task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Trigonometric_functions | Trigonometric functions | Task
If your language has a library or built-in functions for trigonometry, show examples of:
sine
cosine
tangent
inverses (of the above)
using the same angle in radians and degrees.
For the non-inverse functions, each radian/degree pair should use arguments that evaluate to the same angle (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle).
For the inverse functions, use the same number and convert its answer to radians and degrees.
If your language does not have trigonometric functions available or only has some available, write functions to calculate the functions based on any known approximation or identity.
| #E | E | def pi := (-1.0).acos()
def radians := pi / 4.0
def degrees := 45.0
def d2r := (pi/180).multiply
def r2d := (180/pi).multiply
println(`$\
${radians.sin()} ${d2r(degrees).sin()}
${radians.cos()} ${d2r(degrees).cos()}
${radians.tan()} ${d2r(degrees).tan()}
${def asin := radians.sin().asin()} ${r2d(asin)}
${def acos := radians.cos().acos()} ${r2d(acos)}
${def atan := radians.tan().atan()} ${r2d(atan)}
`) |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #jq | jq | def f:
def abs: if . < 0 then -. else . end;
def power(x): (x * log) | exp;
. as $x | abs | power(0.5) + (5 * (.*.*. ));
. as $in | split(" ") | map(tonumber)
| if length == 11 then
reverse | map(f | if . > 400 then "TOO LARGE" else . end)
else error("The number of numbers was not 11.")
end
| .[] # print one result per line |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Julia | Julia | f(x) = √abs(x) + 5x^3
for i in reverse(split(readline()))
v = f(parse(Int, i))
println("$(i): ", v > 400 ? "TOO LARGE" : v)
end |
http://rosettacode.org/wiki/Twelve_statements | Twelve statements | This puzzle is borrowed from math-frolic.blogspot.
Given the following twelve statements, which of them are true?
1. This is a numbered list of twelve statements.
2. Exactly 3 of the last 6 statements are true.
3. Exactly 2 of the even-numbered statements are true.
4. If statement 5 is true, then statements 6 and 7 are both true.
5. The 3 preceding statements are all false.
6. Exactly 4 of the odd-numbered statements are true.
7. Either statement 2 or 3 is true, but not both.
8. If statement 7 is true, then 5 and 6 are both true.
9. Exactly 3 of the first 6 statements are true.
10. The next two statements are both true.
11. Exactly 1 of statements 7, 8 and 9 are true.
12. Exactly 4 of the preceding statements are true.
Task
When you get tired of trying to figure it out in your head,
write a program to solve it, and print the correct answer or answers.
Extra credit
Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
| #Yabasic | Yabasic | sub s1() return len(s$)=12 end sub
sub s2() local t, i : t=0 : for i=7 to 12 : t = t + (mid$(s$, i, 1) <> "0") : next : return t=3 end sub
sub s3() local t, i : t=0 : for i=2 to 12 step 2 : t = t + (mid$(s$, i, 1) <> "0") : next : return t=2 end sub
sub s4() return mid$(s$, 5, 1) = "0" or (mid$(s$, 6, 1) <> "0" and mid$(s$, 7, 1) <> "0") end sub
sub s5() return mid$(s$, 2, 1) = "0" and mid$(s$, 3, 1) = "0" and mid$(s$, 4, 1) = "0" end sub
sub s6() local t, i : t=0 : for i=1 to 12 step 2 : t = t + mid$(s$, i, 1) <> "0" : next : return t=4 end sub
sub s7() return mid$(s$, 2, 1) <> mid$(s$, 3, 1) end sub
sub s8() return mid$(s$, 7, 1) = "0" or (mid$(s$, 5, 1) <> "0" and mid$(s$, 6, 1) <> "0") end sub
sub s9() local t, i : t=0 : for i=1 to 6 : t = t + mid$(s$, i, 1) <> "0" : next : return t=3 end sub
sub s10() return mid$(s$, 11, 1) <> "0" and mid$(s$, 12, 1) <> "0" end sub
sub s11() local t, i : t=0 : for i=7 to 9 : t = t + mid$(s$, i, 1) <> "0" : next : return t=1 end sub
sub s12() local t, i : t=0 : for i=1 to 11 : t = t + mid$(s$, i, 1) <> "0" : next : return t=4 end sub
dim r$(12)
for b=1 to 12
r$(b) = "s"+str$(b)
next
for i=0 to 2^12-1
s$ = right$("000000000000" + bin$(i), 12)
for b=1 to 12
if execute(r$(b)) <> (mid$(s$, b, 1) <> "0") break
if b=12 print s$
next
next |
http://rosettacode.org/wiki/Twelve_statements | Twelve statements | This puzzle is borrowed from math-frolic.blogspot.
Given the following twelve statements, which of them are true?
1. This is a numbered list of twelve statements.
2. Exactly 3 of the last 6 statements are true.
3. Exactly 2 of the even-numbered statements are true.
4. If statement 5 is true, then statements 6 and 7 are both true.
5. The 3 preceding statements are all false.
6. Exactly 4 of the odd-numbered statements are true.
7. Either statement 2 or 3 is true, but not both.
8. If statement 7 is true, then 5 and 6 are both true.
9. Exactly 3 of the first 6 statements are true.
10. The next two statements are both true.
11. Exactly 1 of statements 7, 8 and 9 are true.
12. Exactly 4 of the preceding statements are true.
Task
When you get tired of trying to figure it out in your head,
write a program to solve it, and print the correct answer or answers.
Extra credit
Print out a table of near misses, that is, solutions that are contradicted by only a single statement.
| #zkl | zkl | var statements; // list of 13 Bools, statements[0] is garbage to make 1 based
fcn s0 { False } // dummy for padding
fcn s1 { True }
fcn s2 { statements[-6,*].filter().len()==3 }
fcn s3 { [2..12,2].apply(statements.get).filter().len()==2 }
fcn s4 { if(statements[5]) statements[6]==statements[7]==True else True }
fcn s5 { statements[2,3].filter().len()==0 }
fcn s6 { [1..12,2].apply(statements.get).filter().len()==4 }
fcn s7 { statements[2]!=statements[3] }
fcn s8 { if(statements[7]) statements[5]==statements[6]==True else True }
fcn s9 { statements[1,6].filter().len()==3 }
fcn s10{ statements[11]==statements[12]==True }
fcn s11{ statements[7,3].filter().len()==1 }
fcn s12{ statements[1,11].filter().len()==4 }
filters:=T(s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12);
foreach n in ((2).pow(12)){ // 4k
// 5-->"0000000000101"-->("0","0"..."1")-->(F,F,...T)
statements="%013.2B".fmt(n).split("").apply('==("1"));
r:=filters.run(True); // and return list of results
if(r==statements) print("<<<<<<<<<<<<<<<<Solution");
else{
diff:=r.zipWith('!=,statements);
if(diff.sum(0)==1) print("Diff @",diff.filter1n());
}
}
fcn print(msg){
(12).pump(List,'wrap(n){ statements[n] and n or Void.Skip })
.concat(",").println(" : ",vm.pasteArgs());
} |
http://rosettacode.org/wiki/Truth_table | Truth table | A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.
Task
Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function.
(One can assume that the user input is correct).
Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
Either reverse-polish or infix notation expressions are allowed.
Related tasks
Boolean values
Ternary logic
See also
Wolfram MathWorld entry on truth tables.
some "truth table" examples from Google.
| #Raku | Raku | use MONKEY-SEE-NO-EVAL;
sub MAIN ($x) {
my @n = $x.comb(/<ident>/);
my &fun = EVAL "-> {('\\' «~« @n).join(',')} \{ [{ (|@n,"so $x").join(',') }] \}";
say (|@n,$x).join("\t");
.join("\t").say for map &fun, flat map { .fmt("\%0{+@n}b").comb».Int».so }, 0 ..^ 2**@n;
say '';
} |
http://rosettacode.org/wiki/Ulam_spiral_(for_primes) | Ulam spiral (for primes) | An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1), constructed on a square grid, starting at the "center".
An Ulam spiral is also known as a prime spiral.
The first grid (green) is shown with sequential integers, starting at 1.
In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk), and all non-primes as shown as a blank (or some other whitespace).
Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables).
Normally, the spiral starts in the "center", and the 2nd number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction.
There are other geometric shapes that are used as well, including clock-wise spirals.
Also, some spirals (for the 2nd number) is viewed upwards from the 1st number instead of to the right, but that is just a matter of orientation.
Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities).
[A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)].
Then, in the next phase in the transformation of the Ulam prime spiral, the non-primes are translated to blanks.
In the orange grid below, the primes are left intact, and all non-primes are changed to blanks.
Then, in the final transformation of the Ulam spiral (the yellow grid), translate the primes to a glyph such as a • or some other suitable glyph.
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
61
59
37
31
67
17
13
5
3
29
19
2
11
53
41
7
71
23
43
47
73
79
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The Ulam spiral becomes more visually obvious as the grid increases in size.
Task
For any sized N × N grid, construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number (the default would be 1), with some suitably dotty (glyph) representation to indicate primes, and the absence of dots to indicate non-primes.
You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen.
Related tasks
Spiral matrix
Zig-zag matrix
Identity matrix
Sequence of primes by Trial Division
See also
Wikipedia entry: Ulam spiral
MathWorld™ entry: Prime Spiral
| #Ruby | Ruby | require 'prime'
def cell(n, x, y, start=1)
y, x = y - n/2, x - (n - 1)/2
l = 2 * [x.abs, y.abs].max
d = y >= x ? l*3 + x + y : l - x - y
(l - 1)**2 + d + start - 1
end
def show_spiral(n, symbol=nil, start=1)
puts "\nN : #{n}"
format = "%#{(start + n*n - 1).to_s.size}s "
n.times do |y|
n.times do |x|
i = cell(n,x,y,start)
if symbol
print i.prime? ? symbol[0] : symbol[1]
else
print format % (i.prime? ? i : '')
end
end
puts
end
end
show_spiral(9)
show_spiral(25)
show_spiral(25, "# ") |
http://rosettacode.org/wiki/Truncatable_primes | Truncatable primes | A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number.
Examples
The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime.
The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime.
No zeroes are allowed in truncatable primes.
Task
The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied).
Related tasks
Find largest left truncatable prime in a given base
Sieve of Eratosthenes
See also
Truncatable Prime from MathWorld.]
| #Maple | Maple |
MaxTruncatablePrime := proc({left::truefalse:=FAIL, right::truefalse:=FAIL}, $)
local i, j, c, p, b, n, sdprimes, dir;
local tprimes := table();
if left = true and right = true then
error "invalid input";
elif right = true then
dir := "right";
else
dir := "left";
end if;
b := 10;
n := 6;
sdprimes := select(isprime, [seq(1..b-1)]);
for p in sdprimes do
if assigned(tprimes[p]) then
next;
end if;
i := ilog[b](p)+1;
j := 1;
while p < b^n do
if dir = "left" then
c := j*b^i + p;
else
c := p*b + j;
end if;
if j >= b or c > b^n then # we have tried all 1 digit extensions of p, add p to tprimes and move back 1 digit
tprimes[p] := p;
if i = 1 then # if we are at the first digit, go to the next 1 digit prime
break;
end if;
i := i - 1;
j := 1;
if dir = "left" then
p := p - iquo(p, b^i)*b^i;
else
p := iquo(p, b);
end if;
elif assigned(tprimes[c]) then
j := j + 1;
elif isprime(c) then
p := c;
i := i + 1;
j := 1;
else
j := j+1;
end if;
end do;
end do;
return max(indices(tprimes, 'nolist'));
end proc; |
http://rosettacode.org/wiki/Truncatable_primes | Truncatable primes | A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number.
Examples
The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime.
The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime.
No zeroes are allowed in truncatable primes.
Task
The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied).
Related tasks
Find largest left truncatable prime in a given base
Sieve of Eratosthenes
See also
Truncatable Prime from MathWorld.]
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | LeftTruncatablePrimeQ[n_] := Times @@ IntegerDigits[n] > 0 &&
And @@ PrimeQ /@ ToExpression /@ StringJoin /@
Rest[Most[NestList[Rest, #, Length[#]] &[Characters[ToString[n]]]]]
RightTruncatablePrimeQ[n_] := Times @@ IntegerDigits[n] > 0 &&
And @@ PrimeQ /@ ToExpression /@ StringJoin /@
Rest[Most[NestList[Most, #, Length[#]] &[Characters[ToString[n]]]]] |
http://rosettacode.org/wiki/Tree_traversal | Tree traversal | Task
Implement a binary tree where each node carries an integer, and implement:
pre-order,
in-order,
post-order, and
level-order traversal.
Use those traversals to output the following tree:
1
/ \
/ \
/ \
2 3
/ \ /
4 5 6
/ / \
7 8 9
The correct output should look like this:
preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9
See also
Wikipedia article: Tree traversal.
| #C.2B.2B | C++ | #include <boost/scoped_ptr.hpp>
#include <iostream>
#include <queue>
template<typename T>
class TreeNode {
public:
TreeNode(const T& n, TreeNode* left = NULL, TreeNode* right = NULL)
: mValue(n),
mLeft(left),
mRight(right) {}
T getValue() const {
return mValue;
}
TreeNode* left() const {
return mLeft.get();
}
TreeNode* right() const {
return mRight.get();
}
void preorderTraverse() const {
std::cout << " " << getValue();
if(mLeft) { mLeft->preorderTraverse(); }
if(mRight) { mRight->preorderTraverse(); }
}
void inorderTraverse() const {
if(mLeft) { mLeft->inorderTraverse(); }
std::cout << " " << getValue();
if(mRight) { mRight->inorderTraverse(); }
}
void postorderTraverse() const {
if(mLeft) { mLeft->postorderTraverse(); }
if(mRight) { mRight->postorderTraverse(); }
std::cout << " " << getValue();
}
void levelorderTraverse() const {
std::queue<const TreeNode*> q;
q.push(this);
while(!q.empty()) {
const TreeNode* n = q.front();
q.pop();
std::cout << " " << n->getValue();
if(n->left()) { q.push(n->left()); }
if(n->right()) { q.push(n->right()); }
}
}
protected:
T mValue;
boost::scoped_ptr<TreeNode> mLeft;
boost::scoped_ptr<TreeNode> mRight;
private:
TreeNode();
};
int main() {
TreeNode<int> root(1,
new TreeNode<int>(2,
new TreeNode<int>(4,
new TreeNode<int>(7)),
new TreeNode<int>(5)),
new TreeNode<int>(3,
new TreeNode<int>(6,
new TreeNode<int>(8),
new TreeNode<int>(9))));
std::cout << "preorder: ";
root.preorderTraverse();
std::cout << std::endl;
std::cout << "inorder: ";
root.inorderTraverse();
std::cout << std::endl;
std::cout << "postorder: ";
root.postorderTraverse();
std::cout << std::endl;
std::cout << "level-order:";
root.levelorderTraverse();
std::cout << std::endl;
return 0;
} |
http://rosettacode.org/wiki/Tokenize_a_string | Tokenize a string | Separate the string "Hello,How,Are,You,Today" by commas into an array (or list) so that each element of it stores a different word.
Display the words to the 'user', in the simplest manner possible, separated by a period.
To simplify, you may display a trailing period.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ALGOL_68 | ALGOL 68 | main:(
OP +:= = (REF FLEX[]STRING in out, STRING item)VOID:(
[LWB in out: UPB in out+1]STRING new;
new[LWB in out: UPB in out]:=in out;
new[UPB new]:=item;
in out := new
);
PROC string split = (REF STRING beetles, STRING substr)[]STRING:(
""" Split beetles where substr is found """;
FLEX[1:0]STRING out;
INT start := 1, pos;
WHILE string in string(substr, pos, beetles[start:]) DO
out +:= STRING(beetles[start:start+pos-2]);
start +:= pos + UPB substr - 1
OD;
IF start > LWB beetles THEN
out +:= STRING(beetles[start:])
FI;
out
);
PROC char split = (REF STRING beetles, STRING chars)[]STRING: (
""" Split beetles where character is found in chars """;
FLEX[1:0]STRING out;
FILE beetlef;
associate(beetlef, beetles); # associate a FILE handle with a STRING #
make term(beetlef, chars); # make term: assign CSV string terminator #
PROC raise logical file end = (REF FILE f)BOOL: except logical file end;
on logical file end(beetlef, raise logical file end);
STRING solo;
DO
getf(beetlef, ($g$, solo));
out+:=solo;
getf(beetlef, ($x$)) # skip CHAR separator #
OD;
except logical file end:
SKIP;
out
);
STRING beetles := "John Lennon, Paul McCartney, George Harrison, Ringo Starr";
printf(($g"."$, string split(beetles, ", "),$l$));
printf(($g"."$, char split(beetles, ", "),$l$))
) |
http://rosettacode.org/wiki/Time_a_function | Time a function | Task
Write a program which uses a timer (with the least granularity available
on your system) to time how long a function takes to execute.
Whenever possible, use methods which measure only the processing time used
by the current process; instead of the difference in system time
between start and finish, which could include time used by
other processes on the computer.
This task is intended as a subtask for Measure relative performance of sorting algorithms implementations.
| #11l | 11l | F do_work(x)
V n = x
L(i) 10000000
n += i
R n
F time_func(f)
V start = time:perf_counter()
f()
R time:perf_counter() - start
print(time_func(() -> do_work(100))) |
http://rosettacode.org/wiki/Top_rank_per_group | Top rank per group | Task
Find the top N salaries in each department, where N is provided as a parameter.
Use this data as a formatted internal data structure (adapt it to your language-native idioms, rather than parse at runtime), or identify your external data source:
Employee Name,Employee ID,Salary,Department
Tyler Bennett,E10297,32000,D101
John Rappl,E21437,47000,D050
George Woltman,E00127,53500,D101
Adam Smith,E63535,18000,D202
Claire Buckman,E39876,27800,D202
David McClellan,E04242,41500,D101
Rich Holcomb,E01234,49500,D202
Nathan Adams,E41298,21900,D050
Richard Potter,E43128,15900,D101
David Motsinger,E27002,19250,D202
Tim Sampair,E03033,27000,D101
Kim Arlich,E10001,57000,D190
Timothy Grove,E16398,29900,D190
| #Bracmat | Bracmat | (Tyler Bennett,E10297,32000,D101)
(John Rappl,E21437,47000,D050)
(George Woltman,E00127,53500,D101)
(Adam Smith,E63535,18000,D202)
(Claire Buckman,E39876,27800,D202)
(David McClellan,E04242,41500,D101)
(Rich Holcomb,E01234,49500,D202)
(Nathan Adams,E41298,21900,D050)
(Richard Potter,E43128,15900,D101)
(David Motsinger,E27002,19250,D202)
(Tim Sampair,E03033,27000,D101)
(Kim Arlich,E10001,57000,D190)
(Timothy Grove,E16398,29900,D190)
: ?employees
& ( toprank
= employees N n P "Employee Name" "Employee ID" SalaryDepartment
. !arg:(?employees.?N)
& 1:?P
& whl
' ( !employees
: (?"Employee Name",?"Employee ID",?Salary,?Department)
?employees
& !Department^(!Salary.!"Employee Name".!"Employee ID")*!P:?P
)
& out$(Top !N "salaries per department.")
& whl
' ( !P:%?Department^?employees*?P
& out$(str$("Department " !Department ":"))
& !N:?n
& whl
' ( !n+-1:~<0:?n
& !employees
: ?employees+(?Salary.?"Employee Name".?"Employee ID")
& out
$ (str$(" " !"Employee Name" " (" !"Employee ID" "):" !Salary))
)
)
)
& toprank$(!employees.3)
& ; |
http://rosettacode.org/wiki/Towers_of_Hanoi | Towers of Hanoi | Task
Solve the Towers of Hanoi problem with recursion.
| #AppleScript | AppleScript | --------------------- TOWERS OF HANOI --------------------
-- hanoi :: Int -> (String, String, String) -> [(String, String)]
on hanoi(n, abc)
script go
on |λ|(n, {x, y, z})
if n > 0 then
set m to n - 1
|λ|(m, {x, z, y}) & ¬
{{x, y}} & |λ|(m, {z, y, x})
else
{}
end if
end |λ|
end script
go's |λ|(n, abc)
end hanoi
--------------------------- TEST -------------------------
on run
unlines(map(intercalate(" -> "), ¬
hanoi(3, {"left", "right", "mid"})))
end run
-------------------- GENERIC FUNCTIONS -------------------
-- intercalate :: String -> [String] -> String
on intercalate(delim)
script
on |λ|(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, delim}
set s to xs as text
set my text item delimiters to dlm
s
end |λ|
end script
end intercalate
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- unlines :: [String] -> String
on unlines(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set str to xs as text
set my text item delimiters to dlm
str
end unlines |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #CLU | CLU | % Yields an infinite Thue-Morse sequence, digit by digit
tm = iter () yields (char)
n: int := 1
s: string := "0"
while true do
while n <= string$size(s) do
yield(s[n])
n := n + 1
end
s2: array[char] := array[char]$[]
for c: char in string$chars(s) do
if c='0'
then array[char]$addh(s2, '1')
else array[char]$addh(s2, '0')
end
end
s := s || string$ac2s(s2)
end
end tm
% Print the first 64 characters
start_up = proc ()
AMOUNT = 64
po: stream := stream$primary_output()
n: int := 0
for c: char in tm() do
stream$putc(po, c)
n := n + 1
if n = AMOUNT then break end
end
end start_up |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #Common_Lisp | Common Lisp | (defun bit-complement (bit-vector)
(loop with result = (make-array (length bit-vector) :element-type 'bit)
for b across bit-vector
for i from 0
do (setf (aref result i) (- 1 b))
finally (return result)))
(defun next (bit-vector)
(concatenate 'bit-vector bit-vector (bit-complement bit-vector)))
(defun print-bit-vector (bit-vector)
(loop for b across bit-vector
do (princ b)
finally (terpri)))
(defun thue-morse (max)
(loop repeat (1+ max)
for value = #*0 then (next value)
do (print-bit-vector value)))
(thue-morse 6) |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #J | J | leg=: dyad define
x (y&|)@^ (y-1)%2
)
tosh=:dyad define
assert. 1=1 p: y [ 'y must be prime'
assert. 1=x leg y [ 'x must be square mod y'
pow=. y&|@^
if. 1=m=. {.1 q: y-1 do.
r=. x pow (y+1)%4
else.
z=. 1x while. 1>: z leg y do. z=.z+1 end.
c=. z pow q=. (y-1)%2^m
r=. x pow (q+1)%2
t=. x pow q
while. t~:1 do.
n=. t
i=. 0
whilst. 1~:n do.
n=. n pow 2
i=. i+1
end.
r=. y|r*b=. c pow 2^m-i+1
m=. i
t=. y|t*c=. b pow 2
end.
end.
y|(,-)r
) |
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #D | D | import std.stdio;
void main() {
string sample = "one^|uno||three^^^^|four^^^|^cuatro|";
writeln(sample);
writeln(tokenizeString(sample, '|', '^'));
}
auto tokenizeString(string source, char seperator, char escape) {
import std.array : appender;
import std.exception : enforce;
auto output = appender!(string[]);
auto token = appender!(char[]);
bool inEsc;
foreach(ch; source) {
if (inEsc) {
inEsc = false;
} else if (ch == escape) {
inEsc = true;
continue;
} else if (ch == seperator) {
output.put(token.data.idup);
token.clear();
continue;
}
token.put(ch);
}
enforce(!inEsc, "Invalid terminal escape");
output.put(token.data.idup);
return output.data;
} |
http://rosettacode.org/wiki/Total_circles_area | Total circles area | Total circles area
You are encouraged to solve this task according to the task description, using any language you may know.
Example circles
Example circles filtered
Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.
One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome.
To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):
xc yc radius
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
The result is 21.56503660... .
Related task
Circles of given radius through two points.
See also
http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/
http://stackoverflow.com/a/1667789/10562
| #Phix | Phix | with javascript_semantics
constant circles = {{ 1.6417233788, 1.6121789534, 0.0848270516},
{-1.4944608174, 1.2077959613, 1.1039549836},
{ 0.6110294452, -0.6907087527, 0.9089162485},
{ 0.3844862411, 0.2923344616, 0.2375743054},
{-0.2495892950, -0.3832854473, 1.0845181219},
{ 1.7813504266, 1.6178237031, 0.8162655711},
{-0.1985249206, -0.8343333301, 0.0538864941},
{-1.7011985145, -0.1263820964, 0.4776976918},
{-0.4319462812, 1.4104420482, 0.7886291537},
{ 0.2178372997, -0.9499557344, 0.0357871187},
{-0.6294854565, -1.3078893852, 0.7653357688},
{ 1.7952608455, 0.6281269104, 0.2727652452},
{ 1.4168575317, 1.0683357171, 1.1016025378},
{ 1.4637371396, 0.9463877418, 1.1846214562},
{-0.5263668798, 1.7315156631, 1.4428514068},
{-1.2197352481, 0.9144146579, 1.0727263474},
{-0.1389358881, 0.1092805780, 0.7350208828},
{ 1.5293954595, 0.0030278255, 1.2472867347},
{-0.5258728625, 1.3782633069, 1.3495508831},
{-0.1403562064, 0.2437382535, 1.3804956588},
{ 0.8055826339, -0.0482092025, 0.3327165165},
{-0.6311979224, 0.7184578971, 0.2491045282},
{ 1.4685857879, -0.8347049536, 1.3670667538},
{-0.6855727502, 1.6465021616, 1.0593087096},
{ 0.0152957411, 0.0638919221, 0.9771215985}},
{x,y,r} = columnize(circles),
r2 = sq_power(r,2)
atom xMin = min(sq_sub(x,r)),
xMax = max(sq_add(x,r)),
yMin = min(sq_sub(y,r)),
yMax = max(sq_add(y,r)),
boxSide = 500,
dx = (xMax - xMin) / boxSide,
dy = (yMax - yMin) / boxSide,
count = 0
sequence cxs = {}
for s=1 to boxSide do
atom py = yMin + s * dy
sequence cy = sq_power(sq_sub(py,y),2)
for c=1 to boxSide do
if s=1 then
atom px = xMin + c * dx
cxs = append(cxs,sq_power(sq_sub(px,x),2))
end if
sequence cx = cxs[c]
for i=1 to length(circles) do
if cx[i]+cy[i]<=r2[i] then count+=1 exit end if
end for
end for
end for
printf(1,"Approximate area = %.9f\n",{count * dx * dy})
|
http://rosettacode.org/wiki/Topological_sort | Topological sort |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given a mapping between items, and items they depend on, a topological sort orders items so that no item precedes an item it depends upon.
