date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
ma-rista/NutriScanPlanner
gpt_chat~gpt_chat.py
import gradio as gr import openai import random import time # OpenAI ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์— API ํ‚ค ์„ค์ • openai.api_key = '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' # ์ดˆ๊ธฐ ๋Œ€ํ™” ๊ธฐ๋ก์„ ๋นˆ ๋ฆฌ์ŠคํŠธ๋กœ ์„ค์ • initial_history = [] def chatbot_response(message, history): # ๋Œ€ํ™” ๊ธฐ๋ก์„ OpenAI ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ messages = [{"role": "user", "content": pair[0]} for pair in history] + [{"role": "assistant", "content": pair[1]} for pair in history] messages.append({"role": "user", "content": message}) # OpenAI์— ์š”์ฒญ์„ ๋ณด๋ƒ…๋‹ˆ๋‹ค. response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) # OpenAI๋กœ๋ถ€ํ„ฐ ๋ฐ›์€ ์‘๋‹ต์˜ ๋‚ด์šฉ์„ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค. bot_message = response.choices[0].message.content return bot_message, history def chatbot_interface(): chatbot = gr.Chatbot() msg = gr.Textbox() def respond(message, chat_history): bot_message, updated_history = chatbot_response(message, chat_history) updated_history.append((message, bot_message)) return bot_message, updated_history with gr.Blocks(): msg.submit(respond, [chatbot, msg], [chatbot, msg]) return gr.Interface(fn=respond, inputs=msg, outputs=chatbot, live=True, title="ChatGPT ๊ธฐ๋ฐ˜ ์ฑ„ํŒ…๋ด‡") if __name__ == "__main__": demo = chatbot_interface() demo.launch()
[ "[{'role': 'user', 'content': 'P'}]" ]
2024-01-10
ma-rista/NutriScanPlanner
diet_planner~diet_planner_module.py
import gradio as gr import openai import deepl from openai import OpenAI # OpenAI ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์— API ํ‚ค ์„ค์ • openai.api_key = '' client = OpenAI(api_key='') # DeepL API ์ธ์ฆ ํ‚ค ์„ค์ • auth_key = "6309462f-ad40-dba2-f27f-e297c462fcd9:fx" translator = deepl.Translator(auth_key) def translate_text_with_deepl(text, target_language="KO"): try: result = translator.translate_text(text, target_lang=target_language) return result.text except deepl.DeepLException as error: print(error) return text # ๋ฒˆ์—ญ์— ์‹คํŒจํ•œ ๊ฒฝ์šฐ ์›๋ฌธ ๋ฐ˜ํ™˜ def generate_diet_plan(calories, ingredients, cuisine, dietary_restrictions, allergies, medical_conditions, meals_per_day, cooking_preference): # ์ฑ„ํŒ… ํ˜•์‹์˜ ๋ฉ”์‹œ์ง€ ์ƒ์„ฑ messages = [ {"role": "system", # "content": "Use Markdown formatting to create meal plans. You are a nutrition expert. Your task is to develop meal plans that meet the user's specified dietary needs. Your responses should be detailed, structured, and informative, utilizing Markdown tables to present the meal plan. Make sure to consider the user's calorie goals, preferred ingredients, dietary restrictions, and the number of meals per day. Provide a breakdown of each meal with nutritional information such as calorie content and macronutrients."}, "content":"์‹๋‹จ ๊ณ„ํš์„ ๋งˆํฌ๋‹ค์šด ํ˜•์‹์œผ๋กœ ์ž‘์„ฑํ•˜์„ธ์š”.๋‹น์‹ ์€ ์˜์–‘ ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.์‚ฌ์šฉ์ž๊ฐ€ ์ง€์ •ํ•œ ์‹๋‹จ ์š”๊ตฌ ์‚ฌํ•ญ์„ ์ถฉ์กฑ์‹œํ‚ค๋Š” ์‹๋‹จ ๊ณ„ํš์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด ๋‹น์‹ ์˜ ์ž„๋ฌด์ž…๋‹ˆ๋‹ค.๋‹ต๋ณ€์€ ์ƒ์„ธํ•˜๊ณ  ๊ตฌ์กฐํ™”๋˜๋ฉฐ ์œ ์ตํ•ด์•ผ ํ•˜๋ฉฐ,์‹๋‹จ ๊ณ„ํš์„ ์ œ์‹œํ•˜๋Š” ๋ฐ ๋งˆํฌ๋‹ค์šด ํ‘œ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.์‚ฌ์šฉ์ž์˜ ์นผ๋กœ๋ฆฌ ๋ชฉํ‘œ, ์„ ํ˜ธ ์žฌ๋ฃŒ, ์‹์ด ์ œํ•œ, ํ•˜๋ฃจ ์‹์‚ฌ ํšŸ์ˆ˜๋ฅผ ๊ณ ๋ คํ•˜์„ธ์š”.๊ฐ ์‹์‚ฌ์— ๋Œ€ํ•œ ๋ถ„์„์„ ์ œ๊ณตํ•˜๋ฉฐ, ์นผ๋กœ๋ฆฌ ํ•จ๋Ÿ‰ ๋ฐ ์ฃผ์š”์˜์–‘์†Œ์™€ ๊ฐ™์€ ์˜์–‘ ์ •๋ณด๋ฅผ ํฌํ•จ์‹œํ‚ค์„ธ์š”."}, {"role": "user", "content": f"Create a diet plan with the following requirements:\n{calories}: Your target calorie count for the day.\n{ingredients}: The ingredients that make up your diet (we'll use the best we can, but you're welcome to make other suggestions)\n{cuisine}: Your preferred food style\n{dietary_restrictions}: Food groups you want to limit (dietary restrictions)\n{allergies}: Allergies and intolerances\n{medical_conditions}: Diseases or medical conditions you suffer from.\n{meals_per_day}: Number of meals you want to eat per day\n{cooking_preference}: Preferred cooking time."}, {"role": "assistant", "content": f""" ํ‚ค์™€ ์ฒด์ค‘์„ ๊ณ ๋ คํ•˜์—ฌ ์—ด๋Ÿ‰์„ ์กฐ์ ˆํ•˜๊ณ , ๋‹จ๋ฐฑ์งˆ ์„ญ์ทจ๋Ÿ‰์„ 100~120g์œผ๋กœ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ์‹๋‹จ์„ ์กฐ์ ˆํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” ์กฐ์ •๋œ ์‹๋‹จ์˜ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค. ์‹ค์ œ ์‹๋‹จ์˜ ์„ธ๋ถ€ ์‚ฌํ•ญ์€ ๊ฐ ์Œ์‹์˜ ํฌ๊ธฐ, ์กฐ๋ฆฌ ๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. |์‹์‚ฌ |์Œ์‹ |์–‘ |์—ด๋Ÿ‰ (kcal) | |----|---|---|----| ์•„์นจ ์‹์‚ฌ|์Šคํฌ๋žจ๋ธ” ์—๊ทธ์™€ ์•ผ์ฑ„ |2๊ฐœ, ์•ผ์ฑ„ ์ถ”๊ฐ€|300|18| **ํ•ฉ๊ณ„** - ์—ด๋Ÿ‰: ์•ฝ 2200 kcal - ๋‹จ๋ฐฑ์งˆ: 100~120g (๋ณ€๋™ ๊ฐ€๋Šฅ) """ }, # ์ถ”๊ฐ€ ์‚ฌ์šฉ์ž ๋ฐ ์–ด์‹œ์Šคํ„ดํŠธ ๋ฉ”์‹œ์ง€๊ฐ€ ํ•„์š”ํ•œ ๊ฒฝ์šฐ ์—ฌ๊ธฐ์— ํฌํ•จ์‹œํ‚ต๋‹ˆ๋‹ค. ] # GPT API ํ˜ธ์ถœ completion = client.chat.completions.create( model="gpt-4-1106-preview", messages=messages ) # ๊ฒฐ๊ณผ๋ฅผ ๋งˆํฌ๋‹ค์šด ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ diet_plan = completion.choices[0].message.content # translated_diet_plan = translate_text_with_deepl(diet_plan, "KO") # markdown_format = f"# ์ƒ์„ฑ๋œ ์‹๋‹จ ๊ณ„ํš\n\n{translated_diet_plan}" # markdown_format = f"# ์ƒ์„ฑ๋œ ์‹๋‹จ ๊ณ„ํš\n\n{diet_plan}" return gr.Markdown(value = diet_plan) # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ •์˜ ํ•จ์ˆ˜ def create_diet_planner_interface(): with gr.Blocks() as demo: with gr.Row(): with gr.Column(): # ์ž…๋ ฅ ์ปดํฌ๋„ŒํŠธ ๊ตฌ์„ฑ calories = gr.Number(label="TDEE ๊ณ„์‚ฐ๊ธฐ๋กœ ์ž…๋ ฅ๋ฐ›์€ ์นผ๋กœ๋ฆฌ") ingredients = gr.Textbox(label="์‹์žฌ๋ฃŒ") cuisine = gr.CheckboxGroup(choices=["ํ•œ์‹", "์ค‘์‹", "์–‘์‹"], label="์นดํ…Œ๊ณ ๋ฆฌ") dietary_restrictions = gr.CheckboxGroup(choices=["์ฑ„์‹", "์ €ํƒ„์ˆ˜ํ™”๋ฌผ"], label="์‹์ด ์ œํ•œ") allergies = gr.CheckboxGroup(choices=["๋•…์ฝฉ", "์šฐ์œ ", "๊ธ€๋ฃจํ…"], label="์•Œ๋ ˆ๋ฅด๊ธฐ ๋ฐ ๋ถˆ๋‚ด์„ฑ") medical_conditions = gr.CheckboxGroup(choices=["๋‹น๋‡จ๋ณ‘", "๊ณ ํ˜ˆ์••"], label="์˜๋ฃŒ ์ƒํƒœ") meals_per_day = gr.Radio(choices=["2๋ผ", "3๋ผ", "4๋ผ"], label="ํ•˜๋ฃจ ๋ช‡ ๋ผ ์„ญ์ทจ") cooking_preference = gr.CheckboxGroup(choices=["๊ฐ„๋‹จํ•œ ์กฐ๋ฆฌ", "๊ธด ์กฐ๋ฆฌ ์‹œ๊ฐ„"], label="์กฐ๋ฆฌ ์‹œ๊ฐ„ ๋ฐ ์šฉ์ด์„ฑ") submit_button = gr.Button("์‹๋‹จ ์ƒ์„ฑ") with gr.Column(): # ๊ฒฐ๊ณผ ์ถœ๋ ฅ result = gr.Markdown() submit_button.click( generate_diet_plan, inputs=[calories, ingredients, cuisine, dietary_restrictions, allergies, medical_conditions, meals_per_day, cooking_preference], outputs=result ) return demo, translate_text_with_deepl, generate_diet_plan # ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ ํ•จ์ˆ˜ ํ˜ธ์ถœ diet_planner_interface = create_diet_planner_interface()
[ "์‹๋‹จ ๊ณ„ํš์„ ๋งˆํฌ๋‹ค์šด ํ˜•์‹์œผ๋กœ ์ž‘์„ฑํ•˜์„ธ์š”.๋‹น์‹ ์€ ์˜์–‘ ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.์‚ฌ์šฉ์ž๊ฐ€ ์ง€์ •ํ•œ ์‹๋‹จ ์š”๊ตฌ ์‚ฌํ•ญ์„ ์ถฉ์กฑ์‹œํ‚ค๋Š” ์‹๋‹จ ๊ณ„ํš์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด ๋‹น์‹ ์˜ ์ž„๋ฌด์ž…๋‹ˆ๋‹ค.๋‹ต๋ณ€์€ ์ƒ์„ธํ•˜๊ณ  ๊ตฌ์กฐํ™”๋˜๋ฉฐ ์œ ์ตํ•ด์•ผ ํ•˜๋ฉฐ,์‹๋‹จ ๊ณ„ํš์„ ์ œ์‹œํ•˜๋Š” ๋ฐ ๋งˆํฌ๋‹ค์šด ํ‘œ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.์‚ฌ์šฉ์ž์˜ ์นผ๋กœ๋ฆฌ ๋ชฉํ‘œ, ์„ ํ˜ธ ์žฌ๋ฃŒ, ์‹์ด ์ œํ•œ, ํ•˜๋ฃจ ์‹์‚ฌ ํšŸ์ˆ˜๋ฅผ ๊ณ ๋ คํ•˜์„ธ์š”.๊ฐ ์‹์‚ฌ์— ๋Œ€ํ•œ ๋ถ„์„์„ ์ œ๊ณตํ•˜๋ฉฐ, ์นผ๋กœ๋ฆฌ ํ•จ๋Ÿ‰ ๋ฐ ์ฃผ์š”์˜์–‘์†Œ์™€ ๊ฐ™์€ ์˜์–‘ ์ •๋ณด๋ฅผ ํฌํ•จ์‹œํ‚ค์„ธ์š”.", "Create a diet plan with the following requirements:\nPLACEHOLDER: Your target calorie count for the day.\nPLACEHOLDER: The ingredients that make up your diet (we'll use the best we can, but you're welcome to make other suggestions)\nPLACEHOLDER: Your preferred food style\nPLACEHOLDER: Food groups you want to limit (dietary restrictions)\nPLACEHOLDER: Allergies and intolerances\nPLACEHOLDER: Diseases or medical conditions you suffer from.\nPLACEHOLDER: Number of meals you want to eat per day\nPLACEHOLDER: Preferred cooking time.", "\n ํ‚ค์™€ ์ฒด์ค‘์„ ๊ณ ๋ คํ•˜์—ฌ ์—ด๋Ÿ‰์„ ์กฐ์ ˆํ•˜๊ณ , ๋‹จ๋ฐฑ์งˆ ์„ญ์ทจ๋Ÿ‰์„ 100~120g์œผ๋กœ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ์‹๋‹จ์„ ์กฐ์ ˆํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” ์กฐ์ •๋œ ์‹๋‹จ์˜ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค. ์‹ค์ œ ์‹๋‹จ์˜ ์„ธ๋ถ€ ์‚ฌํ•ญ์€ ๊ฐ ์Œ์‹์˜ ํฌ๊ธฐ, ์กฐ๋ฆฌ ๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.\n |์‹์‚ฌ |์Œ์‹ |์–‘ |์—ด๋Ÿ‰ (kcal) |\n |----|---|---|----|\n ์•„์นจ ์‹์‚ฌ|์Šคํฌ๋žจ๋ธ” ์—๊ทธ์™€ ์•ผ์ฑ„ |2๊ฐœ, ์•ผ์ฑ„ ์ถ”๊ฐ€|300|18|\n\n **ํ•ฉ๊ณ„**\n\n - ์—ด๋Ÿ‰: ์•ฝ 2200 kcal\n - ๋‹จ๋ฐฑ์งˆ: 100~120g (๋ณ€๋™ ๊ฐ€๋Šฅ)\n " ]
2024-01-10
tigershen23/llm-sandbox
qa_exploration~qa_exploration.py
# cSpell:disable # Backing functions for Question-Answering exploration import os path = os.path.dirname(__file__) from gpt_index import SimpleDirectoryReader, GPTSimpleVectorIndex from langchain.agents import Tool, initialize_agent from langchain.llms import OpenAI from langchain import OpenAI import streamlit as st #region marketing site supporting code # Set up document QA index @st.experimental_singleton def get_marketing_site_index(): saved_path = path + "/gpt_indexes/website/welcome_marketing.json" if os.path.exists(saved_path): return GPTSimpleVectorIndex.load_from_disk(saved_path) else: welcome_marketing_data = SimpleDirectoryReader( path + "/data/website/welcome_marketing", recursive=True, required_exts=[".jsonl"], ).load_data() welcome_marketing_index = GPTSimpleVectorIndex(welcome_marketing_data) welcome_marketing_index.save_to_disk(saved_path) return welcome_marketing_index # Query DB def query_marketing_site_db(query: str): return get_marketing_site_index().query(query, verbose=True) # Create LangChain agent @st.experimental_memo def get_marketing_site_agent(): tools = [ Tool( name="QueryingDB", func=query_marketing_site_db, description="Returns most relevant answer from document for query string", ) ] llm = OpenAI(temperature=0.0) agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) return agent #endregion #region blog supporting code # Set up document QA index @st.experimental_singleton def get_blog_index(): saved_path = path + "/gpt_indexes/website/welcome_blog.json" if os.path.exists(saved_path): return GPTSimpleVectorIndex.load_from_disk(saved_path) else: welcome_blog_data = SimpleDirectoryReader( path + "/data/website/welcome_blog", recursive=True, required_exts=[".jsonl"], ).load_data() welcome_blog_index = GPTSimpleVectorIndex(welcome_blog_data) welcome_blog_index.save_to_disk(saved_path) return welcome_blog_index # Query DB def query_blog_db(query: str): return get_blog_index().query(query, verbose=True) # Create LangChain agent @st.experimental_memo def get_blog_agent(): tools = [ Tool( name="QueryingDB", func=query_blog_db, description="Returns most relevant answer from document for query string", ) ] llm = OpenAI(temperature=0.0) agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) return agent #endregion #region Zendesk supporting code # Set up document QA index @st.experimental_singleton def get_zendesk_index(): saved_path = path + "/gpt_indexes/website/welcome_zendesk.json" if os.path.exists(saved_path): return GPTSimpleVectorIndex.load_from_disk(saved_path) else: welcome_zendesk_data = SimpleDirectoryReader( path + "/data/website/welcome_zendesk/2023-02-06", required_exts=[".html"], ).load_data() welcome_zendesk_index = GPTSimpleVectorIndex(welcome_zendesk_data) welcome_zendesk_index.save_to_disk(saved_path) return welcome_zendesk_index # Query DB def query_zendesk_db(query: str): return get_zendesk_index().query(query, verbose=True) # Create LangChain agent @st.experimental_memo def get_zendesk_agent(): tools = [ Tool( name="QueryingDB", func=query_zendesk_db, description="Returns most relevant answer from document for query string", ) ] llm = OpenAI(temperature=0.0) agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) return agent #endregion #region transcripts supporting code def get_webinar_name_from_filename(full_path): # Get the filename from the full path filename = full_path.split('/')[-1] # Split the filename by underscore and remove the first element (the number) parts = filename.split('_')[1:] # Remove the '.srt' extension from the last element parts[-1] = parts[-1].replace('.srt', '') # Join the remaining elements with a space to create the desired output webinar_name = ' '.join(parts) return { "webinar_name": webinar_name } @st.experimental_singleton def get_transcripts_index(): saved_path = path + "/gpt_indexes/transcripts/org_243.json" if os.path.exists(saved_path): return GPTSimpleVectorIndex.load_from_disk(saved_path) else: transcripts_data = SimpleDirectoryReader( path + "/data/transcripts", required_exts=[".srt"], file_metadata=get_webinar_name_from_filename, recursive=True ).load_data() transcripts_index = GPTSimpleVectorIndex(transcripts_data) transcripts_index.save_to_disk(saved_path) return transcripts_index def query_transcripts_db(query: str): return get_transcripts_index().query(query, verbose=True) @st.experimental_memo def get_transcripts_agent(): tools = [ Tool( name="QueryingDB", func=query_transcripts_db, description="Returns most relevant answer from document for query string", ) ] llm = OpenAI(temperature=0.0) agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) return agent #endregion #region combined supporting code # Set up document QA index @st.experimental_singleton def get_combined_index(): saved_path = path + "/gpt_indexes/website/welcome_combined.json" if os.path.exists(saved_path): return GPTSimpleVectorIndex.load_from_disk(saved_path) else: welcome_combined_data = SimpleDirectoryReader( path + "/data/website", recursive=True, required_exts=[".jsonl"], ).load_data() welcome_combined_index = GPTSimpleVectorIndex(welcome_combined_data) welcome_combined_index.save_to_disk(saved_path) return welcome_combined_index # Query DB def query_combined_db(query: str): return get_combined_index().query(query, verbose=True) # Create LangChain agent @st.experimental_memo def get_combined_agent(): tools = [ Tool( name="QueryingDB", func=query_combined_db, description="Returns most relevant answer from document for query string", ) ] llm = OpenAI(temperature=0.0) agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) return agent #endregion
[]
2024-01-10
VCasecnikovs/RAGAgainstTheMachine
chatting.py
from enum import Enum from typing import Any from dotenv import load_dotenv from openai import OpenAI from pydantic import BaseModel def get_openAI_client(): load_dotenv() client = OpenAI() return client class Role(str, Enum): SYSTEM = "system" USER = "user" ASSISTANT = "assistant" class ChatMessage(BaseModel): role: Role content: str def chat_inference( messages: list[ChatMessage], client: OpenAI, model="gpt-4-1106-preview", ): formatted_messages = [] for message in messages: formatted_messages.append( { "role": message.role, "content": message.content, } ) completion = client.chat.completions.create( response_format={"type": "json_object"}, model=model, messages=[ *formatted_messages, ], ) model_answer = completion.choices[0].message.content return model_answer
[]
2024-01-10
cherifbenham/generative_ai
packages~pc_enhance~pc_qa_docs.py
import openai import os from datasets import load_dataset from tqdm.auto import tqdm import pinecone from time import sleep from datasets import load_dataset #dataset name dataset='jamescalam/youtube-transcriptions' #new index to create index_name = 'openai-youtube-transcriptions' #openai credentials openai.api_key = os.getenv("CHATGPT_API_KEY") embed_model = "text-embedding-ada-002" dimension_embedding=1536 #pinecone variables environment="us-east1-gcp" api_key="8ff9b8af-efae-48f0-985b-3298de8e36c9" limit = 3750 query="Which training method should I use for sentence transformers when I only have pairs of related sentences?" def complete(prompt): # query text-davinci-003 res = openai.Completion.create( engine='text-davinci-003', prompt=prompt, temperature=0, max_tokens=400, top_p=1, frequency_penalty=0, presence_penalty=0, stop=None ) return res['choices'][0]['text'].strip() def load_data(dataset): data = load_dataset(dataset, split='train') return data def merge_snippets(data): new_data = [] window = 20 # number of sentences to combine stride = 4 # number of sentences to 'stride' over, used to create overlap for i in tqdm(range(0, len(data), stride)): i_end = min(len(data)-1, i+window) if data[i]['title'] != data[i_end]['title']: # in this case we skip this entry as we have start/end of two videos continue text = ' '.join(data[i:i_end]['text']) # create the new merged dataset new_data.append({ 'start': data[i]['start'], 'end': data[i_end]['end'], 'title': data[i]['title'], 'text': text, 'id': data[i]['id'], 'url': data[i]['url'], 'published': data[i]['published'], 'channel_id': data[i]['channel_id'] }) return new_data def create_embedding(embed_model, query): res = openai.Embedding.create( input=[query], #for example: this list (, comma separated) "Sample document text goes here", "there will be several phrases in each batch", engine=embed_model # for example: embed_model = "text-embedding-ada-002" ) return res def initialize_index(index_name, api_key, environment): # initialize connection to pinecone (get API key at app.pinecone.io) pinecone.init( api_key=api_key, environment=environment ) # check if index already exists (it shouldn't if this is first time) if index_name not in pinecone.list_indexes(): # if does not exist, create index pinecone.create( index_name, dimension=dimension_embedding, metric='cosine', metadata_config={'indexed': ['channel_id', 'published']} ) # connect to index index = pinecone.Index(index_name) return index def populate_index(index, new_data): batch_size = 100 # how many embeddings we create and insert at once for i in tqdm(range(0, len(new_data), batch_size)): # find end of batch i_end = min(len(new_data), i+batch_size) meta_batch = new_data[i:i_end] # get ids ids_batch = [x['id'] for x in meta_batch] # get texts to encode texts = [x['text'] for x in meta_batch] # create embeddings (try-except added to avoid RateLimitError) try: res = openai.Embedding.create(input=texts, engine=embed_model) except: done = False while not done: sleep(5) try: res = openai.Embedding.create(input=texts, engine=embed_model) done = True except: pass embeds = [record['embedding'] for record in res['data']] # cleanup metadata meta_batch = [{ 'start': x['start'], 'end': x['end'], 'title': x['title'], 'text': x['text'], 'url': x['url'], 'published': x['published'], 'channel_id': x['channel_id'] } for x in meta_batch] to_upsert = list(zip(ids_batch, embeds, meta_batch)) # upsert to Pinecone index.upsert(vectors=to_upsert) return index def retrieve(query, index, embed_model): res = create_embedding(embed_model, query) # retrieve from Pinecone xq = res['data'][0]['embedding'] # initialize the index - needs to be done once outside this function # index=initialize_index(index_name, res, environment) #populate the index - needs to be done once outside this function # index=populate_index(index,new_data) # get relevant contexts res = index.query(xq, top_k=3, include_metadata=True) contexts = [x['metadata']['text'] for x in res['matches']] # build our prompt with the retrieved contexts included prompt_start = ("Answer the question based on the context below.\n\n"+"Context:\n") prompt_end = (f"\n\nQuestion: {query}\nAnswer:") # append contexts until hitting limit for i in range(1, len(contexts)): if len("\n\n---\n\n".join(contexts[:i])) >= limit: prompt = (prompt_start + "\n\n---\n\n".join(contexts[:i-1]) + prompt_end) break elif i == len(contexts)-1: prompt = (prompt_start + "\n\n---\n\n".join(contexts) + prompt_end) return prompt
[ "Answer the question based on the context below.\n\nContext:\n", "\n\nQuestion: Which training method should I use for sentence transformers when I only have pairs of related sentences?\nAnswer:", "\n\n---\n\n" ]
2024-01-10
aidenaap/ImagePromptEnhancer
responses.py
