task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Towers_of_Hanoi | Towers of Hanoi | Task
Solve the Towers of Hanoi problem with recursion.
| #ActionScript | ActionScript | public function move(n:int, from:int, to:int, via:int):void
{
if (n > 0)
{
move(n - 1, from, via, to);
trace("Move disk from pole " + from + " to pole " + to);
move(n - 1, via, to, from);
}
} |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #11l | 11l | F legendre(a, p)
R pow(a, (p - 1) I/ 2, p)
F tonelli(n, p)
assert(legendre(n, p) == 1, ‘not a square (mod p)’)
V q = p - 1
V s = 0
L q % 2 == 0
q I/= 2
s++
I s == 1
R pow(n, (p + 1) I/ 4, p)
V z = 2
L
I p - 1 == legendre(z, p)
L.break
z++
V c = pow(z, q, p)
V r = pow(n, (q + 1) I/ 2, p)
V t = pow(n, q, p)
V m = s
V t2 = BigInt(0)
L (t - 1) % p != 0
t2 = (t * t) % p
V i = 1
L(ii) 1 .< m
I (t2 - 1) % p == 0
i = ii
L.break
t2 = (t2 * t2) % p
V b = pow(c, Int64(1 << (m - i - 1)), p)
r = (r * b) % p
c = (b * b) % p
t = (t * c) % p
m = i
R r
V ttest = [(BigInt(10), BigInt(13)), (BigInt(56), BigInt(101)), (BigInt(1030), BigInt(10009)), (BigInt(44402), BigInt(100049)),
(BigInt(665820697), BigInt(1000000009)), (BigInt(881398088036), BigInt(1000000000039)),
(BigInt(‘41660815127637347468140745042827704103445750172002’), BigInt(10) ^ 50 + 577)]
L(n, p) ttest
V r = tonelli(n, p)
assert((r * r - n) % p == 0)
print(‘n = #. p = #.’.format(n, p))
print("\t roots : #. #.".format(r, p - r)) |
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ada | Ada | with Ada.Text_Io;
with Ada.Containers.Indefinite_Vectors;
with Ada.Strings.Unbounded;
procedure Tokenize is
package String_Vectors is
new Ada.Containers.Indefinite_Vectors (Positive, String);
use String_Vectors;
function Split (Text : String;
Separator : Character := '|';
Escape : Character := '^') return Vector
is
use Ada.Strings.Unbounded;
Result : Vector;
Escaped : Boolean := False;
Accu : Unbounded_String;
begin
for Char of Text loop
case Escaped is
when False =>
if Char = Escape then
Escaped := True;
elsif Char = Separator then
Append (Result, To_String (Accu));
Accu := Null_Unbounded_String;
else
Append (Accu, Char);
end if;
when True =>
Append (Accu, Char);
Escaped := False;
end case;
end loop;
Append (Result, To_String (Accu));
return Result;
end Split;
procedure Put_Vector (List : Vector) is
use Ada.Text_Io;
begin
for Element of List loop
Put ("'"); Put (Element); Put ("'"); New_Line;
end loop;
end Put_Vector;
begin
Put_Vector (Split ("one^|uno||three^^^^|four^^^|^cuatro|"));
end Tokenize; |
http://rosettacode.org/wiki/Total_circles_area | Total circles area | Total circles area
You are encouraged to solve this task according to the task description, using any language you may know.
Example circles
Example circles filtered
Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.
One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome.
To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):
xc yc radius
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
The result is 21.56503660... .
Related task
Circles of given radius through two points.
See also
http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/
http://stackoverflow.com/a/1667789/10562
| #FreeBASIC | FreeBASIC | #define dx 0.0001
'read in the data; I reordered them in descending order of radius
'This maximises our chance of being able to break early, saving run time,
'and we needn't bother finding out which circles are entirely inside others
data -0.5263668798,1.7315156631,1.4428514068
data -0.1403562064,0.2437382535,1.3804956588
data 1.4685857879,-0.8347049536,1.3670667538
data -0.5258728625,1.3782633069,1.3495508831
data 1.5293954595,0.0030278255,1.2472867347
data 1.4637371396,0.9463877418,1.1846214562
data -1.4944608174,1.2077959613,1.1039549836
data 1.4168575317,1.0683357171,1.1016025378
data -0.249589295,-0.3832854473,1.0845181219
data -1.2197352481,0.9144146579,1.0727263474
data -0.6855727502,1.6465021616,1.0593087096
data 0.0152957411,0.0638919221,0.9771215985
data 0.6110294452,-0.6907087527,0.9089162485
data 1.7813504266,1.6178237031,0.8162655711
data -0.4319462812,1.4104420482,0.7886291537
data -0.6294854565,-1.3078893852,0.7653357688
data -0.1389358881,0.109280578,0.7350208828
data -1.7011985145,-0.1263820964,0.4776976918
data 0.8055826339,-0.0482092025,0.3327165165
data 1.7952608455,0.6281269104,0.2727652452
data -0.6311979224,0.7184578971,0.2491045282
data 0.3844862411,0.2923344616,0.2375743054
data 1.6417233788,1.6121789534,0.0848270516
data -0.1985249206,-0.8343333301,0.0538864941
data 0.2178372997,-0.9499557344,0.0357871187
function dist(x0 as double, y0 as double, x1 as double, y1 as double) as double
'distance between two points in 2d space
return sqr( (x1-x0)^2 + (y1-y0)^2 )
end function
dim as double x(1 to 25), y(1 to 25), r(1 to 25), gx, gy, A0, A1, A2, A
dim as integer i, cx, cy
for i = 1 to 25
read x(i), y(i), r(i)
next i
for gx = -2.6 to 2.9 step dx 'sample points on a grid
cx += 1
for gy = -2.3 to 3.2 step dx
cy += 1
for i = 1 to 25
if dist(gx, gy, x(i), y(i)) <= r(i) then
'if our grid point is in the circle
A2 += dx^2 'add the area of a grid square
if cx mod 2 = 0 and cy mod 2 = 0 then A1 += 4*dx^2
if cx mod 4 = 0 and cy mod 4 = 0 then A0 += 16*dx^2
'also keep track of coarser grid areas of twice and four times the size
'You'll see why in a moment
exit for
end if
next i
next gy
next gx
'use Shanks method to refine our estimate of the area
A = (A0*A2-A1^2) / (A0 + A2 - 2*A1)
print A0, A1, A2, A |
http://rosettacode.org/wiki/Topological_sort | Topological sort |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given a mapping between items, and items they depend on, a topological sort orders items so that no item precedes an item it depends upon.
The compiling of a library in the VHDL language has the constraint that a library must be compiled after any library it depends on.
A tool exists that extracts library dependencies.
Task
Write a function that will return a valid compile order of VHDL libraries from their dependencies.
Assume library names are single words.
Items mentioned as only dependents, (sic), have no dependents of their own, but their order of compiling must be given.
Any self dependencies should be ignored.
Any un-orderable dependencies should be flagged.
Use the following data as an example:
LIBRARY LIBRARY DEPENDENCIES
======= ====================
des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee
dw01 ieee dw01 dware gtech
dw02 ieee dw02 dware
dw03 std synopsys dware dw03 dw02 dw01 ieee gtech
dw04 dw04 ieee dw01 dware gtech
dw05 dw05 ieee dware
dw06 dw06 ieee dware
dw07 ieee dware
dware ieee dware
gtech ieee gtech
ramlib std ieee
std_cell_lib ieee std_cell_lib
synopsys
Note: the above data would be un-orderable if, for example, dw04 is added to the list of dependencies of dw01.
C.f.
Topological sort/Extracted top item.
There are two popular algorithms for topological sorting:
Kahn's 1962 topological sort [1]
depth-first search [2] [3]
| #Ada | Ada | with Ada.Containers.Vectors; use Ada.Containers;
package Digraphs is
type Node_Idx_With_Null is new Natural;
subtype Node_Index is Node_Idx_With_Null range 1 .. Node_Idx_With_Null'Last;
-- a Node_Index is a number from 1, 2, 3, ... and the representative of a node
type Graph_Type is tagged private;
-- make sure Node is in Graph (possibly without connections)
procedure Add_Node
(Graph: in out Graph_Type'Class; Node: Node_Index);
-- insert an edge From->To into Graph; do nothing if already there
procedure Add_Connection
(Graph: in out Graph_Type'Class; From, To: Node_Index);
-- get the largest Node_Index used in any Add_Node or Add_Connection op.
-- iterate over all nodes of Graph: "for I in 1 .. Graph.Node_Count loop ..."
function Node_Count(Graph: Graph_Type) return Node_Idx_With_Null;
-- remove an edge From->To from Fraph; do nothing if not there
-- Graph.Node_Count is not changed
procedure Del_Connection
(Graph: in out Graph_Type'Class; From, To: Node_Index);
-- check if an edge From->to exists in Graph
function Connected
(Graph: Graph_Type; From, To: Node_Index) return Boolean;
-- data structure to store a list of nodes
package Node_Vec is new Vectors(Positive, Node_Index);
-- get a list of all nodes From->Somewhere in Graph
function All_Connections
(Graph: Graph_Type; From: Node_Index) return Node_Vec.Vector;
Graph_Is_Cyclic: exception;
-- a depth-first search to find a topological sorting of the nodes
-- raises Graph_Is_Cyclic if no topological sorting is possible
function Top_Sort
(Graph: Graph_Type) return Node_Vec.Vector;
private
package Conn_Vec is new Vectors(Node_Index, Node_Vec.Vector, Node_Vec."=");
type Graph_Type is new Conn_Vec.Vector with null record;
end Digraphs; |
http://rosettacode.org/wiki/Universal_Turing_machine | Universal Turing machine | One of the foundational mathematical constructs behind computer science
is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936–1937.)
Indeed one way to definitively prove that a language
is turing-complete
is to implement a universal Turing machine in it.
Task
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
Simple incrementer
States: q0, qf
Initial state: q0
Terminating states: qf
Permissible symbols: B, 1
Blank symbol: B
Rules:
(q0, 1, 1, right, q0)
(q0, B, 1, stay, qf)
The input for this machine should be a tape of 1 1 1
Three-state busy beaver
States: a, b, c, halt
Initial state: a
Terminating states: halt
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(a, 0, 1, right, b)
(a, 1, 1, left, c)
(b, 0, 1, left, a)
(b, 1, 1, right, b)
(c, 0, 1, left, b)
(c, 1, 1, stay, halt)
The input for this machine should be an empty tape.
Bonus:
5-state, 2-symbol probable Busy Beaver machine from Wikipedia
States: A, B, C, D, E, H
Initial state: A
Terminating states: H
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(A, 0, 1, right, B)
(A, 1, 1, left, C)
(B, 0, 1, right, C)
(B, 1, 1, right, B)
(C, 0, 1, right, D)
(C, 1, 0, left, E)
(D, 0, 1, left, A)
(D, 1, 1, left, D)
(E, 0, 1, stay, H)
(E, 1, 0, left, A)
The input for this machine should be an empty tape.
This machine runs for more than 47 millions steps.
| #EchoLisp | EchoLisp |
(require 'struct)
(struct TM (read-only: name states symbs final rules mem state-values: tape pos state))
(define-syntax-rule (rule-idx state symb numstates)
(+ state (* symb numstates)))
(define-syntax-rule (make-TM name states symbs rules)
(_make-TM name 'states 'symbs 'rules))
;; a rule is (state symbol --> write move new-state)
;; index for rule = state-num + (number of states) * symbol-num
;; convert states/symbol into vector indices
(define (compile-rule T rule into: rules)
(define numstates (vector-length (TM-states T)))
(define state (vector-index [rule 0](TM-states T) )) ; index
(define symb (vector-index [rule 1](TM-symbs T) ))
(define write-symb (vector-index [rule 2] (TM-symbs T) ))
(define move (1- (vector-index [rule 3] #(left stay right) )))
(define new-state (vector-index [rule 4](TM-states T)))
(define rulenum (rule-idx state symb numstates))
(vector-set! rules rulenum (vector write-symb move new-state))
; (writeln 'rule rulenum [rules rulenum])
)
(define (_make-TM name states symbs rules)
(define T (TM name (list->vector states) (list->vector symbs) null null))
(set-TM-final! T (1- (length states))) ;; assume one final state
(set-TM-rules! T (make-vector (* (length states) (length symbs))))
(for ((rule rules)) (compile-rule T (list->vector rule) into: (TM-rules T)))
T ) ; returns a TM
;;------------------
;; TM-trace
;;-------------------
(string-delimiter "")
(define (TM-print T symb-index: symb (hilite #f))
(cond
((= 0 symb) (if hilite "🔲" "◽️" ))
((= 1 symb) (if hilite "🔳 " "◾️" ))
(else "X")))
(define (TM-trace T tape pos state step)
(if (= (TM-final T) state)
(write "🔴")
(write "🔵"))
(for [(p (in-range (- (TM-mem T) 7) (+ (TM-mem T) 8)))]
(write (TM-print T [tape p] (= p pos))))
(write step)
(writeln))
;;---------------
;; TM-init : alloc and init tape
;;---------------
(define (TM-init T input-symbs (mem 20))
;; init state variables
(set-TM-tape! T (make-vector (* 2 mem)))
(set-TM-pos! T mem)
(set-TM-state! T 0)
(set-TM-mem! T mem)
(for [(symb input-symbs) (i (in-naturals))]
(vector-set! (TM-tape T) [+ i (TM-pos T)] (vector-index symb (TM-symbs T))))
(TM-trace T (TM-tape T) mem 0 0)
mem )
;;---------------
;; TM-run : run at most maxsteps
;;---------------
(define (TM-run T (verbose #f) (maxsteps 1_000_000))
(define count 0)
(define final (TM-final T))
(define rules (TM-rules T))
(define rule 0)
(define numstates (vector-length (TM-states T)))
;; set current state vars
(define pos (TM-pos T))
(define state (TM-state T))
(define tape (TM-tape T))
(when (and (zero? state) (= pos (TM-mem T)))
(writeln 'Starting (TM-name T))
(TM-trace T tape pos 0 count))
(while (and (!= state final) (< count maxsteps))
(++ count)
;; The machine
(set! rule [rules (rule-idx state [tape pos] numstates)])
(when (= rule 0) (error "missing rule" (list state [tape pos])))
(vector-set! tape pos [rule 0])
(set! state [rule 2])
(+= pos [rule 1])
;; end machine
(when verbose (TM-trace T tape pos state count )))
;; save TM state
(set-TM-pos! T pos)
(set-TM-state! T state)
(when (= final state) (writeln 'Stopping (TM-name T) 'at-pos (- pos (TM-mem T))))
count)
|
http://rosettacode.org/wiki/Totient_function | Totient function | The totient function is also known as:
Euler's totient function
Euler's phi totient function
phi totient function
Φ function (uppercase Greek phi)
φ function (lowercase Greek phi)
Definitions (as per number theory)
The totient function:
counts the integers up to a given positive integer n that are relatively prime to n
counts the integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n,k) is equal to 1
counts numbers ≤ n and prime to n
If the totient number (for N) is one less than N, then N is prime.
Task
Create a totient function and:
Find and display (1 per line) for the 1st 25 integers:
the integer (the index)
the totient number for that integer
indicate if that integer is prime
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000 (optional)
Show all output here.
Related task
Perfect totient numbers
Also see
Wikipedia: Euler's totient function.
MathWorld: totient function.
OEIS: Euler totient function phi(n).
| #C.23 | C# | using static System.Console;
using static System.Linq.Enumerable;
public class Program
{
static void Main()
{
for (int i = 1; i <= 25; i++) {
int t = Totient(i);
WriteLine(i + "\t" + t + (t == i - 1 ? "\tprime" : ""));
}
WriteLine();
for (int i = 100; i <= 100_000; i *= 10) {
WriteLine($"{Range(1, i).Count(x => Totient(x) + 1 == x):n0} primes below {i:n0}");
}
}
static int Totient(int n) {
if (n < 3) return 1;
if (n == 3) return 2;
int totient = n;
if ((n & 1) == 0) {
totient >>= 1;
while (((n >>= 1) & 1) == 0) ;
}
for (int i = 3; i * i <= n; i += 2) {
if (n % i == 0) {
totient -= totient / i;
while ((n /= i) % i == 0) ;
}
}
if (n > 1) totient -= totient / n;
return totient;
}
} |
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #Icon_and_Unicon | Icon and Unicon | procedure main()
every n := 1 to 10 do {
ts := 0
every (ts := 0) <:= swop(permute([: 1 to n :]))
write(right(n, 3),": ",right(ts,4))
}
end
procedure swop(A)
count := 0
while A[1] ~= 1 do {
A := reverse(A[1+:A[1]]) ||| A[(A[1]+1):0]
count +:= 1
}
return count
end
procedure permute(A)
if *A <= 1 then return A
suspend [(A[1]<->A[i := 1 to *A])] ||| permute(A[2:0])
end |
http://rosettacode.org/wiki/Trigonometric_functions | Trigonometric functions | Task
If your language has a library or built-in functions for trigonometry, show examples of:
sine
cosine
tangent
inverses (of the above)
using the same angle in radians and degrees.
For the non-inverse functions, each radian/degree pair should use arguments that evaluate to the same angle (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle).
For the inverse functions, use the same number and convert its answer to radians and degrees.
If your language does not have trigonometric functions available or only has some available, write functions to calculate the functions based on any known approximation or identity.
| #bc | bc | /* t(x) = tangent of x */
define t(x) {
return s(x) / c(x)
}
/* y(y) = arcsine of y, domain [-1, 1], range [-pi/2, pi/2] */
define y(y) {
/* Handle angles with no tangent. */
if (y == -1) return -2 * a(1) /* -pi/2 */
if (y == 1) return 2 * a(1) /* pi/2 */
/* Tangent of angle is y / x, where x^2 + y^2 = 1. */
return a(y / sqrt(1 - y * y))
}
/* x(x) = arccosine of x, domain [-1, 1], range [0, pi] */
define x(x) {
auto a
/* Handle angle with no tangent. */
if (x == 0) return 2 * a(1) /* pi/2 */
/* Tangent of angle is y / x, where x^2 + y^2 = 1. */
a = a(sqrt(1 - x * x) / x)
if (a < 0) {
return a + 4 * a(1) /* add pi */
} else {
return a
}
}
scale = 50
p = 4 * a(1) /* pi */
d = p / 180 /* one degree in radians */
"Using radians:
"
" sin(-pi / 6) = "; s(-p / 6)
" cos(3 * pi / 4) = "; c(3 * p / 4)
" tan(pi / 3) = "; t(p / 3)
" asin(-1 / 2) = "; y(-1 / 2)
" acos(-sqrt(2) / 2) = "; x(-sqrt(2) / 2)
" atan(sqrt(3)) = "; a(sqrt(3))
"Using degrees:
"
" sin(-30) = "; s(-30 * d)
" cos(135) = "; c(135 * d)
" tan(60) = "; t(60 * d)
" asin(-1 / 2) = "; y(-1 / 2) / d
" acos(-sqrt(2) / 2) = "; x(-sqrt(2) / 2) / d
" atan(sqrt(3)) = "; a(sqrt(3)) / d
quit |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Elixir | Elixir | defmodule Trabb_Pardo_Knuth do
def task do
Enum.reverse( get_11_numbers )
|> Enum.each( fn x -> perform_operation( &function(&1), 400, x ) end )
end
defp alert( n ), do: IO.puts "Operation on #{n} overflowed"
defp get_11_numbers do
ns = IO.gets( "Input 11 integers. Space delimited, please: " )
|> String.split
|> Enum.map( &String.to_integer &1 )
if 11 == length( ns ), do: ns, else: get_11_numbers
end
defp function( x ), do: :math.sqrt( abs(x) ) + 5 * :math.pow( x, 3 )
defp perform_operation( fun, overflow, n ), do: perform_operation_check_overflow( n, fun.(n), overflow )
defp perform_operation_check_overflow( n, result, overflow ) when result > overflow, do: alert( n )
defp perform_operation_check_overflow( n, result, _overflow ), do: IO.puts "f(#{n}) => #{result}"
end
Trabb_Pardo_Knuth.task |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Erlang | Erlang |
-module( trabb_pardo_knuth ).
-export( [task/0] ).
task() ->
Sequence = get_11_numbers(),
S = lists:reverse( Sequence ),
[perform_operation( fun function/1, 400, X) || X <- S].
alert( N ) -> io:fwrite( "Operation on ~p overflowed~n", [N] ).
get_11_numbers() ->
{ok, Ns} = io:fread( "Input 11 integers. Space delimited, please: ", "~d ~d ~d ~d ~d ~d ~d ~d ~d ~d ~d" ),
11 = erlang:length( Ns ),
Ns.
function( X ) -> math:sqrt( erlang:abs(X) ) + 5 * math:pow( X, 3 ).
perform_operation( Fun, Overflow, N ) -> perform_operation_check_overflow( N, Fun(N), Overflow ).
perform_operation_check_overflow( N, Result, Overflow ) when Result > Overflow -> alert( N );
perform_operation_check_overflow( N, Result, _Overflow ) -> io:fwrite( "f(~p) => ~p~n", [N, Result] ).
|
http://rosettacode.org/wiki/Twelve_statements | Twelve statements | This puzzle is borrowed from math-frolic.blogspot.
Given the following twelve statements, which of them are true?
1. This is a numbered list of twelve statements.
2. Exactly 3 of the last 6 statements are true.
3. Exactly 2 of the even-numbered statements are true.
4. If statement 5 is true, then statements 6 and 7 are both true.
5. The 3 preceding statements are all false.
6. Exactly 4 of the odd-numbered statements are true.
7. Either statement 2 or 3 is true, but not both.
8. If statement 7 is true, then 5 and 6 are both true.
9. Exactly 3 of the first 6 statements are true.
10. The next two statements are both true.
11. Exactly 1 of statements 7, 8 and 9 are true.
12. Exactly 4 of the preceding statements are true.
Task
When you get tired of trying to figure it out in your head,
write a program to solve it, and print the correct answer or answers.
Extra credit
Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
| #Racket | Racket |
#lang racket
;; A quick `amb' implementation
(define failures null)
(define (fail)
(if (pair? failures) ((first failures)) (error "no more choices!")))
(define (amb/thunks choices)
(let/cc k (set! failures (cons k failures)))
(if (pair? choices)
(let ([choice (first choices)]) (set! choices (rest choices)) (choice))
(begin (set! failures (rest failures)) (fail))))
(define-syntax-rule (amb E ...) (amb/thunks (list (lambda () E) ...)))
(define (assert condition) (unless condition (fail)))
;; just to make things more fun
(define (⇔ x y) (assert (eq? x y)))
(require (only-in racket [and ∧] [or ∨] [implies ⇒] [xor ⊻] [not ¬]))
(define (count xs)
(let loop ([n 0] [xs xs])
(if (null? xs) n (loop (if (car xs) (add1 n) n) (cdr xs)))))
;; even more fun, make []s infix
(require (only-in racket [#%app r:app]))
(define-syntax (#%app stx)
(if (not (eq? #\[ (syntax-property stx 'paren-shape)))
(syntax-case stx () [(_ x ...) #'(r:app x ...)])
(syntax-case stx ()
;; extreme hack on next two cases, so it works for macros too.
[(_ x op y) (syntax-property #'(op x y) 'paren-shape #f)]
[(_ x op y op1 z) (free-identifier=? #'op #'op1)
(syntax-property #'(op x y z) 'paren-shape #f)])))
;; might as well do more
(define-syntax-rule (define-booleans all x ...)
(begin (define x (amb #t #f)) ...
(define all (list x ...))))
(define (puzzle)
(define-booleans all q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12)
;; 1. This is a numbered list of twelve statements.
[q1 ⇔ [12 = (length all)]]
;; 2. Exactly 3 of the last 6 statements are true.
[q2 ⇔ [3 = (count (take-right all 6))]]
;; 3. Exactly 2 of the even-numbered statements are true.
[q3 ⇔ [2 = (count (list q2 q4 q6 q8 q10 q12))]]
;; 4. If statement 5 is true, then statements 6 and 7 are both true.
[q4 ⇔ [q5 ⇒ [q6 ∧ q7]]]
;; 5. The 3 preceding statements are all false.
[q5 ⇔ (¬ [q2 ∨ q3 ∨ q4])]
;; 6. Exactly 4 of the odd-numbered statements are true.
[q6 ⇔ [4 = (count (list q1 q3 q5 q7 q9 q11))]]
;; 7. Either statement 2 or 3 is true, but not both.
[q7 ⇔ [q2 ⊻ q3]]
;; 8. If statement 7 is true, then 5 and 6 are both true.
[q8 ⇔ [q7 ⇒ (and q5 q6)]]
;; 9. Exactly 3 of the first 6 statements are true.
[q9 ⇔ [3 = (count (take all 3))]]
;; 10. The next two statements are both true.
[q10 ⇔ [q11 ∧ q12]]
;; 11. Exactly 1 of statements 7, 8 and 9 are true.
[q11 ⇔ [1 = (count (list q7 q8 q9))]]
;; 12. Exactly 4 of the preceding statements are true.
[q12 ⇔ [4 = (count (drop-right all 1))]]
;; done
(for/list ([i (in-naturals 1)] [q all] #:when q) i))
(puzzle)
;; -> '(1 3 4 6 7 11)
|
http://rosettacode.org/wiki/Twelve_statements | Twelve statements | This puzzle is borrowed from math-frolic.blogspot.
Given the following twelve statements, which of them are true?
1. This is a numbered list of twelve statements.
2. Exactly 3 of the last 6 statements are true.
3. Exactly 2 of the even-numbered statements are true.
4. If statement 5 is true, then statements 6 and 7 are both true.
5. The 3 preceding statements are all false.
6. Exactly 4 of the odd-numbered statements are true.
7. Either statement 2 or 3 is true, but not both.
8. If statement 7 is true, then 5 and 6 are both true.
9. Exactly 3 of the first 6 statements are true.
10. The next two statements are both true.
11. Exactly 1 of statements 7, 8 and 9 are true.
12. Exactly 4 of the preceding statements are true.
Task
When you get tired of trying to figure it out in your head,
write a program to solve it, and print the correct answer or answers.
Extra credit
Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
| #Raku | Raku | sub infix:<→> ($protasis, $apodosis) { !$protasis or $apodosis }
my @tests =
{ .end == 12 and all(.[1..12]) === any(True, False) },
{ 3 == [+] .[7..12] },
{ 2 == [+] .[2,4...12] },
{ .[5] → all .[6,7] },
{ none .[2,3,4] },
{ 4 == [+] .[1,3...11] },
{ one .[2,3] },
{ .[7] → all .[5,6] },
{ 3 == [+] .[1..6] },
{ all .[11,12] },
{ one .[7,8,9] },
{ 4 == [+] .[1..11] },
;
my @solutions;
my @misses;
for [X] (True, False) xx 12 {
my @assert = Nil, |$_;
my @result = Nil, |@tests.map({ ?.(@assert) });
my @true = @assert.grep(?*, :k);
my @cons = (@assert Z=== @result).grep(!*, :k);
given @cons {
when 0 { push @solutions, "<{@true}> is consistent."; }
when 1 { push @misses, "<{@true}> implies { "¬" if !@result[~$_] }$_." }
}
}
.say for @solutions;
say "";
say "Near misses:";
.say for @misses; |
http://rosettacode.org/wiki/Truth_table | Truth table | A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.
Task
Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function.
(One can assume that the user input is correct).
Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
Either reverse-polish or infix notation expressions are allowed.