The compiling of a library in the VHDL language has the constraint that a library must be compiled after any library it depends on.
A tool exists that extracts library dependencies.
Task
Write a function that will return a valid compile order of VHDL libraries from their dependencies.
Assume library names are single words.
Items mentioned as only dependents, (sic), have no dependents of their own, but their order of compiling must be given.
Any self dependencies should be ignored.
Any un-orderable dependencies should be flagged.
Use the following data as an example:
LIBRARY LIBRARY DEPENDENCIES
======= ====================
des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee
dw01 ieee dw01 dware gtech
dw02 ieee dw02 dware
dw03 std synopsys dware dw03 dw02 dw01 ieee gtech
dw04 dw04 ieee dw01 dware gtech
dw05 dw05 ieee dware
dw06 dw06 ieee dware
dw07 ieee dware
dware ieee dware
gtech ieee gtech
ramlib std ieee
std_cell_lib ieee std_cell_lib
synopsys
Note: the above data would be un-orderable if, for example, dw04 is added to the list of dependencies of dw01.
C.f.
Topological sort/Extracted top item.
There are two popular algorithms for topological sorting:
Kahn's 1962 topological sort [1]
depth-first search [2] [3]
| #E | E | def makeQueue := <elib:vat.makeQueue>
def topoSort(data :Map[any, Set[any]]) {
# Tables of nodes and edges
def forwardEdges := [].asMap().diverge()
def reverseCount := [].asMap().diverge()
def init(node) {
reverseCount[node] := 0
forwardEdges[node] := [].asSet().diverge()
}
for node => deps in data {
init(node)
for dep in deps { init(dep) }
}
# 'data' holds the dependencies. Compute the other direction.
for node => deps in data {
for dep ? (dep != node) in deps {
forwardEdges[dep].addElement(node)
reverseCount[node] += 1
}
}
# Queue containing all elements that have no (initial or remaining) incoming edges
def ready := makeQueue()
for node => ==0 in reverseCount {
ready.enqueue(node)
}
var result := []
while (ready.optDequeue() =~ node :notNull) {
result with= node
for next in forwardEdges[node] {
# Decrease count of incoming edges and enqueue if none
if ((reverseCount[next] -= 1).isZero()) {
ready.enqueue(next)
}
}
forwardEdges.removeKey(node)
}
if (forwardEdges.size().aboveZero()) {
throw(`Topological sort failed: $forwardEdges remains`)
}
return result
} |
http://rosettacode.org/wiki/Universal_Turing_machine | Universal Turing machine | One of the foundational mathematical constructs behind computer science
is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936–1937.)
Indeed one way to definitively prove that a language
is turing-complete
is to implement a universal Turing machine in it.
Task
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
Simple incrementer
States: q0, qf
Initial state: q0
Terminating states: qf
Permissible symbols: B, 1
Blank symbol: B
Rules:
(q0, 1, 1, right, q0)
(q0, B, 1, stay, qf)
The input for this machine should be a tape of 1 1 1
Three-state busy beaver
States: a, b, c, halt
Initial state: a
Terminating states: halt
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(a, 0, 1, right, b)
(a, 1, 1, left, c)
(b, 0, 1, left, a)
(b, 1, 1, right, b)
(c, 0, 1, left, b)
(c, 1, 1, stay, halt)
The input for this machine should be an empty tape.
Bonus:
5-state, 2-symbol probable Busy Beaver machine from Wikipedia
States: A, B, C, D, E, H
Initial state: A
Terminating states: H
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(A, 0, 1, right, B)
(A, 1, 1, left, C)
(B, 0, 1, right, C)
(B, 1, 1, right, B)
(C, 0, 1, right, D)
(C, 1, 0, left, E)
(D, 0, 1, left, A)
(D, 1, 1, left, D)
(E, 0, 1, stay, H)
(E, 1, 0, left, A)
The input for this machine should be an empty tape.
This machine runs for more than 47 millions steps.
| #JavaScript | JavaScript | function tm(d,s,e,i,b,t,... r) {
document.write(d, '<br>')
if (i<0||i>=t.length) return
var re=new RegExp(b,'g')
write('*',s,i,t=t.split(''))
var p={}; r.forEach(e=>((s,r,w,m,n)=>{p[s+'.'+r]={w,n,m:[0,1,-1][1+'RL'.indexOf(m)]}})(... e.split(/[ .:,]+/)))
for (var n=1; s!=e; n+=1) {
with (p[s+'.'+t[i]]) t[i]=w,s=n,i+=m
if (i==-1) i=0,t.unshift(b)
else if (i==t.length) t[i]=b
write(n,s,i,t)
}
document.write('<br>')
function write(n, s, i, t) {
t = t.join('')
t = t.substring(0,i) + '<u>' + t.charAt(i) + '</u>' + t.substr(i+1)
document.write((' '+n).slice(-3).replace(/ /g,' '), ': ', s, ' [', t.replace(re,' '), ']', '<br>')
}
}
tm( 'Unary incrementer',
// s e i b t
'a', 'h', 0, 'B', '111',
// s.r: w, m, n
'a.1: 1, L, a',
'a.B: 1, S, h'
)
tm( 'Unary adder',
1, 0, 0, '0', '1110111',
'1.1: 0, R, 2', // write 0 rigth goto 2
'2.1: 1, R, 2', // while (1) rigth
'2.0: 1, S, 0' // write 1 stay halt
)
tm( 'Three-state busy beaver',
1, 0, 0, '0', '0',
'1.0: 1, R, 2',
'1.1: 1, R, 0',
'2.0: 0, R, 3',
'2.1: 1, R, 2',
'3.0: 1, L, 3',
'3.1: 1, L, 1'
) |
http://rosettacode.org/wiki/Totient_function | Totient function | The totient function is also known as:
Euler's totient function
Euler's phi totient function
phi totient function
Φ function (uppercase Greek phi)
φ function (lowercase Greek phi)
Definitions (as per number theory)
The totient function:
counts the integers up to a given positive integer n that are relatively prime to n
counts the integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n,k) is equal to 1
counts numbers ≤ n and prime to n
If the totient number (for N) is one less than N, then N is prime.
Task
Create a totient function and:
Find and display (1 per line) for the 1st 25 integers:
the integer (the index)
the totient number for that integer
indicate if that integer is prime
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000 (optional)
Show all output here.
Related task
Perfect totient numbers
Also see
Wikipedia: Euler's totient function.
MathWorld: totient function.
OEIS: Euler totient function phi(n).
| #Haskell | Haskell | {-# LANGUAGE BangPatterns #-}
import Control.Monad (when)
import Data.Bool (bool)
totient
:: (Integral a)
=> a -> a
totient n
| n == 0 = 1 -- by definition phi(0) = 1
| n < 0 = totient (-n) -- phi(-n) is taken to be equal to phi(n)
| otherwise = loop n n 2 --
where
loop !m !tot !i
| i * i > m = bool tot (tot - (tot `div` m)) (1 < m)
| m `mod` i == 0 = loop m_ tot_ i_
| otherwise = loop m tot i_
where
i_
| i == 2 = 3
| otherwise = 2 + i
m_ = nextM m
tot_ = tot - (tot `div` i)
nextM !x
| x `mod` i == 0 = nextM $ x `div` i
| otherwise = x
main :: IO ()
main = do
putStrLn "n\tphi\tprime\n---------------------"
let loop !i !count
| i >= 10 ^ 6 = return ()
| otherwise = do
let i_ = succ i
tot = totient i_
isPrime = tot == pred i_
count_
| isPrime = succ count
| otherwise = count
when (25 >= i_) $
putStrLn $ show i_ ++ "\t" ++ show tot ++ "\t" ++ show isPrime
when
(i_ `elem`
25 :
[ 10 ^ k
| k <- [2 .. 6] ]) $
putStrLn $ "Number of primes up to " ++ show i_ ++ " = " ++ show count_
loop (i + 1) count_
loop 0 0 |
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #Picat | Picat | go ?=>
member(N,1..10),
Perm = 1..N,
Rev = Perm.reverse(),
Max = 0,
while(Perm != Rev)
next_permutation(Perm),
C = topswops(Perm),
if C > Max then
Max := C
end
end,
printf("%2d: %2d\n",N,Max),
fail,
nl.
go => true.
topswops([]) = 0 => true.
topswops([1]) = 0 => true.
topswops([1|_]) = 0 => true.
topswops(P) = Count =>
Len = P.length,
Count = 0,
while (P[1] > 1)
Pos = P[1],
P := [P[I] : I in 1..Pos].reverse() ++ [P[I] : I in Pos+1..Len],
Count := Count + 1
end.
% Inline
next_permutation(Perm) =>
N = Perm.length,
K = N - 1,
while (Perm[K] > Perm[K+1], K >= 0)
K := K - 1
end,
if K > 0 then
J = N,
while (Perm[K] > Perm[J]) J := J - 1 end,
Tmp := Perm[K],
Perm[K] := Perm[J],
Perm[J] := Tmp,
R = N,
S = K + 1,
while (R > S)
Tmp := Perm[R],
Perm[R] := Perm[S],
Perm[S] := Tmp,
R := R - 1,
S := S + 1
end
end. |
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #PicoLisp | PicoLisp | (de fannkuch (N)
(let (Lst (range 1 N) L Lst Max)
(recur (L) # Permute
(if (cdr L)
(do (length L)
(recurse (cdr L))
(rot L) )
(zero N) # For each permutation
(for (P (copy Lst) (> (car P) 1) (flip P (car P)))
(inc 'N) )
(setq Max (max N Max)) ) )
Max ) )
(for I 10
(println I (fannkuch I)) ) |
http://rosettacode.org/wiki/Trigonometric_functions | Trigonometric functions | Task
If your language has a library or built-in functions for trigonometry, show examples of:
sine
cosine
tangent
inverses (of the above)
using the same angle in radians and degrees.
For the non-inverse functions, each radian/degree pair should use arguments that evaluate to the same angle (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle).
For the inverse functions, use the same number and convert its answer to radians and degrees.
If your language does not have trigonometric functions available or only has some available, write functions to calculate the functions based on any known approximation or identity.
| #Elena | Elena | import system'math;
import extensions;
public program()
{
console.printLine("Radians:");
console.printLine("sin(π/3) = ",(Pi_value/3).sin());
console.printLine("cos(π/3) = ",(Pi_value/3).cos());
console.printLine("tan(π/3) = ",(Pi_value/3).tan());
console.printLine("arcsin(1/2) = ",0.5r.arcsin());
console.printLine("arccos(1/2) = ",0.5r.arccos());
console.printLine("arctan(1/2) = ",0.5r.arctan());
console.printLine();
console.printLine("Degrees:");
console.printLine("sin(60º) = ",60.0r.Radian.sin());
console.printLine("cos(60º) = ",60.0r.Radian.cos());
console.printLine("tan(60º) = ",60.0r.Radian.tan());
console.printLine("arcsin(1/2) = ",0.5r.arcsin().Degree,"º");
console.printLine("arccos(1/2) = ",0.5r.arccos().Degree,"º");
console.printLine("arctan(1/2) = ",0.5r.arctan().Degree,"º");
console.readChar()
} |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Kotlin | Kotlin | // version 1.1.2
fun f(x: Double) = Math.sqrt(Math.abs(x)) + 5.0 * x * x * x
fun main(args: Array<String>) {
val da = DoubleArray(11)
println("Please enter 11 numbers:")
var i = 0
while (i < 11) {
print(" ${"%2d".format(i + 1)}: ")
val d = readLine()!!.toDoubleOrNull()
if (d == null)
println("Not a valid number, try again")
else
da[i++] = d
}
println("\nThe sequence you just entered in reverse is:")
da.reverse()
println(da.contentToString())
println("\nProcessing this sequence...")
for (j in 0..10) {
val v = f(da[j])
print(" ${"%2d".format(j + 1)}: ")
if (v > 400.0)
println("Overflow!")
else
println(v)
}
} |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Ksh | Ksh |
#!/bin/ksh
# Trabb Pardo–Knuth algorithm
# # Variables:
#
integer NUM_ELE=11
typeset -F FUNC_LIMIT=400
# # Functions:
#
# # Function _input(_arr) - Ask for user input, build array
#
function _input {
typeset _arr ; nameref _arr="$1"
typeset _i ; integer _i
clear ; print "Please input 11 numbers..."
for ((_i=1 ; _i<=NUM_ELE ; _i++)); do
read REPLY?"${_i}: "
[[ $REPLY != {,1}(-)+(\d){,1}(.)*(\d) ]] && ((_i--)) && continue
_arr+=( $REPLY )
done
}
# # Function _function() - Apply |x|^0.5 + 5x^3
# # note: >400 creates an overflow situation
#
function _function {
typeset _x ; _x=$1
(( _result = sqrt(abs(${_x})) + 5 * _x * _x * _x ))
(( _result <= $FUNC_LIMIT )) && echo ${_result} && return 0
return 1
}
######
# main #
######
typeset -a inputarr
_input inputarr
integer i
printf "%s\n\n" "Evaluating f(x) = |x|^0.5 + 5x^3 for the given inputs :"
for (( i=NUM_ELE-1; i>=0; i-- )); do
result=$(_function ${inputarr[i]})
if (( $? )); then
printf "%s\n" "Overflow"
else
printf "%s\n" "${result}"
fi
done |
http://rosettacode.org/wiki/Truth_table | Truth table | A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.
Task
Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function.
(One can assume that the user input is correct).
Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
Either reverse-polish or infix notation expressions are allowed.
Related tasks
Boolean values
Ternary logic
See also
Wolfram MathWorld entry on truth tables.
some "truth table" examples from Google.
| #REXX | REXX | /*REXX program displays a truth table of variables and an expression. Infix notation */
/*─────────────── is supported with one character propositional constants; variables */
/*─────────────── (propositional constants) that are allowed: A──►Z, a──►z except u.*/
/*─────────────── All propositional constants are case insensitive (except lowercase u).*/
parse arg userText /*get optional expression from the CL. */
if userText\='' then do /*Got one? Then show user's stuff. */
call truthTable userText /*display truth table for the userText.*/
exit /*we're finished with the user's text. */
end
call truthTable "G ^ H ; XOR" /*text after ; is echoed to the output.*/
call truthTable "i | j ; OR"
call truthTable "G nxor H ; NXOR"
call truthTable "k ! t ; NOR"
call truthTable "p & q ; AND"
call truthTable "e ¡ f ; NAND"
call truthTable "S | (T ^ U)"
call truthTable "(p=>q) v (q=>r)"
call truthTable "A ^ (B ^ (C ^ D))"
exit /*quit while we're ahead, by golly. */
/* ↓↓↓ no way, Jose. ↓↓↓ */ /* [↓] shows a 32,768 line truth table*/
call truthTable "A^ (B^ (C^ (D^ (E^ (F^ (G^ (H^ (I^ (J^ (L^ (L^ (M^ (N^O) ))))))))))))"
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
truthTable: procedure; parse arg $ ';' comm 1 $o; $o= strip($o); hdrPCs=
$= translate(strip($), '|', "v"); $u= $; upper $u
$u= translate($u, '()()()', "[]{}«»"); $$.= 0; PCs=
@abc= 'abcdefghijklmnopqrstuvwxyz'; @abcU= @abc; upper @abcU
/* ╔═════════════════════╦════════════════════════════════════════════════════════════╗
║ ║ bool(bitsA, bitsB, BF) ║
║ ╟────────────────────────────────────────────────────────────╢
║ ║ performs the boolean function BF ┌──────┬─────────┐ ║
║ ║ on the A bitstring │ BF │ common │ ║
║ ║ with the B bitstring. │ value│ name │ ║
║ ║ ├──────┼─────────┤ ║
║ ║ BF must be a one to four bit │ 0000 │boolfalse│ ║
║ ║ value (from 0000 ──► 1111), │ 0001 │ and │ ║
║ This boxed table ║ leading zeroes can be omitted. │ 0010 │ NaIMPb │ ║
║ was re─constructed ║ │ 0011 │ boolB │ ║
║ from an old IBM ║ BF may have multiple values (one │ 0100 │ NbIMPa │ ║
║ publicastion: ║ for each pair of bitstrings): │ 0101 │ boolA │ ║
║ ║ │ 0110 │ xor │ ║
║ "PL/I Language ║ ┌──────┬──────┬───────────────┐ │ 0111 │ or │ ║
║ Specifications" ║ │ Abit │ Bbit │ returns │ │ 1000 │ nor │ ║
║ ║ ├──────┼──────┼───────────────┤ │ 1001 │ nxor │ ║
║ ║ │ 0 │ 0 │ 1st bit in BF │ │ 1010 │ notB │ ║
║ ║ │ 0 │ 1 │ 2nd bit in BF │ │ 1011 │ bIMPa │ ║
║ ─── March 1969. ║ │ 1 │ 0 │ 3rd bit in BF │ │ 1100 │ notA │ ║
║ ║ │ 1 │ 1 │ 4th bit in BF │ │ 1101 │ aIMPb │ ║
║ ║ └──────┴──────┴───────────────┘ │ 1110 │ nand │ ║
║ ║ │ 1111 │booltrue │ ║
║ ║ ┌──┴──────┴─────────┤ ║
║ ║ │ A 0101 │ ║
║ ║ │ B 0011 │ ║
║ ║ └───────────────────┘ ║
╚═════════════════════╩════════════════════════════════════════════════════════════╝ */
@= 'ff'x /* [↓] ───── infix operators (0──►15) */
op.= /*Note: a single quote (') wasn't */
/* implemented for negation.*/
op.0 = 'false boolFALSE' /*unconditionally FALSE */
op.1 = '& and *' /* AND, conjunction */
op.2 = 'naimpb NaIMPb' /*not A implies B */
op.3 = 'boolb boolB' /*B (value of) */
op.4 = 'nbimpa NbIMPa' /*not B implies A */
op.5 = 'boola boolA' /*A (value of) */
op.6 = '&& xor % ^' /* XOR, exclusive OR */
op.7 = '| or + v' /* OR, disjunction */
op.8 = 'nor nor ! ↓' /* NOR, not OR, Pierce operator */
op.9 = 'xnor xnor nxor' /*NXOR, not exclusive OR, not XOR */
op.10= 'notb notB' /*not B (value of) */
op.11= 'bimpa bIMPa' /* B implies A */
op.12= 'nota notA' /*not A (value of) */
op.13= 'aimpb aIMPb' /* A implies B */
op.14= 'nand nand ¡ ↑' /*NAND, not AND, Sheffer operator */
op.15= 'true boolTRUE' /*unconditionally TRUE */
/*alphabetic names that need changing. */
op.16= '\ NOT ~ ─ . ¬' /* NOT, negation */
op.17= '> GT' /*conditional */
op.18= '>= GE ─> => ──> ==>' "1a"x /*conditional; (see note below.)──┐*/
op.19= '< LT' /*conditional │*/
op.20= '<= LE <─ <= <── <==' /*conditional │*/
op.21= '\= NE ~= ─= .= ¬=' /*conditional │*/
op.22= '= EQ EQUAL EQUALS =' "1b"x /*bi─conditional; (see note below.)┐ │*/
op.23= '0 boolTRUE' /*TRUEness │ │*/
op.24= '1 boolFALSE' /*FALSEness ↓ ↓*/
/* [↑] glphys '1a'x and "1b"x can't*/
/* displayed under most DOS' & such*/
do jj=0 while op.jj\=='' | jj<16 /*change opers ──► into what REXX likes*/
new= word(op.jj, 1) /*obtain the 1st token of infex table.*/
/* [↓] process the rest of the tokens.*/
do kk=2 to words(op.jj) /*handle each of the tokens separately.*/
_=word(op.jj, kk); upper _ /*obtain another token from infix table*/
if wordpos(_, $u)==0 then iterate /*no such animal in this string. */
if datatype(new, 'm') then new!= @ /*it needs to be transcribed*/
else new!= new /*it doesn't need " " " */
$u= changestr(_, $u, new!) /*transcribe the function (maybe). */
if new!==@ then $u= changeFunc($u,@,new) /*use the internal boolean name. */
end /*kk*/
end /*jj*/
$u=translate($u, '()', "{}") /*finish cleaning up the transcribing. */
do jj=1 for length(@abcU) /*see what variables are being used. */
_= substr(@abcU, jj, 1) /*use the available upercase aLphabet. */
if pos(_,$u) == 0 then iterate /*Found one? No, then keep looking. */
$$.jj= 1 /*found: set upper bound for it. */
PCs= PCs _ /*also, add to propositional constants.*/
hdrPCs=hdrPCS center(_,length('false')) /*build a PC header for transcribing. */
end /*jj*/
ptr= '_────►_' /*a (text) pointer for the truth table.*/
$u= PCs '('$u")" /*separate the PCs from expression. */
hdrPCs= substr(hdrPCs, 2) /*create a header for the PCs. */
say hdrPCs left('', length(ptr) - 1) $o /*display PC header and expression. */
say copies('───── ', words(PCs)) left('', length(ptr) -2) copies('─', length($o))
/*Note: "true"s: are right─justified.*/
do a=0 to $$.1
do b=0 to $$.2
do c=0 to $$.3
do d=0 to $$.4
do e=0 to $$.5
do f=0 to $$.6
do g=0 to $$.7
do h=0 to $$.8
do i=0 to $$.9
do j=0 to $$.10
do k=0 to $$.11
do l=0 to $$.12
do m=0 to $$.13
do n=0 to $$.14
do o=0 to $$.15
do p=0 to $$.16
do q=0 to $$.17
do r=0 to $$.18
do s=0 to $$.19
do t=0 to $$.20
do u=0 to $$.21
do !=0 to $$.22
do w=0 to $$.23
do x=0 to $$.24
do y=0 to $$.25
do z=0 to $$.26; interpret '_=' $u
/*evaluate truth T.*/
_= changestr(1, _, '_true') /*convert 1──►_true*/
_= changestr(0, _, 'false') /*convert 0──►false*/
_= insert(ptr, _, wordindex(_, words(_) ) - 1)
say translate(_, , '_') /*display truth tab*/
end /*z*/
end /*y*/
end /*x*/
end /*w*/
end /*v*/
end /*u*/
end /*t*/
end /*s*/
end /*r*/
end /*q*/
end /*p*/
end /*o*/
end /*n*/
end /*m*/
end /*l*/
end /*k*/
end /*j*/
end /*i*/
end /*h*/
end /*g*/
end /*f*/
end /*e*/
end /*d*/
end /*c*/
end /*b*/
end /*a*/
say; say
return
/*──────────────────────────────────────────────────────────────────────────────────────*/
scan: procedure; parse arg x,at; L= length(x); t=L; Lp=0; apost=0; quote=0
if at<0 then do; t=1; x= translate(x, '()', ")(")
end /* [↓] get 1 or 2 chars at location J*/
do j=abs(at) to t by sign(at); _=substr(x, j ,1); __=substr(x, j, 2)
if quote then do; if _\=='"' then iterate
if __=='""' then do; j= j+1; iterate; end
quote=0; iterate
end
if apost then do; if _\=="'" then iterate
if __=="''" then do; j= j+1; iterate; end
apost=0; iterate
end
if _== '"' then do; quote=1; iterate; end
if _== "'" then do; apost=1; iterate; end
if _== ' ' then iterate
if _== '(' then do; Lp= Lp+1; iterate; end
if Lp\==0 then do; if _==')' then Lp= Lp-1; iterate; end
if datatype(_, 'U') then return j - (at<0)
if at<0 then return j + 1 /*is _ uppercase ? */
end /*j*/
return min(j, L)
/*──────────────────────────────────────────────────────────────────────────────────────*/
changeFunc: procedure; parse arg z, fC, newF ; funcPos= 0
do forever
funcPos= pos(fC, z, funcPos + 1); if funcPos==0 then return z
origPos= funcPos
z= changestr(fC, z, ",'"newF"',") /*arg 3 ≡ ",'" || newF || "-'," */
funcPos= funcPos + length(newF) + 4
where= scan(z, funcPos) ; z= insert( '}', z, where)
where= scan(z, 1 - origPos) ; z= insert('bool{', z, where)
end /*forever*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
bool: procedure; arg a,?,b /* ◄─── ARG uppercases all args.*/
select /*SELECT chooses which function.*/
/*0*/ when ? == 'FALSE' then return 0
/*1*/ when ? == 'AND' then return a & b
/*2*/ when ? == 'NAIMPB' then return \ (\a & \b)
/*3*/ when ? == 'BOOLB' then return b
/*4*/ when ? == 'NBIMPA' then return \ (\b & \a)
/*5*/ when ? == 'BOOLA' then return a
/*6*/ when ? == 'XOR' then return a && b
/*7*/ when ? == 'OR' then return a | b
/*8*/ when ? == 'NOR' then return \ (a | b)
/*9*/ when ? == 'XNOR' then return \ (a && b)
/*a*/ when ? == 'NOTB' then return \ b
/*b*/ when ? == 'BIMPA' then return \ (b & \a)
/*c*/ when ? == 'NOTA' then return \ a
/*d*/ when ? == 'AIMPB' then return \ (a & \b)
/*e*/ when ? == 'NAND' then return \ (a & b)
/*f*/ when ? == 'TRUE' then return 1
otherwise return -13
end /*select*/ /* [↑] error, unknown function.*/ |
http://rosettacode.org/wiki/Ulam_spiral_(for_primes) | Ulam spiral (for primes) | An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1), constructed on a square grid, starting at the "center".