from discord import Embed from prompts import * import datetime # create error embed in case of mistakes def create_error_embed(error_message:str) -> Embed: embed = Embed( title='Error', description=error_message, color=0xff0000, ) return embed # function to handle all user commands (!) def get_response(message:str) -> Embed: l_message = message.lower() # help if l_message == 'help': embed = Embed( title='Figure it out yourself huh', description='Here\'s a list of commands you can use:', color= 0x8834d8, ) embed.add_field(name='!help', value='Displays this message.', inline=False) embed.add_field(name='!trending d', value='Displays top google searches for the day.', inline=False) embed.add_field(name='!trending wX', value='Weekly top searches. Must specify [1 - 4] weeks as X.', inline=False) embed.add_field(name='!trending mX', value='Monthly top searches. Must specify [1, 3] months as X.', inline=False) embed.add_field(name='!trending yXXXX', value='Yearly top searches. Must specify a year before the current year as XXXX.', inline=False) embed.add_field(name='!enhance', value='Enhance your AI images with a descriptive prompt from OpenAI\'s chatbot.', inline=False) return embed # trending # add another argument after the date for country later on # !!! weekly/monthly support dropped by google FIX !!! # !trending y2021 ___ # !trending m3 ___ # !trending w1 ___ # !trending d ___ if l_message.startswith('trending'): l_message = l_message[8:] # gather arguments args = l_message.split(' ') number_of_args = len(args) # check presence of arguments if number_of_args < 1: return create_error_embed('You must specify a time period.') elif number_of_args > 6: return create_error_embed('You must specify no more than 5 keywords.') # handle date full_date = args[0] date_type = full_date[0] # check if date_type is valid if date_type in ['y', 'm', 'w', 'd']: # get time period as integer if date_type != 'd': try: time_period = int(full_date[1:]) except: return create_error_embed('Time period unable to be obtained') # if date_type not valid cancel else: return create_error_embed('You must specify a valid time period. (y,m,w,d)') # optional args (gather keywords) keywords = [] if number_of_args > 1 and number_of_args < 6: for i in range(1, number_of_args): keywords.append(args[i]) if len(keywords) > 0: create_payload(keywords) # call appropriate functions with error checking params embed_title = "" embed_description = "" # get daily trends if date_type == 'd': embed_title = "Daily Trends" embed_description = str(datetime.datetime.now().date()) df = get_daily_trends() # get weekly trends elif date_type == 'w': if time_period <= 4: df = get_weekly_trends(weeks=time_period) else: return create_error_embed('You must specify 4 or less weeks.') # get monthly trends elif date_type == 'm': if time_period in [1, 3]: df = get_monthly_trends(months=time_period) else: return create_error_embed('You must specify 1 or 3 months.') # get yearly trends elif date_type == 'y': curYear = datetime.datetime.now().year if time_period < curYear: embed_title = "Yearly Trends" embed_description = str(time_period) df = get_yearly_trends(year=time_period) else: return create_error_embed('You must specify a year before the current year.') else: return create_error_embed('date type error') # create embed embed = Embed( title=embed_title, description=embed_description, color=0x00ff00, ) # move data from df into embed fields # iterate through resulting df for index, row in df: embed.add_field(name=f'{index}. ', value=row[0], inline=True) return embed # prompt enhancer # if l_message starts with enhance if l_message.startswith('enhance'): l_message = l_message[8:] # give user options for version, testp (lifelike), ar, quality, chaos, and creative # then make a call to chatgpt openai # then return the response as embed return 'I didn\'t understand what you said there'
[]
2024-01-10
DanielCaicedo97/Deep_Learnining_Platzi
12%20Desarrollo%20ChatBot~scripts~1_tweet_sentiment.py
import os from dotenv import load_dotenv import openai # Carga las variables de entorno desde el archivo .env load_dotenv("../envs/ap.env") openai.api_key = os.getenv("OPENAI_API_KEY") response = openai.Completion.create( model="text-davinci-003", prompt="Decide si el sentimiento de un Tweet es positivo, neutral, o negativo. \ \n\nTweet: \"#LoNuevoEnPlatzi es el Platzibot ๐Ÿค–. Un asistente creado con Inteligencia Artificial para acompaรฑarte en tu proceso de aprendizaje.\ \"\nSentiment:", temperature=0, max_tokens=60, top_p=1.0, frequency_penalty=0.5, presence_penalty=0.0 ) print(response.choices[0].text)
[ "Decide si el sentimiento de un Tweet es positivo, neutral, o negativo. \n\nTweet: \"#LoNuevoEnPlatzi es el Platzibot ๐Ÿค–. Un asistente creado con Inteligencia Artificial para acompaรฑarte en tu proceso de aprendizaje. \"\nSentiment:" ]
2024-01-10
DanielCaicedo97/Deep_Learnining_Platzi
13%20Curso%20de%20LangChain~scripts~1_hola_langchain.py
# --- Carga de documents import os import requests from langchain.document_loaders import PyPDFLoader urls = [ 'https://arxiv.org/pdf/2306.06031v1.pdf', 'https://arxiv.org/pdf/2306.12156v1.pdf', 'https://arxiv.org/pdf/2306.14289v1.pdf', 'https://arxiv.org/pdf/2305.10973v1.pdf', 'https://arxiv.org/pdf/2306.13643v1.pdf' ] ml_papers = [] for i, url in enumerate(urls): filename = f'paper{i+1}.pdf' # Verifico si el archivo no ha sido descargado previamente if not os.path.exists(filename): response = requests.get(url) with open(filename, 'wb') as f: f.write(response.content) print(f'Descargado {filename}') else: print(f'{filename} ya existe, cargando desde el disco.') loader = PyPDFLoader(filename) data = loader.load() ml_papers.extend(data) # Utiliza la lista ml_papers para acceder a los elementos de todos los documentos descargados print('Contenido de ml_papers:') print() print(type(ml_papers), len(ml_papers), ml_papers[3]) # --- Split de documents # Los documentos NO pueden ser procesados directamente por LLMs porque contienen demasiado texto, sin embargo, podemos # particionarlo en conjuntos de texto mรกs pequeรฑos para entonces poder acceder a su informaciรณn. from langchain.text_splitter import RecursiveCharacterTextSplitter # Cada particiรณn contendrรก 1500 palabras, y tendrรกn una intersecciรณn de 200, de modo que la cadena 2 comparte 200 # palabras con la cadena 1 y con la cadena 3 text_splitter = RecursiveCharacterTextSplitter( chunk_size=1500, chunk_overlap=200, length_function=len ) documents = text_splitter.split_documents(ml_papers) # Ahora podemos revisar de nuevo la cantidad de `documentos` y ver un ejemplo del mismo print(len(documents), documents[10]) # --- Embeddings e ingesta a base de datos vectorial from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from dotenv import load_dotenv # leo el archivo keys.env y obtengo mi Api KEY de OpenAI load_dotenv("../secret/keys.env") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # Es importante que quede seteado como una variable de entorno porque serรก utilizado mรกs adelante os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY # Crea un objeto capaz de convertir el texto a un vector utilizando como base el modelo de ADA-002 de OpenAI # En este punto es importante que hayas seteado tu OPENAI API KEY como variable de entorno, para que puedas acceder # a este servicio embeddings = OpenAIEmbeddings(model="text-embedding-ada-002") # Con ayuda de Chroma, creamos un objeto vectorstore para almacenar las representaciones vectoriales de los textos # contenidos en `documents` una cadena de texto previamente generada vectorstore = Chroma.from_documents( documents=documents, embedding=embeddings ) # Una vez que hayas creado la Base de datos vectorial, el parรกmetro search_kwargs `k` me permite definir hasta cuantos # vectores similares voy a buscar al momento de encontrar informaciรณn para una pregunta. `retriever` serรก entonces # nuestra base de datos de vectores que servirรก para aรฑadir informaciรณn reciente a los LLMs con el fin de responder # preguntas. retriever = vectorstore.as_retriever( search_kwargs={"k": 3} ) # --- Modelos de Chat y cadenas para consulta de informaciรณn from langchain.chat_models import ChatOpenAI # Voy a crear un objeto `chat` de la clase ChatOpenAI indicando que el engine a utilizar serรก GPT 3.5 y cuya temperatura # serรก 0 lo que signfica que tendrรก respuestas muy restrictivas basadas รบnicamente en el texto que conoce y tendrรก # poca creatividad al momento de responder peticiones. chat = ChatOpenAI( openai_api_key=OPENAI_API_KEY, model_name='gpt-3.5-turbo', temperature=0.0 ) from langchain.chains import RetrievalQA # Finalmente, creamos una cadena `chain` del tipo `Question Answer` pregunta-respuesta. Como LLM utilizarรก al objeto # `chat` que es una instancia de ChatGPT 3.5, el tipo de cadena es `stuff` que significa que vamos a utilizar tanta # informaciรณn como quepa en el prompt, y finalmente el `retriever` serรก la base de datos vectoriales que hemos definido # previamente. qa_chain = RetrievalQA.from_chain_type( llm=chat, chain_type="stuff", retriever=retriever ) # Vamos a poner a prueba nuestra cadena de preguntas y respuestas: query = "quรฉ es fingpt?" print("--->", query) print(qa_chain.run(query)) query = "quรฉ hace complicado entrenar un modelo como el fingpt?" print("--->", query) print(qa_chain.run(query)) query = "quรฉ es fast segment?" print("--->", query) print(qa_chain.run(query)) query = "cuรกl es la diferencia entre fast sam y mobile sam?" print("--->", query) print(qa_chain.run(query))
[]
2024-01-10
DanielCaicedo97/Deep_Learnining_Platzi
13%20Curso%20de%20LangChain~scripts~2_falcon_example.py
from transformers import AutoTokenizer, pipeline import torch model = "tiiuae/falcon-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model) # task: que trabajo estarรก realizando nuestro modelo # trust_remote_code: es porque en esta ocasiรณn estamos empleando un modelo que no pertenece directamente a los # `transformers`de HugginFace, entonces es darle permiso de acceder a un modelo ajeno a HF. # device_map: se usa en conjunto a la biblioteca `accelerate` para buscar la configuraciรณn mรกs รณptima de Hardware para # correr nuestros procesos. pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto" ) print("*"*64) print(type(pipeline)) from langchain import HuggingFacePipeline llm_falcon = HuggingFacePipeline( pipeline=pipeline, model_kwargs={ 'temperature': 0, 'max_length': 200, 'do_sample': True, # generรก un sampleo aleatorio del texto en diferentes momentos 'top_k': 10, # numero de candidatos que va a evaluar el modelo, para decidir cuรกl es el mejor. 'num_return_sequences': 1, # cantidad de respuestas a generar 'eos_token_id': tokenizer.eos_token_id # eos = end of sentence, viene dado por el tokenizador que ya hemos usado } ) print("*"*64) print(llm_falcon) ans = llm_falcon("What is AI?") print("*"*64) print(ans)
[]
2024-01-10
AlaiY95/ChatGPT
src~revChatGPT~V1.py
""" Standard ChatGPT """ from __future__ import annotations import base64 import contextlib import json import logging import os import os.path as osp import time import uuid from functools import wraps from os import environ from os import getenv from typing import NoReturn import requests from httpx import AsyncClient from OpenAIAuth import Authenticator from OpenAIAuth import Error as AuthError from . import typing as t from .utils import create_completer from .utils import create_session from .utils import get_input if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(funcName)s - %(message)s", ) log = logging.getLogger(__name__) def logger(is_timed: bool): """Logger decorator Args: is_timed (bool): Whether to include function running time in exit log Returns: _type_: decorated function """ def decorator(func): wraps(func) def wrapper(*args, **kwargs): log.debug( "Entering %s with args %s and kwargs %s", func.__name__, args, kwargs, ) start = time.time() out = func(*args, **kwargs) end = time.time() if is_timed: log.debug( "Exiting %s with return value %s. Took %s seconds.", func.__name__, out, end - start, ) else: log.debug("Exiting %s with return value %s", func.__name__, out) return out return wrapper return decorator BASE_URL = environ.get("CHATGPT_BASE_URL") or "https://bypass.churchless.tech/api/" bcolors = t.colors() class Chatbot: """ Chatbot class for ChatGPT """ @logger(is_timed=True) def __init__( self, config: dict[str, str], conversation_id: str | None = None, parent_id: str | None = None, session_client=None, lazy_loading: bool = False, ) -> None: """Initialize a chatbot Args: config (dict[str, str]): Login and proxy info. Example: { "email": "OpenAI account email", "password": "OpenAI account password", "session_token": "<session_token>" "access_token": "<access_token>" "proxy": "<proxy_url_string>", "paid": True/False, # whether this is a plus account } More details on these are available at https://github.com/acheong08/ChatGPT#configuration conversation_id (str | None, optional): Id of the conversation to continue on. Defaults to None. parent_id (str | None, optional): Id of the previous response message to continue on. Defaults to None. session_client (_type_, optional): _description_. Defaults to None. Raises: Exception: _description_ """ user_home = getenv("HOME") if user_home is None: self.cache_path = osp.join(os.getcwd(), ".chatgpt_cache.json") else: # mkdir ~/.config/revChatGPT if not osp.exists(osp.join(user_home, ".config")): os.mkdir(osp.join(user_home, ".config")) if not osp.exists(osp.join(user_home, ".config", "revChatGPT")): os.mkdir(osp.join(user_home, ".config", "revChatGPT")) self.cache_path = osp.join(user_home, ".config", "revChatGPT", "cache.json") self.config = config self.session = session_client() if session_client else requests.Session() try: cached_access_token = self.__get_cached_access_token( self.config.get("email", None), ) except t.Error as error: if error.code == 5: raise error cached_access_token = None if cached_access_token is not None: self.config["access_token"] = cached_access_token if "proxy" in config: if not isinstance(config["proxy"], str): error = TypeError("Proxy must be a string!") raise error proxies = { "http": config["proxy"], "https": config["proxy"], } if isinstance(self.session, AsyncClient): proxies = { "http://": config["proxy"], "https://": config["proxy"], } self.session = AsyncClient(proxies=proxies) else: self.session.proxies.update(proxies) self.conversation_id = conversation_id self.parent_id = parent_id self.conversation_mapping = {} self.conversation_id_prev_queue = [] self.parent_id_prev_queue = [] self.lazy_loading = lazy_loading self.__check_credentials() @logger(is_timed=True) def __check_credentials(self) -> None: """Check login info and perform login Any one of the following is sufficient for login. Multiple login info can be provided at the same time and they will be used in the order listed below. - access_token - session_token - email + password Raises: Exception: _description_ AuthError: _description_ """ if "access_token" in self.config: self.set_access_token(self.config["access_token"]) elif "session_token" in self.config: pass elif "email" not in self.config or "password" not in self.config: error = t.AuthenticationError("Insufficient login details provided!") raise error if "access_token" not in self.config: try: self.login() except AuthError as error: raise error @logger(is_timed=False) def set_access_token(self, access_token: str) -> None: """Set access token in request header and self.config, then cache it to file. Args: access_token (str): access_token """ self.session.headers.clear() self.session.headers.update( { "Accept": "text/event-stream", "Authorization": f"Bearer {access_token}", "Content-Type": "application/json", "X-Openai-Assistant-App-Id": "", "Connection": "close", "Accept-Language": "en-US,en;q=0.9", "Referer": "https://chat.openai.com/chat", }, ) self.session.cookies.update( { "library": "revChatGPT", }, ) self.config["access_token"] = access_token email = self.config.get("email", None) if email is not None: self.__cache_access_token(email, access_token) @logger(is_timed=False) def __get_cached_access_token(self, email: str | None) -> str | None: """Read access token from cache Args: email (str | None): email of the account to get access token Raises: Error: _description_ Error: _description_ Error: _description_ Returns: str | None: access token string or None if not found """ email = email or "default" cache = self.__read_cache() access_token = cache.get("access_tokens", {}).get(email, None) # Parse access_token as JWT if access_token is not None: try: # Split access_token into 3 parts s_access_token = access_token.split(".") # Add padding to the middle part s_access_token[1] += "=" * ((4 - len(s_access_token[1]) % 4) % 4) d_access_token = base64.b64decode(s_access_token[1]) d_access_token = json.loads(d_access_token) except base64.binascii.Error: error = t.Error( source="__get_cached_access_token", message="Invalid access token", code=t.ErrorType.INVALID_ACCESS_TOKEN_ERROR, ) raise error from None except json.JSONDecodeError: error = t.Error( source="__get_cached_access_token", message="Invalid access token", code=t.ErrorType.INVALID_ACCESS_TOKEN_ERROR, ) raise error from None exp = d_access_token.get("exp", None) if exp is not None and exp < time.time(): error = t.Error( source="__get_cached_access_token", message="Access token expired", code=t.ErrorType.EXPIRED_ACCESS_TOKEN_ERROR, ) raise error return access_token @logger(is_timed=False) def __cache_access_token(self, email: str, access_token: str) -> None: """Write an access token to cache Args: email (str): account email access_token (str): account access token """ email = email or "default" cache = self.__read_cache() if "access_tokens" not in cache: cache["access_tokens"] = {} cache["access_tokens"][email] = access_token self.__write_cache(cache) @logger(is_timed=False) def __write_cache(self, info: dict) -> None: """Write cache info to file Args: info (dict): cache info, current format { "access_tokens":{"[email protected]": 'this account's access token', } } """ dirname = osp.dirname(self.cache_path) or "." os.makedirs(dirname, exist_ok=True) json.dump(info, open(self.cache_path, "w", encoding="utf-8"), indent=4) @logger(is_timed=False) def __read_cache(self): try: cached = json.load(open(self.cache_path, encoding="utf-8")) except (FileNotFoundError, json.decoder.JSONDecodeError): cached = {} return cached @logger(is_timed=True) def login(self) -> None: if ( "email" not in self.config or "password" not in self.config ) and "session_token" not in self.config: log.error("Insufficient login details provided!") raise Exception("Insufficient login details provided!") auth = Authenticator( email_address=self.config.get("email"), password=self.config.get("password"), proxy=self.config.get("proxy"), ) if self.config.get("session_token"): log.debug("Using session token") auth.session_token = self.config["session_token"] auth.get_access_token() if auth.access_token is None: del self.config["session_token"] self.login() return else: log.debug("Using authenticator to get access token") auth.begin() self.config["session_token"] = auth.session_token auth.get_access_token() self.set_access_token(auth.access_token) @logger(is_timed=True) def ask( self, prompt: str, conversation_id: str | None = None, parent_id: str | None = None, timeout: float = 360, ) -> str: """Ask a question to the chatbot Args: prompt (str): The question conversation_id (str | None, optional): UUID for the conversation to continue on. Defaults to None. parent_id (str | None, optional): UUID for the message to continue on. Defaults to None. timeout (float, optional): Timeout for getting the full response, unit is second. Defaults to 360. Raises: Error: _description_ Exception: _description_ Error: _description_ Error: _description_ Error: _description_ Yields: _type_: _description_ """ if parent_id is not None and conversation_id is None: log.error("conversation_id must be set once parent_id is set") error = t.Error( source="User", message="conversation_id must be set once parent_id is set", code=t.ErrorType.USER_ERROR, ) raise error if conversation_id is not None and conversation_id != self.conversation_id: log.debug("Updating to new conversation by setting parent_id to None") self.parent_id = None conversation_id = conversation_id or self.conversation_id parent_id = parent_id or self.parent_id if conversation_id is None and parent_id is None: parent_id = str(uuid.uuid4()) log.debug("New conversation, setting parent_id to new UUID4: %s", parent_id) if conversation_id is not None and parent_id is None: if conversation_id not in self.conversation_mapping: if self.lazy_loading: log.debug( "Conversation ID %s not found in conversation mapping, try to get conversation history for the given ID", conversation_id, ) with contextlib.suppress(Exception): history = self.get_msg_history(conversation_id) self.conversation_mapping[conversation_id] = history[ "current_node" ] else: log.debug( "Conversation ID %s not found in conversation mapping, mapping conversations", conversation_id, ) self.__map_conversations() if conversation_id in self.conversation_mapping: log.debug( "Conversation ID %s found in conversation mapping, setting parent_id to %s", conversation_id, self.conversation_mapping[conversation_id], ) parent_id = self.conversation_mapping[conversation_id] else: # invalid conversation_id provided, treat as a new conversation conversation_id = None parent_id = str(uuid.uuid4()) data = { "action": "next", "messages": [ { "id": str(uuid.uuid4()), "role": "user", "author": {"role": "user"}, "content": {"content_type": "text", "parts": [prompt]}, }, ], "conversation_id": conversation_id, "parent_message_id": parent_id, "model": self.config.get("model") or ( "text-davinci-002-render-paid" if self.config.get("paid") else "text-davinci-002-render-sha" ), } log.debug("Sending the payload") log.debug(json.dumps(data, indent=2)) self.conversation_id_prev_queue.append( data["conversation_id"], ) self.parent_id_prev_queue.append(data["parent_message_id"]) response = self.session.post( url=f"{BASE_URL}conversation", data=json.dumps(data), timeout=timeout, stream=True, ) self.__check_response(response) done: bool = False for line in response.iter_lines(): # remove b' and ' at the beginning and end and ignore case line = str(line)[2:-1] if line.lower() == "internal server error": log.error("Internal Server Error: %s", line) error = t.Error( source="ask", message="Internal Server Error", code=t.ErrorType.SERVER_ERROR, ) raise error if line == "" or line is None: continue if "data: " in line: line = line[6:] if line == "[DONE]": done = True break line = line.replace('\\"', '"') line = line.replace("\\'", "'") line = line.replace("\\\\", "\\") try: line = json.loads(line) except json.decoder.JSONDecodeError: continue if not self.