|
from dataclasses import dataclass |
|
from typing import Any, Dict, Optional, Union |
|
|
|
import datasets |
|
from pytorch_ie.annotations import BinaryRelation, LabeledSpan |
|
from pytorch_ie.documents import ( |
|
AnnotationLayer, |
|
TextBasedDocument, |
|
TextDocumentWithLabeledSpansAndBinaryRelations, |
|
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions, |
|
annotation_field, |
|
) |
|
|
|
from pie_datasets import GeneratorBasedBuilder |
|
|
|
|
|
@dataclass |
|
class DrugprotDocument(TextBasedDocument): |
|
title: Optional[str] = None |
|
abstract: Optional[str] = None |
|
entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text") |
|
relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities") |
|
|
|
|
|
@dataclass |
|
class DrugprotBigbioDocument(TextBasedDocument): |
|
passages: AnnotationLayer[LabeledSpan] = annotation_field(target="text") |
|
entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text") |
|
relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities") |
|
|
|
|
|
def example2drugprot(example: Dict[str, Any]) -> DrugprotDocument: |
|
metadata = {"entity_ids": [], "relation_ids": []} |
|
id2labeled_span: Dict[str, LabeledSpan] = {} |
|
|
|
document = DrugprotDocument( |
|
text=example["text"], |
|
title=example["title"], |
|
abstract=example["abstract"], |
|
id=example["document_id"], |
|
metadata=metadata, |
|
) |
|
|
|
for span in example["entities"]: |
|
labeled_span = LabeledSpan( |
|
start=span["offset"][0], |
|
end=span["offset"][1], |
|
label=span["type"], |
|
) |
|
document.entities.append(labeled_span) |
|
entity_id = span["id"].split("_")[1] |
|
document.metadata["entity_ids"].append(entity_id) |
|
id2labeled_span[entity_id] = labeled_span |
|
|
|
for relation in example["relations"]: |
|
arg1_id = relation["arg1_id"].split("_")[1] |
|
arg2_id = relation["arg2_id"].split("_")[1] |
|
document.relations.append( |
|
BinaryRelation( |
|
head=id2labeled_span[arg1_id], |
|
tail=id2labeled_span[arg2_id], |
|
label=relation["type"], |
|
) |
|
) |
|
relation_id = "R" + relation["id"].split("_")[1] |
|
document.metadata["relation_ids"].append(relation_id) |
|
|
|
return document |
|
|
|
|
|
def example2drugprot_bigbio(example: Dict[str, Any]) -> DrugprotBigbioDocument: |
|
text = " ".join([" ".join(passage["text"]) for passage in example["passages"]]) |
|
doc_id = example["document_id"] |
|
metadata = {"entity_ids": [], "relation_ids": []} |
|
id2labeled_span: Dict[str, LabeledSpan] = {} |
|
|
|
document = DrugprotBigbioDocument( |
|
text=text, |
|
id=doc_id, |
|
metadata=metadata, |
|
) |
|
for passage in example["passages"]: |
|
document.passages.append( |
|
LabeledSpan( |
|
start=passage["offsets"][0][0], |
|
end=passage["offsets"][0][1], |
|
label=passage["type"], |
|
) |
|
) |
|
|
|
for span in example["entities"]: |
|
labeled_span = LabeledSpan( |
|
start=span["offsets"][0][0], |
|
end=span["offsets"][0][1], |
|
label=span["type"], |
|
) |
|
document.entities.append(labeled_span) |
|
entity_id = span["id"].split("_")[1] |
|
document.metadata["entity_ids"].append(entity_id) |
|
id2labeled_span[entity_id] = labeled_span |
|
|
|
for relation in example["relations"]: |
|
arg1_id = relation["arg1_id"].split("_")[1] |
|
arg2_id = relation["arg2_id"].split("_")[1] |
|
document.relations.append( |
|
BinaryRelation( |
|
head=id2labeled_span[arg1_id], |
|
tail=id2labeled_span[arg2_id], |
|
label=relation["type"], |
|
) |
|
) |
|
relation_id = "R" + relation["id"].split("_")[1] |
|
document.metadata["relation_ids"].append(relation_id) |
|
|
|
return document |
|
|
|
|
|
def drugprot2example(doc: DrugprotDocument) -> Dict[str, Any]: |
|
entities = [] |
|
for i, entity in enumerate(doc.entities): |
|
entities.append( |
|
{ |
|
"id": doc.id + "_" + doc.metadata["entity_ids"][i], |
|
"type": entity.label, |
|
"text": doc.text[entity.start : entity.end], |
|