An Ulam spiral is also known as a prime spiral.
The first grid (green) is shown with sequential integers, starting at 1.
In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk), and all non-primes as shown as a blank (or some other whitespace).
Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables).
Normally, the spiral starts in the "center", and the 2nd number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction.
There are other geometric shapes that are used as well, including clock-wise spirals.
Also, some spirals (for the 2nd number) is viewed upwards from the 1st number instead of to the right, but that is just a matter of orientation.
Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities).
[A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)].
Then, in the next phase in the transformation of the Ulam prime spiral, the non-primes are translated to blanks.
In the orange grid below, the primes are left intact, and all non-primes are changed to blanks.
Then, in the final transformation of the Ulam spiral (the yellow grid), translate the primes to a glyph such as a • or some other suitable glyph.
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
61
59
37
31
67
17
13
5
3
29
19
2
11
53
41
7
71
23
43
47
73
79
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The Ulam spiral becomes more visually obvious as the grid increases in size.
Task
For any sized N × N grid, construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number (the default would be 1), with some suitably dotty (glyph) representation to indicate primes, and the absence of dots to indicate non-primes.
You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen.
Related tasks
Spiral matrix
Zig-zag matrix
Identity matrix
Sequence of primes by Trial Division
See also
Wikipedia entry: Ulam spiral
MathWorld™ entry: Prime Spiral
| #Rust | Rust | use std::fmt;
enum Direction { RIGHT, UP, LEFT, DOWN }
use ulam::Direction::*;
/// Indicates whether an integer is a prime number or not.
fn is_prime(a: u32) -> bool {
match a {
2 => true,
x if x <= 1 || x % 2 == 0 => false,
_ => {
let max = f64::sqrt(a as f64) as u32;
let mut x = 3;
while x <= max {
if a % x == 0 { return false; }
x += 2;
}
true
}
}
}
pub struct Ulam { u : Vec<Vec<String>> }
impl Ulam {
/// Generates one `Ulam` object.
pub fn new(n: u32, s: u32, c: char) -> Ulam {
let mut spiral = vec![vec![String::new(); n as usize]; n as usize];
let mut dir = RIGHT;
let mut y = (n / 2) as usize;
let mut x = if n % 2 == 0 { y - 1 } else { y }; // shift left for even n's
for j in s..n * n + s {
spiral[y][x] = if is_prime(j) {
if c == '\0' { format!("{:4}", j) } else { format!(" {} ", c) }
}
else { String::from(" ---") };
match dir {
RIGHT => if x as u32 <= n - 1 && spiral[y - 1][x].is_empty() && j > s { dir = UP; },
UP => if spiral[y][x - 1].is_empty() { dir = LEFT; },
LEFT => if x == 0 || spiral[y + 1][x].is_empty() { dir = DOWN; },
DOWN => if spiral[y][x + 1].is_empty() { dir = RIGHT; }
};
match dir { RIGHT => x += 1, UP => y -= 1, LEFT => x -= 1, DOWN => y += 1 };
}
Ulam { u: spiral }
}
}
impl fmt::Display for Ulam {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for row in &self.u {
writeln!(f, "{}", format!("{:?}", row).replace("\"", "").replace(", ", ""));
};
writeln!(f, "")
}
} |
http://rosettacode.org/wiki/Ulam_spiral_(for_primes) | Ulam spiral (for primes) | An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1), constructed on a square grid, starting at the "center".
An Ulam spiral is also known as a prime spiral.
The first grid (green) is shown with sequential integers, starting at 1.
In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk), and all non-primes as shown as a blank (or some other whitespace).
Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables).
Normally, the spiral starts in the "center", and the 2nd number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction.
There are other geometric shapes that are used as well, including clock-wise spirals.
Also, some spirals (for the 2nd number) is viewed upwards from the 1st number instead of to the right, but that is just a matter of orientation.
Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities).
[A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)].
Then, in the next phase in the transformation of the Ulam prime spiral, the non-primes are translated to blanks.
In the orange grid below, the primes are left intact, and all non-primes are changed to blanks.
Then, in the final transformation of the Ulam spiral (the yellow grid), translate the primes to a glyph such as a • or some other suitable glyph.
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
61
59
37
31
67
17
13
5
3
29
19
2
11
53
41
7
71
23
43
47
73
79
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The Ulam spiral becomes more visually obvious as the grid increases in size.
Task
For any sized N × N grid, construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number (the default would be 1), with some suitably dotty (glyph) representation to indicate primes, and the absence of dots to indicate non-primes.
You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen.
Related tasks
Spiral matrix
Zig-zag matrix
Identity matrix
Sequence of primes by Trial Division
See also
Wikipedia entry: Ulam spiral
MathWorld™ entry: Prime Spiral
| #Scala | Scala | object Ulam extends App {
generate(9)()
generate(9)('*')
private object Direction extends Enumeration { val RIGHT, UP, LEFT, DOWN = Value }
private def generate(n: Int, i: Int = 1)(c: Char = 0) {
assert(n > 1, "n > 1")
val s = new Array[Array[String]](n).transform {_ => new Array[String](n) }
import Direction._
var dir = RIGHT
var y = n / 2
var x = if (n % 2 == 0) y - 1 else y // shift left for even n's
for (j <- i to n * n - 1 + i) {
s(y)(x) = if (isPrime(j)) if (c == 0) "%4d".format(j) else s" $c " else " ---"
dir match {
case RIGHT => if (x <= n - 1 && s(y - 1)(x) == null && j > i) dir = UP
case UP => if (s(y)(x - 1) == null) dir = LEFT
case LEFT => if (x == 0 || s(y + 1)(x) == null) dir = DOWN
case DOWN => if (s(y)(x + 1) == null) dir = RIGHT
}
dir match {
case RIGHT => x += 1
case UP => y -= 1
case LEFT => x -= 1
case DOWN => y += 1
}
}
println("[" + s.map(_.mkString("")).reduceLeft(_ + "]\n[" + _) + "]\n")
}
private def isPrime(a: Int): Boolean = {
if (a == 2) return true
if (a <= 1 || a % 2 == 0) return false
val max = Math.sqrt(a.toDouble).toInt
for (n <- 3 to max by 2)
if (a % n == 0) return false
true
}
} |
http://rosettacode.org/wiki/Truncatable_primes | Truncatable primes | A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number.
Examples
The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime.
The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime.
No zeroes are allowed in truncatable primes.
Task
The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied).
Related tasks
Find largest left truncatable prime in a given base
Sieve of Eratosthenes
See also
Truncatable Prime from MathWorld.]
| #MATLAB | MATLAB | function largestTruncatablePrimes(boundary)
%Helper function for checking if a prime is left of right truncatable
function [leftTruncatable,rightTruncatable] = isTruncatable(prime,checkLeftTruncatable,checkRightTruncatable)
numDigits = ceil(log10(prime)); %calculate the number of digits in the prime less one
powersOfTen = 10.^(0:numDigits); %cache the needed powers of ten
leftTruncated = mod(prime,powersOfTen); %generate a list of numbers by repeatedly left truncating the prime
%leading zeros will cause duplicate entries thus it is possible to
%detect leading zeros if we rotate the list to the left or right
%and check for any equivalences with the original list
hasLeadingZeros = any( circshift(leftTruncated,[0 1]) == leftTruncated );
if( hasLeadingZeros || not(checkLeftTruncatable) )
leftTruncatable = false;
else
%check if all of the left truncated numbers are prime
leftTruncatable = all(isprime(leftTruncated(2:end)));
end
if( checkRightTruncatable )
rightTruncated = (prime - leftTruncated) ./ powersOfTen; %generate a list of right truncated numbers
rightTruncatable = all(isprime(rightTruncated(1:end-1))); %check if all the right truncated numbers are prime
else
rightTruncatable = false;
end
end %isTruncatable()
nums = primes(boundary); %generate all primes <= boundary
%Flags that indicate if the largest left or right truncatable prime has not
%been found
leftTruncateNotFound = true;
rightTruncateNotFound = true;
for prime = nums(end:-1:1) %Search through primes in reverse order
%Get if the prime is left and/or right truncatable, ignoring
%checking for right truncatable if it has already been found
[leftTruncatable,rightTruncatable] = isTruncatable(prime,leftTruncateNotFound,rightTruncateNotFound);
if( leftTruncateNotFound && leftTruncatable ) %print out largest left truncatable prime
display([num2str(prime) ' is the largest left truncatable prime <= ' num2str(boundary) '.']);
leftTruncateNotFound = false;
end
if( rightTruncateNotFound && rightTruncatable ) %print out largest right truncatable prime
display([num2str(prime) ' is the largest right truncatable prime <= ' num2str(boundary) '.']);
rightTruncateNotFound = false;
end
%Terminate loop when the largest left and right truncatable primes have
%been found
if( not(leftTruncateNotFound || rightTruncateNotFound) )
break;
end
end
end
|
http://rosettacode.org/wiki/Tree_traversal | Tree traversal | Task
Implement a binary tree where each node carries an integer, and implement:
pre-order,
in-order,
post-order, and
level-order traversal.
Use those traversals to output the following tree:
1
/ \
/ \
/ \
2 3
/ \ /
4 5 6
/ / \
7 8 9
The correct output should look like this:
preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9
See also
Wikipedia article: Tree traversal.
| #Ceylon | Ceylon | import ceylon.collection {
ArrayList
}
shared void run() {
class Node(label, left = null, right = null) {
shared Integer label;
shared Node? left;
shared Node? right;
string => label.string;
}
void preorder(Node node) {
process.write(node.string + " ");
if(exists left = node.left) {
preorder(left);
}
if(exists right = node.right) {
preorder(right);
}
}
void inorder(Node node) {
if(exists left = node.left) {
inorder(left);
}
process.write(node.string + " ");
if(exists right = node.right) {
inorder(right);
}
}
void postorder(Node node) {
if(exists left = node.left) {
postorder(left);
}
if(exists right = node.right) {
postorder(right);
}
process.write(node.string + " ");
}
void levelOrder(Node node) {
value nodes = ArrayList<Node> {node};
while(exists current = nodes.accept()) {
process.write(current.string + " ");
if(exists left = current.left) {
nodes.offer(left);
}
if(exists right = current.right) {
nodes.offer(right);
}
}
}
value tree = Node {
label = 1;
left = Node {
label = 2;
left = Node {
label = 4;
left = Node {
label = 7;
};
};
right = Node {
label = 5;
};
};
right = Node {
label = 3;
left = Node {
label = 6;
left = Node {
label = 8;
};
right = Node {
label = 9;
};
};
};
};
process.write("preorder: ");
preorder(tree);
print("");
process.write("inorder: ");
inorder(tree);
print("");
process.write("postorder: ");
postorder(tree);
print("");
process.write("levelorder: ");
levelOrder(tree);
print("");
} |
http://rosettacode.org/wiki/Tokenize_a_string | Tokenize a string | Separate the string "Hello,How,Are,You,Today" by commas into an array (or list) so that each element of it stores a different word.
Display the words to the 'user', in the simplest manner possible, separated by a period.
To simplify, you may display a trailing period.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Amazing_Hopper | Amazing Hopper |
#include <hopper.h>
#proto splitdate(_DATETIME_)
#proto splitnumber(_N_)
#proto split(_S_,_T_)
main:
s="this string will be separated into parts with space token separator"
aS=0,let( aS :=_split(s," "))
{","}toksep // set a new token separator
{"String: ",s}
{"\nArray:\n",aS},
{"\nSize="}size(aS),println // "size" return an array: {dims,#rows,#cols,#pages}
{"\nOriginal number: ",-125.489922},println
w=0,let(w:=_split number(-125.489922) )
{"Integer part: "}[1]get(w) // get first element from array "w"
{"\nDecimal part: "}[2]get(w),println // get second element from array "w"
{"\nDate by DATENOW(TODAY) macro: "},print
dt=0, let( dt :=_splitdate(datenow(TODAY);!puts)) // "!" keep first element from stack
{"\nDate: "}[1]get(dt)
{"\nTime: "}[2]get(dt),println
exit(0)
.locals
splitdate(_DATETIME_)
_SEP_=0,gettoksep,mov(_SEP_) // "gettoksep" return actual token separator
{","}toksep, // set a new token separator
_NEWARRAY_={}
{1},$( _DATETIME_ ),
{2},$( _DATETIME_ ),pushall(_NEWARRAY_)
{_SEP_}toksep // restore ols token separator
{_NEWARRAY_}
back
splitnumber(_X_)
part_int=0,part_dec=0,
{_X_},!trunc,mov(part_int),
minus(part_int), !sign,mul
xtostr,mov(part_dec), part_dec+=2, // "part_dec+=2", delete "0." from "part_dec"
{part_dec}xtonum,mov(part_dec)
_NEWARRAY_={},{part_int,part_dec},pushall(_NEWARRAY_)
{_NEWARRAY_}
back
split(_S_,_T_)
_NEWARRAY_={},_VAR1_=0,_SEP_=0,gettoksep,mov(_SEP_)
{_T_}toksep,totaltoken(_S_),
mov(_VAR1_), // for total tokens
_VAR2_=1, // for real position of tokens into the string
___SPLIT_ITER:
{_VAR2_}$( _S_ ),push(_NEWARRAY_)
++_VAR2_,--_VAR1_
{ _VAR1_ },jnz(___SPLIT_ITER) // jump to "___SPLIT_ITER" if "_VAR1_" is not zero.
clear(_VAR2_),clear(_VAR1_)
{_SEP_}toksep
{_NEWARRAY_}
back
|
http://rosettacode.org/wiki/Tokenize_a_string | Tokenize a string | Separate the string "Hello,How,Are,You,Today" by commas into an array (or list) so that each element of it stores a different word.
Display the words to the 'user', in the simplest manner possible, separated by a period.
To simplify, you may display a trailing period.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #APL | APL | '.',⍨¨ ','(≠⊆⊢)'abc,123,X' ⍝ [1] Do the split: ','(≠⊆⊢)'abc,123,X'; [2] append the periods: '.',⍨¨
abc. 123. X. ⍝ 3 strings (char vectors), each with a period at the end.
|
http://rosettacode.org/wiki/Time_a_function | Time a function | Task
Write a program which uses a timer (with the least granularity available
on your system) to time how long a function takes to execute.
Whenever possible, use methods which measure only the processing time used
by the current process; instead of the difference in system time
between start and finish, which could include time used by
other processes on the computer.
This task is intended as a subtask for Measure relative performance of sorting algorithms implementations.
| #8051_Assembly | 8051 Assembly | TC EQU 8 ; number of counter registers
TSTART EQU 08h ; first register of timer counter
TEND EQU TSTART + TC - 1 ; end register of timer counter
; Note: The multi-byte value is stored in Big-endian
; Some timer reloads
_6H EQU 085h ; 6MHz
_6L EQU 0edh
_12H EQU 00bh ; 12MHz
_12L EQU 0dbh
_110592H EQU 01eh ; 11.0592MHz
_110592L EQU 0ffh
; How to calculate timer reload (e.g. for 11.0592MHz):
; Note: 1 machine cycle takes 12 oscillator periods
; 11.0592MHz / 12 * 0.0625 seconds = 57,600 cycles = e100h
; ffffh - e100h = NOT e100h = 1effh
; assuming a 11.0592MHz crystal
TIMERH EQU _110592H
TIMERL EQU _110592L
;; some timer macros (using timer0)
start_timer macro
setb tr0
endm
stop_timer macro
clr tr0
endm
reset_timer macro
mov tl0, #TIMERL
mov th0, #TIMERH
endm
increment_counter macro ;; increment counter (multi-byte increment)
push psw
push acc
push 0 ; r0
mov r0, #TEND+1
setb c
inc_reg:
dec r0
clr a
addc a, @r0
mov @r0, a
jnc inc_reg_ ; end prematurally if the higher bytes are unchanged
cjne r0, #TSTART, inc_reg
inc_reg_:
; if the carry is set here then the multi byte value has overflowed
pop 0
pop acc
pop psw
endm
ORG RESET
jmp init
ORG TIMER0
jmp timer_0
timer_0: ; interrupt every 6.25ms
stop_timer ; we only want to time the function
reset_timer
increment_counter
start_timer
reti
init:
mov sp, #TEND
setb ea ; enable interrupts
setb et0 ; enable timer0 interrupt
mov tmod, #01h ; timer0 16-bit mode
reset_timer
; reset timer counter registers
clr a
mov r0, #TSTART
clear:
mov @r0, a
inc r0
cjne r0, #TEND, clear
start_timer
call function ; the function to time
stop_timer
; at this point the registers from TSTART
; through TEND indicate the current time
; multiplying the 8/16/24/etc length value by 0.0625 (2^-4) gives
; the elapsed number of seconds
; e.g. if the three registers were 02a0f2h then the elapsed time is:
; 02a0f2h = 172,274 and 172,274 * 0.0625 = 10,767.125 seconds
;
; Or alternatively:
; (high byte) 02h = 2 and 2 * 2^(16-4) = 8192
; (mid byte) a0h = 160 and 160 * 2^(8-4) = 2560
; (low byte) f2h = 242 and 242 * 2^(0-4) = 15.125
; 8192 + 2560 + 15.125 = 10,767.125 seconds
jmp $
function:
; do whatever here
ret
END
|
http://rosettacode.org/wiki/Top_rank_per_group | Top rank per group | Task
Find the top N salaries in each department, where N is provided as a parameter.
Use this data as a formatted internal data structure (adapt it to your language-native idioms, rather than parse at runtime), or identify your external data source:
Employee Name,Employee ID,Salary,Department
Tyler Bennett,E10297,32000,D101
John Rappl,E21437,47000,D050
George Woltman,E00127,53500,D101
Adam Smith,E63535,18000,D202
Claire Buckman,E39876,27800,D202
David McClellan,E04242,41500,D101
Rich Holcomb,E01234,49500,D202
Nathan Adams,E41298,21900,D050
Richard Potter,E43128,15900,D101
David Motsinger,E27002,19250,D202
Tim Sampair,E03033,27000,D101
Kim Arlich,E10001,57000,D190
Timothy Grove,E16398,29900,D190
| #C | C | #include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct {
const char *name, *id, *dept;
int sal;
} person;
person ppl[] = {
{"Tyler Bennett", "E10297", "D101", 32000},
{"John Rappl", "E21437", "D050", 47000},
{"George Woltman", "E00127", "D101", 53500},
{"Adam Smith", "E63535", "D202", 18000},
{"Claire Buckman", "E39876", "D202", 27800},
{"David McClellan", "E04242", "D101", 41500},
{"Rich Holcomb", "E01234", "D202", 49500},
{"Nathan Adams", "E41298", "D050", 21900},
{"Richard Potter", "E43128", "D101", 15900},
{"David Motsinger", "E27002", "D202", 19250},
{"Tim Sampair", "E03033", "D101", 27000},
{"Kim Arlich", "E10001", "D190", 57000},
{"Timothy Grove", "E16398", "D190", 29900},
};
int pcmp(const void *a, const void *b)
{
const person *aa = a, *bb = b;
int x = strcmp(aa->dept, bb->dept);
if (x) return x;
return aa->sal > bb->sal ? -1 : aa->sal < bb->sal;
}
#define N sizeof(ppl)/sizeof(person)
void top(int n)
{
int i, rank;
qsort(ppl, N, sizeof(person), pcmp);
for (i = rank = 0; i < N; i++) {
if (i && strcmp(ppl[i].dept, ppl[i - 1].dept)) {
rank = 0;
printf("\n");
}
if (rank++ < n)
printf("%s %d: %s\n", ppl[i].dept, ppl[i].sal, ppl[i].name);
}
}
int main()
{
top(2);
return 0;
} |
http://rosettacode.org/wiki/Tic-tac-toe | Tic-tac-toe |
Task
Play a game of tic-tac-toe.
Ensure that legal moves are played and that a winning position is notified.
Tic-tac-toe is also known as:
naughts and crosses
tic tac toe
tick tack toe
three in a row
tres en rayo and
Xs and Os
See also
MathWorld™, Tic-Tac-Toe game.
Wikipedia tic-tac-toe.
| #11l | 11l | UInt32 seed = 0
F nonrandom_choice(lst)
:seed = 1664525 * :seed + 1013904223
R lst[:seed % UInt32(lst.len)]
V board = Array(‘123456789’)
V wins = ([0, 1, 2], [3, 4, 5], [6, 7, 8],
[0, 3, 6], [1, 4, 7], [2, 5, 8],
[0, 4, 8], [2, 4, 6])
F printboard()
print([0, 3, 6].map(x -> (:board[x .+ 3]).join(‘ ’)).join("\n"))
F score(board = board) -> (Char, [Int])?
L(w) :wins
V b = board[w[0]]
I b C ‘XO’ & all(w.map(i -> @board[i] == @b))
R (b, w.map(i -> i + 1))
R N
F finished()
R all(:board.map(b -> b C ‘XO’))
F space(board = board)
R board.filter(b -> b !C ‘XO’)
F my_turn(xo, &board)
V options = space()
V choice = nonrandom_choice(options)
board[Int(choice) - 1] = xo
R choice
F my_better_turn(xo, &board)
‘Will return a next winning move or block your winning move if possible’
V ox = I xo == ‘X’ {Char(‘O’)} E Char(‘X’)
Int? oneblock
V options = space(board).map(s -> Int(s) - 1)
Int choice
L(chc) options
V brd = copy(board)
brd[chc] = xo
I score(brd) != N
choice = chc
L.break
I oneblock == N
brd[chc] = ox
I score(brd) != N
oneblock = chc
L.was_no_break
choice = oneblock ? nonrandom_choice(options)
board[choice] = xo
R choice + 1
F your_turn(xo, &board)
V options = space()
L
V choice = input("\nPut your #. in any of these positions: #. ".format(xo, options.join(‘’))).trim((‘ ’, "\t", "\r", "\n"))
I choice C options
board[Int(choice) - 1] = xo
R choice
print(‘Whoops I don't understand the input’)
F me(xo = Char(‘X’))
printboard()
print("\nI go at "my_better_turn(xo, &:board))
R score()
F you(xo = Char(‘O’))
printboard()
print("\nYou went at "my_turn(xo, &:board))
R score()
L !finished()
(Char, [Int])? s = me(Char(‘X’))
I s != N
printboard()
print("\n#. wins along #.".format(s[0], s[1]))
L.break
I !finished()
s = you(Char(‘O’))
I s != N
printboard()
print("\n#. wins along #.".format(s[0], s[1]))
L.break
L.was_no_break
print("\nA draw") |
http://rosettacode.org/wiki/Towers_of_Hanoi | Towers of Hanoi | Task
Solve the Towers of Hanoi problem with recursion.
| #ARM_Assembly | ARM Assembly | .text
.global _start
_start: mov r0,#4 @ 4 disks,
mov r1,#1 @ from pole 1,
mov r2,#2 @ via pole 2,
mov r3,#3 @ to pole 3.