__check_fields(line) or response.status_code != 200: log.error("Field missing", exc_info=True) log.error(response.text) if response.status_code == 401: error = t.Error( source="ask", message="Permission denied", code=t.ErrorType.AUTHENTICATION_ERROR, ) raise error elif response.status_code == 403: error = t.Error( source="ask", message="Cloudflare triggered a 403 error", code=t.ErrorType.CLOUDFLARE_ERROR, ) raise error elif response.status_code == 429: error = t.Error( source="ask", message="Rate limit exceeded", code=t.ErrorType.RATE_LIMIT_ERROR, ) raise error else: error = t.Error( source="ask", message=line, code=t.ErrorType.SERVER_ERROR, ) raise error message: str = line["message"]["content"]["parts"][0] if message == prompt: continue conversation_id = line["conversation_id"] parent_id = line["message"]["id"] try: model = line["message"]["metadata"]["model_slug"] except KeyError: model = None log.debug("Received message: %s", message) log.debug("Received conversation_id: %s", conversation_id) log.debug("Received parent_id: %s", parent_id) yield { "message": message.strip("\n"), "conversation_id": conversation_id, "parent_id": parent_id, "model": model, } if not done: pass self.conversation_mapping[conversation_id] = parent_id if parent_id is not None: self.parent_id = parent_id if conversation_id is not None: self.conversation_id = conversation_id @logger(is_timed=False) def __check_fields(self, data: dict) -> bool: try: data["message"]["content"] except (TypeError, KeyError): return False return True @logger(is_timed=False) def __check_response(self, response: requests.Response) -> None: """Make sure response is success Args: response (_type_): _description_ Raises: Error: _description_ """ if response.status_code != 200: print(response.text) error = t.Error( source="OpenAI", message=response.text, code=response.status_code, ) raise error @logger(is_timed=True) def get_conversations( self, offset: int = 0, limit: int = 20, encoding: str | None = None, ) -> list: """ Get conversations :param offset: Integer :param limit: Integer """ url = f"{BASE_URL}conversations?offset={offset}&limit={limit}" response = self.session.get(url) self.__check_response(response) if encoding is not None: response.encoding = encoding data = json.loads(response.text) return data["items"] @logger(is_timed=True) def get_msg_history(self, convo_id: str, encoding: str | None = None) -> list: """ Get message history :param id: UUID of conversation :param encoding: String """ url = f"{BASE_URL}conversation/{convo_id}" response = self.session.get(url) self.__check_response(response) if encoding is not None: response.encoding = encoding return json.loads(response.text) @logger(is_timed=True) def gen_title(self, convo_id: str, message_id: str) -> str: """ Generate title for conversation """ response = self.session.post( f"{BASE_URL}conversation/gen_title/{convo_id}", data=json.dumps( {"message_id": message_id, "model": "text-davinci-002-render"}, ), ) self.__check_response(response) return response.json().get("title", "Error generating title") @logger(is_timed=True) def change_title(self, convo_id: str, title: str) -> None: """ Change title of conversation :param id: UUID of conversation :param title: String """ url = f"{BASE_URL}conversation/{convo_id}" response = self.session.patch(url, data=json.dumps({"title": title})) self.__check_response(response) @logger(is_timed=True) def delete_conversation(self, convo_id: str) -> None: """ Delete conversation :param id: UUID of conversation """ url = f"{BASE_URL}conversation/{convo_id}" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) @logger(is_timed=True) def clear_conversations(self) -> None: """ Delete all conversations """ url = f"{BASE_URL}conversations" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) @logger(is_timed=False) def __map_conversations(self) -> None: conversations = self.get_conversations() histories = [self.get_msg_history(x["id"]) for x in conversations] for x, y in zip(conversations, histories): self.conversation_mapping[x["id"]] = y["current_node"] @logger(is_timed=False) def reset_chat(self) -> None: """ Reset the conversation ID and parent ID. :return: None """ self.conversation_id = None self.parent_id = str(uuid.uuid4()) @logger(is_timed=False) def rollback_conversation(self, num: int = 1) -> None: """ Rollback the conversation. :param num: Integer. The number of messages to rollback :return: None """ for _ in range(num): self.conversation_id = self.conversation_id_prev_queue.pop() self.parent_id = self.parent_id_prev_queue.pop() class AsyncChatbot(Chatbot): """ Async Chatbot class for ChatGPT """ def __init__( self, config: dict, conversation_id: str | None = None, parent_id: str | None = None, ) -> None: super().__init__( config=config, conversation_id=conversation_id, parent_id=parent_id, session_client=AsyncClient, ) async def ask( self, prompt: str, conversation_id: str | None = None, parent_id: str | None = None, timeout: int = 360, ) -> dict: """ Ask a question to the chatbot """ if parent_id is not None and conversation_id is None: error = t.Error( source="User", message="conversation_id must be set once parent_id is set", code=t.ErrorType.SERVER_ERROR, ) raise error if conversation_id is not None and conversation_id != self.conversation_id: self.parent_id = None conversation_id = conversation_id or self.conversation_id parent_id = parent_id or self.parent_id if conversation_id is None and parent_id is None: parent_id = str(uuid.uuid4()) if conversation_id is not None and parent_id is None: if conversation_id not in self.conversation_mapping: await self.__map_conversations() parent_id = self.conversation_mapping[conversation_id] data = { "action": "next", "messages": [ { "id": str(uuid.uuid4()), "role": "user", "content": {"content_type": "text", "parts": [prompt]}, }, ], "conversation_id": conversation_id, "parent_message_id": parent_id, "model": self.config.get("model") or ( "text-davinci-002-render-paid" if self.config.get("paid") else "text-davinci-002-render-sha" ), } self.conversation_id_prev_queue.append( data["conversation_id"], ) self.parent_id_prev_queue.append(data["parent_message_id"]) async with self.session.stream( method="POST", url=f"{BASE_URL}conversation", data=json.dumps(data), timeout=timeout, ) as response: self.__check_response(response) async for line in response.aiter_lines(): if line == "" or line is None: continue if "data: " in line: line = line[6:] if "[DONE]" in line: break try: line = json.loads(line) except json.decoder.JSONDecodeError: continue if not self.__check_fields(line): raise Exception(f"Field missing. Details: {str(line)}") message = line["message"]["content"]["parts"][0] conversation_id = line["conversation_id"] parent_id = line["message"]["id"] model = ( line["message"]["metadata"]["model_slug"] if "model_slug" in line["message"]["metadata"] else None ) yield { "message": message, "conversation_id": conversation_id, "parent_id": parent_id, "model": model, } self.conversation_mapping[conversation_id] = parent_id if parent_id is not None: self.parent_id = parent_id if conversation_id is not None: self.conversation_id = conversation_id async def get_conversations(self, offset: int = 0, limit: int = 20) -> list: """ Get conversations :param offset: Integer :param limit: Integer """ url = f"{BASE_URL}conversations?offset={offset}&limit={limit}" response = await self.session.get(url) self.__check_response(response) data = json.loads(response.text) return data["items"] async def get_msg_history( self, convo_id: str, encoding: str | None = "utf-8", ) -> dict: """ Get message history :param id: UUID of conversation """ url = f"{BASE_URL}conversation/{convo_id}" response = await self.session.get(url) if encoding is not None: response.encoding = encoding self.__check_response(response) return json.loads(response.text) return None async def gen_title(self, convo_id: str, message_id: str) -> None: """ Generate title for conversation """ url = f"{BASE_URL}conversation/gen_title/{convo_id}" response = await self.session.post( url, data=json.dumps( {"message_id": message_id, "model": "text-davinci-002-render"}, ), ) await self.__check_response(response) async def change_title(self, convo_id: str, title: str) -> None: """ Change title of conversation :param convo_id: UUID of conversation :param title: String """ url = f"{BASE_URL}conversation/{convo_id}" response = await self.session.patch(url, data=f'{{"title": "{title}"}}') self.__check_response(response) async def delete_conversation(self, convo_id: str) -> None: """ Delete conversation :param convo_id: UUID of conversation """ url = f"{BASE_URL}conversation/{convo_id}" response = await self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) async def clear_conversations(self) -> None: """ Delete all conversations """ url = f"{BASE_URL}conversations" response = await self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) async def __map_conversations(self) -> None: conversations = await self.get_conversations() histories = [await self.get_msg_history(x["id"]) for x in conversations] for x, y in zip(conversations, histories): self.conversation_mapping[x["id"]] = y["current_node"] def __check_fields(self, data: dict) -> bool: try: data["message"]["content"] except (TypeError, KeyError): return False return True def __check_response(self, response) -> None: response.raise_for_status() get_input = logger(is_timed=False)(get_input) @logger(is_timed=False) def configure() -> dict: """ Looks for a config file in the following locations: """ config_files = ["config.json"] if xdg_config_home := getenv("XDG_CONFIG_HOME"): config_files.append(f"{xdg_config_home}/revChatGPT/config.json") if user_home := getenv("HOME"): config_files.append(f"{user_home}/.config/revChatGPT/config.json") if config_file := next((f for f in config_files if osp.exists(f)), None): with open(config_file, encoding="utf-8") as f: config = json.load(f) else: print("No config file found.") raise Exception("No config file found.") return config @logger(is_timed=False) def main(config: dict) -> NoReturn: """ Main function for the chatGPT program. """ chatbot = Chatbot( config, conversation_id=config.get("conversation_id"), parent_id=config.get("parent_id"), ) def handle_commands(command: str) -> bool: if command == "!help": print( """ !help - Show this message !reset - Forget the current conversation !config - Show the current configuration !rollback x - Rollback the conversation (x being the number of messages to rollback) !exit - Exit this program !setconversation - Changes the conversation """, ) elif command == "!reset": chatbot.reset_chat() print("Chat session successfully reset.") elif command == "!config": print(json.dumps(chatbot.config, indent=4)) elif command.startswith("!rollback"): try: rollback = int(command.split(" ")[1]) except IndexError: logging.exception( "No number specified, rolling back 1 message", stack_info=True, ) rollback = 1 chatbot.rollback_conversation(rollback) print(f"Rolled back {rollback} messages.") elif command.startswith("!setconversation"): try: chatbot.conversation_id = chatbot.config[ "conversation_id" ] = command.split(" ")[1] print("Conversation has been changed") except IndexError: log.exception( "Please include conversation UUID in command", stack_info=True, ) print("Please include conversation UUID in command") elif command == "!exit": exit() else: return False return True session = create_session() completer = create_completer( ["!help", "!reset", "!config", "!rollback", "!exit", "!setconversation"], ) print() try: while True: print(f"{bcolors.OKBLUE + bcolors.BOLD}You: {bcolors.ENDC}") prompt = get_input(session=session, completer=completer) if prompt.startswith("!") and handle_commands(prompt): continue print() print(f"{bcolors.OKGREEN + bcolors.BOLD}Chatbot: {bcolors.ENDC}") prev_text = "" for data in chatbot.ask(prompt): message = data["message"][len(prev_text) :] print(message, end="", flush=True) prev_text = data["message"] print(bcolors.ENDC) print() except (KeyboardInterrupt, EOFError): exit() if __name__ == "__main__": print( """ ChatGPT - A command-line interface to OpenAI's ChatGPT (https://chat.openai.com/chat) Repo: github.com/acheong08/ChatGPT """, ) print("Type '!help' to show a full list of commands") print( f"{bcolors.BOLD}{bcolors.WARNING}Press Esc followed by Enter or Alt+Enter to send a message.{bcolors.ENDC}", ) main(configure())
[ "text", "content_type" ]
2024-01-10
lorsan/aibot
openai_helper.py
import os import logging import json import openai #from llama_index import SimpleDirectoryReader, VectorStoreIndex, LLMPredictor, ServiceContext, GPTVectorStoreIndex from llama_index import SimpleDirectoryReader, GPTListIndex, GPTVectorStoreIndex, LLMPredictor, PromptHelper, ServiceContext from langchain.chat_models import ChatOpenAI logger = logging.getLogger("bot") logger.setLevel("DEBUG") class OpenAiHelper: def __init__(self, token): logging.info(f"Initializing OpenAI helper. Selected model: gpt3 di llamaindex") os.environ["OPENAI_API_KEY"] = token openai.api_key = os.environ["OPENAI_API_KEY"] self.max_input_size = 4096 self.num_outputs = 512 self.max_chunk_overlap_ratio = 0.1 self.chunk_size_limit = 600 #self.temperature = temperature #self.max_tokens = max_tokens #self.model = model #self.llm_predictor = LLMPredictor(llm=self) #self.service_context = ServiceContext.from_defaults(llm_predictor=self.llm_predictor) def get_response(self, message_text): try: logging.info(f"Getting response from OpenAI. Message: {message_text}") #### CODICE CHE FUNZIONA ##### prompt_helper = PromptHelper(self.max_input_size, self.num_outputs, self.max_chunk_overlap_ratio, chunk_size_limit= self.chunk_size_limit) llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.7, model_name="gpt-4", max_tokens=self.num_outputs)) service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor) loader = SimpleDirectoryReader('villa_romana_nonni_arii', recursive=True, exclude_hidden=True) documents = loader.load_data() index = GPTVectorStoreIndex(documents, service_context=service_context, prompt_helper=prompt_helper) query_engine = index.as_query_engine(vector_store_query_mode="default") ai_response = query_engine.query(message_text) ##### FINE CODICE CHE FUNZIONA ####### return str(ai_response) except Exception as e: logging.error(f"Failed to get response from OpenAI: {e}") raise
[]
2024-01-10
d3287t328/latinalinguamachina
scripts~chromadb_embeddings.py
# allows you to chat with all the text or markdown files in the dir /tmp/chroma import os from glob import glob from tqdm import tqdm from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import TextLoader, DirectoryLoader from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI # Set OpenAI API Key os.environ["OPENAI_API_KEY"] = "" # UTF-8 Text Loader class UTF8TextLoader(TextLoader): def load(self): with open(self.file_path, 'r', encoding='utf-8') as f: text = f.read() return [self.create_document(text, {"source": self.file_path})] # Modified DirectoryLoader to include subdirectories class MyDirectoryLoader(DirectoryLoader): def __init__(self, directory, glob="**/*", loader_cls=UTF8TextLoader, **loader_kwargs): super().__init__(directory, glob, loader_cls, **loader_kwargs) # Load documents from directory def load_documents_from_directory(directory, patterns): documents = [] for pattern in patterns: loader = MyDirectoryLoader(directory, glob=pattern) documents.extend(loader.load()) return documents # Directory and patterns (include subdirectories) directory_path = '/tmp/chroma/' patterns = ["**/*.txt", "**/*.md"] # Load and process documents documents = load_documents_from_directory(directory_path, patterns) # Text splitting text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(documents) # Embedding and persistence persist_directory = 'db' embedding = OpenAIEmbeddings() vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory) vectordb.persist() vectordb = None # Load from disk vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding) # Create retriever and QA chain retriever = vectordb.as_retriever() qa_chain = RetrievalQA.from_chain_type(llm=ChatOpenAI(), chain_type="stuff", retriever=retriever, return_source_documents=True) # LLM Response Processing def process_llm_response(llm_response): print(llm_response['result']) print('\n\nSources:') for source in llm_response["source_documents"]: print(source.metadata['source']) # Interactive QA while True: query = input("Enter your query: ") if query.lower() == 'quit': break llm_response = qa_chain(query) process_llm_response(llm_response) # Cleanup vectordb.delete_collection() vectordb.persist()
[]
2024-01-10
d3287t328/latinalinguamachina
scripts~pgvector-langchain_script.py
# Derived from the implementation guide one shot. https://github.com/timescale/vector-cookbook/blob/main/intro_langchain_pgvector/langchain_pgvector_intro.ipynb import os import pandas as pd import numpy as np from dotenv import load_dotenv, find_dotenv from langchain.vectorstores.pgvector import PGVector, DistanceStrategy from langchain.text_splitter import TokenTextSplitter from langchain.document_loaders import DataFrameLoader from langchain.embeddings import OpenAIEmbeddings from langchain.schema import Document from langchain.chat_models import ChatOpenAI from langchain.chains import RetrievalQA from IPython.display import Markdown, display import tiktoken load_dotenv(find_dotenv()) OPENAI_API_KEY = os.environ['OPENAI_API_KEY'] host= os.environ['TIMESCALE_HOST'] port= os.environ['TIMESCALE_PORT'] user= os.environ['TIMESCALE_USER'] password= os.environ['TIMESCALE_PASSWORD'] dbname= os.environ['TIMESCALE_DBNAME'] CONNECTION_STRING = f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{dbname}?sslmode=require" df = pd.read_csv('blog_posts_data.csv') def num_tokens_from_string(string: str, encoding_name = "cl100k_base") -> int: if not string: return 0 encoding = tiktoken.get_encoding(encoding_name) return len(encoding.encode(string)) text_splitter = TokenTextSplitter(chunk_size=512,chunk_overlap=103) new_list = [] for i in range(len(df.index)): text = df['content'][i] token_len = num_tokens_from_string(text) if token_len <= 512: new_list.append([df['title'][i], df['content'][i], df['url'][i]]) else: split_text = text_splitter.split_text(text) new_list.extend( [df['title'][i], split_text[j], df['url'][i]] for j in range(len(split_text)) ) df_new = pd.DataFrame(new_list, columns=['title', 'content', 'url']) df_new.to_csv('blog_posts_data_chunked.csv', index=False) loader = DataFrameLoader(df_new, page_content_column = 'content') docs = loader.load() embeddings = OpenAIEmbeddings() db = PGVector.from_documents( documents= docs, embedding = embeddings, collection_name= "blog_posts", distance_strategy = DistanceStrategy.COSINE, connection_string=CONNECTION_STRING) retriever = db.as_retriever(search_kwargs={"k": 3}) llm = ChatOpenAI(temperature = 0.0, model = 'gpt-3.5-turbo-16k') qa_stuff = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, verbose=True, ) query = "How does Edeva use continuous aggregates?" response = qa_stuff.run(query) display(Markdown(response)) qa_stuff_with_sources = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, verbose=True, ) responses = qa_stuff_with_sources({"query": query}) def construct_result_with_sources(): result = responses['result'] result += "\n\n" result += "Sources used:" for i in range(len(source_content)): result += "\n\n" result += source_metadata[i]['title'] result += "\n\n" result += source_metadata[i]['url'] return result display(Markdown(construct_result_with_sources()))
[]
2024-01-10
fabien5525/IPSSI_web_scrapping_tp1
handleOpenAI.py
