File size: 4,875 Bytes
a6f4ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
442eaea
 
3df2755
 
 
442eaea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747f6d0
442eaea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df2755
442eaea
 
 
 
 
 
 
 
3df2755
de731d3
ec015f3
3df2755
 
442eaea
 
 
 
 
 
 
 
3df2755
442eaea
3df2755
 
a6f4ac8
442eaea
3df2755
 
 
442eaea
 
 
 
3df2755
 
 
442eaea
 
 
3df2755
 
 
442eaea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df2755
 
 
442eaea
3df2755
442eaea
 
3df2755
442eaea
 
 
3df2755
 
442eaea
de731d3
 
442eaea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Meter2800 dataset."""

from pathlib import Path
import datasets
import pandas as pd

_CITATION = """\
@misc{meter2800_dataset,
  author       = {PianistProgrammer},
  title        = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification},
  year         = {2025},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/datasets/pianistprogrammer/Meter2800}
}
"""

_DESCRIPTION = """\
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification.
Each audio file is annotated with a primary meter class label (e.g., 'two', 'three', 'four') 
and an alternative meter (numerical, e.g., 2, 3, 4, 6). 
It is split into training, validation, and test sets, each available in two class configurations:
2-class and 4-class. All audio is 16-bit WAV format.
"""

_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800"
_LICENSE = "mit"

# Define the labels - adjust these based on your actual data
LABELS_4 = ["three", "four", "five", "seven"]
LABELS_2 = ["simple", "complex"]  # or whatever your 2-class grouping actually is

class Meter2800Config(datasets.BuilderConfig):
    """BuilderConfig for Meter2800."""
    def __init__(self, name, **kwargs):
        super(Meter2800Config, self).__init__(
            name=name,
            version=datasets.Version("1.0.0"),
            **kwargs
        )

class Meter2800(datasets.GeneratorBasedBuilder):
    """Meter2800 dataset."""
    
    BUILDER_CONFIGS = [
        Meter2800Config(
            name="4_classes",
            description="4-class meter classification"
        ),
        Meter2800Config(
            name="2_classes", 
            description="2-class meter classification"
        ),
    ]
    
    DEFAULT_CONFIG_NAME = "4_classes"

    def _info(self):
        if self.config.name == "4_classes":
            label_names = LABELS_4
        elif self.config.name == "2_classes":
            label_names = LABELS_2
        else:
            # Fallback - shouldn't happen with proper configs
            label_names = LABELS_4
            
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "filename": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=22_050),
                "label": datasets.ClassLabel(names=label_names),
                "meter": datasets.Value("string"),
                "alt_meter": datasets.Value("string"),
            }),
            supervised_keys=("audio", "label"),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # Get the data directory
        data_dir = dl_manager.download_and_extract("")
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "csv_file": f"{data_dir}/data_train_{self.config.name}.csv",
                    "data_dir": data_dir
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "csv_file": f"{data_dir}/data_val_{self.config.name}.csv",
                    "data_dir": data_dir
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "csv_file": f"{data_dir}/data_test_{self.config.name}.csv",
                    "data_dir": data_dir
                },
            ),
        ]

    def _generate_examples(self, csv_file, data_dir):
        df = pd.read_csv(csv_file)
        df = df.dropna(subset=["filename", "label", "meter"]).reset_index(drop=True)

        for idx, row in df.iterrows():
            # Construct the full audio path
            audio_path = f"{data_dir}/{row['filename']}"
            
            yield idx, {
                "filename": row["filename"],
                "audio": audio_path,
                "label": row["label"],
                "meter": str(row["meter"]),
                "alt_meter": str(row.get("alt_meter", row["meter"])),
            }