bl move
mov r0,#0 @ Exit to Linux afterwards
mov r7,#1
swi #0
@@@ Move r0 disks from r1 via r2 to r3
move: subs r0,r0,#1 @ One fewer disk in next iteration
beq show @ If last disk, just print move
push {r0-r3,lr} @ Save all the registers incl. link register
eor r2,r2,r3 @ Swap the 'to' and 'via' registers
eor r3,r2,r3
eor r2,r2,r3
bl move @ Recursive call
pop {r0-r3} @ Restore all the registers except LR
bl show @ Show current move
eor r1,r1,r3 @ Swap the 'to' and 'via' registers
eor r3,r1,r3
eor r1,r1,r3
pop {lr} @ Restore link register
b move @ Tail call
@@@ Show move
show: push {r0-r3,lr} @ Save all the registers
add r1,r1,#'0 @ Write the source pole
ldr lr,=spole
strb r1,[lr]
add r3,r3,#'0 @ Write the destination pole
ldr lr,=dpole
strb r3,[lr]
mov r0,#1 @ 1 = stdout
ldr r1,=moves @ Pointer to string
ldr r2,=mlen @ Length of string
mov r7,#4 @ 4 = Linux write syscall
swi #0 @ Print the move
pop {r0-r3,pc} @ Restore all the registers and return
.data
moves: .ascii "Move disk from pole "
spole: .ascii "* to pole "
dpole: .ascii "*\n"
mlen = . - moves |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #Cowgol | Cowgol | include "cowgol.coh";
# Find the N'th digit in the Thue-Morse sequence
sub tm(n: uint32): (d: uint8) is
var n2 := n;
while n2 != 0 loop
n2 := n2 >> 1;
n := n ^ n2;
end loop;
d := (n & 1) as uint8;
end sub;
# Print the first 64 digits
var i: uint32 := 0;
while i < 64 loop
print_char('0' + tm(i));
i := i + 1;
end loop;
print_nl(); |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #Crystal | Crystal | steps = 6
tmp = ""
s1 = "0"
s2 = "1"
steps.times {
tmp = s1
s1 += s2
s2 += tmp
}
puts s1 |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #Java | Java | import java.math.BigInteger;
import java.util.List;
import java.util.Map;
import java.util.function.BiFunction;
import java.util.function.Function;
public class TonelliShanks {
private static final BigInteger ZERO = BigInteger.ZERO;
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TEN = BigInteger.TEN;
private static final BigInteger TWO = BigInteger.valueOf(2);
private static final BigInteger FOUR = BigInteger.valueOf(4);
private static class Solution {
private BigInteger root1;
private BigInteger root2;
private boolean exists;
Solution(BigInteger root1, BigInteger root2, boolean exists) {
this.root1 = root1;
this.root2 = root2;
this.exists = exists;
}
}
private static Solution ts(Long n, Long p) {
return ts(BigInteger.valueOf(n), BigInteger.valueOf(p));
}
private static Solution ts(BigInteger n, BigInteger p) {
BiFunction<BigInteger, BigInteger, BigInteger> powModP = (BigInteger a, BigInteger e) -> a.modPow(e, p);
Function<BigInteger, BigInteger> ls = (BigInteger a) -> powModP.apply(a, p.subtract(ONE).divide(TWO));
if (!ls.apply(n).equals(ONE)) return new Solution(ZERO, ZERO, false);
BigInteger q = p.subtract(ONE);
BigInteger ss = ZERO;
while (q.and(ONE).equals(ZERO)) {
ss = ss.add(ONE);
q = q.shiftRight(1);
}
if (ss.equals(ONE)) {
BigInteger r1 = powModP.apply(n, p.add(ONE).divide(FOUR));
return new Solution(r1, p.subtract(r1), true);
}
BigInteger z = TWO;
while (!ls.apply(z).equals(p.subtract(ONE))) z = z.add(ONE);
BigInteger c = powModP.apply(z, q);
BigInteger r = powModP.apply(n, q.add(ONE).divide(TWO));
BigInteger t = powModP.apply(n, q);
BigInteger m = ss;
while (true) {
if (t.equals(ONE)) return new Solution(r, p.subtract(r), true);
BigInteger i = ZERO;
BigInteger zz = t;
while (!zz.equals(BigInteger.ONE) && i.compareTo(m.subtract(ONE)) < 0) {
zz = zz.multiply(zz).mod(p);
i = i.add(ONE);
}
BigInteger b = c;
BigInteger e = m.subtract(i).subtract(ONE);
while (e.compareTo(ZERO) > 0) {
b = b.multiply(b).mod(p);
e = e.subtract(ONE);
}
r = r.multiply(b).mod(p);
c = b.multiply(b).mod(p);
t = t.multiply(c).mod(p);
m = i;
}
}
public static void main(String[] args) {
List<Map.Entry<Long, Long>> pairs = List.of(
Map.entry(10L, 13L),
Map.entry(56L, 101L),
Map.entry(1030L, 10009L),
Map.entry(1032L, 10009L),
Map.entry(44402L, 100049L),
Map.entry(665820697L, 1000000009L),
Map.entry(881398088036L, 1000000000039L)
);
for (Map.Entry<Long, Long> pair : pairs) {
Solution sol = ts(pair.getKey(), pair.getValue());
System.out.printf("n = %s\n", pair.getKey());
System.out.printf("p = %s\n", pair.getValue());
if (sol.exists) {
System.out.printf("root1 = %s\n", sol.root1);
System.out.printf("root2 = %s\n", sol.root2);
} else {
System.out.println("No solution exists");
}
System.out.println();
}
BigInteger bn = new BigInteger("41660815127637347468140745042827704103445750172002");
BigInteger bp = TEN.pow(50).add(BigInteger.valueOf(577));
Solution sol = ts(bn, bp);
System.out.printf("n = %s\n", bn);
System.out.printf("p = %s\n", bp);
if (sol.exists) {
System.out.printf("root1 = %s\n", sol.root1);
System.out.printf("root2 = %s\n", sol.root2);
} else {
System.out.println("No solution exists");
}
}
} |
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Dyalect | Dyalect | func String.Tokenize(separator, escape) {
var buffer = []
var escaping = false
for c in this {
if escaping {
buffer.Add(c)
escaping = false
} else if c == escape {
escaping = true
} else if c == separator {
yield buffer.Flush();
} else {
buffer.Add(c);
}
}
if buffer.Length() > 0 || this[this.Length() - 1] == separator {
yield buffer.Flush()
}
}
func Array.Flush() {
var str = String.Concat(values: this)
this.Clear()
str
}
let testcase = "one^|uno||three^^^^|four^^^|^cuatro|";
for token in testcase.Tokenize(separator: '|', escape: '^') {
print(": \(token)")
} |
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Elena | Elena | import extensions;
import extensions'routines;
import system'collections;
import system'routines;
import system'text;
extension op : String
{
tokenize(separator,escape)
{
auto buffer := new TextBuilder();
auto list := new ArrayList();
bool escaping := false;
self.forEach:(ch)
{
if (escaping)
{
buffer.write:ch;
escaping := false
}
else if (ch == escape)
{
escaping := true
}
else if (ch == separator)
{
list.append(buffer.Value);
buffer.clear()
}
else
{
buffer.write:ch
}
};
^ list
}
}
const string testcase = "one^|uno||three^^^^|four^^^|^cuatro|";
public program()
{
testcase.tokenize("|", "^").forEach:printingLn
} |
http://rosettacode.org/wiki/Total_circles_area | Total circles area | Total circles area
You are encouraged to solve this task according to the task description, using any language you may know.
Example circles
Example circles filtered
Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.
One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome.
To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):
xc yc radius
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
The result is 21.56503660... .
Related task
Circles of given radius through two points.
See also
http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/
http://stackoverflow.com/a/1667789/10562
| #Python | Python | from collections import namedtuple
Circle = namedtuple("Circle", "x y r")
circles = [
Circle( 1.6417233788, 1.6121789534, 0.0848270516),
Circle(-1.4944608174, 1.2077959613, 1.1039549836),
Circle( 0.6110294452, -0.6907087527, 0.9089162485),
Circle( 0.3844862411, 0.2923344616, 0.2375743054),
Circle(-0.2495892950, -0.3832854473, 1.0845181219),
Circle( 1.7813504266, 1.6178237031, 0.8162655711),
Circle(-0.1985249206, -0.8343333301, 0.0538864941),
Circle(-1.7011985145, -0.1263820964, 0.4776976918),
Circle(-0.4319462812, 1.4104420482, 0.7886291537),
Circle( 0.2178372997, -0.9499557344, 0.0357871187),
Circle(-0.6294854565, -1.3078893852, 0.7653357688),
Circle( 1.7952608455, 0.6281269104, 0.2727652452),
Circle( 1.4168575317, 1.0683357171, 1.1016025378),
Circle( 1.4637371396, 0.9463877418, 1.1846214562),
Circle(-0.5263668798, 1.7315156631, 1.4428514068),
Circle(-1.2197352481, 0.9144146579, 1.0727263474),
Circle(-0.1389358881, 0.1092805780, 0.7350208828),
Circle( 1.5293954595, 0.0030278255, 1.2472867347),
Circle(-0.5258728625, 1.3782633069, 1.3495508831),
Circle(-0.1403562064, 0.2437382535, 1.3804956588),
Circle( 0.8055826339, -0.0482092025, 0.3327165165),
Circle(-0.6311979224, 0.7184578971, 0.2491045282),
Circle( 1.4685857879, -0.8347049536, 1.3670667538),
Circle(-0.6855727502, 1.6465021616, 1.0593087096),
Circle( 0.0152957411, 0.0638919221, 0.9771215985)]
def main():
# compute the bounding box of the circles
x_min = min(c.x - c.r for c in circles)
x_max = max(c.x + c.r for c in circles)
y_min = min(c.y - c.r for c in circles)
y_max = max(c.y + c.r for c in circles)
box_side = 500
dx = (x_max - x_min) / box_side
dy = (y_max - y_min) / box_side
count = 0
for r in xrange(box_side):
y = y_min + r * dy
for c in xrange(box_side):
x = x_min + c * dx
if any((x-circle.x)**2 + (y-circle.y)**2 <= (circle.r ** 2)
for circle in circles):
count += 1
print "Approximated area:", count * dx * dy
main() |
http://rosettacode.org/wiki/Topological_sort | Topological sort |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given a mapping between items, and items they depend on, a topological sort orders items so that no item precedes an item it depends upon.
The compiling of a library in the VHDL language has the constraint that a library must be compiled after any library it depends on.
A tool exists that extracts library dependencies.
Task
Write a function that will return a valid compile order of VHDL libraries from their dependencies.
Assume library names are single words.
Items mentioned as only dependents, (sic), have no dependents of their own, but their order of compiling must be given.
Any self dependencies should be ignored.
Any un-orderable dependencies should be flagged.
Use the following data as an example:
LIBRARY LIBRARY DEPENDENCIES
======= ====================
des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee
dw01 ieee dw01 dware gtech
dw02 ieee dw02 dware
dw03 std synopsys dware dw03 dw02 dw01 ieee gtech
dw04 dw04 ieee dw01 dware gtech
dw05 dw05 ieee dware
dw06 dw06 ieee dware
dw07 ieee dware
dware ieee dware
gtech ieee gtech
ramlib std ieee
std_cell_lib ieee std_cell_lib
synopsys
Note: the above data would be un-orderable if, for example, dw04 is added to the list of dependencies of dw01.
C.f.
Topological sort/Extracted top item.
There are two popular algorithms for topological sorting:
Kahn's 1962 topological sort [1]
depth-first search [2] [3]
| #EchoLisp | EchoLisp |
(define dependencies
'((des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee)
(dw01 ieee dw01 dware gtech) ;; bad graph add dw04
(dw02 ieee dw02 dware )
(dw03 std synopsys dware dw03 dw02 dw01 ieee gtech)
(dw04 dw04 ieee dw01 dware gtech)
(dw05 dw05 ieee dware)
(dw06 dw06 ieee dware)
(dw07 ieee dware)
(dware ieee dware)
(gtech ieee gtech)
(ramlib std ieee )
(std_cell_lib ieee std_cell_lib)
(synopsys )))
;; build dependency graph
;; a depends on b
;; add arc (arrow) a --> b
(lib 'graph.lib)
(define (a->b g a b)
(unless (equal? a b)
(graph-make-arc g (graph-make-vertex g a) (graph-make-vertex g b))))
(define (add-dependencies g dep-list)
(for* ((dep dep-list) (b (rest dep))) (a->b g b (first dep))))
|
http://rosettacode.org/wiki/Universal_Turing_machine | Universal Turing machine | One of the foundational mathematical constructs behind computer science
is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936–1937.)
Indeed one way to definitively prove that a language
is turing-complete
is to implement a universal Turing machine in it.
Task
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
Simple incrementer
States: q0, qf
Initial state: q0
Terminating states: qf
Permissible symbols: B, 1
Blank symbol: B
Rules:
(q0, 1, 1, right, q0)
(q0, B, 1, stay, qf)
The input for this machine should be a tape of 1 1 1
Three-state busy beaver
States: a, b, c, halt
Initial state: a
Terminating states: halt
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(a, 0, 1, right, b)
(a, 1, 1, left, c)
(b, 0, 1, left, a)
(b, 1, 1, right, b)
(c, 0, 1, left, b)
(c, 1, 1, stay, halt)
The input for this machine should be an empty tape.
Bonus:
5-state, 2-symbol probable Busy Beaver machine from Wikipedia
States: A, B, C, D, E, H
Initial state: A
Terminating states: H
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(A, 0, 1, right, B)
(A, 1, 1, left, C)
(B, 0, 1, right, C)
(B, 1, 1, right, B)
(C, 0, 1, right, D)
(C, 1, 0, left, E)
(D, 0, 1, left, A)
(D, 1, 1, left, D)
(E, 0, 1, stay, H)
(E, 1, 0, left, A)
The input for this machine should be an empty tape.
This machine runs for more than 47 millions steps.
| #Julia | Julia | import Base.show
@enum Move Left=1 Stay Right
mutable struct MachineState
state::String
tape::Dict{Int, String}
headpos::Int
end
struct Rule
instate::String
s1::String
s2::String
move::Move
outstate::String
end
struct Program
title::String
initial::String
final::String
blank::String
rules::Vector{Rule}
end
const testprograms = [
(Program("Simple incrementer", "q0", "qf", "B",
[Rule("q0", "1", "1", Right, "q0"), Rule("q0", "B", "1", Stay, "qf")]),
Dict(1 =>"1", 2 => "1", 3 => "1"), true),
(Program("Three-state busy beaver", "a", "halt", "0",
[Rule("a", "0", "1", Right, "b"), Rule("a", "1", "1", Left, "c"),
Rule("b", "0", "1", Left, "a"), Rule("b", "1", "1", Right, "b"),
Rule("c", "0", "1", Left, "b"), Rule("c", "1", "1", Stay, "halt")]),
Dict(), true),
(Program("Five-state busy beaver", "A", "H", "0",
[Rule("A", "0", "1", Right, "B"), Rule("A", "1", "1", Left, "C"),
Rule("B", "0", "1", Right, "C"), Rule("B", "1", "1", Right, "B"),
Rule("C", "0", "1", Right, "D"), Rule("C", "1", "0", Left, "E"),
Rule("D", "0", "1", Left, "A"), Rule("D", "1", "1", Left, "D"),
Rule("E", "0", "1", Stay, "H"), Rule("E", "1", "0", Left, "A")]),
Dict(), false)]
function show(io::IO, mstate::MachineState)
ibracket(i, curpos, val) = (i == curpos) ? "[$val]" : " $val "
print(io, rpad("($(mstate.state))", 12))
for i in sort(collect(keys(mstate.tape)))
print(io, " $(ibracket(i, mstate.headpos, mstate.tape[i]))")
end
end
function turing(program, tape, verbose)
println("\n$(program.title)")
verbose && println(" State \tTape [head]\n--------------------------------------------------")
mstate = MachineState(program.initial, tape, 1)
stepcount = 0
while true
if !haskey(mstate.tape, mstate.headpos)
mstate.tape[mstate.headpos] = program.blank
end
verbose && println(mstate)
for rule in program.rules
if rule.instate == mstate.state && rule.s1 == mstate.tape[mstate.headpos]
mstate.tape[mstate.headpos] = rule.s2
if rule.move == Left
mstate.headpos -= 1
elseif rule.move == Right
mstate.headpos += 1
end
mstate.state = rule.outstate
break
end
end
stepcount += 1
if mstate.state == program.final
break
end
end
verbose && println(mstate)
println("Total steps: $stepcount")
end
for (prog, tape, verbose) in testprograms
turing(prog, tape, verbose)
end
|
http://rosettacode.org/wiki/Totient_function | Totient function | The totient function is also known as:
Euler's totient function
Euler's phi totient function
phi totient function
Φ function (uppercase Greek phi)
φ function (lowercase Greek phi)
Definitions (as per number theory)
The totient function:
counts the integers up to a given positive integer n that are relatively prime to n
counts the integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n,k) is equal to 1
counts numbers ≤ n and prime to n
If the totient number (for N) is one less than N, then N is prime.
Task
Create a totient function and:
Find and display (1 per line) for the 1st 25 integers:
the integer (the index)
the totient number for that integer
indicate if that integer is prime
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000 (optional)
Show all output here.
Related task
Perfect totient numbers
Also see
Wikipedia: Euler's totient function.
MathWorld: totient function.
OEIS: Euler totient function phi(n).
| #J | J |
nth_prime =: p: NB. 2 is the zeroth prime
totient =: 5&p:
primeQ =: 1&p:
NB. first row contains the integer
NB. second row totient
NB. third 1 iff prime
(, totient ,: primeQ) >: i. 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20
0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0
NB. primes first exceeding the limits
[&.:(p:inv) 10 ^ 2 + i. 4
101 1009 10007 100003
p:inv 101 1009 10007 100003
25 168 1229 9592
NB. limit and prime count
(,. p:inv) 10 ^ 2 + i. 5
100 25
1000 168
10000 1229
100000 9592
1e6 78498
|
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #PL.2FI | PL/I |
(subscriptrange):
topswap: procedure options (main); /* 12 November 2013 */
declare cards(*) fixed (2) controlled, t fixed (2);
declare dealt(*) bit(1) controlled;
declare (count, i, m, n, c1, c2) fixed binary;
declare random builtin;
do n = 1 to 10;
allocate cards(n), dealt(n);
/* Take the n cards, in order ... */
do i = 1 to n; cards(i) = i; end;
/* ... and shuffle them. */
do i = 1 to n;
c1 = random*n+1; c2 = random*n+1;
t = cards(c1); cards(c1) = cards(c2); cards(c2) = t;
end;
/* If '1' is the first card, game is trivial; swap it with another. */
if cards(1) = 1 & n > 1 then
do; t = cards(1); cards(1) = cards(2); cards(2) = t; end;
count = 0;
do until (cards(1) = 1);
/* take the value of the first card, M, and reverse the first M cards. */
m = cards(1);
do i = 1 to m/2;
t = cards(i); cards(i) = cards(m-i+1); cards(m-i+1) = t;
end;
count = count + 1;
end;
put skip edit (n, ':', count) (f(2), a, f(4));
end;
end topswap;
|
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #Potion | Potion | range = (a, b):
i = 0, l = list(b-a+1)
while (a + i <= b):
l (i) = a + i++.
l.
fannkuch = (n):
flips = 0, maxf = 0, k = 0, m = n - 1, r = n
perml = range(0, n), count = list(n), perm = list(n)
loop:
while (r != 1):
count (r-1) = r
r--.
if (perml (0) != 0 and perml (m) != m):
flips = 0, i = 1
while (i < n):
perm (i) = perml (i)
i++.
k = perml (0)
loop:
i = 1, j = k - 1
while (i < j):
t = perm (i), perm (i) = perm (j), perm (j) = t
i++, j--.
flips++
j = perm (k), perm (k) = k, k = j
if (k == 0): break.
.
if (flips > maxf): maxf = flips.
.
loop:
if (r == n):
(n, maxf) say
return (maxf).
i = 0, j = perml (0)
while (i < r):
k = i + 1
perml (i) = perml (k)
i = k.
perml (r) = j
j = count (r) - 1
count (r) = j
if (j > 0): break.
r++
_ n
n = argv(1) number
if (n<1): n=10.
fannkuch(n)
|
http://rosettacode.org/wiki/Trigonometric_functions | Trigonometric functions | Task
If your language has a library or built-in functions for trigonometry, show examples of:
sine
cosine
tangent
inverses (of the above)
using the same angle in radians and degrees.
For the non-inverse functions, each radian/degree pair should use arguments that evaluate to the same angle (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle).
For the inverse functions, use the same number and convert its answer to radians and degrees.
If your language does not have trigonometric functions available or only has some available, write functions to calculate the functions based on any known approximation or identity.
| #Elixir | Elixir | iex(61)> deg = 45
45
iex(62)> rad = :math.pi / 4
0.7853981633974483
iex(63)> :math.sin(deg * :math.pi / 180) == :math.sin(rad)
true
iex(64)> :math.cos(deg * :math.pi / 180) == :math.cos(rad)
true
iex(65)> :math.tan(deg * :math.pi / 180) == :math.tan(rad)
true
iex(66)> temp = :math.acos(:math.cos(rad))
0.7853981633974483
iex(67)> temp * 180 / :math.pi == deg
true
iex(68)> temp = :math.atan(:math.tan(rad))
0.7853981633974483
iex(69)> temp * 180 / :math.pi == deg
true |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Liberty_BASIC | Liberty BASIC |
' Trabb Pardo-Knuth algorithm
' Used "magic numbers" because of strict specification of the algorithm.
dim s(10)
print "Enter 11 numbers."
for i = 0 to 10
print i + 1;
input " => "; s(i)
next i
print
' Reverse
for i = 0 to 10 / 2
tmp = s(i)
s(i) = s(10 - i)
s(10 - i) = tmp
next i
'Results
for i = 0 to 10
print "f("; s(i); ") = ";
r = f(s(i))
if r > 400 then
print "overflow"
else
print r
end if
next i
end
function f(n)
f = sqr(abs(n)) + 5 * n * n * n
end function
|
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Lua | Lua | function f (x) return math.abs(x)^0.5 + 5*x^3 end
function reverse (t)
local rev = {}
for i, v in ipairs(t) do rev[#t - (i-1)] = v end
return rev
end
local sequence, result = {}
print("Enter 11 numbers...")
for n = 1, 11 do
io.write(n .. ": ")
sequence[n] = io.read()
end
for _, x in ipairs(reverse(sequence)) do
result = f(x)
if result > 400 then print("Overflow!") else print(result) end
end |
http://rosettacode.org/wiki/Truth_table | Truth table | A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.
Task
Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function.
(One can assume that the user input is correct).
Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
Either reverse-polish or infix notation expressions are allowed.
Related tasks
Boolean values
Ternary logic
See also
Wolfram MathWorld entry on truth tables.
some "truth table" examples from Google.
| #Ruby | Ruby | loop do
print "\ninput a boolean expression (e.g. 'a & b'): "
expr = gets.strip.downcase
break if expr.empty?
vars = expr.scan(/\p{Alpha}+/)
if vars.empty?
puts "no variables detected in your boolean expression"
next
end
vars.each {|v| print "#{v}\t"}
puts "| #{expr}"
prefix = []
suffix = []
vars.each do |v|
prefix << "[false, true].each do |#{v}|"
suffix << "end"
end
body = vars.inject("puts ") {|str, v| str + "#{v}.to_s + '\t' + "}
body += '"| " + eval(expr).to_s'
eval (prefix + [body] + suffix).join("\n")
end |
http://rosettacode.org/wiki/Ulam_spiral_(for_primes) | Ulam spiral (for primes) | An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1), constructed on a square grid, starting at the "center".
An Ulam spiral is also known as a prime spiral.
The first grid (green) is shown with sequential integers, starting at 1.
In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk), and all non-primes as shown as a blank (or some other whitespace).
Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables).
Normally, the spiral starts in the "center", and the 2nd number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction.
There are other geometric shapes that are used as well, including clock-wise spirals.
Also, some spirals (for the 2nd number) is viewed upwards from the 1st number instead of to the right, but that is just a matter of orientation.
Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities).
[A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)].
Then, in the next phase in the transformation of the Ulam prime spiral, the non-primes are translated to blanks.
In the orange grid below, the primes are left intact, and all non-primes are changed to blanks.
Then, in the final transformation of the Ulam spiral (the yellow grid), translate the primes to a glyph such as a • or some other suitable glyph.
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
61
59
37
31
67
17
13
5
3
29
19
2
11
53
41
7
71
23
43
47
73
79
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The Ulam spiral becomes more visually obvious as the grid increases in size.
Task
For any sized N × N grid, construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number (the default would be 1), with some suitably dotty (glyph) representation to indicate primes, and the absence of dots to indicate non-primes.
You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen.
Related tasks
Spiral matrix
Zig-zag matrix
Identity matrix
Sequence of primes by Trial Division
See also
Wikipedia entry: Ulam spiral
MathWorld™ entry: Prime Spiral
| #Sidef | Sidef | require('Imager')
var (n=512, start=1, file='ulam.png')
ARGV.getopt(
'n=i' => \n,
's=i' => \start,
'f=s' => \file,
)
func cell(n, x, y, start) {
y -= (n >> 1)
x -= (n-1 >> 1)
var l = 2*(x.abs > y.abs ? x.abs : y.abs)
var d = (y > x ? (l*3 + x + y) : (l - x - y))
(l-1)**2 + d + start - 1
}
var black = %O<Imager::Color>.new('#000000')
var white = %O<Imager::Color>.new('#FFFFFF')
var img = %O<Imager>.new(xsize => n, ysize => n, channels => 1)
img.box(filled => 1, color => white)
for y=(^n), x=(^n) {
if (cell(n, x, y, start).is_prime) {
img.setpixel(x => x, y => y, color => black)
}
}
img.write(file => file) |
http://rosettacode.org/wiki/Truncatable_primes | Truncatable primes | A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number.
Examples
The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime.
The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime.
No zeroes are allowed in truncatable primes.
Task
The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied).
Related tasks
Find largest left truncatable prime in a given base
Sieve of Eratosthenes
See also
Truncatable Prime from MathWorld.]
| #Nim | Nim | import sets, strutils, algorithm
proc primes(n: int64): seq[int64] =
var multiples: HashSet[int64]
for i in 2..n:
if i notin multiples:
result.add i
for j in countup(i*i, n, i.int):
multiples.incl j
proc truncatablePrime(n: int64): tuple[left, right: int64] =
var
primelist: seq[string]
for x in primes(n):
primelist.add($x)
reverse primelist
var primeset = primelist.toHashSet
for n in primelist:
var alltruncs: HashSet[string]
for i in 0..n.high:
alltruncs.incl n[i..n.high]
if alltruncs <= primeset:
result.left = parseInt(n)
break
for n in primelist:
var alltruncs: HashSet[string]
for i in 0..n.high:
alltruncs.incl n[0..i]
if alltruncs <= primeset:
result.right = parseInt(n)
break
echo truncatablePrime(1000000i64) |
http://rosettacode.org/wiki/Tree_traversal | Tree traversal | Task
Implement a binary tree where each node carries an integer, and implement:
pre-order,
in-order,
post-order, and
level-order traversal.