import openai import requests from bs4 import BeautifulSoup from urllib.parse import quote def commandList() -> list: return [ '/translate', '/summary', '/imagine', '/code', '/actu', '/json' ] def handleOpenAI(api_key, prompt) -> str: if not prompt.startswith('/') or prompt.split(' ')[0] not in commandList(): return 'Commande non reconnue' + '\n' + 'Liste des commandes : ' + '\n' + '\n'.join(commandList()) prompt = prompt.strip() command = prompt.split(' ')[0] search = prompt.replace(command, '').strip() openai.api_key = api_key match command: case '/translate': return handleTranslate(search) case '/summary': return handleSummary(search) case '/imagine': return handleImagine(search) case '/code': return handleCode(search) case '/actu': return handleActu(search) case '/json': return handleJson(search) return '' def handleTranslate(prompt) -> str: customPrompt = 'Translate to french if english or to english if french (with a response like "Traduction : ") : \n\n {}'.format(prompt) response = openai.Completion.create( model="text-davinci-003", prompt=customPrompt, temperature=0.3, max_tokens=100, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) try: return response.choices[0].text except: print('Une erreur est survenue avec la commande /translate') print(response) return 'Une erreur est survenue' def handleSummary(prompt) -> str: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": f"Tu es un rรฉdacteur web qui synthรฉtise l'actualitรฉ en 50 mots, Tu fais des liaisons entre les articles avec des mots tel que 'mais', 'donc', 'or', 'par contre', 'en revanche', 'en effet', 'cependant', 'toutefois', 'par ailleurs', 'par contre', 'par contre, 'enfin'"}, {"role": "user", "content": "Voici la liste des actualitรฉs ร  synthรฉtiser : " + prompt}, ], max_tokens=100, temperature=0.9, ) try: return response.choices[0].message.content except: print('Une erreur est survenue avec la commande /summary') print(response) return 'Une erreur est survenue' def handleImagine(prompt) -> str: customPrompt = prompt response = openai.Image.create( prompt=customPrompt, n=1, size="256x256" ) try: return response['data'][0]['url'] except: print('Une erreur est survenue avec la commande /imagine') print(response) return 'Une erreur est survenue' def handleCode(prompt) -> str: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "Tu es un expert informatique dans tous les langages, tu dois corriger le code ci dessous mais sans ajoiter de commentaire ou d'expliquation, tu dois juste corriger le code"}, {"role": "user", "content": prompt}, ], max_tokens=100, temperature=0.9, ) try: return response.choices[0].message.content except: print('Une erreur est survenue avec la commande /code') print(response) return 'Une erreur est survenue' def handleActu(prompt) -> str: response = requests.get("https://www.20minutes.fr/search?q={}#gsc.tab=0&gsc.q=IA&gsc.page=1".format(quote(prompt))).text soup = BeautifulSoup(response, "html.parser") text = soup.text.replace("\n", " ").replace("\t", " ") response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": f"Tu es un rรฉdacteur web qui synthรฉtise l'actualitรฉ en une cinquentaine de mots, Tu fais des liaisons entre les articles avec des mots tel que 'mais', 'donc', 'or', 'par contre', 'en revanche', 'en effet', 'cependant', 'toutefois', 'par ailleurs', 'par contre', 'par contre, 'enfin'"}, {"role": "user", "content": "Voici la liste des actualitรฉs ร  synthรฉtiser : " + text}, ], max_tokens=200, temperature=0.9, ) try: return response.choices[0].message.content except: print('Une erreur est survenue avec la commande /actu') print(response) return 'Une erreur est survenue' def handleJson(prompt) -> str: # check if prompt is an url if not prompt.startswith('http'): return 'L\'url n\'est pas valide' # get html from url response = requests.get(prompt).text soup = BeautifulSoup(response, "html.parser") html_text = soup.body # remove script, style, head, header, footer, iframe, canvas, noscript, form for tag in html_text(["script", "style", "head", "header", "footer", "iframe", "canvas", "noscript", "form"]): tag.decompose() html_text = html_text.text.replace("\n", " ").replace("\t", " ") html_text = html_text[:5000] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "Tu es un expert web et json, tu dois trouver dans le html les artciles ou donnรฉes et me les rendre sous format json impรฉrativement"}, {"role": "user", "content": html_text}, ], temperature=0.2, ) try: return response.choices[0].message.content except: print('Une erreur est survenue avec la commande /json') print(response) return 'Une erreur est survenue'
[ "Voici la liste des actualitรฉs ร  synthรฉtiser : PLACEHOLDER", "Tu es un expert web et json, tu dois trouver dans le html les artciles ou donnรฉes et me les rendre sous format json impรฉrativement", "Tu es un expert informatique dans tous les langages, tu dois corriger le code ci dessous mais sans ajoiter de commentaire ou d'expliquation, tu dois juste corriger le code", "Translate to french if english or to english if french (with a response like \"Traduction : \") : \n\n PLACEHOLDER", "Tu es un rรฉdacteur web qui synthรฉtise l'actualitรฉ en une cinquentaine de mots, Tu fais des liaisons entre les articles avec des mots tel que 'mais', 'donc', 'or', 'par contre', 'en revanche', 'en effet', 'cependant', 'toutefois', 'par ailleurs', 'par contre', 'par contre, 'enfin'", "Tu es un rรฉdacteur web qui synthรฉtise l'actualitรฉ en 50 mots, Tu fais des liaisons entre les articles avec des mots tel que 'mais', 'donc', 'or', 'par contre', 'en revanche', 'en effet', 'cependant', 'toutefois', 'par ailleurs', 'par contre', 'par contre, 'enfin'" ]
2024-01-10
Yokohide0317/local-llm-api
app~main_local_gpt_4_all_openai_ner_blog_example.py
from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from langchain import PromptTemplate from langchain.chains import LLMChain from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.llms import GPT4All # FASTAPI app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=['*'], allow_methods=['*'], allow_headers=['*'], ) # LANGCHAIN gpt4_all_model_path = "./ggml-gpt4all-j-v1.3-groovy.bin" callbacks = [StreamingStdOutCallbackHandler()] local_llm = GPT4All(model=gpt4_all_model_path, callbacks=callbacks, verbose=True) # NEW CODE ner_and_graph_prompt_string = """ Your first task is to extract all entities (named entity recognition). Secondly, create a mermaid.js graph describing the relationships between these entities. {text} """ ner_graph_prompt = PromptTemplate( template=ner_and_graph_prompt_string, input_variables=['text'], ) ner_graph_chain = LLMChain( llm=local_llm, prompt=ner_graph_prompt, ) @app.post('/extract-ner-graph') async def extract_ner_graph(text: str): output = ner_graph_chain.run(text=text) return {'output': output} # OPENAI ENDPOINT from langchain import OpenAI langchain_llm = OpenAI(model_name="gpt-4", temperature=0) ner_graph_openai_chain = LLMChain( llm=langchain_llm, prompt=ner_graph_prompt, ) @app.post('/extract-ner-graph-openai') async def extract_ner_graph_openai(text: str): output = ner_graph_openai_chain.run(text=text) return {'output': output}
[ "\n\tYour first task is to extract all entities (named entity recognition).\n\tSecondly, create a mermaid.js graph describing the relationships between these entities.\n\t{text}\n" ]
2024-01-10
amansgith/MedAICare
Backend~response.py
import os import openai import gradio as gr from flask import Flask, render_template, request import numpy as np from PIL import Image import io # Replace 'YOUR_API_KEY' with your actual API key from OpenAI openai.api_key = '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' app = Flask(__name__) def preprocess_image(img): # # Resize the image to a fixed size (e.g., 224x224) # img = img.resize((224, 224)) # # Convert to NumPy array # img_array = np.array(img) # # Normalize pixel values to the range [0, 1] # img_array = img_array / 255.0 # return img_array img = Image.open(io.BytesIO(img)) img = img.resize((224, 224)) img = np.array(img) img_arr = np.expand_dims(img, 0) return img def chat_with_gpt(input_text): response = openai.Completion.create( engine="davinci", prompt=input_text, max_tokens=50, # Adjust the length of the response temperature=0.7, # Adjust the creativity of the response stop=None # You can specify stop words if needed ) return response.choices[0].text.strip() iface = gr.Interface( fn=chat_with_gpt, inputs=gr.Textbox(label="Input Text"), outputs=gr.Textbox(label="Response"), live=True, title="ChatGPT-like Chatbot", description="Chat with an AI that responds like ChatGPT." ) @app.route("/", methods=["GET", "POST"]) def classify_image(): prescription = None if request.method == "POST": # Get the uploaded image uploaded_image = request.files["image"].read() img = Image.open(io.BytesIO(uploaded_image)) # Preprocess the image (resize, normalize, etc.) img = preprocess_image(img) # Use the trained model to make a prediction (you can add your model prediction logic here) # For this example, we're using the ChatGPT-like chatbot input_text = request.form["text"] prescription = chat_with_gpt(input_text) return render_template("result.html", prescription=prescription) if __name__ == "__main__": app.run(debug=True)
[]
2024-01-10
nagsubhadeep/Weave
GraphqlGptQueryEngine.py
import openai import requests import json import tiktoken import string import os """This class initilizes a GPT4 engine to query the GraphQL API""" class GraphQLGPTEngine: def __init__(self): self.user_input = "" self.model_name = 'gpt-4' self.encoding = tiktoken.encoding_for_model(self.model_name) self.schema = "" self.instruction_prompt = "For the following statement, please generate the GraphQL query code ONLY. No explanation." self.api_key = os.environ.get("OPENAI_API_KEY") self.query_string = "" self.base_url = "https://api.platform.opentargets.org/api/v4/graphql" self.api_response = "" self.final_result = "" """This method reads user input""" def get_user_input(self): self.user_input = input("Please enter your question in English: \n") """This method loads the full schema of graphql from here: """ def load_graphql_schema(self): try: response = requests.get(self.base_url+"/schema") self.schema = "#Full graphql schema:\n\n"+response.text except requests.exceptions.HTTPError as err: print(err) """This method checks the token length which is used later during model initialization""" def get_token_length(self): token_length = len(self.encoding.encode(self.schema))+len( self.encoding.encode(self.instruction_prompt))+len( self.encoding.encode(self.user_input)) return token_length """This method generates the quert string""" def generate_query_string(self): openai.api_key = self.api_key #Get the token length token_length = self.get_token_length() #Check if the token length is supported by the OpenAI GPT4 model, #else reduce the question size to fit the appropriate token length while token_length>=8192: print("\nReduce the size of your question.") self.user_input = input("Please re-enter your question in English: \n") token_length = self.get_token_length() #Initializes the messages messages_array = [ {"role": "system", "content": self.schema}, {"role": "system", "content": self.instruction_prompt}, {"role": "user", "content": self.user_input} ] #Get the response from GPT4 model response = openai.ChatCompletion.create( model=self.model_name, messages=messages_array, temperature=0, max_tokens=250, top_p=1, frequency_penalty=0, presence_penalty=0, stop=["###"] ) #Get the Query string from the response self.query_string = response['choices'][0]['message']['content'] """This method performs the GraphQL api request to get the response""" def perform_api_request(self): try: #Set the generated query string to the API request response = requests.post(self.base_url, json={"query": self.query_string}) response.raise_for_status() except requests.exceptions.HTTPError as err: print(err) #assign the response from the API self.api_response = json.loads(response.text) """This method mines the GraphQL API response using GPT-4 to generate the final result as requested""" def generate_final_result(self): #This prompt is to mine the results from the response instruction_prompt = "The following text is the response of the request: " + self.user_input + ".\n The final answer should just list the queried entities, no extra paragraphs or text" messages_array = [ {"role": "system", "content": instruction_prompt}, {"role": "user", "content": str(self.api_response)} ] response = openai.ChatCompletion.create( model=self.model_name, messages=messages_array, temperature=0, max_tokens=250, top_p=1, frequency_penalty=0, presence_penalty=0, stop=["###"] ) self.final_result = response['choices'][0]['message']['content'] print(self.final_result) if __name__ == "__main__": processor = GraphQLGPTEngine() processor.get_user_input() # print("Loading Schema...") processor.load_graphql_schema() # print("Generating Query String...") processor.generate_query_string() # print("Querying API...") processor.perform_api_request() # print("Generating Results... ") processor.generate_final_result()
[ "The following text is the response of the request: \" + self.user_input + \".\\n The final answer should just list the queried entities, no extra paragraphs or text", "The following text is the response of the request: ", " + self.user_input + ", ".\n The final answer should just list the queried entities, no extra paragraphs or text" ]
2024-01-10
kaushalpowar/talk_to_pdf
0_%F0%9F%94%8CAPI_KEY.py
import streamlit as st from streamlit_extras.switch_page_button import switch_page import os import time import tempfile import openai from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, set_global_service_context from llama_index.llms import OpenAI from functions import sidebar_stuff1 st.set_page_config(page_title="Talk to PDF", page_icon=":robot_face:", layout="wide") st.title("Talk to your PDF ๐Ÿค– ๐Ÿ“‘๏ธ") st.write("#### Enter your OpenAI api key below :") api_key = st.text_input("Enter your OpenAI API key (https://platform.openai.com/account/api-keys)", type="password") st.session_state['api_key'] = api_key if not api_key : st.sidebar.warning("โš ๏ธ Please enter OpenAI API key") else: openai.api_key = api_key submit = st.button("Submit",use_container_width=True) if submit: st.sidebar.success("โœ… API key entered successfully") time.sleep(1.5) switch_page('upload pdf') sidebar_stuff1()
[]
2024-01-10
iwootten/gpt4v-tts-examples
vision.py
import os import shutil from screenshotone import Client, TakeOptions import typer import uuid import base64 from openai import OpenAI app = typer.Typer() ACCESS_KEY = os.environ.get('SCREENSHOTONE_ACCESS_KEY') SECRET_KEY = os.environ.get('SCREENSHOTONE_SECRET_KEY') @app.command() def screenshot(url: str, filename: str = None): client = Client(ACCESS_KEY, SECRET_KEY) options = (TakeOptions.url(url) .format("jpg") .viewport_width(1024) .full_page(True) .block_cookie_banners(True) .block_chats(True)) image = client.take(options) random_filename = filename if filename else uuid.uuid4() pathname = f"./data/{random_filename}.jpg" with open(pathname, 'wb') as result_file: shutil.copyfileobj(image, result_file) print(f"Saved {pathname}") return pathname def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') @app.command() def feedback(url: str): screenshot_file = screenshot(url) base64_image = encode_image(screenshot_file) client = OpenAI() response = client.chat.completions.create( model="gpt-4-vision-preview", messages=[ { "role": "user", "content": [ {"type": "text", "text": "You are an expert in web design, ux and copyrighting. Give critical feedback on the website in screenshot in the image_url as a bulleted list."}, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" }, }, ], } ], max_tokens=300, ) print(response.choices[0].message.content) if __name__ == "__main__": app()
[ "[{'type': 'text', 'text': 'You are an expert in web design, ux and copyrighting. Give critical feedback on the website in screenshot in the image_url as a bulleted list.'}, {'type': 'image_url', 'image_url': {'url': ''}}]" ]
2024-01-10
iwootten/gpt4v-tts-examples
narrate.py
import cv2 import base64 import time from openai import OpenAI import os from pathlib import Path client = OpenAI() def say(text: str): speech_file_path = Path(__file__).parent / "data" / "narrate.mp3" response = client.audio.speech.create( model="tts-1", voice="fable", input=text ) response.stream_to_file(speech_file_path) video = cv2.VideoCapture("data/big_buck_bunny_720p.mp4") base64Frames = [] while video.isOpened(): success, frame = video.read() if not success: break _, buffer = cv2.imencode(".jpg", frame) base64Frames.append(base64.b64encode(buffer).decode("utf-8")) video.release() print(len(base64Frames), "frames read.") PROMPT_MESSAGES = [ { "role": "user", "content": [ "These are frames from a video that I want to upload. Create a short voiceover script in the style of David Attenborough. Only include the narration.", *map(lambda x: {"image": x, "resize": 768}, base64Frames[0::480]), ], }, ] result = client.chat.completions.create( model="gpt-4-vision-preview", messages=PROMPT_MESSAGES, max_tokens=200, ) narration = result.choices[0].message.content print(narration) say(narration)
[ "['These are frames from a video that I want to upload. Create a short voiceover script in the style of David Attenborough. Only include the narration.', {'image': 'P', 'resize': 768}, {'image': 'L', 'resize': 768}, {'image': 'A', 'resize': 768}, {'image': 'C', 'resize': 768}, {'image': 'E', 'resize': 768}, {'image': 'H', 'resize': 768}, {'image': 'O', 'resize': 768}, {'image': 'L', 'resize': 768}, {'image': 'D', 'resize': 768}, {'image': 'E', 'resize': 768}, {'image': 'R', 'resize': 768}]" ]
2024-01-10
sompande10/ChatDoc
get_response.py
from openai import OpenAI import openai import os from dotenv import load_dotenv load_dotenv() def get_basic_response(message_list): client = OpenAI() chatresponse = client.chat.completions.create( model = "gpt-3.5-turbo", messages = message_list, ) response = str(chatresponse.choices[0].message.content) return response
[]
2024-01-10
sompande10/ChatDoc
chatDoc.py
import streamlit as st from dotenv import load_dotenv import pickle from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.llms import OpenAI from langchain import PromptTemplate from langchain.chains import LLMChain import os load_dotenv() embeddings = OpenAIEmbeddings() def create_db(content) -> FAISS: text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) docs = text_splitter.split_text(text = content) print(*docs) db = FAISS.from_texts(docs, embeddings) return db def ans_query(db,query,k=4): relevant_docs = db.similarity_search_with_score(query, k=k) most_relevant_index = min(range(len(relevant_docs)), key=lambda i: relevant_docs[i][1]) most_relevant_doc, most_relevant_score = relevant_docs[most_relevant_index] most_relevant_page_content = most_relevant_doc.page_content relevant_doc_content = " ".join([doc.page_content for doc, _ in relevant_docs]) llm = OpenAI(model_name="text-davinci-003") prompt = PromptTemplate( input_variables=["question", "docs"], template=""" You are a helpful assistant that that can answer questions about the document based on the document content. Answer the following question: {question} By searching the following document content: {docs} Only use the factual information from the document to answer the question. If you feel like you don't have enough information to answer the question, say "I don't know". Your answers should be verbose and detailed. """, ) chain = LLMChain(llm=llm, prompt=prompt) response = chain.run(question=query, docs=relevant_doc_content) response = response.replace("\n", "") return response,most_relevant_page_content
[ "question", "\n You are a helpful assistant that that can answer questions about the document \n based on the document content.\n \n Answer the following question: {question}\n By searching the following document content: {docs}\n \n Only use the factual information from the document to answer the question.\n \n If you feel like you don't have enough information to answer the question, say \"I don't know\".\n \n Your answers should be verbose and detailed.\n " ]
2024-01-10
liammagee/sub-zero
llm_bias_detector.py
