub;   # Turing machine typedef Turing is [TuringR]; record StateR: Linked is tm: Turing; # turing machine this state belongs to term: uint8; # whether state is terminating end record; typedef State is [StateR];   record Cell: DoublyLinked is sym: Symbol; end record;   record RuleR: Linked is instate: State; insym: Symbol; outsym: Symbol; action: Action; outstate: State; end record; typedef Rule is [RuleR];   record TuringR is states: State; rules: Rule; initial: State; current: State; blank: Symbol; head: [Cell]; end record;   sub MakeCell(): (c: [Cell]) is c := Alloc(@bytesof Cell) as [Cell]; MemZero(c as [uint8], @bytesof Cell); end sub;   # Define a Turing machine sub MakeTuring(blank: Symbol, init: [Symbol]): (t: Turing) is t := Alloc(@bytesof TuringR) as Turing; MemZero(t as [uint8], @bytesof TuringR); t.blank := blank; t.head := MakeCell(); t.head.sym := blank;   var c := t.head; var d: [Cell]; while [init] != 0 loop c.sym := [init]; init := @next init; if [init] == 0 then break; end if; d := Alloc(@bytesof Cell) as [Cell]; d.prev := c as [DoublyLinked]; d.next := 0 as [Linked]; c.next := d as [Linked]; c := d; end loop; end sub;   # Add a state to a Turing machine const T_NONE := 0; const T_INIT := 1; const T_HALT := 2; sub MakeState(t: Turing, type: uint8): (s: State) is s := Alloc(@bytesof StateR) as State; s.tm := t; s.next := t.states as [Linked]; t.states := s;   if type & T_INIT != 0 then t.initial := s; t.current := s; end if; s.term := 0; if type & T_HALT != 0 then s.term := 1; end if; end sub;   # Add a rule to a Turing machine sub MakeRule(t: Turing, instate: State, insym: Symbol, outsym: Symbol, action: Action, outstate: State): (r: Rule) is r := Alloc(@bytesof RuleR) as Rule; r.instate := instate; r.insym := insym; r.outsym := outsym; r.action := action; r.outstate := outstate; r.next := t.rules as [Linked]; t.rules := r; end sub;   # Free a Turing machine sub FreeTuring(t: Turing) is FreeDoublyLinked(t.head as [DoublyLinked]); FreeLinked(t.states as [Linked]); FreeLinked(t.rules as [Linked]); Free(t as [uint8]); end sub;   # Move the head sub MoveHead(t: Turing, a: Action) is var c: [Cell]; case a is when STAY: return; when LEFT: if t.head.prev == 0 as [DoublyLinked] then c := Alloc(@bytesof Cell) as [Cell]; c.prev := 0 as [DoublyLinked]; c.next := t.head as [Linked]; c.sym := t.blank; t.head.prev := c as [DoublyLinked]; end if; t.head := t.head.prev as [Cell]; return; when RIGHT: if t.head.next == 0 as [Linked] then c := Alloc(@bytesof Cell) as [Cell]; c.next := 0 as [Linked]; c.prev := t.head as [DoublyLinked]; c.sym := t.blank; t.head.next := c as [Linked]; end if; t.head := t.head.next as [Cell]; return; when else: print("Invalid action\n"); ExitWithError(); end case; end sub;   # Step a Turing machine sub Step(t: Turing): (halt: uint8) is # If we're in a halt state, do nothing if t.current.term != 0 then halt := 1; return; end if;   var r := t.rules; while r != 0 as Rule loop # Check each rule to see if it matches the current configuration if t.current == r.instate and t.head.sym == r.insym then # Found a match t.head.sym := r.outsym; MoveHead(t, r.action); t.current := r.outstate; halt := t.current.term; return; end if; r := r.next as Rule; end loop; print("No valid rule!\n"); ExitWithError(); end sub;   # Run a Turing machine until it halts sub Run(t: Turing) is while Step(t) == 0 loop end loop; end sub;   # Print the touched part of the tape of a Turing machine sub PrintTape(t: Turing, max: uint32) is var c := t.head; var len: uint32 := 0; while c.prev != 0 as [DoublyLinked] loop c := c.prev as [Cell]; end loop; while c != 0 as [Cell] loop if len < max then print_char(c.sym as uint8); end if; c := c.next as [Cell]; len := len + 1; end loop; if len >= max then print("... (total length: "); print_i32(len); print(")"); end if; end sub;   ############################################################################### ######################## Turing machines from the task ######################## ###############################################################################   interface TuringFactory(): (t: Turing);   sub SimpleIncrementer implements TuringFactory is var r: Rule; t := MakeTuring('B', "111"); var q0 := MakeState(t, T_INIT); var qf := MakeState(t, T_HALT); r := MakeRule(t, q0, '1', '1', RIGHT, q0); r := MakeRule(t, q0, 'B', '1', STAY, qf); end sub;   sub ThreeStateBeaver implements TuringFactory is var r: Rule; t := MakeTuring('0', ""); var a := MakeState(t, T_INIT); var b := MakeState(t, T_NONE); var c := MakeState(t, T_NONE); var halt := MakeState(t, T_HALT); r := MakeRule(t, a, '0', '1', RIGHT, b); r := MakeRule(t, a, '1', '1', LEFT, c); r := MakeRule(t, b, '0', '1', LEFT, a); r := MakeRule(t, b, '1', '1', RIGHT, b); r := MakeRule(t, c, '0', '1', LEFT, b); r := MakeRule(t, c, '1', '1', STAY, halt); end sub;   sub FiveStateBeaver implements TuringFactory is var r: Rule; t := MakeTuring('0', ""); var A := MakeState(t, T_INIT); var B := MakeState(t, T_NONE); var C := MakeState(t, T_NONE); var D := MakeState(t, T_NONE); var E := MakeState(t, T_NONE); var H := MakeState(t, T_HALT); r := MakeRule(t, A, '0', '1', RIGHT, B); r := MakeRule(t, A, '1', '1', LEFT, C); r := MakeRule(t, B, '0', '1', RIGHT, C); r := MakeRule(t, B, '1', '1', RIGHT, B); r := MakeRule(t, C, '0', '1', RIGHT, D); r := MakeRule(t, C, '1', '0', LEFT, E); r := MakeRule(t, D, '0', '1', LEFT, A); r := MakeRule(t, D, '1', '1', LEFT, D); r := MakeRule(t, E, '0', '1', STAY, H); r := MakeRule(t, E, '1', '0', LEFT, A); end sub;   record TF is name: [uint8]; tf: TuringFactory; end record;   var machines: TF[] := { {"Simple incrementer", SimpleIncrementer}, {"Three state beaver", ThreeStateBeaver}, {"Five state beaver", FiveStateBeaver} };   var i: @indexof machines; i := 0; while i < @sizeof machines loop print(machines[i].name); print(": "); var t := (machines[i].tf) (); Run(t); PrintTape(t, 32); FreeTuring(t); print_nl(); i := i + 1; end loop;
http://rosettacode.org/wiki/Totient_function
Totient function
The   totient   function is also known as:   Euler's totient function   Euler's phi totient function   phi totient function   Φ   function   (uppercase Greek phi)   φ    function   (lowercase Greek phi) Definitions   (as per number theory) The totient function:   counts the integers up to a given positive integer   n   that are relatively prime to   n   counts the integers   k   in the range   1 ≤ k ≤ n   for which the greatest common divisor   gcd(n,k)   is equal to   1   counts numbers   ≤ n   and   prime to   n If the totient number   (for N)   is one less than   N,   then   N   is prime. Task Create a   totient   function and:   Find and display   (1 per line)   for the 1st   25   integers:   the integer   (the index)   the totient number for that integer   indicate if that integer is prime   Find and display the   count   of the primes up to          100   Find and display the   count   of the primes up to       1,000   Find and display the   count   of the primes up to     10,000   Find and display the   count   of the primes up to   100,000     (optional) Show all output here. Related task   Perfect totient numbers Also see   Wikipedia: Euler's totient function.   MathWorld: totient function.   OEIS: Euler totient function phi(n).
#AWK
AWK
  # syntax: GAWK -f TOTIENT_FUNCTION.AWK BEGIN { print(" N Phi isPrime") for (n=1; n<=1000000; n++) { tot = totient(n) if (n-1 == tot) { count++ } if (n <= 25) { printf("%2d %3d %s\n",n,tot,(n-1==tot)?"true":"false") if (n == 25) { printf("\n Limit PrimeCount\n") printf("%7d %10d\n",n,count) } } else if (n ~ /^100+$/) { printf("%7d %10d\n",n,count) } } exit(0) } function totient(n, i,tot) { tot = n for (i=2; i*i<=n; i+=2) { if (n % i == 0) { while (n % i == 0) { n /= i } tot -= tot / i } if (i == 2) { i = 1 } } if (n > 1) { tot -= tot / n } return(tot) }  
http://rosettacode.org/wiki/Topswops
Topswops
Topswops is a card game created by John Conway in the 1970's. Assume you have a particular permutation of a set of   n   cards numbered   1..n   on both of their faces, for example the arrangement of four cards given by   [2, 4, 1, 3]   where the leftmost card is on top. A round is composed of reversing the first   m   cards where   m   is the value of the topmost card. Rounds are repeated until the topmost card is the number   1   and the number of swaps is recorded. For our example the swaps produce: [2, 4, 1, 3] # Initial shuffle [4, 2, 1, 3] [3, 1, 2, 4] [2, 1, 3, 4] [1, 2, 3, 4] For a total of four swaps from the initial ordering to produce the terminating case where   1   is on top. For a particular number   n   of cards,   topswops(n)   is the maximum swaps needed for any starting permutation of the   n   cards. Task The task is to generate and show here a table of   n   vs   topswops(n)   for   n   in the range   1..10   inclusive. Note Topswops   is also known as   Fannkuch   from the German word   Pfannkuchen   meaning   pancake. Related tasks   Number reversal game   Sorting algorithms/Pancake sort
#Factor
Factor
USING: formatting kernel math math.combinatorics math.order math.ranges sequences ; FROM: sequences.private => exchange-unsafe ; IN: rosetta-code.topswops   ! Reverse a subsequence in-place from 0 to n. : head-reverse! ( seq n -- seq' ) dupd [ 2/ ] [ ] bi rot [ [ over - 1 - ] dip exchange-unsafe ] 2curry each-integer ;   ! Reverse the elements in seq according to the first element. : swop ( seq -- seq' ) dup first head-reverse! ;   ! Determine the number of swops until 1 is the head. : #swops ( seq -- n ) 0 swap [ dup first 1 = ] [ [ 1 + ] [ swop ] bi* ] until drop ;   ! Determine the maximum number of swops for a given length. : topswops ( n -- max ) [1,b] <permutations> [ #swops ] [ max ] map-reduce ;   : main ( -- ) 10 [1,b] [ dup topswops "%2d: %2d\n" printf ] each ;   MAIN: main
http://rosettacode.org/wiki/Topswops
Topswops
Topswops is a card game created by John Conway in the 1970's. Assume you have a particular permutation of a set of   n   cards numbered   1..n   on both of their faces, for example the arrangement of four cards given by   [2, 4, 1, 3]   where the leftmost card is on top. A round is composed of reversing the first   m   cards where   m   is the value of the topmost card. Rounds are repeated until the topmost card is the number   1   and the number of swaps is recorded. For our example the swaps produce: [2, 4, 1, 3] # Initial shuffle [4, 2, 1, 3] [3, 1, 2, 4] [2, 1, 3, 4] [1, 2, 3, 4] For a total of four swaps from the initial ordering to produce the terminating case where   1   is on top. For a particular number   n   of cards,   topswops(n)   is the maximum swaps needed for any starting permutation of the   n   cards. Task The task is to generate and show here a table of   n   vs   topswops(n)   for   n   in the range   1..10   inclusive. Note Topswops   is also known as   Fannkuch   from the German word   Pfannkuchen   meaning   pancake. Related tasks   Number reversal game   Sorting algorithms/Pancake sort
#Fortran
Fortran
module top implicit none contains recursive function f(x) result(m) integer :: n, m, x(:),y(size(x)), fst fst = x(1) if (fst == 1) then m = 0 else y(1:fst) = x(fst:1:-1) y(fst+1:) = x(fst+1:) m = 1 + f(y) end if end function   recursive function perms(x) result(p) integer, pointer :: p(:,:), q(:,:) integer :: x(:), n, k, i n = size(x) if (n == 1) then allocate(p(1,1)) p(1,:) = x else q => perms(x(2:n)) k = ubound(q,1) allocate(p(k*n,n)) p = 0 do i = 1,n p(1+k*(i-1):k*i,1:i-1) = q(:,1:i-1) p(1+k*(i-1):k*i,i) = x(1) p(1+k*(i-1):k*i,i+1:) = q(:,i:) end do end if end function end module   program topswort use top implicit none integer :: x(10) integer, pointer :: p(:,:) integer :: i, j, m   forall(i=1:10) x(i) = i end forall   do i = 1,10 p=>perms(x(1:i)) m = 0 do j = 1, ubound(p,1) m = max(m, f(p(j,:))) end do print "(i3,a,i3)", i,": ",m end do end program  
http://rosettacode.org/wiki/Trigonometric_functions
Trigonometric functions
Task If your language has a library or built-in functions for trigonometry, show examples of:   sine   cosine   tangent   inverses   (of the above) using the same angle in radians and degrees. For the non-inverse functions,   each radian/degree pair should use arguments that evaluate to the same angle   (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle). For the inverse functions,   use the same number and convert its answer to radians and degrees. If your language does not have trigonometric functions available or only has some available,   write functions to calculate the functions based on any   known approximation or identity.