Use those traversals to output the following tree:
1
/ \
/ \
/ \
2 3
/ \ /
4 5 6
/ / \
7 8 9
The correct output should look like this:
preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9
See also
Wikipedia article: Tree traversal.
| #Clojure | Clojure | (defn walk [node f order]
(when node
(doseq [o order]
(if (= o :visit)
(f (:val node))
(walk (node o) f order)))))
(defn preorder [node f]
(walk node f [:visit :left :right]))
(defn inorder [node f]
(walk node f [:left :visit :right]))
(defn postorder [node f]
(walk node f [:left :right :visit]))
(defn queue [& xs]
(when (seq xs)
(apply conj clojure.lang.PersistentQueue/EMPTY xs)))
(defn level-order [root f]
(loop [q (queue root)]
(when-not (empty? q)
(if-let [node (first q)]
(do
(f (:val node))
(recur (conj (pop q) (:left node) (:right node))))
(recur (pop q))))))
(defn vec-to-tree [t]
(if (vector? t)
(let [[val left right] t]
{:val val
:left (vec-to-tree left)
:right (vec-to-tree right)})
t))
(let [tree (vec-to-tree [1 [2 [4 [7]] [5]] [3 [6 [8] [9]]]])
fs '[preorder inorder postorder level-order]
pr-node #(print (format "%2d" %))]
(doseq [f fs]
(print (format "%-12s" (str f ":")))
((resolve f) tree pr-node)
(println))) |
http://rosettacode.org/wiki/Tokenize_a_string | Tokenize a string | Separate the string "Hello,How,Are,You,Today" by commas into an array (or list) so that each element of it stores a different word.
Display the words to the 'user', in the simplest manner possible, separated by a period.
To simplify, you may display a trailing period.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #AppleScript | AppleScript | on run
intercalate(".", splitOn(",", "Hello,How,Are,You,Today"))
end run
-- splitOn :: String -> String -> [String]
on splitOn(strDelim, strMain)
set {dlm, my text item delimiters} to {my text item delimiters, strDelim}
set lstParts to text items of strMain
set my text item delimiters to dlm
return lstParts
end splitOn
-- intercalate :: String -> [String] -> String
on intercalate(strText, lstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set strJoined to lstText as text
set my text item delimiters to dlm
return strJoined
end intercalate |
http://rosettacode.org/wiki/Time_a_function | Time a function | Task
Write a program which uses a timer (with the least granularity available
on your system) to time how long a function takes to execute.
Whenever possible, use methods which measure only the processing time used
by the current process; instead of the difference in system time
between start and finish, which could include time used by
other processes on the computer.
This task is intended as a subtask for Measure relative performance of sorting algorithms implementations.
| #ACL2 | ACL2 | (time$ (nthcdr 9999999 (take 10000000 nil))) |
http://rosettacode.org/wiki/Time_a_function | Time a function | Task
Write a program which uses a timer (with the least granularity available
on your system) to time how long a function takes to execute.
Whenever possible, use methods which measure only the processing time used
by the current process; instead of the difference in system time
between start and finish, which could include time used by
other processes on the computer.
This task is intended as a subtask for Measure relative performance of sorting algorithms implementations.
| #Action.21 | Action! | BYTE RTCLOK1=$13
BYTE RTCLOK2=$14
BYTE PALNTSC=$D014
PROC Count(CARD max)
CARD i
FOR i=1 TO max DO OD
RETURN
CARD FUNC GetFrame()
CARD res
BYTE lsb=res,msb=res+1
lsb=RTCLOK2
msb=RTCLOK1
RETURN (res)
CARD FUNC FramesToMs(CARD frames)
CARD res
IF PALNTSC=15 THEN
res=frames*60
ELSE
res=frames*50
FI
RETURN (res)
PROC Main()
CARD ARRAY c=[1000 2000 5000 10000 20000 50000]
CARD beg,end,diff,diffMs
BYTE i
FOR i=0 TO 5
DO
PrintF("Count to %U takes ",c(i))
beg=GetFrame()
Count(c(i))
end=GetFrame()
diff=end-beg
diffMs=FramesToMs(diff)
PrintF("%U ms%E",diffMs)
OD
RETURN |
http://rosettacode.org/wiki/Top_rank_per_group | Top rank per group | Task
Find the top N salaries in each department, where N is provided as a parameter.
Use this data as a formatted internal data structure (adapt it to your language-native idioms, rather than parse at runtime), or identify your external data source:
Employee Name,Employee ID,Salary,Department
Tyler Bennett,E10297,32000,D101
John Rappl,E21437,47000,D050
George Woltman,E00127,53500,D101
Adam Smith,E63535,18000,D202
Claire Buckman,E39876,27800,D202
David McClellan,E04242,41500,D101
Rich Holcomb,E01234,49500,D202
Nathan Adams,E41298,21900,D050
Richard Potter,E43128,15900,D101
David Motsinger,E27002,19250,D202
Tim Sampair,E03033,27000,D101
Kim Arlich,E10001,57000,D190
Timothy Grove,E16398,29900,D190
| #C.23 | C# | using System;
using System.Collections.Generic;
using System.Linq;
public class Program
{
class Employee
{
public Employee(string name, string id, int salary, string department)
{
Name = name;
Id = id;
Salary = salary;
Department = department;
}
public string Name { get; private set; }
public string Id { get; private set; }
public int Salary { get; private set; }
public string Department { get; private set; }
public override string ToString()
{
return String.Format("{0, -25}\t{1}\t{2}", Name, Id, Salary);
}
}
private static void Main(string[] args)
{
var employees = new List<Employee>
{
new Employee("Tyler Bennett", "E10297", 32000, "D101"),
new Employee("John Rappl", "E21437", 47000, "D050"),
new Employee("George Woltman", "E21437", 53500, "D101"),
new Employee("Adam Smith", "E21437", 18000, "D202"),
new Employee("Claire Buckman", "E39876", 27800, "D202"),
new Employee("David McClellan", "E04242", 41500, "D101"),
new Employee("Rich Holcomb", "E01234", 49500, "D202"),
new Employee("Nathan Adams", "E41298", 21900, "D050"),
new Employee("Richard Potter", "E43128", 15900, "D101"),
new Employee("David Motsinger", "E27002", 19250, "D202"),
new Employee("Tim Sampair", "E03033", 27000, "D101"),
new Employee("Kim Arlich", "E10001", 57000, "D190"),
new Employee("Timothy Grove", "E16398", 29900, "D190")
};
DisplayTopNPerDepartment(employees, 2);
}
static void DisplayTopNPerDepartment(IEnumerable<Employee> employees, int n)
{
var topSalariesByDepartment =
from employee in employees
group employee by employee.Department
into g
select new
{
Department = g.Key,
TopEmployeesBySalary = g.OrderByDescending(e => e.Salary).Take(n)
};
foreach (var x in topSalariesByDepartment)
{
Console.WriteLine("Department: " + x.Department);
foreach (var employee in x.TopEmployeesBySalary)
Console.WriteLine(employee);
Console.WriteLine("----------------------------");
}
}
} |
http://rosettacode.org/wiki/Tic-tac-toe | Tic-tac-toe |
Task
Play a game of tic-tac-toe.
Ensure that legal moves are played and that a winning position is notified.
Tic-tac-toe is also known as:
naughts and crosses
tic tac toe
tick tack toe
three in a row
tres en rayo and
Xs and Os
See also
MathWorld™, Tic-Tac-Toe game.
Wikipedia tic-tac-toe.
| #Ada | Ada | with Ada.Text_IO, Ada.Numerics.Discrete_Random;
-- can play human-human, human-computer, computer-human or computer-computer
-- the computer isn't very clever: it just chooses a legal random move
procedure Tic_Tac_Toe is
type The_Range is range 1 .. 3;
type Board_Type is array (The_Range, The_Range) of Character;
package Rand is new Ada.Numerics.Discrete_Random(The_Range);
Gen: Rand.Generator; -- required for the random moves
procedure Show_Board(Board: Board_Type) is
use Ada.Text_IO;
begin
for Row in The_Range loop
for Column in The_Range loop
Put(Board(Row, Column));
end loop;
Put_Line("");
end loop;
Put_Line("");
end Show_Board;
function Find_Winner(Board: Board_Type) return Character is
-- if 'x' or 'o' wins, it returns that, else it returns ' '
function Three_Equal(A,B,C: Character) return Boolean is
begin
return (A=B) and (A=C);
end Three_Equal;
begin -- Find_Winner
for I in The_Range loop
if Three_Equal(Board(I,1), Board(I,2), Board(I,3)) then
return Board(I,1);
elsif Three_Equal(Board(1,I), Board(2,I), Board(3,I)) then
return Board(1,I);
end if;
end loop;
if Three_Equal(Board(1,1), Board(2,2), Board (3,3)) or
Three_Equal(Board(3,1), Board(2,2), Board (1,3)) then
return Board(2,2);
end if;
return ' ';
end Find_Winner;
procedure Do_Move(Board: in out Board_Type;
New_Char: Character; Computer_Move: Boolean) is
Done: Boolean := False;
C: Character;
use Ada.Text_IO;
procedure Do_C_Move(Board: in out Board_Type; New_Char: Character) is
Found: Boolean := False;
X,Y: The_Range;
begin
while not Found loop
X := Rand.Random(Gen);
Y := Rand.Random(Gen);
if (Board(X,Y) /= 'x') and (Board(X,Y) /= 'o') then
Found := True;
Board(X,Y) := New_Char;
end if;
end loop;
end Do_C_Move;
begin
if Computer_Move then
Do_C_Move(Board, New_Char);
else -- read move;
Put_Line("Choose your move, " & New_Char);
while not Done loop
Get(C);
for Row in The_Range loop
for Col in The_Range loop
if Board(Row, Col) = C then
Board(Row, Col) := New_Char;
Done := True;
end if;
end loop;
end loop;
end loop;
end if;
end Do_Move;
The_Board : Board_Type := (('1','2','3'), ('4','5','6'), ('7','8','9'));
Cnt_Moves: Natural := 0;
Players: array(0 .. 1) of Character := ('x', 'o'); -- 'x' begins
C_Player: array(0 .. 1) of Boolean := (False, False);
Reply: Character;
begin -- Tic_Tac_Toe
-- firstly, ask whether the computer shall take over either player
for I in Players'Range loop
Ada.Text_IO.Put_Line("Shall " & Players(I) &
" be run by the computer? (y=yes)");
Ada.Text_IO.Get(Reply);
if Reply='y' or Reply='Y' then
C_Player(I) := True;
Ada.Text_IO.Put_Line("Yes!");
else
Ada.Text_IO.Put_Line("No!");
end if;
end loop;
Rand.Reset(Gen); -- to initalize the random generator
-- now run the game
while (Find_Winner(The_Board) = ' ') and (Cnt_Moves < 9) loop
Show_Board(The_Board);
Do_Move(The_Board, Players(Cnt_Moves mod 2), C_Player(Cnt_Moves mod 2));
Cnt_Moves := Cnt_Moves + 1;
end loop;
Ada.Text_IO.Put_Line("This is the end!");
-- finally, output the outcome
Show_Board (The_Board);
if Find_Winner(The_Board) = ' ' then
Ada.Text_IO.Put_Line("Draw");
else
Ada.Text_IO.Put_Line("The winner is: " & Find_Winner(The_Board));
end if;
end Tic_Tac_Toe; |
http://rosettacode.org/wiki/Towers_of_Hanoi | Towers of Hanoi | Task
Solve the Towers of Hanoi problem with recursion.
| #Arturo | Arturo | hanoi: function [n f dir via][
if n>0 [
hanoi n-1 f via dir
print ["Move disk" n "from" f "to" dir]
hanoi n-1 via dir f
]
]
hanoi 3 'L 'M 'R |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #D | D | import std.range;
import std.stdio;
struct TM {
private char[] sequence = ['0'];
private char[] inverse = ['1'];
private char[] buffer;
enum empty = false;
auto front() {
return sequence;
}
auto popFront() {
buffer = sequence;
sequence ~= inverse;
inverse ~= buffer;
}
}
void main() {
TM sequence;
foreach (step; sequence.take(8)) {
writeln(step);
}
}
|
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #Delphi | Delphi | /* Find the N'th digit in the Thue-Morse sequence */
proc nonrec tm(word n) byte:
word n2;
n2 := n;
while n2 ~= 0 do
n2 := n2 >> 1;
n := n >< n2
od;
n & 1
corp
/* Print the first 64 digits */
proc nonrec main() void:
byte i;
for i from 0 upto 63 do
write(tm(i):1)
od
corp |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #Julia | Julia | module TonelliShanks
legendre(a, p) = powermod(a, (p - 1) ÷ 2, p)
function solve(n::T, p::T) where T <: Union{Int, Int128, BigInt}
legendre(n, p) != 1 && throw(ArgumentError("$n not a square (mod $p)"))
local q::T = p - one(p)
local s::T = 0
while iszero(q % 2)
q ÷= 2
s += one(s)
end
if s == one(s)
r = powermod(n, (p + 1) >> 2, p)
return r, p - r
end
local z::T
for z in 2:(p - 1)
p - 1 == legendre(z, p) && break
end
local c::T = powermod(z, q, p)
local r::T = powermod(n, (q + 1) >> 1, p)
local t::T = powermod(n, q, p)
local m::T = s
local t2::T = zero(p)
while !iszero((t - 1) % p)
t2 = (t * t) % p
local i::T
for i in Base.OneTo(m)
iszero((t2 - 1) % p) && break
t2 = (t2 * t2) % p
end
b = powermod(c, 1 << (m - i - 1), p)
r = (r * b) % p
c = (b * b) % p
t = (t * c) % p
m = i
end
return r, p - r
end
end # module TonelliShanks |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #Kotlin | Kotlin | // version 1.1.3
import java.math.BigInteger
data class Solution(val root1: BigInteger, val root2: BigInteger, val exists: Boolean)
val bigZero = BigInteger.ZERO
val bigOne = BigInteger.ONE
val bigTwo = BigInteger.valueOf(2L)
val bigFour = BigInteger.valueOf(4L)
val bigTen = BigInteger.TEN
fun ts(n: Long, p: Long) = ts(BigInteger.valueOf(n), BigInteger.valueOf(p))
fun ts(n: BigInteger, p: BigInteger): Solution {
fun powModP(a: BigInteger, e: BigInteger) = a.modPow(e, p)
fun ls(a: BigInteger) = powModP(a, (p - bigOne) / bigTwo)
if (ls(n) != bigOne) return Solution(bigZero, bigZero, false)
var q = p - bigOne
var ss = bigZero
while (q.and(bigOne) == bigZero) {
ss = ss + bigOne
q = q.shiftRight(1)
}
if (ss == bigOne) {
val r1 = powModP(n, (p + bigOne) / bigFour)
return Solution(r1, p - r1, true)
}
var z = bigTwo
while (ls(z) != p - bigOne) z = z + bigOne
var c = powModP(z, q)
var r = powModP(n, (q + bigOne) / bigTwo)
var t = powModP(n, q)
var m = ss
while (true) {
if (t == bigOne) return Solution(r, p - r, true)
var i = bigZero
var zz = t
while (zz != bigOne && i < m - bigOne) {
zz = zz * zz % p
i = i + bigOne
}
var b = c
var e = m - i - bigOne
while (e > bigZero) {
b = b * b % p
e = e - bigOne
}
r = r * b % p
c = b * b % p
t = t * c % p
m = i
}
}
fun main(args: Array<String>) {
val pairs = listOf<Pair<Long, Long>>(
10L to 13L,
56L to 101L,
1030L to 10009L,
1032L to 10009L,
44402L to 100049L,
665820697L to 1000000009L,
881398088036L to 1000000000039L
)
for (pair in pairs) {
val (n, p) = pair
val (root1, root2, exists) = ts(n, p)
println("n = $n")
println("p = $p")
if (exists) {
println("root1 = $root1")
println("root2 = $root2")
}
else println("No solution exists")
println()
}
val bn = BigInteger("41660815127637347468140745042827704103445750172002")
val bp = bigTen.pow(50) + BigInteger.valueOf(577L)
val (broot1, broot2, bexists) = ts(bn, bp)
println("n = $bn")
println("p = $bp")
if (bexists) {
println("root1 = $broot1")
println("root2 = $broot2")
}
else println("No solution exists")
} |
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #F.23 | F# | open System
open System.Text.RegularExpressions
(*
.NET regexes have unlimited look-behind, so we can look for separators
which are preceeded by an even number of (or no) escape characters
*)
let split esc sep s =
Regex.Split (
s,
String.Format("(?<=(?:\b|[^{0}])(?:{0}{0})*){1}", Regex.Escape(esc), Regex.Escape(sep))
)
let unescape esc s =
Regex.Replace(
s,
Regex.Escape(esc) + "(.)",
"$1"
)
[<EntryPoint>]
let main argv =
let (esc, sep) = ("^", "|")
"one^|uno||three^^^^|four^^^|^cuatro|"
|> split esc sep
|> Seq.map (unescape esc)
|> Seq.iter (fun s -> printfn "'%s'" s)
0 |
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Factor | Factor | USING: accessors kernel lists literals namespaces
parser-combinators prettyprint sequences strings ;
SYMBOLS: esc sep ;
: set-chars ( m n -- ) [ sep set ] [ esc set ] bi* ;
: escape ( -- parser ) esc get 1token ;
: escaped ( -- parser ) escape any-char-parser &> ;
: separator ( -- parser ) sep get 1token ;
: character ( -- parser )
${ esc get sep get } [ member? not ] curry satisfy ;
: my-token ( -- parser ) escaped character <|> <*> ;
: token-list ( -- parser )
my-token separator list-of [ [ >string ] map ] <@ ;
: tokenize ( str sep-char esc-char -- seq )
set-chars token-list parse car parsed>> ;
"one^|uno||three^^^^|four^^^|^cuatro|"
CHAR: | CHAR: ^ tokenize . |
http://rosettacode.org/wiki/Total_circles_area | Total circles area | Total circles area
You are encouraged to solve this task according to the task description, using any language you may know.
Example circles
Example circles filtered
Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.
One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome.
To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):
xc yc radius
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
The result is 21.56503660... .
Related task
Circles of given radius through two points.
See also
http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/
http://stackoverflow.com/a/1667789/10562
| #Racket | Racket | class Point {
has Real $.x;
has Real $.y;
has Int $!cbits; # bitmap of circle membership
method cbits { $!cbits //= set_cbits(self) }
method gist { $!x ~ "\t" ~ $!y }
}
multi infix:<to>(Point $p1, Point $p2) {
sqrt ($p1.x - $p2.x) ** 2 + ($p1.y - $p2.y) ** 2;
}
multi infix:<mid>(Point $p1, Point $p2) {
Point.new(x => ($p1.x + $p2.x) / 2, y => ($p1.y + $p2.y) / 2);
}
class Circle {
has Point $.center;
has Real $.radius;
has Point $.north = Point.new(x => $!center.x, y => $!center.y + $!radius);
has Point $.west = Point.new(x => $!center.x - $!radius, y => $!center.y);
has Point $.south = Point.new(x => $!center.x, y => $!center.y - $!radius);
has Point $.east = Point.new(x => $!center.x + $!radius, y => $!center.y);
multi method contains(Circle $c) { $!center to $c.center <= $!radius - $c.radius }
multi method contains(Point $p) { $!center to $p <= $!radius }
method gist { $!center.gist ~ "\t" ~ $.radius }
}
class Rect {
has Point $.nw;
has Point $.ne;
has Point $.sw;
has Point $.se;
method diag { $!ne to $!se }
method area { ($!ne.x - $!nw.x) * ($!nw.y - $!sw.y) }
method contains(Point $p) {
$!nw.x < $p.x < $!ne.x and
$!sw.y < $p.y < $!nw.y;
}
}
my @rawcircles = sort -*.radius,
map -> $x, $y, $radius { Circle.new(:center(Point.new(:$x, :$y)), :$radius) },
<
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
>».Num;
# remove redundant circles
my @circles;
while @rawcircles {
my $c = @rawcircles.shift;
next if @circles.any.contains($c);
push @circles, $c;
}
sub set_cbits(Point $p) {
my $cbits = 0;
for @circles Z (1,2,4...*) -> ($c, $b) {
$cbits += $b if $c.contains($p);
}
$cbits;
}
my $xmin = min @circles.map: { .center.x - .radius }
my $xmax = max @circles.map: { .center.x + .radius }
my $ymin = min @circles.map: { .center.y - .radius }
my $ymax = max @circles.map: { .center.y + .radius }
my $min-radius = @circles[*-1].radius;
my $outer-rect = Rect.new:
nw => Point.new(x => $xmin, y => $ymax),
ne => Point.new(x => $xmax, y => $ymax),
sw => Point.new(x => $xmin, y => $ymin),
se => Point.new(x => $xmax, y => $ymin);
my $outer-area = $outer-rect.area;
my @unknowns = $outer-rect;
my $known-dry = 0e0;
my $known-wet = 0e0;
my $div = 1;
# divide current rects each into four rects, analyze each
sub divide(@old) {
$div *= 2;
# rects too small to hold circle?
my $smallish = @old[0].diag < $min-radius;
my @unk;
for @old {
my $center = .nw mid .se;
my $north = .nw mid .ne;
my $south = .sw mid .se;
my $west = .nw mid .sw;
my $east = .ne mid .se;
for Rect.new(nw => .nw, ne => $north, sw => $west, se => $center),
Rect.new(nw => $north, ne => .ne, sw => $center, se => $east),
Rect.new(nw => $west, ne => $center, sw => .sw, se => $south),
Rect.new(nw => $center, ne => $east, sw => $south, se => .se)
{
my @bits = .nw.cbits, .ne.cbits, .sw.cbits, .se.cbits;
# if all 4 points wet by same circle, guaranteed wet
if [+&] @bits {
$known-wet += .area;
next;
}
# if all 4 corners are dry, must check further
if not [+|] @bits and $smallish {
# check that no circle bulges into this rect
my $ok = True;
for @circles -> $c {
if .contains($c.east) or .contains($c.west) or
.contains($c.north) or .contains($c.south)
{
$ok = False;
last;
}
}
if $ok {
$known-dry += .area;
next;
}
}
push @unk, $_; # dunno yet
}
}
@unk;
}
my $delta = 0.001;
repeat until my $diff < $delta {
@unknowns = divide(@unknowns);
$diff = $outer-area - $known-dry - $known-wet;
say 'div: ', $div.fmt('%-5d'),
' unk: ', (+@unknowns).fmt('%-6d'),
' est: ', ($known-wet + $diff/2).fmt('%9.6f'),
' wet: ', $known-wet.fmt('%9.6f'),
' dry: ', ($outer-area - $known-dry).fmt('%9.6f'),
' diff: ', $diff.fmt('%9.6f'),
' error: ', ($diff - @unknowns * @unknowns[0].area).fmt('%e');
} |
http://rosettacode.org/wiki/Topological_sort | Topological sort |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given a mapping between items, and items they depend on, a topological sort orders items so that no item precedes an item it depends upon.
The compiling of a library in the VHDL language has the constraint that a library must be compiled after any library it depends on.
A tool exists that extracts library dependencies.
Task
Write a function that will return a valid compile order of VHDL libraries from their dependencies.
Assume library names are single words.
Items mentioned as only dependents, (sic), have no dependents of their own, but their order of compiling must be given.
Any self dependencies should be ignored.
Any un-orderable dependencies should be flagged.
Use the following data as an example:
LIBRARY LIBRARY DEPENDENCIES
======= ====================
des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee
dw01 ieee dw01 dware gtech
dw02 ieee dw02 dware
dw03 std synopsys dware dw03 dw02 dw01 ieee gtech
dw04 dw04 ieee dw01 dware gtech
dw05 dw05 ieee dware
dw06 dw06 ieee dware
dw07 ieee dware
dware ieee dware
gtech ieee gtech
ramlib std ieee
std_cell_lib ieee std_cell_lib
synopsys
Note: the above data would be un-orderable if, for example, dw04 is added to the list of dependencies of dw01.
C.f.
Topological sort/Extracted top item.
There are two popular algorithms for topological sorting:
Kahn's 1962 topological sort [1]
depth-first search [2] [3]
| #Elixir | Elixir | defmodule Topological do
def sort(library) do
g = :digraph.new
Enum.each(library, fn {l,deps} ->
:digraph.add_vertex(g,l) # noop if library already added
Enum.each(deps, fn d -> add_dependency(g,l,d) end)
end)
if t = :digraph_utils.topsort(g) do
print_path(t)
else
IO.puts "Unsortable contains circular dependencies:"
Enum.each(:digraph.vertices(g), fn v ->
if vs = :digraph.get_short_cycle(g,v), do: print_path(vs)
end)
end
end
defp print_path(l), do: IO.puts Enum.join(l, " -> ")
defp add_dependency(_g,l,l), do: :ok
defp add_dependency(g,l,d) do
:digraph.add_vertex(g,d) # noop if dependency already added
:digraph.add_edge(g,d,l) # Dependencies represented as an edge d -> l
end
end
libraries = [
des_system_lib: ~w[std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee]a,
dw01: ~w[ieee dw01 dware gtech]a,
dw02: ~w[ieee dw02 dware]a,
dw03: ~w[std synopsys dware dw03 dw02 dw01 ieee gtech]a,
dw04: ~w[dw04 ieee dw01 dware gtech]a,
dw05: ~w[dw05 ieee dware]a,
dw06: ~w[dw06 ieee dware]a,
dw07: ~w[ieee dware]a,
dware: ~w[ieee dware]a,
gtech: ~w[ieee gtech]a,
ramlib: ~w[std ieee]a,
std_cell_lib: ~w[ieee std_cell_lib]a,
synopsys: []
]
Topological.sort(libraries)
IO.puts ""
bad_libraries = Keyword.update!(libraries, :dw01, &[:dw04 | &1])
Topological.sort(bad_libraries) |
http://rosettacode.org/wiki/Universal_Turing_machine | Universal Turing machine | One of the foundational mathematical constructs behind computer science
is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936–1937.)
Indeed one way to definitively prove that a language
is turing-complete
is to implement a universal Turing machine in it.