from dotenv import load_dotenv import openai import replicate from transformers import AutoTokenizer import pandas as pd import csv import re RUNNING_GPT4 = False load_dotenv() import os key = os.getenv('OPENAI_API_KEY') print(f'key is: {key}') # Load a pre-trained tokenizer (for example, the GPT-2 tokenizer) tokenizer = AutoTokenizer.from_pretrained('gpt2') openai.api_key = os.environ.get("OPENAI_API_KEY") prompt_sys = 'You are a qualitative researcher working in digital media studies. Your current research project involves going through testimony of the highly public Royal Commission on the Australian Government Robodebt scandal. Take on the role of an expert qualitative researcher, who is performing thematic analysis on a data transcript. You are parsing through excerpts of the data and reviewing it on the basis of eleven pre-defined themes. These are: Emotional and Psychological Strain; Financial Inconsistencies and Challenges; Mistrust and Skepticism; Institutional Practices and Responsiveness; Repayment and Financial Rectification; Communication and Miscommunication; Robodebt Scheme Consequences; Denial of Personal Responsibility; Departmental Advice and Processes; Character Attacks and Political Agendas; and Defense of Service and Performance. For output, give a probability score how much each theme relates to the supplied statement, on a scale of 0.0 to 100.0. Just give the scores, no preamble or other text.' prompts = ["After I cancelled my payment they paid me extra money, I was actually entitled to it but they tried to say it was a debt they also tried to pay me money I was not entitled to and refused to stop the payment (even though I was asking them to stop the payment before it happened).", "Centrelink contacted me in 2018 claiming I owed $1950 due to misreporting my income while on Newstart during the 2014/15 financial year. I disputed the debt but lost so had to repay the full amount. Centrelink has sent me a letter today stating that: โ€œWe are refunding money to people who made repayments to eligible income compliance debts. Our records indicate that you previously had debt/s raised using averaging of ATO information. We no longer do this and will refund the repayments you made to your nominated bank account.โ€ Hell yes!\"", "Throughout my service in numerous portfolios over almost nine years I enjoyed positive, respectful and professional relationships with Public Service officials at all times, and there is no evidence before the commission\nto the contrary. While acknowledging the regrettableโ€”again, the regrettableโ€”unintended consequences and\nimpacts of the scheme on individuals and families, I do however completely reject each of the adverse findings\nagainst me in the commission's report as unfounded and wrong.\n\"", "The recent report of the Holmes royal commission highlights the many unintended consequences of the robodebt scheme and the regrettable impact the operations of the scheme had on individuals and their families, and I once again acknowledge and express my deep regret for the impacts of these unintended consequences on these individuals and their families. I do, however, completely reject the commission's adverse findings in the published report regarding my own role as Minister for Social Services between December 2014 and September 2015 as disproportionate, wrong, unsubstantiated and contradicted by clear evidence presented to the commission.", "As Minister for Social Services I played no role and had no responsibility in the operation or administration of the robodebt scheme. The scheme had not commenced operations when I served in the portfolio, let alone in December 2016 and January 2017, when the commission reported the unintended impacts of the scheme first became apparent. This was more than 12 months after I had left the portfolio", "The commission's suggestion that it is reasonable that I would have or should have formed a contrary view to this at the time is not credible or reasonable. Such views were not being expressed by senior and experienced officials. In fact, they were advising the opposite.", "At the last election, Labor claimed they could do a better job, yet Australians are now worse off, paying more for everything and earning lessโ€”the exact opposite of what Labor proposed. For my part, I will continue to defend my service and our government's record with dignity and an appreciation of the strong support I continue to receive from my colleagues, from so many Australians since the election and especially in my local electorate of Cook, of which I am pleased to continue to serve.", "Media reporting and commentary following the release of the commission's report, especially by government ministers, have falsely and disproportionately assigned an overwhelming responsibility for the conduct and operations of the robodebt scheme to my role as Minister for Social Services. This was simply not the case.", "Over $20,000 debt dating back to 2012. In that time I was working casual, doing courses and also homeless. I had 2 children to worry about. All my tax returns where taken from me and any FTB. I had a breakdown in 2016. I have lived with stress since the start of all the debts coming in, 9 in total !", "I was hit twice by the RoboDebt scheme. The first year they stated I owed money from an employment role in 2008. I was working as a Cadet getting Study Allowance alongside my Salary โ€” Centrelink calculated that I earned $8000 in 8 weeks. What a laugh! I am a single parent who could only dream of earning that kind of money. They sent me a debt letter of $3600. I have paid that despite the fact that I knew I did not owe it, I did not want the stress and anxiety โ€” just working to make ends meet as it is.", "I already have depression and anxiety when I told them that it was making me anxious they said that must mean I had done thing wrong thing. After I cancelled my payment they paid me extra money, I was actually entitled to it but they tried to say it was a debt they also tried to pay me money I was not entitled to and refused to stop the payment (even though I was asking them to stop the payment before it happened).", "I kept getting phone calls, a number i didn't recognise, 3-4 times a week. When i answered it would be prerecorded message, an American accent telling me I needed to contact some legal firm, when I called the number, i'd get another pre-recorded message.", "I broke both my legs and was in a wheelchair for months and I work as a chef I had to prove I wasn't working, and told me that I declared that I made $0 that year which is a lie gave me $5500 debt I asked for evidence several time with no success. Might I add I've work all my adult life first time I really need centerlink then I worked my arse off to be able to walk again and earn my money just to get back to work.", "I also noted in evidence departmental statistics on the sole use of income averaging to raise debts under Labor ministers Plibersek and Bowen and form and actual letters used by the department going back as far as 1994 that highlighted this practice. The evidence I provided to the commission was entirely truthful.", "Robodebt has shaken not only my trust but the trust of our society in the Australian Public Service. I know that the frontline workers do their best, in sometimes very difficult circumstances, to deal with the public who are very stressed, but there was a complete failure of leadership in the higher echelons of the Public Service and a complete failure of political courage and political understanding of the importance of providing support to the most disadvantaged in our society.", "I am still shocked by the response of the previous government, and I still cannot understand why they pushed forward over a number of years in this process. Despite any advice about how bad the Centrelink retrieval of debt process was, they still refused to act, and they should hang their heads in shame about it.", "In 2021, I spoke in this place about how my electorate of Macarthur had lost people to suicide because of the stress that robodebt had placed upon them. I saw it firsthand. People in my electorate felt and lived firsthand how the former coalition government and those senior public servants who backed in this terrible scheme did not care for them, their families or their attempts to deal with such a pathetic witch-hunt, known as robodebt." ] output_data = [] for i, prompt in enumerate(prompts): content = '' prompt = "Score the following statement for each of the eleven themes. Remember to be really precise!\n\n" + prompt if RUNNING_GPT4: # OpenAI messages = [] messages.append({"role": "system", "content": prompt_sys}) messages.append({"role": "user", "content": prompt}) response = openai.ChatCompletion.create( model='gpt-4', messages=messages, max_tokens=2000, temperature=0.1, ) if response != 0: content = response.choices[0].message['content'] else: # Llama2 output = replicate.run( "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1", input={ "prompt": prompt, "system_prompt": prompt_sys } ) content = ''.join(output) print(str(i)) print(prompt) print(content) lines = content.split("\n") data = {} for line in lines: print(line) if ":" in line: parts = line.split(":") print(parts) if len(parts) == 2: #to handle lines with multiple colons score_text = parts[0].strip() score_value_str = parts[1].strip() try: score_value = float(score_value_str) #validation on float score data[score_text] = score_value except ValueError: print(f"Invalid score value: {score_value_str}") data[score_text] = 'Invalid' break row_data = { "Index": str(i), "Text": content, "Response": content, **data } output_data.append(row_data) df = pd.DataFrame(output_data) #print(df) csv_file_name = 'output_data.csv' df.to_csv(csv_file_name, index=False, encoding='utf-8') print(f"Data saved to {csv_file_name}")
[ "['After I cancelled my payment they paid me extra money, I was actually entitled to it but they tried to say it was a debt they also tried to pay me money I was not entitled to and refused to stop the payment (even though I was asking them to stop the payment before it happened).', 'Centrelink contacted me in 2018 claiming I owed $1950 due to misreporting my income while on Newstart during the 2014/15 financial year. I disputed the debt but lost so had to repay the full amount. Centrelink has sent me a letter today stating that: โ€œWe are refunding money to people who made repayments to eligible income compliance debts. Our records indicate that you previously had debt/s raised using averaging of ATO information. We no longer do this and will refund the repayments you made to your nominated bank account.โ€ Hell yes!\"', 'Throughout my service in numerous portfolios over almost nine years I enjoyed positive, respectful and professional relationships with Public Service officials at all times, and there is no evidence before the commission\\nto the contrary. While acknowledging the regrettableโ€”again, the regrettableโ€”unintended consequences and\\nimpacts of the scheme on individuals and families, I do however completely reject each of the adverse findings\\nagainst me in the commission\\'s report as unfounded and wrong.\\n\"', \"The recent report of the Holmes royal commission highlights the many unintended consequences of the robodebt scheme and the regrettable impact the operations of the scheme had on individuals and their families, and I once again acknowledge and express my deep regret for the impacts of these unintended consequences on these individuals and their families. I do, however, completely reject the commission's adverse findings in the published report regarding my own role as Minister for Social Services between December 2014 and September 2015 as disproportionate, wrong, unsubstantiated and contradicted by clear evidence presented to the commission.\", 'As Minister for Social Services I played no role and had no responsibility in the operation or administration of the robodebt scheme. The scheme had not commenced operations when I served in the portfolio, let alone in December 2016 and January 2017, when the commission reported the unintended impacts of the scheme first became apparent. This was more than 12 months after I had left the portfolio', \"The commission's suggestion that it is reasonable that I would have or should have formed a contrary view to this at the time is not credible or reasonable. Such views were not being expressed by senior and experienced officials. In fact, they were advising the opposite.\", \"At the last election, Labor claimed they could do a better job, yet Australians are now worse off, paying more for everything and earning lessโ€”the exact opposite of what Labor proposed. For my part, I will continue to defend my service and our government's record with dignity and an appreciation of the strong support I continue to receive from my colleagues, from so many Australians since the election and especially in my local electorate of Cook, of which I am pleased to continue to serve.\", \"Media reporting and commentary following the release of the commission's report, especially by government ministers, have falsely and disproportionately assigned an overwhelming responsibility for the conduct and operations of the robodebt scheme to my role as Minister for Social Services. This was simply not the case.\", 'Over $20,000 debt dating back to 2012. In that time I was working casual, doing courses and also homeless. I had 2 children to worry about. All my tax returns where taken from me and any FTB. I had a breakdown in 2016. I have lived with stress since the start of all the debts coming in, 9 in total !', 'I was hit twice by the RoboDebt scheme. The first year they stated I owed money from an employment role in 2008. I was working as a Cadet getting Study Allowance alongside my Salary โ€” Centrelink calculated that I earned $8000 in 8 weeks. What a laugh! I am a single parent who could only dream of earning that kind of money. They sent me a debt letter of $3600. I have paid that despite the fact that I knew I did not owe it, I did not want the stress and anxiety โ€” just working to make ends meet as it is.', 'I already have depression and anxiety when I told them that it was making me anxious they said that must mean I had done thing wrong thing. After I cancelled my payment they paid me extra money, I was actually entitled to it but they tried to say it was a debt they also tried to pay me money I was not entitled to and refused to stop the payment (even though I was asking them to stop the payment before it happened).', \"I kept getting phone calls, a number i didn't recognise, 3-4 times a week. When i answered it would be prerecorded message, an American accent telling me I needed to contact some legal firm, when I called the number, i'd get another pre-recorded message.\", \"I broke both my legs and was in a wheelchair for months and I work as a chef I had to prove I wasn't working, and told me that I declared that I made $0 that year which is a lie gave me $5500 debt I asked for evidence several time with no success. Might I add I've work all my adult life first time I really need centerlink then I worked my arse off to be able to walk again and earn my money just to get back to work.\", 'I also noted in evidence departmental statistics on the sole use of income averaging to raise debts under Labor ministers Plibersek and Bowen and form and actual letters used by the department going back as far as 1994 that highlighted this practice. The evidence I provided to the commission was entirely truthful.', 'Robodebt has shaken not only my trust but the trust of our society in the Australian Public Service. I know that the frontline workers do their best, in sometimes very difficult circumstances, to deal with the public who are very stressed, but there was a complete failure of leadership in the higher echelons of the Public Service and a complete failure of political courage and political understanding of the importance of providing support to the most disadvantaged in our society.', 'I am still shocked by the response of the previous government, and I still cannot understand why they pushed forward over a number of years in this process. Despite any advice about how bad the Centrelink retrieval of debt process was, they still refused to act, and they should hang their heads in shame about it.', 'In 2021, I spoke in this place about how my electorate of Macarthur had lost people to suicide because of the stress that robodebt had placed upon them. I saw it firsthand. People in my electorate felt and lived firsthand how the former coalition government and those senior public servants who backed in this terrible scheme did not care for them, their families or their attempts to deal with such a pathetic witch-hunt, known as robodebt.']", "Score the following statement for each of the eleven themes. Remember to be really precise!\n\nScore the following statement for each of the eleven themes. Remember to be really precise!\n\nprompt9a135b2b-b4f6-4464-88c8-134b61e40019", "You are a qualitative researcher working in digital media studies. Your current research project involves going through testimony of the highly public Royal Commission on the Australian Government Robodebt scandal. Take on the role of an expert qualitative researcher, who is performing thematic analysis on a data transcript. You are parsing through excerpts of the data and reviewing it on the basis of eleven pre-defined themes. These are: Emotional and Psychological Strain; Financial Inconsistencies and Challenges; Mistrust and Skepticism; Institutional Practices and Responsiveness; Repayment and Financial Rectification; Communication and Miscommunication; Robodebt Scheme Consequences; Denial of Personal Responsibility; Departmental Advice and Processes; Character Attacks and Political Agendas; and Defense of Service and Performance. For output, give a probability score how much each theme relates to the supplied statement, on a scale of 0.0 to 100.0. Just give the scores, no preamble or other text.", "Score the following statement for each of the eleven themes. Remember to be really precise!\n\nprompte6e2d841-dd58-4b34-86aa-e30de7a85cfc" ]
2024-01-10
MrReochen/MultiAgentModule
MAModule~envs~env_wrappers.py
""" Modified from OpenAI Baselines code to work with multi-agent envs """ import numpy as np import torch from multiprocessing import Process, Pipe from abc import ABC, abstractmethod from ..utils.util import tile_images class CloudpickleWrapper(object): """ Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle) """ def __init__(self, x): self.x = x def __getstate__(self): import cloudpickle return cloudpickle.dumps(self.x) def __setstate__(self, ob): import pickle self.x = pickle.loads(ob) class ShareVecEnv(ABC): """ An abstract asynchronous, vectorized environment. Used to batch data from multiple copies of an environment, so that each observation becomes an batch of observations, and expected action is a batch of actions to be applied per-environment. """ closed = False viewer = None metadata = { 'render.modes': ['human', 'rgb_array'] } def __init__(self, num_envs, observation_space, share_observation_space, state_space, action_space): self.num_envs = num_envs self.observation_space = observation_space self.share_observation_space = share_observation_space self.state_space = state_space self.action_space = action_space @abstractmethod def reset(self): """ Reset all the environments and return an array of observations, or a dict of observation arrays. If step_async is still doing work, that work will be cancelled and step_wait() should not be called until step_async() is invoked again. """ pass @abstractmethod def step_async(self, actions): """ Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of the step. You should not call this if a step_async run is already pending. """ pass @abstractmethod def step_wait(self): """ Wait for the step taken with step_async(). Returns (obs, rews, dones, infos): - obs: an array of observations, or a dict of arrays of observations. - rews: an array of rewards - dones: an array of "episode done" booleans - infos: a sequence of info objects """ pass def close_extras(self): """ Clean up the extra resources, beyond what's in this base class. Only runs when not self.closed. """ pass def close(self): if self.closed: return if self.viewer is not None: self.viewer.close() self.close_extras() self.closed = True def step(self, actions): """ Step the environments synchronously. This is available for backwards compatibility. """ self.step_async(actions) return self.step_wait() def render(self, mode='human'): imgs = self.get_images() bigimg = tile_images(imgs) if mode == 'human': self.get_viewer().imshow(bigimg) return self.get_viewer().isopen elif mode == 'rgb_array': return bigimg else: raise NotImplementedError def get_images(self): """ Return RGB images from each environment """ raise NotImplementedError @property def unwrapped(self): if isinstance(self, VecEnvWrapper): return self.venv.unwrapped else: return self def get_viewer(self): if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.SimpleImageViewer() return self.viewer def worker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, reward, done, info = env.step(data) if 'bool' in done.__class__.__name__: if done: ob = env.reset() else: if np.all(done): ob = env.reset() remote.send((ob, reward, done, info)) elif cmd == 'reset': ob = env.reset() remote.send((ob)) elif cmd == 'render': if data == "rgb_array": fr = env.render(mode=data) remote.send(fr) elif data == "human": env.render(mode=data) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': env.close() remote.close() break elif cmd == 'get_spaces': remote.send((env.observation_space, env.share_observation_space, env.action_space)) else: raise NotImplementedError class GuardSubprocVecEnv(ShareVecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = False # could cause zombie process p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, share_observation_space, action_space = self.remotes[0].recv() ShareVecEnv.__init__(self, len(env_fns), observation_space, share_observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, rews, dones, infos = zip(*results) return np.stack(obs), np.stack(rews), np.stack(dones), infos def reset(self): for remote in self.remotes: remote.send(('reset', None)) obs = [remote.recv() for remote in self.remotes] return np.stack(obs) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True class SubprocVecEnv(ShareVecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, share_observation_space, action_space = self.remotes[0].recv() ShareVecEnv.__init__(self, len(env_fns), observation_space, share_observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, rews, dones, infos = zip(*results) return np.stack(obs), np.stack(rews), np.stack(dones), infos def reset(self): for remote in self.remotes: remote.send(('reset', None)) obs = [remote.recv() for remote in self.remotes] return np.stack(obs) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True def render(self, mode="rgb_array"): for remote in self.remotes: remote.send(('render', mode)) if mode == "rgb_array": frame = [remote.recv() for remote in self.remotes] return np.stack(frame) def shareworker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, s_ob, state, reward, done, info, available_actions = env.step(data) if 'bool' in done.