#Axe
Axe
Disp sin(43)▶Dec,i Disp cos(43)▶Dec,i Disp tan⁻¹(10,10)▶Dec,i
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm
Trabb Pardo–Knuth algorithm
The TPK algorithm is an early example of a programming chrestomathy. It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages. The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm. From the wikipedia entry: ask for 11 numbers to be read into a sequence S reverse sequence S for each item in sequence S result := call a function to do an operation if result overflows alert user else print result The task is to implement the algorithm: Use the function:     f ( x ) = | x | 0.5 + 5 x 3 {\displaystyle f(x)=|x|^{0.5}+5x^{3}} The overflow condition is an answer of greater than 400. The 'user alert' should not stop processing of other items of the sequence. Print a prompt before accepting eleven, textual, numeric inputs. You may optionally print the item as well as its associated result, but the results must be in reverse order of input. The sequence   S   may be 'implied' and so not shown explicitly. Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
#Commodore_BASIC
Commodore BASIC
  10 REM TRABB PARDO-KNUTH ALGORITHM 20 REM USED "MAGIC NUMBERS" BECAUSE OF STRICT SPECIFICATION OF THE ALGORITHM. 30 DEF FNF(N)=SQR(ABS(N))+5*N*N*N 40 DIM S(10) 50 PRINT "ENTER 11 NUMBERS." 60 FOR I=0 TO 10 70 PRINT STR$(I+1); 80 INPUT S(I) 90 NEXT I 100 PRINT 110 REM REVERSE 120 FOR I=0 TO 10/2 130 TMP=S(I) 140 S(I)=S(10-I) 150 S(10-I)=TMP 160 NEXT I 170 REM RESULTS 180 FOR I=0 TO 10 190 PRINT "F(";STR$(S(I));") ="; 200 R=FNF(S(I)) 210 IF R>400 THEN PRINT " OVERFLOW":ELSE PRINT R 220 NEXT I 230 END  
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm
Trabb Pardo–Knuth algorithm
The TPK algorithm is an early example of a programming chrestomathy. It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages. The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm. From the wikipedia entry: ask for 11 numbers to be read into a sequence S reverse sequence S for each item in sequence S result := call a function to do an operation if result overflows alert user else print result The task is to implement the algorithm: Use the function:     f ( x ) = | x | 0.5 + 5 x 3 {\displaystyle f(x)=|x|^{0.5}+5x^{3}} The overflow condition is an answer of greater than 400. The 'user alert' should not stop processing of other items of the sequence. Print a prompt before accepting eleven, textual, numeric inputs. You may optionally print the item as well as its associated result, but the results must be in reverse order of input. The sequence   S   may be 'implied' and so not shown explicitly. Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
#Common_Lisp
Common Lisp
(defun read-numbers () (princ "Enter 11 numbers (space-separated): ") (let ((numbers '())) (dotimes (i 11 numbers) (push (read) numbers))))   (defun trabb-pardo-knuth (func overflowp) (let ((S (read-numbers))) (format T "~{~a~%~}" (substitute-if "Overflow!" overflowp (mapcar func S)))))   (trabb-pardo-knuth (lambda (x) (+ (expt (abs x) 0.5) (* 5 (expt x 3)))) (lambda (x) (> x 400)))
http://rosettacode.org/wiki/Twelve_statements
Twelve statements
This puzzle is borrowed from   math-frolic.blogspot. Given the following twelve statements, which of them are true? 1. This is a numbered list of twelve statements. 2. Exactly 3 of the last 6 statements are true. 3. Exactly 2 of the even-numbered statements are true. 4. If statement 5 is true, then statements 6 and 7 are both true. 5. The 3 preceding statements are all false. 6. Exactly 4 of the odd-numbered statements are true. 7. Either statement 2 or 3 is true, but not both. 8. If statement 7 is true, then 5 and 6 are both true. 9. Exactly 3 of the first 6 statements are true. 10. The next two statements are both true. 11. Exactly 1 of statements 7, 8 and 9 are true. 12. Exactly 4 of the preceding statements are true. Task When you get tired of trying to figure it out in your head, write a program to solve it, and print the correct answer or answers. Extra credit Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
#Phix
Phix
function s1(string s) return length(s)=12 end function function s2(string s) return sum(sq_eq(s[7..12],'1'))=3 end function function s3(string s) return sum(sq_eq(extract(s,tagset(12,2,2)),'1'))=2 end function function s4(string s) return s[5]='0' or s[6..7]="11" end function function s5(string s) return s[2..4]="000" end function function s6(string s) return sum(sq_eq(extract(s,tagset(12,1,2)),'1'))=4 end function function s7(string s) return s[2]!=s[3] end function function s8(string s) return s[7]='0' or s[5..6]="11" end function function s9(string s) return sum(sq_eq(s[1..6],'1'))=3 end function function s10(string s) return s[11..12]="11" end function function s11(string s) return sum(sq_eq(s[7..9],'1'))=1 end function function s12(string s) return sum(sq_eq(s[1..11],'1'))=4 end function sequence rtn = {s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12} string misses = "\n" for i=0 to power(2,12)-1 do string s = sprintf("%012b",i) sequence res = find_all('1',s) integer t = 0, pass, fail for b=1 to 12 do pass = call_func(rtn[b],{s})=(s[b]='1') if not pass then fail = b end if t += pass if b=12 and t=12 then printf(1,"Solution: %v\n",{res}) end if end for if t=11 then misses &= sprintf("Near miss: %v, fail on %d\n",{res,fail}) end if end for puts(1,misses)
http://rosettacode.org/wiki/Truth_table
Truth table
A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function. Task Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function. (One can assume that the user input is correct). Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function. Either reverse-polish or infix notation expressions are allowed. Related tasks   Boolean values   Ternary logic See also   Wolfram MathWorld entry on truth tables.   some "truth table" examples from Google.
#Maxima
Maxima
/* Maxima already has the following logical operators =, # (not equal), not, and, or define some more and set 'binding power' (operator precedence) for them */ infix("xor", 60)$ "xor"(A,B):= (A or B) and not(A and B)$   infix("=>", 59)$ "=>"(A,B):= not A or B$   /* Substitute variables `r' in `e' with values taken from list `l' where `e' is expression, `r' is a list of independent variables, `l' is a list of the values lsubst( '(A + B), ['A, 'B], [1, 2]); 1 + 2; */ lsubst(e, r, l):= ev(e, maplist( lambda([x, y], x=y), r, l), 'simp)$   /* "Cartesian power" `n' of list `b'. Returns a list of lists of the form [<x_1>, ..., <x_n>], were <x_1>, .. <x_n> are elements of list `b' cartesian_power([true, false], 2); [[true, true], [true, false], [false, true], [false, false]]; cartesian_power([true, false], 3); [[true, true, true], [true, true, false], [true, false, true], [true, false, false], [false, true, true], [false, true, false], [false, false, true], [false, false, false]]; */ cartesian_power(b, n) := block( [aux_lst: makelist(setify(b), n)], listify(apply(cartesian_product, aux_lst)) )$   gen_table(expr):= block( [var_lst: listofvars(expr), st_lst, res_lst, m], st_lst: cartesian_power([true, false], length(var_lst)), res_lst: create_list(lsubst(expr, var_lst, val_lst), val_lst, st_lst), m  : apply('matrix, cons(var_lst, st_lst)), addcol(m, cons(expr, res_lst)) );   /* examples */ gen_table('(not A)); gen_table('(A xor B)); gen_table('(Jim and (Spock xor Bones) or Scotty)); gen_table('(A => (B and A))); gen_table('(V xor (B xor (K xor D ) )));
http://rosettacode.org/wiki/Ulam_spiral_(for_primes)
Ulam spiral (for primes)
An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1),   constructed on a square grid, starting at the "center". An Ulam spiral is also known as a   prime spiral. The first grid (green) is shown with sequential integers,   starting at   1. In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk),   and all non-primes as shown as a blank   (or some other whitespace). Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables). Normally, the spiral starts in the "center",   and the   2nd   number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction. There are other geometric shapes that are used as well, including clock-wise spirals. Also, some spirals (for the   2nd   number)   is viewed upwards from the   1st   number instead of to the right, but that is just a matter of orientation. Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities). [A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals   (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)]. Then, in the next phase in the transformation of the Ulam prime spiral,   the non-primes are translated to blanks. In the orange grid below,   the primes are left intact,   and all non-primes are changed to blanks. Then, in the final transformation of the Ulam spiral (the yellow grid),   translate the primes to a glyph such as a   •   or some other suitable glyph. 65 64 63 62 61 60 59 58 57 66 37 36 35 34 33 32 31 56 67 38 17 16 15 14 13 30 55 68 39 18 5 4 3 12 29 54 69 40 19 6 1 2 11 28 53 70 41 20 7 8 9 10 27 52 71 42 21 22 23 24 25 26 51 72 43 44 45 46 47 48 49 50 73 74 75 76 77 78 79 80 81 61 59 37 31 67 17 13 5 3 29 19 2 11 53 41 7 71 23 43 47 73 79 • • • • • • • • • • • • • • • • • • • • • • The Ulam spiral becomes more visually obvious as the grid increases in size. Task For any sized   N × N   grid,   construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number   (the default would be 1),   with some suitably   dotty   (glyph) representation to indicate primes,   and the absence of dots to indicate non-primes. You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen. Related tasks   Spiral matrix   Zig-zag matrix   Identity matrix   Sequence of primes by Trial Division See also Wikipedia entry:   Ulam spiral MathWorld™ entry:   Prime Spiral
#PARI.2FGP
PARI/GP
  \\ Ulam spiral (plotting/printing) \\ 4/19/16 aev plotulamspir(n,pflg=0)={ my(n=if(n%2==0,n++,n),M=matrix(n,n),x,y,xmx,ymx,cnt,dir,n2=n*n,pch,sz=#Str(n2),pch2=srepeat(" ",sz)); if(pflg<0||pflg>2,pflg=0); print(" *** Ulam spiral: ",n,"x",n," matrix, p-flag=",pflg); x=y=n\2+1; xmx=ymx=cnt=1; dir="R"; for(i=1,n2, if(isprime(i), if(!insm(M,x,y), break); if(pflg==2, M[y,x]=i, M[y,x]=1)); if(dir=="R", if(xmx>0, x++;xmx--, dir="U";ymx=cnt;y--;ymx--); next); if(dir=="U", if(ymx>0, y--;ymx--, dir="L";cnt++;xmx=cnt;x--;xmx--); next); if(dir=="L", if(xmx>0, x--;xmx--, dir="D";ymx=cnt;y++;ymx--); next); if(dir=="D", if(ymx>0, y++;ymx--, dir="R";cnt++;xmx=cnt;x++;xmx--); next); );\\fend \\Plot/Print according to the p-flag(0-real plot,1-"*",2-primes) if(pflg==0, plotmat(M)); if(pflg==1, for(i=1,n, for(j=1,n, if(M[i,j]==1, pch="*", pch=" "); print1(" ",pch)); print(" "))); if(pflg==2, for(i=1,n, for(j=1,n, if(M[i,j]==0, pch=pch2, pch=spad(Str(M[i,j]),sz,,1)); print1(" ",pch)); print(" "))); }   {\\ Executing: plotulamspir(9,1); \\ (see output) plotulamspir(9,2); \\ (see output) plotulamspir(100); \\ ULAMspiral1.png plotulamspir(200); \\ ULAMspiral2.png }  
http://rosettacode.org/wiki/Truncatable_primes
Truncatable primes
A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number. Examples The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime. The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime. No zeroes are allowed in truncatable primes. Task The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied). Related tasks Find largest left truncatable prime in a given base Sieve of Eratosthenes See also Truncatable Prime from MathWorld.]
#Forth
Forth
: prime? ( n -- ? ) here + c@ 0= ; : notprime! ( n -- ) here + 1 swap c! ;   : sieve ( n -- ) here over erase 0 notprime! 1 notprime! 2 begin 2dup dup * > while dup prime? if 2dup dup * do i notprime! dup +loop then 1+ repeat 2drop ;   : left_truncatable_prime? ( n -- flag ) dup prime? invert if drop false exit then dup >r 10 begin 2dup > while 2dup mod dup r> = if 2drop drop false exit then dup prime? invert if 2drop drop false exit then >r 10 * repeat 2drop rdrop true ;   : right_truncatable_prime? ( n -- flag ) dup prime? invert if drop false exit then begin 10 / dup 0 > while dup prime? invert if drop false exit then repeat drop true ;   : max_left_truncatable_prime ( n -- ) begin dup 0 > while dup left_truncatable_prime? if . cr exit then 1- repeat drop ;   : max_right_truncatable_prime ( n -- ) begin dup 0 > while dup right_truncatable_prime? if . cr exit then 1- repeat drop ;   1000000 constant limit   limit 1+ sieve   ." Largest left truncatable prime: " limit max_left_truncatable_prime   ." Largest right truncatable prime: " limit max_right_truncatable_prime   bye
http://rosettacode.org/wiki/Tree_traversal
Tree traversal
Task Implement a binary tree where each node carries an integer,   and implement:   pre-order,   in-order,   post-order,     and   level-order   traversal. Use those traversals to output the following tree: 1 / \ / \ / \ 2 3 / \ / 4 5 6 / / \ 7 8 9 The correct output should look like this: preorder: 1 2 4 7 5 3 6 8 9 inorder: 7 4 2 5 1 8 6 9 3 postorder: 7 4 5 2 8 9 6 3 1 level-order: 1 2 3 4 5 6 7 8 9 See also   Wikipedia article:   Tree traversal.
#Ada
Ada
with Ada.Text_Io; use Ada.Text_Io; with Ada.Unchecked_Deallocation; with Ada.Containers.Doubly_Linked_Lists;   procedure Tree_Traversal is type Node; type Node_Access is access Node; type Node is record Left : Node_Access := null; Right : Node_Access := null; Data : Integer; end record; procedure Destroy_Tree(N : in out Node_Access) is procedure free is new Ada.Unchecked_Deallocation(Node, Node_Access); begin if N.Left /= null then Destroy_Tree(N.Left); end if; if N.Right /= null then Destroy_Tree(N.Right); end if; Free(N); end Destroy_Tree; function Tree(Value : Integer; Left : Node_Access; Right : Node_Access) return Node_Access is Temp : Node_Access := new Node; begin Temp.Data := Value; Temp.Left := Left; Temp.Right := Right; return Temp; end Tree; procedure Preorder(N : Node_Access) is begin Put(Integer'Image(N.Data)); if N.Left /= null then Preorder(N.Left); end if; if N.Right /= null then Preorder(N.Right); end if; end Preorder; procedure Inorder(N : Node_Access) is begin if N.Left /= null then Inorder(N.Left); end if; Put(Integer'Image(N.Data)); if N.Right /= null then Inorder(N.Right); end if; end Inorder; procedure Postorder(N : Node_Access) is begin if N.Left /= null then Postorder(N.Left); end if; if N.Right /= null then Postorder(N.Right); end if; Put(Integer'Image(N.Data)); end Postorder; procedure Levelorder(N : Node_Access) is package Queues is new Ada.Containers.Doubly_Linked_Lists(Node_Access); use Queues; Node_Queue : List; Next : Node_Access; begin Node_Queue.Append(N); while not Is_Empty(Node_Queue) loop Next := First_Element(Node_Queue); Delete_First(Node_Queue); Put(Integer'Image(Next.Data)); if Next.Left /= null then Node_Queue.Append(Next.Left); end if; if Next.Right /= null then Node_Queue.Append(Next.Right); end if; end loop; end Levelorder; N : Node_Access; begin N := Tree(1, Tree(2, Tree(4, Tree(7, null, null), null), Tree(5, null, null)), Tree(3, Tree(6, Tree(8, null, null), Tree(9, null, null)), null));   Put("preorder: "); Preorder(N); New_Line; Put("inorder: "); Inorder(N); New_Line; Put("postorder: "); Postorder(N); New_Line; Put("level order: "); Levelorder(N); New_Line; Destroy_Tree(N); end Tree_traversal;
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
In[1]:= 3 Out[1]= 3 In[2]:= %1^2 Out[2]= 9 In[3]:= Sqrt[%%] Out[3]= Sqrt[3] In[4]:= N[Out[-1]] (* for floating point *) Out[4]= 1.73205
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Nim
Nim
for _ in 1..10: echo "Hello World!"
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Oforth
Oforth
3 dup sq swap sqrt
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#PARI.2FGP
PARI/GP
3 [sqrt(%),%^2]
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Perl
Perl
print sqrt . " " for (4, 16, 64)
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Phix
Phix
with javascript_semantics object _ _ = 3 ?_ ?_*_
http://rosettacode.org/wiki/Towers_of_Hanoi
Towers of Hanoi
Task Solve the   Towers of Hanoi   problem with recursion.