Related tasks
Boolean values
Ternary logic
See also
Wolfram MathWorld entry on truth tables.
some "truth table" examples from Google.
| #Pascal | Pascal |
program TruthTables;
const
StackSize = 80;
type
TVariable = record
Name: Char;
Value: Boolean;
end;
TStackOfBool = record
Top: Integer;
Elements: array [0 .. StackSize - 1] of Boolean;
end;
var
Expression: string;
Variables: array [0 .. 23] of TVariable;
VariablesLength: Integer;
i: Integer;
e: Char;
// Stack manipulation functions
function IsFull(var s: TStackOfBool): Boolean;
begin
IsFull := s.Top = StackSize - 1;
end;
function IsEmpty(var s: TStackOfBool): Boolean;
begin
IsEmpty := s.Top = -1;
end;
function Peek(var s: TStackOfBool): Boolean;
begin
if not IsEmpty(s) then
Peek := s.Elements[s.Top]
else
begin
Writeln('Stack is empty.');
Halt;
end;
end;
procedure Push(var s: TStackOfBool; val: Boolean);
begin
if not IsFull(s) then
begin
Inc(s.Top);
s.Elements[s.Top] := val;
end
else
begin
Writeln('Stack is full.');
Halt;
end
end;
function Pop(var s: TStackOfBool): Boolean;
begin
if not IsEmpty(s) then
begin
Result := s.Elements[s.Top];
Dec(s.Top);
end
else
begin
Writeln;
Writeln('Stack is empty.');
Halt;
end
end;
procedure MakeEmpty(var s: TStackOfBool);
begin
s.Top := -1;
end;
function ElementsCount(var s: TStackOfBool): Integer;
begin
ElementsCount := s.Top + 1;
end;
function IsOperator(const c: Char): Boolean;
begin
IsOperator := (c = '&') or (c = '|') or (c = '!') or (c = '^');
end;
function VariableIndex(const c: Char): Integer;
var
i: Integer;
begin
for i := 0 to VariablesLength - 1 do
if Variables[i].Name = c then
begin
VariableIndex := i;
Exit;
end;
VariableIndex := -1;
end;
function EvaluateExpression: Boolean;
var
i, vi: Integer;
e: Char;
s: TStackOfBool;
begin
MakeEmpty(s);
for i := 1 to Length(Expression) do
begin
e := Expression[i];
vi := VariableIndex(e);
if e = 'T' then
Push(s, True)
else if e = 'F' then
Push(s, False)
else if vi >= 0 then
Push(s, Variables[vi].Value)
else
begin
{$B+}
case e of
'&':
Push(s, Pop(s) and Pop(s));
'|':
Push(s, Pop(s) or Pop(s));
'!':
Push(s, not Pop(s));
'^':
Push(s, Pop(s) xor Pop(s));
else
Writeln;
Writeln('Non-conformant character ', e, ' in expression.');
Halt;
end;
{$B-}
end;
end;
if ElementsCount(s) <> 1 then
begin
Writeln;
Writeln('Stack should contain exactly one element.');
Halt;
end;
EvaluateExpression := Peek(s);
end;
procedure SetVariables(pos: Integer);
var
i: Integer;
begin
if pos > VariablesLength then
begin
Writeln;
Writeln('Argument to SetVariables cannot be greater than the number of variables.');
Halt;
end
else if pos = VariablesLength then
begin
for i := 0 to VariablesLength - 1 do
begin
if Variables[i].Value then
Write('T ')
else
Write('F ');
end;
if EvaluateExpression then
Writeln('T')
else
Writeln('F');
end
else
begin
Variables[pos].Value := False;
SetVariables(pos + 1);
Variables[pos].Value := True;
SetVariables(pos + 1);
end
end;
// removes space and converts to upper case
procedure ProcessExpression;
var
i: Integer;
exprTmp: string;
begin
exprTmp := '';
for i := 1 to Length(Expression) do
begin
if Expression[i] <> ' ' then
exprTmp := Concat(exprTmp, UpCase(Expression[i]));
end;
Expression := exprTmp
end;
begin
Writeln('Accepts single-character variables (except for ''T'' and ''F'',');
Writeln('which specify explicit true or false values), postfix, with');
Writeln('&|!^ for and, or, not, xor, respectively; optionally');
Writeln('seperated by space. Just enter nothing to quit.');
while (True) do
begin
Writeln;
Write('Boolean expression: ');
ReadLn(Expression);
ProcessExpression;
if Length(Expression) = 0 then
Break;
VariablesLength := 0;
for i := 1 to Length(Expression) do
begin
e := Expression[i];
if (not IsOperator(e)) and (e <> 'T') and (e <> 'F') and
(VariableIndex(e) = -1) then
begin
Variables[VariablesLength].Name := e;
Variables[VariablesLength].Value := False;
Inc(VariablesLength);
end;
end;
WriteLn;
if VariablesLength = 0 then
Writeln('No variables were entered.')
else
begin
for i := 0 to VariablesLength - 1 do
Write(Variables[i].Name, ' ');
Writeln(Expression);
Writeln(StringOfChar('=', VariablesLength * 3 + Length(Expression)));
SetVariables(0);
end;
end;
end.
|
http://rosettacode.org/wiki/Ulam_spiral_(for_primes) | Ulam spiral (for primes) | An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1), constructed on a square grid, starting at the "center".
An Ulam spiral is also known as a prime spiral.
The first grid (green) is shown with sequential integers, starting at 1.
In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk), and all non-primes as shown as a blank (or some other whitespace).
Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables).
Normally, the spiral starts in the "center", and the 2nd number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction.
There are other geometric shapes that are used as well, including clock-wise spirals.
Also, some spirals (for the 2nd number) is viewed upwards from the 1st number instead of to the right, but that is just a matter of orientation.
Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities).
[A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)].
Then, in the next phase in the transformation of the Ulam prime spiral, the non-primes are translated to blanks.
In the orange grid below, the primes are left intact, and all non-primes are changed to blanks.
Then, in the final transformation of the Ulam spiral (the yellow grid), translate the primes to a glyph such as a • or some other suitable glyph.
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
61
59
37
31
67
17
13
5
3
29
19
2
11
53
41
7
71
23
43
47
73
79
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The Ulam spiral becomes more visually obvious as the grid increases in size.
Task
For any sized N × N grid, construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number (the default would be 1), with some suitably dotty (glyph) representation to indicate primes, and the absence of dots to indicate non-primes.
You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen.
Related tasks
Spiral matrix
Zig-zag matrix
Identity matrix
Sequence of primes by Trial Division
See also
Wikipedia entry: Ulam spiral
MathWorld™ entry: Prime Spiral
| #Phix | Phix | with javascript_semantics
function spiral(integer w, h, x, y)
return iff(y?w+spiral(h-1,w,y-1,w-x-1):x)
end function
integer w = 9, h = 9
for i=h-1 to 0 by -1 do
for j=w-1 to 0 by -1 do
integer p = w*h-spiral(w,h,j,i)
puts(1,"o "[2-is_prime(p)])
end for
puts(1,'\n')
end for
|
http://rosettacode.org/wiki/Truncatable_primes | Truncatable primes | A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number.
Examples
The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime.
The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime.
No zeroes are allowed in truncatable primes.
Task
The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied).
Related tasks
Find largest left truncatable prime in a given base
Sieve of Eratosthenes
See also
Truncatable Prime from MathWorld.]
| #Go | Go | package main
import "fmt"
func main() {
sieve(1e6)
if !search(6, 1e6, "left", func(n, pot int) int { return n % pot }) {
panic("997?")
}
if !search(6, 1e6, "right", func(n, _ int) int { return n / 10 }) {
panic("7393?")
}
}
var c []bool
func sieve(ss int) {
c = make([]bool, ss)
c[1] = true
for p := 2; ; {
p2 := p * p
if p2 >= ss {
break
}
for i := p2; i < ss; i += p {
c[i] = true
}
for {
p++
if !c[p] {
break
}
}
}
}
func search(digits, pot int, s string, truncFunc func(n, pot int) int) bool {
n := pot - 1
pot /= 10
smaller:
for ; n >= pot; n -= 2 {
for tn, tp := n, pot; tp > 0; tp /= 10 {
if tn < tp || c[tn] {
continue smaller
}
tn = truncFunc(tn, tp)
}
fmt.Println("max", s, "truncatable:", n)
return true
}
if digits > 1 {
return search(digits-1, pot, s, truncFunc)
}
return false
} |
http://rosettacode.org/wiki/Tree_traversal | Tree traversal | Task
Implement a binary tree where each node carries an integer, and implement:
pre-order,
in-order,
post-order, and
level-order traversal.
Use those traversals to output the following tree:
1
/ \
/ \
/ \
2 3
/ \ /
4 5 6
/ / \
7 8 9
The correct output should look like this:
preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9
See also
Wikipedia article: Tree traversal.
| #APL | APL | preorder ← {l r←⍺ ⍵⍵ ⍵ ⋄ (⊃r)∇⍨⍣(×≢r)⊢(⊃l)∇⍨⍣(×≢l)⊢⍺ ⍺⍺ ⍵}
inorder ← {l r←⍺ ⍵⍵ ⍵ ⋄ (⊃r)∇⍨⍣(×≢r)⊢⍵ ⍺⍺⍨(⊃l)∇⍨⍣(×≢l)⊢⍺}
postorder← {l r←⍺ ⍵⍵ ⍵ ⋄ ⍵ ⍺⍺⍨(⊃r)∇⍨⍣(×≢r)⊢(⊃l)∇⍨⍣(×≢l)⊢⍺}
lvlorder ← {0=⍴⍵:⍺ ⋄ (⊃⍺⍺⍨/(⌽⍵),⊂⍺)∇⊃∘(,/)⍣2⊢⍺∘⍵⍵¨⍵} |
http://rosettacode.org/wiki/Topic_variable | Topic variable | Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable.
A topic variable is a special variable with a very short name which can also often be omitted.
Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language.
For instance you can (but you don't have to) show how the topic variable can be used by assigning the number
3
{\displaystyle 3}
to it and then computing its square and square root.
| #Sidef | Sidef | say [9,16,25].map {.sqrt}; # prints: [3, 4, 5] |
http://rosettacode.org/wiki/Topic_variable | Topic variable | Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable.
A topic variable is a special variable with a very short name which can also often be omitted.
Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language.
For instance you can (but you don't have to) show how the topic variable can be used by assigning the number
3
{\displaystyle 3}
to it and then computing its square and square root.
| #Standard_ML | Standard ML | - 3.0;
val it = 3.0 : real
- it * it;
val it = 9.0 : real
- Math.sqrt it;
val it = 3.0 : real
- |
http://rosettacode.org/wiki/Topic_variable | Topic variable | Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable.
A topic variable is a special variable with a very short name which can also often be omitted.
Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language.
For instance you can (but you don't have to) show how the topic variable can be used by assigning the number
3
{\displaystyle 3}
to it and then computing its square and square root.
| #Tailspin | Tailspin |
3 -> \($-1! $+1!\) -> $*$ -> [$-1..$+1] -> '$;
' -> !OUT::write
|
http://rosettacode.org/wiki/Topic_variable | Topic variable | Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable.
A topic variable is a special variable with a very short name which can also often be omitted.
Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language.
For instance you can (but you don't have to) show how the topic variable can be used by assigning the number
3
{\displaystyle 3}
to it and then computing its square and square root.
| #UNIX_Shell | UNIX Shell | multiply 3 4 # We assume this user defined function has been previously defined
echo $? # This will output 12, but $? will now be zero indicating a successful echo |
http://rosettacode.org/wiki/Topic_variable | Topic variable | Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable.
A topic variable is a special variable with a very short name which can also often be omitted.
Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language.
For instance you can (but you don't have to) show how the topic variable can be used by assigning the number
3
{\displaystyle 3}
to it and then computing its square and square root.
| #VBA | VBA | var T // global scope
var doSomethingWithT = Fn.new { [T * T, T.sqrt] }
T = 3
System.print(doSomethingWithT.call()) |
http://rosettacode.org/wiki/Topic_variable | Topic variable | Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable.
A topic variable is a special variable with a very short name which can also often be omitted.
Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language.
For instance you can (but you don't have to) show how the topic variable can be used by assigning the number
3
{\displaystyle 3}
to it and then computing its square and square root.
| #Wren | Wren | var T // global scope
var doSomethingWithT = Fn.new { [T * T, T.sqrt] }
T = 3
System.print(doSomethingWithT.call()) |
http://rosettacode.org/wiki/Towers_of_Hanoi | Towers of Hanoi | Task
Solve the Towers of Hanoi problem with recursion.
| #Ada | Ada | with Ada.Text_Io; use Ada.Text_Io;
procedure Towers is
type Pegs is (Left, Center, Right);
procedure Hanoi (Ndisks : Natural; Start_Peg : Pegs := Left; End_Peg : Pegs := Right; Via_Peg : Pegs := Center) is
begin
if Ndisks > 0 then
Hanoi(Ndisks - 1, Start_Peg, Via_Peg, End_Peg);
Put_Line("Move disk" & Natural'Image(Ndisks) & " from " & Pegs'Image(Start_Peg) & " to " & Pegs'Image(End_Peg));
Hanoi(Ndisks - 1, Via_Peg, End_Peg, Start_Peg);
end if;
end Hanoi;
begin
Hanoi(4);
end Towers; |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #AArch64_Assembly | AArch64 Assembly |
/* ARM assembly AARCH64 Raspberry PI 3B or android 64 bits */
/* program tonshan64.s */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessStartPgm: .asciz "Program 64 bits start \n"
szMessEndPgm: .asciz "Program normal end.\n"
szMessError: .asciz "\033[31mError !!!\n"
szMessErrGen: .asciz "Error end program.\n"
szMessOverflow: .asciz "Overflow function modulo.\n"
szMessNoSolution: .asciz "No solution.\n"
szCarriageReturn: .asciz "\n"
/* datas message display */
szMessEntry: .asciz "Number : @ modulo : @ ==> "
szMessResult: .asciz "Racine 1 : @ Racine 2 : @ \n"
qNumberN: .quad 44402
qNumberP: .quad 100049
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
.align 4
sZoneConv: .skip 24
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main: // program start
ldr x0,qAdrszMessStartPgm // display start message
bl affichageMess
mov x0,10
mov x1,13
bl displayEntry
bl computeTonSha
bl displayResult
mov x0,56
mov x1,101
bl displayEntry
bl computeTonSha
bl displayResult
mov x0,1030
mov x1,10009
bl displayEntry
bl computeTonSha
bl displayResult
mov x0,1032
mov x1,10009
bl displayEntry
bl computeTonSha
bcs 1f
bl displayResult
1:
ldr x4,qAdrqNumberN
ldr x0,[x4]
ldr x4,qAdrqNumberP
ldr x1,[x4]
bl displayEntry
bl computeTonSha
bl displayResult
ldr x0,qAdrszMessEndPgm // display end message
bl affichageMess
b 100f
99: // display error message
ldr x0,qAdrszMessError
bl affichageMess
100: // standard end of the program
mov x0, #0 // return code
mov x8, #EXIT // request to exit program
svc 0 // perform system call
qAdrszMessStartPgm: .quad szMessStartPgm
qAdrszMessEndPgm: .quad szMessEndPgm
qAdrszMessError: .quad szMessError
qAdrszMessNoSolution: .quad szMessNoSolution
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrqNumberN: .quad qNumberN
qAdrqNumberP: .quad qNumberP
qAdrszMessResult: .quad szMessResult
qAdrsZoneConv: .quad sZoneConv
/******************************************************************/
/* algorithm Tonelli–Shanks */
/******************************************************************/
/* x0 contains number */
/* x1 contains modulus */
/* x0 return root 1 */
/* x1 return root 2 */
computeTonSha:
stp x10,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
stp x11,x12,[sp,-16]! // save registres
mov x9,x0 // save number
mov x10,x1 // save modulo p
mov x2,x10
sub x1,x2,1
lsr x1,x1,1
bl moduloPuR64
bcs 100f // error ?
cmp x0,#1
bne 20f
sub x5,x10,1
mov x6,#1 // s
1:
lsr x5,x5,#1 // div by 2
tst x5,1 // even ?
cinc x6,x6,eq // yes count
beq 1b // and loop
// x5 = q
cmp x6,#1 // s = 1 ?
bne 3f
add x1,x10,1 // compute root 1
lsr x1,x1,#2 // p + 1 / 4
mov x0,x9 // n
mov x2,x10 // p
bl moduloPuR64
bcs 100f // error ?
neg x1,x0 // compute root 2 = - root 1
b 100f // and end
3:
mov x7,#3 // z
4:
mov x0,x7
mov x2,x10 // p
sub x1,x2,1
lsr x1,x1,1 // power = p - 1 / 2
bl moduloPuR64
bcs 100f // error ?
cmp x0,#1
cinc x7,x7,eq // si égal à 1
cinc x7,x7,eq
beq 4b
cmp x0,0
cinc x7,x7,eq // si egal à 0
cinc x7,x7,eq
beq 4b
mov x0,x7 // z
mov x1,x5 // q
mov x2,x10 // p
bl moduloPuR64
bcs 100f // error ?
mov x12,x0 // c = z pow q mod p
add x1,x5,1 // = q +1
lsr x1,x1,1 // div 2
mov x0,x9 // n
mov x2,x10 // p
bl moduloPuR64
mov x4,x0 // r = n puis (q+1)/2 mod p
mov x0,x9 // n
mov x1,x5 // = q
mov x2,x10 // p
bl moduloPuR64
bcs 100f // error ?
mov x5,x0 // reuse r5 = t = n pow q mod p
8: // begin loop
cmp x5,1
beq 10f
mov x0,x5 // t
mov x1,x6 // m
mov x2,x10 // p
bl searchI // search i for t puis 2 puis i = 1 mod p
cmp x0,-1 // not find -> no solution
beq 20f
mov x9,x0 // i
sub x8,x6,x0 // compute b
sub x8,x8,1 // m - i - 1
mov x1,1
lsl x1,x1,x8
mov x0,x12
mov x2,x10 // p
bl moduloPuR64
bcs 100f // error ?
mov x7,x0 // b = c puis 2 puis 2 puis m-i-1 à verifier
mul x0,x7,x4 // r = r * b mod p
umulh x1,x7,x4
mov x2,x10
bl divisionReg128U
mov x4,x3 // r mod p
mul x0,x7,x7
umulh x1,x7,x7
mov x2,x10
bl divisionReg128U
mov x12,x3 // c mod p
mul x0,x5,x12
umulh x1,x5,x12
mov x2,x10
bl divisionReg128U
mov x5,x3 // t mod p
mov x6,x9 // m = i
b 8b
9:
10:
mov x0,x4 // x0 return root 1
sub x1,x10,x0 // x1 return root 2
cmn x0,0 // carry à zero roots ok
b 100f
20:
ldr x0,qAdrszMessNoSolution
bl affichageMess
mov x0,0
mov x1,0
cmp x0,0 // carry to 1 No solution
100:
ldp x11,x12,[sp],16
ldp x8,x9,[sp],16
ldp x6,x7,[sp],16
ldp x4,x5,[sp],16
ldp x2,x3,[sp],16
ldp x10,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
/******************************************************************/
/* search i */
/******************************************************************/
// x0 contains t
// x1 contains maxi
// x2 contains modulo
searchI:
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
mov x4,x0 // t
mov x6,x1 // m
mov x3,1 // i
1:
mov x5,1
lsl x5,x5,x3 // compute 2 power i
mov x0,x4
mov x1,x5
bl moduloPuR64 // compute t pow 2 pow i mod p
cmp x0,1 // = 1 ?
beq 3f // yes it is ok
add x3,x3,1 // next i
cmp x3,x6
blt 1b // loop
mov x0,-1 // not find
b 100f
3:
mov x0,x3 // return i
100:
ldp x6,x7,[sp],16
ldp x4,x5,[sp],16
ldp x2,x3,[sp],16
ldp x1,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
/******************************************************************/
/* display numbers */
/******************************************************************/
/* x0 contains number */
/* x1 contains modulo */
displayEntry:
stp x0,lr,[sp,-16]! // save registres
stp x1,x2,[sp,-16]! // save registres
mov x2,x1 // root 2
ldr x1,qAdrsZoneConv // convert root 1 in r0
bl conversion10S // convert ascii string
ldr x0,qAdrszMessEntry
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // and put in message
mov x3,x0
mov x0,x2 // racine 2
ldr x1,qAdrsZoneConv
bl conversion10S // convert ascii string
mov x0,x3
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // and put in message
bl affichageMess
100:
ldp x1,x2,[sp],16
ldp x0,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
qAdrszMessEntry: .quad szMessEntry
/******************************************************************/
/* display roots */
/******************************************************************/
/* x0 contains root 1 */
/* x1 contains root 2 */
displayResult:
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
mov x2,x1 // root 2
ldr x1,qAdrsZoneConv // convert root 1 in r0
bl conversion10S // convert ascii string
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // and put in message
mov x3,x0
mov x0,x2 // racine 2
ldr x1,qAdrsZoneConv
bl conversion10S // convert ascii string
mov x0,x3
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // and put in message
bl affichageMess
100:
ldp x2,x3,[sp],16
ldp x1,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
/**************************************************************/
/********************************************************/
/* Calcul modulo de b puissance e modulo m */
/* Exemple 4 puissance 13 modulo 497 = 445 */
/********************************************************/
/* x0 nombre */
/* x1 exposant */
/* x2 modulo */
moduloPuR64:
stp x1,lr,[sp,-16]! // save registres
stp x3,x4,[sp,-16]! // save registres
stp x5,x6,[sp,-16]! // save registres
stp x7,x8,[sp,-16]! // save registres
stp x9,x10,[sp,-16]! // save registres
cbz x0,100f
cbz x1,100f
mov x8,x0
mov x7,x1
mov x6,1 // resultat
udiv x4,x8,x2
msub x9,x4,x2,x8 // contient le reste
1:
tst x7,1
beq 2f
mul x4,x9,x6
umulh x5,x9,x6
mov x6,x4
mov x0,x6
mov x1,x5
bl divisionReg128U
cbnz x1,99f // overflow
mov x6,x3
2:
mul x8,x9,x9
umulh x5,x9,x9
mov x0,x8
mov x1,x5
bl divisionReg128U
cbnz x1,99f // overflow
mov x9,x3
lsr x7,x7,1
cbnz x7,1b
cmn x0,0 // carry à zero pas d'erreur
mov x0,x6 // result
b 100f
99:
ldr x0,qAdrszMessOverflow
bl affichageMess
cmp x0,0 // carry à un car erreur
mov x0,-1 // code erreur
100:
ldp x9,x10,[sp],16 // restaur des 2 registres
ldp x7,x8,[sp],16 // restaur des 2 registres
ldp x5,x6,[sp],16 // restaur des 2 registres
ldp x3,x4,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
qAdrszMessOverflow: .quad szMessOverflow
/***************************************************/
/* division d un nombre de 128 bits par un nombre de 64 bits */
/***************************************************/
/* x0 contient partie basse dividende */
/* x1 contient partie haute dividente */
/* x2 contient le diviseur */
/* x0 retourne partie basse quotient */
/* x1 retourne partie haute quotient */
/* x3 retourne le reste */
divisionReg128U:
stp x6,lr,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
mov x5,#0 // raz du reste R
mov x3,#128 // compteur de boucle
mov x4,#0 // dernier bit
1:
lsl x5,x5,#1 // on decale le reste de 1
tst x1,1<<63 // test du bit le plus à gauche
lsl x1,x1,#1 // on decale la partie haute du quotient de 1
beq 2f
orr x5,x5,#1 // et on le pousse dans le reste R
2:
tst x0,1<<63
lsl x0,x0,#1 // puis on decale la partie basse
beq 3f
orr x1,x1,#1 // et on pousse le bit de gauche dans la partie haute
3:
orr x0,x0,x4 // position du dernier bit du quotient
mov x4,#0 // raz du bit
cmp x5,x2
blt 4f
sub x5,x5,x2 // on enleve le diviseur du reste
mov x4,#1 // dernier bit à 1
4:
// et boucle
subs x3,x3,#1
bgt 1b
lsl x1,x1,#1 // on decale le quotient de 1
tst x0,1<<63
lsl x0,x0,#1 // puis on decale la partie basse
beq 5f
orr x1,x1,#1
5:
orr x0,x0,x4 // position du dernier bit du quotient
mov x3,x5
100:
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x6,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
|
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI or android 32 bits */
/* program tonshan.s */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes */
/************************************/
.include "../constantes.inc"
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessStartPgm: .asciz "Program 32 bits start \n"
szMessEndPgm: .asciz "Program normal end.\n"
szMessError: .asciz "\033[31mError !!!\n"
szMessErrGen: .asciz "Error end program.\n"
szMessOverflow: .asciz "Overflow function modulo.\n"
szMessNoSolution: .asciz "No solution.\n"
szCarriageReturn: .asciz "\n"
/* datas message display */
szMessEntry: .asciz "Number : @ modulo : @ ==> "
szMessResult: .asciz "Racine 1 : @ Racine 2 : @ \n"
iNumberN: .int 1030
iNumberP: .int 10009
iNumberN1: .int 1032
iNumberP1: .int 10009
iNumberN2: .int 44402
iNumberP2: .int 100049
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
.align 4
sZoneConv: .skip 24
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main: // program start
ldr r0,iAdrszMessStartPgm // display start message
bl affichageMess
mov r0,#10
mov r1,#13
bl displayEntry // display entry number
bl computeTonSha // compute roots
bl displayResult // display roots
mov r0,#56
mov r1,#101
bl displayEntry
bl computeTonSha
bl displayResult
ldr r4,iAdriNumberN
ldr r0,[r4]
ldr r4,iAdriNumberP
ldr r1,[r4]
bl displayEntry
bl computeTonSha
bl displayResult
ldr r4,iAdriNumberN1
ldr r0,[r4]
ldr r4,iAdriNumberP1
ldr r1,[r4]
bl displayEntry
bl computeTonSha
bcs 1f
bl displayResult
1:
ldr r4,iAdriNumberN2
ldr r0,[r4]
ldr r4,iAdriNumberP2
ldr r1,[r4]
bl displayEntry
bl computeTonSha
bl displayResult
ldr r0,iAdrszMessEndPgm // display end message
bl affichageMess
b 100f
99: // display error message
ldr r0,iAdrszMessError
bl affichageMess
100: // standard end of the program
mov r0, #0 // return code
mov r7, #EXIT // request to exit program
svc 0 // perform system call
iAdrszMessStartPgm: .int szMessStartPgm
iAdrszMessEndPgm: .int szMessEndPgm
iAdrszMessError: .int szMessError
iAdrszMessNoSolution: .int szMessNoSolution
iAdrszCarriageReturn: .int szCarriageReturn
iAdriNumberN: .int iNumberN
iAdriNumberP: .int iNumberP
iAdriNumberN1: .int iNumberN1
iAdriNumberP1: .int iNumberP1
iAdriNumberN2: .int iNumberN2
iAdriNumberP2: .int iNumberP2
iAdrszMessResult: .int szMessResult
iAdrsZoneConv: .int sZoneConv
/******************************************************************/
/* algorithm Tonelli–Shanks */
/******************************************************************/
/* r0 contains number */
/* r1 contains modulus */
/* r0 return root 1 */
/* r1 return root 2 */
computeTonSha:
push {r2-r12,lr}
mov r9,r0 // save number
mov r10,r1 // save modulo p
mov r2,r10
sub r1,r2,#1
lsr r1,r1,#1
bl moduloPuR32
cmp r0,#1
bne 20f
sub r5,r10,#1
mov r6,#1 // s
1:
lsr r5,r5,#1 // div by 2
tst r5,#1 // even ?
addeq r6,#1
beq 1b // and loop
// r5 = q
cmp r6,#1 // s = 1 ?
bne 3f
add r1,r10,#1 // compute root 1
lsr r1,r1,#2 // p + 1 / 4
mov r0,r9 // n
mov r2,r10 // p
bl moduloPuR32
neg r1,r0 // compute root 2 = - root 1
b 100f // and end
3:
mov r7,#3 // z
4:
mov r0,r7
mov r2,r10 // p
sub r1,r2,#1
lsr r1,r1,#1 // power = p - 1 / 2
bl moduloPuR32
cmp r0,#1
addeq r7,#2
beq 4b
cmp r0,#0
addeq r7,#2
beq 4b
mov r0,r7 // z
mov r1,r5 // q
mov r2,r10 // p
bl moduloPuR32
mov r12,r0 // c = z pow q mod p
add r1,r5,#1 // = q +1
lsr r1,r1,#1 // div 2
mov r0,r9 // n
mov r2,r10 // p
bl moduloPuR32
mov r4,r0 // r = n puis (q+1)/2 mod p
mov r0,r9 // n
mov r1,r5 // = q
mov r2,r10 // p
bl moduloPuR32
mov r5,r0 // reuse r5 = t = n pow q mod p
8: // begin loop
cmp r5,#1
beq 10f
mov r0,r5 // t
mov r1,r6 // m
mov r2,r10 // p
bl searchI // search i for t puis 2 puis i = 1 mod p
cmp r0,#-1 // not find -> no solution
beq 20f
mov r9,r0 // i
sub r8,r6,r0 // compute b
sub r8,r8,#1 // m - i - 1
mov r1,#1
lsl r1,r1,r8
mov r0,r12
mov r2,r10 // p
bl moduloPuR32
mov r7,r0 // b = c puis 2 puis 2 puis m-i-1 à verifier
umull r0,r1,r7,r4 // r = r * b mod p
mov r2,r10
bl division32R
mov r4,r2 // r mod p
umull r0,r1,r7,r7
mov r2,r10
bl division32R
mov r12,r2 // c mod p
umull r0,r1,r5,r12
mov r2,r10
bl division32R
mov r5,r2 // t mod p
mov r6,r9 // m = i
b 8b
9:
10:
mov r0,r4 // r0 return root 1
sub r1,r10,r0 // r1 return root 2
cmn r0,#0 // carry à zero roots ok
b 100f
20:
ldr r0,iAdrszMessNoSolution
bl affichageMess
mov r0,#0
mov r1,#0
cmp r0,#0 // carry to 1 No solution
100:
pop {r2-r12,lr} // restaur registers
bx lr // return
/******************************************************************/
/* search i */
/******************************************************************/
// r0 contains t
// r1 contains maxi
// r2 contains modulo
// r0 return i
searchI:
push {r1-r6,lr}
mov r4,r0 // t
mov r6,r1 // m
mov r3,#1 // i
1:
mov r5,#1
lsl r5,r5,r3 // compute 2 power i
mov r0,r4
mov r1,r5
bl moduloPuR32 // compute t pow 2 pow i mod p
cmp r0,#1 // = 1 ?
beq 3f // yes it is ok
add r3,r3,#1 // next i
cmp r3,r6
blt 1b // loop
mov r0,#-1 // not find
b 100f
3:
mov r0,r3 // return i
100:
pop {r1-r6,lr} // restaur registers
bx lr // return
/******************************************************************/
/* display numbers */
/******************************************************************/
/* r0 contains number */
/* r1 contains modulo */
displayEntry:
push {r0-r3,lr}
mov r2,r1 // root 2
ldr r1,iAdrsZoneConv // convert root 1 in r0
bl conversion10S // convert ascii string
ldr r0,iAdrszMessEntry
ldr r1,iAdrsZoneConv
bl strInsertAtCharInc // and put in message
mov r3,r0
mov r0,r2 // racine 2
ldr r1,iAdrsZoneConv
bl conversion10S // convert ascii string
mov r0,r3
ldr r1,iAdrsZoneConv
bl strInsertAtCharInc // and put in message
bl affichageMess
100:
pop {r0-r3,lr} // restaur registers
bx lr // return
iAdrszMessEntry: .int szMessEntry
/******************************************************************/
/* display roots */
/******************************************************************/
/* r0 contains root 1 */
/* r1 contains root 2 */
displayResult:
push {r1-r3,lr}
mov r2,r1 // root 2
ldr r1,iAdrsZoneConv // convert root 1 in r0
bl conversion10S // convert ascii string
ldr r0,iAdrszMessResult
ldr r1,iAdrsZoneConv
bl strInsertAtCharInc // and put in message
mov r3,r0
mov r0,r2 // racine 2
ldr r1,iAdrsZoneConv
bl conversion10S // convert ascii string
mov r0,r3
ldr r1,iAdrsZoneConv
bl strInsertAtCharInc // and put in message
bl affichageMess
100:
pop {r1-r3,lr} // restaur registers
bx lr // return
/********************************************************/
/* Calcul modulo de b puissance e modulo m */
/* Exemple 4 puissance 13 modulo 497 = 445 */
/* */
/********************************************************/
/* r0 nombre */
/* r1 exposant */
/* r2 modulo */
/* r0 return result */
moduloPuR32:
push {r1-r7,lr} @ save registers
cmp r0,#0 @ verif <> zero
beq 90f
cmp r1,#0 @ verif <> zero
moveq r0,#0
beq 90f
cmp r2,#0 @ verif <> zero
moveq r0,#0
beq 90f @
1:
mov r4,r2 @ save modulo
mov r5,r1 @ save exposant
mov r6,r0 @ save base
mov r3,#1 @ start result
mov r1,#0 @ division de r0,r1 par r2
bl division32R
mov r6,r2 @ base <- remainder
2:
tst r5,#1 @ exposant even or odd
beq 3f
umull r0,r1,r6,r3
mov r2,r4
bl division32R
mov r3,r2 @ result <- remainder
3:
umull r0,r1,r6,r6
mov r2,r4
bl division32R
mov r6,r2 @ base <- remainder
lsr r5,#1 @ left shift 1 bit
cmp r5,#0 @ end ?
bne 2b
mov r0,r3
90:
cmn r0,#0 @ no error
100: @ fin standard de la fonction
pop {r1-r7,lr} @ restaur des registres
bx lr @ retour de la fonction en utilisant lr
/***************************************************/
/* division number 64 bits in 2 registers by number 32 bits */
/***************************************************/
/* r0 contains lower part dividende */
/* r1 contains upper part dividende */
/* r2 contains divisor */
/* r0 return lower part quotient */
/* r1 return upper part quotient */
/* r2 return remainder */
division32R:
push {r3-r9,lr} @ save registers
mov r6,#0 @ init upper upper part remainder !!
mov r7,r1 @ init upper part remainder with upper part dividende
mov r8,r0 @ init lower part remainder with lower part dividende
mov r9,#0 @ upper part quotient
mov r4,#0 @ lower part quotient
mov r5,#32 @ bits number
1: @ begin loop
lsl r6,#1 @ shift upper upper part remainder
lsls r7,#1 @ shift upper part remainder
orrcs r6,#1
lsls r8,#1 @ shift lower part remainder
orrcs r7,#1
lsls r4,#1 @ shift lower part quotient
lsl r9,#1 @ shift upper part quotient
orrcs r9,#1
@ divisor sustract upper part remainder
subs r7,r2
sbcs r6,#0 @ and substract carry
bmi 2f @ négative ?