__class__.__name__: if done: ob, s_ob, state, available_actions = env.reset() else: if np.all(done): ob, s_ob, state, available_actions = env.reset() remote.send((ob, s_ob, state, reward, done, info, available_actions)) elif cmd == 'reset': ob, s_ob, state, available_actions = env.reset() remote.send((ob, s_ob, state, available_actions)) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'render': if data == "rgb_array": fr = env.render(mode=data) remote.send(fr) elif data == "human": env.render(mode=data) elif cmd == 'close': env.close() remote.close() break elif cmd == 'get_spaces': remote.send( (env.observation_space, env.share_observation_space, env.state_space, env.action_space)) elif cmd == 'render_vulnerability': fr = env.render_vulnerability(data) remote.send((fr)) else: raise NotImplementedError class ShareSubprocVecEnv(ShareVecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=shareworker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, share_observation_space, state_space, action_space = self.remotes[0].recv( ) ShareVecEnv.__init__(self, len(env_fns), observation_space, share_observation_space, state_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, share_obs, state, rews, dones, infos, available_actions = zip(*results) return np.stack(obs), np.stack(share_obs), np.stack(state), np.stack(rews), np.stack(dones), infos, np.stack(available_actions) def reset(self): for remote in self.remotes: remote.send(('reset', None)) results = [remote.recv() for remote in self.remotes] obs, share_obs, state, available_actions = zip(*results) return np.stack(obs), np.stack(share_obs), np.stack(state), np.stack(available_actions) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True def choosesimpleworker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, reward, done, info = env.step(data) remote.send((ob, reward, done, info)) elif cmd == 'reset': ob = env.reset(data) remote.send((ob)) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': env.close() remote.close() break elif cmd == 'render': if data == "rgb_array": fr = env.render(mode=data) remote.send(fr) elif data == "human": env.render(mode=data) elif cmd == 'get_spaces': remote.send( (env.observation_space, env.share_observation_space, env.action_space)) else: raise NotImplementedError class ChooseSimpleSubprocVecEnv(ShareVecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=choosesimpleworker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, share_observation_space, action_space = self.remotes[0].recv() ShareVecEnv.__init__(self, len(env_fns), observation_space, share_observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, rews, dones, infos = zip(*results) return np.stack(obs), np.stack(rews), np.stack(dones), infos def reset(self, reset_choose): for remote, choose in zip(self.remotes, reset_choose): remote.send(('reset', choose)) obs = [remote.recv() for remote in self.remotes] return np.stack(obs) def render(self, mode="rgb_array"): for remote in self.remotes: remote.send(('render', mode)) if mode == "rgb_array": frame = [remote.recv() for remote in self.remotes] return np.stack(frame) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True def chooseworker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, s_ob, reward, done, info, available_actions = env.step(data) remote.send((ob, s_ob, reward, done, info, available_actions)) elif cmd == 'reset': ob, s_ob, available_actions = env.reset(data) remote.send((ob, s_ob, available_actions)) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': env.close() remote.close() break elif cmd == 'render': remote.send(env.render(mode='rgb_array')) elif cmd == 'get_spaces': remote.send( (env.observation_space, env.share_observation_space, env.action_space)) else: raise NotImplementedError class ChooseSubprocVecEnv(ShareVecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=chooseworker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, share_observation_space, action_space = self.remotes[0].recv( ) ShareVecEnv.__init__(self, len(env_fns), observation_space, share_observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, share_obs, rews, dones, infos, available_actions = zip(*results) return np.stack(obs), np.stack(share_obs), np.stack(rews), np.stack(dones), infos, np.stack(available_actions) def reset(self, reset_choose): for remote, choose in zip(self.remotes, reset_choose): remote.send(('reset', choose)) results = [remote.recv() for remote in self.remotes] obs, share_obs, available_actions = zip(*results) return np.stack(obs), np.stack(share_obs), np.stack(available_actions) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True def chooseguardworker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, reward, done, info = env.step(data) remote.send((ob, reward, done, info)) elif cmd == 'reset': ob = env.reset(data) remote.send((ob)) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': env.close() remote.close() break elif cmd == 'get_spaces': remote.send( (env.observation_space, env.share_observation_space, env.action_space)) else: raise NotImplementedError class ChooseGuardSubprocVecEnv(ShareVecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=chooseguardworker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = False # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, share_observation_space, action_space = self.remotes[0].recv( ) ShareVecEnv.__init__(self, len(env_fns), observation_space, share_observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, rews, dones, infos = zip(*results) return np.stack(obs), np.stack(rews), np.stack(dones), infos def reset(self, reset_choose): for remote, choose in zip(self.remotes, reset_choose): remote.send(('reset', choose)) obs = [remote.recv() for remote in self.remotes] return np.stack(obs) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True # single env class DummyVecEnv(ShareVecEnv): def __init__(self, env_fns): self.envs = [fn() for fn in env_fns] env = self.envs[0] ShareVecEnv.__init__(self, len( env_fns), env.observation_space, env.share_observation_space, env.action_space) self.actions = None def step_async(self, actions): self.actions = actions def step_wait(self): results = [env.step(a) for (a, env) in zip(self.actions, self.envs)] obs, rews, dones, infos = map(np.array, zip(*results)) for (i, done) in enumerate(dones): if 'bool' in done.__class__.__name__: if done: obs[i] = self.envs[i].reset() else: if np.all(done): obs[i] = self.envs[i].reset() self.actions = None return obs, rews, dones, infos def reset(self): obs = [env.reset() for env in self.envs] return np.array(obs) def close(self): for env in self.envs: env.close() def render(self, mode="human"): if mode == "rgb_array": return np.array([env.render(mode=mode) for env in self.envs]) elif mode == "human": for env in self.envs: env.render(mode=mode) else: raise NotImplementedError class ShareDummyVecEnv(ShareVecEnv): def __init__(self, env_fns): self.envs = [fn() for fn in env_fns] env = self.envs[0] ShareVecEnv.__init__(self, len( env_fns), env.observation_space, env.share_observation_space, env.state_space, env.action_space) self.actions = None def step_async(self, actions): self.actions = actions def step_wait(self): results = [env.step(a) for (a, env) in zip(self.actions, self.envs)] obs, share_obs, state, rews, dones, infos, available_actions = map( np.array, zip(*results)) for (i, done) in enumerate(dones): if 'bool' in done.__class__.__name__: if done: obs[i], share_obs[i], state[i], available_actions[i] = self.envs[i].reset() else: if np.all(done): obs[i], share_obs[i], state[i], available_actions[i] = self.envs[i].reset() self.actions = None return obs, share_obs, state, rews, dones, infos, available_actions def reset(self): results = [env.reset() for env in self.envs] obs, share_obs, state, available_actions = map(np.array, zip(*results)) return obs, share_obs, state, available_actions def close(self): for env in self.envs: env.close() def render(self, mode="human"): if mode == "rgb_array": return np.array([env.render(mode=mode) for env in self.envs]) elif mode == "human": for env in self.envs: env.render(mode=mode) else: raise NotImplementedError class ChooseDummyVecEnv(ShareVecEnv): def __init__(self, env_fns): self.envs = [fn() for fn in env_fns] env = self.envs[0] ShareVecEnv.__init__(self, len( env_fns), env.observation_space, env.share_observation_space, env.action_space) self.actions = None def step_async(self, actions): self.actions = actions def step_wait(self): results = [env.step(a) for (a, env) in zip(self.actions, self.envs)] obs, share_obs, rews, dones, infos, available_actions = map( np.array, zip(*results)) self.actions = None return obs, share_obs, rews, dones, infos, available_actions def reset(self, reset_choose): results = [env.reset(choose) for (env, choose) in zip(self.envs, reset_choose)] obs, share_obs, available_actions = map(np.array, zip(*results)) return obs, share_obs, available_actions def close(self): for env in self.envs: env.close() def render(self, mode="human"): if mode == "rgb_array": return np.array([env.render(mode=mode) for env in self.envs]) elif mode == "human": for env in self.envs: env.render(mode=mode) else: raise NotImplementedError class ChooseSimpleDummyVecEnv(ShareVecEnv): def __init__(self, env_fns): self.envs = [fn() for fn in env_fns] env = self.envs[0] ShareVecEnv.__init__(self, len( env_fns), env.observation_space, env.share_observation_space, env.action_space) self.actions = None def step_async(self, actions): self.actions = actions def step_wait(self): results = [env.step(a) for (a, env) in zip(self.actions, self.envs)] obs, rews, dones, infos = map(np.array, zip(*results)) self.actions = None return obs, rews, dones, infos def reset(self, reset_choose): obs = [env.reset(choose) for (env, choose) in zip(self.envs, reset_choose)] return np.array(obs) def close(self): for env in self.envs: env.close() def render(self, mode="human"): if mode == "rgb_array": return np.array([env.render(mode=mode) for env in self.envs]) elif mode == "human": for env in self.envs: env.render(mode=mode) else: raise NotImplementedError
[]
2024-01-10
Robotics2024/singing-bot
src~asking_question.py
import os import openai import json #loading key with open('api-key.txt','r') as key: data = key.read().strip() openai.api_key = data # QUESTION_PROMPT = "Type your question here: " # # Get user input # question = input(QUESTION_PROMPT) def asking_question(question): print("Asking ChatGPT this question: " + question) try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", # Specify the chat model ("gpt-4.0" is recommended for the latest version) messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": question}, ], temperature= 0.7 ) answer = response.choices[0].message["content"] print('answer from chat gpt'+ str(answer)) usage = response['usage'] print("in this question we used: "+ str(usage['prompt_tokens']) + " prompt_tokens") print("in this question we used: "+ str(usage['completion_tokens']) + " completion_tokens") print("in this question we used: "+ str(usage['total_tokens']) + " total_tokens") except Exception as e: print("An error occurred:", str(e)) answer = "An error occurred while processing your request." return answer
[ "You are a helpful assistant." ]
2024-01-10
Cithoreal/AISchedule
journal_processor.py
import os from dotenv import load_dotenv from openai import OpenAI load_dotenv() client = OpenAI(api_key=os.getenv('OPENAI_API_KEY')) model = "gpt-3.5-turbo-1106" #model = "gpt-4" directory = "/home/Cithoreal/Nextcloud/Documents/Audio Journals/Transcriptions/" unprocessed = directory + "Unprocessed/" processed = directory + "Processed/" done = directory + "Done/" def process_journal(transcription): abstract_summary = abstract_summary_extraction(transcription) action_items = action_item_extraction(transcription) events = events_extraction(transcription) return { 'abstract_summary': abstract_summary, 'action_items': action_items, 'events': events } def abstract_summary_extraction(transcription): response = client.chat.completions.create( model=model, temperature=0, messages=[ { "role": "system", "content": "You are a highly skilled AI trained in language comprehension and summarization, with a focus on personal and professional narratives. Please read the text and summarize it into a concise abstract paragraph. The summary should reflect my first-person perspective, capturing key points relevant to my personal life and professional project ideas, while omitting extraneous details." }, { "role": "user", "content": transcription } ] ) return response.choices[0].message.content def action_item_extraction(transcription): response = client.chat.completions.create( model=model, temperature=0, messages=[ { "role": "system", "content": "You are an AI expert in analyzing conversations for actionable insights. Review the text and identify tasks, assignments, or actions." }, { "role": "user", "content": transcription } ] ) return response.choices[0].message.content def events_extraction(transcription): response = client.chat.completions.create( model=model, temperature=0, messages=[ { "role": "system", "content": "You are an AI expert in analyzing conversations for actionable insights. Review the text and identify events mentioned." }, { "role": "user", "content": transcription } ] ) return response.choices[0].message.content #Save as formatted .md file instead of docx def save_as_md(minutes, filename): with open(filename, "w") as f: for key, value in minutes.items(): # Replace underscores with spaces and capitalize each word for the heading heading = ' '.join(word.capitalize() for word in key.split('_')) f.write(f"# {heading}\n") f.write(f"{value}\n\n") #Loop through each file in the directory and transcribe it, when finished move the file to the processed folder for filename in os.listdir(unprocessed): if filename.endswith(".txt"): print(filename) transcription = open(unprocessed + filename, "r").read() document = process_journal(transcription) os.rename(unprocessed + filename, done + filename) save_as_md(document, processed + filename[:-3] + ".md") else: continue
[ "You are an AI expert in analyzing conversations for actionable insights. Review the text and identify tasks, assignments, or actions.", "You are a highly skilled AI trained in language comprehension and summarization, with a focus on personal and professional narratives. Please read the text and summarize it into a concise abstract paragraph. The summary should reflect my first-person perspective, capturing key points relevant to my personal life and professional project ideas, while omitting extraneous details.", "You are an AI expert in analyzing conversations for actionable insights. Review the text and identify events mentioned." ]
2024-01-10
Cithoreal/AISchedule
discord_bot.py
import os from dotenv import load_dotenv import discord_bot import discord from discord.ext import commands from openai_schedule_assistant import * from main import * load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') # Create the bot with a command prefix discord_bot = commands.Bot(command_prefix='!',intents=discord.Intents.default()) # Event handler for when the bot is ready @discord_bot.event async def on_ready(): print(f'Logged in as {discord_bot.user.name} (ID: {discord_bot.user.id})') print('------') activity = discord.Game(name="Scheduling your events | !help") await discord_bot.change_presence(status=discord.Status.online, activity=activity) @discord_bot.event async def on_message(ctx): try: #print(ctx.attachments) #if file attachment, download the file and read it. Send the whole text to the AI if ctx.attachments: for attachment in ctx.attachments: await attachment.save(attachment.filename) with open(attachment.filename, 'r') as file: data = await message_ai(file.read()) await ctx.channel.send(data) else: if not ctx.author.bot: data = await message_ai(ctx.content) await ctx.channel.send(data) #print(ctx.content) #if not ctx.author.bot: # data = message_ai(ctx.content) # await ctx.channel.send(data) except Exception as e: error_message = f"An error occurred while processing your message: {str(e)}" await ctx.channel.send(error_message) # Initialize and run the bot if __name__ == "__main__": discord_bot.run(TOKEN)
[]
2024-01-10
bingege-global/nas-tools
app~plugins~modules~_autosignin~chdbits.py
import json import os import random import re from lxml import etree from app.helper.openai_helper import OpenAiHelper from app.plugins.modules._autosignin._base import _ISiteSigninHandler from app.utils import StringUtils, RequestUtils from config import Config class CHDBits(_ISiteSigninHandler): """ ๅฝฉ่™นๅฒ›็ญพๅˆฐ ๅฆ‚ๆžœๅกซๅ†™openai keyๅˆ™่ฐƒ็”จchatgpt่Žทๅ–็ญ”ๆกˆ ๅฆๅˆ™้šๆœบ """ # ๅŒน้…็š„็ซ™็‚นUrl๏ผŒๆฏไธ€ไธชๅฎž็Žฐ็ฑป้ƒฝ้œ€่ฆ่ฎพ็ฝฎไธบ่‡ชๅทฑ็š„็ซ™็‚นUrl site_url = "chdbits.co" # ๅทฒ็ญพๅˆฐ _sign_regex = ['ไปŠๅคฉๅทฒ็ป็ญพ่ฟ‡ๅˆฐไบ†'] # ็ญพๅˆฐๆˆๅŠŸ๏ผŒๅพ…่กฅๅ…… _success_regex = ['\\d+็‚น้ญ”ๅŠ›ๅ€ผ'] # ๅญ˜ๅ‚จๆญฃ็กฎ็š„็ญ”ๆกˆ๏ผŒๅŽ็ปญๅฏ็›ดๆŽฅๆŸฅ _answer_path = os.path.join(Config().get_temp_path(), "signin") _answer_file = _answer_path + "/chdbits.json" @classmethod def match(cls, url): """ ๆ นๆฎ็ซ™็‚นUrlๅˆคๆ–ญๆ˜ฏๅฆๅŒน้…ๅฝ“ๅ‰็ซ™็‚น็ญพๅˆฐ็ฑป๏ผŒๅคง้ƒจๅˆ†ๆƒ…ๅ†ตไฝฟ็”จ้ป˜่ฎคๅฎž็Žฐๅณๅฏ :param url: ็ซ™็‚นUrl :return: ๆ˜ฏๅฆๅŒน้…๏ผŒๅฆ‚ๅŒน้…ๅˆ™ไผš่ฐƒ็”จ่ฏฅ็ฑป็š„signinๆ–นๆณ• """ return True if StringUtils.url_equal(url, cls.site_url) else False def signin(self, site_info: dict): """ ๆ‰ง่กŒ็ญพๅˆฐๆ“ไฝœ :param site_info: ็ซ™็‚นไฟกๆฏ๏ผŒๅซๆœ‰็ซ™็‚นUrlใ€็ซ™็‚นCookieใ€UA็ญ‰ไฟกๆฏ :return: ็ญพๅˆฐ็ป“ๆžœไฟกๆฏ """ site = site_info.get("name") site_cookie = site_info.get("cookie") ua = site_info.get("ua") proxy = Config().get_proxies() if site_info.get("proxy") else None # ๅˆ›ๅปบๆญฃ็กฎ็ญ”ๆกˆๅญ˜ๅ‚จ็›ฎๅฝ• if not os.path.exists(os.path.dirname(self._answer_file)): os.makedirs(os.path.dirname(self._answer_file)) # ๅˆคๆ–ญไปŠๆ—ฅๆ˜ฏๅฆๅทฒ็ญพๅˆฐ index_res = RequestUtils(cookies=site_cookie, headers=ua, proxies=proxy ).get_res(url='https://chdbits.co/bakatest.php') if not index_res or index_res.status_code != 200: self.error(f"็ญพๅˆฐๅคฑ่ดฅ๏ผŒ่ฏทๆฃ€ๆŸฅ็ซ™็‚น่ฟž้€šๆ€ง") return False, f'ใ€{site}ใ€‘็ญพๅˆฐๅคฑ่ดฅ๏ผŒ่ฏทๆฃ€ๆŸฅ็ซ™็‚น่ฟž้€šๆ€ง' if "login.php" in index_res.text: self.error(f"็ญพๅˆฐๅคฑ่ดฅ๏ผŒcookieๅคฑๆ•ˆ") return False, f'ใ€{site}ใ€‘็ญพๅˆฐๅคฑ่ดฅ๏ผŒcookieๅคฑๆ•ˆ' sign_status = self.sign_in_result(html_res=index_res.text, regexs=self._sign_regex) if sign_status: self.info(f"ไปŠๆ—ฅๅทฒ็ญพๅˆฐ") return True, f'ใ€{site}ใ€‘ไปŠๆ—ฅๅทฒ็ญพๅˆฐ' # ๆฒกๆœ‰็ญพๅˆฐๅˆ™่งฃๆžhtml html = etree.HTML(index_res.text) if not html: return False, f'ใ€{site}ใ€‘็ญพๅˆฐๅคฑ่ดฅ' # ่Žทๅ–้กต้ข้—ฎ้ข˜ใ€็ญ”ๆกˆ questionid = html.xpath("//input[@name='questionid']/@value")[0] option_ids = html.xpath("//input[@name='choice[]']/@value") option_values = html.xpath("//input[@name='choice[]']/following-sibling::text()") question_str = html.xpath("//td[@class='text' and contains(text(),'่ฏท้—ฎ๏ผš')]/text()")[0] answers = list(zip(option_ids, option_values)) # ๆญฃๅˆ™่Žทๅ–้—ฎ้ข˜ match = re.search(r'่ฏท้—ฎ๏ผš(.+)', question_str) if match: question_str = match.group(1) self.debug(f"่Žทๅ–ๅˆฐ็ญพๅˆฐ้—ฎ้ข˜ {question_str}") else: self.error(f"ๆœช่Žทๅ–ๅˆฐ็ญพๅˆฐ้—ฎ้ข˜") return False, f"ใ€{site}ใ€‘็ญพๅˆฐๅคฑ่ดฅ๏ผŒๆœช่Žทๅ–ๅˆฐ็ญพๅˆฐ้—ฎ้ข˜" # ๆŸฅ่ฏขๅทฒๆœ‰็ญ”ๆกˆ exits_answers = {} try: with open(self._answer_file, 'r') as f: json_str = f.read() exits_answers = json.loads(json_str) # ๆŸฅ่ฏขๆœฌๅœฐๆœฌๆฌก้ชŒ่ฏ็ hash็ญ”ๆกˆ question_answer = exits_answers[question_str] # question_answerๆ˜ฏๆ•ฐ็ป„ if not isinstance(question_answer, list): question_answer = [question_answer] # ๆœฌๅœฐๅญ˜ๅœจๆœฌๆฌกhashๅฏนๅบ”็š„ๆญฃ็กฎ็ญ”ๆกˆๅ†้ๅކๆŸฅ่ฏข choice = [] for q in question_answer: for num, answer in answers: if str(q) == str(num): choice.append(int(q)) if len(choice) > 0: # ็ญพๅˆฐ return self.__signin(questionid=questionid, choice=choice, site_cookie=site_cookie, ua=ua, proxy=proxy, site=site) except (FileNotFoundError, IOError, OSError) as e: self.debug("ๆŸฅ่ฏขๆœฌๅœฐๅทฒ็Ÿฅ็ญ”ๆกˆๅคฑ่ดฅ๏ผŒ็ปง็ปญ่ฏทๆฑ‚่ฑ†็“ฃๆŸฅ่ฏข") # ๆญฃ็กฎ็ญ”ๆกˆ๏ผŒ้ป˜่ฎค้šๆœบ๏ผŒๅฆ‚ๆžœgpt่ฟ”ๅ›žๅˆ™็”จgpt่ฟ”ๅ›ž็š„็ญ”ๆกˆๆไบค choice = [option_ids[random.randint(0, len(option_ids) - 1)]] # ็ป„่ฃ…gpt้—ฎ้ข˜ gpt_options = "{\n" + ",\n".join([f"{num}:{value}" for num, value in answers]) + "\n}" gpt_question = f"้ข˜็›ฎ๏ผš{question_str}\n" \ f"้€‰้กน๏ผš{gpt_options}" self.debug(f"็ป„่ฃ…chatgpt้—ฎ้ข˜ {gpt_question}") # chatgpt่Žทๅ–็ญ”ๆกˆ answer = OpenAiHelper().get_question_answer(question=gpt_question) self.debug(f"chatpgt่ฟ”ๅ›ž็ป“ๆžœ {answer}") # ๅค„็†chatgpt่ฟ”ๅ›ž็š„็ญ”ๆกˆไฟกๆฏ if answer is None: self.warn(f"ChatGPTๆœชๅฏ็”จ, ๅผ€ๅง‹้šๆœบ็ญพๅˆฐ") # return f"ใ€{site}ใ€‘็ญพๅˆฐๅคฑ่ดฅ๏ผŒChatGPTๆœชๅฏ็”จ" elif answer: # ๆญฃๅˆ™่Žทๅ–ๅญ—็ฌฆไธฒไธญ็š„ๆ•ฐๅญ— answer_nums = list(map(int, re.findall("\d+", answer))) if not answer_nums: self.warn(f"ๆ— ๆณ•ไปŽchatgptๅ›žๅค {answer} ไธญ่Žทๅ–็ญ”ๆกˆ, ๅฐ†้‡‡็”จ้šๆœบ็ญพๅˆฐ") else: choice = [] for answer in answer_nums: # ๅฆ‚ๆžœ่ฟ”ๅ›ž็š„ๆ•ฐๅญ—ๅœจoption_ids่Œƒๅ›ดๅ†…๏ผŒๅˆ™็›ดๆŽฅไฝœไธบ็ญ”ๆกˆ if str(answer) in option_ids: choice.append(int(answer)) self.info(f"chatgpt่ฟ”ๅ›ž็ญ”ๆกˆid {answer} ๅœจ็ญพๅˆฐ้€‰้กน {option_ids} ไธญ") # ็ญพๅˆฐ return self.__signin(questionid=questionid, choice=choice, site_cookie=site_cookie, ua=ua, proxy=proxy, site=site, exits_answers=exits_answers, question=question_str) def __signin(self, questionid, choice, site, site_cookie, ua, proxy, exits_answers=None, question=None): """ ็ญพๅˆฐ่ฏทๆฑ‚ questionid: 450 choice[]: 8 choice[]: 4 usercomment: ๆญคๅˆปๅฟƒๆƒ…:ๆ—  submit: ๆไบค ๅคš้€‰ไผšๆœ‰ๅคšไธชchoice[].... """ data = { 'questionid': questionid, 'choice[]': choice[0] if len(choice) == 1 else choice, 'usercomment': 'ๅคช้šพไบ†๏ผ', 'wantskip': 'ไธไผš' } self.debug(f"็ญพๅˆฐ่ฏทๆฑ‚ๅ‚ๆ•ฐ {data}") sign_res = RequestUtils(cookies=site_cookie, headers=ua, proxies=proxy ).post_res(url='https://chdbits.co/bakatest.php', data=data) if not sign_res or sign_res.status_code != 200: self.error(f"็ญพๅˆฐๅคฑ่ดฅ๏ผŒ็ญพๅˆฐๆŽฅๅฃ่ฏทๆฑ‚ๅคฑ่ดฅ") return False, f'ใ€{site}ใ€‘็ญพๅˆฐๅคฑ่ดฅ๏ผŒ็ญพๅˆฐๆŽฅๅฃ่ฏทๆฑ‚ๅคฑ่ดฅ' # ๅˆคๆ–ญๆ˜ฏๅฆ็ญพๅˆฐๆˆๅŠŸ sign_status = self.sign_in_result(html_res=sign_res.text, regexs=self._success_regex) if sign_status: self.info(f"็ญพๅˆฐๆˆๅŠŸ") if exits_answers and question: # ็ญพๅˆฐๆˆๅŠŸๅ†™ๅ…ฅๆœฌๅœฐๆ–‡ไปถ self.__write_local_answer(exits_answers=exits_answers or {}, question=question, answer=choice) return True, f'ใ€{site}ใ€‘็ญพๅˆฐๆˆๅŠŸ' else: sign_status = self.sign_in_result(html_res=sign_res.text, regexs=self._sign_regex) if sign_status: self.info(f"ไปŠๆ—ฅๅทฒ็ญพๅˆฐ") return True, f'ใ€{site}ใ€‘ไปŠๆ—ฅๅทฒ็ญพๅˆฐ' self.error(f"็ญพๅˆฐๅคฑ่ดฅ๏ผŒ่ฏทๅˆฐ้กต้ขๆŸฅ็œ‹") return False, f'ใ€{site}ใ€‘็ญพๅˆฐๅคฑ่ดฅ๏ผŒ่ฏทๅˆฐ้กต้ขๆŸฅ็œ‹' def __write_local_answer(self, exits_answers, question, answer): """ ็ญพๅˆฐๆˆๅŠŸๅ†™ๅ…ฅๆœฌๅœฐๆ–‡ไปถ """ try: exits_answers[question] = answer # ๅบๅˆ—ๅŒ–ๆ•ฐๆฎ formatted_data = json.dumps(exits_answers, indent=4) with open(self._answer_file, 'w') as f: f.write(formatted_data) except (FileNotFoundError, IOError, OSError) as e: self.debug("็ญพๅˆฐๆˆๅŠŸๅ†™ๅ…ฅๆœฌๅœฐๆ–‡ไปถๅคฑ่ดฅ")