#8086_Assembly
8086 Assembly
cpu 8086 bits 16 org 100h section .text mov bx,0402h ; Set up first arguments to move() mov cx,0103h ; Registers chosen s.t. CX contains output ;;; Move BH disks from CH via BL to CL move: dec bh ; One fewer disk in next iteration jz .out ; If this was last disk, just print move push bx ; Save the registers for a recursive call push cx xchg bl,cl ; Swap the 'to' and 'via' registers call move ; move(BH, CH, CL, BL) pop cx ; Restore the registers from the stack pop bx call .out ; Print the move xchg ch,bl ; Swap the 'from' and 'via' registers jmp move ; move(BH, BL, CH, CL) ;;; Print the move .out: mov ax,'00' ; Add ASCII 0 to both 'from' and 'to' add ax,cx ; in one 16-bit operation mov [out1],ah ; Store 'from' field in output mov [out2],al ; Store 'to' field in output mov dx,outstr ; MS-DOS system call to print string mov ah,9 int 21h ret section .data outstr: db 'Move disk from pole ' out1: db '* to pole ' out2: db '*',13,10,'$'
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping
Tokenize a string with escaping
Task[edit] Write a function or program that can split a string at each non-escaped occurrence of a separator character. It should accept three input parameters:   The string   The separator character   The escape character It should output a list of strings. Details Rules for splitting: The fields that were separated by the separators, become the elements of the output list. Empty fields should be preserved, even at the start and end. Rules for escaping: "Escaped" means preceded by an occurrence of the escape character that is not already escaped itself. When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special). Each occurrence of the escape character that was used to escape something, should not become part of the output. Test case Demonstrate that your function satisfies the following test-case: Input Output string: one^|uno||three^^^^|four^^^|^cuatro| separator character: | escape character: ^ one|uno three^^ four^|cuatro (Print the output list in any format you like, as long as it is it easy to see what the fields are.) Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#11l
11l
F token_with_escape(a, escape = ‘^’, separator = ‘|’) [String] result V token = ‘’ V state = 0 L(c) a I state == 0 I c == escape state = 1 E I c == separator result.append(token) token = ‘’ E token ‘’= c E I state == 1 token ‘’= c state = 0 result.append(token) R result   print(token_with_escape(‘one^|uno||three^^^^|four^^^|^cuatro|’).map(s -> ‘'’s‘'’).join(‘, ’))
http://rosettacode.org/wiki/Total_circles_area
Total circles area
Total circles area You are encouraged to solve this task according to the task description, using any language you may know. Example circles Example circles filtered Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once. One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome. To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii   (11 disks are fully contained inside other disks): xc yc radius 1.6417233788 1.6121789534 0.0848270516 -1.4944608174 1.2077959613 1.1039549836 0.6110294452 -0.6907087527 0.9089162485 0.3844862411 0.2923344616 0.2375743054 -0.2495892950 -0.3832854473 1.0845181219 1.7813504266 1.6178237031 0.8162655711 -0.1985249206 -0.8343333301 0.0538864941 -1.7011985145 -0.1263820964 0.4776976918 -0.4319462812 1.4104420482 0.7886291537 0.2178372997 -0.9499557344 0.0357871187 -0.6294854565 -1.3078893852 0.7653357688 1.7952608455 0.6281269104 0.2727652452 1.4168575317 1.0683357171 1.1016025378 1.4637371396 0.9463877418 1.1846214562 -0.5263668798 1.7315156631 1.4428514068 -1.2197352481 0.9144146579 1.0727263474 -0.1389358881 0.1092805780 0.7350208828 1.5293954595 0.0030278255 1.2472867347 -0.5258728625 1.3782633069 1.3495508831 -0.1403562064 0.2437382535 1.3804956588 0.8055826339 -0.0482092025 0.3327165165 -0.6311979224 0.7184578971 0.2491045282 1.4685857879 -0.8347049536 1.3670667538 -0.6855727502 1.6465021616 1.0593087096 0.0152957411 0.0638919221 0.9771215985 The result is   21.56503660... . Related task   Circles of given radius through two points. See also http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/ http://stackoverflow.com/a/1667789/10562
#D
D
import std.stdio, std.math, std.algorithm, std.typecons, std.range;   alias Fp = real; struct Circle { Fp x, y, r; }   void removeInternalDisks(ref Circle[] circles) pure nothrow @safe { static bool isFullyInternal(in Circle c1, in Circle c2) pure nothrow @safe @nogc { if (c1.r > c2.r) // Quick exit. return false; return (c1.x - c2.x) ^^ 2 + (c1.y - c2.y) ^^ 2 < (c2.r - c1.r) ^^ 2; }   // Heuristics for performance: large radii first. circles.sort!q{ a.r > b.r };   // Remove circles inside another circle. for (auto i = circles.length; i-- > 0; ) for (auto j = circles.length; j-- > 0; ) if (i != j && isFullyInternal(circles[i], circles[j])) { circles[i] = circles[$ - 1]; circles.length--; break; } }   void main() { Circle[] circles = [ { 1.6417233788, 1.6121789534, 0.0848270516}, {-1.4944608174, 1.2077959613, 1.1039549836}, { 0.6110294452, -0.6907087527, 0.9089162485}, { 0.3844862411, 0.2923344616, 0.2375743054}, {-0.2495892950, -0.3832854473, 1.0845181219}, { 1.7813504266, 1.6178237031, 0.8162655711}, {-0.1985249206, -0.8343333301, 0.0538864941}, {-1.7011985145, -0.1263820964, 0.4776976918}, {-0.4319462812, 1.4104420482, 0.7886291537}, { 0.2178372997, -0.9499557344, 0.0357871187}, {-0.6294854565, -1.3078893852, 0.7653357688}, { 1.7952608455, 0.6281269104, 0.2727652452}, { 1.4168575317, 1.0683357171, 1.1016025378}, { 1.4637371396, 0.9463877418, 1.1846214562}, {-0.5263668798, 1.7315156631, 1.4428514068}, {-1.2197352481, 0.9144146579, 1.0727263474}, {-0.1389358881, 0.1092805780, 0.7350208828}, { 1.5293954595, 0.0030278255, 1.2472867347}, {-0.5258728625, 1.3782633069, 1.3495508831}, {-0.1403562064, 0.2437382535, 1.3804956588}, { 0.8055826339, -0.0482092025, 0.3327165165}, {-0.6311979224, 0.7184578971, 0.2491045282}, { 1.4685857879, -0.8347049536, 1.3670667538}, {-0.6855727502, 1.6465021616, 1.0593087096}, { 0.0152957411, 0.0638919221, 0.9771215985}];   writeln("Input Circles: ", circles.length); removeInternalDisks(circles); writeln("Circles left: ", circles.length);   immutable Fp xMin = reduce!((acc, c) => min(acc, c.x - c.r)) (Fp.max, circles[]); immutable Fp xMax = reduce!((acc, c) => max(acc, c.x + c.r)) (Fp(0), circles[]);   alias YRange = Tuple!(Fp,"y0", Fp,"y1"); auto yRanges = new YRange[circles.length];   Fp computeTotalArea(in Fp nSlicesX) nothrow @safe { Fp total = 0;   // Adapted from an idea by Cosmologicon. foreach (immutable p; cast(int)(xMin * nSlicesX) .. cast(int)(xMax * nSlicesX) + 1) { immutable Fp x = p / nSlicesX; size_t nPairs = 0;   // Look for the circles intersecting the current // vertical secant: foreach (const ref c; circles) { immutable Fp d = c.r ^^ 2 - (c.x - x) ^^ 2; immutable Fp sd = d.sqrt; if (d > 0) // And keep only the intersection chords. yRanges[nPairs++] = YRange(c.y - sd, c.y + sd); }   // Merge the ranges, counting the overlaps only once. yRanges[0 .. nPairs].sort(); Fp y = -Fp.max; foreach (immutable r; yRanges[0 .. nPairs]) if (y < r.y1) { total += r.y1 - max(y, r.y0); y = r.y1; } }   return total / nSlicesX; }   // Iterate to reach some precision. enum Fp epsilon = 1e-9; Fp nSlicesX = 1_000; Fp oldArea = -1; while (true) { immutable Fp newArea = computeTotalArea(nSlicesX); if (abs(oldArea - newArea) < epsilon) { writeln("N. vertical slices: ", nSlicesX); writefln("Approximate area: %.17f", newArea); return; } oldArea = newArea; nSlicesX *= 2; } }
http://rosettacode.org/wiki/Universal_Turing_machine
Universal Turing machine
One of the foundational mathematical constructs behind computer science is the universal Turing Machine. (Alan Turing introduced the idea of such a machine in 1936–1937.) Indeed one way to definitively prove that a language is turing-complete is to implement a universal Turing machine in it. Task Simulate such a machine capable of taking the definition of any other Turing machine and executing it. Of course, you will not have an infinite tape, but you should emulate this as much as is possible. The three permissible actions on the tape are "left", "right" and "stay". To test your universal Turing machine (and prove your programming language is Turing complete!), you should execute the following two Turing machines based on the following definitions. Simple incrementer States: q0, qf Initial state: q0 Terminating states: qf Permissible symbols: B, 1 Blank symbol: B Rules: (q0, 1, 1, right, q0) (q0, B, 1, stay, qf) The input for this machine should be a tape of 1 1 1 Three-state busy beaver States: a, b, c, halt Initial state: a Terminating states: halt Permissible symbols: 0, 1 Blank symbol: 0 Rules: (a, 0, 1, right, b) (a, 1, 1, left, c) (b, 0, 1, left, a) (b, 1, 1, right, b) (c, 0, 1, left, b) (c, 1, 1, stay, halt) The input for this machine should be an empty tape. Bonus: 5-state, 2-symbol probable Busy Beaver machine from Wikipedia States: A, B, C, D, E, H Initial state: A Terminating states: H Permissible symbols: 0, 1 Blank symbol: 0 Rules: (A, 0, 1, right, B) (A, 1, 1, left, C) (B, 0, 1, right, C) (B, 1, 1, right, B) (C, 0, 1, right, D) (C, 1, 0, left, E) (D, 0, 1, left, A) (D, 1, 1, left, D) (E, 0, 1, stay, H) (E, 1, 0, left, A) The input for this machine should be an empty tape. This machine runs for more than 47 millions steps.
#D
D
import std.stdio, std.algorithm, std.string, std.conv, std.array, std.exception, std.traits, std.math, std.range;   struct UTM(State, Symbol, bool doShow=true) if (is(State == enum) && is(Symbol == enum)) { static assert(is(typeof({ size_t x = State.init; })), "State must to be usable as array index."); static assert([EnumMembers!State].equal(EnumMembers!State.length.iota), "State must be a plain enum."); static assert(is(typeof({ size_t x = Symbol.init; })), "Symbol must to be usable as array index."); static assert([EnumMembers!Symbol].equal(EnumMembers!Symbol.length.iota), "Symbol must be a plain enum.");   enum Direction { right, left, stay }   private const TuringMachine tm; private TapeHead head; alias SymbolMap = string[EnumMembers!Symbol.length];   // The first index of this 'rules' matrix is a subtype of State // because it can't contain H, but currently D can't enforce this, // statically unlike Ada language. Rule[EnumMembers!Symbol.length][EnumMembers!State.length - 1] mRules;   static struct Rule { Symbol toWrite; Direction direction; State nextState;   this(in Symbol toWrite_, in Direction direction_, in State nextState_) pure nothrow @safe @nogc { this.toWrite = toWrite_; this.direction = direction_; this.nextState = nextState_; } }   // This is kept separated from the rest so it can be inialized // one field at a time in the main function, yet it will become // const. static struct TuringMachine { Symbol blank; State initialState; Rule[Symbol][State] rules; Symbol[] input; SymbolMap symbolMap; }   static struct TapeHead { immutable Symbol blank; Symbol[] tapeLeft, tapeRight; int position; const SymbolMap sMap; size_t nSteps;   this(in ref TuringMachine t) pure nothrow @safe { this.blank = EnumMembers!Symbol[0]; //tapeRight = t.input.empty ? [this.blank] : t.input.dup; if (t.input.empty) this.tapeRight = [this.blank]; else this.tapeRight = t.input.dup; this.position = 0; this.sMap = t.symbolMap; }   pure nothrow @safe @nogc invariant { assert(this.tapeRight.length > 0); if (this.position >= 0) assert(this.position < this.tapeRight.length); else assert(this.position.abs <= this.tapeLeft.length); }   Symbol readSymb() const pure nothrow @safe @nogc { if (this.position >= 0) return this.tapeRight[this.position]; else return this.tapeLeft[this.position.abs - 1]; }   void showSymb() const @safe { this.write; }   void writeSymb(in Symbol symbol) @safe { static if (doShow) showSymb; if (this.position >= 0) this.tapeRight[this.position] = symbol; else this.tapeLeft[this.position.abs - 1] = symbol; }   void goRight() pure nothrow @safe { this.position++; if (position > 0 && position == tapeRight.length) tapeRight ~= blank; }   void goLeft() pure nothrow @safe { this.position--; if (position < 0 && (position.abs - 1) == tapeLeft.length) tapeLeft ~= blank; }   void move(in Direction dir) pure nothrow @safe { nSteps++; final switch (dir) with (Direction) { case left: goLeft; break; case right: goRight; break; case stay: /*Do nothing*/ break; } }   string toString() const @safe { immutable pos = tapeLeft.length.signed + this.position + 4; return format("...%-(%)...", tapeLeft.retro.chain(tapeRight) .map!(s => sMap[s])) ~ '\n' ~ format("%" ~ pos.text ~ "s", "^") ~ '\n'; } }   void show() const @safe { head.showSymb; }   this(in ref TuringMachine tm_) @safe { static assert(__traits(compiles, State.H), "State needs a 'H' (Halt)."); immutable errMsg = "Invalid input."; auto runningStates = remove!(s => s == State.H)([EnumMembers!State]); enforce(!runningStates.empty, errMsg); enforce(tm_.rules.length == EnumMembers!State.length - 1, errMsg); enforce(State.H !in tm_.rules, errMsg); enforce(runningStates.canFind(tm_.initialState), errMsg);   // Create a matrix to reduce running time. foreach (immutable State st, const rset; tm_.rules) foreach (immutable Symbol sy, immutable rule; rset) mRules[st][sy] = rule;   this.tm = tm_; head = TapeHead(this.tm);   State state = tm.initialState; while (state != State.H) { immutable next = mRules[state][head.readSymb]; head.writeSymb(next.toWrite); head.move(next.direction); state = next.nextState; } static if (doShow) show; writeln("Performed ", head.nSteps, " steps."); } }   void main() @safe { "Incrementer:".writeln; enum States1 : ubyte { A, H } enum Symbols1 : ubyte { s0, s1 } alias M1 = UTM!(States1, Symbols1); M1.TuringMachine tm1; with (tm1) with (States1) with (Symbols1) with (M1.Direction) { alias R = M1.Rule; initialState = A; rules = [A: [s0: R(s1, stay, H), s1: R(s1, right, A)]]; input = [s1, s1, s1]; symbolMap = ["0", "1"]; } M1(tm1);   // http://en.wikipedia.org/wiki/Busy_beaver "\nBusy Beaver machine (3-state, 2-symbol):".writeln; enum States2 : ubyte { A, B, C, H } alias Symbols2 = Symbols1; alias M2 = UTM!(States2, Symbols2); M2.TuringMachine tm2; with (tm2) with (States2) with (Symbols2) with (M2.Direction) { alias R = M2.Rule; initialState = A; rules = [A: [s0: R(s1, right, B), s1: R(s1, left, C)], B: [s0: R(s1, left, A), s1: R(s1, right, B)], C: [s0: R(s1, left, B), s1: R(s1, stay, H)]]; symbolMap = ["0", "1"]; } M2(tm2);   "\nSorting stress test (12212212121212):".writeln; enum States3 : ubyte { A, B, C, D, E, H } enum Symbols3 : ubyte { s0, s1, s2, s3 } alias M3 = UTM!(States3, Symbols3, false); M3.TuringMachine tm3; with (tm3) with (States3) with (Symbols3) with (M3.Direction) { alias R = M3.Rule; initialState = A; rules = [A: [s1: R(s1, right, A), s2: R(s3, right, B), s0: R(s0, left, E)], B: [s1: R(s1, right, B), s2: R(s2, right, B), s0: R(s0, left, C)], C: [s1: R(s2, left, D), s2: R(s2, left, C), s3: R(s2, left, E)], D: [s1: R(s1, left, D), s2: R(s2, left, D), s3: R(s1, right, A)], E: [s1: R(s1, left, E), s0: R(s0, stay, H)]]; input = [s1, s2, s2, s1, s2, s2, s1, s2, s1, s2, s1, s2, s1, s2]; symbolMap = ["0", "1", "2", "3"]; } M3(tm3).show;   "\nPossible best Busy Beaver machine (5-state, 2-symbol):".writeln; alias States4 = States3; alias Symbols4 = Symbols1; alias M4 = UTM!(States4, Symbols4, false); M4.TuringMachine tm4; with (tm4) with (States4) with (Symbols4) with (M4.Direction) { alias R = M4.Rule; initialState = A; rules = [A: [s0: R(s1, right, B), s1: R(s1, left, C)], B: [s0: R(s1, right, C), s1: R(s1, right, B)], C: [s0: R(s1, right, D), s1: R(s0, left, E)], D: [s0: R(s1, left, A), s1: R(s1, left, D)], E: [s0: R(s1, stay, H), s1: R(s0, left, A)]]; symbolMap = ["0", "1"]; } M4(tm4); }
http://rosettacode.org/wiki/Totient_function
Totient function
The   totient   function is also known as:   Euler's totient function   Euler's phi totient function   phi totient function   Φ   function   (uppercase Greek phi)   φ    function   (lowercase Greek phi) Definitions   (as per number theory) The totient function:   counts the integers up to a given positive integer   n   that are relatively prime to   n   counts the integers   k   in the range   1 ≤ k ≤ n   for which the greatest common divisor   gcd(n,k)   is equal to   1   counts numbers   ≤ n   and   prime to   n If the totient number   (for N)   is one less than   N,   then   N   is prime. Task Create a   totient   function and:   Find and display   (1 per line)   for the 1st   25   integers:   the integer   (the index)   the totient number for that integer   indicate if that integer is prime   Find and display the   count   of the primes up to          100   Find and display the   count   of the primes up to       1,000   Find and display the   count   of the primes up to     10,000   Find and display the   count   of the primes up to   100,000     (optional) Show all output here. Related task   Perfect totient numbers Also see   Wikipedia: Euler's totient function.   MathWorld: totient function.   OEIS: Euler totient function phi(n).