@ positive or equal
orr r4,#1 @ 1 -> right bit quotient
b 3f
2: @ negative
orr r4,#0 @ 0 -> right bit quotient
adds r7,r2 @ and restaur remainder
adc r6,#0
3:
subs r5,#1 @ decrement bit size
bgt 1b @ end ?
mov r0,r4 @ lower part quotient
mov r1,r9 @ upper part quotient
mov r2,r7 @ remainder
100: @ function end
pop {r3-r9,lr} @ restaur registers
bx lr
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
|
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ALGOL_68 | ALGOL 68 | BEGIN
# returns s parsed according to delimiter and escape #
PROC parse with escapes = ( STRING s, CHAR delimiter, escape )[]STRING:
IF ( UPB s - LWB s ) + 1 < 1 THEN
# empty string #
[ 1 : 0 ]STRING empty array;
empty array
ELSE
# at least one character #
# allow for a string composed entirely of delimiter characters #
[ 1 : ( UPB s - LWB s ) + 3 ]STRING result;
INT r pos := 1;
INT s pos := LWB s;
result[ r pos ] := "";
WHILE s pos <= UPB s DO
CHAR c = s[ s pos ];
IF c = delimiter THEN
# start a new element #
result[ r pos +:= 1 ] := ""
ELIF c = escape THEN
# use the next character even if it is an escape #
s pos +:= 1;
IF s pos < UPB s THEN
# the escape is not the last character #
result[ r pos ] +:= s[ s pos ]
FI
ELSE
# normal character #
result[ r pos ] +:= c
FI;
s pos +:= 1
OD;
result[ 1 : r pos ]
FI; # parse with escapes #
# task test case #
[]STRING tokens = parse with escapes( "one^|uno||three^^^^|four^^^|^cuatro|", "|", "^" );
FOR t pos FROM LWB tokens TO UPB tokens DO print( ( "[", tokens[ t pos ], "]", newline ) ) OD
END |
http://rosettacode.org/wiki/Total_circles_area | Total circles area | Total circles area
You are encouraged to solve this task according to the task description, using any language you may know.
Example circles
Example circles filtered
Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.
One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome.
To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):
xc yc radius
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
The result is 21.56503660... .
Related task
Circles of given radius through two points.
See also
http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/
http://stackoverflow.com/a/1667789/10562
| #Go | Go | package main
import (
"flag"
"fmt"
"math"
"runtime"
"sort"
)
// Note, the standard "image" package has Point and Rectangle but we
// can't use them here since they're defined using int rather than
// float64.
type Circle struct{ X, Y, R, rsq float64 }
func NewCircle(x, y, r float64) Circle {
// We pre-calculate r² as an optimization
return Circle{x, y, r, r * r}
}
func (c Circle) ContainsPt(x, y float64) bool {
return distSq(x, y, c.X, c.Y) <= c.rsq
}
func (c Circle) ContainsC(c2 Circle) bool {
return distSq(c.X, c.Y, c2.X, c2.Y) <= (c.R-c2.R)*(c.R-c2.R)
}
func (c Circle) ContainsR(r Rect) (full, corner bool) {
nw := c.ContainsPt(r.NW())
ne := c.ContainsPt(r.NE())
sw := c.ContainsPt(r.SW())
se := c.ContainsPt(r.SE())
return nw && ne && sw && se, nw || ne || sw || se
}
func (c Circle) North() (float64, float64) { return c.X, c.Y + c.R }
func (c Circle) South() (float64, float64) { return c.X, c.Y - c.R }
func (c Circle) West() (float64, float64) { return c.X - c.R, c.Y }
func (c Circle) East() (float64, float64) { return c.X + c.R, c.Y }
type Rect struct{ X1, Y1, X2, Y2 float64 }
func (r Rect) Area() float64 { return (r.X2 - r.X1) * (r.Y2 - r.Y1) }
func (r Rect) NW() (float64, float64) { return r.X1, r.Y2 }
func (r Rect) NE() (float64, float64) { return r.X2, r.Y2 }
func (r Rect) SW() (float64, float64) { return r.X1, r.Y1 }
func (r Rect) SE() (float64, float64) { return r.X2, r.Y1 }
func (r Rect) Centre() (float64, float64) {
return (r.X1 + r.X2) / 2.0, (r.Y1 + r.Y2) / 2.0
}
func (r Rect) ContainsPt(x, y float64) bool {
return r.X1 <= x && x < r.X2 &&
r.Y1 <= y && y < r.Y2
}
func (r Rect) ContainsPC(c Circle) bool { // only N,W,E,S points of circle
return r.ContainsPt(c.North()) ||
r.ContainsPt(c.South()) ||
r.ContainsPt(c.West()) ||
r.ContainsPt(c.East())
}
func (r Rect) MinSide() float64 {
return math.Min(r.X2-r.X1, r.Y2-r.Y1)
}
func distSq(x1, y1, x2, y2 float64) float64 {
Δx, Δy := x2-x1, y2-y1
return (Δx * Δx) + (Δy * Δy)
}
type CircleSet []Circle
// sort.Interface for sorting by radius big to small:
func (s CircleSet) Len() int { return len(s) }
func (s CircleSet) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s CircleSet) Less(i, j int) bool { return s[i].R > s[j].R }
func (sp *CircleSet) RemoveContainedC() {
s := *sp
sort.Sort(s)
for i := 0; i < len(s); i++ {
for j := i + 1; j < len(s); {
if s[i].ContainsC(s[j]) {
s[j], s[len(s)-1] = s[len(s)-1], s[j]
s = s[:len(s)-1]
} else {
j++
}
}
}
*sp = s
}
func (s CircleSet) Bounds() Rect {
x1 := s[0].X - s[0].R
x2 := s[0].X + s[0].R
y1 := s[0].Y - s[0].R
y2 := s[0].Y + s[0].R
for _, c := range s[1:] {
x1 = math.Min(x1, c.X-c.R)
x2 = math.Max(x2, c.X+c.R)
y1 = math.Min(y1, c.Y-c.R)
y2 = math.Max(y2, c.Y+c.R)
}
return Rect{x1, y1, x2, y2}
}
var nWorkers = 4
func (s CircleSet) UnionArea(ε float64) (min, max float64) {
sort.Sort(s)
stop := make(chan bool)
inside := make(chan Rect)
outside := make(chan Rect)
unknown := make(chan Rect, 5e7) // XXX
for i := 0; i < nWorkers; i++ {
go s.worker(stop, unknown, inside, outside)
}
r := s.Bounds()
max = r.Area()
unknown <- r
for max-min > ε {
select {
case r = <-inside:
min += r.Area()
case r = <-outside:
max -= r.Area()
}
}
close(stop)
return min, max
}
func (s CircleSet) worker(stop <-chan bool, unk chan Rect, in, out chan<- Rect) {
for {
select {
case <-stop:
return
case r := <-unk:
inside, outside := s.CategorizeR(r)
switch {
case inside:
in <- r
case outside:
out <- r
default:
// Split
midX, midY := r.Centre()
unk <- Rect{r.X1, r.Y1, midX, midY}
unk <- Rect{midX, r.Y1, r.X2, midY}
unk <- Rect{r.X1, midY, midX, r.Y2}
unk <- Rect{midX, midY, r.X2, r.Y2}
}
}
}
}
func (s CircleSet) CategorizeR(r Rect) (inside, outside bool) {
anyCorner := false
for _, c := range s {
full, corner := c.ContainsR(r)
if full {
return true, false // inside
}
anyCorner = anyCorner || corner
}
if anyCorner {
return false, false // uncertain
}
for _, c := range s {
if r.ContainsPC(c) {
return false, false // uncertain
}
}
return false, true // outside
}
func main() {
flag.IntVar(&nWorkers, "workers", nWorkers, "how many worker go routines to use")
maxproc := flag.Int("cpu", runtime.NumCPU(), "GOMAXPROCS setting")
flag.Parse()
if *maxproc > 0 {
runtime.GOMAXPROCS(*maxproc)
} else {
*maxproc = runtime.GOMAXPROCS(0)
}
circles := CircleSet{
NewCircle(1.6417233788, 1.6121789534, 0.0848270516),
NewCircle(-1.4944608174, 1.2077959613, 1.1039549836),
NewCircle(0.6110294452, -0.6907087527, 0.9089162485),
NewCircle(0.3844862411, 0.2923344616, 0.2375743054),
NewCircle(-0.2495892950, -0.3832854473, 1.0845181219),
NewCircle(1.7813504266, 1.6178237031, 0.8162655711),
NewCircle(-0.1985249206, -0.8343333301, 0.0538864941),
NewCircle(-1.7011985145, -0.1263820964, 0.4776976918),
NewCircle(-0.4319462812, 1.4104420482, 0.7886291537),
NewCircle(0.2178372997, -0.9499557344, 0.0357871187),
NewCircle(-0.6294854565, -1.3078893852, 0.7653357688),
NewCircle(1.7952608455, 0.6281269104, 0.2727652452),
NewCircle(1.4168575317, 1.0683357171, 1.1016025378),
NewCircle(1.4637371396, 0.9463877418, 1.1846214562),
NewCircle(-0.5263668798, 1.7315156631, 1.4428514068),
NewCircle(-1.2197352481, 0.9144146579, 1.0727263474),
NewCircle(-0.1389358881, 0.1092805780, 0.7350208828),
NewCircle(1.5293954595, 0.0030278255, 1.2472867347),
NewCircle(-0.5258728625, 1.3782633069, 1.3495508831),
NewCircle(-0.1403562064, 0.2437382535, 1.3804956588),
NewCircle(0.8055826339, -0.0482092025, 0.3327165165),
NewCircle(-0.6311979224, 0.7184578971, 0.2491045282),
NewCircle(1.4685857879, -0.8347049536, 1.3670667538),
NewCircle(-0.6855727502, 1.6465021616, 1.0593087096),
NewCircle(0.0152957411, 0.0638919221, 0.9771215985),
}
fmt.Println("Starting with", len(circles), "circles.")
circles.RemoveContainedC()
fmt.Println("Removing redundant ones leaves", len(circles), "circles.")
fmt.Println("Using", nWorkers, "workers with maxprocs =", *maxproc)
const ε = 0.0001
min, max := circles.UnionArea(ε)
avg := (min + max) / 2.0
rng := max - min
fmt.Printf("Area = %v±%v\n", avg, rng)
fmt.Printf("Area ≈ %.*f\n", 5, avg)
} |
http://rosettacode.org/wiki/Topological_sort | Topological sort |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given a mapping between items, and items they depend on, a topological sort orders items so that no item precedes an item it depends upon.
The compiling of a library in the VHDL language has the constraint that a library must be compiled after any library it depends on.
A tool exists that extracts library dependencies.
Task
Write a function that will return a valid compile order of VHDL libraries from their dependencies.
Assume library names are single words.
Items mentioned as only dependents, (sic), have no dependents of their own, but their order of compiling must be given.
Any self dependencies should be ignored.
Any un-orderable dependencies should be flagged.
Use the following data as an example:
LIBRARY LIBRARY DEPENDENCIES
======= ====================
des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee
dw01 ieee dw01 dware gtech
dw02 ieee dw02 dware
dw03 std synopsys dware dw03 dw02 dw01 ieee gtech
dw04 dw04 ieee dw01 dware gtech
dw05 dw05 ieee dware
dw06 dw06 ieee dware
dw07 ieee dware
dware ieee dware
gtech ieee gtech
ramlib std ieee
std_cell_lib ieee std_cell_lib
synopsys
Note: the above data would be un-orderable if, for example, dw04 is added to the list of dependencies of dw01.
C.f.
Topological sort/Extracted top item.
There are two popular algorithms for topological sorting:
Kahn's 1962 topological sort [1]
depth-first search [2] [3]
| #Bracmat | Bracmat | ( ("des_system_lib".std synopsys "std_cell_lib" "des_system_lib" dw02 dw01 ramlib ieee)
(dw01.ieee dw01 dware gtech)
(dw02.ieee dw02 dware)
(dw03.std synopsys dware dw03 dw02 dw01 ieee gtech)
(dw04.dw04 ieee dw01 dware gtech)
(dw05.dw05 ieee dware)
(dw06.dw06 ieee dware)
(dw07.ieee dware)
(dware.ieee dware)
(gtech.ieee gtech)
(ramlib.std ieee)
("std_cell_lib".ieee "std_cell_lib")
(synopsys.)
(cycle-11.cycle-12)
(cycle-12.cycle-11)
(cycle-21.dw01 cycle-22 dw02 dw03)
(cycle-22.cycle-21 dw01 dw04)
: ?libdeps
& :?indeps
& ( toposort
= A Z res module dependants todo done
. !arg:(?todo.?done)
& ( areDone
=
. !arg:
| !arg
: ( %@
: [%( !module+!done+!indeps:?+(? !sjt ?)+?
| ~(!libdeps:? (!sjt.?) ?)
& !sjt !indeps:?indeps
)
)
?arg
& areDone$!arg
)
& ( !todo
: ?A
(?module.?dependants&areDone$!dependants)
( ?Z
& toposort$(!A !Z.!done !module):?res
)
& !res
| (!todo.!done)
)
)
& toposort$(!libdeps.):(?cycles.?res)
& out$("
compile order:" !indeps !res "\ncycles:" !cycles)
); |
http://rosettacode.org/wiki/Universal_Turing_machine | Universal Turing machine | One of the foundational mathematical constructs behind computer science
is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936–1937.)
Indeed one way to definitively prove that a language
is turing-complete
is to implement a universal Turing machine in it.
Task
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
Simple incrementer
States: q0, qf
Initial state: q0
Terminating states: qf
Permissible symbols: B, 1
Blank symbol: B
Rules:
(q0, 1, 1, right, q0)
(q0, B, 1, stay, qf)
The input for this machine should be a tape of 1 1 1
Three-state busy beaver
States: a, b, c, halt
Initial state: a
Terminating states: halt
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(a, 0, 1, right, b)
(a, 1, 1, left, c)
(b, 0, 1, left, a)
(b, 1, 1, right, b)
(c, 0, 1, left, b)
(c, 1, 1, stay, halt)
The input for this machine should be an empty tape.
Bonus:
5-state, 2-symbol probable Busy Beaver machine from Wikipedia
States: A, B, C, D, E, H
Initial state: A
Terminating states: H
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(A, 0, 1, right, B)
(A, 1, 1, left, C)
(B, 0, 1, right, C)
(B, 1, 1, right, B)
(C, 0, 1, right, D)
(C, 1, 0, left, E)
(D, 0, 1, left, A)
(D, 1, 1, left, D)
(E, 0, 1, stay, H)
(E, 1, 0, left, A)
The input for this machine should be an empty tape.
This machine runs for more than 47 millions steps.
| #EDSAC_order_code | EDSAC order code |
[Attempt at Turing machine for Rosetta Code.]
[EDSAC program, Initial Orders 2.]
[Library subroutine M3 prints header and is then overwritten.]
PFGKIFAFRDLFUFOFE@A6FG@E8FEZPF
*!!NR!STEPS@&#..PZ [..PZ marks end of header]
T48K [& (delta) parameter: Turing machine tape.]
P8F [Overwrites most of initial orders.]
T50K [X parameter: once-only code.]
P100F [Gets overwritten by the Turing machine tape.]
[Put the following as high in memory as possible,
to make room for the Turing machine tape.]
T52K [A parameter: rules and initial pattern. Also marks end]
P781F [of Turing tape, so must go immediately after tape area.]
T55K [V parameter: program-wide variables.]
P810F [Even address, 9 locations]
T46K [N parameter: constants.]
P820F [Even address]
T47K [M parameter: main routine.]
P859F
T51K [G parameter: library subroutine P7]
P988F [Even address, 35 locations.]
[============================= A parameter ===============================]
E25K TA GK
[0] [End of Turing tape area]
[Comment-in the desired task, or add another (2 symbols only).]
[Counts are stored in the address field.]
[Each rule is defined by an EDSAC pseudo-order, as follows:
Function letter: L = left, R = right, S = stay
Address field = new state number
Code letter: F if new symbol = 0, D if new symbol = 1.
No rule is needed for the halt state.]
[0]
[Simple incrementer: states are q0 = 0, qf = halt = 1
P1F [1 state, excluding the halt state
S1D RD [2 rules for each state (symbols 0 and 1)
P1F [1 word in tape area to be initialized
PF P3D [location 0 relative to tape, init to 7]
[3-state busy beaver: states are a = 0, b = 1, c = 2, halt = 3]
P3F [3 states, excluding the halt state]
R1D L2D [2 rules for each state (symbols 0 and 1)]
L0D R1D
L1D S3D
PF [0 words to be initialized (start with empty tape)]
[5-state busy beaver: states are A = 0, ..., E = 4, halt = 5
P5F 5 states, excluding the halt state
R1D L2D 2 rules for each state (symbols 0 and 1)
R2D R1D
R3D L4F
L0D L3D
S5D L0F
PF 0 words to be initialized (start with empty tape)]
[============================= X parameter ===============================]
E25K TX GK
[The following once-only code is loaded into the Turing machine tape area.]
[It runs at start-up, then gets overwritten when the tape is cleared.]
[Enter with acc = 0.]
[0] T2V [initial state assumed to be state 0]
T3V [tape head starts at position 0 on Turing tape]
T#V [reset count of steps]
T4V [initialize maximum position]
T5V [initialize minimum position]
[Calculate number of available tape positions; store in address field]
A22N [T order for exclusive end of tape]
S21N [T order for start of tape]
L4F [times 16, since each location holds 16 positions]
T25N [store for later use]
[Set up the loop in the main program that writes the initial pattern.
The main program has a list of position-value pairs.
This follows the list of rules, 2 rules per Turing machine state.]
[9] AA [number of states]
LD [times 2, because 2 rules per state]
A2F [plus 1 for the count of states]
A9@ [make A order to load number of position-value pairs]
T14@ [plant order]
[14] AM [load number of pairs (in address field)]
LD [times 2 for length of table]
TF [temp store in 0F]
A14@ [load order that was planted above]
A2F [make order to load first position]
U13M [plant in main routine]
AF [make A order for exclusive end]
T28M [plant in main routine]
[Set up order to load rules]
A26@
A2F
T18N
[Here with acc = 0. Jump to main routine.]
EM
[26] AA
[============================= V parameter ===============================]
E25K TV GK
[0] PFPF [number of steps (35-bit, must be at even address)]
[2] PF [current state of Turing machine]
[3] PF [current tape position, stored in address field]
[4] PF [maximum position on the tape so far]
[5] PF [minimum position on the tape so far]
[6] PF [rule for current state and symbol]
[7] PF [working group of 16 cells (1 EDSAC location)]
[8] PF [mask to select bit for current cell]
[============================= N parameter ===============================]
E25K TN GK
[17-bit masks: 11111111111111110, 11111111111111101, ..., 10111111111111111]
[0] V2047F V2046D V2045D V2043D V2039D V2031D V2015D V1983D
V1919D V1791D V1535D V1023D C2047D B2047D G2047D M2047D
[16] OF [add to A order to make T order with same address]
[17] AN [A order to load first mask in table]
[18] AF [A order to load first rule]
[19] A& [A order for start of tape]
[20] AA [A order for end of tape]
[21] T& [T order for start of tape]
[22] TA [T order for exclusive end of tape]
[23] P2047F [mask to pick out state from a Turing machine rule]
[24] P15F [mask to extract bit number from position]
[25] PF [number of tape positions available (calculated)]
[26] @F [carriage return]
[27] &F [line feed]
[28] K4096F [null]
[29] K2048F [set letters on teleprinter]
[============================= M parameter ===============================]
E25K TM GK
[Once-only code jumps to here with acc = 0]
[Clear the tape; this overwrites the once-only code]
[0] A21N [load T order for start of tape]
E3@ [always jump (since T > 0)]
[2] A22N [loop here after testing for end]
[3] T4@ [plant order to clear 1 location]
[4] TF [execute order]
A4@ [load order just executed]
A2F [inc address]
S22N [test for end]
G2@ [if not end, loop back]
[Here with acc = 0]
[Set up the starting pattern, i.e write 1's at zero or more positions on the tape.]
[To save space, the orders marked (*) are set up by the once-only code.]
[9] A13@ [load A order for next relative addess]
S28@ [compare with A order for exclusive end]
E29@ [if all done, jump out with acc = 0]
TF [clear acc]
[13] AF [(*) load relative address from table]
G17@ [jump if < 0]
A21N [make T order, addr counted from low end of tape]
E18@ [join commoon code (always jumps since T > 0)]
[17] A22N [make T order, addr counted from high end of tape]
[18] T23@ [plant T order in code]
A13@ [make order to load value from table]
A2F
T22@ [plant in code]
[22] AF [load value from table]
[23] TF [store in tape]
A22@ [make A order for next address]
A2F
T13@ [plant in code]
E9@ [always loop back]
[28] AF [(*) A order for exclusive end of list]
[29]
[Next step, i.e. set up new symbol, state and tape position.]
[Acc must be 0 here.]
[Get tape position and deduce corresponding EDSAC location and bit number.]
[29] H24N [mask for bit number]
C3V [acc := bit number]
UF [save bit number in 0F address field]
A17N [make order to load from mask table]
T44@ [plant order in code]
A3V [position]
SF [remove bit number part]
R4F [divide by 16 for relative address]
[If it's a non-negative address, add it to the start of the tape in EDSAC memory.]
[If it's a negative address, add it to the end of the tape.]
G40@ [jump if negative address]
A19N [make A order to load from tape]
G41@ [always jump to common code, since A < 0]
[40] A20N [here if negative address]
[41] U46@ [store order to load current group of 16 bits]
A16N [convert to T order at same address]
T69@ [store T order (a fair way down the code)]
[44] AF [load mask]
T8V
[46] AF [load group]
T7V
[Get rule for this state and symbol (where symbol = 0 or 1)]
H8V
C7V [acc := bit group with current bit cleared]
S7V [acc := 0 if bit is 0, -1 if bit is 1]
E54@
TF [clear acc]
A2F [to inc rule address if symbol is 1]
[54] A2V [add state twice (because each state has 2 rules)]
A2V
A18N [manufacture A order to load rule]
T58@
[58] AF [load rule]
T6V [to work space]
[Write new symbol (0 or 1) to tape. New symbol is in low bit of rule.]
HN [H register := 111...1110]
C6V
S6V [result = 0 if new symbol is 0; -1 if it's 1]
H8V [H register = mask 1...101...1 for current bit]
G67@ [jump to set the bit]
C7V [clear the bit]
E69@ [always jump (because top bit in tape store is always 0)]
[Set bit, assuming acc = -1 here (reason why it works is a bit complicated)]
[67] C7V
S8V
[69] TF [manufactured order]
[Update position of tape head, i.e. inc by 1, dec by 1, or no change.]
[Move is in top 2 bits of rule, thus]
[1x = move left, i.e. dec position (function letter can be L)]
[00 = move right, i.e. inc position (function letter can be R)]
[01 = stay, i.e. don't change position (function letter can be S)]
A6V
G83@ [left if top bit is 1]
[72] LD [else test next bit]
G95@ [skip move if next bit is 1]
[74] TF [here to move right]
A3V [inc position]
A2F
U3V
[Here we update the maximum position if latest >= maximum.]
[This is unnecessary if latest = maximum, but code is simpler this way.]
S4V [test against maximum position]
G95@ [skip if latest < maximum]
A4V [restore after test]
T4V [update maximum]
E91@ [always jump, to check for overflow]
[83] TF [here to move left]
A3V [dec position]
S2F
[86] U3V
S5V [test against current minimum position]
E95@ [jump if >= minimum]
A5V [restore acc after test]
T5V [update minimum]
[After updating maximum or minimum position, check that
available memory hasn't been exceeded.]
[91] A4V [maximum position]
S5V [subtract minimum position]
S25N [compare against number available]
E107@ [jump out if overflow]
[The next order also serves as a constant]
[95] TF [clear acc for next part]
[Increment the number of steps]
A#V
YFYF
T#V
[Finally set the new state.]
[100] H23N [mask for state bits in rule]
C6V [acc := new state]
SA [is it the last state?]
E111@ [if yes, halt the Turing machine]
AA [restore acc after test]
T2V [update state]
E29@ [loop back for next step]
[Overflow, i.e. non-negative tape positions (ascending in EDSAC memory)
collide with negative tape positions (descending).]
[107] O29N [set teleprinter to letters]
O107@ ON [print 'OV' to indicate overflow]
E116@ [jump to exit]
[Print number of steps]
[111] TF A#V [clear accc, load number of steps]
TD [number of steps to 0D for print subroutine
[114] A114 @GG [call print subroutine]
[116] O26N O27N [print CR, LF]
O28N [print null to flush teleprinter buffer]
ZF [stop]
[============================= G parameter ===============================]
E25K TG
[Library subroutine P7. 35 locations, even address. WWG page 18.]
[Prints non-negative integer, up to 10 digits, right-justified.]
GKA3FT26@H28#@NDYFLDT4DS27@TFH8@S8@T1FV4DAFG31@SFLDUFOFFFSFL4F
T4DA1FA27@G11@XFT28#ZPFT27ZP1024FP610D@524D!FO30@SFL8FE22@
[========================== X parameter again ===============================]
E25K TX GK
EZ [define entry point]
PF [enter with acc = 0]
[end]
|
http://rosettacode.org/wiki/Totient_function | Totient function | The totient function is also known as:
Euler's totient function
Euler's phi totient function
phi totient function
Φ function (uppercase Greek phi)
φ function (lowercase Greek phi)
Definitions (as per number theory)
The totient function:
counts the integers up to a given positive integer n that are relatively prime to n
counts the integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n,k) is equal to 1
counts numbers ≤ n and prime to n
If the totient number (for N) is one less than N, then N is prime.
Task
Create a totient function and:
Find and display (1 per line) for the 1st 25 integers:
the integer (the index)
the totient number for that integer
indicate if that integer is prime
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000 (optional)
Show all output here.
Related task
Perfect totient numbers
Also see
Wikipedia: Euler's totient function.
MathWorld: totient function.