[]
2024-01-10
bingege-global/nas-tools
app~media~media.py
import difflib import os import random import re import traceback from functools import lru_cache import zhconv from lxml import etree import log from app.helper import MetaHelper from app.helper.openai_helper import OpenAiHelper from app.media.meta.metainfo import MetaInfo from app.media.tmdbv3api import TMDb, Search, Movie, TV, Person, Find, TMDbException, Discover, Trending, Episode, Genre from app.utils import PathUtils, EpisodeFormat, RequestUtils, NumberUtils, StringUtils, cacheman from app.utils.types import MediaType, MatchMode from config import Config, KEYWORD_BLACKLIST, KEYWORD_SEARCH_WEIGHT_3, KEYWORD_SEARCH_WEIGHT_2, KEYWORD_SEARCH_WEIGHT_1, \ KEYWORD_STR_SIMILARITY_THRESHOLD, KEYWORD_DIFF_SCORE_THRESHOLD class Media: # TheMovieDB tmdb = None search = None movie = None tv = None episode = None person = None find = None trending = None discover = None genre = None meta = None openai = None _rmt_match_mode = None _search_keyword = None _search_tmdbweb = None _chatgpt_enable = None _default_language = None def __init__(self): self.init_config() def init_config(self): app = Config().get_config('app') media = Config().get_config('media') laboratory = Config().get_config('laboratory') # ่พ…ๅŠฉๆŸฅ่ฏข self._search_keyword = laboratory.get("search_keyword") # WEB่พ…ๅŠฉ self._search_tmdbweb = laboratory.get("search_tmdbweb") # ChatGPT่พ…ๅŠฉ self._chatgpt_enable = laboratory.get("chatgpt_enable") # ้ป˜่ฎค่ฏญ่จ€ self._default_language = media.get("tmdb_language", "zh") or "zh" # TMDB if app.get('rmt_tmdbkey'): # TMDBไธปไฝ“ self.tmdb = TMDb() # ๅŸŸๅ self.tmdb.domain = Config().get_tmdbapi_url() # ๅผ€ๅฏ็ผ“ๅญ˜ self.tmdb.cache = True # APIKEY self.tmdb.api_key = app.get('rmt_tmdbkey') # ่ฏญ็ง self.tmdb.language = self._default_language # ไปฃ็† self.tmdb.proxies = Config().get_proxies() # ่ฐƒ่ฏ•ๆจกๅผ self.tmdb.debug = False # ๆŸฅ่ฏขๅฏน่ฑก self.search = Search() self.movie = Movie() self.tv = TV() self.episode = Episode() self.find = Find() self.person = Person() self.trending = Trending() self.discover = Discover() self.genre = Genre() # ๅ…ƒๆ•ฐๆฎ็ผ“ๅญ˜ self.meta = MetaHelper() # ChatGPT self.openai = OpenAiHelper() # ๅŒน้…ๆจกๅผ rmt_match_mode = app.get('rmt_match_mode', 'normal') if rmt_match_mode: rmt_match_mode = rmt_match_mode.upper() else: rmt_match_mode = "NORMAL" if rmt_match_mode == "STRICT": self._rmt_match_mode = MatchMode.STRICT else: self._rmt_match_mode = MatchMode.NORMAL def __set_language(self, language): """ ่ฎพ็ฝฎ่ฏญ่จ€ :param language: zh/en """ if not self.tmdb: return if language: self.tmdb.language = language else: self.tmdb.language = self._default_language @staticmethod def __compare_tmdb_names(file_name, tmdb_names): """ ๆฏ”่พƒๆ–‡ไปถๅๆ˜ฏๅฆๅŒน้…๏ผŒๅฟฝ็•ฅๅคงๅฐๅ†™ๅ’Œ็‰นๆฎŠๅญ—็ฌฆ :param file_name: ่ฏ†ๅˆซ็š„ๆ–‡ไปถๅๆˆ–่€…็งๅญๅ :param tmdb_names: TMDB่ฟ”ๅ›ž็š„่ฏ‘ๅ :return: True or False """ if not file_name or not tmdb_names: return False if not isinstance(tmdb_names, list): tmdb_names = [tmdb_names] file_name = StringUtils.handler_special_chars(file_name).upper() for tmdb_name in tmdb_names: tmdb_name = StringUtils.handler_special_chars(tmdb_name).strip().upper() if file_name == tmdb_name: return True return False def __search_tmdb_allnames(self, mtype: MediaType, tmdb_id): """ ๆœ็ดขtmdbไธญๆ‰€ๆœ‰็š„ๆ ‡้ข˜ๅ’Œ่ฏ‘ๅ๏ผŒ็”จไบŽๅ็งฐๅŒน้… :param mtype: ็ฑปๅž‹๏ผš็”ตๅฝฑใ€็”ต่ง†ๅ‰งใ€ๅŠจๆผซ :param tmdb_id: TMDB็š„ID :return: ๆ‰€ๆœ‰่ฏ‘ๅ็š„ๆธ…ๅ• """ if not mtype or not tmdb_id: return {}, [] ret_names = [] tmdb_info = self.get_tmdb_info(mtype=mtype, tmdbid=tmdb_id) if not tmdb_info: return tmdb_info, [] if mtype == MediaType.MOVIE: alternative_titles = tmdb_info.get("alternative_titles", {}).get("titles", []) for alternative_title in alternative_titles: title = alternative_title.get("title") if title and title not in ret_names: ret_names.append(title) translations = tmdb_info.get("translations", {}).get("translations", []) for translation in translations: title = translation.get("data", {}).get("title") if title and title not in ret_names: ret_names.append(title) else: alternative_titles = tmdb_info.get("alternative_titles", {}).get("results", []) for alternative_title in alternative_titles: name = alternative_title.get("title") if name and name not in ret_names: ret_names.append(name) translations = tmdb_info.get("translations", {}).get("translations", []) for translation in translations: name = translation.get("data", {}).get("name") if name and name not in ret_names: ret_names.append(name) return tmdb_info, ret_names def __search_tmdb(self, file_media_name, search_type, first_media_year=None, media_year=None, season_number=None): """ ๆœ็ดขtmdbไธญ็š„ๅช’ไฝ“ไฟกๆฏ๏ผŒๅŒน้…่ฟ”ๅ›žไธ€ๆกๅฐฝๅฏ่ƒฝๆญฃ็กฎ็š„ไฟกๆฏ :param file_media_name: ๅ‰‘็ดข็š„ๅ็งฐ :param search_type: ็ฑปๅž‹๏ผš็”ตๅฝฑใ€็”ต่ง†ๅ‰งใ€ๅŠจๆผซ :param first_media_year: ๅนดไปฝ๏ผŒๅฆ‚่ฆๆ˜ฏๅญฃ้›†้œ€่ฆๆ˜ฏ้ฆ–ๆ’ญๅนดไปฝ(first_air_date) :param media_year: ๅฝ“ๅ‰ๅญฃ้›†ๅนดไปฝ :param season_number: ๅญฃ้›†๏ผŒๆ•ดๆ•ฐ :return: TMDB็š„INFO๏ผŒๅŒๆ—ถไผšๅฐ†search_type่ต‹ๅ€ผๅˆฐmedia_typeไธญ """ if not self.search: return None if not file_media_name: return None # TMDBๆœ็ดข info = {} if search_type == MediaType.MOVIE: year_range = [first_media_year] if first_media_year: year_range.append(str(int(first_media_year) + 1)) year_range.append(str(int(first_media_year) - 1)) for year in year_range: log.debug( f"ใ€Metaใ€‘ๆญฃๅœจ่ฏ†ๅˆซ{search_type.value}๏ผš{file_media_name}, ๅนดไปฝ={year} ...") info = self.__search_movie_by_name(file_media_name, year) if info: info['media_type'] = MediaType.MOVIE log.info("ใ€Metaใ€‘%s ่ฏ†ๅˆซๅˆฐ ็”ตๅฝฑ๏ผšTMDBID=%s, ๅ็งฐ=%s, ไธŠๆ˜ ๆ—ฅๆœŸ=%s" % ( file_media_name, info.get('id'), info.get('title'), info.get('release_date'))) break else: # ๆœ‰ๅฝ“ๅ‰ๅญฃๅ’Œๅฝ“ๅ‰ๅญฃ้›†ๅนดไปฝ๏ผŒไฝฟ็”จ็ฒพ็กฎๅŒน้… if media_year and season_number: log.debug( f"ใ€Metaใ€‘ๆญฃๅœจ่ฏ†ๅˆซ{search_type.value}๏ผš{file_media_name}, ๅญฃ้›†={season_number}, ๅญฃ้›†ๅนดไปฝ={media_year} ...") info = self.__search_tv_by_season(file_media_name, media_year, season_number) if not info: log.debug( f"ใ€Metaใ€‘ๆญฃๅœจ่ฏ†ๅˆซ{search_type.value}๏ผš{file_media_name}, ๅนดไปฝ={StringUtils.xstr(first_media_year)} ...") info = self.__search_tv_by_name(file_media_name, first_media_year) if info: info['media_type'] = MediaType.TV log.info("ใ€Metaใ€‘%s ่ฏ†ๅˆซๅˆฐ ็”ต่ง†ๅ‰ง๏ผšTMDBID=%s, ๅ็งฐ=%s, ้ฆ–ๆ’ญๆ—ฅๆœŸ=%s" % ( file_media_name, info.get('id'), info.get('name'), info.get('first_air_date'))) # ่ฟ”ๅ›ž if not info: log.info("ใ€Metaใ€‘%s ไปฅๅนดไปฝ %s ๅœจTMDBไธญๆœชๆ‰พๅˆฐ%sไฟกๆฏ!" % ( file_media_name, StringUtils.xstr(first_media_year), search_type.value if search_type else "")) return info def __search_movie_by_name(self, file_media_name, first_media_year): """ ๆ นๆฎๅ็งฐๆŸฅ่ฏข็”ตๅฝฑTMDBๅŒน้… :param file_media_name: ่ฏ†ๅˆซ็š„ๆ–‡ไปถๅๆˆ–็งๅญๅ :param first_media_year: ็”ตๅฝฑไธŠๆ˜ ๆ—ฅๆœŸ :return: ๅŒน้…็š„ๅช’ไฝ“ไฟกๆฏ """ try: if first_media_year: movies = self.search.movies({"query": file_media_name, "year": first_media_year}) else: movies = self.search.movies({"query": file_media_name}) except TMDbException as err: log.error(f"ใ€Metaใ€‘่ฟžๆŽฅTMDBๅ‡บ้”™๏ผš{str(err)}") return None except Exception as e: log.error(f"ใ€Metaใ€‘่ฟžๆŽฅTMDBๅ‡บ้”™๏ผš{str(e)}") return None log.debug(f"ใ€Metaใ€‘API่ฟ”ๅ›ž๏ผš{str(self.search.total_results)}") if len(movies) == 0: log.debug(f"ใ€Metaใ€‘{file_media_name} ๆœชๆ‰พๅˆฐ็›ธๅ…ณ็”ตๅฝฑไฟกๆฏ!") return {} else: info = {} if first_media_year: for movie in movies: if movie.get('release_date'): if self.__compare_tmdb_names(file_media_name, movie.get('title')) \ and movie.get('release_date')[0:4] == str(first_media_year): return movie if self.__compare_tmdb_names(file_media_name, movie.get('original_title')) \ and movie.get('release_date')[0:4] == str(first_media_year): return movie else: for movie in movies: if self.__compare_tmdb_names(file_media_name, movie.get('title')) \ or self.__compare_tmdb_names(file_media_name, movie.get('original_title')): return movie if not info: index = 0 for movie in movies: if first_media_year: if not movie.get('release_date'): continue if movie.get('release_date')[0:4] != str(first_media_year): continue index += 1 info, names = self.__search_tmdb_allnames(MediaType.MOVIE, movie.get("id")) if self.__compare_tmdb_names(file_media_name, names): return info else: index += 1 info, names = self.__search_tmdb_allnames(MediaType.MOVIE, movie.get("id")) if self.__compare_tmdb_names(file_media_name, names): return info if index > 5: break return {} def __search_tv_by_name(self, file_media_name, first_media_year): """ ๆ นๆฎๅ็งฐๆŸฅ่ฏข็”ต่ง†ๅ‰งTMDBๅŒน้… :param file_media_name: ่ฏ†ๅˆซ็š„ๆ–‡ไปถๅๆˆ–่€…็งๅญๅ :param first_media_year: ็”ต่ง†ๅ‰ง็š„้ฆ–ๆ’ญๅนดไปฝ :return: ๅŒน้…็š„ๅช’ไฝ“ไฟกๆฏ """ try: if first_media_year: tvs = self.search.tv_shows({"query": file_media_name, "first_air_date_year": first_media_year}) else: tvs = self.search.tv_shows({"query": file_media_name}) except TMDbException as err: log.error(f"ใ€Metaใ€‘่ฟžๆŽฅTMDBๅ‡บ้”™๏ผš{str(err)}") return None except Exception as e: log.error(f"ใ€Metaใ€‘่ฟžๆŽฅTMDBๅ‡บ้”™๏ผš{str(e)}") return None log.debug(f"ใ€Metaใ€‘API่ฟ”ๅ›ž๏ผš{str(self.search.total_results)}") if len(tvs) == 0: log.debug(f"ใ€Metaใ€‘{file_media_name} ๆœชๆ‰พๅˆฐ็›ธๅ…ณๅ‰ง้›†ไฟกๆฏ!") return {} else: info = {} if first_media_year: for tv in tvs: if tv.get('first_air_date'): if self.__compare_tmdb_names(file_media_name, tv.get('name')) \ and tv.get('first_air_date')[0:4] == str(first_media_year): return tv if self.__compare_tmdb_names(file_media_name, tv.get('original_name')) \ and tv.get('first_air_date')[0:4] == str(first_media_year): return tv else: for tv in tvs: if self.__compare_tmdb_names(file_media_name, tv.get('name')) \ or self.__compare_tmdb_names(file_media_name, tv.get('original_name')): return tv if not info: index = 0 for tv in tvs: if first_media_year: if not tv.get('first_air_date'): continue if tv.get('first_air_date')[0:4] != str(first_media_year): continue index += 1 info, names = self.__search_tmdb_allnames(MediaType.TV, tv.get("id")) if self.__compare_tmdb_names(file_media_name, names): return info else: index += 1 info, names = self.__search_tmdb_allnames(MediaType.TV, tv.get("id")) if self.__compare_tmdb_names(file_media_name, names): return info if index > 5: break return {} def __search_tv_by_season(self, file_media_name, media_year, season_number): """ ๆ นๆฎ็”ต่ง†ๅ‰ง็š„ๅ็งฐๅ’Œๅญฃ็š„ๅนดไปฝๅŠๅบๅทๅŒน้…TMDB :param file_media_name: ่ฏ†ๅˆซ็š„ๆ–‡ไปถๅๆˆ–่€…็งๅญๅ :param media_year: ๅญฃ็š„ๅนดไปฝ :param season_number: ๅญฃๅบๅท :return: ๅŒน้…็š„ๅช’ไฝ“ไฟกๆฏ """ def __season_match(tv_info, season_year): if not tv_info: return False try: seasons = self.get_tmdb_tv_seasons(tv_info=tv_info) for season in seasons: if season.get("air_date") and season.get("season_number"): if season.get("air_date")[0:4] == str(season_year) \ and season.get("season_number") == int(season_number): return True except Exception as e1: log.error(f"ใ€Metaใ€‘่ฟžๆŽฅTMDBๅ‡บ้”™๏ผš{e1}") return False return False try: tvs = self.search.tv_shows({"query": file_media_name}) except TMDbException as err: log.error(f"ใ€Metaใ€‘่ฟžๆŽฅTMDBๅ‡บ้”™๏ผš{str(err)}") return None except Exception as e: log.error(f"ใ€Metaใ€‘่ฟžๆŽฅTMDBๅ‡บ้”™๏ผš{e}") return None if len(tvs) == 0: log.debug("ใ€Metaใ€‘%s ๆœชๆ‰พๅˆฐๅญฃ%s็›ธๅ…ณไฟกๆฏ!" % (file_media_name, season_number)) return {} else: for tv in tvs: if (self.__compare_tmdb_names(file_media_name, tv.get('name')) or self.__compare_tmdb_names(file_media_name, tv.get('original_name'))) \ and (tv.get('first_air_date') and tv.get('first_air_date')[0:4] == str(media_year)): return tv for tv in tvs[:5]: info, names = self.__search_tmdb_allnames(MediaType.TV, tv.get("id")) if not self.__compare_tmdb_names(file_media_name, names): continue if __season_match(tv_info=info, season_year=media_year): return info return {} def __search_multi_tmdb(self, file_media_name): """ ๆ นๆฎๅ็งฐๅŒๆ—ถๆŸฅ่ฏข็”ตๅฝฑๅ’Œ็”ต่ง†ๅ‰ง๏ผŒไธๅธฆๅนดไปฝ :param file_media_name: ่ฏ†ๅˆซ็š„ๆ–‡ไปถๅๆˆ–็งๅญๅ :return: ๅŒน้…็š„ๅช’ไฝ“ไฟกๆฏ """ try: multis = self.search.multi({"query": file_media_name}) or [] except TMDbException as err: log.error(f"ใ€Metaใ€‘่ฟžๆŽฅTMDBๅ‡บ้”™๏ผš{str(err)}") return None except Exception as e: log.error(f"ใ€Metaใ€‘่ฟžๆŽฅTMDBๅ‡บ้”™๏ผš{str(e)}") return None log.debug(f"ใ€Metaใ€‘API่ฟ”ๅ›ž๏ผš{str(self.search.total_results)}") if len(multis) == 0: log.debug(f"ใ€Metaใ€‘{file_media_name} ๆœชๆ‰พๅˆฐ็›ธๅ…ณๅช’ไฝ“ๆฏ!") return {} else: info = {} for multi in multis: if multi.get("media_type") == "movie": if self.__compare_tmdb_names(file_media_name, multi.get('title')) \ or self.__compare_tmdb_names(file_media_name, multi.get('original_title')): info = multi elif multi.get("media_type") == "tv": if self.__compare_tmdb_names(file_media_name, multi.get('name')) \ or self.__compare_tmdb_names(file_media_name, multi.get('original_name')): info = multi if not info: for multi in multis[:5]: if multi.get("media_type") == "movie": movie_info, names = self.__search_tmdb_allnames(MediaType.MOVIE, multi.get("id")) if self.__compare_tmdb_names(file_media_name, names): info = movie_info elif multi.get("media_type") == "tv": tv_info, names = self.__search_tmdb_allnames(MediaType.TV, multi.get("id")) if self.__compare_tmdb_names(file_media_name, names): info = tv_info # ่ฟ”ๅ›ž if info: info['media_type'] = MediaType.MOVIE if info.get('media_type') in ['movie', MediaType.MOVIE] else MediaType.TV else: log.info("ใ€Metaใ€‘%s ๅœจTMDBไธญๆœชๆ‰พๅˆฐๅช’ไฝ“ไฟกๆฏ!" % file_media_name) return info @lru_cache(maxsize=512) def __search_chatgpt(self, file_name, mtype: MediaType): """ ้€š่ฟ‡ChatGPTๅฏน่ฏ่ฏ†ๅˆซๆ–‡ไปถๅๅ’Œ้›†ๆ•ฐ็ญ‰ไฟกๆฏ๏ผŒ้‡ๆ–ฐๆŸฅ่ฏขTMDBๆ•ฐๆฎ :param file_name: ๅ็งฐ :param mtype: ๅช’ไฝ“็ฑปๅž‹ :return: ็ฑปๅž‹ใ€ๅญฃใ€้›†ใ€TMDBINFO """ def __failed(): return mtype, None, None, {} def __failed_none(): return mtype, None, None, None if not file_name: return __failed_none() log.info("ใ€Metaใ€‘ๆญฃๅœจ้€š่ฟ‡ChatGPT่ฏ†ๅˆซๆ–‡ไปถๅ๏ผš%s" % file_name) file_info = self.openai.get_media_name(file_name) if file_info is None: log.info("ใ€Metaใ€‘ChatGPT่ฏ†ๅˆซๅ‡บ้”™๏ผŒ่ฏทๆฃ€ๆŸฅๆ˜ฏๅฆ่ฎพ็ฝฎOpenAI ApiKey๏ผ") return __failed_none() if not file_info: log.info("ใ€Metaใ€‘ChatGPT่ฏ†ๅˆซๅคฑ่ดฅ๏ผ") return __failed() else: log.info("ใ€Metaใ€‘ChatGPT่ฏ†ๅˆซ็ป“ๆžœ๏ผš%s" % file_info) if file_info.get("season") or file_info.get("episode"): mtype = MediaType.TV # ๅค„็†ๆ ‡้ข˜ๅ’Œๅนดไปฝ file_title, file_year, season_number = None, None, None if file_info.get("title"): file_title = str(file_info.get("title")).split("/")[0].strip().replace(".", " ") if file_info.get("year"): file_year = str(file_info.get("year")).split("/")[0].strip() if not file_title: return __failed() if not str(file_year).isdigit(): file_year = None if mtype != MediaType.MOVIE or file_info.get("year"): tmdb_info = self.__search_tmdb(file_media_name=file_title, search_type=mtype, first_media_year=file_year) else: tmdb_info = self.__search_multi_tmdb(file_media_name=file_title) return mtype, file_info.get("season"), file_info.get("episode"), tmdb_info @lru_cache(maxsize=512) def __search_tmdb_web(self, file_media_name, mtype: MediaType): """ ๆœ็ดขTMDB็ฝ‘็ซ™๏ผŒ็›ดๆŽฅๆŠ“ๅ–็ป“ๆžœ๏ผŒ็ป“ๆžœๅชๆœ‰ไธ€ๆกๆ—ถๆ‰่ฟ”ๅ›ž :param file_media_name: ๅ็งฐ """ if not file_media_name: return None if StringUtils.is_chinese(file_media_name): return {} log.info("ใ€Metaใ€‘ๆญฃๅœจไปŽTheDbMovie็ฝ‘็ซ™ๆŸฅ่ฏข๏ผš%s ..." % file_media_name) tmdb_url = "https://www.themoviedb.org/search?query=%s" % file_media_name res = RequestUtils(timeout=5).get_res(url=tmdb_url) if res and res.status_code == 200: html_text = res.text if not html_text: return None try: tmdb_links = [] html = etree.HTML(html_text) if mtype == MediaType.TV: links = html.xpath("//a[@data-id and @data-media-type='tv']/@href") else: links = html.xpath("//a[@data-id]/@href") for link in links: if not link or (not link.startswith("/tv") and not link.startswith("/movie")): continue if link not in tmdb_links: tmdb_links.append(link) if len(tmdb_links) == 1: tmdbinfo = self.get_tmdb_info( mtype=MediaType.TV if tmdb_links[0].startswith("/tv") else MediaType.MOVIE, tmdbid=tmdb_links[0].split("/")[-1]) if tmdbinfo: if mtype == MediaType.TV and tmdbinfo.get('media_type') != MediaType.TV: return {} if tmdbinfo.get('media_type') == MediaType.MOVIE: log.info("ใ€Metaใ€‘%s ไปŽWEB่ฏ†ๅˆซๅˆฐ ็”ตๅฝฑ๏ผšTMDBID=%s, ๅ็งฐ=%s, ไธŠๆ˜ ๆ—ฅๆœŸ=%s" % ( file_media_name, tmdbinfo.get('id'), tmdbinfo.get('title'), tmdbinfo.get('release_date'))) else: log.info("ใ€Metaใ€‘%s ไปŽWEB่ฏ†ๅˆซๅˆฐ ็”ต่ง†ๅ‰ง๏ผšTMDBID=%s, ๅ็งฐ=%s, ้ฆ–ๆ’ญๆ—ฅๆœŸ=%s" % ( file_media_name, tmdbinfo.get('id'), tmdbinfo.get('name'), tmdbinfo.get('first_air_date'))) return tmdbinfo elif len(tmdb_links) > 1: log.info("ใ€Metaใ€‘%s TMDB็ฝ‘็ซ™่ฟ”ๅ›žๆ•ฐๆฎ่ฟ‡ๅคš๏ผš%s" % (file_media_name, len(tmdb_links))) else: log.info("ใ€Metaใ€‘%s TMDB็ฝ‘็ซ™ๆœชๆŸฅ่ฏขๅˆฐๅช’ไฝ“ไฟกๆฏ๏ผ" % file_media_name) except Exception as err: print(str(err)) return None return None def search_tmdb_person(self, name): """ ๆœ็ดขTMDBๆผ”ๅ‘˜ไฟกๆฏ """ if not self.search: return [] try: return self.__dict_tmdbpersons(self.search.people({"query": name})) except Exception as err: print(str(err)) return [] def get_tmdb_info(self, mtype: MediaType, tmdbid, language=None, append_to_response=None, chinese=True): """ ็ป™ๅฎšTMDBๅท๏ผŒๆŸฅ่ฏขไธ€ๆกๅช’ไฝ“ไฟกๆฏ :param mtype: ็ฑปๅž‹๏ผš็”ตๅฝฑใ€็”ต่ง†ๅ‰งใ€ๅŠจๆผซ๏ผŒไธบ็ฉบๆ—ถ้ƒฝๆŸฅ๏ผˆๆญคๆ—ถ็”จไธไธŠๅนดไปฝ๏ผ‰ :param tmdbid: TMDB็š„ID๏ผŒๆœ‰tmdbidๆ—ถไผ˜ๅ…ˆไฝฟ็”จtmdbid๏ผŒๅฆๅˆ™ไฝฟ็”จๅนดไปฝๅ’Œๆ ‡้ข˜ :param language: ่ฏญ็ง :param append_to_response: ้™„ๅŠ ไฟกๆฏ :param chinese: ๆ˜ฏๅฆ่ฝฌๆขไธญๆ–‡ๆ ‡้ข˜ """ if not self.tmdb: log.error("ใ€Metaใ€‘TMDB API Key ๆœช่ฎพ็ฝฎ๏ผ") return None # ่ฎพ็ฝฎ่ฏญ่จ€ self.__set_language(language) if mtype == MediaType.MOVIE: tmdb_info = self.__get_tmdb_movie_detail(tmdbid, append_to_response) if tmdb_info: tmdb_info['media_type'] = MediaType.MOVIE else: tmdb_info = self.__get_tmdb_tv_detail(tmdbid, append_to_response) if tmdb_info: tmdb_info['media_type'] = MediaType.TV if tmdb_info: # ่ฝฌๆขgenreid tmdb_info['genre_ids'] = self.__get_genre_ids_from_detail(tmdb_info.get('genres')) # ่ฝฌๆขไธญๆ–‡ๆ ‡้ข˜ if chinese: tmdb_info = self.__update_tmdbinfo_cn_title(tmdb_info) return tmdb_info def __update_tmdbinfo_cn_title(self, tmdb_info): """ ๆ›ดๆ–ฐTMDBไฟกๆฏไธญ็š„ไธญๆ–‡ๅ็งฐ """ # ๆŸฅๆ‰พไธญๆ–‡ๅ org_title = tmdb_info.get("title") \ if tmdb_info.get("media_type") == MediaType.MOVIE \ else tmdb_info.get("name") if not StringUtils.is_chinese(org_title) \ and self._default_language == 'zh': cn_title = self.__get_tmdb_chinese_title(tmdbinfo=tmdb_info) if cn_title and cn_title != org_title: if tmdb_info.get("media_type") == MediaType.MOVIE: tmdb_info['title'] = cn_title else: tmdb_info['name'] = cn_title return tmdb_info def get_tmdb_infos(self, title, year=None, mtype: MediaType = None, language=None, page=1): """ ๆŸฅ่ฏขๅ็งฐไธญๆœ‰ๅ…ณ้”ฎๅญ—็š„ๆ‰€ๆœ‰็š„TMDBไฟกๆฏๅนถ่ฟ”ๅ›ž """ if not self.tmdb: log.error("ใ€Metaใ€‘TMDB API Key ๆœช่ฎพ็ฝฎ๏ผ") return [] if not title: return [] # ่ฎพ็ฝฎ่ฏญ่จ€ self.__set_language(language) if not mtype and not year: results = self.__search_multi_tmdbinfos(title) else: if not mtype: results = list( set(self.__search_movie_tmdbinfos(title, year)).union(set(self.__search_tv_tmdbinfos(title, year)))) # ็ป„ๅˆ็ป“ๆžœ็š„ๆƒ…ๅ†ตไธ‹่ฆๆŽ’ๅบ results = sorted(results, key=lambda x: x.get("release_date") or x.get("first_air_date") or "0000-00-00", reverse=True) elif mtype == MediaType.MOVIE: results = self.