#BQN
BQN
GCD ← {𝕨(|𝕊⍟(>⟜0)⊣)𝕩} Totient ← +´1=⊢GCD¨1+↕
http://rosettacode.org/wiki/Topswops
Topswops
Topswops is a card game created by John Conway in the 1970's. Assume you have a particular permutation of a set of   n   cards numbered   1..n   on both of their faces, for example the arrangement of four cards given by   [2, 4, 1, 3]   where the leftmost card is on top. A round is composed of reversing the first   m   cards where   m   is the value of the topmost card. Rounds are repeated until the topmost card is the number   1   and the number of swaps is recorded. For our example the swaps produce: [2, 4, 1, 3] # Initial shuffle [4, 2, 1, 3] [3, 1, 2, 4] [2, 1, 3, 4] [1, 2, 3, 4] For a total of four swaps from the initial ordering to produce the terminating case where   1   is on top. For a particular number   n   of cards,   topswops(n)   is the maximum swaps needed for any starting permutation of the   n   cards. Task The task is to generate and show here a table of   n   vs   topswops(n)   for   n   in the range   1..10   inclusive. Note Topswops   is also known as   Fannkuch   from the German word   Pfannkuchen   meaning   pancake. Related tasks   Number reversal game   Sorting algorithms/Pancake sort
#Go
Go
// Adapted from http://www-cs-faculty.stanford.edu/~uno/programs/topswops.w // at Donald Knuth's web site. Algorithm credited there to Pepperdine // and referenced to Mathematical Gazette 73 (1989), 131-133. package main   import "fmt"   const ( // array sizes maxn = 10 // max number of cards maxl = 50 // upper bound for number of steps )   func main() { for i := 1; i <= maxn; i++ { fmt.Printf("%d: %d\n", i, steps(i)) } }   func steps(n int) int { var a, b [maxl][maxn + 1]int var x [maxl]int a[0][0] = 1 var m int for l := 0; ; { x[l]++ k := int(x[l]) if k >= n { if l <= 0 { break } l-- continue } if a[l][k] == 0 { if b[l][k+1] != 0 { continue } } else if a[l][k] != k+1 { continue } a[l+1] = a[l] for j := 1; j <= k; j++ { a[l+1][j] = a[l][k-j] } b[l+1] = b[l] a[l+1][0] = k + 1 b[l+1][k+1] = 1 if l > m-1 { m = l + 1 } l++ x[l] = 0 } return m }
http://rosettacode.org/wiki/Trigonometric_functions
Trigonometric functions
Task If your language has a library or built-in functions for trigonometry, show examples of:   sine   cosine   tangent   inverses   (of the above) using the same angle in radians and degrees. For the non-inverse functions,   each radian/degree pair should use arguments that evaluate to the same angle   (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle). For the inverse functions,   use the same number and convert its answer to radians and degrees. If your language does not have trigonometric functions available or only has some available,   write functions to calculate the functions based on any   known approximation or identity.
#BaCon
BaCon
' Trigonometric functions in BaCon use Radians for input values ' The RAD() function converts from degrees to radians   FOR v$ IN "0, 10, 45, 90, 190.5" d = VAL(v$) * 1.0 r = RAD(d) * 1.0   PRINT "Sine: ", d, " degrees (or ", r, " radians) is ", SIN(r) PRINT "Cosine: ", d, " degrees (or ", r, " radians) is ", COS(r) PRINT "Tangent: ", d, " degrees (or ", r, " radians) is ", TAN(r) PRINT PRINT "Arc Sine: ", SIN(r), " is ", DEG(ASIN(SIN(r))), " degrees (or ", ASIN(SIN(r)), " radians)" PRINT "Arc CoSine: ", COS(r), " is ", DEG(ACOS(COS(r))), " degrees (or ", ACOS(COS(r)), " radians)" PRINT "Arc Tangent: ", TAN(r), " is ", DEG(ATN(TAN(r))), " degrees (or ", ATN(TAN(r)), " radians)" PRINT NEXT
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm
Trabb Pardo–Knuth algorithm
The TPK algorithm is an early example of a programming chrestomathy. It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages. The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm. From the wikipedia entry: ask for 11 numbers to be read into a sequence S reverse sequence S for each item in sequence S result := call a function to do an operation if result overflows alert user else print result The task is to implement the algorithm: Use the function:     f ( x ) = | x | 0.5 + 5 x 3 {\displaystyle f(x)=|x|^{0.5}+5x^{3}} The overflow condition is an answer of greater than 400. The 'user alert' should not stop processing of other items of the sequence. Print a prompt before accepting eleven, textual, numeric inputs. You may optionally print the item as well as its associated result, but the results must be in reverse order of input. The sequence   S   may be 'implied' and so not shown explicitly. Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
#D
D
import std.stdio, std.math, std.conv, std.algorithm, std.array;   double f(in double x) pure nothrow { return x.abs.sqrt + 5 * x ^^ 3; }   void main() { double[] data;   while (true) { "Please enter eleven numbers on a line: ".write; data = readln.split.map!(to!double).array; if (data.length == 11) break; writeln("Those aren't eleven numbers."); } foreach_reverse (immutable x; data) { immutable y = x.f; writefln("f(%0.3f) = %s", x, y > 400 ? "Too large" : y.text); } }
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm
Trabb Pardo–Knuth algorithm
The TPK algorithm is an early example of a programming chrestomathy. It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages. The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm. From the wikipedia entry: ask for 11 numbers to be read into a sequence S reverse sequence S for each item in sequence S result := call a function to do an operation if result overflows alert user else print result The task is to implement the algorithm: Use the function:     f ( x ) = | x | 0.5 + 5 x 3 {\displaystyle f(x)=|x|^{0.5}+5x^{3}} The overflow condition is an answer of greater than 400. The 'user alert' should not stop processing of other items of the sequence. Print a prompt before accepting eleven, textual, numeric inputs. You may optionally print the item as well as its associated result, but the results must be in reverse order of input. The sequence   S   may be 'implied' and so not shown explicitly. Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
#EchoLisp
EchoLisp
  (define (trabb-fun n) (+ (* 5 n n n) (sqrt(abs n))))   (define (check-trabb n) (if (number? n) (if (<= (trabb-fun n) 400) (printf "🌱 f(%d) = %d" n (trabb-fun n)) (printf "❌ f(%d) = %d" n (trabb-fun n))) (error "not a number" n)))   (define (trabb (numlist null)) (while (< (length numlist) 11) (set! numlist (append numlist (or (read default: (shuffle (iota 11)) prompt: (format "Please enter %d more numbers" (- 11 (length numlist)))) (error 'incomplete-list numlist))))) ;; users cancel (for-each check-trabb (reverse (take numlist 11))))  
http://rosettacode.org/wiki/Twelve_statements
Twelve statements
This puzzle is borrowed from   math-frolic.blogspot. Given the following twelve statements, which of them are true? 1. This is a numbered list of twelve statements. 2. Exactly 3 of the last 6 statements are true. 3. Exactly 2 of the even-numbered statements are true. 4. If statement 5 is true, then statements 6 and 7 are both true. 5. The 3 preceding statements are all false. 6. Exactly 4 of the odd-numbered statements are true. 7. Either statement 2 or 3 is true, but not both. 8. If statement 7 is true, then 5 and 6 are both true. 9. Exactly 3 of the first 6 statements are true. 10. The next two statements are both true. 11. Exactly 1 of statements 7, 8 and 9 are true. 12. Exactly 4 of the preceding statements are true. Task When you get tired of trying to figure it out in your head, write a program to solve it, and print the correct answer or answers. Extra credit Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
#Picat
Picat
% {{trans|Prolog}} go ?=> puzzle, fail, % check for more answers nl. go => true.   puzzle =>  % 1. This is a numbered list of twelve statements. L = [A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12], L :: 0..1, element(1, L, 1),    % 2. Exactly 3 of the last 6 statements are true. A2 #<=> sum(L[7..12]) #= 3,    % 3. Exactly 2 of the even-numbered statements are true. A3 #<=> sum([L[I]:I in 1..12,I mod 2 == 0]) #= 2,    % 4. If statement 5 is true, then statements 6 and 7 are both true. A4 #<=> (A5 #=> (A6 #/\ A7)),    % 5. The 3 preceding statements are all false. A5 #<=> sum(L[2..4]) #= 0,    % 6. Exactly 4 of the odd-numbered statements are true. A6 #<=> sum([L[I]:I in 1..12,I mod 2 == 1]) #= 4,    % 7. Either statement 2 or 3 is true, but not both. A7 #<=> (A2 + A3 #= 1),    % 8. If statement 7 is true, then 5 and 6 are both true. A8 #<=> (A7 #=> A5 #/\ A6),    % 9. Exactly 3 of the first 6 statements are true. A9 #<=> sum(L[1..6]) #= 3,    % 10. The next two statements are both true. A10 #<=> (A11 #/\ A12),    % 11. Exactly 1 of statements 7, 8 and 9 are true. A11 #<=> (A7 + A8 + A9 #= 1),    % 12. Exactly 4 of the preceding statements are true. A12 #<=> sum(L[1..11]) #= 4,   solve(L),   println('L'=L), printf("Statements %w are true.\n", [I.to_string : I in 1..12, L[I] == 1].join(" ")), nl.
http://rosettacode.org/wiki/Twelve_statements
Twelve statements
This puzzle is borrowed from   math-frolic.blogspot. Given the following twelve statements, which of them are true? 1. This is a numbered list of twelve statements. 2. Exactly 3 of the last 6 statements are true. 3. Exactly 2 of the even-numbered statements are true. 4. If statement 5 is true, then statements 6 and 7 are both true. 5. The 3 preceding statements are all false. 6. Exactly 4 of the odd-numbered statements are true. 7. Either statement 2 or 3 is true, but not both. 8. If statement 7 is true, then 5 and 6 are both true. 9. Exactly 3 of the first 6 statements are true. 10. The next two statements are both true. 11. Exactly 1 of statements 7, 8 and 9 are true. 12. Exactly 4 of the preceding statements are true. Task When you get tired of trying to figure it out in your head, write a program to solve it, and print the correct answer or answers. Extra credit Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
#Prolog
Prolog
puzzle :- % 1. This is a numbered list of twelve statements. L = [A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12], L ins 0..1, element(1, L, 1),   % 2. Exactly 3 of the last 6 statements are true. A2 #<==> A7 + A8 + A9 + A10 + A11 + A12 #= 3,   % 3. Exactly 2 of the even-numbered statements are true. A3 #<==> A2 + A4 + A6 + A8 + A10 + A12 #= 2,   % 4. If statement 5 is true, then statements 6 and 7 are both true. A4 #<==> (A5 #==> (A6 #/\ A7)),   % 5. The 3 preceding statements are all false. A5 #<==> A2 + A3 + A4 #= 0,   % 6. Exactly 4 of the odd-numbered statements are true. A6 #==> A1 + A3 + A5 + A7 + A9 + A11 #= 4,   % 7. Either statement 2 or 3 is true, but not both. A7 #<==> A2 + A3 #= 1,   % 8. If statement 7 is true, then 5 and 6 are both true. A8 #<==> (A7 #==> A5 #/\ A6),     % 9. Exactly 3 of the first 6 statements are true. A9 #<==> A1 + A2 + A3 + A4 + A5 + A6 #= 3,   % 10. The next two statements are both true. A10 #<==> A11 #/\ A12,   % 11. Exactly 1 of statements 7, 8 and 9 are true. A11 #<==> A7 + A8 + A9 #= 1,   % 12. Exactly 4 of the preceding statements are true. A12 #<==> A1 + A2 + A3 + A4 + A5 + A6 + A7 +A8 + A9 + A10 + A11 #= 4,   label(L), numlist(1, 12, NL), write('Statements '), maplist(my_write, NL, L), writeln('are true').     my_write(N, 1) :- format('~w ', [N]).   my_write(_N, 0).  
http://rosettacode.org/wiki/Truth_table
Truth table
A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function. Task Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function. (One can assume that the user input is correct). Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function. Either reverse-polish or infix notation expressions are allowed. Related tasks   Boolean values   Ternary logic See also   Wolfram MathWorld entry on truth tables.   some "truth table" examples from Google.