OEIS: Euler totient function phi(n).
| #C.2B.2B | C++ | #include <cassert>
#include <iomanip>
#include <iostream>
#include <vector>
class totient_calculator {
public:
explicit totient_calculator(int max) : totient_(max + 1) {
for (int i = 1; i <= max; ++i)
totient_[i] = i;
for (int i = 2; i <= max; ++i) {
if (totient_[i] < i)
continue;
for (int j = i; j <= max; j += i)
totient_[j] -= totient_[j] / i;
}
}
int totient(int n) const {
assert (n >= 1 && n < totient_.size());
return totient_[n];
}
bool is_prime(int n) const {
return totient(n) == n - 1;
}
private:
std::vector<int> totient_;
};
int count_primes(const totient_calculator& tc, int min, int max) {
int count = 0;
for (int i = min; i <= max; ++i) {
if (tc.is_prime(i))
++count;
}
return count;
}
int main() {
const int max = 10000000;
totient_calculator tc(max);
std::cout << " n totient prime?\n";
for (int i = 1; i <= 25; ++i) {
std::cout << std::setw(2) << i
<< std::setw(9) << tc.totient(i)
<< std::setw(8) << (tc.is_prime(i) ? "yes" : "no") << '\n';
}
for (int n = 100; n <= max; n *= 10) {
std::cout << "Count of primes up to " << n << ": "
<< count_primes(tc, 1, n) << '\n';
}
return 0;
} |
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #J | J | swops =: ((|.@:{. , }.)~ {.)^:a: |
http://rosettacode.org/wiki/Trigonometric_functions | Trigonometric functions | Task
If your language has a library or built-in functions for trigonometry, show examples of:
sine
cosine
tangent
inverses (of the above)
using the same angle in radians and degrees.
For the non-inverse functions, each radian/degree pair should use arguments that evaluate to the same angle (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle).
For the inverse functions, use the same number and convert its answer to radians and degrees.
If your language does not have trigonometric functions available or only has some available, write functions to calculate the functions based on any known approximation or identity.
| #BQN | BQN | ⟨sin, cos, tan⟩ ← •math
Sin 0
0
Sin π÷2
1
Cos 0
1
Cos π÷2
6.123233995736766e¯17
Tan 0
0
Tan π÷2
16331239353195370
Sin⁼ 0
0
Sin⁼ 1
1.5707963267948966
Cos⁼ 1
0
Cos⁼ 0
1.5707963267948966
Tan⁼ 0
0
Tan⁼ ∞
1.5707963267948966 |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #ERRE | ERRE |
!Trabb Pardo-Knuth algorithm
PROGRAM TPK
!VAR I%,Y
DIM A[10]
FUNCTION F(T)
F=SQR(ABS(T))+5*T^3
END FUNCTION
BEGIN
DATA(10,-1,1,2,3,4,4.3,4.305,4.303,4.302,4.301)
FOR I%=0 TO 10 DO
READ(A[I%])
END FOR
FOR I%=10 TO 0 STEP -1 DO
Y=F(A[I%])
PRINT("F(";A[I%];")=";)
IF Y>400 THEN PRINT("--->too large<---")
ELSE PRINT(Y)
END IF
END FOR
END PROGRAM
|
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #F.23 | F# |
module ``Trabb Pardo - Knuth``
open System
let f (x: float) = sqrt(abs x) + (5.0 * (x ** 3.0))
Console.WriteLine "Enter 11 numbers:"
[for _ in 1..11 -> Convert.ToDouble(Console.ReadLine())]
|> List.rev |> List.map f |> List.iter (function
| n when n <= 400.0 -> Console.WriteLine(n)
| _ -> Console.WriteLine("Overflow"))
|
http://rosettacode.org/wiki/Twelve_statements | Twelve statements | This puzzle is borrowed from math-frolic.blogspot.
Given the following twelve statements, which of them are true?
1. This is a numbered list of twelve statements.
2. Exactly 3 of the last 6 statements are true.
3. Exactly 2 of the even-numbered statements are true.
4. If statement 5 is true, then statements 6 and 7 are both true.
5. The 3 preceding statements are all false.
6. Exactly 4 of the odd-numbered statements are true.
7. Either statement 2 or 3 is true, but not both.
8. If statement 7 is true, then 5 and 6 are both true.
9. Exactly 3 of the first 6 statements are true.
10. The next two statements are both true.
11. Exactly 1 of statements 7, 8 and 9 are true.
12. Exactly 4 of the preceding statements are true.
Task
When you get tired of trying to figure it out in your head,
write a program to solve it, and print the correct answer or answers.
Extra credit
Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
| #REXX | REXX | /*REXX program solves the "Twelve Statement Puzzle". */
q=12; @stmt=right('statement',20) /*number of statements in the puzzle. */
m=0 /*[↓] statement one is TRUE by fiat.*/
do pass=1 for 2 /*find the maximum number of "trues". */
do e=0 for 2**(q-1); n = '1'right( x2b( d2x( e ) ), q-1, 0)
do b=1 for q /*define various bits in the number Q.*/
@.b=substr(n, b, 1) /*define a particular @ bit (in Q).*/
end /*b*/
if @.1 then if yeses(1, 1) \==1 then iterate
if @.2 then if yeses(7, 12) \==3 then iterate
if @.3 then if yeses(2, 12,2) \==2 then iterate
if @.4 then if yeses(5, 5) then if yeses(6, 7) \==2 then iterate
if @.5 then if yeses(2, 4) \==0 then iterate
if @.6 then if yeses(1, 12,2) \==4 then iterate
if @.7 then if yeses(2, 3) \==1 then iterate
if @.8 then if yeses(7, 7) then if yeses(5,6) \==2 then iterate
if @.9 then if yeses(1, 6) \==3 then iterate
if @.10 then if yeses(11,12) \==2 then iterate
if @.11 then if yeses(7, 9) \==1 then iterate
if @.12 then if yeses(1, 11) \==4 then iterate
g=yeses(1, 12)
if pass==1 then do; m=max(m,g); iterate; end
else if g\==m then iterate
do j=1 for q; z=substr(n, j, 1)
if z then say @stmt right(j, 2) " is " word('false true', 1 + z)
end /*tell*/
end /*e*/
end /*pass*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
yeses: parse arg L,H,B; #=0; do i=L to H by word(B 1, 1); #=#[email protected]; end; return # |
http://rosettacode.org/wiki/Truth_table | Truth table | A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.
Task
Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function.
(One can assume that the user input is correct).
Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
Either reverse-polish or infix notation expressions are allowed.
Related tasks
Boolean values
Ternary logic
See also
Wolfram MathWorld entry on truth tables.
some "truth table" examples from Google.
| #Perl | Perl | #!/usr/bin/perl
sub truth_table {
my $s = shift;
my (%seen, @vars);
for ($s =~ /([a-zA-Z_]\w*)/g) {
$seen{$_} //= do { push @vars, $_; 1 };
}
print "\n", join("\t", @vars, $s), "\n", '-' x 40, "\n";
@vars = map("\$$_", @vars);
$s =~ s/([a-zA-Z_]\w*)/\$$1/g;
$s = "print(".join(',"\t", ', map("($_?'T':'F')", @vars, $s)).",\"\\n\")";
$s = "for my $_ (0, 1) { $s }" for (reverse @vars);
eval $s;
}
truth_table 'A ^ A_1';
truth_table 'foo & bar | baz';
truth_table 'Jim & (Spock ^ Bones) | Scotty'; |
http://rosettacode.org/wiki/Ulam_spiral_(for_primes) | Ulam spiral (for primes) | An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1), constructed on a square grid, starting at the "center".
An Ulam spiral is also known as a prime spiral.
The first grid (green) is shown with sequential integers, starting at 1.
In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk), and all non-primes as shown as a blank (or some other whitespace).
Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables).
Normally, the spiral starts in the "center", and the 2nd number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction.
There are other geometric shapes that are used as well, including clock-wise spirals.
Also, some spirals (for the 2nd number) is viewed upwards from the 1st number instead of to the right, but that is just a matter of orientation.
Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities).
[A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)].
Then, in the next phase in the transformation of the Ulam prime spiral, the non-primes are translated to blanks.
In the orange grid below, the primes are left intact, and all non-primes are changed to blanks.
Then, in the final transformation of the Ulam spiral (the yellow grid), translate the primes to a glyph such as a • or some other suitable glyph.
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
61
59
37
31
67
17
13
5
3
29
19
2
11
53
41
7
71
23
43
47
73
79
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The Ulam spiral becomes more visually obvious as the grid increases in size.
Task
For any sized N × N grid, construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number (the default would be 1), with some suitably dotty (glyph) representation to indicate primes, and the absence of dots to indicate non-primes.
You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen.
Related tasks
Spiral matrix
Zig-zag matrix
Identity matrix
Sequence of primes by Trial Division
See also
Wikipedia entry: Ulam spiral
MathWorld™ entry: Prime Spiral
| #PicoLisp | PicoLisp | (load "@lib/simul.l")
(de ceil (A)
(/ (+ A 1) 2) )
(de prime? (N)
(or
(= N 2)
(and
(> N 1)
(bit? 1 N)
(let S (sqrt N)
(for (D 3 T (+ D 2))
(T (> D S) T)
(T (=0 (% N D)) NIL) ) ) ) ) )
(de ulam (N)
(let
(G (grid N N)
D '(north west south east .)
M (ceil N) )
(setq This
(intern
(pack
(char
(+ 96 (if (bit? 1 N) M (inc M))) )
M ) ) )
(=: V '_)
(with ((car D) This)
(for (X 2 (>= (* N N) X) (inc X))
(=: V (if (prime? X) '. '_))
(setq This
(or
(with ((cadr D) This)
(unless (: V) (pop 'D) This) )
((pop D) This) ) ) ) )
G ) )
(mapc
'((L)
(for This L
(prin (align 3 (: V))) )
(prinl) )
(ulam 9) )
(bye) |
http://rosettacode.org/wiki/Truncatable_primes | Truncatable primes | A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number.
Examples
The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime.
The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime.
No zeroes are allowed in truncatable primes.
Task
The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied).
Related tasks
Find largest left truncatable prime in a given base
Sieve of Eratosthenes
See also
Truncatable Prime from MathWorld.]
| #Haskell | Haskell | import Data.Numbers.Primes(primes, isPrime)
import Data.List
import Control.Arrow
primes1e6 = reverse. filter (notElem '0'. show) $ takeWhile(<=1000000) primes
rightT, leftT :: Int -> Bool
rightT = all isPrime. takeWhile(>0). drop 1. iterate (`div`10)
leftT x = all isPrime. takeWhile(<x).map (x`mod`) $ iterate (*10) 10
main = do
let (ltp, rtp) = (head. filter leftT &&& head. filter rightT) primes1e6
putStrLn $ "Left truncatable " ++ show ltp
putStrLn $ "Right truncatable " ++ show rtp |
http://rosettacode.org/wiki/Tree_traversal | Tree traversal | Task
Implement a binary tree where each node carries an integer, and implement:
pre-order,
in-order,
post-order, and
level-order traversal.
Use those traversals to output the following tree:
1
/ \
/ \
/ \
2 3
/ \ /
4 5 6
/ / \
7 8 9
The correct output should look like this:
preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9
See also
Wikipedia article: Tree traversal.
| #AppleScript | AppleScript | on run
-- Sample tree of integers
set tree to node(1, ¬
{node(2, ¬
{node(4, {node(7, {})}), ¬
node(5, {})}), ¬
node(3, ¬
{node(6, {node(8, {}), ¬
node(9, {})})})})
-- Output of AppleScript code at Rosetta Code task
-- 'Visualize a Tree':
set strTree to unlines({¬
" ┌ 4 ─ 7", ¬
" ┌ 2 ┤", ¬
" │ └ 5", ¬
" 1 ┤", ¬
" │ ┌ 8", ¬
" └ 3 ─ 6 ┤", ¬
" └ 9"})
script tabulate
on |λ|(s, xs)
justifyRight(14, space, s & ": ") & unwords(xs)
end |λ|
end script
set strResult to strTree & linefeed & unlines(zipWith(tabulate, ¬
["preorder", "inorder", "postorder", "level-order"], ¬
apList([¬
foldTree(preorder), ¬
foldTree(inorder), ¬
foldTree(postorder), ¬
levelOrder], [tree])))
set the clipboard to strResult
return strResult
end run
---------------------- TREE TRAVERSAL ----------------------
-- preorder :: a -> [[a]] -> [a]
on preorder(x, xs)
{x} & concat(xs)
end preorder
-- inorder :: a -> [[a]] -> [a]
on inorder(x, xs)
if {} ≠ xs then
item 1 of xs & x & concat(rest of xs)
else
{x}
end if
end inorder
-- postorder :: a -> [[a]] -> [a]
on postorder(x, xs)
concat(xs) & {x}
end postorder
-- levelOrder :: Tree a -> [a]
on levelOrder(tree)
concat(levels(tree))
end levelOrder
-- foldTree :: (a -> [b] -> b) -> Tree a -> b
on foldTree(f)
script
on |λ|(tree)
script go
property g : |λ| of mReturn(f)
on |λ|(oNode)
g(root of oNode, |λ|(nest of oNode) ¬
of map(go))
end |λ|
end script
|λ|(tree) of go
end |λ|
end script
end foldTree
------------------------- GENERIC --------------------------
-- Node :: a -> [Tree a] -> Tree a
on node(v, xs)
{type:"Node", root:v, nest:xs}
end node
-- e.g. [(*2),(/2), sqrt] <*> [1,2,3]
-- --> ap([dbl, hlf, root], [1, 2, 3])
-- --> [2,4,6,0.5,1,1.5,1,1.4142135623730951,1.7320508075688772]
-- Each member of a list of functions applied to
-- each of a list of arguments, deriving a list of new values
-- apList (<*>) :: [(a -> b)] -> [a] -> [b]
on apList(fs, xs)
set lst to {}
repeat with f in fs
tell mReturn(contents of f)
repeat with x in xs
set end of lst to |λ|(contents of x)
end repeat
end tell
end repeat
return lst
end apList
-- concat :: [[a]] -> [a]
-- concat :: [String] -> String
on concat(xs)
set lng to length of xs
if 0 < lng and string is class of (item 1 of xs) then
set acc to ""
else
set acc to {}
end if
repeat with i from 1 to lng
set acc to acc & item i of xs
end repeat
acc
end concat
-- foldr :: (a -> b -> b) -> b -> [a] -> b
on foldr(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from lng to 1 by -1
set v to |λ|(item i of xs, v, i, xs)
end repeat
return v
end tell
end foldr
-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller, strText)
if n > length of strText then
text -n thru -1 of ((replicate(n, cFiller) as text) & strText)
else
strText
end if
end justifyRight
-- length :: [a] -> Int
on |length|(xs)
set c to class of xs
if list is c or string is c then
length of xs
else
(2 ^ 29 - 1) -- (maxInt - simple proxy for non-finite)
end if
end |length|
-- levels :: Tree a -> [[a]]
on levels(tree)
-- A list of lists, grouping the root
-- values of each level of the tree.
script go
on |λ|(node, a)
if {} ≠ a then
tell a to set {h, t} to {item 1, rest}
else
set {h, t} to {{}, {}}
end if
{{root of node} & h} & foldr(go, t, nest of node)
end |λ|
end script
|λ|(tree, {}) of go
end levels
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- map :: (a -> b) -> [a] -> [b]
on map(f)
-- The list obtained by applying f
-- to each element of xs.
script
on |λ|(xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end |λ|
end script
end map
-- min :: Ord a => a -> a -> a
on min(x, y)
if y < x then
y
else
x
end if
end min
-- nest :: Tree a -> [a]
on nest(oTree)
nest of oTree
end nest
-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> a -> [a]
on replicate(n, a)
set out to {}
if 1 > n then return out
set dbl to {a}
repeat while (1 < n)
if 0 < (n mod 2) then set out to out & dbl
set n to (n div 2)
set dbl to (dbl & dbl)
end repeat
return out & dbl
end replicate
-- root :: Tree a -> a
on root(oTree)
root of oTree
end root
-- take :: Int -> [a] -> [a]
-- take :: Int -> String -> String
on take(n, xs)
set c to class of xs
if list is c then
if 0 < n then
items 1 thru min(n, length of xs) of xs
else
{}
end if
else if string is c then
if 0 < n then
text 1 thru min(n, length of xs) of xs
else
""
end if
else if script is c then
set ys to {}
repeat with i from 1 to n
set v to |λ|() of xs
if missing value is v then
return ys
else
set end of ys to v
end if
end repeat
return ys
else
missing value
end if
end take
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set str to xs as text
set my text item delimiters to dlm
str
end unlines
-- unwords :: [String] -> String
on unwords(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, space}
set s to xs as text
set my text item delimiters to dlm
return s
end unwords
-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
on zipWith(f, xs, ys)
set lng to min(|length|(xs), |length|(ys))
if 1 > lng then return {}
set xs_ to take(lng, xs) -- Allow for non-finite
set ys_ to take(lng, ys) -- generators like cycle etc
set lst to {}
tell mReturn(f)
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs_, item i of ys_)
end repeat
return lst
end tell
end zipWith |
http://rosettacode.org/wiki/Topic_variable | Topic variable | Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable.
A topic variable is a special variable with a very short name which can also often be omitted.
Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language.
For instance you can (but you don't have to) show how the topic variable can be used by assigning the number
3
{\displaystyle 3}
to it and then computing its square and square root.
| #zkl | zkl | a,_,c:=List(1,2,3,4,5,6) //-->a=1, c=3, here _ is used as "ignore"
3.0 : _.sqrt() : println(_) //-->"1.73205", _ (and :) is used to "explode" a computation
// as syntactic sugar
1.0 + 2 : _.sqrt() : _.pow(4) // no variables used, the compiler "implodes" the computation
// --> 9
|
http://rosettacode.org/wiki/Top_rank_per_group | Top rank per group | Task
Find the top N salaries in each department, where N is provided as a parameter.
Use this data as a formatted internal data structure (adapt it to your language-native idioms, rather than parse at runtime), or identify your external data source:
Employee Name,Employee ID,Salary,Department
Tyler Bennett,E10297,32000,D101
John Rappl,E21437,47000,D050
George Woltman,E00127,53500,D101
Adam Smith,E63535,18000,D202
Claire Buckman,E39876,27800,D202
David McClellan,E04242,41500,D101
Rich Holcomb,E01234,49500,D202
Nathan Adams,E41298,21900,D050
Richard Potter,E43128,15900,D101
David Motsinger,E27002,19250,D202
Tim Sampair,E03033,27000,D101
Kim Arlich,E10001,57000,D190
Timothy Grove,E16398,29900,D190
| #11l | 11l | V data = [(‘Tyler Bennett’, ‘E10297’, 32000, ‘D101’),
(‘John Rappl’, ‘E21437’, 47000, ‘D050’),
(‘George Woltman’, ‘E00127’, 53500, ‘D101’),
(‘Adam Smith’, ‘E63535’, 18000, ‘D202’),
(‘Claire Buckman’, ‘E39876’, 27800, ‘D202’),
(‘David McClellan’, ‘E04242’, 41500, ‘D101’),
(‘Rich Holcomb’, ‘E01234’, 49500, ‘D202’),
(‘Nathan Adams’, ‘E41298’, 21900, ‘D050’),
(‘Richard Potter’, ‘E43128’, 15900, ‘D101’),
(‘David Motsinger’, ‘E27002’, 19250, ‘D202’),
(‘Tim Sampair’, ‘E03033’, 27000, ‘D101’),
(‘Kim Arlich’, ‘E10001’, 57000, ‘D190’),
(‘Timothy Grove’, ‘E16398’, 29900, ‘D190’)]
DefaultDict[String, [(String, String, Int, String)]] departments
L(rec) data
departments[rec[3]].append(rec)
V n = 3
L(department, recs) sorted(departments.items())
print(‘Department #.’.format(department))
print(‘ #<15 #<15 #<15 #<15 ’.format(‘Employee Name’, ‘Employee ID’, ‘Salary’, ‘Department’))
L(rec) sorted(recs, key' rec -> rec[2], reverse' 1B)[0 .< n]
print(‘ #<15 #<15 #<15 #<15 ’.format(rec[0], rec[1], rec[2], rec[3]))
print() |
http://rosettacode.org/wiki/Towers_of_Hanoi | Towers of Hanoi | Task
Solve the Towers of Hanoi problem with recursion.
| #Agena | Agena | move := proc(n::number, src::number, dst::number, via::number) is
if n > 0 then
move(n - 1, src, via, dst)
print(src & ' to ' & dst)
move(n - 1, via, dst, src)
fi
end
move(4, 1, 2, 3) |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #11l | 11l | F thue_morse_digits(digits)
R (0 .< digits).map(n -> bin(n).count(‘1’) % 2)
print(thue_morse_digits(20)) |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #C | C | #include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
uint64_t modpow(uint64_t a, uint64_t b, uint64_t n) {
uint64_t x = 1, y = a;
while (b > 0) {
if (b % 2 == 1) {
x = (x * y) % n; // multiplying with base
}
y = (y * y) % n; // squaring the base
b /= 2;
}
return x % n;
}
struct Solution {
uint64_t root1, root2;
bool exists;
};
struct Solution makeSolution(uint64_t root1, uint64_t root2, bool exists) {
struct Solution sol;
sol.root1 = root1;
sol.root2 = root2;
sol.exists = exists;
return sol;
}
struct Solution ts(uint64_t n, uint64_t p) {
uint64_t q = p - 1;
uint64_t ss = 0;
uint64_t z = 2;
uint64_t c, r, t, m;
if (modpow(n, (p - 1) / 2, p) != 1) {
return makeSolution(0, 0, false);
}
while ((q & 1) == 0) {
ss += 1;
q >>= 1;
}
if (ss == 1) {
uint64_t r1 = modpow(n, (p + 1) / 4, p);
return makeSolution(r1, p - r1, true);
}
while (modpow(z, (p - 1) / 2, p) != p - 1) {
z++;
}
c = modpow(z, q, p);
r = modpow(n, (q + 1) / 2, p);
t = modpow(n, q, p);
m = ss;
while (true) {
uint64_t i = 0, zz = t;
uint64_t b = c, e;
if (t == 1) {
return makeSolution(r, p - r, true);
}
while (zz != 1 && i < (m - 1)) {
zz = zz * zz % p;
i++;
}
e = m - i - 1;
while (e > 0) {
b = b * b % p;
e--;
}
r = r * b % p;
c = b * b % p;
t = t * c % p;
m = i;
}
}
void test(uint64_t n, uint64_t p) {
struct Solution sol = ts(n, p);
printf("n = %llu\n", n);
printf("p = %llu\n", p);
if (sol.exists) {
printf("root1 = %llu\n", sol.root1);
printf("root2 = %llu\n", sol.root2);
} else {
printf("No solution exists\n");
}
printf("\n");
}
int main() {
test(10, 13);
test(56, 101);
test(1030, 10009);
test(1032, 10009);
test(44402, 100049);
return 0;
} |
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #AppleScript | AppleScript | ------------------ TOKENIZE WITH ESCAPING ----------------
-- tokenize :: String -> Character -> Character -> [String]
on tokenize(str, delimChar, chrEsc)
script charParse
-- Record: {esc:Bool, token:String, tokens:[String]}
-- charParse :: Record -> Character -> Record
on |λ|(a, x)
set blnEsc to esc of a
set blnEscChar to ((not blnEsc) and (x = chrEsc))
if ((not blnEsc) and (x = delimChar)) then
set k to ""
set ks to (tokens of a) & token of a
else
set k to (token of a) & cond(blnEscChar, "", x)
set ks to tokens of (a)
end if
{esc:blnEscChar, token:k, tokens:ks}
end |λ|
end script
set recParse to foldl(charParse, ¬
{esc:false, token:"", tokens:[]}, splitOn("", str))
tokens of recParse & token of recParse
end tokenize
--------------------------- TEST -------------------------
on run
script numberedLine
on |λ|(a, s)
set iLine to lineNum of a
{lineNum:iLine + 1, report:report of a & iLine & ":" & tab & s & linefeed}
end |λ|
end script
report of foldl(numberedLine, {lineNum:1, report:""}, ¬
tokenize("one^|uno||three^^^^|four^^^|^cuatro|", "|", "^"))
end run
-------------------- GENERIC FUNCTIONS -------------------
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- splitOn :: String -> String -> [String]
on splitOn(pat, src)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, pat}
set xs to text items of src
set my text item delimiters to dlm
return xs
end splitOn
-- cond :: Bool -> a -> a -> a
on cond(bool, f, g)
if bool then
f
else
g
end if
end cond |
http://rosettacode.org/wiki/Total_circles_area | Total circles area | Total circles area
You are encouraged to solve this task according to the task description, using any language you may know.
Example circles
Example circles filtered
Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.
One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome.
To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):
xc yc radius
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
The result is 21.56503660... .
Related task
Circles of given radius through two points.
See also
http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/
http://stackoverflow.com/a/1667789/10562
| #Haskell | Haskell | data Circle = Circle { cx :: Double, cy :: Double, cr :: Double }
isInside :: Double -> Double -> Circle -> Bool
isInside x y c = (x - cx c) ^ 2 + (y - cy c) ^ 2 <= (cr c ^ 2)
isInsideAny :: Double -> Double -> [Circle] -> Bool
isInsideAny x y = any (isInside x y)
approximatedArea :: [Circle] -> Int -> Double
approximatedArea cs box_side = (fromIntegral count) * dx * dy
where
-- compute the bounding box of the circles
x_min = minimum [cx c - cr c | c <- circles]
x_max = maximum [cx c + cr c | c <- circles]
y_min = minimum [cy c - cr c | c <- circles]
y_max = maximum [cy c + cr c | c <- circles]
dx = (x_max - x_min) / (fromIntegral box_side)
dy = (y_max - y_min) / (fromIntegral box_side)
count = length [0 | r <- [0 .. box_side - 1],
c <- [0 .. box_side - 1],
isInsideAny (posx c) (posy r) circles]
posy r = y_min + (fromIntegral r) * dy
posx c = x_min + (fromIntegral c) * dx
circles :: [Circle]
circles = [Circle ( 1.6417233788) ( 1.6121789534) 0.0848270516,
Circle (-1.4944608174) ( 1.2077959613) 1.1039549836,
Circle ( 0.6110294452) (-0.6907087527) 0.9089162485,
Circle ( 0.3844862411) ( 0.2923344616) 0.2375743054,
Circle (-0.2495892950) (-0.3832854473) 1.0845181219,
Circle ( 1.7813504266) ( 1.6178237031) 0.8162655711,
Circle (-0.1985249206) (-0.8343333301) 0.0538864941,
Circle (-1.7011985145) (-0.1263820964) 0.4776976918,
Circle (-0.4319462812) ( 1.4104420482) 0.7886291537,
Circle ( 0.2178372997) (-0.9499557344) 0.0357871187,
Circle (-0.6294854565) (-1.3078893852) 0.7653357688,
Circle ( 1.7952608455) ( 0.6281269104) 0.2727652452,
Circle ( 1.4168575317) ( 1.0683357171) 1.1016025378,
Circle ( 1.4637371396) ( 0.9463877418) 1.1846214562,
Circle (-0.5263668798) ( 1.7315156631) 1.4428514068,
Circle (-1.2197352481) ( 0.9144146579) 1.0727263474,
Circle (-0.1389358881) ( 0.1092805780) 0.7350208828,
Circle ( 1.5293954595) ( 0.0030278255) 1.2472867347,
Circle (-0.5258728625) ( 1.3782633069) 1.3495508831,
Circle (-0.1403562064) ( 0.2437382535) 1.3804956588,
Circle ( 0.8055826339) (-0.0482092025) 0.3327165165,
Circle (-0.6311979224) ( 0.7184578971) 0.2491045282,
Circle ( 1.4685857879) (-0.8347049536) 1.3670667538,
Circle (-0.6855727502) ( 1.6465021616) 1.0593087096,
Circle ( 0.0152957411) ( 0.0638919221) 0.9771215985]
main = putStrLn $ "Approximated area: " ++
(show $ approximatedArea circles 5000) |
http://rosettacode.org/wiki/Topological_sort | Topological sort |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given a mapping between items, and items they depend on, a topological sort orders items so that no item precedes an item it depends upon.
The compiling of a library in the VHDL language has the constraint that a library must be compiled after any library it depends on.
A tool exists that extracts library dependencies.
Task
Write a function that will return a valid compile order of VHDL libraries from their dependencies.
Assume library names are single words.
Items mentioned as only dependents, (sic), have no dependents of their own, but their order of compiling must be given.
Any self dependencies should be ignored.
Any un-orderable dependencies should be flagged.
Use the following data as an example:
LIBRARY LIBRARY DEPENDENCIES
======= ====================
des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee
dw01 ieee dw01 dware gtech
dw02 ieee dw02 dware
dw03 std synopsys dware dw03 dw02 dw01 ieee gtech
dw04 dw04 ieee dw01 dware gtech
dw05 dw05 ieee dware
dw06 dw06 ieee dware
dw07 ieee dware
dware ieee dware
gtech ieee gtech
ramlib std ieee
std_cell_lib ieee std_cell_lib
synopsys
Note: the above data would be un-orderable if, for example, dw04 is added to the list of dependencies of dw01.
C.f.
Topological sort/Extracted top item.