Task
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
Simple incrementer
States: q0, qf
Initial state: q0
Terminating states: qf
Permissible symbols: B, 1
Blank symbol: B
Rules:
(q0, 1, 1, right, q0)
(q0, B, 1, stay, qf)
The input for this machine should be a tape of 1 1 1
Three-state busy beaver
States: a, b, c, halt
Initial state: a
Terminating states: halt
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(a, 0, 1, right, b)
(a, 1, 1, left, c)
(b, 0, 1, left, a)
(b, 1, 1, right, b)
(c, 0, 1, left, b)
(c, 1, 1, stay, halt)
The input for this machine should be an empty tape.
Bonus:
5-state, 2-symbol probable Busy Beaver machine from Wikipedia
States: A, B, C, D, E, H
Initial state: A
Terminating states: H
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(A, 0, 1, right, B)
(A, 1, 1, left, C)
(B, 0, 1, right, C)
(B, 1, 1, right, B)
(C, 0, 1, right, D)
(C, 1, 0, left, E)
(D, 0, 1, left, A)
(D, 1, 1, left, D)
(E, 0, 1, stay, H)
(E, 1, 0, left, A)
The input for this machine should be an empty tape.
This machine runs for more than 47 millions steps.
| #Kotlin | Kotlin | // version 1.2.10
enum class Dir { LEFT, RIGHT, STAY }
class Rule(
val state1: String,
val symbol1: Char,
val symbol2: Char,
val dir: Dir,
val state2: String
)
class Tape(
var symbol: Char,
var left: Tape? = null,
var right: Tape? = null
)
class Turing(
val states: List<String>,
val finalStates: List<String>,
val symbols: CharArray,
val blank: Char,
var state: String,
tapeInput: CharArray,
rules: List<Rule>
) {
var tape: Tape? = null
val transitions = Array(states.size) { arrayOfNulls<Rule>(symbols.size) }
init {
for (i in 0 until tapeInput.size) {
move(Dir.RIGHT)
tape!!.symbol = tapeInput[i]
}
if (tapeInput.size == 0) move(Dir.RIGHT)
while (tape!!.left != null) tape = tape!!.left
for (i in 0 until rules.size) {
val rule = rules[i]
transitions[stateIndex(rule.state1)][symbolIndex(rule.symbol1)] = rule
}
}
private fun stateIndex(state: String): Int {
val i = states.indexOf(state)
return if (i >= 0) i else 0
}
private fun symbolIndex(symbol: Char): Int {
val i = symbols.indexOf(symbol)
return if (i >= 0) i else 0
}
private fun move(dir: Dir) {
val orig = tape
when (dir) {
Dir.RIGHT -> {
if (orig != null && orig.right != null) {
tape = orig.right
}
else {
tape = Tape(blank)
if (orig != null) {
tape!!.left = orig
orig.right = tape
}
}
}
Dir.LEFT -> {
if (orig != null && orig.left != null) {
tape = orig.left
}
else {
tape = Tape(blank)
if (orig != null) {
tape!!.right = orig
orig.left = tape
}
}
}
Dir.STAY -> {}
}
}
fun printState() {
print("%-10s ".format(state))
var t = tape
while (t!!.left != null ) t = t.left
while (t != null) {
if (t == tape) print("[${t.symbol}]")
else print(" ${t.symbol} ")
t = t.right
}
println()
}
fun run(maxLines: Int = 20) {
var lines = 0
while (true) {
printState()
for (finalState in finalStates) {
if (finalState == state) return
}
if (++lines == maxLines) {
println("(Only the first $maxLines lines displayed)")
return
}
val rule = transitions[stateIndex(state)][symbolIndex(tape!!.symbol)]
tape!!.symbol = rule!!.symbol2
move(rule.dir)
state = rule.state2
}
}
}
fun main(args: Array<String>) {
println("Simple incrementer")
Turing(
states = listOf("q0", "qf"),
finalStates = listOf("qf"),
symbols = charArrayOf('B', '1'),
blank = 'B',
state = "q0",
tapeInput = charArrayOf('1', '1', '1'),
rules = listOf(
Rule("q0", '1', '1', Dir.RIGHT, "q0"),
Rule("q0", 'B', '1', Dir.STAY, "qf")
)
).run()
println("\nThree-state busy beaver")
Turing(
states = listOf("a", "b", "c", "halt"),
finalStates = listOf("halt"),
symbols = charArrayOf('0', '1'),
blank = '0',
state = "a",
tapeInput = charArrayOf(),
rules = listOf(
Rule("a", '0', '1', Dir.RIGHT, "b"),
Rule("a", '1', '1', Dir.LEFT, "c"),
Rule("b", '0', '1', Dir.LEFT, "a"),
Rule("b", '1', '1', Dir.RIGHT, "b"),
Rule("c", '0', '1', Dir.LEFT, "b"),
Rule("c", '1', '1', Dir.STAY, "halt")
)
).run()
println("\nFive-state two-symbol probable busy beaver")
Turing(
states = listOf("A", "B", "C", "D", "E", "H"),
finalStates = listOf("H"),
symbols = charArrayOf('0', '1'),
blank = '0',
state = "A",
tapeInput = charArrayOf(),
rules = listOf(
Rule("A", '0', '1', Dir.RIGHT, "B"),
Rule("A", '1', '1', Dir.LEFT, "C"),
Rule("B", '0', '1', Dir.RIGHT, "C"),
Rule("B", '1', '1', Dir.RIGHT, "B"),
Rule("C", '0', '1', Dir.RIGHT, "D"),
Rule("C", '1', '0', Dir.LEFT, "E"),
Rule("D", '0', '1', Dir.LEFT, "A"),
Rule("D", '1', '1', Dir.LEFT, "D"),
Rule("E", '0', '1', Dir.STAY, "H"),
Rule("E", '1', '0', Dir.LEFT, "A")
)
).run()
} |
http://rosettacode.org/wiki/Totient_function | Totient function | The totient function is also known as:
Euler's totient function
Euler's phi totient function
phi totient function
Φ function (uppercase Greek phi)
φ function (lowercase Greek phi)
Definitions (as per number theory)
The totient function:
counts the integers up to a given positive integer n that are relatively prime to n
counts the integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n,k) is equal to 1
counts numbers ≤ n and prime to n
If the totient number (for N) is one less than N, then N is prime.
Task
Create a totient function and:
Find and display (1 per line) for the 1st 25 integers:
the integer (the index)
the totient number for that integer
indicate if that integer is prime
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000 (optional)
Show all output here.
Related task
Perfect totient numbers
Also see
Wikipedia: Euler's totient function.
MathWorld: totient function.
OEIS: Euler totient function phi(n).
| #Java | Java |
public class TotientFunction {
public static void main(String[] args) {
computePhi();
System.out.println("Compute and display phi for the first 25 integers.");
System.out.printf("n Phi IsPrime%n");
for ( int n = 1 ; n <= 25 ; n++ ) {
System.out.printf("%2d %2d %b%n", n, phi[n], (phi[n] == n-1));
}
for ( int i = 2 ; i < 8 ; i++ ) {
int max = (int) Math.pow(10, i);
System.out.printf("The count of the primes up to %,10d = %d%n", max, countPrimes(1, max));
}
}
private static int countPrimes(int min, int max) {
int count = 0;
for ( int i = min ; i <= max ; i++ ) {
if ( phi[i] == i-1 ) {
count++;
}
}
return count;
}
private static final int max = 10000000;
private static final int[] phi = new int[max+1];
private static final void computePhi() {
for ( int i = 1 ; i <= max ; i++ ) {
phi[i] = i;
}
for ( int i = 2 ; i <= max ; i++ ) {
if (phi[i] < i) continue;
for ( int j = i ; j <= max ; j += i ) {
phi[j] -= phi[j] / i;
}
}
}
}
|
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #Python | Python | >>> from itertools import permutations
>>> def f1(p):
i = 0
while True:
p0 = p[0]
if p0 == 1: break
p[:p0] = p[:p0][::-1]
i += 1
return i
>>> def fannkuch(n):
return max(f1(list(p)) for p in permutations(range(1, n+1)))
>>> for n in range(1, 11): print(n,fannkuch(n))
1 0
2 1
3 2
4 4
5 7
6 10
7 16
8 22
9 30
10 38
>>> |
http://rosettacode.org/wiki/Trigonometric_functions | Trigonometric functions | Task
If your language has a library or built-in functions for trigonometry, show examples of:
sine
cosine
tangent
inverses (of the above)
using the same angle in radians and degrees.
For the non-inverse functions, each radian/degree pair should use arguments that evaluate to the same angle (that is, it's not necessary to use the same angle for all three regular functions as long as the two sine calls use the same angle).
For the inverse functions, use the same number and convert its answer to radians and degrees.
If your language does not have trigonometric functions available or only has some available, write functions to calculate the functions based on any known approximation or identity.
| #Erlang | Erlang |
Deg=45.
Rad=math:pi()/4.
math:sin(Deg * math:pi() / 180)==math:sin(Rad).
|
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #M2000_Interpreter | M2000 Interpreter |
Module Input11 {
Flush ' empty stack
For I=1 to 11 {
Input "Give me a number ", a
Data a ' add to bottom of stack, use: Push a to add to top, to get reverse order here
}
}
Module Run {
Print "Trabb Pardo–Knuth algorithm"
Print "f(x)=Sqrt(Abs(x))+5*x^3"
if not match("NNNNNNNNN") then Error "Need 11 numbers"
Shiftback 1, -11 ' reverse order 11 elements of stack of values
Def f(x)=Sqrt(Abs(x))+5*x^3
For i=1 to 11 {
Read pop
y=f(pop)
if y>400 Then {
Print format$("f({0}) = Overflow!", pop)
} Else {
Print format$("f({0}) = {1}", pop, y)
}
}
}
Run 10, -1, 1, 2, 3, 4, 4.3, 4.305, 4.303, 4.302, 4.301
Run 1, 2, 3, -4.55,5.1111, 6, -7, 8, 9, 10, 11
Input11
Run
|
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Maple | Maple | seqn := ListTools:-Reverse([parse(Maplets[Display](Maplets:-Elements:-Maplet(Maplets:-Elements:-InputDialog['ID1']("Enter a sequence of numbers separated by comma", 'onapprove' = Maplets:-Elements:-Shutdown(['ID1']), 'oncancel' = Maplets:-Elements:-Shutdown())))[1])]):
f:= x -> abs(x)^0.5 + 5*x^3:
for item in seqn do
result := f(item):
if (result > 400) then
print("Alert: Overflow."):
else
print(result):
end if:
end do: |
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm | Trabb Pardo–Knuth algorithm | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S
result := call a function to do an operation
if result overflows
alert user
else
print result
The task is to implement the algorithm:
Use the function:
f
(
x
)
=
|
x
|
0.5
+
5
x
3
{\displaystyle f(x)=|x|^{0.5}+5x^{3}}
The overflow condition is an answer of greater than 400.
The 'user alert' should not stop processing of other items of the sequence.
Print a prompt before accepting eleven, textual, numeric inputs.
You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
The sequence S may be 'implied' and so not shown explicitly.
Print and show the program in action from a typical run here. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | numbers=RandomReal[{-2,6},11]
tpk[numbers_,overflowVal_]:=Module[{revNumbers},
revNumbers=Reverse[numbers];
f[x_]:=Abs[x]^0.5+5 x^3;
Do[
If[f[i]>overflowVal,
Print["f[",i,"]= Overflow"]
,
Print["f[",i,"]= ",f[i]]
]
,
{i,revNumbers}
]
]
tpk[numbers,400] |
http://rosettacode.org/wiki/Truth_table | Truth table | A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.
Task
Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function.
(One can assume that the user input is correct).
Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
Either reverse-polish or infix notation expressions are allowed.
Related tasks
Boolean values
Ternary logic
See also
Wolfram MathWorld entry on truth tables.
some "truth table" examples from Google.
| #Rust | Rust | use std::{
collections::HashMap,
fmt::{Display, Formatter},
iter::FromIterator,
};
// Generic expression evaluation automaton and expression formatting support
#[derive(Clone, Debug)]
pub enum EvaluationError<T> {
NoResults,
TooManyResults,
OperatorFailed(T),
}
pub trait Operator<T> {
type Err;
fn execute(&self, stack: &mut Vec<T>) -> Result<(), Self::Err>;
}
#[derive(Clone, Copy, Debug)]
enum Element<O> {
Operator(O),
Variable(usize),
}
#[derive(Clone, Debug)]
pub struct Expression<O> {
elements: Vec<Element<O>>,
symbols: Vec<String>,
}
impl<O> Expression<O> {
pub fn evaluate<T>(
&self,
mut bindings: impl FnMut(usize) -> T,
) -> Result<T, EvaluationError<O::Err>>
where
O: Operator<T>,
{
let mut stack = Vec::new();
for element in self.elements.iter() {
match element {
Element::Variable(index) => stack.push(bindings(*index)),
Element::Operator(op) => op
.execute(&mut stack)
.map_err(EvaluationError::OperatorFailed)?,
}
}
match stack.pop() {
Some(result) if stack.is_empty() => Ok(result),
Some(_) => Err(EvaluationError::TooManyResults),
None => Err(EvaluationError::NoResults),
}
}
pub fn symbols(&self) -> &[String] {
&self.symbols
}
pub fn formatted(&self) -> Result<String, EvaluationError<O::Err>>
where
O: Operator<Formatted>,
{
self.evaluate(|index| Formatted(self.symbols[index].clone()))
.map(|formatted| formatted.0)
}
}
#[derive(Clone, Debug)]
pub struct Formatted(pub String);
impl Display for Formatted {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<O> Display for Expression<O>
where
O: Operator<Formatted>,
{
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self.formatted() {
Ok(result) => write!(f, "{}", result),
Err(_) => write!(f, "<malformed expression>"),
}
}
}
// Generic parts of the parsing machinery
#[derive(Clone, Copy, Debug)]
pub enum Token<'a, O> {
LBrace,
RBrace,
Operator(O),
Variable(&'a str),
Malformed(&'a str),
}
pub type Symbol<'a, O> = (&'a str, bool, Token<'a, O>);
#[derive(Debug)]
pub struct Tokens<'a, O> {
source: &'a str,
symbols: &'a [Symbol<'a, O>],
}
impl<'a, O> Tokens<'a, O> {
pub fn new(source: &'a str, symbols: &'a [Symbol<'a, O>]) -> Self {
Self { source, symbols }
}
}
impl<'a, O: Clone> Iterator for Tokens<'a, O> {
type Item = Token<'a, O>;
fn next(&mut self) -> Option<Self::Item> {
self.source = self.source.trim_start();
let symbol = self.symbols.iter().find_map(|(symbol, word, token)| {
if self.source.starts_with(symbol) {
let end = symbol.len();
if *word {
match &self.source[end..].chars().next() {
Some(c) if !c.is_whitespace() => return None,
_ => (),
}
}
Some((token, end))
} else {
None
}
});
if let Some((token, end)) = symbol {
self.source = &self.source[end..];
Some(token.clone())
} else {
match self.source.chars().next() {
Some(c) if c.is_alphabetic() => {
let end = self
.source
.char_indices()
.find_map(|(i, c)| Some(i).filter(|_| !c.is_alphanumeric()))
.unwrap_or_else(|| self.source.len());
let result = &self.source[0..end];
self.source = &self.source[end..];
Some(Token::Variable(result))
}
Some(c) => {
let end = c.len_utf8();
let result = &self.source[0..end];
self.source = &self.source[end..];
Some(Token::Malformed(result))
}
None => None,
}
}
}
}
pub trait WithPriority {
type Priority;
fn priority(&self) -> Self::Priority;
}
impl<'a, O> FromIterator<Token<'a, O>> for Result<Expression<O>, Token<'a, O>>
where
O: WithPriority,
O::Priority: Ord,
{
fn from_iter<T: IntoIterator<Item = Token<'a, O>>>(tokens: T) -> Self {
let mut token_stack = Vec::new();
let mut indices = HashMap::new();
let mut symbols = Vec::new();
let mut elements = Vec::new();
'outer: for token in tokens {
match token {
Token::Malformed(_) => return Err(token),
Token::LBrace => token_stack.push(token),
Token::RBrace => {
// Flush all operators to the matching LBrace
while let Some(token) = token_stack.pop() {
match token {
Token::LBrace => continue 'outer,
Token::Operator(op) => elements.push(Element::Operator(op)),
_ => return Err(token),
}
}
}
Token::Variable(name) => {
let index = indices.len();
let symbol = name.to_string();
let index = *indices.entry(symbol.clone()).or_insert_with(|| {
symbols.push(symbol);
index
});
elements.push(Element::Variable(index));
}
Token::Operator(ref op) => {
while let Some(token) = token_stack.pop() {
match token {
Token::Operator(pop) if op.priority() < pop.priority() => {
elements.push(Element::Operator(pop));
}
Token::Operator(pop) => {
token_stack.push(Token::Operator(pop));
break;
}
_ => {
token_stack.push(token);
break;
}
}
}
token_stack.push(token);
}
}
}
// Handle leftovers
while let Some(token) = token_stack.pop() {
match token {
Token::Operator(op) => elements.push(Element::Operator(op)),
_ => return Err(token),
}
}
Ok(Expression { elements, symbols })
}
}
// Definition of Boolean operators
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Boolean {
Or,
Xor,
And,
Not,
}
impl Display for Boolean {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let s = match self {
Self::Or => "∨",
Self::And => "∧",
Self::Not => "¬",
Self::Xor => "⩛",
};
write!(f, "{}", s)
}
}
impl WithPriority for Boolean {
type Priority = u8;
fn priority(&self) -> u8 {
match self {
Self::Or => 0,
Self::Xor => 1,
Self::And => 2,
Self::Not => 3,
}
}
}
#[derive(Clone, Debug)]
pub enum BooleanError {
StackUnderflow,
}
impl Operator<bool> for Boolean {
type Err = BooleanError;
fn execute(&self, stack: &mut Vec<bool>) -> Result<(), Self::Err> {
let mut pop = || stack.pop().ok_or(BooleanError::StackUnderflow);
let result = match self {
Boolean::Or => pop()? | pop()?,
Boolean::And => pop()? & pop()?,
Boolean::Xor => pop()? ^ pop()?,
Boolean::Not => !pop()?,
};
stack.push(result);
Ok(())
}
}
impl Operator<Formatted> for Boolean {
type Err = BooleanError;
fn execute(&self, stack: &mut Vec<Formatted>) -> Result<(), Self::Err> {
let mut pop = || stack.pop().ok_or(BooleanError::StackUnderflow);
let result = match self {
Boolean::Not => format!("{}{}", Boolean::Not, pop()?),
binary_operator => {
// The stack orders the operands backwards, so to format them
// properly, we have to count with the reversed popping order
let b = pop()?;
let a = pop()?;
format!("({} {} {})", a, binary_operator, b)
}
};
stack.push(Formatted(result));
Ok(())
}
}
impl Boolean {
// It is important for the tokens to be ordered by their parsing priority (if
// some operator was a prefix of another operator, the prefix must come later)
const SYMBOLS: [Symbol<'static, Boolean>; 18] = [
("(", false, Token::LBrace),
(")", false, Token::RBrace),
("|", false, Token::Operator(Boolean::Or)),
("∨", false, Token::Operator(Boolean::Or)),
("or", true, Token::Operator(Boolean::Or)),
("OR", true, Token::Operator(Boolean::Or)),
("&", false, Token::Operator(Boolean::And)),
("∧", false, Token::Operator(Boolean::And)),
("and", true, Token::Operator(Boolean::And)),
("AND", true, Token::Operator(Boolean::And)),
("!", false, Token::Operator(Boolean::Not)),
("¬", false, Token::Operator(Boolean::Not)),
("not", true, Token::Operator(Boolean::Not)),
("NOT", true, Token::Operator(Boolean::Not)),
("^", false, Token::Operator(Boolean::Xor)),
("⩛", false, Token::Operator(Boolean::Xor)),
("xor", true, Token::Operator(Boolean::Xor)),
("XOR", true, Token::Operator(Boolean::Xor)),
];
pub fn tokenize(s: &str) -> Tokens<'_, Boolean> {
Tokens::new(s, &Self::SYMBOLS)
}
pub fn parse<'a>(s: &'a str) -> Result<Expression<Boolean>, Token<'a, Boolean>> {
Self::tokenize(s).collect()
}
}
// Finally the table printing
fn print_truth_table(s: &str) -> Result<(), std::borrow::Cow<'_, str>> {
let expression = Boolean::parse(s).map_err(|e| format!("Parsing failed at token {:?}", e))?;
let formatted = expression
.formatted()
.map_err(|_| "Malformed expression detected.")?;
let var_count = expression.symbols().len();
if var_count > 64 {
return Err("Too many variables to list.".into());
}
let column_widths = {
// Print header and compute the widths of columns
let mut widths = Vec::with_capacity(var_count);
for symbol in expression.symbols() {
print!("{} ", symbol);
widths.push(symbol.chars().count() + 2); // Include spacing
}
println!("{}", formatted);
let width = widths.iter().sum::<usize>() + formatted.chars().count();
(0..width).for_each(|_| print!("-"));
println!();
widths
};
// Choose the bit extraction order for the more traditional table ordering
let var_value = |input, index| (input >> (var_count - 1 - index)) & 1 ^ 1;
// Use counter to enumerate all bit combinations
for var_values in 0u64..(1 << var_count) {
for (var_index, width) in column_widths.iter().enumerate() {
let value = var_value(var_values, var_index);
print!("{:<width$}", value, width = width);
}
match expression.evaluate(|var_index| var_value(var_values, var_index) == 1) {
Ok(result) => println!("{}", if result { "1" } else { "0" }),
Err(e) => println!("{:?}", e),
}
}
println!();
Ok(())
}
fn main() {
loop {
let input = {
println!("Enter the expression to parse (or nothing to quit):");
let mut input = String::new();
std::io::stdin().read_line(&mut input).unwrap();
println!();
input
};
if input.trim().is_empty() {
break;
}
if let Err(e) = print_truth_table(&input) {
eprintln!("{}\n", e);
}
}
} |
http://rosettacode.org/wiki/Ulam_spiral_(for_primes) | Ulam spiral (for primes) | An Ulam spiral (of primes) is a method of visualizing primes when expressed in a (normally counter-clockwise) outward spiral (usually starting at 1), constructed on a square grid, starting at the "center".
An Ulam spiral is also known as a prime spiral.
The first grid (green) is shown with sequential integers, starting at 1.
In an Ulam spiral of primes, only the primes are shown (usually indicated by some glyph such as a dot or asterisk), and all non-primes as shown as a blank (or some other whitespace).
Of course, the grid and border are not to be displayed (but they are displayed here when using these Wiki HTML tables).
Normally, the spiral starts in the "center", and the 2nd number is to the viewer's right and the number spiral starts from there in a counter-clockwise direction.
There are other geometric shapes that are used as well, including clock-wise spirals.
Also, some spirals (for the 2nd number) is viewed upwards from the 1st number instead of to the right, but that is just a matter of orientation.
Sometimes, the starting number can be specified to show more visual striking patterns (of prime densities).
[A larger than necessary grid (numbers wise) is shown here to illustrate the pattern of numbers on the diagonals (which may be used by the method to orientate the direction of spiral-construction algorithm within the example computer programs)].
Then, in the next phase in the transformation of the Ulam prime spiral, the non-primes are translated to blanks.
In the orange grid below, the primes are left intact, and all non-primes are changed to blanks.
Then, in the final transformation of the Ulam spiral (the yellow grid), translate the primes to a glyph such as a • or some other suitable glyph.
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
61
59
37
31
67
17
13
5
3
29
19
2
11
53
41
7
71
23
43
47
73
79
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The Ulam spiral becomes more visually obvious as the grid increases in size.
Task
For any sized N × N grid, construct and show an Ulam spiral (counter-clockwise) of primes starting at some specified initial number (the default would be 1), with some suitably dotty (glyph) representation to indicate primes, and the absence of dots to indicate non-primes.
You should demonstrate the generator by showing at Ulam prime spiral large enough to (almost) fill your terminal screen.
Related tasks
Spiral matrix
Zig-zag matrix
Identity matrix
Sequence of primes by Trial Division
See also
Wikipedia entry: Ulam spiral
MathWorld™ entry: Prime Spiral
| #Tcl | Tcl | proc is_prime {n} {
if {$n == 1} {return 0}
if {$n in {2 3 5}} {return 1}
for {set i 2} {$i*$i <= $n} {incr i} {
if {$n % $i == 0} {return 0}
}
return 1
}
proc spiral {w h} {
yield [info coroutine]
set x [expr {$w / 2}]
set y [expr {$h / 2}]
set n 1
set dir 0
set steps 1
set step 1
while {1} {
yield [list $x $y]
switch $dir {
0 {incr x}
1 {incr y -1}
2 {incr x -1}
3 {incr y}
}
if {![incr step -1]} {
set dir [expr {($dir+1)%4}]
if {$dir % 2 == 0} {
incr steps
}
set step $steps
}
}
}
set radius 16
set side [expr {1 + 2 * $radius}]
set n [expr {$side * $side}]
set cells [lrepeat $side [lrepeat $side ""]]
set i 1
coroutine spin spiral $side $side
while {$i < $n} {
lassign [spin] y x
set c [expr {[is_prime $i] ? "\u169b" : " "}]
lset cells $x $y $c
incr i
}
puts [join [lmap row $cells {join $row " "}] \n] |
http://rosettacode.org/wiki/Truncatable_primes | Truncatable primes | A truncatable prime is a prime number that when you successively remove digits from one end of the prime, you are left with a new prime number.