#Nim
Nim
import sequtils, strutils, sugar   # List of possible variables names. const VarChars = {'A'..'E', 'G'..'S', 'U'..'Z'}   type   Expression = object names: seq[char] # List of variables names. values: seq[bool] # Associated values. formula: string # Formula as a string.     proc initExpression(str: string): Expression = ## Build an expression from a string. for ch in str: if ch in VarChars and ch notin result.names: result.names.add ch result.values.setLen(result.names.len) result.formula = str     template apply(stack: seq[bool]; op: (bool, bool) -> bool): bool = ## Apply an operator on the last two operands of an evaluation stack. ## Needed to make sure that pops are done (avoiding short-circuit optimization). let op2 = stack.pop() let op1 = stack.pop() op(op1, op2)     proc evaluate(expr: Expression): bool = ## Evaluate the current expression.   var stack: seq[bool] # Evaluation stack.   for e in expr.formula: stack.add case e of 'T': true of 'F': false of '!': not stack.pop() of '&': stack.apply(`and`) of '|': stack.apply(`or`) of '^': stack.apply(`xor`) else: if e in VarChars: expr.values[expr.names.find(e)] else: raise newException( ValueError, "Non-conformant character in expression: '$#'.".format(e))   if stack.len != 1: raise newException(ValueError, "Ill-formed expression.") result = stack[0]     proc setVariables(expr: var Expression; pos: Natural) = ## Recursively set the variables. ## When all the variables are set, launch the evaluation of the expression ## and print the result.   assert pos <= expr.values.len   if pos == expr.values.len: # Evaluate and display. let vs = expr.values.mapIt(if it: 'T' else: 'F').join(" ") let es = if expr.evaluate(): 'T' else: 'F' echo vs, " ", es   else: # Set values. expr.values[pos] = false expr.setVariables(pos + 1) expr.values[pos] = true expr.setVariables(pos + 1)     echo "Accepts single-character variables (except for 'T' and 'F'," echo "which specify explicit true or false values), postfix, with" echo "&|!^ for and, or, not, xor, respectively; optionally" echo "seperated by spaces or tabs. Just enter nothing to quit."   while true: # Read formula and create expression. stdout.write "\nBoolean expression: " let line = stdin.readLine.toUpperAscii.multiReplace((" ", ""), ("\t", "")) if line.len == 0: break var expr = initExpression(line) if expr.names.len == 0: break   # Display the result. let vs = expr.names.join(" ") echo '\n', vs, " ", expr.formula let h = vs.len + expr.formula.len + 2 echo repeat('=', h) expr.setVariables(0)
http://rosettacode.org/wiki/Ulam_spiral_(for_primes)
Ulam spiral (for primes)
An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1),   constructed on a square grid, starting at the "center". An Ulam spiral is also known as a   prime spiral. The first grid (green) is shown with sequential integers,   starting at   1. In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk),   and all non-primes as shown as a blank   (or some other whitespace). Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables). Normally, the spiral starts in the "center",   and the   2nd   number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction. There are other geometric shapes that are used as well, including clock-wise spirals. Also, some spirals (for the   2nd   number)   is viewed upwards from the   1st   number instead of to the right, but that is just a matter of orientation. Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities). [A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals   (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)]. Then, in the next phase in the transformation of the Ulam prime spiral,   the non-primes are translated to blanks. In the orange grid below,   the primes are left intact,   and all non-primes are changed to blanks. Then, in the final transformation of the Ulam spiral (the yellow grid),   translate the primes to a glyph such as a   •   or some other suitable glyph. 65 64 63 62 61 60 59 58 57 66 37 36 35 34 33 32 31 56 67 38 17 16 15 14 13 30 55 68 39 18 5 4 3 12 29 54 69 40 19 6 1 2 11 28 53 70 41 20 7 8 9 10 27 52 71 42 21 22 23 24 25 26 51 72 43 44 45 46 47 48 49 50 73 74 75 76 77 78 79 80 81 61 59 37 31 67 17 13 5 3 29 19 2 11 53 41 7 71 23 43 47 73 79 • • • • • • • • • • • • • • • • • • • • • • The Ulam spiral becomes more visually obvious as the grid increases in size. Task For any sized   N × N   grid,   construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number   (the default would be 1),   with some suitably   dotty   (glyph) representation to indicate primes,   and the absence of dots to indicate non-primes. You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen. Related tasks   Spiral matrix   Zig-zag matrix   Identity matrix   Sequence of primes by Trial Division See also Wikipedia entry:   Ulam spiral MathWorld™ entry:   Prime Spiral
#Pascal
Pascal
  Program Ulam; Uses crt; {Concocted by R.N.McLean (whom God preserve), ex Victoria university, NZ.} {$B- evaluate boolean expressions only so far as necessary.} {$R+ range checking...}   FUNCTION Trim(S : string) : string; var L1,L2 : integer; BEGIN L1 := 1; WHILE (L1 <= LENGTH(S)) AND (S[L1] = ' ') DO INC(L1); L2 := LENGTH(S); WHILE (S[L2] = ' ') AND (L2 > L1) DO DEC(L2); IF L2 >= L1 THEN Trim := COPY(S,L1,L2 - L1 + 1) ELSE Trim := ''; END; {Of Trim.}   FUNCTION Ifmt(Digits : integer) : string; var S : string[255]; BEGIN STR(Digits,S); Ifmt := Trim(S); END; { Ifmt } Function min(i,j: integer): integer; begin if i <= j then min:=i else min:=j; end; Procedure Croak(Gasp: string); {A lethal word.} Begin WriteLn; WriteLn(Gasp); HALT; {This way to the egress...} End; var ScreenLine,ScreenColumn: byte; {Line and column position.} {=========================enough support===================} const Mstyle = 6; {Display different results.} const StyleName: array[1..Mstyle] of string = ('IsPrime','First Prime Factor Index', 'First Prime Factor','Number of Prime Factors', 'Sum of Prime Factors','Sum of Proper Factors'); const OrderLimit = 49; Limit2 = OrderLimit*OrderLimit; {A 50-line screen has room for a heading.} var Tile: array[1..OrderLimit,1..OrderLimit] of integer; {Alas, can't put [Order,Order], only constants.} var FirstPrimeFactorIndex,FirstPrimeFactor,NumPFactor,SumPFactor,SumFactor: array[1..Limit2] of integer; const enuffP = 17; {Given the value of Limit2.} const Prime: array[1..enuffP] of integer = (1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53); Procedure Prepare; {Various arrays are to be filled for the different styles.} var i,j,p: integer; Begin for i:=1 to limit2 do {Alas, can't just put A:=0;} begin {Nor clear A;} FirstPrimeFactorIndex[i]:=1; {Prime[1] = 1, so this means no other divisor.} FirstPrimeFactor[i]:=0; NumPFactor[i]:=0; SumPFactor[i]:=0; SumFactor[i]:=1; {1 is counted as a proper factor.} end; FirstPrimeFactorIndex[1]:=0; {Fiddle, as 1 is not a prime number.} SumFactor[1]:=0; {N is not a proper factor of N, so 1 has no proper factors...} for i:=2 to enuffP do {Prime[1] = 1, Prime[2] = 2, so start with i = 2.} begin p:=Prime[i]; j:=p + p; while j <= Limit2 do begin if FirstPrimeFactorIndex[j] = 1 then FirstPrimeFactorIndex[j]:=i; if FirstPrimeFactor[j] = 0 then FirstPrimeFactor[j]:=p; SumPFactor[j]:=SumPFactor[j] + p; inc(NumPFactor[j]); j:=j + p; end; end; for i:=2 to Limit2 div 2 do {Step through all possible proper factors.} begin {N is not a proper factor of N, so start at 2N,} j:=2*i; {for which N is a proper factor of 2N.} while j <= Limit2 do {Sigh. for j:=2*i:Limit2:i do ... Next i;} begin SumFactor[j]:=SumFactor[j] + i; j:=j + i; end; end; End; {Enough preparation.}   const enuffC = 11; {Perhaps the colours will highlight interesting patterns.} const colour:array[0..enuffC] of byte = (black,white,LightRed, LightMagenta,Yellow,LightGreen,LightCyan,LightBlue,LightGray, Red,Green,DarkGray); {Colours on the screen don't always match their name!}   Procedure UlamSpiral(Order,Start,Style: integer); {Generate the numbers, then display.} Function Encode(N: integer): integer; {Acording to Style, choose a result to show.} Begin if N <= 1 then Encode:=0 else case style of 1:if FirstPrimeFactorIndex[N] = 1 then Encode:=1 else Encode:=0; {1 = Prime.} 2:Encode:=FirstPrimeFactorIndex[N]; 3:Encode:=FirstPrimeFactor[N]; 4:Encode:=NumPFactor[N]; 5:Encode:=SumPFactor[N]; 6:Encode:=SumFactor[N]; end; End; {So much for encoding.} var Place,Way: array[1..2] of integer; {Complex numbers.} var m, {Middle.} N, {Counter.} length, {length of a side.} lunge, {two lunges for each length.} step {steps to make up a lunge of some length.} : integer; var i,j: integer; {Steppers.} var code,it: integer; {Mess with the results.} label XX; {Escape the second lunge.} var OutF: text; {Utter drivel. It is a disc file.} Begin Write('Ulam Spiral, order ',Order,', start ',Start,', style ',style); {Start the heading.} if style <= 0 then Croak('Must be a positive style'); if style > Mstyle then croak('Last known style is '+ifmt(Mstyle)); if Order > OrderLimit then Croak('Array OrderLimit is order '+IFmt(OrderLimit)); if Order mod 2 <>1 then Croak('The order must be an odd number!'); writeln(': ',StyleName[Style]); {Finish the heading. The pattern starts with line two.} Assign(OutF,'Ulam.txt'); Rewrite(OutF); Writeln(OutF,'Ulam spiral: the codes for ',StyleName[style]); m:=order div 2 + 1; {This is why Order must be odd.} Place[1]:=m; Place[2]:=m; {Start at the middle.} way[1]:=1; way[2]:=0; {Initial direction is along the x-axis.} n:=Start; for length:=1 to Order do {Advance through the lengths.} for lunge:=1 to 2 do {Two lunges for each length.} begin for step:=1 to length do {Make the steps.} begin Tile[Place[1],Place[2]]:=N; for i:=1 to 2 do Place[i]:=Place[i] + Way[i]; {Place:=Place + Way;} N:=N + 1; end; if N >= Order*Order then goto XX; {Each corner piece is part of two lunges.} i:=Way[1]; Way[1]:=-Way[2]; Way[2]:=i; {Way:=Way*(0,1) in complex numbers: (x,y)*(0,1) = (-y,x).} end; XX:for i:=order downto 1 do {Output: Lines count downwards, y runs upwards.} begin {The first line is the topmost y.} for j:=1 to order do {(line,column) = (y,x).} begin {Work along the line.} it:=Tile[j,i]; {Grab the number.} code:=Encode(it); {Presentation scheme.} Write(OutF,'(',it:4,':',code:2,')'); {Debugging...} if FirstPrimeFactorIndex[it] > 1 then TextBackGround(Black) {Not a prime.} else if it = 1 then TextBackGround(Black) {Darkness for one, also.} else TextBackGround(White); {A prime number!} TextColor(Colour[min(code,enuffC)]); {A lot of fuss for this!} {Write(code:2);} {Write(it:3);} if it <= 9 then write(it) else Write('*'); {Thus mark the centre.} end; {Next position along the line.} if i > 1 then WriteLn; {Ending the last line would scroll the heading up.} WriteLn(OutF); {But this is good for the text file.} end; {On to the next line.} Close(OutF); {Finished with the trace.} {Some revelations to help in choosing a colour sequence.} ScreenLine:=WhereY; ScreenColumn:=WhereX; {Gibberish to find the location.} if Style > 1 then {Only the fancier styles go beyond 0 and 1.} begin {So explain only for them.} GoToXY(ScreenColumn + 1,ScreenLine - 4); {Unused space is to the right.} TextColor(White); write('Colour sequence'); {Given 80-column displays.} GoToXY(ScreenColumn + 1,ScreenLine - 3); {And no more than 50 lines.} for i:=1 to enuffC do begin TextColor(Colour[i]); write(i); end; {My sequence.} GoToXY(ScreenColumn + 1,ScreenLine - 2); TextColor(White); write('From options'); GoToXY(ScreenColumn + 1,ScreenLine - 1); for i:=1 to 15 do begin TextColor(i);write(i); end; {The options.} end; End; {of UlamSpiral.}   var start,wot,order: integer; {A selector.} BEGIN {After all that.} TextMode(Lo(LastMode) + Font8x8); {Gibberish sets 43 lines on EGA and 50 on VGA.} ClrScr; TextColor(White); {This also gives character blocks that are almost square...} WriteLn('Presents consecutive integers in a spiral, as per Stanislaw Ulam.'); WriteLn('Starting with 1, runs up to Order*Order.'); Write('What value for Order? (Limit ' + Ifmt(OrderLimit),'): '); ReadLn(Order); {ReadKey needs no "enter", but requires decoding.} if (order < 1) or (order > OrderLimit) then Croak('Out of range!'); {Oh dear.} Prepare; wot:=1; {The original task.} Repeat {Until bored?} ClrScr; {Scrub any previous stuff.} UlamSpiral(Order,1,wot); {The deed!} GoToXY(ScreenColumn + 1,ScreenLine); {Note that the last WriteLn was skipped.} TextColor(White); Write('Enter 0, or 1 to '+Ifmt(Mstyle),': '); {Wot now?} ReadLn(wot); {Receive.} Until (wot <= 0) or (wot > Mstyle); {Alas, "Enter" must be pressed.} END.  
http://rosettacode.org/wiki/Truncatable_primes
Truncatable primes
A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number. Examples The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime. The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime. No zeroes are allowed in truncatable primes. Task The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied). Related tasks Find largest left truncatable prime in a given base Sieve of Eratosthenes See also Truncatable Prime from MathWorld.]