There are two popular algorithms for topological sorting:
Kahn's 1962 topological sort [1]
depth-first search [2] [3]
| #C | C | #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
char input[] =
"des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee\n"
"dw01 ieee dw01 dware gtech\n"
"dw02 ieee dw02 dware\n"
"dw03 std synopsys dware dw03 dw02 dw01 ieee gtech\n"
"dw04 dw04 ieee dw01 dware gtech\n"
"dw05 dw05 ieee dware\n"
"dw06 dw06 ieee dware\n"
"dw07 ieee dware\n"
"dware ieee dware\n"
"gtech ieee gtech\n"
"ramlib std ieee\n"
"std_cell_lib ieee std_cell_lib\n"
"synopsys\n"
"cycle_11 cycle_12\n"
"cycle_12 cycle_11\n"
"cycle_21 dw01 cycle_22 dw02 dw03\n"
"cycle_22 cycle_21 dw01 dw04";
typedef struct item_t item_t, *item;
struct item_t { const char *name; int *deps, n_deps, idx, depth; };
int get_item(item *list, int *len, const char *name)
{
int i;
item lst = *list;
for (i = 0; i < *len; i++)
if (!strcmp(lst[i].name, name)) return i;
lst = *list = realloc(lst, ++*len * sizeof(item_t));
i = *len - 1;
memset(lst + i, 0, sizeof(item_t));
lst[i].idx = i;
lst[i].name = name;
return i;
}
void add_dep(item it, int i)
{
if (it->idx == i) return;
it->deps = realloc(it->deps, (it->n_deps + 1) * sizeof(int));
it->deps[it->n_deps++] = i;
}
int parse_input(item *ret)
{
int n_items = 0;
int i, parent, idx;
item list = 0;
char *s, *e, *word, *we;
for (s = input; ; s = 0) {
if (!(s = strtok_r(s, "\n", &e))) break;
for (i = 0, word = s; ; i++, word = 0) {
if (!(word = strtok_r(word, " \t", &we))) break;
idx = get_item(&list, &n_items, word);
if (!i) parent = idx;
else add_dep(list + parent, idx);
}
}
*ret = list;
return n_items;
}
/* recursively resolve compile order; negative means loop */
int get_depth(item list, int idx, int bad)
{
int max, i, t;
if (!list[idx].deps)
return list[idx].depth = 1;
if ((t = list[idx].depth) < 0) return t;
list[idx].depth = bad;
for (max = i = 0; i < list[idx].n_deps; i++) {
if ((t = get_depth(list, list[idx].deps[i], bad)) < 0) {
max = t;
break;
}
if (max < t + 1) max = t + 1;
}
return list[idx].depth = max;
}
int main()
{
int i, j, n, bad = -1, max, min;
item items;
n = parse_input(&items);
for (i = 0; i < n; i++)
if (!items[i].depth && get_depth(items, i, bad) < 0) bad--;
for (i = 0, max = min = 0; i < n; i++) {
if (items[i].depth > max) max = items[i].depth;
if (items[i].depth < min) min = items[i].depth;
}
printf("Compile order:\n");
for (i = min; i <= max; i++) {
if (!i) continue;
if (i < 0) printf(" [unorderable]");
else printf("%d:", i);
for (j = 0; j < n || !putchar('\n'); j++)
if (items[j].depth == i)
printf(" %s", items[j].name);
}
return 0;
} |
http://rosettacode.org/wiki/Universal_Turing_machine | Universal Turing machine | One of the foundational mathematical constructs behind computer science
is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936–1937.)
Indeed one way to definitively prove that a language
is turing-complete
is to implement a universal Turing machine in it.
Task
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
Simple incrementer
States: q0, qf
Initial state: q0
Terminating states: qf
Permissible symbols: B, 1
Blank symbol: B
Rules:
(q0, 1, 1, right, q0)
(q0, B, 1, stay, qf)
The input for this machine should be a tape of 1 1 1
Three-state busy beaver
States: a, b, c, halt
Initial state: a
Terminating states: halt
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(a, 0, 1, right, b)
(a, 1, 1, left, c)
(b, 0, 1, left, a)
(b, 1, 1, right, b)
(c, 0, 1, left, b)
(c, 1, 1, stay, halt)
The input for this machine should be an empty tape.
Bonus:
5-state, 2-symbol probable Busy Beaver machine from Wikipedia
States: A, B, C, D, E, H
Initial state: A
Terminating states: H
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(A, 0, 1, right, B)
(A, 1, 1, left, C)
(B, 0, 1, right, C)
(B, 1, 1, right, B)
(C, 0, 1, right, D)
(C, 1, 0, left, E)
(D, 0, 1, left, A)
(D, 1, 1, left, D)
(E, 0, 1, stay, H)
(E, 1, 0, left, A)
The input for this machine should be an empty tape.
This machine runs for more than 47 millions steps.
| #Erlang | Erlang | #!/usr/bin/env escript
-module(turing).
-mode(compile).
-export([main/1]).
% Incrementer definition:
% States: a | halt
% Initial state: a
% Halting states: halt
% Symbols: b | '1'
% Blank symbol: b
incrementer_config() -> {a, [halt], b}.
incrementer(a, '1') -> {'1', right, a};
incrementer(a, b) -> {'1', stay, halt}.
% Busy beaver definition:
% States: a | b | c | halt
% Initial state: a
% Halting states: halt
% Symbols: '0' | '1'
% Blank symbol: '0'
busy_beaver_config() -> {a, [halt], '0'}.
busy_beaver(a, '0') -> {'1', right, b};
busy_beaver(a, '1') -> {'1', left, c};
busy_beaver(b, '0') -> {'1', left, a};
busy_beaver(b, '1') -> {'1', right, b};
busy_beaver(c, '0') -> {'1', left, b};
busy_beaver(c, '1') -> {'1', stay, halt}.
% Mainline code.
main([]) ->
io:format("==============================~n"),
io:format("Turing machine simulator test.~n"),
io:format("==============================~n"),
Tape1 = turing(fun incrementer_config/0, fun incrementer/2, ['1','1','1']),
io:format("~w~n", [Tape1]),
Tape2 = turing(fun busy_beaver_config/0, fun busy_beaver/2, []),
io:format("~w~n", [Tape2]).
% Universal Turing machine simulator.
turing(Config, Rules, Input) ->
{Start, _, _} = Config(),
{Left, Right} = perform(Config, Rules, Start, {[], Input}),
lists:reverse(Left) ++ Right.
perform(Config, Rules, State, Input = {LeftInput, RightInput}) ->
{_, Halts, Blank} = Config(),
case lists:member(State, Halts) of
true -> Input;
false ->
{NewRight, Symbol} = symbol(RightInput, Blank),
{NewSymbol, Action, NewState} = Rules(State, Symbol),
NewInput = action(Action, Blank, {LeftInput, [NewSymbol| NewRight]}),
perform(Config, Rules, NewState, NewInput)
end.
symbol([], Blank) -> {[], Blank};
symbol([S|R], _) -> {R, S}.
action(left, Blank, {[], Right}) -> {[], [Blank|Right]};
action(left, _, {[L|Ls], Right}) -> {Ls, [L|Right]};
action(stay, _, Tape) -> Tape;
action(right, Blank, {Left, []}) -> {[Blank|Left], []};
action(right, _, {Left, [R|Rs]}) -> {[R|Left], Rs}. |
http://rosettacode.org/wiki/Totient_function | Totient function | The totient function is also known as:
Euler's totient function
Euler's phi totient function
phi totient function
Φ function (uppercase Greek phi)
φ function (lowercase Greek phi)
Definitions (as per number theory)
The totient function:
counts the integers up to a given positive integer n that are relatively prime to n
counts the integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n,k) is equal to 1
counts numbers ≤ n and prime to n
If the totient number (for N) is one less than N, then N is prime.
Task
Create a totient function and:
Find and display (1 per line) for the 1st 25 integers:
the integer (the index)
the totient number for that integer
indicate if that integer is prime
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000 (optional)
Show all output here.
Related task
Perfect totient numbers
Also see
Wikipedia: Euler's totient function.
MathWorld: totient function.
OEIS: Euler totient function phi(n).
| #D | D | import std.stdio;
int totient(int n) {
int tot = n;
for (int i = 2; i * i <= n; i += 2) {
if (n % i == 0) {
while (n % i == 0) {
n /= i;
}
tot -= tot / i;
}
if (i==2) {
i = 1;
}
}
if (n > 1) {
tot -= tot / n;
}
return tot;
}
void main() {
writeln(" n φ prime");
writeln("---------------");
int count = 0;
for (int n = 1; n <= 25; n++) {
int tot = totient(n);
if (n - 1 == tot) {
count++;
}
writefln("%2d %2d %s", n,tot, n - 1 == tot);
}
writeln;
writefln("Number of primes up to %6d = %4d", 25, count);
for (int n = 26; n <= 100_000; n++) {
int tot = totient(n);
if (n - 1 == tot) {
count++;
}
if (n == 100 || n == 1_000 || n % 10_000 == 0) {
writefln("Number of primes up to %6d = %4d", n, count);
}
}
} |
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #Java | Java | public class Topswops {
static final int maxBest = 32;
static int[] best;
static private void trySwaps(int[] deck, int f, int d, int n) {
if (d > best[n])
best[n] = d;
for (int i = n - 1; i >= 0; i--) {
if (deck[i] == -1 || deck[i] == i)
break;
if (d + best[i] <= best[n])
return;
}
int[] deck2 = deck.clone();
for (int i = 1; i < n; i++) {
final int k = 1 << i;
if (deck2[i] == -1) {
if ((f & k) != 0)
continue;
} else if (deck2[i] != i)
continue;
deck2[0] = i;
for (int j = i - 1; j >= 0; j--)
deck2[i - j] = deck[j]; // Reverse copy.
trySwaps(deck2, f | k, d + 1, n);
}
}
static int topswops(int n) {
assert(n > 0 && n < maxBest);
best[n] = 0;
int[] deck0 = new int[n + 1];
for (int i = 1; i < n; i++)
deck0[i] = -1;
trySwaps(deck0, 1, 0, n);
return best[n];
}
public static void main(String[] args) {
best = new int[maxBest];
for (int i = 1; i < 11; i++)
System.out.println(i + ": " + topswops(i));
}
} |
http://rosettacode.org/wiki/Trigonometric_functions | Trigonometric functions | Task
If your language has a library or built-in functions for trigonometry, show examples of:
sine
cosine
tangent
inverses (of the above)
using the same angle in radians and degrees.
For the non-inverse functions, each radian/degree pair should use arguments that evaluate to the same angle (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle).
For the inverse functions, use the same number and convert its answer to radians and degrees.
If your language does not have trigonometric functions available or only has some available, write functions to calculate the functions based on any known approximation or identity.
| #C | C | #include <math.h>
#include <stdio.h>
int main() {
double pi = 4 * atan(1);
/*Pi / 4 is 45 degrees. All answers should be the same.*/
double radians = pi / 4;
double degrees = 45.0;
double temp;
/*sine*/
printf("%f %f\n", sin(radians), sin(degrees * pi / 180));
/*cosine*/
printf("%f %f\n", cos(radians), cos(degrees * pi / 180));
/*tangent*/
printf("%f %f\n", tan(radians), tan(degrees * pi / 180));
/*arcsine*/
temp = asin(sin(radians));
printf("%f %f\n", temp, temp * 180 / pi);
/*arccosine*/
temp = acos(cos(radians));
printf("%f %f\n", temp, temp * 180 / pi);
/*arctangent*/
temp = atan(tan(radians));
printf("%f %f\n", temp, temp * 180 / pi);
return 0;
} |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Factor | Factor | USING: formatting io kernel math math.functions math.parser
prettyprint sequences splitting ;
IN: rosetta-code.trabb-pardo-knuth
CONSTANT: threshold 400
CONSTANT: prompt "Please enter 11 numbers: "
: fn ( x -- y ) [ abs 0.5 ^ ] [ 3 ^ 5 * ] bi + ;
: overflow? ( x -- ? ) threshold > ;
: get-input ( -- seq )
prompt write flush readln " " split dup length 11 =
[ drop get-input ] unless ;
: ?result ( ..a quot: ( ..a -- ..b ) -- ..b )
[ "f(%u) = " sprintf ] swap bi dup overflow?
[ drop "overflow" ] [ "%.3f" sprintf ] if append ; inline
: main ( -- )
get-input reverse
[ string>number [ fn ] ?result print ] each ;
MAIN: main |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Forth | Forth | : f(x) fdup fsqrt fswap 3e f** 5e f* f+ ;
4e2 fconstant f-too-big
11 Constant #Elements
: float-array ( compile: n -- / run: n -- addr )
create
floats allot
does>
swap floats + ;
#Elements float-array vec
: get-it ( -- )
." Enter " #Elements . ." numbers:" cr
#Elements 0 DO
." > " pad 25 accept cr
pad swap >float 0= abort" Invalid Number"
i vec F!
LOOP ;
: reverse-it ( -- )
#Elements 2/ 0 DO
i vec F@ #Elements i - 1- vec F@
i vec F! #Elements i - 1- vec F!
LOOP ;
: do-it ( -- )
#Elements 0 DO
i vec F@ fdup f. [char] : emit space
f(x) fdup f-too-big f> IF
fdrop ." too large"
ELSE
f.
THEN cr
LOOP ;
: tpk ( -- )
get-it reverse-it do-it ; |
http://rosettacode.org/wiki/Twelve_statements | Twelve statements | This puzzle is borrowed from math-frolic.blogspot.
Given the following twelve statements, which of them are true?
1. This is a numbered list of twelve statements.
2. Exactly 3 of the last 6 statements are true.
3. Exactly 2 of the even-numbered statements are true.
4. If statement 5 is true, then statements 6 and 7 are both true.
5. The 3 preceding statements are all false.
6. Exactly 4 of the odd-numbered statements are true.
7. Either statement 2 or 3 is true, but not both.
8. If statement 7 is true, then 5 and 6 are both true.
9. Exactly 3 of the first 6 statements are true.
10. The next two statements are both true.
11. Exactly 1 of statements 7, 8 and 9 are true.
12. Exactly 4 of the preceding statements are true.
Task
When you get tired of trying to figure it out in your head,
write a program to solve it, and print the correct answer or answers.
Extra credit
Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
| #Ruby | Ruby | constraints = [
->(st) { st.size == 12 },
->(st) { st.last(6).count(true) == 3 },
->(st) { st.each_slice(2).map(&:last).count(true) == 2 },
->(st) { st[4] ? (st[5] & st[6]) : true },
->(st) { st[1..3].none? },
->(st) { st.each_slice(2).map(&:first).count(true) == 4 },
->(st) { st[1] ^ st[2] },
->(st) { st[6] ? (st[4] & st[5]) : true },
->(st) { st.first(6).count(true) == 3 },
->(st) { st[10] & st[11] },
->(st) { st[6..8].one? },
->(st) { st[0,11].count(true) == 4 },
]
Result = Struct.new(:truths, :consistency)
results = [true, false].repeated_permutation(12).map do |truths|
Result.new(truths, constraints.zip(truths).map {|cn,truth| cn[truths] == truth })
end
puts "solution:",
results.find {|r| r.consistency.all? }.truths.to_s
puts "\nnear misses: "
near_misses = results.select {|r| r.consistency.count(false) == 1 }
near_misses.each do |r|
puts "missed by statement #{r.consistency.index(false) + 1}", r.truths.to_s
end |
http://rosettacode.org/wiki/Truth_table | Truth table | A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.
Task
Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function.
(One can assume that the user input is correct).
Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
Either reverse-polish or infix notation expressions are allowed.
Related tasks
Boolean values
Ternary logic
See also
Wolfram MathWorld entry on truth tables.
some "truth table" examples from Google.
| #Phix | Phix | sequence opstack = {}
object token
object op = 0 -- 0 = none
string s -- the expression being parsed
integer sidx -- idx to ""
integer ch -- s[sidx]
procedure err(string msg)
printf(1,"%s\n%s^ %s\n\nPressEnter...",{s,repeat(' ',sidx-1),msg})
{} = wait_key()
abort(0)
end procedure
procedure nxtch()
sidx += 1
ch = iff(sidx>length(s)?-1:s[sidx])
end procedure
procedure skipspaces()
while find(ch," \t\r\n")!=0 do nxtch() end while
end procedure
procedure get_token()
skipspaces()
if find(ch,"()!") then
token = s[sidx..sidx]
nxtch()
else
integer tokstart = sidx
if ch=-1 then token = "eof" return end if
while 1 do
nxtch()
if ch<'A' then exit end if
end while
token = s[tokstart..sidx-1]
end if
end procedure
procedure Match(string t)
if token!=t then err(t&" expected") end if
get_token()
end procedure
procedure PopFactor()
object p2 = opstack[$]
if op="not" then
opstack[$] = {0,op,p2}
else
opstack = opstack[1..$-1]
opstack[$] = {opstack[$],op,p2}
end if
op = 0
end procedure
sequence names -- {"false","true",...}
sequence flags -- { 0, 1, ,...}
procedure PushFactor(string t)
if op!=0 then PopFactor() end if
integer k = find(t,names)
if k=0 then
names = append(names,t)
k = length(names)
end if
opstack = append(opstack,k)
end procedure
procedure PushOp(string t)
if op!=0 then PopFactor() end if
op = t
end procedure
procedure Factor()
if token="not"
or token="!" then
get_token()
Factor()
if op!=0 then PopFactor() end if
PushOp("not")
elsif token="(" then
get_token()
Expr(0)
Match(")")
elsif not find(token,{"and","or","xor"}) then
PushFactor(token)
if ch!=-1 then
get_token()
end if
else
err("syntax error")
end if
end procedure
constant {operators,
precedence} = columnize({{"not",6},
{"and",5},
{"xor",4},
{"or",3}})
procedure Expr(integer p)
Factor()
while 1 do
integer k = find(token,operators)
if k=0 then exit end if
integer thisp = precedence[k]
if thisp<p then exit end if
get_token()
Expr(thisp)
PushOp(operators[k])
end while
end procedure
function eval(object s)
if atom(s) then
if s>=1 then s = flags[s] end if
return s
end if
object {lhs,op,rhs} = s
lhs = eval(lhs)
rhs = eval(rhs)
if op="and" then
return lhs and rhs
elsif op="or" then
return lhs or rhs
elsif op="xor" then
return lhs xor rhs
elsif op="not" then
return not rhs
else
?9/0
end if
end function
function next_comb()
integer fdx = length(flags)
while flags[fdx]=1 do
flags[fdx] = 0
fdx -= 1
end while
if fdx<=2 then return false end if -- all done
flags[fdx] = 1
return true
end function
function fmt(bool b)
return {"0","1"}[b+1] -- for 0/1
-- return {"F","T"}[b+1] -- for F/T
end function
procedure test(string expr)
opstack = {}
op = 0
names = {"false","true"}
s = expr
sidx = 0
nxtch()
get_token()
Expr(0)
if op!=0 then PopFactor() end if
if length(opstack)!=1 then err("some error") end if
flags = repeat(0,length(names))
flags[2] = 1 -- set "true" true
printf(1,"%s %s\n",{join(names[3..$]),s})
while 1 do
for i=3 to length(flags) do -- (skipping true&false)
printf(1,"%s%s",{fmt(flags[i]),repeat(' ',length(names[i]))})
end for
printf(1," %s\n",{fmt(eval(opstack[1]))})
if not next_comb() then exit end if
end while
puts(1,"\n")
end procedure
test("young and not (ugly or poor)")
while 1 do
puts(1,"input expression:")
string t = trim(gets(0))
puts(1,"\n")
if t="" then exit end if
test(t)
end while
|
http://rosettacode.org/wiki/Ulam_spiral_(for_primes) | Ulam spiral (for primes) | An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1), constructed on a square grid, starting at the "center".
An Ulam spiral is also known as a prime spiral.
The first grid (green) is shown with sequential integers, starting at 1.
In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk), and all non-primes as shown as a blank (or some other whitespace).
Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables).
Normally, the spiral starts in the "center", and the 2nd number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction.
There are other geometric shapes that are used as well, including clock-wise spirals.
Also, some spirals (for the 2nd number) is viewed upwards from the 1st number instead of to the right, but that is just a matter of orientation.
Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities).
[A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)].
Then, in the next phase in the transformation of the Ulam prime spiral, the non-primes are translated to blanks.
In the orange grid below, the primes are left intact, and all non-primes are changed to blanks.
Then, in the final transformation of the Ulam spiral (the yellow grid), translate the primes to a glyph such as a • or some other suitable glyph.
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
61
59
37
31
67
17
13
5
3
29
19
2
11
53
41
7
71
23
43
47
73
79
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The Ulam spiral becomes more visually obvious as the grid increases in size.
Task
For any sized N × N grid, construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number (the default would be 1), with some suitably dotty (glyph) representation to indicate primes, and the absence of dots to indicate non-primes.
You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen.
Related tasks
Spiral matrix
Zig-zag matrix
Identity matrix
Sequence of primes by Trial Division
See also
Wikipedia entry: Ulam spiral
MathWorld™ entry: Prime Spiral
| #PowerShell | PowerShell |
function New-UlamSpiral ( [int]$N )
{
# Generate list of primes
$Primes = @( 2 )
For ( $X = 3; $X -le $N*$N; $X += 2 )
{
If ( -not ( $Primes | Where { $X % $_ -eq 0 } | Select -First 1 ) ) { $Primes += $X }
}
# Initialize variables
$X = 0
$Y = -1
$i = $N * $N + 1
$Sign = 1
# Intialize array
$A = New-Object 'boolean[,]' $N, $N
# Set top row
1..$N | ForEach { $Y += $Sign; $A[$X,$Y] = --$i -in $Primes }
# For each remaining half spiral...
ForEach ( $M in ($N-1)..1 )
{
# Set the vertical quarter spiral
1..$M | ForEach { $X += $Sign; $A[$X,$Y] = --$i -in $Primes }
# Curve the spiral
$Sign = -$Sign
# Set the horizontal quarter spiral
1..$M | ForEach { $Y += $Sign; $A[$X,$Y] = --$i -in $Primes }
}
# Convert the array of booleans to text output of dots and spaces
$Spiral = ForEach ( $X in 1..$N ) { ( 1..$N | ForEach { ( ' ', '.' )[$A[($X-1),($_-1)]] } ) -join '' }
return $Spiral
}
New-UlamSpiral 100
|
http://rosettacode.org/wiki/Truncatable_primes | Truncatable primes | A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number.
Examples
The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime.
The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime.
No zeroes are allowed in truncatable primes.
Task
The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied).
Related tasks
Find largest left truncatable prime in a given base
Sieve of Eratosthenes
See also
Truncatable Prime from MathWorld.]
| #Icon_and_Unicon | Icon and Unicon | procedure main(arglist)
N := 0 < integer(\arglist[1]) | 1000000 # primes to generator 1 to ... (1M or 1st arglist)
D := (0 < integer(\arglist[2]) | 10) / 2 # primes to display (10 or 2nd arglist)
P := sieve(N) # from sieve task (modified)
write("There are ",*P," prime numbers in the range 1 to ",N)
if *P <= 2*D then
every writes( "Primes: "|!sort(P)||" "|"\n" )
else
every writes( "Primes: "|(L := sort(P))[1 to D]||" "|"... "|L[*L-D+1 to *L]||" "|"\n" )
largesttruncateable(P)
end
procedure largesttruncateable(P) #: find the largest left and right trucatable numbers in P
local ltp,rtp
every x := sort(P)[*P to 1 by -1] do # largest to smallest
if not find('0',x) then {
/ltp := islefttrunc(P,x)
/rtp := isrighttrunc(P,x)
if \ltp & \rtp then break # until both found
}
write("Largest left truncatable prime = ", ltp)
write("Largest right truncatable prime = ", rtp)
return
end
procedure isrighttrunc(P,x) #: return integer x if x and all right truncations of x are in P or fails
if x = 0 | (member(P,x) & isrighttrunc(P,x / 10)) then return x
end
procedure islefttrunc(P,x) #: return integer x if x and all left truncations of x are in P or fails
if *x = 0 | ( (x := integer(x)) & member(P,x) & islefttrunc(P,x[2:0]) ) then return x
end |
http://rosettacode.org/wiki/Tree_traversal | Tree traversal | Task
Implement a binary tree where each node carries an integer, and implement:
pre-order,
in-order,
post-order, and
level-order traversal.
Use those traversals to output the following tree:
1
/ \
/ \
/ \
2 3
/ \ /
4 5 6
/ / \
7 8 9
The correct output should look like this:
preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9
See also
Wikipedia article: Tree traversal.
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI */
/* program deftree2.s */
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ READ, 3
.equ WRITE, 4
.equ NBVAL, 9
/*******************************************/
/* Structures */
/********************************************/
/* structure tree */
.struct 0
tree_root: @ root pointer
.struct tree_root + 4
tree_size: @ number of element of tree
.struct tree_size + 4
tree_fin:
/* structure node tree */
.struct 0
node_left: @ left pointer
.struct node_left + 4
node_right: @ right pointer
.struct node_right + 4
node_value: @ element value
.struct node_value + 4
node_fin:
/* structure queue*/
.struct 0
queue_begin: @ next pointer
.struct queue_begin + 4
queue_end: @ element value
.struct queue_end + 4
queue_fin:
/* structure node queue */
.struct 0
queue_node_next: @ next pointer
.struct queue_node_next + 4
queue_node_value: @ element value
.struct queue_node_value + 4
queue_node_fin:
/* Initialized data */
.data
szMessInOrder: .asciz "inOrder :\n"
szMessPreOrder: .asciz "PreOrder :\n"
szMessPostOrder: .asciz "PostOrder :\n"
szMessLevelOrder: .asciz "LevelOrder :\n"
szCarriageReturn: .asciz "\n"
/* datas error display */
szMessErreur: .asciz "Error detected.\n"
/* datas message display */
szMessResult: .ascii "Element value :"
sValue: .space 12,' '
.asciz "\n"
/* UnInitialized data */
.bss
stTree: .skip tree_fin @ place to structure tree
stQueue: .skip queue_fin @ place to structure queue
/* code section */
.text
.global main
main:
mov r1,#1 @ node tree value
1:
ldr r0,iAdrstTree @ structure tree address
bl insertElement @ add element value r1
cmp r0,#-1
beq 99f
add r1,#1 @ increment value
cmp r1,#NBVAL @ end ?
ble 1b @ no -> loop
ldr r0,iAdrszMessPreOrder
bl affichageMess
ldr r3,iAdrstTree @ tree root address (begin structure)
ldr r0,[r3,#tree_root]
ldr r1,iAdrdisplayElement @ function to execute
bl preOrder
ldr r0,iAdrszMessInOrder
bl affichageMess
ldr r3,iAdrstTree
ldr r0,[r3,#tree_root]
ldr r1,iAdrdisplayElement @ function to execute
bl inOrder
ldr r0,iAdrszMessPostOrder
bl affichageMess
ldr r3,iAdrstTree
ldr r0,[r3,#tree_root]
ldr r1,iAdrdisplayElement @ function to execute
bl postOrder
ldr r0,iAdrszMessLevelOrder
bl affichageMess
ldr r3,iAdrstTree
ldr r0,[r3,#tree_root]
ldr r1,iAdrdisplayElement @ function to execute
bl levelOrder
b 100f
99: @ display error
ldr r0,iAdrszMessErreur
bl affichageMess
100: @ standard end of the program
mov r7, #EXIT @ request to exit program
svc 0 @ perform system call
iAdrszMessInOrder: .int szMessInOrder
iAdrszMessPreOrder: .int szMessPreOrder
iAdrszMessPostOrder: .int szMessPostOrder
iAdrszMessLevelOrder: .int szMessLevelOrder
iAdrszMessErreur: .int szMessErreur
iAdrszCarriageReturn: .int szCarriageReturn
iAdrstTree: .int stTree
iAdrstQueue: .int stQueue
iAdrdisplayElement: .int displayElement
/******************************************************************/
/* insert element in the tree */
/******************************************************************/
/* r0 contains the address of the tree structure */
/* r1 contains the value of element */
/* r0 returns address of element or - 1 if error */
insertElement:
push {r1-r7,lr} @ save registers
mov r4,r0
mov r0,#node_fin @ reservation place one element
bl allocHeap
cmp r0,#-1 @ allocation error
beq 100f
mov r5,r0
str r1,[r5,#node_value] @ store value in address heap
mov r1,#0
str r1,[r5,#node_left] @ init left pointer with zero
str r1,[r5,#node_right] @ init right pointer with zero
ldr r2,[r4,#tree_size] @ load tree size
cmp r2,#0 @ 0 element ?
bne 1f
str r5,[r4,#tree_root] @ yes -> store in root
b 4f
1: @ else search free address in tree
ldr r3,[r4,#tree_root] @ start with address root
add r6,r2,#1 @ increment tree size
clz r7,r6 @ compute zeroes left bits
add r7,#1 @ for sustract the first left bit
lsl r6,r7 @ shift number in left
2:
lsls r6,#1 @ read left bit
bcs 3f @ is 1 ?