Examples
The number 997 is called a left-truncatable prime as the numbers 997, 97, and 7 are all prime.
The number 7393 is a right-truncatable prime as the numbers 7393, 739, 73, and 7 formed by removing digits from its right are also prime.
No zeroes are allowed in truncatable primes.
Task
The task is to find the largest left-truncatable and right-truncatable primes less than one million (base 10 is implied).
Related tasks
Find largest left truncatable prime in a given base
Sieve of Eratosthenes
See also
Truncatable Prime from MathWorld.]
| #ooRexx | ooRexx |
-- find largest left- & right-truncatable primes < 1 million.
-- an initial set of primes (not, at this time, we leave out 2 because
-- we'll automatically skip the even numbers. No point in doing a needless
-- test each time through
primes = .array~of(3, 5, 7, 11)
-- check all of the odd numbers up to 1,000,000
loop j = 13 by 2 to 1000000
loop i = 1 to primes~size
prime = primes[i]
-- found an even prime divisor
if j // prime == 0 then iterate j
-- only check up to the square root
if prime*prime > j then leave
end
-- we only get here if we don't find a divisor
primes~append(j)
end
-- get a set of the primes that we can test more efficiently
primeSet = .set~of(2)
primeSet~putall(primes)
say 'The last prime is' primes[primes~last] "("primeSet~items 'primes under one million).'
say copies('-',66)
lastLeft = 0
-- we're going to use the array version to do these in order. We're still
-- missing "2", but that's not going to be the largest
loop prime over primes
-- values containing 0 can never work
if prime~pos(0) \= 0 then iterate
-- now start the truncations, checking against our set of
-- known primes
loop i = 1 for prime~length - 1
subprime = prime~right(i)
-- not in our known set, this can't work
if \primeset~hasIndex(subprime) then iterate prime
end
-- this, by definition, with be the largest left-trunc prime
lastLeft = prime
end
-- now look for right-trunc primes
lastRight = 0
loop prime over primes
-- values containing 0 can never work
if prime~pos(0) \= 0 then iterate
-- now start the truncations, checking against our set of
-- known primes
loop i = 1 for prime~length - 1
subprime = prime~left(i)
-- not in our known set, this can't work
if \primeset~hasIndex(subprime) then iterate prime
end
-- this, by definition, with be the largest left-trunc prime
lastRight = prime
end
say 'The largest left-truncatable prime is' lastLeft '(under one million).'
say 'The largest right-truncatable prime is' lastRight '(under one million).'
|
http://rosettacode.org/wiki/Tree_traversal | Tree traversal | Task
Implement a binary tree where each node carries an integer, and implement:
pre-order,
in-order,
post-order, and
level-order traversal.
Use those traversals to output the following tree:
1
/ \
/ \
/ \
2 3
/ \ /
4 5 6
/ / \
7 8 9
The correct output should look like this:
preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9
See also
Wikipedia article: Tree traversal.
| #CLU | CLU | bintree = cluster [T: type] is leaf, node,
pre_order, post_order, in_order, level_order
branch = struct[left, right: bintree[T], val: T]
rep = oneof[br: branch, leaf: null]
leaf = proc () returns (cvt)
return(rep$make_leaf(nil))
end leaf
node = proc (val: T, l,r: cvt) returns (cvt)
return(rep$make_br(branch${left:up(l), right:up(r), val:val}))
end node
pre_order = iter (n: cvt) yields (T)
tagcase n
tag br (b: branch):
yield(b.val)
for v: T in pre_order(b.left) do yield(v) end
for v: T in pre_order(b.right) do yield(v) end
tag leaf:
end
end pre_order
in_order = iter (n: cvt) yields (T)
tagcase n
tag br (b: branch):
for v: T in in_order(b.left) do yield(v) end
yield(b.val)
for v: T in in_order(b.right) do yield(v) end
tag leaf:
end
end in_order
post_order = iter (n: cvt) yields (T)
tagcase n
tag br (b: branch):
for v: T in post_order(b.left) do yield(v) end
for v: T in post_order(b.right) do yield(v) end
yield(b.val)
tag leaf:
end
end post_order
level_order = iter (n: cvt) yields (T)
bfs: array[rep] := array[rep]$[n]
while ~array[rep]$empty(bfs) do
cur: rep := array[rep]$reml(bfs)
tagcase cur
tag br (b: branch):
yield(b.val)
array[rep]$addh(bfs,down(b.left))
array[rep]$addh(bfs,down(b.right))
tag leaf:
end
end
end level_order
end bintree
start_up = proc ()
bt = bintree[int]
po: stream := stream$primary_output()
tree: bt := bt$node(1,
bt$node(2,
bt$node(4,
bt$node(7, bt$leaf(), bt$leaf()),
bt$leaf()),
bt$node(5, bt$leaf(), bt$leaf())),
bt$node(3,
bt$node(6,
bt$node(8, bt$leaf(), bt$leaf()),
bt$node(9, bt$leaf(), bt$leaf())),
bt$leaf()))
stream$puts(po, "preorder: ")
for i: int in bt$pre_order(tree) do
stream$puts(po, " " || int$unparse(i))
end
stream$puts(po, "\ninorder: ")
for i: int in bt$in_order(tree) do
stream$puts(po, " " || int$unparse(i))
end
stream$puts(po, "\npostorder: ")
for i: int in bt$post_order(tree) do
stream$puts(po, " " || int$unparse(i))
end
stream$puts(po, "\nlevel-order:")
for i: int in bt$level_order(tree) do
stream$puts(po, " " || int$unparse(i))
end
end start_up |
http://rosettacode.org/wiki/Tokenize_a_string | Tokenize a string | Separate the string "Hello,How,Are,You,Today" by commas into an array (or list) so that each element of it stores a different word.
Display the words to the 'user', in the simplest manner possible, separated by a period.
To simplify, you may display a trailing period.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI */
/* program strTokenize.s */
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
.equ NBPOSTESECLAT, 20
/* Initialized data */
.data
szMessFinal: .asciz "Words are : \n"
szString: .asciz "Hello,How,Are,You,Today"
szMessError: .asciz "Error tokenize !!\n"
szCarriageReturn: .asciz "\n"
/* UnInitialized data */
.bss
/* code section */
.text
.global main
main:
ldr r0,iAdrszString @ string address
mov r1,#',' @ separator
bl stTokenize
cmp r0,#-1 @ error ?
beq 99f
mov r2,r0 @ table address
ldr r0,iAdrszMessFinal @ display message
bl affichageMess
ldr r4,[r2] @ number of areas
add r2,#4 @ first area
mov r3,#0 @ loop counter
1: @ display loop
ldr r0,[r2,r3, lsl #2] @ address area
bl affichageMess
ldr r0,iAdrszCarriageReturn @ display carriage return
bl affichageMess
add r3,#1 @ counter + 1
cmp r3,r4 @ end ?
blt 1b @ no -> loop
b 100f
99: @ display error message
ldr r0,iAdrszMessError
bl affichageMess
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc 0 @ perform the system call
iAdrszString: .int szString
iAdrszFinalString: .int szFinalString
iAdrszMessFinal: .int szMessFinal
iAdrszMessError: .int szMessError
iAdrszCarriageReturn: .int szCarriageReturn
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registers
mov r2,#0 @ counter length */
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call systeme
pop {r0,r1,r2,r7,lr} @ restaur des 2 registres
bx lr @ return
/*******************************************************************/
/* Separate string by separator into an array */
/* areas are store on the heap Linux */
/*******************************************************************/
/* r0 contains string address */
/* r1 contains separator character (, or . or : ) */
/* r0 returns table address with first item = number areas */
/* and other items contains pointer of each string */
stTokenize:
push {r1-r8,lr} @ save des registres
mov r6,r0
mov r8,r1 @ save separator
bl strLength @ length string for place reservation on the heap
mov r4,r0
ldr r5,iTailleTable
add r5,r0
and r5,#0xFFFFFFFC
add r5,#4 @ align word on the heap
@ place reservation on the heap
mov r0,#0 @ heap address
mov r7, #0x2D @ call system linux 'brk'
svc #0 @ call system
cmp r0,#-1 @ error call system
beq 100f
mov r3,r0 @ save address heap begin
add r0,r5 @ reserve r5 byte on the heap
mov r7, #0x2D @ call system linux 'brk'
svc #0
cmp r0,#-1
beq 100f
@ string copy on the heap
mov r0,r6
mov r1,r3
1: @ loop copy string
ldrb r2,[r0],#1 @ read one byte and increment pointer one byte
strb r2,[r1],#1 @ store one byte and increment pointer one byte
cmp r2,#0 @ end of string ?
bne 1b @ no -> loop
add r4,r3 @ r4 contains address table begin
mov r0,#0
str r0,[r4]
str r3,[r4,#4]
mov r2,#1 @ areas counter
2: @ loop load string character
ldrb r0,[r3]
cmp r0,#0
beq 3f @ end string
cmp r0,r8 @ separator ?
addne r3,#1 @ no -> next location
bne 2b @ and loop
mov r0,#0 @ store zero final of string
strb r0,[r3]
add r3,#1 @ next character
add r2,#1 @ areas counter + 1
str r3,[r4,r2, lsl #2] @ store address area in the table at index r2
b 2b @ and loop
3:
str r2,[r4] @ returns number areas
mov r0,r4
100:
pop {r1-r8,lr}
bx lr
iTailleTable: .int 4 * NBPOSTESECLAT
/***************************************************/
/* calcul size string */
/***************************************************/
/* r0 string address */
/* r0 returns size string */
strLength:
push {r1,r2,lr}
mov r1,#0 @ init counter
1:
ldrb r2,[r0,r1] @ load byte of string index r1
cmp r2,#0 @ end string ?
addne r1,#1 @ no -> +1 counter
bne 1b @ and loop
100:
mov r0,r1
pop {r1,r2,lr}
bx lr
|
http://rosettacode.org/wiki/Time_a_function | Time a function | Task
Write a program which uses a timer (with the least granularity available
on your system) to time how long a function takes to execute.
Whenever possible, use methods which measure only the processing time used
by the current process; instead of the difference in system time
between start and finish, which could include time used by
other processes on the computer.
This task is intended as a subtask for Measure relative performance of sorting algorithms implementations.
| #Ada | Ada | with Ada.Calendar; use Ada.Calendar;
with Ada.Text_Io; use Ada.Text_Io;
procedure Query_Performance is
type Proc_Access is access procedure(X : in out Integer);
function Time_It(Action : Proc_Access; Arg : Integer) return Duration is
Start_Time : Time := Clock;
Finis_Time : Time;
Func_Arg : Integer := Arg;
begin
Action(Func_Arg);
Finis_Time := Clock;
return Finis_Time - Start_Time;
end Time_It;
procedure Identity(X : in out Integer) is
begin
X := X;
end Identity;
procedure Sum (Num : in out Integer) is
begin
for I in 1..1000 loop
Num := Num + I;
end loop;
end Sum;
Id_Access : Proc_Access := Identity'access;
Sum_Access : Proc_Access := Sum'access;
begin
Put_Line("Identity(4) takes" & Duration'Image(Time_It(Id_Access, 4)) & " seconds.");
Put_Line("Sum(4) takes:" & Duration'Image(Time_It(Sum_Access, 4)) & " seconds.");
end Query_Performance; |
http://rosettacode.org/wiki/Time_a_function | Time a function | Task
Write a program which uses a timer (with the least granularity available
on your system) to time how long a function takes to execute.
Whenever possible, use methods which measure only the processing time used
by the current process; instead of the difference in system time
between start and finish, which could include time used by
other processes on the computer.
This task is intended as a subtask for Measure relative performance of sorting algorithms implementations.
| #Aime | Aime | integer
identity(integer x)
{
x;
}
integer
sum(integer c)
{
integer s;
s = 0;
while (c) {
s += c;
c -= 1;
}
s;
}
real
time_f(integer (*fp)(integer), integer fa)
{
date f, s;
time t;
s.now;
fp(fa);
f.now;
t.ddiff(f, s);
t.microsecond / 1000000r;
}
integer
main(void)
{
o_real(6, time_f(identity, 1));
o_text(" seconds\n");
o_real(6, time_f(sum, 1000000));
o_text(" seconds\n");
0;
} |
http://rosettacode.org/wiki/Top_rank_per_group | Top rank per group | Task
Find the top N salaries in each department, where N is provided as a parameter.
Use this data as a formatted internal data structure (adapt it to your language-native idioms, rather than parse at runtime), or identify your external data source:
Employee Name,Employee ID,Salary,Department
Tyler Bennett,E10297,32000,D101
John Rappl,E21437,47000,D050
George Woltman,E00127,53500,D101
Adam Smith,E63535,18000,D202
Claire Buckman,E39876,27800,D202
David McClellan,E04242,41500,D101
Rich Holcomb,E01234,49500,D202
Nathan Adams,E41298,21900,D050
Richard Potter,E43128,15900,D101
David Motsinger,E27002,19250,D202
Tim Sampair,E03033,27000,D101
Kim Arlich,E10001,57000,D190
Timothy Grove,E16398,29900,D190
| #C.2B.2B | C++ | #include <string>
#include <set>
#include <list>
#include <map>
#include <iostream>
struct Employee
{
std::string Name;
std::string ID;
unsigned long Salary;
std::string Department;
Employee(std::string _Name = "", std::string _ID = "", unsigned long _Salary = 0, std::string _Department = "")
: Name(_Name), ID(_ID), Salary(_Salary), Department(_Department)
{ }
void display(std::ostream& out) const
{
out << Name << "\t" << ID << "\t" << Salary << "\t" << Department << std::endl;
}
};
// We'll tell std::set to use this to sort our employees.
struct CompareEarners
{
bool operator()(const Employee& e1, const Employee& e2)
{
return (e1.Salary > e2.Salary);
}
};
// A few typedefs to make the code easier to type, read and maintain.
typedef std::list<Employee> EMPLOYEELIST;
// Notice the CompareEarners; We're telling std::set to user our specified comparison mechanism
// to sort its contents.
typedef std::set<Employee, CompareEarners> DEPARTMENTPAYROLL;
typedef std::map<std::string, DEPARTMENTPAYROLL> DEPARTMENTLIST;
void initialize(EMPLOYEELIST& Employees)
{
// Initialize our employee list data source.
Employees.push_back(Employee("Tyler Bennett", "E10297", 32000, "D101"));
Employees.push_back(Employee("John Rappl", "E21437", 47000, "D050"));
Employees.push_back(Employee("George Woltman", "E21437", 53500, "D101"));
Employees.push_back(Employee("Adam Smith", "E21437", 18000, "D202"));
Employees.push_back(Employee("Claire Buckman", "E39876", 27800, "D202"));
Employees.push_back(Employee("David McClellan", "E04242", 41500, "D101"));
Employees.push_back(Employee("Rich Holcomb", "E01234", 49500, "D202"));
Employees.push_back(Employee("Nathan Adams", "E41298", 21900, "D050"));
Employees.push_back(Employee("Richard Potter", "E43128", 15900, "D101"));
Employees.push_back(Employee("David Motsinger", "E27002", 19250, "D202"));
Employees.push_back(Employee("Tim Sampair", "E03033", 27000, "D101"));
Employees.push_back(Employee("Kim Arlich", "E10001", 57000, "D190"));
Employees.push_back(Employee("Timothy Grove", "E16398", 29900, "D190"));
}
void group(EMPLOYEELIST& Employees, DEPARTMENTLIST& Departments)
{
// Loop through all of our employees.
for( EMPLOYEELIST::iterator iEmployee = Employees.begin();
Employees.end() != iEmployee;
++iEmployee )
{
DEPARTMENTPAYROLL& groupSet = Departments[iEmployee->Department];
// Add our employee to this group.
groupSet.insert(*iEmployee);
}
}
void present(DEPARTMENTLIST& Departments, unsigned int N)
{
// Loop through all of our departments
for( DEPARTMENTLIST::iterator iDepartment = Departments.begin();
Departments.end() != iDepartment;
++iDepartment )
{
std::cout << "In department " << iDepartment->first << std::endl;
std::cout << "Name\t\tID\tSalary\tDepartment" << std::endl;
// Get the top three employees for each employee
unsigned int rank = 1;
for( DEPARTMENTPAYROLL::iterator iEmployee = iDepartment->second.begin();
( iDepartment->second.end() != iEmployee) && (rank <= N);
++iEmployee, ++rank )
{
iEmployee->display(std::cout);
}
std::cout << std::endl;
}
}
int main(int argc, char* argv[])
{
// Our container for our list of employees.
EMPLOYEELIST Employees;
// Fill our list of employees
initialize(Employees);
// Our departments.
DEPARTMENTLIST Departments;
// Sort our employees into their departments.
// This will also rank them.
group(Employees, Departments);
// Display the top 3 earners in each department.
present(Departments, 3);
return 0;
} |
http://rosettacode.org/wiki/Tic-tac-toe | Tic-tac-toe |
Task
Play a game of tic-tac-toe.
Ensure that legal moves are played and that a winning position is notified.
Tic-tac-toe is also known as:
naughts and crosses
tic tac toe
tick tack toe
three in a row
tres en rayo and
Xs and Os
See also
MathWorld™, Tic-Tac-Toe game.
Wikipedia tic-tac-toe.
| #ALGOL_W | ALGOL W | begin
string(10) board;
% initialise the board %
procedure initBoard ; board := " 123456789";
% display the board %
procedure showBoard ;
begin
s_w := 0;
write( board(1//1), "|", board(2//1), "|", board(3//1) );
write( "-+-+-" );
write( board(4//1), "|", board(5//1), "|", board(6//1) );
write( "-+-+-" );
write( board(7//1), "|", board(8//1), "|", board(9//1) )
end showBoard ;
% returns true if board pos is free, false otherwise %
logical procedure freeSpace( integer value pos ) ;
( board(pos//1) >= "1" and board(pos//1) <= "9" );
% check for game over %
logical procedure gameOver ;
begin
logical noMoves;
noMoves := true;
for i := 1 until 9 do if noMoves then noMoves := not freeSpace( i );
noMoves
end gameOver ;
% makes the specified winning move or blocks it, if it will win %
logical procedure winOrBlock( integer value pos1, pos2, pos3
; string(1) value searchCharacter
; string(1) value playerCharacter
) ;
if board(pos1//1) = searchCharacter
and board(pos2//1) = searchCharacter
and freeSpace( pos3 )
then begin
board(pos3//1) := playerCharacter;
true
end
else if board(pos1//1) = searchCharacter
and freeSpace( pos2 )
and board(pos3//1) = searchCharacter
then begin
board(pos2//1) := playerCharacter;
true
end
else if freeSpace( pos1 )
and board(pos2//1) = searchCharacter
and board(pos3//1) = searchCharacter
then begin
board(pos1//1) := playerCharacter;
true
end
else begin
false
end winOrBlock ;
% makes a winning move or blocks a winning move, if there is one %
logical procedure makeOrBlockWinningMove( string(1) value searchCharacter
; string(1) value playerCharacter
) ;
( winOrBlock( 1, 2, 3, searchCharacter, playerCharacter )
or winOrBlock( 4, 5, 6, searchCharacter, playerCharacter )
or winOrBlock( 7, 8, 9, searchCharacter, playerCharacter )
or winOrBlock( 1, 4, 7, searchCharacter, playerCharacter )
or winOrBlock( 2, 5, 8, searchCharacter, playerCharacter )
or winOrBlock( 3, 6, 9, searchCharacter, playerCharacter )
or winOrBlock( 1, 5, 9, searchCharacter, playerCharacter )
or winOrBlock( 3, 5, 7, searchCharacter, playerCharacter )
) ;
% makes a move when there isn't an obvious winning/blocking move %
procedure move ( string(1) value playerCharacter ) ;
begin
logical moved;
moved := false;
% try for the centre, a corner or the midle of a line %
for pos := 5, 1, 3, 7, 9, 2, 4, 6, 8 do begin
if not moved and freeSpace( pos ) then begin
moved := true;
board(pos//1) := playerCharacter
end
end
end move ;
% gets a move from the user %
procedure userMove( string(1) value playerCharacter ) ;
begin
integer move;
while
begin
write( "Please enter the move for ", playerCharacter, " " );
read( move );
( move < 1 or move > 9 or not freeSpace( move ) )
end
do begin
write( "Invalid move" )
end;
board(move//1) := playerCharacter
end userMove ;
% returns true if the three board positions have the player character, %
% false otherwise %
logical procedure same( integer value pos1, pos2, pos3
; string(1) value playerCharacter
) ;
( board(pos1//1) = playerCharacter
and board(pos2//1) = playerCharacter
and board(pos3//1) = playerCharacter
);
% returns true if the player has made a winning move, false otherwise %
logical procedure playerHasWon( string(1) value playerCharacter ) ;
( same( 1, 2, 3, playerCharacter )
or same( 4, 5, 6, playerCharacter )
or same( 7, 8, 9, playerCharacter )
or same( 1, 4, 7, playerCharacter )
or same( 2, 5, 8, playerCharacter )
or same( 3, 6, 9, playerCharacter )
or same( 1, 5, 9, playerCharacter )
or same( 3, 5, 7, playerCharacter )
) ;
% takes a players turn - either automated or user input %
procedure turn ( string(1) value playerCharacter, otherCharacter
; logical value playerIsUser
) ;
begin
if playerIsUser then userMove( playerCharacter )
else begin
write( playerCharacter, " moves..." );
if not makeOrBlockWinningMove( playerCharacter, playerCharacter )
and not makeOrBlockWinningMove( otherCharacter, playerCharacter )
then move( playerCharacter )
end;
showBoard
end turn ;
% asks a question and returns true if the user inputs y/Y, %
% false otherwise %
logical procedure yes( string(32) value question ) ;
begin
string(1) answer;
write( question );
read( answer );
answer = "y" or answer = "Y"
end yes ;
% play the game %
while
begin
string(1) again;
string(32) gameResult;
logical oIsUser, xIsUser;
oIsUser := yes( "Do you want to play O? " );
xIsUser := yes( "Do you want to play X? " );
gameResult := "it's a draw";
initBoard;
showBoard;
while not gameOver and not playerHasWon( "O" ) and not playerHasWon( "X" ) do begin
turn( "O", "X", oIsUser );
if playerHasWon( "O" ) then gameResult := "O wins"
else if not gameOver then begin
turn( "X", "O", xIsUser );
if playerHasWon( "X" ) then gameResult := "X wins"
end
end ;
write( gameResult );
yes( "Play again? " )
end
do begin end
end. |
http://rosettacode.org/wiki/Towers_of_Hanoi | Towers of Hanoi | Task
Solve the Towers of Hanoi problem with recursion.
| #AutoHotkey | AutoHotkey | move(n, from, to, via) ;n = # of disks, from = start pole, to = end pole, via = remaining pole
{
if (n = 1)
{
msgbox , Move disk from pole %from% to pole %to%
}
else
{
move(n-1, from, via, to)
move(1, from, to, via)
move(n-1, via, to, from)
}
}
move(64, 1, 3, 2) |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #Draco | Draco | /* Find the N'th digit in the Thue-Morse sequence */
proc nonrec tm(word n) byte:
word n2;
n2 := n;
while n2 ~= 0 do
n2 := n2 >> 1;
n := n >< n2
od;
n & 1
corp
/* Print the first 64 digits */
proc nonrec main() void:
byte i;
for i from 0 upto 63 do
write(tm(i):1)
od
corp |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #Elena | Elena | import extensions;
import system'text;
sequence(int steps)
{
var sb1 := TextBuilder.load("0");
var sb2 := TextBuilder.load("1");
for(int i := 0, i < steps, i += 1)
{
var tmp := sb1.Value;
sb1.write(sb2);
sb2.write(tmp)
};
console.printLine(sb1).readLine()
}
public program()
{
sequence(6)
} |
http://rosettacode.org/wiki/Thue-Morse | Thue-Morse | Task
Create a Thue-Morse sequence.
See also
YouTube entry: The Fairest Sharing Sequence Ever
YouTube entry: Math and OCD - My story with the Thue-Morse sequence
Task: Fairshare between two and more
| #Elixir | Elixir | Enum.reduce(0..6, '0', fn _,s ->
IO.puts s
s ++ Enum.map(s, fn c -> if c==?0, do: ?1, else: ?0 end)
end)
# or
Stream.iterate('0', fn s -> s ++ Enum.map(s, fn c -> if c==?0, do: ?1, else: ?0 end) end)
|> Enum.take(7)
|> Enum.each(&IO.puts/1) |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #Nim | Nim | proc pow*[T: SomeInteger](x, n, p: T): T =
var t = x mod p
var e = n
result = 1
while e > 0:
if (e and 1) == 1:
result = result * t mod p
t = t * t mod p
e = e shr 1
proc legendre*[T: SomeInteger](a, p: T): T = pow(a, (p-1) shr 1, p)
proc tonelliShanks*[T: SomeInteger](n, p: T): T =
# Check that n is indeed a square.
if legendre(n, p) != 1:
raise newException(ValueError, "Not a square")
# Factor out power of 2 from p-1.
var q = p - 1
var s = 0
while (q and 1) == 0:
s += 1
q = q shr 1
if s == 1:
return pow(n, (p+1) shr 2, p)
# Select a non-square z such as (z | p) = -1.
var z = 2
while legendre(z, p) != p - 1:
z += 1
var
c = pow(z, q, p)
t = pow(n, q, p)
m = s
result = pow(n, (q+1) shr 1, p)
while t != 1:
var
i = 1
z = t * t mod p
while z != 1 and i < m-1:
i += 1
z = z * z mod p
var b = pow(c, 1 shl (m-i-1), p)
c = b * b mod p
t = t * c mod p
m = i
result = result * b mod p
when isMainModule:
proc run(n, p: SomeInteger) =
try:
let r = tonelliShanks(n, p)
echo r, " ", p-r
except ValueError:
echo getCurrentExceptionMsg()
run(10, 13)
run(56, 101)
run(1030, 10009)
run(1032, 10009)
run(44402, 100049)
run(665820697, 1000000009) |
http://rosettacode.org/wiki/Tonelli-Shanks_algorithm | Tonelli-Shanks algorithm |
This page uses content from Wikipedia. The original article was at Tonelli-Shanks algorithm. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
In computational number theory, the Tonelli–Shanks algorithm is a technique for solving for x in a congruence of the form:
x2 ≡ n (mod p)
where n is an integer which is a quadratic residue (mod p), p is an odd prime, and x,n ∈ Fp where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol (a | p) denotes the value of a(p-1)/2 (mod p).