#Fortran
Fortran
module primes_mod implicit none   logical, allocatable :: primes(:)   contains   subroutine Genprimes(parr) logical, intent(in out) :: parr(:) integer :: i ! Prime sieve parr = .true. parr (1) = .false. parr (4 : size(parr) : 2) = .false. do i = 3, int (sqrt (real (size(parr)))), 2 if (parr(i)) parr(i * i : size(parr) : i) = .false. end do   end subroutine   function is_rtp(candidate) logical :: is_rtp integer, intent(in) :: candidate integer :: n   is_rtp = .true. n = candidate / 10 do while(n > 0) if(.not. primes(n)) then is_rtp = .false. return end if n = n / 10 end do   end function   function is_ltp(candidate) logical :: is_ltp integer, intent(in) :: candidate integer :: i, n character(10) :: nstr   write(nstr, "(i10)") candidate is_ltp = .true. do i = len_trim(nstr)-1, 1, -1 n = mod(candidate, 10**i) if(.not. primes(n)) then is_ltp = .false. return end if end do end function   end module primes_mod   program Truncatable_Primes use primes_mod implicit none   integer, parameter :: limit = 999999 integer :: i character(10) :: nstr   ! Generate an array of prime flags up to limit of search allocate(primes(limit)) call Genprimes(primes)   ! Find left truncatable prime do i = limit, 1, -1 write(nstr, "(i10)") i if(index(trim(nstr), "0") /= 0) cycle ! check for 0 in number if(is_ltp(i)) then write(*, "(a, i0)") "Largest left truncatable prime below 1000000 is ", i exit end if end do   ! Find right truncatable prime do i = limit, 1, -1 write(nstr, "(i10)") i if(index(trim(nstr), "0") /= 0) cycle ! check for 0 in number if(is_rtp(i)) then write(*, "(a, i0)") "Largest right truncatable prime below 1000000 is ", i exit end if end do end program
http://rosettacode.org/wiki/Tree_traversal
Tree traversal
Task Implement a binary tree where each node carries an integer,   and implement:   pre-order,   in-order,   post-order,     and   level-order   traversal. Use those traversals to output the following tree: 1 / \ / \ / \ 2 3 / \ / 4 5 6 / / \ 7 8 9 The correct output should look like this: preorder: 1 2 4 7 5 3 6 8 9 inorder: 7 4 2 5 1 8 6 9 3 postorder: 7 4 5 2 8 9 6 3 1 level-order: 1 2 3 4 5 6 7 8 9 See also   Wikipedia article:   Tree traversal.
#Agda
Agda
open import Data.List using (List; _∷_; []; concat) open import Data.Nat using (ℕ; suc; zero) open import Level using (Level) open import Relation.Binary.PropositionalEquality using (_≡_; refl)   data Tree {a} (A : Set a) : Set a where leaf : Tree A node : A → Tree A → Tree A → Tree A   variable a : Level A : Set a   preorder : Tree A → List A preorder tr = go tr [] where go : Tree A → List A → List A go leaf ys = ys go (node x ls rs) ys = x ∷ go ls (go rs ys)   inorder : Tree A → List A inorder tr = go tr [] where go : Tree A → List A → List A go leaf ys = ys go (node x ls rs) ys = go ls (x ∷ go rs ys)   postorder : Tree A → List A postorder tr = go tr [] where go : Tree A → List A → List A go leaf ys = ys go (node x ls rs) ys = go ls (go rs (x ∷ ys))   level-order : Tree A → List A level-order tr = concat (go tr []) where go : Tree A → List (List A) → List (List A) go leaf qs = qs go (node x ls rs) [] = (x ∷ []) ∷ go ls (go rs []) go (node x ls rs) (q ∷ qs) = (x ∷ q ) ∷ go ls (go rs qs)   example-tree : Tree ℕ example-tree = node 1 (node 2 (node 4 (node 7 leaf leaf) leaf) (node 5 leaf leaf)) (node 3 (node 6 (node 8 leaf leaf) (node 9 leaf leaf)) leaf)   _ : preorder example-tree ≡ 1 ∷ 2 ∷ 4 ∷ 7 ∷ 5 ∷ 3 ∷ 6 ∷ 8 ∷ 9 ∷ [] _ = refl   _ : inorder example-tree ≡ 7 ∷ 4 ∷ 2 ∷ 5 ∷ 1 ∷ 8 ∷ 6 ∷ 9 ∷ 3 ∷ [] _ = refl   _ : postorder example-tree ≡ 7 ∷ 4 ∷ 5 ∷ 2 ∷ 8 ∷ 9 ∷ 6 ∷ 3 ∷ 1 ∷ [] _ = refl   _ : level-order example-tree ≡ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ [] _ = refl
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#PicoLisp
PicoLisp
PicoLisp sets the value of the variable (symbol) '@' to the result of conditional and controlling expressions in flow- and logic-functions (cond, if, and, when, while, etc.).   Within a function or method '@' behaves like a local variable, i.e. its value is automatically saved upon function entry and restored at exit.   For example, to read the current input channel until EOF, and print the square of every item which is a number:
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#PowerShell
PowerShell
  65..67 | ForEach-Object {$_ * 2} # Multiply the numbers by 2 65..67 | ForEach-Object {[char]$_ } # ASCII values of the numbers  
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Python
Python
>>> 3 3 >>> _*_, _**0.5 (9, 1.7320508075688772) >>>
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Racket
Racket
  #lang racket   (module topic1 racket  ;; define $ as a "parameter", but make it look like a plain identifier (provide $ (rename-out [$if if] [$#%app #%app])) (define current-value (make-parameter #f)) (define-syntax $ (syntax-id-rules (set!) [(_ x ...) ((current-value) x ...)] [(set! _ val) (current-value val)] [_ (current-value)]))  ;; make an `if' form that binds it to the condition result (define-syntax-rule ($if C T E) (parameterize ([current-value C]) (if $ T E)))  ;; function application with []s uses the topic variable for the first arg (define-syntax ($#%app stx) (syntax-case stx () [(_ f x y ...) (equal? #\[ (syntax-property stx 'paren-shape)) #'(parameterize ([current-value x]) (f y ...))] [(_ f x ...) #'(f x ...)])))   (module topic2 racket  ;; better variant: define `$' as a syntax parameter, which is adjusted to an  ;; actual local binding; make it work in `if', and have a function definition  ;; form that binds it to the actual arguments (provide $ (rename-out [$if if]) defun) (require racket/stxparam) (define-syntax-parameter $ (λ(stx) (raise-syntax-error '$ "not in scope"))) (define-syntax-rule ($if C T E) (let ([c C]) (syntax-parameterize ([$ (make-rename-transformer #'c)]) (if c T E)))) (define-syntax-rule (defun name body ...) (define (name arg) (syntax-parameterize ([$ (make-rename-transformer #'arg)]) body ...))) )   (module sample1 racket (require (submod ".." topic1)) (if (memq 2 '(1 2 3)) (cadr $) 'missing)  ;; => 3 (define (foo) (list (sqrt $) (* $ $))) [foo 9]  ;; => '(3 81) ) (require 'sample1)   (module sample2 racket (require (submod ".." topic2)) (if (memq 2 '(1 2 3)) (cadr $) 'missing)  ;; => 3 (defun foo (list (sqrt $) (* $ $))) (foo 9)  ;; => '(3 81) ) (require 'sample2)  
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Raku
Raku
$_ = 'Outside'; for <3 5 7 10> { print $_; .³.map: { say join "\t", '', $_, .², .sqrt, .log(2), OUTER::<$_>, UNIT::<$_> } }
http://rosettacode.org/wiki/Towers_of_Hanoi
Towers of Hanoi
Task Solve the   Towers of Hanoi   problem with recursion.
#8th
8th
  5 var, disks var sa var sb var sc   : save sc ! sb ! sa ! disks ! ; : get sa @ sb @ sc @ ; : get2 get swap ; : hanoi save disks @ not if ;; then disks @ get disks @ n:1- get2 hanoi save cr " move a ring from " . sa @ . " to " . sb @ . disks @ n:1- get2 rot hanoi ;   " Tower of Hanoi, with " . disks @ . " rings: " . disks @ 1 2 3 hanoi cr bye    
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping
Tokenize a string with escaping
Task[edit] Write a function or program that can split a string at each non-escaped occurrence of a separator character. It should accept three input parameters:   The string   The separator character   The escape character It should output a list of strings. Details Rules for splitting: The fields that were separated by the separators, become the elements of the output list. Empty fields should be preserved, even at the start and end. Rules for escaping: "Escaped" means preceded by an occurrence of the escape character that is not already escaped itself. When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special). Each occurrence of the escape character that was used to escape something, should not become part of the output. Test case Demonstrate that your function satisfies the following test-case: Input Output string: one^|uno||three^^^^|four^^^|^cuatro| separator character: | escape character: ^ one|uno three^^ four^|cuatro (Print the output list in any format you like, as long as it is it easy to see what the fields are.) Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#8080_Assembly
8080 Assembly
org 100h jmp demo ;;; Routine to split a 0-terminated string ;;; Input: B=separator, C=escape, HL=string pointer. ;;; Output: DE=end of list of strings ;;; The split strings are stored in place. split: mov d,h ; Set DE = output pointer mov e,l snext: mov a,m ; Get current input character inx h ; Advance input pointer stax d ; Write character at output pointer ana a ; If zero, we are done rz cmp c ; Is it the escape character? jz sesc cmp b ; Is it the separator character? jz ssep inx d ; Otherwise, advance output pointer, jmp snext ; and get the next character sesc: mov a,m ; Store the escaped character without inx h ; checking for anything except zero. stax d inx d ana a ; Zero is still end of string rz jmp snext ssep: xra a ; End of string, write zero terminator stax d inx d jmp snext ;;; Use the routine to split the test-case string demo: mvi b,'|' ; Separator character mvi c,'^' ; Escape character lxi h,test ; Pointer to test string call split ;;; Print each string on its own line lxi h,test str: call puts ; Print string call cmp16 ; Are we there yet? jnc str ; If not, print the next string ret ;;; 16-bit compare cmp16: mov a,d cmp h rnz mov a,e cmp l ret ;;; Print zero-terminated string with newline puts: push d ; Keep DE registers push h ; Keep pointer lxi d,pfx ; Print prefix mvi c,9 call 5 pop h ; Restore pointer ploop: mov e,m ; Get current character push h ; Keep pointer mvi c,2 ; CP/M print character call 5 pop h ; Restore pointer mov a,m ; Is character zero? ora a inx h ; Increment pointer jnz ploop ; If not, there are more characters push h ; Keep pointer lxi d,nl ; Write newline mvi c,9 ; CP/M print string call 5 pop h pop d ; Restore DE registers ret pfx: db '> $' ; Prefix to make the output more obvious nl: db 13,10,'$' test: db 'one^|uno||three^^^^|four^^^|^cuatro|',0
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping
Tokenize a string with escaping
Task[edit] Write a function or program that can split a string at each non-escaped occurrence of a separator character. It should accept three input parameters:   The string   The separator character   The escape character It should output a list of strings. Details Rules for splitting: The fields that were separated by the separators, become the elements of the output list. Empty fields should be preserved, even at the start and end. Rules for escaping: "Escaped" means preceded by an occurrence of the escape character that is not already escaped itself. When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special). Each occurrence of the escape character that was used to escape something, should not become part of the output. Test case Demonstrate that your function satisfies the following test-case: Input Output string: one^|uno||three^^^^|four^^^|^cuatro| separator character: | escape character: ^ one|uno three^^ four^|cuatro (Print the output list in any format you like, as long as it is it easy to see what the fields are.) Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Action.21
Action!
DEFINE PTR="CARD"   TYPE Tokens=[ PTR buf  ;BYTE ARRAY PTR arr  ;CARD ARRAY PTR endPtr BYTE count]   PROC Init(Tokens POINTER t BYTE ARRAY b PTR ARRAY a) t.buf=b t.arr=a t.endPtr=b t.count=0 RETURN   PROC AddToken(Tokens POINTER t CHAR ARRAY s) PTR ARRAY a CHAR ARRAY tmp   a=t.arr tmp=t.endPtr SCopy(tmp,s) a(t.count)=tmp t.count==+1 t.endPtr=t.endPtr+s(0)+1 RETURN   PROC PrintTokens(Tokens POINTER t) BYTE i PTR ARRAY a   a=t.arr FOR i=0 TO t.count-1 DO PrintF("""%S""%E",a(i)) OD RETURN   PROC Append(CHAR ARRAY s CHAR c) s(0)==+1 s(s(0))=c RETURN   PROC Tokenize(CHAR ARRAY s CHAR sep,esc Tokens POINTER res) BYTE ARRAY b(200) PTR ARRAY a(20) CHAR ARRAY tmp(255) BYTE i,isEsc CHAR c   Init(res,b,a) isEsc=0 tmp(0)=0 FOR i=1 TO s(0) DO c=s(i) IF isEsc THEN isEsc=0 Append(tmp,c) ELSE IF c=esc THEN isEsc=1 ELSEIF c=sep THEN AddToken(res,tmp) tmp(0)=0 ELSE Append(tmp,c) FI FI OD AddToken(res,tmp) RETURN   PROC Main() Tokens t   Tokenize("one^|uno||three^^^^|four^^^|^cuatro|",'|,'^,t) PrintTokens(t) RETURN
http://rosettacode.org/wiki/Total_circles_area
Total circles area
Total circles area You are encouraged to solve this task according to the task description, using any language you may know. Example circles Example circles filtered Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once. One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome. To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii   (11 disks are fully contained inside other disks): xc yc radius 1.6417233788 1.6121789534 0.0848270516 -1.4944608174 1.2077959613 1.1039549836 0.6110294452 -0.6907087527 0.9089162485 0.3844862411 0.2923344616 0.2375743054 -0.2495892950 -0.3832854473 1.0845181219 1.7813504266 1.6178237031 0.8162655711 -0.1985249206 -0.8343333301 0.0538864941 -1.7011985145 -0.1263820964 0.4776976918 -0.4319462812 1.4104420482 0.7886291537 0.2178372997 -0.9499557344 0.0357871187 -0.6294854565 -1.3078893852 0.7653357688 1.7952608455 0.6281269104 0.2727652452 1.4168575317 1.0683357171 1.1016025378 1.4637371396 0.9463877418 1.1846214562 -0.5263668798 1.7315156631 1.4428514068 -1.2197352481 0.9144146579 1.0727263474 -0.1389358881 0.1092805780 0.7350208828 1.5293954595 0.0030278255 1.2472867347 -0.5258728625 1.3782633069 1.3495508831 -0.1403562064 0.2437382535 1.3804956588 0.8055826339 -0.0482092025 0.3327165165 -0.6311979224 0.7184578971 0.2491045282 1.4685857879 -0.8347049536 1.3670667538 -0.6855727502 1.6465021616 1.0593087096 0.0152957411 0.0638919221 0.9771215985 The result is   21.56503660... . Related task   Circles of given radius through two points. See also http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/ http://stackoverflow.com/a/1667789/10562
