Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
File size: 4,805 Bytes
442eaea 3df2755 442eaea 747f6d0 442eaea 3df2755 442eaea 3df2755 de731d3 ec015f3 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea de731d3 442eaea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
Hugging Face's logo
Hugging Face
Models
Datasets
Spaces
Community
Docs
Enterprise
Pricing
Datasets:
pianistprogrammer
/
Meter2800
like
0
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
mit
Dataset card
Files and versions
Community
Settings
Meter2800
/
meter2800.py
pianistprogrammer's picture
pianistprogrammer
Refactor Meter2800 dataset configuration and example generation logic
ec015f3
1 minute ago
raw
Copy download link
history
blame
edit
delete
4.2 kB
from pathlib import Path
import datasets
import pandas as pd
_CITATION = """\
@misc{meter2800_dataset,
author = {PianistProgrammer},
title = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/pianistprogrammer/Meter2800}
}
"""
_DESCRIPTION = """\
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification.
Each audio file is annotated with a primary meter class label (e.g., 'two', 'three', 'four')
and an alternative meter (numerical, e.g., 2, 3, 4, 6).
It is split into training, validation, and test sets, each available in two class configurations:
2-class and 4-class. All audio is 16-bit WAV format.
"""
_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800"
_LICENSE = "mit"
# Define the labels - adjust these based on your actual data
LABELS_4 = ["three", "four", "five", "seven"]
LABELS_2 = ["simple", "complex"] # or whatever your 2-class grouping actually is
class Meter2800Config(datasets.BuilderConfig):
"""BuilderConfig for Meter2800."""
def __init__(self, name, **kwargs):
super(Meter2800Config, self).__init__(
name=name,
version=datasets.Version("1.0.0"),
**kwargs
)
class Meter2800(datasets.GeneratorBasedBuilder):
"""Meter2800 dataset."""
BUILDER_CONFIGS = [
Meter2800Config(
name="4_classes",
description="4-class meter classification"
),
Meter2800Config(
name="2_classes",
description="2-class meter classification"
),
]
DEFAULT_CONFIG_NAME = "4_classes"
def _info(self):
if self.config.name == "4_classes":
label_names = LABELS_4
elif self.config.name == "2_classes":
label_names = LABELS_2
else:
# Fallback - shouldn't happen with proper configs
label_names = LABELS_4
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"filename": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=None),
"label": datasets.ClassLabel(names=label_names),
"meter": datasets.Value("string"),
"alt_meter": datasets.Value("string"),
}),
supervised_keys=("audio", "label"),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# Get the data directory
data_dir = dl_manager.download_and_extract("")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"csv_file": f"{data_dir}/data_train_{self.config.name}.csv",
"data_dir": data_dir
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"csv_file": f"{data_dir}/data_val_{self.config.name}.csv",
"data_dir": data_dir
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"csv_file": f"{data_dir}/data_test_{self.config.name}.csv",
"data_dir": data_dir
},
),
]
def _generate_examples(self, csv_file, data_dir):
df = pd.read_csv(csv_file)
df = df.dropna(subset=["filename", "label", "meter"]).reset_index(drop=True)
for idx, row in df.iterrows():
# Construct the full audio path
audio_path = f"{data_dir}/{row['filename']}"
yield idx, {
"filename": row["filename"],
"audio": audio_path,
"label": row["label"],
"meter": str(row["meter"]),
"alt_meter": str(row.get("alt_meter", row["meter"])),
}
|