ldr r1,[r3,#node_left] @ no store node address in left pointer
cmp r1,#0 @ if equal zero
streq r5,[r3,#node_left]
beq 4f
mov r3,r1 @ else loop with next node
b 2b
3: @ yes
ldr r1,[r3,#node_right] @ store node address in right pointer
cmp r1,#0 @ if equal zero
streq r5,[r3,#node_right]
beq 4f
mov r3,r1 @ else loop with next node
b 2b
4:
add r2,#1 @ increment tree size
str r2,[r4,#tree_size]
100:
pop {r1-r7,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* preOrder */
/******************************************************************/
/* r0 contains the address of the node */
/* r1 function address */
preOrder:
push {r1-r2,lr} @ save registers
cmp r0,#0
beq 100f
mov r2,r0
blx r1 @ call function
ldr r0,[r2,#node_left]
bl preOrder
ldr r0,[r2,#node_right]
bl preOrder
100:
pop {r1-r2,lr} @ restaur registers
bx lr
/******************************************************************/
/* inOrder */
/******************************************************************/
/* r0 contains the address of the node */
/* r1 function address */
inOrder:
push {r1-r3,lr} @ save registers
cmp r0,#0
beq 100f
mov r3,r0
mov r2,r1
ldr r0,[r3,#node_left]
bl inOrder
mov r0,r3
blx r2 @ call function
ldr r0,[r3,#node_right]
mov r1,r2
bl inOrder
100:
pop {r1-r3,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* postOrder */
/******************************************************************/
/* r0 contains the address of the node */
/* r1 function address */
postOrder:
push {r1-r3,lr} @ save registers
cmp r0,#0
beq 100f
mov r3,r0
mov r2,r1
ldr r0,[r3,#node_left]
bl postOrder
ldr r0,[r3,#node_right]
mov r1,r2
bl postOrder
mov r0,r3
blx r2 @ call function
100:
pop {r1-r3,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* levelOrder */
/******************************************************************/
/* r0 contains the address of the node */
/* r1 function address */
levelOrder:
push {r1-r4,lr} @ save registers
cmp r0,#0
beq 100f
mov r2,r1
mov r1,r0
ldr r0,iAdrstQueue @ adresse queue
bl enqueueNode @ queue the node
1: @ begin loop
ldr r0,iAdrstQueue
bl isEmptyQueue @ is queue empty
cmp r0,#0
beq 100f @ yes -> end
ldr r0,iAdrstQueue
bl dequeueNode
mov r3,r0 @ save node
blx r2 @ call function
ldr r4,[r3,#node_left] @ left node ok ?
cmp r4,#0
beq 2f @ no
ldr r0,iAdrstQueue @ yes -> enqueue
mov r1,r4
bl enqueueNode
2:
ldr r4,[r3,#node_right] @ right node ok ?
cmp r4,#0
beq 3f @ no
ldr r0,iAdrstQueue @ yes -> enqueue
mov r1,r4
bl enqueueNode
3:
b 1b @ and loop
100:
pop {r1-r4,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* display node */
/******************************************************************/
/* r0 contains node address */
displayElement:
push {r1,lr} @ save registers
ldr r0,[r0,#node_value]
ldr r1,iAdrsValue
bl conversion10S
ldr r0,iAdrszMessResult
bl affichageMess
100:
pop {r1,lr} @ restaur registers
bx lr @ return
iAdrszMessResult: .int szMessResult
iAdrsValue: .int sValue
/******************************************************************/
/* enqueue node */
/******************************************************************/
/* r0 contains the address of the queue */
/* r1 contains the value of element */
/* r0 returns address of element or - 1 if error */
enqueueNode:
push {r1-r5,lr} @ save registers
mov r4,r0
mov r0,#queue_node_fin @ allocation place heap
bl allocHeap
cmp r0,#-1 @ allocation error
beq 100f
mov r5,r0 @ save heap address
str r1,[r5,#queue_node_value] @ store node value
mov r1,#0
str r1,[r5,#queue_node_next] @ init pointer next
ldr r0,[r4,#queue_end]
cmp r0,#0
strne r5,[r0,#queue_node_next]
streq r5,[r4,#queue_begin]
str r5,[r4,#queue_end]
mov r0,#0
pop {r1-r5,lr}
bx lr @ return
/******************************************************************/
/* dequeue node */
/******************************************************************/
/* r0 contains the address of the queue */
/* r0 returns address of element or - 1 if error */
dequeueNode:
push {r1-r5,lr} @ save registers
ldr r4,[r0,#queue_begin]
ldr r5,[r4,#queue_node_value]
ldr r6,[r4,#queue_node_next]
str r6,[r0,#queue_begin]
cmp r6,#0
streq r6,[r0,#queue_end]
mov r0,r5
100:
pop {r1-r5,lr}
bx lr @ return
/******************************************************************/
/* dequeue node */
/******************************************************************/
/* r0 contains the address of the queue */
/* r0 returns 0 if empty else 1 */
isEmptyQueue:
ldr r0,[r0,#queue_begin]
cmp r0,#0
movne r0,#1
bx lr @ return
/******************************************************************/
/* memory allocation on the heap */
/******************************************************************/
/* r0 contains the size to allocate */
/* r0 returns address of memory heap or - 1 if error */
/* CAUTION : The size of the allowance must be a multiple of 4 */
allocHeap:
push {r5-r7,lr} @ save registers
@ allocation
mov r6,r0 @ save size
mov r0,#0 @ read address start heap
mov r7,#0x2D @ call system 'brk'
svc #0
mov r5,r0 @ save address heap for return
add r0,r6 @ reservation place for size
mov r7,#0x2D @ call system 'brk'
svc #0
cmp r0,#-1 @ allocation error
movne r0,r5 @ return address memory heap
pop {r5-r7,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registers
mov r2,#0 @ counter length */
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call system
pop {r0,r1,r2,r7,lr} @ restaur registers
bx lr @ return
/***************************************************/
/* Converting a register to a signed decimal */
/***************************************************/
/* r0 contains value and r1 area address */
conversion10S:
push {r0-r4,lr} @ save registers
mov r2,r1 @ debut zone stockage
mov r3,#'+' @ par defaut le signe est +
cmp r0,#0 @ negative number ?
movlt r3,#'-' @ yes
mvnlt r0,r0 @ number inversion
addlt r0,#1
mov r4,#10 @ length area
1: @ start loop
bl divisionpar10U
add r1,#48 @ digit
strb r1,[r2,r4] @ store digit on area
sub r4,r4,#1 @ previous position
cmp r0,#0 @ stop if quotient = 0
bne 1b
strb r3,[r2,r4] @ store signe
subs r4,r4,#1 @ previous position
blt 100f @ if r4 < 0 -> end
mov r1,#' ' @ space
2:
strb r1,[r2,r4] @store byte space
subs r4,r4,#1 @ previous position
bge 2b @ loop if r4 > 0
100:
pop {r0-r4,lr} @ restaur registers
bx lr
/***************************************************/
/* division par 10 unsigned */
/***************************************************/
/* r0 dividende */
/* r0 quotient */
/* r1 remainder */
divisionpar10U:
push {r2,r3,r4, lr}
mov r4,r0 @ save value
//mov r3,#0xCCCD @ r3 <- magic_number lower raspberry 3
//movt r3,#0xCCCC @ r3 <- magic_number higter raspberry 3
ldr r3,iMagicNumber @ r3 <- magic_number raspberry 1 2
umull r1, r2, r3, r0 @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0)
mov r0, r2, LSR #3 @ r2 <- r2 >> shift 3
add r2,r0,r0, lsl #2 @ r2 <- r0 * 5
sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10)
pop {r2,r3,r4,lr}
bx lr @ leave function
iMagicNumber: .int 0xCCCCCCCD
|
http://rosettacode.org/wiki/Top_rank_per_group | Top rank per group | Task
Find the top N salaries in each department, where N is provided as a parameter.
Use this data as a formatted internal data structure (adapt it to your language-native idioms, rather than parse at runtime), or identify your external data source:
Employee Name,Employee ID,Salary,Department
Tyler Bennett,E10297,32000,D101
John Rappl,E21437,47000,D050
George Woltman,E00127,53500,D101
Adam Smith,E63535,18000,D202
Claire Buckman,E39876,27800,D202
David McClellan,E04242,41500,D101
Rich Holcomb,E01234,49500,D202
Nathan Adams,E41298,21900,D050
Richard Potter,E43128,15900,D101
David Motsinger,E27002,19250,D202
Tim Sampair,E03033,27000,D101
Kim Arlich,E10001,57000,D190
Timothy Grove,E16398,29900,D190
| #Action.21 | Action! | DEFINE PTR="CARD"
DEFINE ENTRY_SIZE="8"
TYPE Employee=[
PTR name,id,dep ;CHAR ARRAY
CARD salary]
BYTE ARRAY data(200)
BYTE count=[0]
PTR FUNC GetItemAddr(INT index)
PTR addr
addr=data+index*ENTRY_SIZE
RETURN (addr)
PROC Append(CHAR ARRAY n,i CARD s CHAR ARRAY d)
Employee POINTER dst
dst=GetItemAddr(count)
dst.name=n
dst.id=i
dst.dep=d
dst.salary=s
count==+1
RETURN
PROC InitData()
Append("Tyler Bennett","E10297",32000,"D101")
Append("John Rappl","E21437",47000,"D050")
Append("George Woltman","E00127",53500,"D101")
Append("Adam Smith","E63535",18000,"D202")
Append("Claire Buckman","E39876",27800,"D202")
Append("David McClellan","E04242",41500,"D101")
Append("Rich Holcomb","E01234",49500,"D202")
Append("Nathan Adams","E41298",21900,"D050")
Append("Richard Potter","E43128",15900,"D101")
Append("David Motsinger","E27002",19250,"D202")
Append("Tim Sampair","E03033",27000,"D101")
Append("Kim Arlich","E10001",57000,"D190")
Append("Timothy Grove","E16398",29900,"D190")
RETURN
PROC Swap(Employee POINTER e1,e2)
PTR tmp
tmp=e1.name e1.name=e2.name e2.name=tmp
tmp=e1.id e1.id=e2.id e2.id=tmp
tmp=e1.dep e1.dep=e2.dep e2.dep=tmp
tmp=e1.salary e1.salary=e2.salary e2.salary=tmp
RETURN
PROC Sort()
INT i,j,minpos,comp
Employee POINTER e1,e2
FOR i=0 TO count-2
DO
minpos=i
FOR j=i+1 TO count-1
DO
e1=GetItemAddr(minpos)
e2=GetItemAddr(j)
comp=SCompare(e1.dep,e2.dep)
IF comp>0 OR comp=0 AND e1.salary<e2.salary THEN
minpos=j
FI
OD
IF minpos#i THEN
e1=GetItemAddr(minpos)
e2=GetItemAddr(i)
Swap(e1,e2)
FI
OD
RETURN
PROC TopRank(BYTE n)
BYTE i,c
CHAR ARRAY d
Employee POINTER e
i=0
WHILE i<count
DO
e=GetItemAddr(i)
IF i=0 OR SCompare(e.dep,d)#0 THEN
d=e.dep c=0
IF i>0 THEN PutE() FI
PrintF("Department %S:%E",d)
c==+1
PrintF(" %U %S %S%E",e.salary,e.id,e.name)
ELSEIF c<n THEN
c==+1
PrintF(" %U %S %S%E",e.salary,e.id,e.name)
FI
i==+1
OD
RETURN
PROC Main()
InitData()
Sort()
TopRank(3)
RETURN |
http://rosettacode.org/wiki/Towers_of_Hanoi | Towers of Hanoi | Task
Solve the Towers of Hanoi problem with recursion.
| #ALGOL_60 | ALGOL 60 | begin
procedure movedisk(n, f, t);
integer n, f, t;
begin
outstring (1, "Move disk from");
outinteger(1, f);
outstring (1, "to");
outinteger(1, t);
outstring (1, "\n");
end;
procedure dohanoi(n, f, t, u);
integer n, f, t, u;
begin
if n < 2 then
movedisk(1, f, t)
else
begin
dohanoi(n - 1, f, u, t);
movedisk(1, f, t);
dohanoi(n - 1, u, t, f);
end;
end;
dohanoi(4, 1, 2, 3);
outstring(1,"Towers of Hanoi puzzle completed!")
end |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #8080_Assembly | 8080 Assembly | org 100h
;;; Write 256 bytes of ASCII '0' starting at address 200h
lxi h,200h ; The array is page-aligned so L starts at 0
mvi a,'0' ; ASCII 0
zero: mov m,a ; Write it to memory at address HL
inr l ; Increment low byte of pointer,
jnz zero ; until it wraps to zero.
;;; Generate the first 256 elements of the Thue-Morse sequence.
gen: jpe $+4 ; If parity is even, skip next instruction
inr m ; (If parity is odd,) increment byte at HL (0->1)
inr l ; Increment low byte of pointer (and set parity),
jnz gen ; Until it wraps again.
;;; Output using CP/M call
inr h ; Increment high byte,
mvi m,'$' ; and write the CP/M string terminator there.
mvi c,9 ; Syscall 9 = print string
lxi d,200h ; The string is at 200h
jmp 5 |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #Action.21 | Action! | PROC Next(CHAR ARRAY s)
BYTE i,len
CHAR c
IF s(0)=0 THEN
s(0)=1 s(1)='0
RETURN
FI
FOR i=1 TO s(0)
DO
IF s(i)='0 THEN
c='1
ELSE
c='0
FI
s(s(0)+i)=c
OD
s(0)==*2
RETURN
PROC Main()
BYTE i
CHAR ARRAY s(256)
s(0)=0
FOR i=0 TO 7
DO
Next(s)
PrintF("T%B=%S%E%E",i,s)
OD
RETURN |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #Ada | Ada | with Ada.Text_IO; use Ada.Text_IO;
procedure Thue_Morse is
function Replace(S: String) return String is
-- replace every "0" by "01" and every "1" by "10"
(if S'Length = 0 then ""
else (if S(S'First) = '0' then "01" else "10") &
Replace(S(S'First+1 .. S'Last)));
function Sequence (N: Natural) return String is
(if N=0 then "0" else Replace(Sequence(N-1)));
begin
for I in 0 .. 6 loop
Ada.Text_IO.Put_Line(Integer'Image(I) & ": " & Sequence(I));
end loop;
end Thue_Morse; |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #C.23 | C# | using System;
using System.Collections.Generic;
using System.Numerics;
namespace TonelliShanks {
class Solution {
private readonly BigInteger root1, root2;
private readonly bool exists;
public Solution(BigInteger root1, BigInteger root2, bool exists) {
this.root1 = root1;
this.root2 = root2;
this.exists = exists;
}
public BigInteger Root1() {
return root1;
}
public BigInteger Root2() {
return root2;
}
public bool Exists() {
return exists;
}
}
class Program {
static Solution Ts(BigInteger n, BigInteger p) {
if (BigInteger.ModPow(n, (p - 1) / 2, p) != 1) {
return new Solution(0, 0, false);
}
BigInteger q = p - 1;
BigInteger ss = 0;
while ((q & 1) == 0) {
ss = ss + 1;
q = q >> 1;
}
if (ss == 1) {
BigInteger r1 = BigInteger.ModPow(n, (p + 1) / 4, p);
return new Solution(r1, p - r1, true);
}
BigInteger z = 2;
while (BigInteger.ModPow(z, (p - 1) / 2, p) != p - 1) {
z = z + 1;
}
BigInteger c = BigInteger.ModPow(z, q, p);
BigInteger r = BigInteger.ModPow(n, (q + 1) / 2, p);
BigInteger t = BigInteger.ModPow(n, q, p);
BigInteger m = ss;
while (true) {
if (t == 1) {
return new Solution(r, p - r, true);
}
BigInteger i = 0;
BigInteger zz = t;
while (zz != 1 && i < (m - 1)) {
zz = zz * zz % p;
i = i + 1;
}
BigInteger b = c;
BigInteger e = m - i - 1;
while (e > 0) {
b = b * b % p;
e = e - 1;
}
r = r * b % p;
c = b * b % p;
t = t * c % p;
m = i;
}
}
static void Main(string[] args) {
List<Tuple<long, long>> pairs = new List<Tuple<long, long>>() {
new Tuple<long, long>(10, 13),
new Tuple<long, long>(56, 101),
new Tuple<long, long>(1030, 10009),
new Tuple<long, long>(1032, 10009),
new Tuple<long, long>(44402, 100049),
new Tuple<long, long>(665820697, 1000000009),
new Tuple<long, long>(881398088036, 1000000000039),
};
foreach (var pair in pairs) {
Solution sol = Ts(pair.Item1, pair.Item2);
Console.WriteLine("n = {0}", pair.Item1);
Console.WriteLine("p = {0}", pair.Item2);
if (sol.Exists()) {
Console.WriteLine("root1 = {0}", sol.Root1());
Console.WriteLine("root2 = {0}", sol.Root2());
} else {
Console.WriteLine("No solution exists");
}
Console.WriteLine();
}
BigInteger bn = BigInteger.Parse("41660815127637347468140745042827704103445750172002");
BigInteger bp = BigInteger.Pow(10, 50) + 577;
Solution bsol = Ts(bn, bp);
Console.WriteLine("n = {0}", bn);
Console.WriteLine("p = {0}", bp);
if (bsol.Exists()) {
Console.WriteLine("root1 = {0}", bsol.Root1());
Console.WriteLine("root2 = {0}", bsol.Root2());
} else {
Console.WriteLine("No solution exists");
}
}
}
} |
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Arturo | Arturo | tokenize: function [s sep esc][
escaping: 0
loop 0..(size s)-1 [i][
chr: get split s i
if? escaping=1 [
prints chr
escaping: 0
]
else [
case [chr]
when? [=sep] [print ""]
when? [=esc] [escaping: 1]
else [prints chr]
]
]
print ""
]
str: "one^|uno||three^^^^|four^^^|^cuatro|"
tokenize str "|" "^" |
http://rosettacode.org/wiki/Total_circles_area | Total circles area | Total circles area
You are encouraged to solve this task according to the task description, using any language you may know.
Example circles
Example circles filtered
Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.
One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome.
To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):
xc yc radius
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
The result is 21.56503660... .
Related task
Circles of given radius through two points.
See also
http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/
http://stackoverflow.com/a/1667789/10562
| #J | J | NB. check points on a regular grid within the bounding box
N=: 400 NB. grids in each dimension. Controls accuracy.
'X Y R'=: |: XYR=: (_&".;._2~ LF&=)0 :0
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
)
bbox=: (<./@:- , >./@:+)&R
BBOXX=: bbox X
BBOXY=: bbox Y
grid=: 3 : 0
'MN MX N'=. y
D=. MX-MN
EDGE=. D%N
(MN(+ -:)EDGE)+(D-EDGE)*(i. % <:)N
)
assert 2.2 2.6 3 3.4 3.8 -: grid 2 4 5
GRIDDED_SAMPLES=: BBOXX {@:;&(grid@:(,&N)) BBOXY
Note '4 4{.GRIDDED_SAMPLES' NB. example
┌─────────────────┬─────────────────┬─────────────────┬─────────────────┐
│_2.59706 _2.20043│_2.59706 _2.19774│_2.59706 _2.19505│_2.59706 _2.19236│
├─────────────────┼─────────────────┼─────────────────┼─────────────────┤
│_2.59434 _2.20043│_2.59434 _2.19774│_2.59434 _2.19505│_2.59434 _2.19236│
├─────────────────┼─────────────────┼─────────────────┼─────────────────┤
│_2.59162 _2.20043│_2.59162 _2.19774│_2.59162 _2.19505│_2.59162 _2.19236│
├─────────────────┼─────────────────┼─────────────────┼─────────────────┤
│_2.58891 _2.20043│_2.58891 _2.19774│_2.58891 _2.19505│_2.58891 _2.19236│
└─────────────────┴─────────────────┴─────────────────┴─────────────────┘
)
XY=: >,GRIDDED_SAMPLES NB. convert to an usual array of floats.
mp=: $:~ :(+/ .*) NB. matrix product
assert (*: 5 13) -: (mp"1) 3 4,:5 12
in=: *:@:{:@:] >: [: mp (- }:) NB. logical function
assert 0 0 in 1 0 2 NB. X Y in X Y R
assert 0 0 (-.@:in) 44 2 3
CONTAINED=: XY in"1/XYR NB. logical table of circles containing each grid
FRACTION=: CONTAINED (+/@:(+./"1)@:[ % *:@:]) N
AREA=: BBOXX*&(-/)BBOXY NB. area of the bounding box.
FRACTION*AREA
NB. result is 21.5645 |
http://rosettacode.org/wiki/Topological_sort | Topological sort |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given a mapping between items, and items they depend on, a topological sort orders items so that no item precedes an item it depends upon.
The compiling of a library in the VHDL language has the constraint that a library must be compiled after any library it depends on.
A tool exists that extracts library dependencies.
Task
Write a function that will return a valid compile order of VHDL libraries from their dependencies.
Assume library names are single words.
Items mentioned as only dependents, (sic), have no dependents of their own, but their order of compiling must be given.
Any self dependencies should be ignored.
Any un-orderable dependencies should be flagged.
Use the following data as an example:
LIBRARY LIBRARY DEPENDENCIES
======= ====================
des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee
dw01 ieee dw01 dware gtech
dw02 ieee dw02 dware
dw03 std synopsys dware dw03 dw02 dw01 ieee gtech
dw04 dw04 ieee dw01 dware gtech
dw05 dw05 ieee dware
dw06 dw06 ieee dware
dw07 ieee dware
dware ieee dware
gtech ieee gtech
ramlib std ieee
std_cell_lib ieee std_cell_lib
synopsys
Note: the above data would be un-orderable if, for example, dw04 is added to the list of dependencies of dw01.
C.f.
Topological sort/Extracted top item.
There are two popular algorithms for topological sorting:
Kahn's 1962 topological sort [1]
depth-first search [2] [3]
| #C.23 | C# |
namespace Algorithms
{
using System;
using System.Collections.Generic;
using System.Linq;
public class TopologicalSorter<ValueType>
{
private class Relations
{
public int Dependencies = 0;
public HashSet<ValueType> Dependents = new HashSet<ValueType>();
}
private Dictionary<ValueType, Relations> _map = new Dictionary<ValueType, Relations>();
public void Add(ValueType obj)
{
if (!_map.ContainsKey(obj)) _map.Add(obj, new Relations());
}
public void Add(ValueType obj, ValueType dependency)
{
if (dependency.Equals(obj)) return;
if (!_map.ContainsKey(dependency)) _map.Add(dependency, new Relations());
var dependents = _map[dependency].Dependents;
if (!dependents.Contains(obj))
{
dependents.Add(obj);
if (!_map.ContainsKey(obj)) _map.Add(obj, new Relations());
++_map[obj].Dependencies;
}
}
public void Add(ValueType obj, IEnumerable<ValueType> dependencies)
{
foreach (var dependency in dependencies) Add(obj, dependency);
}
public void Add(ValueType obj, params ValueType[] dependencies)
{
Add(obj, dependencies as IEnumerable<ValueType>);
}
public Tuple<IEnumerable<ValueType>, IEnumerable<ValueType>> Sort()
{
List<ValueType> sorted = new List<ValueType>(), cycled = new List<ValueType>();
var map = _map.ToDictionary(kvp => kvp.Key, kvp => kvp.Value);
sorted.AddRange(map.Where(kvp => kvp.Value.Dependencies == 0).Select(kvp => kvp.Key));
for (int idx = 0; idx < sorted.Count; ++idx) sorted.AddRange(map[sorted[idx]].Dependents.Where(k => --map[k].Dependencies == 0));
cycled.AddRange(map.Where(kvp => kvp.Value.Dependencies != 0).Select(kvp => kvp.Key));
return new Tuple<IEnumerable<ValueType>, IEnumerable<ValueType>>(sorted, cycled);
}
public void Clear()
{
_map.Clear();
}
}
}
/*
Example usage with Task object
*/
namespace ExampleApplication
{
using Algorithms;
using System;
using System.Collections.Generic;
using System.Linq;
public class Task
{
public string Message;
}
class Program
{
static void Main(string[] args)
{
List<Task> tasks = new List<Task>
{
new Task{ Message = "A - depends on B and C" }, //0
new Task{ Message = "B - depends on none" }, //1
new Task{ Message = "C - depends on D and E" }, //2
new Task{ Message = "D - depends on none" }, //3
new Task{ Message = "E - depends on F, G and H" }, //4
new Task{ Message = "F - depends on I" }, //5
new Task{ Message = "G - depends on none" }, //6
new Task{ Message = "H - depends on none" }, //7
new Task{ Message = "I - depends on none" }, //8
};
TopologicalSorter<Task> resolver = new TopologicalSorter<Task>();
// now setting relations between them as described above
resolver.Add(tasks[0], new[] { tasks[1], tasks[2] });
//resolver.Add(tasks[1]); // no need for this since the task was already mentioned as a dependency
resolver.Add(tasks[2], new[] { tasks[3], tasks[4] });
//resolver.Add(tasks[3]); // no need for this since the task was already mentioned as a dependency
resolver.Add(tasks[4], tasks[5], tasks[6], tasks[7]);
resolver.Add(tasks[5], tasks[8]);
//resolver.Add(tasks[6]); // no need for this since the task was already mentioned as a dependency
//resolver.Add(tasks[7]); // no need for this since the task was already mentioned as a dependency
//resolver.Add(tasks[3], tasks[0]); // uncomment this line to test cycled dependency
var result = resolver.Sort();
var sorted = result.Item1;
var cycled = result.Item2;
if (!cycled.Any())
{
foreach (var d in sorted) Console.WriteLine(d.Message);
}
else
{
Console.Write("Cycled dependencies detected: ");
foreach (var d in cycled) Console.Write($"{d.Message[0]} ");
Console.WriteLine();
}
Console.WriteLine("exiting...");
}
}
}
|
http://rosettacode.org/wiki/Universal_Turing_machine | Universal Turing machine | One of the foundational mathematical constructs behind computer science
is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936–1937.)
Indeed one way to definitively prove that a language
is turing-complete
is to implement a universal Turing machine in it.
Task
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
Simple incrementer
States: q0, qf
Initial state: q0
Terminating states: qf
Permissible symbols: B, 1
Blank symbol: B
Rules:
(q0, 1, 1, right, q0)
(q0, B, 1, stay, qf)
The input for this machine should be a tape of 1 1 1
Three-state busy beaver
States: a, b, c, halt
Initial state: a
Terminating states: halt
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(a, 0, 1, right, b)
(a, 1, 1, left, c)
(b, 0, 1, left, a)
(b, 1, 1, right, b)
(c, 0, 1, left, b)
(c, 1, 1, stay, halt)
The input for this machine should be an empty tape.
Bonus:
5-state, 2-symbol probable Busy Beaver machine from Wikipedia
States: A, B, C, D, E, H
Initial state: A
Terminating states: H
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(A, 0, 1, right, B)
(A, 1, 1, left, C)
(B, 0, 1, right, C)
(B, 1, 1, right, B)
(C, 0, 1, right, D)
(C, 1, 0, left, E)
(D, 0, 1, left, A)
(D, 1, 1, left, D)
(E, 0, 1, stay, H)
(E, 1, 0, left, A)
The input for this machine should be an empty tape.
This machine runs for more than 47 millions steps.
| #Fortran | Fortran | 1 State 1
1,-1, 3
1,+1, 2
2 State 2
1,+1, 2
1,-1, 1
|
http://rosettacode.org/wiki/Totient_function | Totient function | The totient function is also known as:
Euler's totient function
Euler's phi totient function
phi totient function
Φ function (uppercase Greek phi)
φ function (lowercase Greek phi)
Definitions (as per number theory)
The totient function:
counts the integers up to a given positive integer n that are relatively prime to n
counts the integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n,k) is equal to 1
counts numbers ≤ n and prime to n
If the totient number (for N) is one less than N, then N is prime.
Task
Create a totient function and:
Find and display (1 per line) for the 1st 25 integers:
the integer (the index)
the totient number for that integer
indicate if that integer is prime
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000 (optional)
Show all output here.
Related task
Perfect totient numbers
Also see
Wikipedia: Euler's totient function.
MathWorld: totient function.
OEIS: Euler totient function phi(n).
| #Delphi | Delphi | func totient(n) {
var tot = n
var i = 2
while i * i <= n {
if n % i == 0 {
while n % i == 0 {
n /= i
}
tot -= tot / i
}
if i == 2 {
i = 1
}
i += 2
}
if n > 1 {
tot -= tot / n
}
return tot
}
print("n\tphi\tprime")
var count = 0
for n in 1..25 {
var tot = totient(n)
var isPrime = n - 1 == tot
if isPrime {
count += 1
}
print("\(n)\t\(tot)\t\(isPrime)")
}
print("\nNumber of primes up to 25 \t= \(count)")
for n in 26..100000 {
var tot = totient(n)
if tot == n - 1 {
count += 1
}
if n == 100 || n == 1000 || n % 10000 == 0 {
print("Number of primes up to \(n) \t= \(count)")
}
} |
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #jq | jq | # "while" as defined here is included in recent versions (>1.4) of jq:
def until(cond; next):
def _until:
if cond then . else (next|_until) end;
_until;
# Generate a stream of permutations of [1, ... n].
# This implementation uses arity-0 filters for speed.
def permutations:
# Given a single array, insert generates a stream by inserting (length+1) at different positions
def insert: # state: [m, array]
.[0] as $m | (1+(.[1]|length)) as $n
| .[1]
| if $m >= 0 then (.[0:$m] + [$n] + .[$m:]), ([$m-1, .] | insert) else empty end;
if .==0 then []
elif . == 1 then [1]
else
. as $n | ($n-1) | permutations | [$n-1, .] | insert
end; |
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #Julia | Julia | function fannkuch(n)
n == 1 && return 0
n == 2 && return 1
p = [1:n]
q = copy(p)
s = copy(p)
sign = 1; maxflips = sum = 0
while true
q0 = p[1]
if q0 != 1
for i = 2:n
q[i] = p[i]
end
flips = 1
while true
qq = q[q0] #??
if qq == 1
sum += sign*flips
flips > maxflips && (maxflips = flips)
break
end
q[q0] = q0
if q0 >= 4
i = 2; j = q0-1
while true
t = q[i]
q[i] = q[j]
q[j] = t
i += 1
j -= 1
i >= j && break
end
end
q0 = qq
flips += 1
end
end
#permute
if sign == 1
t = p[2]
p[2] = p[1]
p[1] = t
sign = -1
else
t = p[2]
p[2] = p[3]
p[3] = t
sign = 1
for i = 3:n
sx = s[i]
if sx != 1
s[i] = sx-1
break
end
i == n && return maxflips
s[i] = i
t = p[1]
for j = 1:i
p[j] = p[j+1]
end
p[i+1] = t
end
end
end
end |
http://rosettacode.org/wiki/Trigonometric_functions | Trigonometric functions | Task
If your language has a library or built-in functions for trigonometry, show examples of:
sine
cosine
tangent
inverses (of the above)
using the same angle in radians and degrees.