#EchoLisp
EchoLisp
  (lib 'math) (define (make-circle x0 y0 r) (vector x0 y0 r ))   (define-syntax-id _.radius (_ 2)) (define-syntax-id _.x0 (_ 0)) (define-syntax-id _.y0 (_ 1))   ;; to sort circles (define (cmp-circles a b) (> a.radius b.radius))   (define (included? circle: a circles) (for/or ((b circles)) #:continue (equal? a b) (disk-in-disk? a b)))   ;; eliminates, and sort (define (sort-circles circles) (list-sort cmp-circles (filter (lambda(c) (not (included? c circles))) circles)))   (define circles (sort-circles (list (make-circle 1.6417233788 1.6121789534 0.0848270516) (make-circle -1.4944608174 1.2077959613 1.1039549836) (make-circle 0.6110294452 -0.6907087527 0.9089162485) (make-circle 0.3844862411 0.2923344616 0.2375743054) (make-circle -0.2495892950 -0.3832854473 1.0845181219) (make-circle 1.7813504266 1.6178237031 0.8162655711) (make-circle -0.1985249206 -0.8343333301 0.0538864941) (make-circle -1.7011985145 -0.1263820964 0.4776976918) (make-circle -0.4319462812 1.4104420482 0.7886291537) (make-circle 0.2178372997 -0.9499557344 0.0357871187) (make-circle -0.6294854565 -1.3078893852 0.7653357688) (make-circle 1.7952608455 0.6281269104 0.2727652452) (make-circle 1.4168575317 1.0683357171 1.1016025378) (make-circle 1.4637371396 0.9463877418 1.1846214562) (make-circle -0.5263668798 1.7315156631 1.4428514068) (make-circle -1.2197352481 0.9144146579 1.0727263474) (make-circle -0.1389358881 0.1092805780 0.7350208828) (make-circle 1.5293954595 0.0030278255 1.2472867347) (make-circle -0.5258728625 1.3782633069 1.3495508831) (make-circle -0.1403562064 0.2437382535 1.3804956588) (make-circle 0.8055826339 -0.0482092025 0.3327165165) (make-circle -0.6311979224 0.7184578971 0.2491045282) (make-circle 1.4685857879 -0.8347049536 1.3670667538) (make-circle -0.6855727502 1.6465021616 1.0593087096) (make-circle 0.0152957411 0.0638919221 0.9771215985))))   ;; bounding box (define (enclosing-rect circles) (define xmin (for/min ((c circles)) (- c.x0 c.radius))) (define xmax (for/max ((c circles)) (+ c.x0 c.radius))) (define ymin (for/min ((c circles)) (- c.y0 c.radius))) (define ymax (for/max ((c circles)) (+ c.y0 c.radius))) (vector xmin ymin (- xmax xmin) (- ymax ymin)))   ;; Compute surface of entirely overlapped tiles ;; and assign candidates circles to other tiles. ;; cands is a vector nsteps x nsteps of circles lists indexed by (i,j)   (define (S0 circles rect steps into: cands) (define dx (// (rect 2) steps)) ;; width / steps (define dy (// (rect 3) steps)) ;; height / steps (define ds (* dx dy)) ;; tile surface (define dr (vector (- rect.x0 dx) (- rect.y0 dy) dx dy)) (define ijdx 0)   (for/sum ((i steps)) (vector+= dr 0 dx) (vector-set! dr 1 (- rect.y0 dy))   (for/sum ((j steps)) (vector+= dr 1 dy) (set! ijdx (+ i (* j steps)))   (for/sum ((c circles)) #:break (rect-in-disk? dr c) ;; enclosed ? add ds => (begin (vector-set! cands ijdx null) ds) #:continue (not (rect-disk-intersect? dr c)) ;; intersects ? add circle to candidates for this tile (vector-set! cands ijdx (cons c (cands ijdx ))) 0) )))   (define ct 0) ;; return sum of surfaces of tiles which are not entirely overlapped (define (S circles rect steps cands) (++ ct) (define dx (// (rect 2) steps)) (define dy (// (rect 3) steps)) (define ds (* dx dy)) (define dr (vector (- rect.x0 dx) (- rect.y0 dy) dx dy)) (define ijdx 0)   (for/sum ((i steps)) (vector+= dr 0 dx) (vector-set! dr 1 (- (rect 1) dy))   (for/sum ((j steps)) (vector+= dr 1 dy)   (when (!null? cands) (set! circles (cands (+ i (* j steps))))) #:continue (null? circles)   ;; add surface (or (for/or ((c circles)) ;; enclosed ? add ds #:break (rect-in-disk? dr c) => ds #f )   (if ;; not intersecting? add 0 (for/or ((c circles)) (rect-disk-intersect? dr c)) #f 0)   ;; intersecting ? recurse until precision (when (> dx s-precision) (S circles dr 2 null))   ;; no hope - add ds/2 (// ds 2)) )))  
http://rosettacode.org/wiki/Topological_sort
Topological sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a mapping between items, and items they depend on, a topological sort orders items so that no item precedes an item it depends upon. The compiling of a library in the VHDL language has the constraint that a library must be compiled after any library it depends on. A tool exists that extracts library dependencies. Task Write a function that will return a valid compile order of VHDL libraries from their dependencies. Assume library names are single words. Items mentioned as only dependents, (sic), have no dependents of their own, but their order of compiling must be given. Any self dependencies should be ignored. Any un-orderable dependencies should be flagged. Use the following data as an example: LIBRARY LIBRARY DEPENDENCIES ======= ==================== des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee dw01 ieee dw01 dware gtech dw02 ieee dw02 dware dw03 std synopsys dware dw03 dw02 dw01 ieee gtech dw04 dw04 ieee dw01 dware gtech dw05 dw05 ieee dware dw06 dw06 ieee dware dw07 ieee dware dware ieee dware gtech ieee gtech ramlib std ieee std_cell_lib ieee std_cell_lib synopsys Note: the above data would be un-orderable if, for example, dw04 is added to the list of dependencies of dw01. C.f.   Topological sort/Extracted top item. There are two popular algorithms for topological sorting:   Kahn's 1962 topological sort [1]   depth-first search [2] [3]
#11l
11l
V data = [ ‘des_system_lib’ = Set(‘std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee’.split(‘ ’)), ‘dw01’ = Set(‘ieee dw01 dware gtech’.split(‘ ’)), ‘dw02’ = Set(‘ieee dw02 dware’.split(‘ ’)), ‘dw03’ = Set(‘std synopsys dware dw03 dw02 dw01 ieee gtech’.split(‘ ’)), ‘dw04’ = Set(‘dw04 ieee dw01 dware gtech’.split(‘ ’)), ‘dw05’ = Set(‘dw05 ieee dware’.split(‘ ’)), ‘dw06’ = Set(‘dw06 ieee dware’.split(‘ ’)), ‘dw07’ = Set(‘ieee dware’.split(‘ ’)), ‘dware’ = Set(‘ieee dware’.split(‘ ’)), ‘gtech’ = Set(‘ieee gtech’.split(‘ ’)), ‘ramlib’ = Set(‘std ieee’.split(‘ ’)), ‘std_cell_lib’ = Set(‘ieee std_cell_lib’.split(‘ ’)), ‘synopsys’ = Set[String]() ]   F toposort2(&data) L(k, v) data v.discard(k)   Set[String] extra_items_in_deps L(v) data.values() extra_items_in_deps.update(v) extra_items_in_deps = extra_items_in_deps - Set(data.keys())   L(item) extra_items_in_deps data[item] = Set[String]()   [String] r L Set[String] ordered L(item, dep) data I dep.empty ordered.add(item) I ordered.empty L.break   r.append(sorted(Array(ordered)).join(‘ ’))   [String = Set[String]] new_data L(item, dep) data I item !C ordered new_data[item] = dep - ordered data = move(new_data)   assert(data.empty, ‘A cyclic dependency exists’) R r   print(toposort2(&data).join("\n"))
http://rosettacode.org/wiki/Universal_Turing_machine
Universal Turing machine
One of the foundational mathematical constructs behind computer science is the universal Turing Machine. (Alan Turing introduced the idea of such a machine in 1936–1937.) Indeed one way to definitively prove that a language is turing-complete is to implement a universal Turing machine in it. Task Simulate such a machine capable of taking the definition of any other Turing machine and executing it. Of course, you will not have an infinite tape, but you should emulate this as much as is possible. The three permissible actions on the tape are "left", "right" and "stay". To test your universal Turing machine (and prove your programming language is Turing complete!), you should execute the following two Turing machines based on the following definitions. Simple incrementer States: q0, qf Initial state: q0 Terminating states: qf Permissible symbols: B, 1 Blank symbol: B Rules: (q0, 1, 1, right, q0) (q0, B, 1, stay, qf) The input for this machine should be a tape of 1 1 1 Three-state busy beaver States: a, b, c, halt Initial state: a Terminating states: halt Permissible symbols: 0, 1 Blank symbol: 0 Rules: (a, 0, 1, right, b) (a, 1, 1, left, c) (b, 0, 1, left, a) (b, 1, 1, right, b) (c, 0, 1, left, b) (c, 1, 1, stay, halt) The input for this machine should be an empty tape. Bonus: 5-state, 2-symbol probable Busy Beaver machine from Wikipedia States: A, B, C, D, E, H Initial state: A Terminating states: H Permissible symbols: 0, 1 Blank symbol: 0 Rules: (A, 0, 1, right, B) (A, 1, 1, left, C) (B, 0, 1, right, C) (B, 1, 1, right, B) (C, 0, 1, right, D) (C, 1, 0, left, E) (D, 0, 1, left, A) (D, 1, 1, left, D) (E, 0, 1, stay, H) (E, 1, 0, left, A) The input for this machine should be an empty tape. This machine runs for more than 47 millions steps.
#D.C3.A9j.C3.A0_Vu
Déjà Vu
transitions(: local :t {} while /= ) dup: set-to t swap & rot & rot rot & t drop   take-from tape: if tape: pop-from tape else: :B   paste-together a h b: push-to b h while a: push-to b pop-from a b   universal-turing-machine transitions initial final tape: local :tape-left [] local :state initial   local :head take-from tape   local :move { :stay @pass }   move!left: push-to tape head set :head take-from tape-left   move!right: push-to tape-left head set :head take-from tape   while /= state final: if opt-get transitions & state head: set :state &<> set :head &<> move! else: return paste-together tape-left head tape paste-together tape-left head tape
http://rosettacode.org/wiki/Totient_function
Totient function
The   totient   function is also known as:   Euler's totient function   Euler's phi totient function   phi totient function   Φ   function   (uppercase Greek phi)   φ    function   (lowercase Greek phi) Definitions   (as per number theory) The totient function:   counts the integers up to a given positive integer   n   that are relatively prime to   n   counts the integers   k   in the range   1 ≤ k ≤ n   for which the greatest common divisor   gcd(n,k)   is equal to   1   counts numbers   ≤ n   and   prime to   n If the totient number   (for N)   is one less than   N,   then   N   is prime. Task Create a   totient   function and:   Find and display   (1 per line)   for the 1st   25   integers:   the integer   (the index)   the totient number for that integer   indicate if that integer is prime   Find and display the   count   of the primes up to          100   Find and display the   count   of the primes up to       1,000   Find and display the   count   of the primes up to     10,000   Find and display the   count   of the primes up to   100,000     (optional) Show all output here. Related task   Perfect totient numbers Also see   Wikipedia: Euler's totient function.   MathWorld: totient function.   OEIS: Euler totient function phi(n).
#C
C
  /*Abhishek Ghosh, 7th December 2018*/   #include<stdio.h>   int totient(int n){ int tot = n,i;   for(i=2;i*i<=n;i+=2){ if(n%i==0){ while(n%i==0) n/=i; tot-=tot/i; }   if(i==2) i=1; }   if(n>1) tot-=tot/n;   return tot; }   int main() { int count = 0,n,tot;   printf(" n  %c prime",237); printf("\n---------------\n");   for(n=1;n<=25;n++){ tot = totient(n);   if(n-1 == tot) count++;   printf("%2d  %2d  %s\n", n, tot, n-1 == tot?"True":"False"); }   printf("\nNumber of primes up to %6d =%4d\n", 25,count);   for(n = 26; n <= 100000; n++){ tot = totient(n); if(tot == n-1) count++;   if(n == 100 || n == 1000 || n%10000 == 0){ printf("\nNumber of primes up to %6d = %4d\n", n, count); } }   return 0; }  
http://rosettacode.org/wiki/Topswops
Topswops
Topswops is a card game created by John Conway in the 1970's. Assume you have a particular permutation of a set of   n   cards numbered   1..n   on both of their faces, for example the arrangement of four cards given by   [2, 4, 1, 3]   where the leftmost card is on top. A round is composed of reversing the first   m   cards where   m   is the value of the topmost card. Rounds are repeated until the topmost card is the number   1   and the number of swaps is recorded. For our example the swaps produce: [2, 4, 1, 3] # Initial shuffle [4, 2, 1, 3] [3, 1, 2, 4] [2, 1, 3, 4] [1, 2, 3, 4] For a total of four swaps from the initial ordering to produce the terminating case where   1   is on top. For a particular number   n   of cards,   topswops(n)   is the maximum swaps needed for any starting permutation of the   n   cards. Task The task is to generate and show here a table of   n   vs   topswops(n)   for   n   in the range   1..10   inclusive. Note Topswops   is also known as   Fannkuch   from the German word   Pfannkuchen   meaning   pancake. Related tasks   Number reversal game   Sorting algorithms/Pancake sort
#Haskell
Haskell
import Data.List (permutations)   topswops :: Int -> Int topswops n = maximum $ map tops $ permutations [1 .. n] where tops (1:_) = 0 tops xa@(x:_) = 1 + tops reordered where reordered = reverse (take x xa) ++ drop x xa   main = mapM_ (putStrLn . ((++) <$> show <*> (":\t" ++) . show . topswops)) [1 .. 10]
http://rosettacode.org/wiki/Trigonometric_functions
Trigonometric functions
Task If your language has a library or built-in functions for trigonometry, show examples of:   sine   cosine   tangent   inverses   (of the above) using the same angle in radians and degrees. For the non-inverse functions,   each radian/degree pair should use arguments that evaluate to the same angle   (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle). For the inverse functions,   use the same number and convert its answer to radians and degrees. If your language does not have trigonometric functions available or only has some available,   write functions to calculate the functions based on any   known approximation or identity.
