drugprot / drugprot.py
ArneBinder's picture
from https://github.com/ArneBinder/pie-datasets/pull/150
06be6e9 verified
raw
history blame
9.07 kB
from dataclasses import dataclass
from typing import Any, Dict, Optional, Union
import datasets
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
from pytorch_ie.documents import (
AnnotationLayer,
TextBasedDocument,
TextDocumentWithLabeledSpansAndBinaryRelations,
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
annotation_field,
)
from pie_datasets import GeneratorBasedBuilder
@dataclass
class DrugprotDocument(TextBasedDocument):
title: Optional[str] = None
abstract: Optional[str] = None
entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text")
relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities")
@dataclass
class DrugprotBigbioDocument(TextBasedDocument):
passages: AnnotationLayer[LabeledSpan] = annotation_field(target="text")
entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text")
relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities")
def example2drugprot(example: Dict[str, Any]) -> DrugprotDocument:
metadata = {"entity_ids": [], "relation_ids": []}
id2labeled_span: Dict[str, LabeledSpan] = {}
document = DrugprotDocument(
text=example["text"],
title=example["title"],
abstract=example["abstract"],
id=example["document_id"],
metadata=metadata,
)
for span in example["entities"]:
labeled_span = LabeledSpan(
start=span["offset"][0],
end=span["offset"][1],
label=span["type"],
)
document.entities.append(labeled_span)
entity_id = span["id"].split("_")[1]
document.metadata["entity_ids"].append(entity_id)
id2labeled_span[entity_id] = labeled_span
for relation in example["relations"]:
arg1_id = relation["arg1_id"].split("_")[1]
arg2_id = relation["arg2_id"].split("_")[1]
document.relations.append(
BinaryRelation(
head=id2labeled_span[arg1_id],
tail=id2labeled_span[arg2_id],
label=relation["type"],
)
)
relation_id = "R" + relation["id"].split("_")[1]
document.metadata["relation_ids"].append(relation_id)
return document
def example2drugprot_bigbio(example: Dict[str, Any]) -> DrugprotBigbioDocument:
text = " ".join([" ".join(passage["text"]) for passage in example["passages"]])
doc_id = example["document_id"]
metadata = {"entity_ids": [], "relation_ids": []}
id2labeled_span: Dict[str, LabeledSpan] = {}
document = DrugprotBigbioDocument(
text=text,
id=doc_id,
metadata=metadata,
)
for passage in example["passages"]:
document.passages.append(
LabeledSpan(
start=passage["offsets"][0][0],
end=passage["offsets"][0][1],
label=passage["type"],
)
)
# We sort labels and relation to always have a deterministic order for testing purposes.
for span in example["entities"]:
labeled_span = LabeledSpan(
start=span["offsets"][0][0],
end=span["offsets"][0][1],
label=span["type"],
)
document.entities.append(labeled_span)
entity_id = span["id"].split("_")[1]
document.metadata["entity_ids"].append(entity_id)
id2labeled_span[entity_id] = labeled_span
for relation in example["relations"]:
arg1_id = relation["arg1_id"].split("_")[1]
arg2_id = relation["arg2_id"].split("_")[1]
document.relations.append(
BinaryRelation(
head=id2labeled_span[arg1_id],
tail=id2labeled_span[arg2_id],
label=relation["type"],
)
)
relation_id = "R" + relation["id"].split("_")[1]
document.metadata["relation_ids"].append(relation_id)
return document
def drugprot2example(doc: DrugprotDocument) -> Dict[str, Any]:
entities = []
for i, entity in enumerate(doc.entities):
entities.append(
{
"id": doc.id + "_" + doc.metadata["entity_ids"][i],
"type": entity.label,
"text": doc.text[entity.start : entity.end],
"offset": [entity.start, entity.end],
}
)
relations = []
for i, relation in enumerate(doc.relations):
relations.append(
{
"id": doc.id + "_" + doc.metadata["relation_ids"][i][1:],
"arg1_id": doc.id
+ "_"
+ doc.metadata["entity_ids"][doc.entities.index(relation.head)],
"arg2_id": doc.id
+ "_"
+ doc.metadata["entity_ids"][doc.entities.index(relation.tail)],
"type": relation.label,
}
)
return {
"document_id": doc.id,
"title": doc.title,
"abstract": doc.abstract,
"text": doc.text,
"entities": entities,
"relations": relations,
}
def drugprot_bigbio2example(doc: DrugprotBigbioDocument) -> Dict[str, Any]:
entities = []
for i, entity in enumerate(doc.entities):
entities.append(
{
"id": doc.id + "_" + doc.metadata["entity_ids"][i],
"normalized": [],
"offsets": [[entity.start, entity.end]],
"type": entity.label,
"text": [doc.text[entity.start : entity.end]],
}
)
relations = []
for i, relation in enumerate(doc.relations):
relations.append(
{
"id": doc.id + "_" + doc.metadata["relation_ids"][i][1:],
"arg1_id": doc.id
+ "_"
+ doc.metadata["entity_ids"][doc.entities.index(relation.head)],
"arg2_id": doc.id
+ "_"
+ doc.metadata["entity_ids"][doc.entities.index(relation.tail)],
"normalized": [],
"type": relation.label,
}
)
passages = []
for passage in doc.passages:
passages.append(
{
"id": doc.id + "_" + passage.label,
"text": [doc.text[passage.start : passage.end]],
"offsets": [[passage.start, passage.end]],
"type": passage.label,
}
)
return {
"coreferences": [],
"document_id": doc.id,
"entities": entities,
"events": [],
"id": doc.id,
"passages": passages,
"relations": relations,
}
class Drugprot(GeneratorBasedBuilder):
DOCUMENT_TYPES = {
"drugprot_source": DrugprotDocument,
"drugprot_bigbio_kb": DrugprotBigbioDocument,
}
BASE_DATASET_PATH = "bigbio/drugprot"
# This revision includes the "test_background" split (see https://github.com/bigscience-workshop/biomedical/pull/928)
BASE_DATASET_REVISION = "0cc98b3d292242e69adcfd2c3e5eea94baaca8ea"
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="drugprot_source",
version=datasets.Version("1.0.2"),
description="DrugProt source version",
),
datasets.BuilderConfig(
name="drugprot_bigbio_kb",
version=datasets.Version("1.0.0"),
description="DrugProt BigBio version",
),
]
@property
def document_converters(self):
if self.config.name == "drugprot_source":
return {
TextDocumentWithLabeledSpansAndBinaryRelations: {
"entities": "labeled_spans",
"relations": "binary_relations",
}
}
elif self.config.name == "drugprot_bigbio_kb":
return {
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: {
"passages": "labeled_partitions",
"entities": "labeled_spans",
"relations": "binary_relations",
}
}
else:
raise ValueError(f"Unknown dataset name: {self.config.name}")
def _generate_document(
self, example: Dict[str, Any], **kwargs
) -> Union[DrugprotDocument, DrugprotBigbioDocument]:
if self.config.name == "drugprot_source":
return example2drugprot(example)
elif self.config.name == "drugprot_bigbio_kb":
return example2drugprot_bigbio(example)
else:
raise ValueError(f"Unknown dataset config name: {self.config.name}")
def _generate_example(
self, document: Union[DrugprotDocument, DrugprotBigbioDocument], **kwargs
) -> Dict[str, Any]:
if isinstance(document, DrugprotBigbioDocument):
return drugprot_bigbio2example(document)
elif isinstance(document, DrugprotDocument):
return drugprot2example(document)
else:
raise ValueError(f"Unknown document type: {type(document)}")