For the non-inverse functions, each radian/degree pair should use arguments that evaluate to the same angle (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle).
For the inverse functions, use the same number and convert its answer to radians and degrees.
If your language does not have trigonometric functions available or only has some available, write functions to calculate the functions based on any known approximation or identity.
| #C.23 | C# | using System;
namespace RosettaCode {
class Program {
static void Main(string[] args) {
Console.WriteLine("=== radians ===");
Console.WriteLine("sin (pi/3) = {0}", Math.Sin(Math.PI / 3));
Console.WriteLine("cos (pi/3) = {0}", Math.Cos(Math.PI / 3));
Console.WriteLine("tan (pi/3) = {0}", Math.Tan(Math.PI / 3));
Console.WriteLine("arcsin (1/2) = {0}", Math.Asin(0.5));
Console.WriteLine("arccos (1/2) = {0}", Math.Acos(0.5));
Console.WriteLine("arctan (1/2) = {0}", Math.Atan(0.5));
Console.WriteLine("");
Console.WriteLine("=== degrees ===");
Console.WriteLine("sin (60) = {0}", Math.Sin(60 * Math.PI / 180));
Console.WriteLine("cos (60) = {0}", Math.Cos(60 * Math.PI / 180));
Console.WriteLine("tan (60) = {0}", Math.Tan(60 * Math.PI / 180));
Console.WriteLine("arcsin (1/2) = {0}", Math.Asin(0.5) * 180/ Math.PI);
Console.WriteLine("arccos (1/2) = {0}", Math.Acos(0.5) * 180 / Math.PI);
Console.WriteLine("arctan (1/2) = {0}", Math.Atan(0.5) * 180 / Math.PI);
Console.ReadLine();
}
}
} |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Fortran | Fortran | program tpk
implicit none
real, parameter :: overflow = 400.0
real :: a(11), res
integer :: i
write(*,*) "Input eleven numbers:"
read(*,*) a
a = a(11:1:-1)
do i = 1, 11
res = f(a(i))
write(*, "(a, f0.3, a)", advance = "no") "f(", a(i), ") = "
if(res > overflow) then
write(*, "(a)") "overflow!"
else
write(*, "(f0.3)") res
end if
end do
contains
real function f(x)
real, intent(in) :: x
f = sqrt(abs(x)) + 5.0*x**3
end function
end program |
http://rosettacode.org/wiki/Twelve_statements | Twelve statements | This puzzle is borrowed from math-frolic.blogspot.
Given the following twelve statements, which of them are true?
1. This is a numbered list of twelve statements.
2. Exactly 3 of the last 6 statements are true.
3. Exactly 2 of the even-numbered statements are true.
4. If statement 5 is true, then statements 6 and 7 are both true.
5. The 3 preceding statements are all false.
6. Exactly 4 of the odd-numbered statements are true.
7. Either statement 2 or 3 is true, but not both.
8. If statement 7 is true, then 5 and 6 are both true.
9. Exactly 3 of the first 6 statements are true.
10. The next two statements are both true.
11. Exactly 1 of statements 7, 8 and 9 are true.
12. Exactly 4 of the preceding statements are true.
Task
When you get tired of trying to figure it out in your head,
write a program to solve it, and print the correct answer or answers.
Extra credit
Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
| #Scala | Scala | class LogicPuzzle {
val s = new Array[Boolean](13)
var count = 0
def check2: Boolean = {
var count = 0
for (k <- 7 to 12) if (s(k)) count += 1
s(2) == (count == 3)
}
def check3: Boolean = {
var count = 0
for (k <- 2 to 12 by 2) if (s(k)) count += 1
s(3) == (count == 2)
}
def check4: Boolean = s(4) == (!s(5) || s(6) && s(7))
def check5: Boolean = s(5) == (!s(2) && !s(3) && !s(4))
def check6: Boolean = {
var count = 0
for (k <- 1 to 11 by 2) if (s(k)) count += 1
s(6) == (count == 4)
}
def check7: Boolean = s(7) == ((s(2) || s(3)) && !(s(2) && s(3)))
def check8: Boolean = s(8) == (!s(7) || s(5) && s(6))
def check9: Boolean = {
var count = 0
for (k <- 1 to 6) if (s(k)) count += 1
s(9) == (count == 3)
}
def check10: Boolean = s(10) == (s(11) && s(12))
def check11: Boolean = {
var count = 0
for (k <- 7 to 9) if (s(k)) count += 1
s(11) == (count == 1)
}
def check12: Boolean = {
var count = 0
for (k <- 1 to 11) if (s(k)) count += 1
s(12) == (count == 4)
}
def check(): Unit = {
if (check2 && check3 && check4 && check5 && check6 && check7 && check8 && check9 && check10 && check11 && check12) {
for (k <- 1 to 12) if (s(k)) print(k + " ")
println()
count += 1
}
}
def recurseAll(k: Int): Unit = {
if (k == 13) check()
else {
s(k) = false
recurseAll(k + 1)
s(k) = true
recurseAll(k + 1)
}
}
}
object LogicPuzzle extends App {
val p = new LogicPuzzle
p.s(1) = true
p.recurseAll(2)
println()
println(s"${p.count} Solutions found.")
} |
http://rosettacode.org/wiki/Truth_table | Truth table | A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.
Task
Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function.
(One can assume that the user input is correct).
Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
Either reverse-polish or infix notation expressions are allowed.
Related tasks
Boolean values
Ternary logic
See also
Wolfram MathWorld entry on truth tables.
some "truth table" examples from Google.
| #PicoLisp | PicoLisp | (de truthTable (Expr)
(let Vars
(uniq
(make
(setq Expr
(recur (Expr) # Convert infix to prefix notation
(cond
((atom Expr) (link Expr))
((== 'not (car Expr))
(list 'not (recurse (cadr Expr))) )
(T
(list
(cadr Expr)
(recurse (car Expr))
(recurse (caddr Expr)) ) ) ) ) ) ) )
(for V Vars
(prin (align -7 V)) )
(prinl)
(bind (mapcar cons Vars)
(do (** 2 (length Vars))
(for "V" Vars
(space (if (print (val "V")) 6 4)) )
(println (eval Expr))
(find '(("V") (set "V" (not (val "V")))) Vars) ) ) ) ) |
http://rosettacode.org/wiki/Ulam_spiral_(for_primes) | Ulam spiral (for primes) | An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1), constructed on a square grid, starting at the "center".
An Ulam spiral is also known as a prime spiral.
The first grid (green) is shown with sequential integers, starting at 1.
In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk), and all non-primes as shown as a blank (or some other whitespace).
Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables).
Normally, the spiral starts in the "center", and the 2nd number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction.
There are other geometric shapes that are used as well, including clock-wise spirals.
Also, some spirals (for the 2nd number) is viewed upwards from the 1st number instead of to the right, but that is just a matter of orientation.
Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities).
[A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)].
Then, in the next phase in the transformation of the Ulam prime spiral, the non-primes are translated to blanks.
In the orange grid below, the primes are left intact, and all non-primes are changed to blanks.
Then, in the final transformation of the Ulam spiral (the yellow grid), translate the primes to a glyph such as a • or some other suitable glyph.
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
61
59
37
31
67
17
13
5
3
29
19
2
11
53
41
7
71
23
43
47
73
79
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The Ulam spiral becomes more visually obvious as the grid increases in size.
Task
For any sized N × N grid, construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number (the default would be 1), with some suitably dotty (glyph) representation to indicate primes, and the absence of dots to indicate non-primes.
You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen.
Related tasks
Spiral matrix
Zig-zag matrix
Identity matrix
Sequence of primes by Trial Division
See also
Wikipedia entry: Ulam spiral
MathWorld™ entry: Prime Spiral
| #Python | Python | # coding=UTF-8
from __future__ import print_function, division
from math import sqrt
def cell(n, x, y, start=1):
d, y, x = 0, y - n//2, x - (n - 1)//2
l = 2*max(abs(x), abs(y))
d = (l*3 + x + y) if y >= x else (l - x - y)
return (l - 1)**2 + d + start - 1
def show_spiral(n, symbol='# ', start=1, space=None):
top = start + n*n + 1
is_prime = [False,False,True] + [True,False]*(top//2)
for x in range(3, 1 + int(sqrt(top))):
if not is_prime[x]: continue
for i in range(x*x, top, x*2):
is_prime[i] = False
cell_str = lambda x: f(x) if is_prime[x] else space
f = lambda _: symbol # how to show prime cells
if space == None: space = ' '*len(symbol)
if not len(symbol): # print numbers instead
max_str = len(str(n*n + start - 1))
if space == None: space = '.'*max_str + ' '
f = lambda x: ('%' + str(max_str) + 'd ')%x
for y in range(n):
print(''.join(cell_str(v) for v in [cell(n, x, y, start) for x in range(n)]))
print()
show_spiral(10, symbol=u'♞', space=u'♘') # black are the primes
show_spiral(9, symbol='', space=' - ')
# for filling giant terminals
#show_spiral(1001, symbol='*', start=42) |
http://rosettacode.org/wiki/Truncatable_primes | Truncatable primes | A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number.
Examples
The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime.
The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime.
No zeroes are allowed in truncatable primes.
Task
The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied).
Related tasks
Find largest left truncatable prime in a given base
Sieve of Eratosthenes
See also
Truncatable Prime from MathWorld.]
| #J | J | selPrime=: #~ 1&p:
seed=: selPrime digits=: 1+i.9
step=: selPrime@,@:(,&.":/&>)@{@; |
http://rosettacode.org/wiki/Tree_traversal | Tree traversal | Task
Implement a binary tree where each node carries an integer, and implement:
pre-order,
in-order,
post-order, and
level-order traversal.
Use those traversals to output the following tree:
1
/ \
/ \
/ \
2 3
/ \ /
4 5 6
/ / \
7 8 9
The correct output should look like this:
preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9
See also
Wikipedia article: Tree traversal.
| #ATS | ATS | #include
"share/atspre_staload.hats"
//
(* ****** ****** *)
//
datatype
tree (a:t@ype) =
| tnil of ()
| tcons of (tree a, a, tree a)
//
(* ****** ****** *)
symintr ++
infixr (+) ++
overload ++ with list_append
(* ****** ****** *)
#define sing list_sing
(* ****** ****** *)
fun{
a:t@ype
} preorder
(t0: tree a): List0 a =
case t0 of
| tnil () => nil ()
| tcons (tl, x, tr) => sing(x) ++ preorder(tl) ++ preorder(tr)
(* ****** ****** *)
fun{
a:t@ype
} inorder
(t0: tree a): List0 a =
case t0 of
| tnil () => nil ()
| tcons (tl, x, tr) => inorder(tl) ++ sing(x) ++ inorder(tr)
(* ****** ****** *)
fun{
a:t@ype
} postorder
(t0: tree a): List0 a =
case t0 of
| tnil () => nil ()
| tcons (tl, x, tr) => postorder(tl) ++ postorder(tr) ++ sing(x)
(* ****** ****** *)
fun{
a:t@ype
} levelorder
(t0: tree a): List0 a = let
//
fun auxlst
(ts: List (tree(a))): List0 a =
case ts of
| list_nil () => list_nil ()
| list_cons (t, ts) =>
(
case+ t of
| tnil () => auxlst (ts)
| tcons (tl, x, tr) => cons (x, auxlst (ts ++ $list{tree(a)}(tl, tr)))
)
//
in
auxlst (sing(t0))
end // end of [levelorder]
(* ****** ****** *)
macdef
tsing(x) = tcons (tnil, ,(x), tnil)
(* ****** ****** *)
implement
main0 () = let
//
val t0 =
tcons{int}
(
tcons (tcons (tsing (7), 4, tnil ()), 2, tsing (5))
,
1
,
tcons (tcons (tsing (8), 6, tsing (9)), 3, tnil ())
)
//
in
println! ("preorder:\t", preorder(t0));
println! ("inorder:\t", inorder(t0));
println! ("postorder:\t", postorder(t0));
println! ("level-order:\t", levelorder(t0));
end (* end of [main0] *) |
http://rosettacode.org/wiki/Tokenize_a_string | Tokenize a string | Separate the string "Hello,How,Are,You,Today" by commas into an array (or list) so that each element of it stores a different word.
Display the words to the 'user', in the simplest manner possible, separated by a period.
To simplify, you may display a trailing period.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #11l | 11l | V text = ‘Hello,How,Are,You,Today’
V tokens = text.split(‘,’)
print(tokens.join(‘.’)) |
http://rosettacode.org/wiki/Top_rank_per_group | Top rank per group | Task
Find the top N salaries in each department, where N is provided as a parameter.
Use this data as a formatted internal data structure (adapt it to your language-native idioms, rather than parse at runtime), or identify your external data source:
Employee Name,Employee ID,Salary,Department
Tyler Bennett,E10297,32000,D101
John Rappl,E21437,47000,D050
George Woltman,E00127,53500,D101
Adam Smith,E63535,18000,D202
Claire Buckman,E39876,27800,D202
David McClellan,E04242,41500,D101
Rich Holcomb,E01234,49500,D202
Nathan Adams,E41298,21900,D050
Richard Potter,E43128,15900,D101
David Motsinger,E27002,19250,D202
Tim Sampair,E03033,27000,D101
Kim Arlich,E10001,57000,D190
Timothy Grove,E16398,29900,D190
| #Ada | Ada | with Ada.Containers.Vectors;
with Ada.Text_IO;
procedure Top is
type Departments is (D050, D101, D190, D202);
type Employee_Data is record
Name : String (1 .. 15);
ID : String (1 .. 6);
Salary : Positive;
Department : Departments;
end record;
package Employee_Vectors is new Ada.Containers.Vectors
(Element_Type => Employee_Data, Index_Type => Positive);
function Compare_Salary (Left, Right : Employee_Data) return Boolean is
begin
return Left.Salary > Right.Salary;
end Compare_Salary;
package Salary_Sort is new Employee_Vectors.Generic_Sorting
("<" => Compare_Salary);
function Compare_Department (Left, Right : Employee_Data) return Boolean is
begin
return Left.Department < Right.Department;
end Compare_Department;
package Department_Sort is new Employee_Vectors.Generic_Sorting
("<" => Compare_Department);
Example_Data : Employee_Vectors.Vector;
begin
-- fill data
Example_Data.Append (("Tyler Bennett ", "E10297", 32000, D101));
Example_Data.Append (("John Rappl ", "E21437", 47000, D050));
Example_Data.Append (("George Woltman ", "E00127", 53500, D101));
Example_Data.Append (("Adam Smith ", "E63535", 18000, D202));
Example_Data.Append (("Claire Buckman ", "E39876", 27800, D202));
Example_Data.Append (("David McClellan", "E04242", 41500, D101));
Example_Data.Append (("Rich Holcomb ", "E01234", 49500, D202));
Example_Data.Append (("Nathan Adams ", "E41298", 21900, D050));
Example_Data.Append (("Richard Potter ", "E43128", 15900, D101));
Example_Data.Append (("David Motsinger", "E27002", 19250, D202));
Example_Data.Append (("Tim Sampair ", "E03033", 27000, D101));
Example_Data.Append (("Kim Arlich ", "E10001", 57000, D190));
Example_Data.Append (("Timothy Grove ", "E16398", 29900, D190));
-- sort by salary
Salary_Sort.Sort (Example_Data);
-- output each department
for Department in Departments loop
declare
Position : Employee_Vectors.Cursor := Example_Data.First;
Employee : Employee_Data;
begin
Ada.Text_IO.Put_Line ("Department " & Departments'Image (Department));
for I in 1 .. 3 loop
Employee := Employee_Vectors.Element (Position);
while Employee.Department /= Department loop
Position := Employee_Vectors.Next (Position);
Employee := Employee_Vectors.Element (Position);
end loop;
Ada.Text_IO.Put_Line (" " & Employee.Name & " | " &
Employee.ID & " | " &
Positive'Image (Employee.Salary));
Position := Employee_Vectors.Next (Position);
end loop;
exception
when Constraint_Error =>
null;
end;
end loop;
end Top; |
http://rosettacode.org/wiki/Towers_of_Hanoi | Towers of Hanoi | Task
Solve the Towers of Hanoi problem with recursion.
| #ALGOL_68 | ALGOL 68 | PROC move = (INT n, from, to, via) VOID:
IF n > 0 THEN
move(n - 1, from, via, to);
printf(($"Move disk from pole "g" to pole "gl$, from, to));
move(n - 1, via, to, from)
FI
;
main: (
move(4, 1,2,3)
) |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #ALGOL_68 | ALGOL 68 | # "flips" the "bits" in a string (assumed to contain only "0" and "1" characters) #
OP FLIP = ( STRING s )STRING:
BEGIN
STRING result := s;
FOR char pos FROM LWB result TO UPB result DO
result[ char pos ] := IF result[ char pos ] = "0" THEN "1" ELSE "0" FI
OD;
result
END; # FLIP #
# print the first few members of the Thue-Morse sequence #
STRING tm := "0";
TO 7 DO
print( ( tm, newline ) );
tm +:= FLIP tm
OD |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #AppleScript | AppleScript | ------------------------ THUE MORSE ----------------------
-- thueMorse :: Int -> String
on thueMorse(nCycles)
script concatBinaryInverse
on |λ|(xs)
script binaryInverse
on |λ|(x)
1 - x
end |λ|
end script
xs & map(binaryInverse, xs)
end |λ|
end script
intercalate("", ¬
foldl(concatBinaryInverse, [0], ¬
enumFromTo(1, nCycles)))
end thueMorse
--------------------------- TEST -------------------------
on run
thueMorse(6)
--> 0110100110010110100101100110100110010110011010010110100110010110
end run
------------------------- GENERIC ------------------------
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m ≤ n then
set lst to {}
repeat with i from m to n
set end of lst to i
end repeat
lst
else
{}
end if
end enumFromTo
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- intercalate :: Text -> [Text] -> Text
on intercalate(strText, lstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set strJoined to lstText as text
set my text item delimiters to dlm
return strJoined
end intercalate
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #Clojure | Clojure |
(defn find-first
" Finds first element of collection that satisifies predicate function pred "
[pred coll]
(first (filter pred coll)))
(defn modpow
" b^e mod m (using Java which solves some cases the pure clojure method has to be modified to tackle--i.e. with large b & e and
calculation simplications when gcd(b, m) == 1 and gcd(e, m) == 1) "
[b e m]
(.modPow (biginteger b) (biginteger e) (biginteger m)))
(defn legendre [a p]
(modpow a (quot (dec p) 2) p)
)
(defn tonelli [n p]
" Following Wikipedia https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm "
(assert (= (legendre n p) 1) "not a square (mod p)")
(loop [q (dec p) ; Step 1 in Wikipedia
s 0]
(if (zero? (rem q 2))
(recur (quot q 2) (inc s))
(if (= s 1)
(modpow n (quot (inc p) 4) p)
(let [z (find-first #(= (dec p) (legendre % p)) (range 2 p))] ; Step 2 in Wikipedia
(loop [
M s
c (modpow z q p)
t (modpow n q p)
R (modpow n (quot (inc q) 2) p)]
(if (= t 1)
R
(let [i (long (find-first #(= 1 (modpow t (bit-shift-left 1 %) p)) (range 1 M))) ; Step 3
b (modpow c (bit-shift-left 1 (- M i 1)) p)
M i
c (modpow b 2 p)
t (rem (* t c) p)
R (rem (* R b) p)]
(recur M c t R)
)
)
)
)
)
)
)
)
; Testing--using Python examples
(doseq [[n p] [[10, 13], [56, 101], [1030, 10009], [44402, 100049],
[665820697, 1000000009], [881398088036, 1000000000039],
[41660815127637347468140745042827704103445750172002, 100000000000000000000000000000000000000000000000577]]
:let [r (tonelli n p)]]
(println (format "n: %5d p: %d \n\troots: %5d %5d" (biginteger n) (biginteger p) (biginteger r) (biginteger (- p r)))))
|
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #AutoHotkey | AutoHotkey | Tokenize(s,d,e){
for i,v in x:=StrSplit(StrReplace(StrReplace(StrReplace(s,e e,Chr(0xFFFE)),e d,Chr(0xFFFF)),e),d)
x[i]:=StrReplace(StrReplace(v,Chr(0xFFFE),e),Chr(0xFFFF),d)
return x
} |
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #BBC_BASIC | BBC BASIC | REM >tokenizer
PROC_tokenize("one^|uno||three^^^^|four^^^|^cuatro|", "|", "^")
END
:
DEF PROC_tokenize(src$, sep$, esc$)
LOCAL field%, char$, escaping%, i%
field% = 1
escaping% = FALSE
PRINT field%; " ";
FOR i% = 1 TO LEN src$
char$ = MID$(src$, i%, 1)
IF escaping% THEN
PRINT char$;
escaping% = FALSE
ELSE
CASE char$ OF
WHEN sep$
PRINT
field% += 1
PRINT field%; " ";
WHEN esc$
escaping% = TRUE
OTHERWISE
PRINT char$;
ENDCASE
ENDIF
NEXT
PRINT
ENDPROC |
http://rosettacode.org/wiki/Total_circles_area | Total circles area | Total circles area
You are encouraged to solve this task according to the task description, using any language you may know.
Example circles
Example circles filtered
Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.
One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome.
To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):
xc yc radius
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
The result is 21.56503660... .
Related task
Circles of given radius through two points.
See also
http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/
http://stackoverflow.com/a/1667789/10562
| #Java | Java |
public class CirclesTotalArea {
/*
* Rectangles are given as 4-element arrays [tx, ty, w, h].
* Circles are given as 3-element arrays [cx, cy, r].
*/
private static double distSq(double x1, double y1, double x2, double y2) {
return (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);
}
private static boolean rectangleFullyInsideCircle(double[] rect, double[] circ) {
double r2 = circ[2] * circ[2];
// Every corner point of rectangle must be inside the circle.
return distSq(rect[0], rect[1], circ[0], circ[1]) <= r2 &&
distSq(rect[0] + rect[2], rect[1], circ[0], circ[1]) <= r2 &&
distSq(rect[0], rect[1] - rect[3], circ[0], circ[1]) <= r2 &&
distSq(rect[0] + rect[2], rect[1] - rect[3], circ[0], circ[1]) <= r2;
}
private static boolean rectangleSurelyOutsideCircle(double[] rect, double[] circ) {
// Circle center point inside rectangle?
if(rect[0] <= circ[0] && circ[0] <= rect[0] + rect[2] &&
rect[1] - rect[3] <= circ[1] && circ[1] <= rect[1]) { return false; }
// Otherwise, check that each corner is at least (r + Max(w, h)) away from circle center.
double r2 = circ[2] + Math.max(rect[2], rect[3]);
r2 = r2 * r2;
return distSq(rect[0], rect[1], circ[0], circ[1]) >= r2 &&
distSq(rect[0] + rect[2], rect[1], circ[0], circ[1]) >= r2 &&
distSq(rect[0], rect[1] - rect[3], circ[0], circ[1]) >= r2 &&
distSq(rect[0] + rect[2], rect[1] - rect[3], circ[0], circ[1]) >= r2;
}
private static boolean[] surelyOutside;
private static double totalArea(double[] rect, double[][] circs, int d) {
// Check if we can get a quick certain answer.
int surelyOutsideCount = 0;
for(int i = 0; i < circs.length; i++) {
if(rectangleFullyInsideCircle(rect, circs[i])) { return rect[2] * rect[3]; }
if(rectangleSurelyOutsideCircle(rect, circs[i])) {
surelyOutside[i] = true;
surelyOutsideCount++;
}
else { surelyOutside[i] = false; }
}
// Is this rectangle surely outside all circles?
if(surelyOutsideCount == circs.length) { return 0; }
// Are we deep enough in the recursion?
if(d < 1) {
return rect[2] * rect[3] / 3; // Best guess for overlapping portion
}
// Throw out all circles that are surely outside this rectangle.
if(surelyOutsideCount > 0) {
double[][] newCircs = new double[circs.length - surelyOutsideCount][3];
int loc = 0;
for(int i = 0; i < circs.length; i++) {
if(!surelyOutside[i]) { newCircs[loc++] = circs[i]; }
}
circs = newCircs;
}
// Subdivide this rectangle recursively and add up the recursively computed areas.
double w = rect[2] / 2; // New width
double h = rect[3] / 2; // New height
double[][] pieces = {
{ rect[0], rect[1], w, h }, // NW
{ rect[0] + w, rect[1], w, h }, // NE
{ rect[0], rect[1] - h, w, h }, // SW
{ rect[0] + w, rect[1] - h, w, h } // SE
};
double total = 0;
for(double[] piece: pieces) { total += totalArea(piece, circs, d - 1); }
return total;
}
public static double totalArea(double[][] circs, int d) {
double maxx = Double.NEGATIVE_INFINITY;
double minx = Double.POSITIVE_INFINITY;
double maxy = Double.NEGATIVE_INFINITY;
double miny = Double.POSITIVE_INFINITY;
// Find the extremes of x and y for this set of circles.
for(double[] circ: circs) {
if(circ[0] + circ[2] > maxx) { maxx = circ[0] + circ[2]; }
if(circ[0] - circ[2] < minx) { minx = circ[0] - circ[2]; }
if(circ[1] + circ[2] > maxy) { maxy = circ[1] + circ[2]; }
if(circ[1] - circ[2] < miny) { miny = circ[1] - circ[2]; }
}
double[] rect = { minx, maxy, maxx - minx, maxy - miny };
surelyOutside = new boolean[circs.length];
return totalArea(rect, circs, d);
}
public static void main(String[] args) {
double[][] circs = {
{ 1.6417233788, 1.6121789534, 0.0848270516 },
{-1.4944608174, 1.2077959613, 1.1039549836 },
{ 0.6110294452, -0.6907087527, 0.9089162485 },
{ 0.3844862411, 0.2923344616, 0.2375743054 },
{-0.2495892950, -0.3832854473, 1.0845181219 },
{1.7813504266, 1.6178237031, 0.8162655711 },
{-0.1985249206, -0.8343333301, 0.0538864941 },
{-1.7011985145, -0.1263820964, 0.4776976918 },
{-0.4319462812, 1.4104420482, 0.7886291537 },
{0.2178372997, -0.9499557344, 0.0357871187 },
{-0.6294854565, -1.3078893852, 0.7653357688 },
{1.7952608455, 0.6281269104, 0.2727652452 },
{1.4168575317, 1.0683357171, 1.1016025378 },
{1.4637371396, 0.9463877418, 1.1846214562 },
{-0.5263668798, 1.7315156631, 1.4428514068 },
{-1.2197352481, 0.9144146579, 1.0727263474 },
{-0.1389358881, 0.1092805780, 0.7350208828 },
{1.5293954595, 0.0030278255, 1.2472867347 },
{-0.5258728625, 1.3782633069, 1.3495508831 },
{-0.1403562064, 0.2437382535, 1.3804956588 },
{0.8055826339, -0.0482092025, 0.3327165165 },
{-0.6311979224, 0.7184578971, 0.2491045282 },
{1.4685857879, -0.8347049536, 1.3670667538 },
{-0.6855727502, 1.6465021616, 1.0593087096 },
{0.0152957411, 0.0638919221, 0.9771215985 }
};
double ans = totalArea(circs, 24);
System.out.println("Approx. area is " + ans);
System.out.println("Error is " + Math.abs(21.56503660 - ans));
}
} |
http://rosettacode.org/wiki/Topological_sort | Topological sort |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given a mapping between items, and items they depend on, a topological sort orders items so that no item precedes an item it depends upon.
The compiling of a library in the VHDL language has the constraint that a library must be compiled after any library it depends on.
A tool exists that extracts library dependencies.
Task
Write a function that will return a valid compile order of VHDL libraries from their dependencies.
Assume library names are single words.
Items mentioned as only dependents, (sic), have no dependents of their own, but their order of compiling must be given.
Any self dependencies should be ignored.
Any un-orderable dependencies should be flagged.
Use the following data as an example:
LIBRARY LIBRARY DEPENDENCIES
======= ====================
des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee
dw01 ieee dw01 dware gtech
dw02 ieee dw02 dware
dw03 std synopsys dware dw03 dw02 dw01 ieee gtech
dw04 dw04 ieee dw01 dware gtech
dw05 dw05 ieee dware
dw06 dw06 ieee dware
dw07 ieee dware
dware ieee dware
gtech ieee gtech
ramlib std ieee
std_cell_lib ieee std_cell_lib
synopsys
Note: the above data would be un-orderable if, for example, dw04 is added to the list of dependencies of dw01.
C.f.
Topological sort/Extracted top item.