"offset": [entity.start, entity.end], |
|
} |
|
) |
|
|
|
relations = [] |
|
for i, relation in enumerate(doc.relations): |
|
relations.append( |
|
{ |
|
"id": doc.id + "_" + doc.metadata["relation_ids"][i][1:], |
|
"arg1_id": doc.id |
|
+ "_" |
|
+ doc.metadata["entity_ids"][doc.entities.index(relation.head)], |
|
"arg2_id": doc.id |
|
+ "_" |
|
+ doc.metadata["entity_ids"][doc.entities.index(relation.tail)], |
|
"type": relation.label, |
|
} |
|
) |
|
|
|
return { |
|
"document_id": doc.id, |
|
"title": doc.title, |
|
"abstract": doc.abstract, |
|
"text": doc.text, |
|
"entities": entities, |
|
"relations": relations, |
|
} |
|
|
|
|
|
def drugprot_bigbio2example(doc: DrugprotBigbioDocument) -> Dict[str, Any]: |
|
entities = [] |
|
for i, entity in enumerate(doc.entities): |
|
entities.append( |
|
{ |
|
"id": doc.id + "_" + doc.metadata["entity_ids"][i], |
|
"normalized": [], |
|
"offsets": [[entity.start, entity.end]], |
|
"type": entity.label, |
|
"text": [doc.text[entity.start : entity.end]], |
|
} |
|
) |
|
|
|
relations = [] |
|
for i, relation in enumerate(doc.relations): |
|
relations.append( |
|
{ |
|
"id": doc.id + "_" + doc.metadata["relation_ids"][i][1:], |
|
"arg1_id": doc.id |
|
+ "_" |
|
+ doc.metadata["entity_ids"][doc.entities.index(relation.head)], |
|
"arg2_id": doc.id |
|
+ "_" |
|
+ doc.metadata["entity_ids"][doc.entities.index(relation.tail)], |
|
"normalized": [], |
|
"type": relation.label, |
|
} |
|
) |
|
|
|
passages = [] |
|
for passage in doc.passages: |
|
passages.append( |
|
{ |
|
"id": doc.id + "_" + passage.label, |
|
"text": [doc.text[passage.start : passage.end]], |
|
"offsets": [[passage.start, passage.end]], |
|
"type": passage.label, |
|
} |
|
) |
|
|
|
return { |
|
"coreferences": [], |
|
"document_id": doc.id, |
|
"entities": entities, |
|
"events": [], |
|
"id": doc.id, |
|
"passages": passages, |
|
"relations": relations, |
|
} |
|
|
|
|
|
class Drugprot(GeneratorBasedBuilder): |
|
DOCUMENT_TYPES = { |
|
"drugprot_source": DrugprotDocument, |
|
"drugprot_bigbio_kb": DrugprotBigbioDocument, |
|
} |
|
|
|
BASE_DATASET_PATH = "bigbio/drugprot" |
|
|
|
BASE_DATASET_REVISION = "0cc98b3d292242e69adcfd2c3e5eea94baaca8ea" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="drugprot_source", |
|
version=datasets.Version("1.0.2"), |
|
description="DrugProt source version", |
|
), |
|
datasets.BuilderConfig( |
|
name="drugprot_bigbio_kb", |
|
version=datasets.Version("1.0.0"), |
|
description="DrugProt BigBio version", |
|
), |
|
] |
|
|
|
@property |
|
def document_converters(self): |
|
if self.config.name == "drugprot_source": |
|
return { |
|
TextDocumentWithLabeledSpansAndBinaryRelations: { |
|
"entities": "labeled_spans", |
|
"relations": "binary_relations", |
|
} |
|
} |
|
elif self.config.name == "drugprot_bigbio_kb": |
|
return { |
|
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: { |
|
"passages": "labeled_partitions", |
|
"entities": "labeled_spans", |
|
"relations": "binary_relations", |
|
} |
|
} |
|
else: |
|
raise ValueError(f"Unknown dataset name: {self.config.name}") |
|
|
|
def _generate_document( |
|
self, example: Dict[str, Any], **kwargs |
|
) -> Union[DrugprotDocument, DrugprotBigbioDocument]: |
|
if self.config.name == "drugprot_source": |
|
return example2drugprot(example) |
|
elif self.config.name == "drugprot_bigbio_kb": |
|
return example2drugprot_bigbio(example) |
|
else: |
|
raise ValueError(f"Unknown dataset config name: {self.config.name}") |
|
|
|
def _generate_example( |
|
self, document: Union[DrugprotDocument, DrugprotBigbioDocument], **kwargs |
|
) -> Dict[str, Any]: |
|
if isinstance(document, DrugprotBigbioDocument): |
|
return drugprot_bigbio2example(document) |
|
elif isinstance(document, DrugprotDocument): |
|
return drugprot2example(document) |
|
else: |
|
raise ValueError(f"Unknown document type: {type(document)}") |
|
|