#BASIC
BASIC
pi = 3.141592653589793# radians = pi / 4 'a.k.a. 45 degrees degrees = 45 * pi / 180 'convert 45 degrees to radians once PRINT SIN(radians) + " " + SIN(degrees) 'sine PRINT COS(radians) + " " + COS(degrees) 'cosine PRINT TAN(radians) + " " + TAN (degrees) 'tangent 'arcsin thesin = SIN(radians) arcsin = ATN(thesin / SQR(1 - thesin ^ 2)) PRINT arcsin + " " + arcsin * 180 / pi 'arccos thecos = COS(radians) arccos = 2 * ATN(SQR(1 - thecos ^ 2) / (1 + thecos)) PRINT arccos + " " + arccos * 180 / pi PRINT ATN(TAN(radians)) + " " + ATN(TAN(radians)) * 180 / pi 'arctan
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm
Trabb Pardo–Knuth algorithm
The TPK algorithm is an early example of a programming chrestomathy. It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages. The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm. From the wikipedia entry: ask for 11 numbers to be read into a sequence S reverse sequence S for each item in sequence S result := call a function to do an operation if result overflows alert user else print result The task is to implement the algorithm: Use the function:     f ( x ) = | x | 0.5 + 5 x 3 {\displaystyle f(x)=|x|^{0.5}+5x^{3}} The overflow condition is an answer of greater than 400. The 'user alert' should not stop processing of other items of the sequence. Print a prompt before accepting eleven, textual, numeric inputs. You may optionally print the item as well as its associated result, but the results must be in reverse order of input. The sequence   S   may be 'implied' and so not shown explicitly. Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
#Ela
Ela
open monad io number string   :::IO   take_numbers 0 xs = do return $ iter xs where f x = sqrt (toSingle x) + 5.0 * (x ** 3.0) p x = x < 400.0 iter [] = return () iter (x::xs) | p res = do putStrLn (format "f({0}) = {1}" x res) iter xs | else = do putStrLn (format "f({0}) :: Overflow" x) iter xs where res = f x take_numbers n xs = do x <- readAny take_numbers (n - 1) (x::xs)   do putStrLn "Please enter 11 numbers:" take_numbers 11 []
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm
Trabb Pardo–Knuth algorithm
The TPK algorithm is an early example of a programming chrestomathy. It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages. The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm. From the wikipedia entry: ask for 11 numbers to be read into a sequence S reverse sequence S for each item in sequence S result := call a function to do an operation if result overflows alert user else print result The task is to implement the algorithm: Use the function:     f ( x ) = | x | 0.5 + 5 x 3 {\displaystyle f(x)=|x|^{0.5}+5x^{3}} The overflow condition is an answer of greater than 400. The 'user alert' should not stop processing of other items of the sequence. Print a prompt before accepting eleven, textual, numeric inputs. You may optionally print the item as well as its associated result, but the results must be in reverse order of input. The sequence   S   may be 'implied' and so not shown explicitly. Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
#Elena
Elena
import extensions; import extensions'math;   public program() { real[] inputs := new real[](11); console.printLine("Please enter 11 numbers :"); for(int i := 0, i < 11, i += 1) { inputs[i] := console.readLine().toReal() };   console.printLine("Evaluating f(x) = |x|^0.5 + 5x^3 for the given inputs :"); for(int i := 10, i >= 0, i -= 1) { real result := sqrt(abs(inputs[i])) + 5 * power(inputs[i], 3);   console.print("f(", inputs[i], ")=");   if (result > 400) { console.printLine("Overflow!") } else { console.printLine(result) } } }
http://rosettacode.org/wiki/Twelve_statements
Twelve statements
This puzzle is borrowed from   math-frolic.blogspot. Given the following twelve statements, which of them are true? 1. This is a numbered list of twelve statements. 2. Exactly 3 of the last 6 statements are true. 3. Exactly 2 of the even-numbered statements are true. 4. If statement 5 is true, then statements 6 and 7 are both true. 5. The 3 preceding statements are all false. 6. Exactly 4 of the odd-numbered statements are true. 7. Either statement 2 or 3 is true, but not both. 8. If statement 7 is true, then 5 and 6 are both true. 9. Exactly 3 of the first 6 statements are true. 10. The next two statements are both true. 11. Exactly 1 of statements 7, 8 and 9 are true. 12. Exactly 4 of the preceding statements are true. Task When you get tired of trying to figure it out in your head, write a program to solve it, and print the correct answer or answers. Extra credit Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
#Python
Python
  from itertools import product #from pprint import pprint as pp   constraintinfo = ( (lambda st: len(st) == 12 ,(1, 'This is a numbered list of twelve statements')), (lambda st: sum(st[-6:]) == 3 ,(2, 'Exactly 3 of the last 6 statements are true')), (lambda st: sum(st[1::2]) == 2 ,(3, 'Exactly 2 of the even-numbered statements are true')), (lambda st: (st[5]&st[6]) if st[4] else 1 ,(4, 'If statement 5 is true, then statements 6 and 7 are both true')), (lambda st: sum(st[1:4]) == 0 ,(5, 'The 3 preceding statements are all false')), (lambda st: sum(st[0::2]) == 4 ,(6, 'Exactly 4 of the odd-numbered statements are true')), (lambda st: sum(st[1:3]) == 1 ,(7, 'Either statement 2 or 3 is true, but not both')), (lambda st: (st[4]&st[5]) if st[6] else 1 ,(8, 'If statement 7 is true, then 5 and 6 are both true')), (lambda st: sum(st[:6]) == 3 ,(9, 'Exactly 3 of the first 6 statements are true')), (lambda st: (st[10]&st[11]) ,(10, 'The next two statements are both true')), (lambda st: sum(st[6:9]) == 1 ,(11, 'Exactly 1 of statements 7, 8 and 9 are true')), (lambda st: sum(st[0:11]) == 4 ,(12, 'Exactly 4 of the preceding statements are true')), )   def printer(st, matches): if False in matches: print('Missed by one statement: %i, %s' % docs[matches.index(False)]) else: print('Full match:') print(' ' + ', '.join('%i:%s' % (i, 'T' if t else 'F') for i, t in enumerate(st, 1)))   funcs, docs = zip(*constraintinfo)   full, partial = [], []   for st in product( *([(False, True)] * 12) ): truths = [bool(func(st)) for func in funcs] matches = [s == t for s,t in zip(st, truths)] mcount = sum(matches) if mcount == 12: full.append((st, matches)) elif mcount == 11: partial.append((st, matches))   for stm in full + partial: printer(*stm)
http://rosettacode.org/wiki/Truth_table
Truth table
A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function. Task Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function. (One can assume that the user input is correct). Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function. Either reverse-polish or infix notation expressions are allowed. Related tasks   Boolean values   Ternary logic See also   Wolfram MathWorld entry on truth tables.   some "truth table" examples from Google.
#PARI.2FGP
PARI/GP
vars(P)={ my(v=List(),x); while(type(P)=="t_POL", x=variable(P); listput(v,x); P=subst(P,x,1) ); Vec(v) }; truthTable(P)={ my(var=vars(P),t,b); for(i=0,2^#var-1, t=eval(P); for(j=1,#var, b=bittest(i,j-1); t=subst(t,var[j],b); print1(b) ); print(!!t) ); }; truthTable("x+y") \\ OR truthTable("x*y") \\ AND
http://rosettacode.org/wiki/Ulam_spiral_(for_primes)
Ulam spiral (for primes)
An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1),   constructed on a square grid, starting at the "center". An Ulam spiral is also known as a   prime spiral. The first grid (green) is shown with sequential integers,   starting at   1. In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk),   and all non-primes as shown as a blank   (or some other whitespace). Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables). Normally, the spiral starts in the "center",   and the   2nd   number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction. There are other geometric shapes that are used as well, including clock-wise spirals. Also, some spirals (for the   2nd   number)   is viewed upwards from the   1st   number instead of to the right, but that is just a matter of orientation. Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities). [A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals   (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)]. Then, in the next phase in the transformation of the Ulam prime spiral,   the non-primes are translated to blanks. In the orange grid below,   the primes are left intact,   and all non-primes are changed to blanks. Then, in the final transformation of the Ulam spiral (the yellow grid),   translate the primes to a glyph such as a   •   or some other suitable glyph. 65 64 63 62 61 60 59 58 57 66 37 36 35 34 33 32 31 56 67 38 17 16 15 14 13 30 55 68 39 18 5 4 3 12 29 54 69 40 19 6 1 2 11 28 53 70 41 20 7 8 9 10 27 52 71 42 21 22 23 24 25 26 51 72 43 44 45 46 47 48 49 50 73 74 75 76 77 78 79 80 81 61 59 37 31 67 17 13 5 3 29 19 2 11 53 41 7 71 23 43 47 73 79 • • • • • • • • • • • • • • • • • • • • • • The Ulam spiral becomes more visually obvious as the grid increases in size. Task For any sized   N × N   grid,   construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number   (the default would be 1),   with some suitably   dotty   (glyph) representation to indicate primes,   and the absence of dots to indicate non-primes. You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen. Related tasks   Spiral matrix   Zig-zag matrix   Identity matrix   Sequence of primes by Trial Division See also Wikipedia entry:   Ulam spiral MathWorld™ entry:   Prime Spiral
#Perl
Perl
use ntheory qw/is_prime/; use Imager;   my $n = shift || 512; my $start = shift || 1; my $file = "ulam.png";   sub cell { my($n, $x, $y, $start) = @_; $y -= $n>>1; $x -= ($n-1)>>1; my $l = 2*(abs($x) > abs($y) ? abs($x) : abs($y)); my $d = ($y > $x) ? $l*3 + $x + $y : $l-$x-$y; ($l-1)**2 + $d + $start - 1; }   my $black = Imager::Color->new('#000000'); my $white = Imager::Color->new('#FFFFFF'); my $img = Imager->new(xsize => $n, ysize => $n, channels => 1); $img->box(filled=>1, color=>$white);   for my $y (0 .. $n-1) { for my $x (0 .. $n-1) { my $v = cell($n, $x, $y, $start); $img->setpixel(x => $x, y => $y, color => $black) if is_prime($v); } }   $img->write(file => $file) or die "Cannot write $file: ", $img->errstr, "\n";
http://rosettacode.org/wiki/Truncatable_primes
Truncatable primes
A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number. Examples The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime. The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime. No zeroes are allowed in truncatable primes. Task The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied). Related tasks Find largest left truncatable prime in a given base Sieve of Eratosthenes See also Truncatable Prime from MathWorld.]
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64   Function isPrime(n As Integer) As Boolean If n Mod 2 = 0 Then Return n = 2 If n Mod 3 = 0 Then Return n = 3 Dim d As Integer = 5 While d * d <= n If n Mod d = 0 Then Return False d += 2 If n Mod d = 0 Then Return False d += 4 Wend Return True End Function   Dim As UInteger i, j, p, pow, lMax = 2, rMax = 2 Dim s As String   ' largest left truncatable prime less than 1000000 ' It can't end with 1, 4, 6, 8 or 9 as these numbers are not prime ' Nor can it end in 2 if it has more than one digit as such a number would divide by 2 For i = 3 To 999997 Step 2 s = Str(i) If Instr(s, "0") > 1 Then Continue For '' cannot contain 0 j = s[Len(s) - 1] - 48 If j = 1 OrElse j = 9 Then Continue For p = i pow = 10 ^ (Len(s) - 1) While pow > 1 If Not isPrime(p) Then Continue For p Mod= pow pow \= 10 Wend lMax = i Next   ' largest right truncatable prime less than 1000000 ' It can't begin with 1, 4, 6, 8 or 9 as these numbers are not prime For i = 3 To 799999 Step 2 s = Str(i) If Instr(s, "0") > 1 Then Continue For '' cannot contain 0 j = s[0] - 48 If j = 1 OrElse j = 4 OrElse j = 6 Then Continue For p = i While p > 0 If Not isPrime(p) Then Continue For p \= 10 Wend rMax = i Next   Print "Largest left truncatable prime : "; lMax Print "Largest right truncatable prime : "; rMax Print Print "Press any key to quit" Sleep
http://rosettacode.org/wiki/Tree_traversal
Tree traversal
Task Implement a binary tree where each node carries an integer,   and implement:   pre-order,   in-order,   post-order,     and   level-order   traversal. Use those traversals to output the following tree: 1 / \ / \ / \ 2 3 / \ / 4 5 6 / / \ 7 8 9 The correct output should look like this: preorder: 1 2 4 7 5 3 6 8 9 inorder: 7 4 2 5 1 8 6 9 3 postorder: 7 4 5 2 8 9 6 3 1 level-order: 1 2 3 4 5 6 7 8 9 See also   Wikipedia article:   Tree traversal.
#ALGOL_68
ALGOL 68
MODE VALUE = INT; PROC value repr = (VALUE value)STRING: whole(value, 0);   MODE NODES = STRUCT ( VALUE value, REF NODES left, right); MODE NODE = REF NODES;   PROC tree = (VALUE value, NODE left, right)NODE: HEAP NODES := (value, left, right);   PROC preorder = (NODE node, PROC (VALUE)VOID action)VOID: IF node ISNT NODE(NIL) THEN action(value OF node); preorder(left OF node, action); preorder(right OF node, action) FI;   PROC inorder = (NODE node, PROC (VALUE)VOID action)VOID: IF node ISNT NODE(NIL) THEN inorder(left OF node, action); action(value OF node); inorder(right OF node, action) FI;   PROC postorder = (NODE node, PROC (VALUE)VOID action)VOID: IF node ISNT NODE(NIL) THEN postorder(left OF node, action); postorder(right OF node, action); action(value OF node) FI;   PROC destroy tree = (NODE node)VOID: postorder(node, (VALUE skip)VOID: # free(node) - PR garbage collect hint PR # node := (SKIP, NIL, NIL) );   # helper queue for level order # MODE QNODES = STRUCT (REF QNODES next, NODE value); MODE QNODE = REF QNODES;     MODE QUEUES = STRUCT (QNODE begin, end); MODE QUEUE = REF QUEUES;   PROC enqueue = (QUEUE queue, NODE node)VOID: ( HEAP QNODES qnode := (NIL, node); IF end OF queue ISNT QNODE(NIL) THEN next OF end OF queue ELSE begin OF queue FI := end OF queue := qnode );   PROC queue empty = (QUEUE queue)BOOL: begin OF queue IS QNODE(NIL);   PROC dequeue = (QUEUE queue)NODE: ( NODE out := value OF begin OF queue; QNODE second := next OF begin OF queue; # free(begin OF queue); PR garbage collect hint PR # QNODE(begin OF queue) := (NIL, NIL); begin OF queue := second; IF queue empty(queue) THEN end OF queue := begin OF queue FI; out );   PROC level order = (NODE node, PROC (VALUE)VOID action)VOID: ( HEAP QUEUES queue := (QNODE(NIL), QNODE(NIL)); enqueue(queue, node); WHILE NOT queue empty(queue) DO NODE next := dequeue(queue); IF next ISNT NODE(NIL) THEN action(value OF next); enqueue(queue, left OF next); enqueue(queue, right OF next) FI OD );   PROC print node = (VALUE value)VOID: print((" ",value repr(value)));   main: ( NODE node := tree(1, tree(2, tree(4, tree(7, NIL, NIL), NIL), tree(5, NIL, NIL)), tree(3, tree(6, tree(8, NIL, NIL), tree(9, NIL, NIL)), NIL));   MODE TEST = STRUCT( STRING name, PROC(NODE,PROC(VALUE)VOID)VOID order );   PROC test = (TEST test)VOID:( STRING pad=" "*(12-UPB name OF test); print((name OF test,pad,": ")); (order OF test)(node, print node); print(new line) );   []TEST test list = ( ("preorder",preorder), ("inorder",inorder), ("postorder",postorder), ("level order",level order) );   FOR i TO UPB test list DO test(test list[i]) OD;   destroy tree(node) )
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#REXX
REXX
/*REXX program shows something close to a "topic variable" (for functions/subroutines).*/ parse arg N /*obtain a variable from the cmd line. */ call squareIt N /*invoke a function to square da number*/ say result ' ◄───' /*display returned value from the func.*/ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ squareIt: return arg(1) ** 2 /*return the square of passed argument.*/
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Ring
Ring
  see "sum1 = " + sum1(1,2) + nl see "sum2 = " + sum2(2,3) + nl   func sum1 (x, y) sum = x + y return sum   func sum2 (x, y) return x + y  
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Ruby
Ruby
while DATA.gets # assigns to $_ (local scope) print # If no arguments are given, prints $_ end __END__ This is line one This is line two This is line three
http://rosettacode.org/wiki/Topic_variable
Topic variable
Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable. A topic variable is a special variable with a very short name which can also often be omitted. Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language. For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 {\displaystyle 3} to it and then computing its square and square root.
#Scala
Scala
object TopicVar extends App { class SuperString(val org: String){ def it(): Unit = println(org) }   new SuperString("FvdB"){it()} new SuperString("FvdB"){println(org)}   Seq(1).foreach {println} Seq(2).foreach {println(_)} Seq(4).foreach { it => println(it)} Seq(8).foreach { it => println(it + it)} }