(a | p) ≡ 1 if a is a square (mod p)
(a | p) ≡ -1 if a is not a square (mod p)
(a | p) ≡ 0 if a ≡ 0 (mod p)
Algorithm pseudo-code
All ≡ are taken to mean (mod p) unless stated otherwise.
Input: p an odd prime, and an integer n .
Step 0: Check that n is indeed a square: (n | p) must be ≡ 1 .
Step 1: By factoring out powers of 2 from p - 1, find q and s such that p - 1 = q2s with q odd .
If p ≡ 3 (mod 4) (i.e. s = 1), output the two solutions r ≡ ± n(p+1)/4 .
Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq .
Step 3: Set r ≡ n(q+1)/2, t ≡ nq, m = s .
Step 4: Loop the following:
If t ≡ 1, output r and p - r .
Otherwise find, by repeated squaring, the lowest i, 0 < i < m , such that t2i ≡ 1 .
Let b ≡ c2(m - i - 1), and set r ≡ rb, t ≡ tb2, c ≡ b2 and m = i .
Task
Implement the above algorithm.
Find solutions (if any) for
n = 10 p = 13
n = 56 p = 101
n = 1030 p = 10009
n = 1032 p = 10009
n = 44402 p = 100049
Extra credit
n = 665820697 p = 1000000009
n = 881398088036 p = 1000000000039
n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
See also
Modular exponentiation
Cipolla's algorithm
| #OCaml | OCaml | let tonelli n p =
let open Z in
let two = ~$2 in
let pp = pred p in
let pph = pred p / two in
let pow_mod_p a e = powm a e p in
let legendre_p a = pow_mod_p a pph in
if legendre_p n <> one then None
else
let s = trailing_zeros pp in
if s = 1 then
let r = pow_mod_p n (succ p / ~$4) in
Some (r, p - r)
else
let q = pp asr s in
let z =
let rec find_non_square z =
if legendre_p z = pp then z else find_non_square (succ z)
in
find_non_square two
in
let rec loop c r t m =
if t = one then (r, p - r)
else
let mp = pred m in
let rec find_i n i =
if n = one || i >= mp then i else find_i (n * n mod p) (succ i)
in
let rec exp_pow2 b e =
if e <= zero then b else exp_pow2 (b * b mod p) (pred e)
in
let i = find_i t zero in
let b = exp_pow2 c (mp - i) in
let c = b * b mod p in
loop c (r * b mod p) (t * c mod p) i
in
Some
(loop (pow_mod_p z q) (pow_mod_p n (succ q / two)) (pow_mod_p n q) ~$s)
let () =
let open Z in
[
(~$9, ~$11);
(~$10, ~$13);
(~$56, ~$101);
(~$1030, ~$10009);
(~$1032, ~$10009);
(~$44402, ~$100049);
(~$665820697, ~$1000000009);
(~$881398088036, ~$1000000000039);
( of_string "41660815127637347468140745042827704103445750172002",
pow ~$10 50 + ~$577 );
]
|> List.iter (fun (n, p) ->
Printf.printf "n = %s\np = %s\n%!" (to_string n) (to_string p);
match tonelli n p with
| Some (r1, r2) ->
Printf.printf "root1 = %s\nroot2 = %s\n\n%!" (to_string r1)
(to_string r2)
| None -> print_endline "No solution exists\n")
|
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Forth | Forth | variable 'src
variable #src
variable offset
: advance 1 offset +! ;
: chr@ offset @ 'src @ + c@ ;
: nextchr advance chr@ ;
: bound offset @ #src @ u< ;
: separator? dup [char] | = if drop cr else emit then ;
: escape? dup [char] ^ = if drop nextchr emit else separator? then ;
: tokenize 0 offset ! begin bound while nextchr escape? repeat ;
\ Test of function
Here 'src ! ," one^|uno||three^^^^|four^^^|^cuatro|" here 'src @ - #src !
page
cr ." #### start ####" cr tokenize cr ." #### End ####" cr
|
http://rosettacode.org/wiki/Tokenize_a_string_with_escaping | Tokenize a string with escaping | Task[edit]
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
The string
The separator character
The escape character
It should output a list of strings.
Details
Rules for splitting:
The fields that were separated by the separators, become the elements of the output list.
Empty fields should be preserved, even at the start and end.
Rules for escaping:
"Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
Each occurrence of the escape character that was used to escape something, should not become part of the output.
Test case
Demonstrate that your function satisfies the following test-case:
Input
Output
string:
one^|uno||three^^^^|four^^^|^cuatro|
separator character:
|
escape character:
^
one|uno
three^^
four^|cuatro
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Fortran | Fortran | SUBROUTINE SPLIT(TEXT,SEP,ESC) !Identifies and prints tokens from within a text.
CHARACTER*(*) TEXT !To be scanned.
CHARACTER*(1) SEP !The only separator for tokens.
CHARACTER*(1) ESC !Miscegnator.
CHARACTER*(LEN(TEXT)) TOKEN !Surely sufficient space.
INTEGER N !Counts the tokens as they're found.
INTEGER I !Steps through the text.
INTEGER L !Length of the token so far accumulated.
LOGICAL ESCAPING !Miscegnatory state.
N = 0 !No tokens so far.
L = 0 !Nor any text for the first.
ESCAPING = .FALSE. !And the state is good.
DO I = 1,LEN(TEXT) !Step through the text.
IF (ESCAPING) THEN !Are we in a mess?
L = L + 1 !Yes. An ESC character had been seen.
TOKEN(L:L) = TEXT(I:I) !So, whatever follows is taken as itself.
ESCAPING = .FALSE. !There are no specially-recognised names.
ELSE !Otherwise, we're in text to inspect.
IF (TEXT(I:I).EQ.ESC) THEN !So, is it a troublemaker?
ESCAPING = .TRUE. !Yes! Trouble is to follow.
ELSE IF (TEXT(I:I).EQ.SEP) THEN !If instead a separator,
CALL SPLOT !Then the token up to it is complete.
ELSE !Otherwise, a simple constituent character.
L = L + 1 !So, count it in.
TOKEN(L:L) = TEXT(I:I) !And copy it in.
END IF !So much for grist.
END IF !So much for that character.
END DO !On to the next.
Completes on end-of-text with L > 0, or, if the last character had been SEP, a null token is deemed to be following.
CALL SPLOT !Tail end.
CONTAINS !Save on having two copies of this code.
SUBROUTINE SPLOT !Show the token and scrub.
N = N + 1 !Another one.
WRITE (6,1) N,TOKEN(1:L) !Reveal.
1 FORMAT ("Token ",I0," >",A,"<")!Fancy layout.
L = 0 !Prepare for a fresh token.
END SUBROUTINE SPLOT !A brief life.
END SUBROUTINE SPLIT !And then oblivion.
PROGRAM POKE
CALL SPLIT("one^|uno||three^^^^|four^^^|^cuatro|","|","^")
END |
http://rosettacode.org/wiki/Total_circles_area | Total circles area | Total circles area
You are encouraged to solve this task according to the task description, using any language you may know.
Example circles
Example circles filtered
Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.
One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome.
To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):
xc yc radius
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
The result is 21.56503660... .
Related task
Circles of given radius through two points.
See also
http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/
http://stackoverflow.com/a/1667789/10562
| #Raku | Raku | class Point {
has Real $.x;
has Real $.y;
has Int $!cbits; # bitmap of circle membership
method cbits { $!cbits //= set_cbits(self) }
method gist { $!x ~ "\t" ~ $!y }
}
multi infix:<to>(Point $p1, Point $p2) {
sqrt ($p1.x - $p2.x) ** 2 + ($p1.y - $p2.y) ** 2;
}
multi infix:<mid>(Point $p1, Point $p2) {
Point.new(x => ($p1.x + $p2.x) / 2, y => ($p1.y + $p2.y) / 2);
}
class Circle {
has Point $.center;
has Real $.radius;
has Point $.north = Point.new(x => $!center.x, y => $!center.y + $!radius);
has Point $.west = Point.new(x => $!center.x - $!radius, y => $!center.y);
has Point $.south = Point.new(x => $!center.x, y => $!center.y - $!radius);
has Point $.east = Point.new(x => $!center.x + $!radius, y => $!center.y);
multi method contains(Circle $c) { $!center to $c.center <= $!radius - $c.radius }
multi method contains(Point $p) { $!center to $p <= $!radius }
method gist { $!center.gist ~ "\t" ~ $.radius }
}
class Rect {
has Point $.nw;
has Point $.ne;
has Point $.sw;
has Point $.se;
method diag { $!ne to $!se }
method area { ($!ne.x - $!nw.x) * ($!nw.y - $!sw.y) }
method contains(Point $p) {
$!nw.x < $p.x < $!ne.x and
$!sw.y < $p.y < $!nw.y;
}
}
my @rawcircles = sort -*.radius,
map -> $x, $y, $radius { Circle.new(:center(Point.new(:$x, :$y)), :$radius) },
<
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
>».Num;
# remove redundant circles
my @circles;
while @rawcircles {
my $c = @rawcircles.shift;
next if @circles.any.contains($c);
push @circles, $c;
}
sub set_cbits(Point $p) {
my $cbits = 0;
for @circles Z (1,2,4...*) -> ($c, $b) {
$cbits += $b if $c.contains($p);
}
$cbits;
}
my $xmin = min @circles.map: { .center.x - .radius }
my $xmax = max @circles.map: { .center.x + .radius }
my $ymin = min @circles.map: { .center.y - .radius }
my $ymax = max @circles.map: { .center.y + .radius }
my $min-radius = @circles[*-1].radius;
my $outer-rect = Rect.new:
nw => Point.new(x => $xmin, y => $ymax),
ne => Point.new(x => $xmax, y => $ymax),
sw => Point.new(x => $xmin, y => $ymin),
se => Point.new(x => $xmax, y => $ymin);
my $outer-area = $outer-rect.area;
my @unknowns = $outer-rect;
my $known-dry = 0e0;
my $known-wet = 0e0;
my $div = 1;
# divide current rects each into four rects, analyze each
sub divide(@old) {
$div *= 2;
# rects too small to hold circle?
my $smallish = @old[0].diag < $min-radius;
my @unk;
for @old {
my $center = .nw mid .se;
my $north = .nw mid .ne;
my $south = .sw mid .se;
my $west = .nw mid .sw;
my $east = .ne mid .se;
for Rect.new(nw => .nw, ne => $north, sw => $west, se => $center),
Rect.new(nw => $north, ne => .ne, sw => $center, se => $east),
Rect.new(nw => $west, ne => $center, sw => .sw, se => $south),
Rect.new(nw => $center, ne => $east, sw => $south, se => .se)
{
my @bits = .nw.cbits, .ne.cbits, .sw.cbits, .se.cbits;
# if all 4 points wet by same circle, guaranteed wet
if [+&] @bits {
$known-wet += .area;
next;
}
# if all 4 corners are dry, must check further
if not [+|] @bits and $smallish {
# check that no circle bulges into this rect
my $ok = True;
for @circles -> $c {
if .contains($c.east) or .contains($c.west) or
.contains($c.north) or .contains($c.south)
{
$ok = False;
last;
}
}
if $ok {
$known-dry += .area;
next;
}
}
push @unk, $_; # dunno yet
}
}
@unk;
}
my $delta = 0.001;
repeat until my $diff < $delta {
@unknowns = divide(@unknowns);
$diff = $outer-area - $known-dry - $known-wet;
say 'div: ', $div.fmt('%-5d'),
' unk: ', (+@unknowns).fmt('%-6d'),
' est: ', ($known-wet + $diff/2).fmt('%9.6f'),
' wet: ', $known-wet.fmt('%9.6f'),
' dry: ', ($outer-area - $known-dry).fmt('%9.6f'),
' diff: ', $diff.fmt('%9.6f'),
' error: ', ($diff - @unknowns * @unknowns[0].area).fmt('%e');
} |
http://rosettacode.org/wiki/Topological_sort | Topological sort |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given a mapping between items, and items they depend on, a topological sort orders items so that no item precedes an item it depends upon.
The compiling of a library in the VHDL language has the constraint that a library must be compiled after any library it depends on.
A tool exists that extracts library dependencies.
Task
Write a function that will return a valid compile order of VHDL libraries from their dependencies.
Assume library names are single words.
Items mentioned as only dependents, (sic), have no dependents of their own, but their order of compiling must be given.
Any self dependencies should be ignored.
Any un-orderable dependencies should be flagged.
Use the following data as an example:
LIBRARY LIBRARY DEPENDENCIES
======= ====================
des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee
dw01 ieee dw01 dware gtech
dw02 ieee dw02 dware
dw03 std synopsys dware dw03 dw02 dw01 ieee gtech
dw04 dw04 ieee dw01 dware gtech
dw05 dw05 ieee dware
dw06 dw06 ieee dware
dw07 ieee dware
dware ieee dware
gtech ieee gtech
ramlib std ieee
std_cell_lib ieee std_cell_lib
synopsys
Note: the above data would be un-orderable if, for example, dw04 is added to the list of dependencies of dw01.
C.f.
Topological sort/Extracted top item.
There are two popular algorithms for topological sorting:
Kahn's 1962 topological sort [1]
depth-first search [2] [3]
| #Erlang | Erlang |
-module(topological_sort).
-compile(export_all).
-define(LIBRARIES,
[{des_system_lib, [std, synopsys, std_cell_lib, des_system_lib, dw02, dw01, ramlib, ieee]},
{dw01, [ieee, dw01, dware, gtech]},
{dw02, [ieee, dw02, dware]},
{dw03, [std, synopsys, dware, dw03, dw02, dw01, ieee, gtech]},
{dw04, [dw04, ieee, dw01, dware, gtech]},
{dw05, [dw05, ieee, dware]},
{dw06, [dw06, ieee, dware]},
{dw07, [ieee, dware]},
{dware, [ieee, dware]},
{gtech, [ieee, gtech]},
{ramlib, [std, ieee]},
{std_cell_lib, [ieee, std_cell_lib]},
{synopsys, []}]).
-define(BAD_LIBRARIES,
[{des_system_lib, [std, synopsys, std_cell_lib, des_system_lib, dw02, dw01, ramlib, ieee]},
{dw01, [ieee, dw01, dw04, dware, gtech]},
{dw02, [ieee, dw02, dware]},
{dw03, [std, synopsys, dware, dw03, dw02, dw01, ieee, gtech]},
{dw04, [dw04, ieee, dw01, dware, gtech]},
{dw05, [dw05, ieee, dware]},
{dw06, [dw06, ieee, dware]},
{dw07, [ieee, dware]},
{dware, [ieee, dware]},
{gtech, [ieee, gtech]},
{ramlib, [std, ieee]},
{std_cell_lib, [ieee, std_cell_lib]},
{synopsys, []}]).
main() ->
top_sort(?LIBRARIES),
top_sort(?BAD_LIBRARIES).
top_sort(Library) ->
G = digraph:new(),
lists:foreach(fun ({L,Deps}) ->
digraph:add_vertex(G,L), % noop if library already added
lists:foreach(fun (D) ->
add_dependency(G,L,D)
end, Deps)
end, Library),
T = digraph_utils:topsort(G),
case T of
false ->
io:format("Unsortable contains circular dependencies:~n",[]),
lists:foreach(fun (V) ->
case digraph:get_short_cycle(G,V) of
false ->
ok;
Vs ->
print_path(Vs)
end
end, digraph:vertices(G));
_ ->
print_path(T)
end.
print_path(L) ->
lists:foreach(fun (V) -> io:format("~s -> ",[V]) end,
lists:sublist(L,length(L)-1)),
io:format("~s~n",[lists:last(L)]).
add_dependency(_G,_L,_L) ->
ok;
add_dependency(G,L,D) ->
digraph:add_vertex(G,D), % noop if dependency already added
digraph:add_edge(G,D,L). % Dependencies represented as an edge D -> L
|
http://rosettacode.org/wiki/Universal_Turing_machine | Universal Turing machine | One of the foundational mathematical constructs behind computer science
is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936–1937.)
Indeed one way to definitively prove that a language
is turing-complete
is to implement a universal Turing machine in it.
Task
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
Simple incrementer
States: q0, qf
Initial state: q0
Terminating states: qf
Permissible symbols: B, 1
Blank symbol: B
Rules:
(q0, 1, 1, right, q0)
(q0, B, 1, stay, qf)
The input for this machine should be a tape of 1 1 1
Three-state busy beaver
States: a, b, c, halt
Initial state: a
Terminating states: halt
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(a, 0, 1, right, b)
(a, 1, 1, left, c)
(b, 0, 1, left, a)
(b, 1, 1, right, b)
(c, 0, 1, left, b)
(c, 1, 1, stay, halt)
The input for this machine should be an empty tape.
Bonus:
5-state, 2-symbol probable Busy Beaver machine from Wikipedia
States: A, B, C, D, E, H
Initial state: A
Terminating states: H
Permissible symbols: 0, 1
Blank symbol: 0
Rules:
(A, 0, 1, right, B)
(A, 1, 1, left, C)
(B, 0, 1, right, C)
(B, 1, 1, right, B)
(C, 0, 1, right, D)
(C, 1, 0, left, E)
(D, 0, 1, left, A)
(D, 1, 1, left, D)
(E, 0, 1, stay, H)
(E, 1, 0, left, A)
The input for this machine should be an empty tape.
This machine runs for more than 47 millions steps.
| #Lambdatalk | Lambdatalk |
{require lib_H} // associative arrays library
{def tm
{def tm.r
{lambda {:data :rules :state :end :blank :i :N}
{if {or {W.equal? :state :end} {> :N 400}} // recursion limited to 400
then :data
else {let { {:data :data} {:rules :rules}
{:state {H.get :state :rules}}
{:end :end} {:blank :blank}
{:i :i} {:N :N}
{:cell {if {W.equal? {A.get :i :data} undefined}
then :blank
else {A.get :i :data}}}
} {tm.r {A.set! :i {H.get write {H.get :cell :state}} :data}
:rules
{H.get next {H.get :cell :state}}
:end
:blank
{+ :i {H.get move {H.get :cell :state}} }
{+ :N 1} } }}}}
{lambda {:name :data :rules :state :end :blank}
:name: {A.duplicate :data} ->
{tm.r :data :rules :state :end :blank 0 0}}}
-> tm
{tm zero2one
{A.new 0 0 0}
{H.new A {H.new 0 {H.new write 1 | move 1 | next A} |
B {H.new write . | move 1 | next H} }
} A H B}
output: zero2one: [0,0,0] -> [1,1,1,.]
{tm add_one
{A.new 1 1 1}
{H.new A {H.new 1 {H.new write 1 | move 1 | next A} |
B {H.new write 1 | move 0 | next B} }
} A B B}
output: add_one: [1,1,1] -> [1,1,1,1]
{tm unary_adder
{A.new 1 1 1 0 1 1 1}
{H.new A {H.new 1 {H.new write 0 | move 1 | next B} } |
B {H.new 1 {H.new write 1 | move 1 | next B} |
0 {H.new write 1 | move 0 | next H} }
} A H B}
output: unary_adder: [1,1,1,0,1,1,1] -> [0,1,1,1,1,1,1]
{tm duplicate
{A.new 1 1 1}
{H.new q0 {H.new 1 {H.new write B | move 1 | next q1} } |
q1 {H.new 1 {H.new write 1 | move 1 | next q1} |
0 {H.new write 0 | move 1 | next q2} |
B {H.new write 0 | move 1 | next q2}} |
q2 {H.new 1 {H.new write 1 | move 1 | next q2} |
B {H.new write 1 | move -1 | next q3}} |
q3 {H.new 1 {H.new write 1 | move -1 | next q3} |
0 {H.new write 0 | move -1 | next q3} |
B {H.new write 1 | move 1 | next q4}} |
q4 {H.new 1 {H.new write B | move 1 | next q1} |
0 {H.new write 0 | move 1 | next qf}}
} q0 qf B}
output: duplicate: [1,1,1] -> [1,1,1,0,1,1,1]
{tm sort
{A.new 2 1 2 2 2 1 1}
{H.new A {H.new 1 {H.new write 1 | move 1 | next A} |
2 {H.new write 3 | move 1 | next B} |
0 {H.new write 0 | move -1 | next E}} |
B {H.new 1 {H.new write 1 | move 1 | next B} |
2 {H.new write 2 | move 1 | next B} |
0 {H.new write 0 | move -1 | next C}} |
C {H.new 1 {H.new write 2 | move -1 | next D} |
2 {H.new write 2 | move -1 | next C} |
3 {H.new write 2 | move -1 | next E}} |
D {H.new 1 {H.new write 1 | move -1 | next D} |
2 {H.new write 2 | move -1 | next D} |
3 {H.new write 1 | move 1 | next A}} |
E {H.new 1 {H.new write 1 | move -1 | next E} |
0 {H.new write 0 | move 1 | next H}}
} A H 0}
output: sort: [2,1,2,2,2,1,1] -> [1,1,1,2,2,2,2,0]
{tm busy_beaver
{A.new}
{H.new A {H.new 0 {H.new write 1 | move 1 | next B} |
1 {H.new write 1 | move -1 | next C}} |
B {H.new 0 {H.new write 1 | move -1 | next A} |
1 {H.new write 1 | move 1 | next B}} |
C {H.new 0 {H.new write 1 | move -1 | next B} |
1 {H.new write 1 | move 0 | next H}}
} A H 0}
output: busy_beaver: [] -> [1,1,1]
{tm busy_beaver2
{A.new}
{H.new A {H.new 0 {H.new write 1 | move 1 | next B} |
1 {H.new write 1 | move -1 | next C}} |
B {H.new 0 {H.new write 1 | move 1 | next C} |
1 {H.new write 1 | move 1 | next B}} |
C {H.new 0 {H.new write 1 | move 1 | next D} |
1 {H.new write 0 | move -1 | next E}} |
D {H.new 0 {H.new write 1 | move -1 | next A} |
1 {H.new write 1 | move -1 | next D}} |
E {H.new 0 {H.new write 1 | move 0 | next K} |
1 {H.new write 0 | move -1 | next A}}
} A K 0}
output: busy_beaver2: [] -> [1,1,1,1,1,1,1,1,1,1,1]
|
http://rosettacode.org/wiki/Totient_function | Totient function | The totient function is also known as:
Euler's totient function
Euler's phi totient function
phi totient function
Φ function (uppercase Greek phi)
φ function (lowercase Greek phi)
Definitions (as per number theory)
The totient function:
counts the integers up to a given positive integer n that are relatively prime to n
counts the integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n,k) is equal to 1
counts numbers ≤ n and prime to n
If the totient number (for N) is one less than N, then N is prime.
Task
Create a totient function and:
Find and display (1 per line) for the 1st 25 integers:
the integer (the index)
the totient number for that integer
indicate if that integer is prime
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000 (optional)
Show all output here.
Related task
Perfect totient numbers
Also see
Wikipedia: Euler's totient function.
MathWorld: totient function.
OEIS: Euler totient function phi(n).
| #jq | jq |
# jq optimizes the recursive call of _gcd in the following:
def gcd(a;b):
def _gcd:
if .[1] != 0 then [.[1], .[0] % .[1]] | _gcd else .[0] end;
[a,b] | _gcd ;
def count(s): reduce s as $x (0; .+1);
def totient:
. as $n
| count( range(0; .) | select( gcd($n; .) == 1) );
# input: determines the maximum via range(0; .)
# and so may be `infinite`
def primes_via_totient:
range(0; .) | select(totient == . - 1);
|
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #R | R |
topswops <- function(x){
i <- 0
while(x[1] != 1){
first <- x[1]
if(first == length(x)){
x <- rev(x)
} else{
x <- c(x[first:1], x[(first+1):length(x)])
}
i <- i + 1
}
return(i)
}
library(iterpc)
result <- NULL
for(i in 1:10){
I <- iterpc(i, labels = 1:i, ordered = T)
A <- getall(I)
A <- data.frame(A)
A$flips <- apply(A, 1, topswops)
result <- rbind(result, c(i, max(A$flips)))
}
|
http://rosettacode.org/wiki/Topswops | Topswops | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
Task
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
Note
Topswops is also known as Fannkuch from the German word Pfannkuchen meaning pancake.
Related tasks
Number reversal game
Sorting algorithms/Pancake sort
| #Racket | Racket |
#lang racket
(define (all-misplaced? l)
(for/and ([x (in-list l)] [n (in-naturals 1)]) (not (= x n))))
(define (topswops n)
(for/fold ([m 0]) ([p (in-permutations (range 1 (add1 n)))]
#:when (all-misplaced? p))
(let loop ([p p] [n 0])
(if (= 1 (car p))
(max n m)
(loop (let loop ([l '()] [r p] [n (car p)])
(if (zero? n) (append l r)
(loop (cons (car r) l) (cdr r) (sub1 n))))
(add1 n))))))
(for ([i (in-range 1 11)]) (printf "~a\t~a\n" i (topswops i)))
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.