Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
# meter2800.py | |
from pathlib import Path | |
import datasets | |
import pandas as pd | |
_CITATION = """\ | |
@misc{meter2800_dataset, | |
author = {PianistProgrammer}, | |
title = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification}, | |
year = {2025}, | |
publisher = {Hugging Face}, | |
url = {https://huggingface.co/datasets/pianistprogrammer/meter2800} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification. | |
Each audio file is annotated with a primary meter class label and an alternative meter. | |
It is split into training, validation, and test sets, each available in two class configurations: | |
2-class and 4-class. All audio is 16-bit WAV format. | |
""" | |
_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/meter2800" | |
_LICENSE = "mit" | |
LABELS_4 = ["three", "four", "five", "seven"] | |
LABELS_2 = ["three", "four"] | |
class Meter2800Config(datasets.BuilderConfig): | |
def __init__(self, name, **kwargs): | |
super().__init__(name=name, version=datasets.Version("1.0.0"), **kwargs) | |
class Meter2800(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
Meter2800Config(name="4_classes", description="4‑class meter classification"), | |
Meter2800Config(name="2_classes", description="2‑class meter classification"), | |
] | |
DEFAULT_CONFIG_NAME = "4_classes" | |
def _info(self): | |
labels = LABELS_4 if self.config.name == "4_classes" else LABELS_2 | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features({ | |
"filename": datasets.Value("string"), | |
"audio": datasets.Audio(sampling_rate=22050), | |
"label": datasets.ClassLabel(names=labels), | |
"meter": datasets.Value("string"), | |
"alt_meter": datasets.Value("string"), | |
}), | |
supervised_keys=("audio", "label"), | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
csv_links = { | |
split: f"https://huggingface.co/datasets/pianistprogrammer/meter2800/resolve/main/data_{split}_{self.config.name}.csv" | |
for split in ["train", "val", "test"] | |
} | |
csv_files = dl_manager.download(csv_links) | |
archive = dl_manager.download_and_extract( | |
"https://huggingface.co/datasets/pianistprogrammer/meter2800/resolve/main/data.tar.gz" | |
) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"csv_path": csv_files["train"], "root": archive}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": csv_files["val"], "root": archive}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"csv_path": csv_files["test"], "root": archive}), | |
] | |
def _generate_examples(self, csv_path, root): | |
df = pd.read_csv(csv_path).dropna(subset=["filename", "label", "meter"]).reset_index(drop=True) | |
for idx, row in df.iterrows(): | |
rel = row["filename"].lstrip("/") # ensure relative path, not absolute | |
audio_path = Path(root) / rel | |
if not audio_path.is_file(): | |
raise FileNotFoundError(f"Missing audio file: {audio_path}") | |
yield idx, { | |
"filename": rel, | |
"audio": str(audio_path), | |
"label": row["label"], | |
"meter": str(row["meter"]), | |
"alt_meter": str(row.get("alt_meter", row["meter"])), | |
} | |