There are two popular algorithms for topological sorting:
Kahn's 1962 topological sort [1]
depth-first search [2] [3]
| #C.2B.2B | C++ | #include <map>
#include <set>
template<typename Goal>
class topological_sorter {
protected:
struct relations {
std::size_t dependencies;
std::set<Goal> dependents;
};
std::map<Goal, relations> map;
public:
void add_goal(Goal const &goal) {
map[goal];
}
void add_dependency(Goal const &goal, Goal const &dependency) {
if (dependency == goal)
return;
auto &dependents = map[dependency].dependents;
if (dependents.find(goal) == dependents.end()) {
dependents.insert(goal);
++map[goal].dependencies;
}
}
template<typename Container>
void add_dependencies(Goal const &goal, Container const &dependencies) {
for (auto const &dependency : dependencies)
add_dependency(goal, dependency);
}
template<typename ResultContainer, typename CyclicContainer>
void destructive_sort(ResultContainer &sorted, CyclicContainer &unsortable) {
sorted.clear();
unsortable.clear();
for (auto const &lookup : map) {
auto const &goal = lookup.first;
auto const &relations = lookup.second;
if (relations.dependencies == 0)
sorted.push_back(goal);
}
for (std::size_t index = 0; index < sorted.size(); ++index)
for (auto const &goal : map[sorted[index]].dependents)
if (--map[goal].dependencies == 0)
sorted.push_back(goal);
for (auto const &lookup : map) {
auto const &goal = lookup.first;
auto const &relations = lookup.second;
if (relations.dependencies != 0)
unsortable.push_back(goal);
}
}
template<typename ResultContainer, typename CyclicContainer>
void sort(ResultContainer &sorted, CyclicContainer &unsortable) {
topological_sorter<Goal> temporary = *this;
temporary.destructive_sort(sorted, unsortable);
}
void clear() {
map.clear();
}
};
/*
Example usage with text strings
*/
#include <fstream>
#include <sstream>
#include <iostream>
#include <string>
#include <vector>
using namespace std;
void display_heading(string const &message) {
cout << endl << "~ " << message << " ~" << endl;
}
void display_results(string const &input) {
topological_sorter<string> sorter;
vector<string> sorted, unsortable;
stringstream lines(input);
string line;
while (getline(lines, line)) {
stringstream buffer(line);
string goal, dependency;
buffer >> goal;
sorter.add_goal(goal);
while (buffer >> dependency)
sorter.add_dependency(goal, dependency);
}
sorter.destructive_sort(sorted, unsortable);
if (sorted.size() == 0)
display_heading("Error: no independent variables found!");
else {
display_heading("Result");
for (auto const &goal : sorted)
cout << goal << endl;
}
if (unsortable.size() != 0) {
display_heading("Error: cyclic dependencies detected!");
for (auto const &goal : unsortable)
cout << goal << endl;
}
}
int main(int argc, char **argv) {
if (argc == 1) {
string example = "des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee\n"
"dw01 ieee dw01 dware gtech\n"
"dw02 ieee dw02 dware\n"
"dw03 std synopsys dware dw03 dw02 dw01 ieee gtech\n"
"dw04 dw04 ieee dw01 dware gtech\n"
"dw05 dw05 ieee dware\n"
"dw06 dw06 ieee dware\n"
"dw07 ieee dware\n"
"dware ieee dware\n"
"gtech ieee gtech\n"
"ramlib std ieee\n"
"std_cell_lib ieee std_cell_lib\n"
"synopsys\n"
"cycle_11 cycle_12\n"
"cycle_12 cycle_11\n"
"cycle_21 dw01 cycle_22 dw02 dw03\n"
"cycle_22 cycle_21 dw01 dw04";
display_heading("Example: each line starts with a goal followed by it's dependencies");
cout << example << endl;
display_results(example);
display_heading("Enter lines of data (press enter when finished)");
string line, data;
while (getline(cin, line) && !line.empty())
data += line + '\n';
if (!data.empty())
display_results(data);
} else
while (*(++argv)) {
ifstream file(*argv);
typedef istreambuf_iterator<char> iterator;
display_results(string(iterator(file), iterator()));
}
} |
http://rosettacode.org/wiki/Universal_Turing_machine | Universal Turing machine | One of the foundational mathematical constructs behind computer science
is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936–1937.)
Indeed one way to definitively prove that a language
is turing-complete
is to implement a universal Turing machine in it.
Task
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
Simple incrementer
States: q0, qf
Initial state: q0
Terminating states: qf
Permissible symbols: B, 1
Blank symbol: B
Rules:
(q0, 1, 1, right, q0)
(q0, B, 1, stay, qf)
The input for this machine should be a tape of 1 1 1
Three-state busy beaver
States: a, b, c, halt
Initial state: a
Terminating states: halt
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(a, 0, 1, right, b)
(a, 1, 1, left, c)
(b, 0, 1, left, a)
(b, 1, 1, right, b)
(c, 0, 1, left, b)
(c, 1, 1, stay, halt)
The input for this machine should be an empty tape.
Bonus:
5-state, 2-symbol probable Busy Beaver machine from Wikipedia
States: A, B, C, D, E, H
Initial state: A
Terminating states: H
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(A, 0, 1, right, B)
(A, 1, 1, left, C)
(B, 0, 1, right, C)
(B, 1, 1, right, B)
(C, 0, 1, right, D)
(C, 1, 0, left, E)
(D, 0, 1, left, A)
(D, 1, 1, left, D)
(E, 0, 1, stay, H)
(E, 1, 0, left, A)
The input for this machine should be an empty tape.
This machine runs for more than 47 millions steps.
| #F.C5.8Drmul.C3.A6 | Fōrmulæ | package turing
type Symbol byte
type Motion byte
const (
Left Motion = 'L'
Right Motion = 'R'
Stay Motion = 'N'
)
type Tape struct {
data []Symbol
pos, left int
blank Symbol
}
// NewTape returns a new tape filled with 'data' and position set to 'start'.
// 'start' does not need to be range, the tape will be extended if required.
func NewTape(blank Symbol, start int, data []Symbol) *Tape {
t := &Tape{
data: data,
blank: blank,
}
if start < 0 {
t.Left(-start)
}
t.Right(start)
return t
}
func (t *Tape) Stay() {}
func (t *Tape) Data() []Symbol { return t.data[t.left:] }
func (t *Tape) Read() Symbol { return t.data[t.pos] }
func (t *Tape) Write(s Symbol) { t.data[t.pos] = s }
func (t *Tape) Dup() *Tape {
t2 := &Tape{
data: make([]Symbol, len(t.Data())),
blank: t.blank,
}
copy(t2.data, t.Data())
t2.pos = t.pos - t.left
return t2
}
func (t *Tape) String() string {
s := ""
for i := t.left; i < len(t.data); i++ {
b := t.data[i]
if i == t.pos {
s += "[" + string(b) + "]"
} else {
s += " " + string(b) + " "
}
}
return s
}
func (t *Tape) Move(a Motion) {
switch a {
case Left:
t.Left(1)
case Right:
t.Right(1)
case Stay:
t.Stay()
}
}
const minSz = 16
func (t *Tape) Left(n int) {
t.pos -= n
if t.pos < 0 {
// Extend left
var sz int
for sz = minSz; cap(t.data[t.left:])-t.pos >= sz; sz <<= 1 {
}
newd := make([]Symbol, sz)
newl := len(newd) - cap(t.data[t.left:])
n := copy(newd[newl:], t.data[t.left:])
t.data = newd[:newl+n]
t.pos += newl - t.left
t.left = newl
}
if t.pos < t.left {
if t.blank != 0 {
for i := t.pos; i < t.left; i++ {
t.data[i] = t.blank
}
}
t.left = t.pos
}
}
func (t *Tape) Right(n int) {
t.pos += n
if t.pos >= cap(t.data) {
// Extend right
var sz int
for sz = minSz; t.pos >= sz; sz <<= 1 {
}
newd := make([]Symbol, sz)
n := copy(newd[t.left:], t.data[t.left:])
t.data = newd[:t.left+n]
}
if i := len(t.data); t.pos >= i {
t.data = t.data[:t.pos+1]
if t.blank != 0 {
for ; i < len(t.data); i++ {
t.data[i] = t.blank
}
}
}
}
type State string
type Rule struct {
State
Symbol
Write Symbol
Motion
Next State
}
func (i *Rule) key() key { return key{i.State, i.Symbol} }
func (i *Rule) action() action { return action{i.Write, i.Motion, i.Next} }
type key struct {
State
Symbol
}
type action struct {
write Symbol
Motion
next State
}
type Machine struct {
tape *Tape
start, state State
transition map[key]action
l func(string, ...interface{}) // XXX
}
func NewMachine(rules []Rule) *Machine {
m := &Machine{transition: make(map[key]action, len(rules))}
if len(rules) > 0 {
m.start = rules[0].State
}
for _, r := range rules {
m.transition[r.key()] = r.action()
}
return m
}
func (m *Machine) Run(input *Tape) (int, *Tape) {
m.tape = input.Dup()
m.state = m.start
for cnt := 0; ; cnt++ {
if m.l != nil {
m.l("%3d %4s: %v\n", cnt, m.state, m.tape)
}
sym := m.tape.Read()
act, ok := m.transition[key{m.state, sym}]
if !ok {
return cnt, m.tape
}
m.tape.Write(act.write)
m.tape.Move(act.Motion)
m.state = act.next
}
} |
http://rosettacode.org/wiki/Totient_function | Totient function | The totient function is also known as:
Euler's totient function
Euler's phi totient function
phi totient function
Φ function (uppercase Greek phi)
φ function (lowercase Greek phi)
Definitions (as per number theory)
The totient function:
counts the integers up to a given positive integer n that are relatively prime to n
counts the integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n,k) is equal to 1
counts numbers ≤ n and prime to n
If the totient number (for N) is one less than N, then N is prime.
Task
Create a totient function and:
Find and display (1 per line) for the 1st 25 integers:
the integer (the index)
the totient number for that integer
indicate if that integer is prime
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000 (optional)
Show all output here.
Related task
Perfect totient numbers
Also see
Wikipedia: Euler's totient function.
MathWorld: totient function.
OEIS: Euler totient function phi(n).
| #Dyalect | Dyalect | func totient(n) {
var tot = n
var i = 2
while i * i <= n {
if n % i == 0 {
while n % i == 0 {
n /= i
}
tot -= tot / i
}
if i == 2 {
i = 1
}
i += 2
}
if n > 1 {
tot -= tot / n
}
return tot
}
print("n\tphi\tprime")
var count = 0
for n in 1..25 {
var tot = totient(n)
var isPrime = n - 1 == tot
if isPrime {
count += 1
}
print("\(n)\t\(tot)\t\(isPrime)")
}
print("\nNumber of primes up to 25 \t= \(count)")
for n in 26..100000 {
var tot = totient(n)
if tot == n - 1 {
count += 1
}
if n == 100 || n == 1000 || n % 10000 == 0 {
print("Number of primes up to \(n) \t= \(count)")
}
} |
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #Kotlin | Kotlin | // version 1.1.2
val best = IntArray(32)
fun trySwaps(deck: IntArray, f: Int, d: Int, n: Int) {
if (d > best[n]) best[n] = d
for (i in n - 1 downTo 0) {
if (deck[i] == -1 || deck[i] == i) break
if (d + best[i] <= best[n]) return
}
val deck2 = deck.copyOf()
for (i in 1 until n) {
val k = 1 shl i
if (deck2[i] == -1) {
if ((f and k) != 0) continue
}
else if (deck2[i] != i) continue
deck2[0] = i
for (j in i - 1 downTo 0) deck2[i - j] = deck[j]
trySwaps(deck2, f or k, d + 1, n)
}
}
fun topswops(n: Int): Int {
require(n > 0 && n < best.size)
best[n] = 0
val deck0 = IntArray(n + 1)
for (i in 1 until n) deck0[i] = -1
trySwaps(deck0, 1, 0, n)
return best[n]
}
fun main(args: Array<String>) {
for (i in 1..10) println("${"%2d".format(i)} : ${topswops(i)}")
} |
http://rosettacode.org/wiki/Trigonometric_functions | Trigonometric functions | Task
If your language has a library or built-in functions for trigonometry, show examples of:
sine
cosine
tangent
inverses (of the above)
using the same angle in radians and degrees.
For the non-inverse functions, each radian/degree pair should use arguments that evaluate to the same angle (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle).
For the inverse functions, use the same number and convert its answer to radians and degrees.
If your language does not have trigonometric functions available or only has some available, write functions to calculate the functions based on any known approximation or identity.
| #C.2B.2B | C++ | #include <iostream>
#include <cmath>
#ifdef M_PI // defined by all POSIX systems and some non-POSIX ones
double const pi = M_PI;
#else
double const pi = 4*std::atan(1);
#endif
double const degree = pi/180;
int main()
{
std::cout << "=== radians ===\n";
std::cout << "sin(pi/3) = " << std::sin(pi/3) << "\n";
std::cout << "cos(pi/3) = " << std::cos(pi/3) << "\n";
std::cout << "tan(pi/3) = " << std::tan(pi/3) << "\n";
std::cout << "arcsin(1/2) = " << std::asin(0.5) << "\n";
std::cout << "arccos(1/2) = " << std::acos(0.5) << "\n";
std::cout << "arctan(1/2) = " << std::atan(0.5) << "\n";
std::cout << "\n=== degrees ===\n";
std::cout << "sin(60°) = " << std::sin(60*degree) << "\n";
std::cout << "cos(60°) = " << std::cos(60*degree) << "\n";
std::cout << "tan(60°) = " << std::tan(60*degree) << "\n";
std::cout << "arcsin(1/2) = " << std::asin(0.5)/degree << "°\n";
std::cout << "arccos(1/2) = " << std::acos(0.5)/degree << "°\n";
std::cout << "arctan(1/2) = " << std::atan(0.5)/degree << "°\n";
return 0;
} |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #FreeBASIC | FreeBASIC | ' version 22-07-2017
' compile with: fbc -s console
Function f(n As Double) As Double
return Sqr(Abs(n)) + 5 * n ^ 3
End Function
' ------=< MAIN >=------
Dim As Double x, s(1 To 11)
Dim As Long i
For i = 1 To 11
Print Str(i);
Input " => ", s(i)
Next
Print
Print String(20,"-")
i -= 1
Do
Print "f(" + Str(s(i)) + ") = ";
x = f(s(i))
If x > 400 Then
Print "-=< overflow >=-"
Else
Print x
End If
i -= 1
Loop Until i < 1
' empty keyboard buffer
While InKey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Go | Go | package main
import (
"fmt"
"log"
"math"
)
func main() {
// prompt
fmt.Print("Enter 11 numbers: ")
// accept sequence
var s [11]float64
for i := 0; i < 11; {
if n, _ := fmt.Scan(&s[i]); n > 0 {
i++
}
}
// reverse sequence
for i, item := range s[:5] {
s[i], s[10-i] = s[10-i], item
}
// iterate
for _, item := range s {
if result, overflow := f(item); overflow {
// send alerts to stderr
log.Printf("f(%g) overflow", item)
} else {
// send normal results to stdout
fmt.Printf("f(%g) = %g\n", item, result)
}
}
}
func f(x float64) (float64, bool) {
result := math.Sqrt(math.Abs(x)) + 5*x*x*x
return result, result > 400
} |
http://rosettacode.org/wiki/Twelve_statements | Twelve statements | This puzzle is borrowed from math-frolic.blogspot.
Given the following twelve statements, which of them are true?
1. This is a numbered list of twelve statements.
2. Exactly 3 of the last 6 statements are true.
3. Exactly 2 of the even-numbered statements are true.
4. If statement 5 is true, then statements 6 and 7 are both true.
5. The 3 preceding statements are all false.
6. Exactly 4 of the odd-numbered statements are true.
7. Either statement 2 or 3 is true, but not both.
8. If statement 7 is true, then 5 and 6 are both true.
9. Exactly 3 of the first 6 statements are true.
10. The next two statements are both true.
11. Exactly 1 of statements 7, 8 and 9 are true.
12. Exactly 4 of the preceding statements are true.
Task
When you get tired of trying to figure it out in your head,
write a program to solve it, and print the correct answer or answers.
Extra credit
Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
| #Sidef | Sidef | var conditions = [
{ false },
{|a| a.len == 13 },
{|a| [a[7..12]].count(true) == 3 },
{|a| [a[2..12 `by` 2]].count(true) == 2 },
{|a| a[5] ? (a[6] && a[7]) : true },
{|a| !a[2] && !a[3] && !a[4] },
{|a| [a[1..11 `by` 2]].count(true) == 4 },
{|a| a[2] == true^a[3] },
{|a| a[7] ? (a[5] && a[6]) : true },
{|a| [a[1..6]].count(true) == 3 },
{|a| [a[11,12]].count(true) == 2 },
{|a| [a[7..9]].count(true) == 1 },
{|a| [a[1..11]].count(true) == 4 },
]
func miss(args) {
1..12 -> grep {|i| conditions[i](args) != args[i] }
}
for k in (^(1<<12)) {
var t = ("0%012b" % k -> chars.map {|bit| bit == '1' })
var no = miss(t)
no.len == 0 && say "Solution: true statements are #{1..12->grep{t[_]}.join(' ')}"
no.len == 1 && say "1 miss (#{no[0]}): true statements are #{1..12->grep{t[_]}.join(' ')}"
} |
http://rosettacode.org/wiki/Truth_table | Truth table | A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.
Task
Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function.
(One can assume that the user input is correct).
Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
Either reverse-polish or infix notation expressions are allowed.
Related tasks
Boolean values
Ternary logic
See also
Wolfram MathWorld entry on truth tables.
some "truth table" examples from Google.
| #Prolog | Prolog | /*
To evaluate the truth table a line of text is inputted and then there are three steps
Let's say the expression is:
'not a and (b or c)'
Step 1: tokenize into atoms and brackets
eg: Tokenized = [ not, a, and, '(', b, or, c, ')' ].
Step 2: convert to a term that can be evaluated, and get out the variables
eg: Expression = op(and, op(not, a), op(or, b, c)), Variables = [ a, b, c ]
Step 3: permeate over the variables, substituting the values for each var, and evaluate the expression for each permutation
eg: [ 0, 0, 0]
op(and, op(not, 0), op(or, 0, 0))
op(and, 1, op(or, 0, 0))
op(and, 1, 0)
0
[ 0, 0, 1]
op(and, op(not, 0), op(or, 0, 1))
op(and, 1, op(or, 0, 0))
op(and, 1, 1)
1
*/
truth_table :-
current_input(In),
read_line_to_codes(In, Line),
atom_codes(A, Line),
atom_chars(A, Chars),
% parse everything into the form we want
phrase(tok(Tok), Chars, _),
phrase(expr(Expr,Vars), Tok, _),
list_to_set(Vars,VarSet),
% evaluate
print_expr(Expr, VarSet), !.
print_expr(Expr, Vars) :-
% write the header (once)
maplist(format('~p '), Vars),
format('~n'),
% write the results for as many times as there are rows
eval_expr(Expr, Vars, Tvals, R),
maplist(format('~p '), Tvals),
format('~p~n', R),
fail.
print_expr(_, _).
% Step 1 - tokenize the input into spaces, brackets and atoms
tok([A|As]) --> spaces(_), chars([X|Xs]), {atom_codes(A, [X|Xs])}, spaces(_), tok(As).
tok([A|As]) --> spaces(_), bracket(A), spaces(_), tok(As).
tok([]) --> [].
chars([X|Xs]) --> char(X), { dif(X, ')'), dif(X, '(') }, !, chars(Xs).
chars([]) --> [].
spaces([X|Xs]) --> space(X), !, spaces(Xs).
spaces([]) --> [].
bracket('(') --> ['('].
bracket(')') --> [')'].
% Step 2 - Parse the expression into an evaluable term
expr(op(I, E, E2), V) --> starter(E, V1), infix(I), expr(E2, V2), { append(V1, V2, V) }.
expr(E, V) --> starter(E, V).
starter(op(not, E),V) --> [not], expr(E, V).
starter(E,V) --> ['('], expr(E,V), [')'].
starter(V,[V]) --> variable(V).
infix(or) --> [or].
infix(and) --> [and].
infix(xor) --> [xor].
infix(nand) --> [nand].
variable(V) --> [V], \+ infix(V), \+ bracket(V).
space(' ') --> [' '].
char(X) --> [X], { dif(X, ' ') }.
% Step 3 - evaluate the parsed expression
eval_expr(Expr, Vars, Tvals, R) :-
length(Vars,Len),
length(Tvals, Len),
maplist(truth_val, Tvals),
eval(Expr, [Tvals,Vars],R).
eval(X, [Vals,Vars], R) :- nth1(N,Vars,X), nth1(N,Vals,R).
eval(op(Op,A,B), V, R) :- eval(A,V,Ae), eval(B,V,Be), e(Op,Ae,Be,R).
eval(op(not,A), V, R) :- eval(A,V,Ae), e(not,Ae,R).
truth_val(0). truth_val(1).
e(or,0,0,0). e(or,0,1,1). e(or,1,0,1). e(or,1,1,1).
e(and,0,0,0). e(and,0,1,0). e(and,1,0,0). e(and,1,1,1).
e(xor,0,0,0). e(xor,0,1,1). e(xor,1,0,1). e(xor,1,1,0).
e(nand,0,0,1). e(nand,0,1,1). e(nand,1,0,1). e(nand,1,1,0).
e(not, 1, 0). e(not, 0, 1). |
http://rosettacode.org/wiki/Ulam_spiral_(for_primes) | Ulam spiral (for primes) | An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1), constructed on a square grid, starting at the "center".
An Ulam spiral is also known as a prime spiral.
The first grid (green) is shown with sequential integers, starting at 1.
In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk), and all non-primes as shown as a blank (or some other whitespace).
Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables).
Normally, the spiral starts in the "center", and the 2nd number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction.
There are other geometric shapes that are used as well, including clock-wise spirals.
Also, some spirals (for the 2nd number) is viewed upwards from the 1st number instead of to the right, but that is just a matter of orientation.
Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities).
[A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)].
Then, in the next phase in the transformation of the Ulam prime spiral, the non-primes are translated to blanks.
In the orange grid below, the primes are left intact, and all non-primes are changed to blanks.
Then, in the final transformation of the Ulam spiral (the yellow grid), translate the primes to a glyph such as a • or some other suitable glyph.
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
61
59
37
31
67
17
13
5
3
29
19
2
11
53
41
7
71
23
43
47
73
79
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The Ulam spiral becomes more visually obvious as the grid increases in size.
Task
For any sized N × N grid, construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number (the default would be 1), with some suitably dotty (glyph) representation to indicate primes, and the absence of dots to indicate non-primes.
You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen.
Related tasks
Spiral matrix
Zig-zag matrix
Identity matrix
Sequence of primes by Trial Division
See also
Wikipedia entry: Ulam spiral
MathWorld™ entry: Prime Spiral
| #R | R |
## Plotting Ulam spiral (for primes) 2/12/17 aev
## plotulamspirR(n, clr, fn, ttl, psz=600), where: n - initial size;
## clr - color; fn - file name; ttl - plot title; psz - picture size.
##
require(numbers);
plotulamspirR <- function(n, clr, fn, ttl, psz=600) {
cat(" *** START:", date(), "n=",n, "clr=",clr, "psz=", psz, "\n");
if (n%%2==0) {n=n+1}; n2=n*n;
x=y=floor(n/2); xmx=ymx=cnt=1; dir="R";
ttl= paste(c(ttl, n,"x",n," matrix."), sep="", collapse="");
cat(" ***", ttl, "\n");
M <- matrix(c(0), ncol=n, nrow=n, byrow=TRUE);
for (i in 1:n2) {
if(isPrime(i)) {M[x,y]=1};
if(dir=="R") {if(xmx>0) {x=x+1;xmx=xmx-1}
else {dir="U";ymx=cnt;y=y-1;ymx=ymx-1}; next};
if(dir=="U") {if(ymx>0) {y=y-1;ymx=ymx-1}
else {dir="L";cnt=cnt+1;xmx=cnt;x=x-1;xmx=xmx-1}; next};
if(dir=="L") {if(xmx>0) {x=x-1;xmx=xmx-1}
else {dir="D";ymx=cnt;y=y+1;ymx=ymx-1}; next};
if(dir=="D") {if(ymx>0) {y=y+1;ymx=ymx-1}
else {dir="R";cnt=cnt+1;xmx=cnt;x=x+1;xmx=xmx-1}; next};
};
plotmat(M, fn, clr, ttl,,psz);
cat(" *** END:",date(),"\n");
}
## Executing:
plotulamspirR(100, "red", "UlamSpiralR1", "Ulam Spiral: ");
plotulamspirR(200, "red", "UlamSpiralR2", "Ulam Spiral: ",1240);
|
http://rosettacode.org/wiki/Truncatable_primes | Truncatable primes | A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number.
Examples
The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime.
The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime.
No zeroes are allowed in truncatable primes.
Task
The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied).
Related tasks
Find largest left truncatable prime in a given base
Sieve of Eratosthenes
See also
Truncatable Prime from MathWorld.]
| #Java | Java | import java.util.BitSet;
public class Main {
public static void main(String[] args){
final int MAX = 1000000;
//Sieve of Eratosthenes (using BitSet only for odd numbers)
BitSet primeList = new BitSet(MAX>>1);
primeList.set(0,primeList.size(),true);
int sqroot = (int) Math.sqrt(MAX);
primeList.clear(0);
for(int num = 3; num <= sqroot; num+=2)
{
if( primeList.get(num >> 1) )
{
int inc = num << 1;
for(int factor = num * num; factor < MAX; factor += inc)
{
//if( ((factor) & 1) == 1)
//{
primeList.clear(factor >> 1);
//}
}
}
}
//Sieve ends...
//Find Largest Truncatable Prime. (so we start from 1000000 - 1
int rightTrunc = -1, leftTrunc = -1;
for(int prime = (MAX - 1) | 1; prime >= 3; prime -= 2)
{
if(primeList.get(prime>>1))
{
//Already found Right Truncatable Prime?
if(rightTrunc == -1)
{
int right = prime;
while(right > 0 && right % 2 != 0 && primeList.get(right >> 1)) right /= 10;
if(right == 0) rightTrunc = prime;
}
//Already found Left Truncatable Prime?
if(leftTrunc == -1 )
{
//Left Truncation
String left = Integer.toString(prime);
if(!left.contains("0"))
{
while( left.length() > 0 ){
int iLeft = Integer.parseInt(left);
if(!primeList.get( iLeft >> 1)) break;
left = left.substring(1);
}
if(left.length() == 0) leftTrunc = prime;
}
}
if(leftTrunc != -1 && rightTrunc != -1) //Found both? then Stop loop
{
break;
}
}
}
System.out.println("Left Truncatable : " + leftTrunc);
System.out.println("Right Truncatable : " + rightTrunc);
}
}
|
http://rosettacode.org/wiki/Tree_traversal | Tree traversal | Task
Implement a binary tree where each node carries an integer, and implement:
pre-order,
in-order,
post-order, and
level-order traversal.
Use those traversals to output the following tree:
1
/ \
/ \
/ \
2 3
/ \ /
4 5 6
/ / \
7 8 9
The correct output should look like this:
preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9
See also
Wikipedia article: Tree traversal.
| #AutoHotkey | AutoHotkey | AddNode(Tree,1,2,3,1) ; Build global Tree
AddNode(Tree,2,4,5,2)
AddNode(Tree,3,6,0,3)
AddNode(Tree,4,7,0,4)
AddNode(Tree,5,0,0,5)
AddNode(Tree,6,8,9,6)
AddNode(Tree,7,0,0,7)
AddNode(Tree,8,0,0,8)
AddNode(Tree,9,0,0,9)
MsgBox % "Preorder: " PreOrder(Tree,1) ; 1 2 4 7 5 3 6 8 9
MsgBox % "Inorder: " InOrder(Tree,1) ; 7 4 2 5 1 8 6 9 3
MsgBox % "postorder: " PostOrder(Tree,1) ; 7 4 5 2 8 9 6 3 1
MsgBox % "levelorder: " LevOrder(Tree,1) ; 1 2 3 4 5 6 7 8 9
AddNode(ByRef Tree,Node,Left,Right,Value) {
if !isobject(Tree)
Tree := object()
Tree[Node, "L"] := Left
Tree[Node, "R"] := Right
Tree[Node, "V"] := Value
}
PreOrder(Tree,Node) {
ptree := Tree[Node, "V"] " "
. ((L:=Tree[Node, "L"]) ? PreOrder(Tree,L) : "")
. ((R:=Tree[Node, "R"]) ? PreOrder(Tree,R) : "")
return ptree
}
InOrder(Tree,Node) {
Return itree := ((L:=Tree[Node, "L"]) ? InOrder(Tree,L) : "")
. Tree[Node, "V"] " "
. ((R:=Tree[Node, "R"]) ? InOrder(Tree,R) : "")
}
PostOrder(Tree,Node) {
Return ptree := ((L:=Tree[Node, "L"]) ? PostOrder(Tree,L) : "")
. ((R:=Tree[Node, "R"]) ? PostOrder(Tree,R) : "")
. Tree[Node, "V"] " "
}
LevOrder(Tree,Node,Lev=1) {
Static ; make node lists static
i%Lev% .= Tree[Node, "V"] " " ; build node lists in every level
If (L:=Tree[Node, "L"])
LevOrder(Tree,L,Lev+1)
If (R:=Tree[Node, "R"])
LevOrder(Tree,R,Lev+1)
If (Lev > 1)
Return
While i%Lev% ; concatenate node lists from all levels
t .= i%Lev%, Lev++
Return t
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.