meter2800 / meter2800.py
pianistprogrammer's picture
Update meter2800.py
5e05c06 verified
# meter2800.py
from pathlib import Path
import datasets
import pandas as pd
_CITATION = """\
@misc{meter2800_dataset,
author = {PianistProgrammer},
title = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/pianistprogrammer/meter2800}
}
"""
_DESCRIPTION = """\
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification.
Each audio file is annotated with a primary meter class label and an alternative meter.
It is split into training, validation, and test sets, each available in two class configurations:
2-class and 4-class. All audio is 16-bit WAV format.
"""
_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/meter2800"
_LICENSE = "mit"
LABELS_4 = ["three", "four", "five", "seven"]
LABELS_2 = ["three", "four"]
class Meter2800Config(datasets.BuilderConfig):
def __init__(self, name, **kwargs):
super().__init__(name=name, version=datasets.Version("1.0.0"), **kwargs)
class Meter2800(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
Meter2800Config(name="4_classes", description="4‑class meter classification"),
Meter2800Config(name="2_classes", description="2‑class meter classification"),
]
DEFAULT_CONFIG_NAME = "4_classes"
def _info(self):
labels = LABELS_4 if self.config.name == "4_classes" else LABELS_2
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"filename": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=22050),
"label": datasets.ClassLabel(names=labels),
"meter": datasets.Value("string"),
"alt_meter": datasets.Value("string"),
}),
supervised_keys=("audio", "label"),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
csv_links = {
split: f"https://huggingface.co/datasets/pianistprogrammer/meter2800/resolve/main/data_{split}_{self.config.name}.csv"
for split in ["train", "val", "test"]
}
csv_files = dl_manager.download(csv_links)
archive = dl_manager.download_and_extract(
"https://huggingface.co/datasets/pianistprogrammer/meter2800/resolve/main/data.tar.gz"
)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"csv_path": csv_files["train"], "root": archive}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": csv_files["val"], "root": archive}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"csv_path": csv_files["test"], "root": archive}),
]
def _generate_examples(self, csv_path, root):
df = pd.read_csv(csv_path).dropna(subset=["filename", "label", "meter"]).reset_index(drop=True)
for idx, row in df.iterrows():
rel = row["filename"].lstrip("/") # ensure relative path, not absolute
audio_path = Path(root) / rel
if not audio_path.is_file():
raise FileNotFoundError(f"Missing audio file: {audio_path}")
yield idx, {
"filename": rel,
"audio": str(audio_path),
"label": row["label"],
"meter": str(row["meter"]),
"alt_meter": str(row.get("alt_meter", row["meter"])),
}