Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
File size: 4,875 Bytes
a6f4ac8 442eaea 3df2755 442eaea 747f6d0 442eaea 3df2755 442eaea 3df2755 de731d3 ec015f3 3df2755 442eaea 3df2755 442eaea 3df2755 a6f4ac8 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea 3df2755 442eaea de731d3 442eaea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Meter2800 dataset."""
from pathlib import Path
import datasets
import pandas as pd
_CITATION = """\
@misc{meter2800_dataset,
author = {PianistProgrammer},
title = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/pianistprogrammer/Meter2800}
}
"""
_DESCRIPTION = """\
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification.
Each audio file is annotated with a primary meter class label (e.g., 'two', 'three', 'four')
and an alternative meter (numerical, e.g., 2, 3, 4, 6).
It is split into training, validation, and test sets, each available in two class configurations:
2-class and 4-class. All audio is 16-bit WAV format.
"""
_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800"
_LICENSE = "mit"
# Define the labels - adjust these based on your actual data
LABELS_4 = ["three", "four", "five", "seven"]
LABELS_2 = ["simple", "complex"] # or whatever your 2-class grouping actually is
class Meter2800Config(datasets.BuilderConfig):
"""BuilderConfig for Meter2800."""
def __init__(self, name, **kwargs):
super(Meter2800Config, self).__init__(
name=name,
version=datasets.Version("1.0.0"),
**kwargs
)
class Meter2800(datasets.GeneratorBasedBuilder):
"""Meter2800 dataset."""
BUILDER_CONFIGS = [
Meter2800Config(
name="4_classes",
description="4-class meter classification"
),
Meter2800Config(
name="2_classes",
description="2-class meter classification"
),
]
DEFAULT_CONFIG_NAME = "4_classes"
def _info(self):
if self.config.name == "4_classes":
label_names = LABELS_4
elif self.config.name == "2_classes":
label_names = LABELS_2
else:
# Fallback - shouldn't happen with proper configs
label_names = LABELS_4
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"filename": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=22_050),
"label": datasets.ClassLabel(names=label_names),
"meter": datasets.Value("string"),
"alt_meter": datasets.Value("string"),
}),
supervised_keys=("audio", "label"),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# Get the data directory
data_dir = dl_manager.download_and_extract("")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"csv_file": f"{data_dir}/data_train_{self.config.name}.csv",
"data_dir": data_dir
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"csv_file": f"{data_dir}/data_val_{self.config.name}.csv",
"data_dir": data_dir
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"csv_file": f"{data_dir}/data_test_{self.config.name}.csv",
"data_dir": data_dir
},
),
]
def _generate_examples(self, csv_file, data_dir):
df = pd.read_csv(csv_file)
df = df.dropna(subset=["filename", "label", "meter"]).reset_index(drop=True)
for idx, row in df.iterrows():
# Construct the full audio path
audio_path = f"{data_dir}/{row['filename']}"
yield idx, {
"filename": row["filename"],
"audio": audio_path,
"label": row["label"],
"meter": str(row["meter"]),
"alt_meter": str(row.get("alt_meter", row["meter"])),
}
|