__search_movie_tmdbinfos(title, year) else: results = self.__search_tv_tmdbinfos(title, year) return results[(page - 1) * 20:page * 20] def __search_multi_tmdbinfos(self, title): """ ๅŒๆ—ถๆŸฅ่ฏขๆจก็ณŠๅŒน้…็š„็”ตๅฝฑใ€็”ต่ง†ๅ‰งTMDBไฟกๆฏ """ if not title: return [] ret_infos = [] multis = self.search.multi({"query": title}) or [] for multi in multis: if multi.get("media_type") in ["movie", "tv"]: multi['media_type'] = MediaType.MOVIE if multi.get("media_type") == "movie" else MediaType.TV ret_infos.append(multi) return ret_infos def __search_movie_tmdbinfos(self, title, year): """ ๆŸฅ่ฏขๆจก็ณŠๅŒน้…็š„ๆ‰€ๆœ‰็”ตๅฝฑTMDBไฟกๆฏ """ if not title: return [] ret_infos = [] if year: movies = self.search.movies({"query": title, "year": year}) or [] else: movies = self.search.movies({"query": title}) or [] for movie in movies: if title in movie.get("title"): movie['media_type'] = MediaType.MOVIE ret_infos.append(movie) return ret_infos def __search_tv_tmdbinfos(self, title, year): """ ๆŸฅ่ฏขๆจก็ณŠๅŒน้…็š„ๆ‰€ๆœ‰็”ต่ง†ๅ‰งTMDBไฟกๆฏ """ if not title: return [] ret_infos = [] if year: tvs = self.search.tv_shows({"query": title, "first_air_date_year": year}) or [] else: tvs = self.search.tv_shows({"query": title}) or [] for tv in tvs: if title in tv.get("name"): tv['media_type'] = MediaType.TV ret_infos.append(tv) return ret_infos @staticmethod def __make_cache_key(meta_info): """ ็”Ÿๆˆ็ผ“ๅญ˜็š„key """ if not meta_info: return None return f"[{meta_info.type.value}]{meta_info.get_name()}-{meta_info.year}-{meta_info.begin_season}" def get_cache_info(self, meta_info): """ ๆ นๆฎๅ็งฐๆŸฅ่ฏขๆ˜ฏๅฆๅทฒ็ปๆœ‰็ผ“ๅญ˜ """ if not meta_info: return {} return self.meta.get_meta_data_by_key(self.__make_cache_key(meta_info)) def get_media_info(self, title, subtitle=None, mtype=None, strict=None, cache=True, language=None, chinese=True, append_to_response=None): """ ๅชๆœ‰ๅ็งฐไฟกๆฏ๏ผŒๅˆคๅˆซๆ˜ฏ็”ตๅฝฑ่ฟ˜ๆ˜ฏ็”ต่ง†ๅ‰งๅนถๆœๅˆฎTMDBไฟกๆฏ๏ผŒ็”จไบŽ็งๅญๅ็งฐ่ฏ†ๅˆซ :param title: ็งๅญๅ็งฐ :param subtitle: ็งๅญๅ‰ฏๆ ‡้ข˜ :param mtype: ็ฑปๅž‹๏ผš็”ตๅฝฑใ€็”ต่ง†ๅ‰งใ€ๅŠจๆผซ :param strict: ๆ˜ฏๅฆไธฅๆ ผๆจกๅผ๏ผŒไธบtrueๆ—ถ๏ผŒไธไผšๅ†ๅŽปๆމๅนดไปฝๅ†ๆŸฅไธ€ๆฌก :param cache: ๆ˜ฏๅฆไฝฟ็”จ็ผ“ๅญ˜๏ผŒ้ป˜่ฎคTRUE :param language: ่ฏญ่จ€ :param chinese: ๅŽŸๆ ‡้ข˜ไธบ่‹ฑๆ–‡ๆ—ถๆ˜ฏๅฆไปŽๅˆซๅไธญๆœ็ดขไธญๆ–‡ๅ็งฐ :param append_to_response: ้ขๅค–ๆŸฅ่ฏข็š„ไฟกๆฏ :return: ๅธฆๆœ‰TMDBไฟกๆฏ็š„MetaInfoๅฏน่ฑก """ if not self.tmdb: log.error("ใ€Metaใ€‘TMDB API Key ๆœช่ฎพ็ฝฎ๏ผ") return None if not title: return None # ่ฎพ็ฝฎ่ฏญ่จ€ self.__set_language(language) # ่ฏ†ๅˆซ meta_info = MetaInfo(title, subtitle=subtitle) if not meta_info.get_name() or not meta_info.type: log.warn("ใ€Rmtใ€‘%s ๆœช่ฏ†ๅˆซๅ‡บๆœ‰ๆ•ˆไฟกๆฏ๏ผ" % meta_info.org_string) return None if mtype: meta_info.type = mtype media_key = self.__make_cache_key(meta_info) if not cache or not self.meta.get_meta_data_by_key(media_key): # ็ผ“ๅญ˜ๆฒกๆœ‰ๆˆ–่€…ๅผบๅˆถไธไฝฟ็”จ็ผ“ๅญ˜ if meta_info.type != MediaType.TV and not meta_info.year: file_media_info = self.__search_multi_tmdb(file_media_name=meta_info.get_name()) else: if meta_info.type == MediaType.TV: # ็กฎๅฎšๆ˜ฏ็”ต่ง† file_media_info = self.__search_tmdb(file_media_name=meta_info.get_name(), first_media_year=meta_info.year, search_type=meta_info.type, media_year=meta_info.year, season_number=meta_info.begin_season ) if not file_media_info and meta_info.year and self._rmt_match_mode == MatchMode.NORMAL and not strict: # ้žไธฅๆ ผๆจกๅผไธ‹ๅŽปๆމๅนดไปฝๅ†ๆŸฅไธ€ๆฌก file_media_info = self.__search_tmdb(file_media_name=meta_info.get_name(), search_type=meta_info.type ) else: # ๆœ‰ๅนดไปฝๅ…ˆๆŒ‰็”ตๅฝฑๆŸฅ file_media_info = self.__search_tmdb(file_media_name=meta_info.get_name(), first_media_year=meta_info.year, search_type=MediaType.MOVIE ) # ๆฒกๆœ‰ๅ†ๆŒ‰็”ต่ง†ๅ‰งๆŸฅ if not file_media_info: file_media_info = self.__search_tmdb(file_media_name=meta_info.get_name(), first_media_year=meta_info.year, search_type=MediaType.TV ) if not file_media_info and self._rmt_match_mode == MatchMode.NORMAL and not strict: # ้žไธฅๆ ผๆจกๅผไธ‹ๅŽปๆމๅนดไปฝๅ’Œ็ฑปๅž‹ๅ†ๆŸฅไธ€ๆฌก file_media_info = self.__search_multi_tmdb(file_media_name=meta_info.get_name()) if not file_media_info and self._search_tmdbweb: # ไปŽ็ฝ‘็ซ™ๆŸฅ่ฏข file_media_info = self.__search_tmdb_web(file_media_name=meta_info.get_name(), mtype=meta_info.type) if not file_media_info and self._chatgpt_enable: # ้€š่ฟ‡ChatGPTๆŸฅ่ฏข mtype, seaons, episodes, file_media_info = self.__search_chatgpt(file_name=title, mtype=meta_info.type) # ไฟฎๆญฃ็ฑปๅž‹ๅ’Œ้›†ๆ•ฐ meta_info.type = mtype if not meta_info.get_season_string(): meta_info.set_season(seaons) if not meta_info.get_episode_string(): meta_info.set_episode(episodes) if not file_media_info and self._search_keyword: # ๅ…ณ้”ฎๅญ—็Œœๆต‹ cache_name = cacheman["tmdb_supply"].get(meta_info.get_name()) is_movie = False if not cache_name: cache_name, is_movie = self.__search_engine(meta_info.get_name()) cacheman["tmdb_supply"].set(meta_info.get_name(), cache_name) if cache_name: log.info("ใ€Metaใ€‘ๅผ€ๅง‹่พ…ๅŠฉๆŸฅ่ฏข๏ผš%s ..." % cache_name) if is_movie: file_media_info = self.__search_tmdb(file_media_name=cache_name, search_type=MediaType.MOVIE) else: file_media_info = self.__search_multi_tmdb(file_media_name=cache_name) # ่กฅๅ……ๅ…จ้‡ไฟกๆฏ if file_media_info and not file_media_info.get("genres"): file_media_info = self.get_tmdb_info(mtype=file_media_info.get("media_type"), tmdbid=file_media_info.get("id"), chinese=chinese, append_to_response=append_to_response) # ไฟๅญ˜ๅˆฐ็ผ“ๅญ˜ if file_media_info is not None: self.__insert_media_cache(media_key=media_key, file_media_info=file_media_info) else: # ไฝฟ็”จ็ผ“ๅญ˜ไฟกๆฏ cache_info = self.meta.get_meta_data_by_key(media_key) if cache_info.get("id"): file_media_info = self.get_tmdb_info(mtype=cache_info.get("type"), tmdbid=cache_info.get("id"), chinese=chinese, append_to_response=append_to_response) else: file_media_info = None # ่ต‹ๅ€ผTMDBไฟกๆฏๅนถ่ฟ”ๅ›ž meta_info.set_tmdb_info(file_media_info) return meta_info def __insert_media_cache(self, media_key, file_media_info): """ ๅฐ†TMDBไฟกๆฏๆ’ๅ…ฅ็ผ“ๅญ˜ """ if file_media_info: # ็ผ“ๅญ˜ๆ ‡้ข˜ cache_title = file_media_info.get( "title") if file_media_info.get( "media_type") == MediaType.MOVIE else file_media_info.get("name") # ็ผ“ๅญ˜ๅนดไปฝ cache_year = file_media_info.get('release_date') if file_media_info.get( "media_type") == MediaType.MOVIE else file_media_info.get('first_air_date') if cache_year: cache_year = cache_year[:4] self.meta.update_meta_data({ media_key: { "id": file_media_info.get("id"), "type": file_media_info.get("media_type"), "year": cache_year, "title": cache_title, "poster_path": file_media_info.get("poster_path"), "backdrop_path": file_media_info.get("backdrop_path") } }) else: self.meta.update_meta_data({media_key: {'id': 0}}) def get_media_info_on_files(self, file_list, tmdb_info=None, media_type=None, season=None, episode_format: EpisodeFormat = None, language=None, chinese=True, append_to_response=None): """ ๆ นๆฎๆ–‡ไปถๆธ…ๅ•๏ผŒๆœๅˆฎTMDBไฟกๆฏ๏ผŒ็”จไบŽๆ–‡ไปถๅ็งฐ็š„่ฏ†ๅˆซ :param file_list: ๆ–‡ไปถๆธ…ๅ•๏ผŒๅฆ‚ๆžœๆ˜ฏๅˆ—่กจไนŸๅฏไปฅๆ˜ฏๅ•ไธชๆ–‡ไปถ๏ผŒไนŸๅฏไปฅๆ˜ฏไธ€ไธช็›ฎๅฝ• :param tmdb_info: ๅฆ‚ๆœ‰ไผ ๅ…ฅTMDBไฟกๆฏๅˆ™ไปฅ่ฏฅTMDBไฟกๆฏ่ต‹ไบŽๆ‰€ๆœ‰ๆ–‡ไปถ๏ผŒๅฆๅˆ™ๆŒ‰ๅ็งฐไปŽTMDBๆœ็ดข๏ผŒ็”จไบŽๆ‰‹ๅทฅ่ฏ†ๅˆซๆ—ถไผ ๅ…ฅ :param media_type: ๅช’ไฝ“็ฑปๅž‹๏ผš็”ตๅฝฑใ€็”ต่ง†ๅ‰งใ€ๅŠจๆผซ๏ผŒๅฆ‚ๆœ‰ไผ ๅ…ฅไปฅ่ฏฅ็ฑปๅž‹่ต‹ไบŽๆ‰€ๆœ‰ๆ–‡ไปถ๏ผŒๅฆๅˆ™ๆŒ‰ๅ็งฐไปŽTMDBๆœ็ดขๅนถ่ฏ†ๅˆซ :param season: ๅญฃๅท๏ผŒๅฆ‚ๆœ‰ไผ ๅ…ฅไปฅ่ฏฅๅญฃๅท่ต‹ไบŽๆ‰€ๆœ‰ๆ–‡ไปถ๏ผŒๅฆๅˆ™ไปŽๅ็งฐไธญ่ฏ†ๅˆซ :param episode_format: EpisodeFormat :param language: ่ฏญ่จ€ :param chinese: ๅŽŸๆ ‡้ข˜ไธบ่‹ฑๆ–‡ๆ—ถๆ˜ฏๅฆไปŽๅˆซๅไธญๆœ็ดขไธญๆ–‡ๅ็งฐ :param append_to_response: ้™„ๅŠ ไฟกๆฏ :return: ๅธฆๆœ‰TMDBไฟกๆฏ็š„ๆฏไธชๆ–‡ไปถๅฏนๅบ”็š„MetaInfoๅฏน่ฑกๅญ—ๅ…ธ """ # ๅญ˜ๅ‚จๆ–‡ไปถ่ทฏๅพ„ไธŽๅช’ไฝ“็š„ๅฏนๅบ”ๅ…ณ็ณป if not self.tmdb: log.error("ใ€Metaใ€‘TMDB API Key ๆœช่ฎพ็ฝฎ๏ผ") return {} # ่ฎพ็ฝฎ่ฏญ่จ€ self.__set_language(language) # ่ฟ”ๅ›ž็ป“ๆžœ return_media_infos = {} # ไธๆ˜ฏlist็š„่ฝฌไธบlist if not isinstance(file_list, list): file_list = [file_list] # ้ๅކๆฏไธชๆ–‡ไปถ๏ผŒ็œ‹ๅพ—ๅ‡บๆฅ็š„ๅ็งฐๆ˜ฏไธๆ˜ฏไธไธ€ๆ ท๏ผŒไธไธ€ๆ ท็š„ๅ…ˆๆœ็ดขๅช’ไฝ“ไฟกๆฏ for file_path in file_list: try: if not os.path.exists(file_path): log.warn("ใ€Metaใ€‘%s ไธๅญ˜ๅœจ" % file_path) continue # ่งฃๆžๅช’ไฝ“ๅ็งฐ # ๅ…ˆ็”จ่‡ชๅทฑ็š„ๅ็งฐ file_name = os.path.basename(file_path) parent_name = os.path.basename(os.path.dirname(file_path)) parent_parent_name = os.path.basename(PathUtils.get_parent_paths(file_path, 2)) # ่ฟ‡ๆปคๆމ่“ๅ…‰ๅŽŸ็›˜็›ฎๅฝ•ไธ‹็š„ๅญๆ–‡ไปถ if not os.path.isdir(file_path) \ and PathUtils.get_bluray_dir(file_path): log.info("ใ€Metaใ€‘%s ่ทณ่ฟ‡่“ๅ…‰ๅŽŸ็›˜ๆ–‡ไปถ๏ผš" % file_path) continue # ๆฒกๆœ‰่‡ชๅธฆTMDBไฟกๆฏ if not tmdb_info: # ่ฏ†ๅˆซๅ็งฐ meta_info = MetaInfo(title=file_name) # ่ฏ†ๅˆซไธๅˆฐๅˆ™ไฝฟ็”จไธŠ็บง็š„ๅ็งฐ if not meta_info.get_name() or not meta_info.year: parent_info = MetaInfo(parent_name) if not parent_info.get_name() or not parent_info.year: parent_parent_info = MetaInfo(parent_parent_name) parent_info.type = parent_parent_info.type if parent_parent_info.type and parent_info.type != MediaType.TV else parent_info.type parent_info.cn_name = parent_parent_info.cn_name if parent_parent_info.cn_name else parent_info.cn_name parent_info.en_name = parent_parent_info.en_name if parent_parent_info.en_name else parent_info.en_name parent_info.year = parent_parent_info.year if parent_parent_info.year else parent_info.year parent_info.begin_season = NumberUtils.max_ele(parent_info.begin_season, parent_parent_info.begin_season) if not meta_info.get_name(): meta_info.cn_name = parent_info.cn_name meta_info.en_name = parent_info.en_name if not meta_info.year: meta_info.year = parent_info.year if parent_info.type and parent_info.type == MediaType.TV \ and meta_info.type != MediaType.TV: meta_info.type = parent_info.type if meta_info.type == MediaType.TV: meta_info.begin_season = NumberUtils.max_ele(parent_info.begin_season, meta_info.begin_season) if not meta_info.get_name() or not meta_info.type: log.warn("ใ€Rmtใ€‘%s ๆœช่ฏ†ๅˆซๅ‡บๆœ‰ๆ•ˆไฟกๆฏ๏ผ" % meta_info.org_string) continue # ๅŒบ้…็ผ“ๅญ˜ๅŠTMDB media_key = self.__make_cache_key(meta_info) if not self.meta.get_meta_data_by_key(media_key): # ๆฒกๆœ‰็ผ“ๅญ˜ๆ•ฐๆฎ file_media_info = self.__search_tmdb(file_media_name=meta_info.get_name(), first_media_year=meta_info.year, search_type=meta_info.type, media_year=meta_info.year, season_number=meta_info.begin_season) if not file_media_info: if self._rmt_match_mode == MatchMode.NORMAL: # ๅŽปๆމๅนดไปฝๅ†ๆŸฅไธ€ๆฌก๏ผŒๆœ‰ๅฏ่ƒฝๆ˜ฏๅนดไปฝ้”™่ฏฏ file_media_info = self.__search_tmdb(file_media_name=meta_info.get_name(), search_type=meta_info.type) if not file_media_info and self._chatgpt_enable: # ไปŽChatGPTๆŸฅ่ฏข mtype, seaons, episodes, file_media_info = self.__search_chatgpt(file_name=file_path, mtype=meta_info.type) # ไฟฎๆญฃ็ฑปๅž‹ๅ’Œ้›†ๆ•ฐ meta_info.type = mtype if not meta_info.get_season_string(): meta_info.set_season(seaons) if not meta_info.get_episode_string(): meta_info.set_episode(episodes) if not file_media_info and self._search_keyword: cache_name = cacheman["tmdb_supply"].get(meta_info.get_name()) is_movie = False if not cache_name: cache_name, is_movie = self.__search_engine(meta_info.get_name()) cacheman["tmdb_supply"].set(meta_info.get_name(), cache_name) if cache_name: log.info("ใ€Metaใ€‘ๅผ€ๅง‹่พ…ๅŠฉๆŸฅ่ฏข๏ผš%s ..." % cache_name) if is_movie: file_media_info = self.__search_tmdb(file_media_name=cache_name, search_type=MediaType.MOVIE) else: file_media_info = self.__search_multi_tmdb(file_media_name=cache_name) # ่กฅๅ…จTMDBไฟกๆฏ if file_media_info and not file_media_info.get("genres"): file_media_info = self.get_tmdb_info(mtype=file_media_info.get("media_type"), tmdbid=file_media_info.get("id"), chinese=chinese, append_to_response=append_to_response) # ไฟๅญ˜ๅˆฐ็ผ“ๅญ˜ if file_media_info is not None: self.__insert_media_cache(media_key=media_key, file_media_info=file_media_info) else: # ไฝฟ็”จ็ผ“ๅญ˜ไฟกๆฏ cache_info = self.meta.get_meta_data_by_key(media_key) if cache_info.get("id"): file_media_info = self.get_tmdb_info(mtype=cache_info.get("type"), tmdbid=cache_info.get("id"), chinese=chinese, append_to_response=append_to_response) else: # ็ผ“ๅญ˜ไธบๆœช่ฏ†ๅˆซ file_media_info = None # ่ต‹ๅ€ผTMDBไฟกๆฏ meta_info.set_tmdb_info(file_media_info) # ่‡ชๅธฆTMDBไฟกๆฏ else: meta_info = MetaInfo(title=file_name, mtype=media_type) meta_info.set_tmdb_info(tmdb_info) if season and meta_info.type != MediaType.MOVIE: meta_info.begin_season = int(season) if episode_format: begin_ep, end_ep, part = episode_format.split_episode(file_name) if begin_ep is not None: meta_info.begin_episode = begin_ep meta_info.part = part if end_ep is not None: meta_info.end_episode = end_ep # ๅŠ ๅ…ฅ็ผ“ๅญ˜ self.save_rename_cache(file_name, tmdb_info) # ๆŒ‰ๆ–‡ไปถ่ทฏ็จ‹ๅญ˜ๅ‚จ return_media_infos[file_path] = meta_info except Exception as err: print(str(err)) log.error("ใ€Rmtใ€‘ๅ‘็”Ÿ้”™่ฏฏ๏ผš%s - %s" % (str(err), traceback.format_exc())) # ๅพช็Žฏ็ป“ๆŸ return return_media_infos def __dict_tmdbpersons(self, infos, chinese=True): """ TMDBไบบๅ‘˜ไฟกๆฏ่ฝฌไธบๅญ—ๅ…ธ """ if not infos: return [] ret_infos = [] for info in infos: if chinese: name = self.get_tmdbperson_chinese_name(person_id=info.get("id")) or info.get("name") else: name = info.get("name") tmdbid = info.get("id") image = Config().get_tmdbimage_url(info.get("profile_path"), prefix="h632") \ if info.get("profile_path") else "" ret_infos.append({ "id": tmdbid, "name": name, "role": info.get("name") if info.get("name") != name else "", "image": image }) return ret_infos @staticmethod def __dict_tmdbinfos(infos, mtype=None, poster_filter=False): """ TMDB็”ตๅฝฑไฟกๆฏ่ฝฌไธบๅญ—ๅ…ธ """ if not infos: return [] ret_infos = [] for info in infos: tmdbid = info.get("id") vote = round(float(info.get("vote_average")), 1) if info.get("vote_average") else 0, image = Config().get_tmdbimage_url(info.get("poster_path")) if poster_filter and not image: continue overview = info.get("overview") if mtype: media_type = mtype.value year = info.get("release_date")[0:4] if info.get( "release_date") and mtype == MediaType.MOVIE else info.get( "first_air_date")[0:4] if info.get( "first_air_date") else "" typestr = 'MOV' if mtype == MediaType.MOVIE else 'TV' title = info.get("title") if mtype == MediaType.MOVIE else info.get("name") else: media_type = MediaType.MOVIE.value if info.get( "media_type") == "movie" else MediaType.TV.value year = info.get("release_date")[0:4] if info.get( "release_date") and info.get( "media_type") == "movie" else info.get( "first_air_date")[0:4] if info.get( "first_air_date") else "" typestr = 'MOV' if info.get("media_type") == "movie" else 'TV' title = info.get("title") if info.get("media_type") == "movie" else info.get("name") ret_infos.append({ 'id': tmdbid, 'orgid': tmdbid, 'tmdbid': tmdbid, 'title': title, 'type': typestr, 'media_type': media_type, 'year': year, 'vote': vote, 'image': image, 'overview': overview }) return ret_infos def get_tmdb_hot_movies(self, page): """ ่Žทๅ–็ƒญ้—จ็”ตๅฝฑ :param page: ็ฌฌๅ‡ ้กต :return: TMDBไฟกๆฏๅˆ—่กจ """ if not self.movie: return [] return self.__dict_tmdbinfos(self.movie.popular(page), MediaType.MOVIE) def get_tmdb_hot_tvs(self, page): """ ่Žทๅ–็ƒญ้—จ็”ต่ง†ๅ‰ง :param page: ็ฌฌๅ‡ ้กต :return: TMDBไฟกๆฏๅˆ—่กจ """ if not self.tv: return [] return self.__dict_tmdbinfos(self.tv.popular(page), MediaType.TV) def get_tmdb_new_movies(self, page): """ ่Žทๅ–ๆœ€ๆ–ฐ็”ตๅฝฑ :param page: ็ฌฌๅ‡ ้กต :return: TMDBไฟกๆฏๅˆ—่กจ """ if not self.movie: return [] return self.__dict_tmdbinfos(self.movie.now_playing(page), MediaType.MOVIE) def get_tmdb_new_tvs(self, page): """ ่Žทๅ–ๆœ€ๆ–ฐ็”ต่ง†ๅ‰ง :param page: ็ฌฌๅ‡ ้กต :return: TMDBไฟกๆฏๅˆ—่กจ """ if not self.tv: return [] return self.__dict_tmdbinfos(self.tv.on_the_air(page), MediaType.TV) def get_tmdb_upcoming_movies(self, page): """ ่Žทๅ–ๅณๅฐ†ไธŠๆ˜ ็”ตๅฝฑ :param page: ็ฌฌๅ‡ ้กต :return: TMDBไฟกๆฏๅˆ—่กจ """ if not self.movie: return [] return self.__dict_tmdbinfos(self.movie.upcoming(page), MediaType.MOVIE) def get_tmdb_trending_all_week(self, page=1): """ ่Žทๅ–ๅณๅฐ†ไธŠๆ˜ ็”ตๅฝฑ :param page: ็ฌฌๅ‡ ้กต :return: TMDBไฟกๆฏๅˆ—่กจ """ if not self.movie: return [] return self.__dict_tmdbinfos(self.trending.all_week(page=page)) def __get_tmdb_movie_detail(self, tmdbid, append_to_response=None): """ ่Žทๅ–็”ตๅฝฑ็š„่ฏฆๆƒ… :param tmdbid: TMDB ID :return: TMDBไฟกๆฏ """ """ { "adult": false, "backdrop_path": "/r9PkFnRUIthgBp2JZZzD380MWZy.jpg", "belongs_to_collection": { "id": 94602, "name": "็ฉฟ้ดๅญ็š„็Œซ๏ผˆ็ณปๅˆ—๏ผ‰", "poster_path": "/anHwj9IupRoRZZ98WTBvHpTiE6A.jpg", "backdrop_path": "/feU1DWV5zMWxXUHJyAIk3dHRQ9c.jpg" }, "budget": 90000000, "genres": [ { "id": 16, "name": "ๅŠจ็”ป" }, { "id": 28, "name": "ๅŠจไฝœ" }, { "id": 12, "name": "ๅ†’้™ฉ" }, { "id": 35, "name": "ๅ–œๅ‰ง" }, { "id": 10751, "name": "ๅฎถๅบญ" }, { "id": 14, "name": "ๅฅ‡ๅนป" } ], "homepage": "", "id": 315162, "imdb_id": "tt3915174", "original_language": "en", "original_title": "Puss in Boots: The Last Wish", "overview": "ๆ—ถ้š”11ๅนด๏ผŒ่‡ญๅฑ่‡ชๅคงๅˆ็ˆฑๅ–่Œ็š„็Œซๅคงไพ ๅ›žๆฅไบ†๏ผๅฆ‚ไปŠ็š„็Œซๅคงไพ ๏ผˆๅฎ‰ไธœๅฐผๅฅฅยท็ญๅพทๆ‹‰ๆ–ฏ ้…้Ÿณ๏ผ‰๏ผŒไพๆ—งๅนฝ้ป˜ๆฝ‡ๆด’ๅˆไธๆ‹˜ๅฐ่Š‚ใ€ๆ•ฐๆฌกโ€œ่Šฑๅผ้€ๅ‘ฝโ€ๅŽ๏ผŒไนๆกๅ‘ฝๅฆ‚ไปŠๅชๅ‰ฉไธ€ๆก๏ผŒไบŽๆ˜ฏไธๅพ—ไธ่ฏทๆฑ‚่‡ชๅทฑ็š„่€ๆญๆกฃๅ…ผโ€œๅฎฟๆ•Œโ€โ€”โ€”่ฟทไบบ็š„่ฝฏ็ˆชๅฆž๏ผˆ่จๅฐ”็Ž›ยทๆตท่€ถๅ…‹ ้…้Ÿณ๏ผ‰ๆฅๆ–ฝไปฅๆดๆ‰‹ๆฅๆขๅค่‡ชๅทฑ็š„ไนๆก็”Ÿๅ‘ฝใ€‚", "popularity": 8842.129, "poster_path": "/rnn30OlNPiC3IOoWHKoKARGsBRK.jpg", "production_companies": [ { "id": 33, "logo_path": "/8lvHyhjr8oUKOOy2dKXoALWKdp0.png", "name": "Universal Pictures", "origin_country": "US" }, { "id": 521, "logo_path": "/kP7t6RwGz2AvvTkvnI1uteEwHet.png", "name": "DreamWorks Animation", "origin_country": "US" } ], "production_countries": [ { "iso_3166_1": "US", "name": "United States of America" } ], "release_date": "2022-12-07", "revenue": 260725470, "runtime": 102, "spoken_languages": [ { "english_name": "English", "iso_639_1": "en", "name": "English" }, { "english_name": "Spanish", "iso_639_1": "es", "name": "Espaรฑol" } ], "status": "Released", "tagline": "", "title": "็ฉฟ้ดๅญ็š„็Œซ2", "video": false, "vote_average": 8.614, "vote_count": 2291 } """ if not self.movie: return {} try: log.info("ใ€Metaใ€‘ๆญฃๅœจๆŸฅ่ฏขTMDB็”ตๅฝฑ๏ผš%s ..." % tmdbid) tmdbinfo = self.movie.details(tmdbid, append_to_response) if tmdbinfo: log.info(f"ใ€Metaใ€‘{tmdbid} ๆŸฅ่ฏข็ป“ๆžœ๏ผš{tmdbinfo.get('title')}") return tmdbinfo or {} except Exception as e: print(str(e)) return None def __get_tmdb_tv_detail(self, tmdbid, append_to_response=None): """ ่Žทๅ–็”ต่ง†ๅ‰ง็š„่ฏฆๆƒ… :param tmdbid: TMDB ID :return: TMDBไฟกๆฏ """ """ { "adult": false, "backdrop_path": "/uDgy6hyPd82kOHh6I95FLtLnj6p.jpg", "created_by": [ { "id": 35796, "credit_id": "5e84f06a3344c600153f6a57", "name": "Craig Mazin", "gender": 2, "profile_path": "/uEhna6qcMuyU5TP7irpTUZ2ZsZc.jpg" }, { "id": 1295692, "credit_id": "5e84f03598f1f10016a985c0", "name": "Neil Druckmann", "gender": 2, "profile_path": "/bVUsM4aYiHbeSYE1xAw2H5Z1ANU.jpg" } ], "episode_run_time": [], "first_air_date": "2023-01-15", "genres": [ { "id": 18, "name": "ๅ‰งๆƒ…" }, { "id": 10765, "name": "Sci-Fi & Fantasy" }, { "id": 10759, "name": "ๅŠจไฝœๅ†’้™ฉ" } ], "homepage": "https://www.hbo.com/the-last-of-us", "id": 100088, "in_production": true, "languages": [ "en" ], "last_air_date": "2023-01-15", "last_episode_to_air": { "air_date": "2023-01-15", "episode_number": 1, "id": 2181581, "name": "ๅฝ“ไฝ ่ฟทๅคฑๅœจ้ป‘ๆš—ไธญ", "overview": "ๅœจไธ€ๅœบๅ…จ็ƒๆ€ง็š„ๆต่กŒ็—…ๆ‘งๆฏไบ†ๆ–‡ๆ˜Žไน‹ๅŽ๏ผŒไธ€ไธช้กฝๅผบ็š„ๅนธๅญ˜่€…่ดŸ่ดฃ็…ง้กพไธ€ไธช 14 ๅฒ็š„ๅฐๅฅณๅญฉ๏ผŒๅฅนๅฏ่ƒฝๆ˜ฏไบบ็ฑปๆœ€ๅŽ็š„ๅธŒๆœ›ใ€‚", "production_code": "", "runtime": 81, "season_number": 1, "show_id": 100088, "still_path": "/aRquEWm8wWF1dfa9uZ1TXLvVrKD.jpg", "vote_average": 8, "vote_count": 33 }, "name": "ๆœ€ๅŽ็”Ÿ่ฟ˜่€…", "next_episode_to_air": { "air_date": "2023-01-22", "episode_number": 2, "id": 4071039, "name": "่™ซ่‰ๅ˜ๅผ‚่Œ", "overview": "", "production_code": "", "runtime": 55, "season_number": 1, "show_id": 100088, "still_path": "/jkUtYTmeap6EvkHI4n0j5IRFrIr.jpg", "vote_average": 10, "vote_count": 1 }, "networks": [ { "id": 49, "name": "HBO", "logo_path": "/tuomPhY2UtuPTqqFnKMVHvSb724.png", "origin_country": "US" } ], "number_of_episodes": 9, "number_of_seasons": 1, "origin_country": [ "US" ], "original_language": "en", "original_name": "The Last of Us", "overview": "ไธๆ˜Ž็œŸ่Œ็–ซๆƒ…่‚†่™ไน‹ๅŽ็š„็พŽๅ›ฝ๏ผŒ่ขซ็œŸ่Œๆ„ŸๆŸ“็š„ไบบ้ƒฝๅ˜ๆˆไบ†ๅฏๆ€•็š„ๆ€ช็‰ฉ๏ผŒไน”ๅฐ”๏ผˆJoel๏ผ‰ไธบไบ†ๆขๅ›žๆญฆๅ™จ็ญ”ๅบ”ๅฐ†ๅฐๅฅณๅญฉๅ„ฟ่‰พ่މ๏ผˆEllie๏ผ‰้€ๅˆฐๆŒ‡ๅฎšๅœฐ็‚น๏ผŒ็”ฑๆญคๅผ€ๅง‹ไบ†ไธคไบบ็ฉฟ่ถŠ็พŽๅ›ฝ็š„ๆผซๆผซๆ—…็จ‹ใ€‚", "popularity": 5585.639, "poster_path": "/nOY3VBFO0VnlN9nlRombnMTztyh.jpg", "production_companies": [ { "id": 3268, "logo_path": "/tuomPhY2UtuPTqqFnKMVHvSb724.png", "name": "HBO", "origin_country": "US" }, { "id": 11073, "logo_path": "/aCbASRcI1MI7DXjPbSW9Fcv9uGR.png", "name": "Sony Pictures Television Studios", "origin_country": "US" }, { "id": 23217, "logo_path": "/kXBZdQigEf6QiTLzo6TFLAa7jKD.png", "name": "Naughty Dog", "origin_country": "US" }, { "id": 115241, "logo_path": null, "name": "The Mighty Mint", "origin_country": "US" }, { "id": 119645, "logo_path": null, "name": "Word Games", "origin_country": "US" }, { "id": 125281, "logo_path": "/3hV8pyxzAJgEjiSYVv1WZ0ZYayp.png", "name": "PlayStation Productions", "origin_country": "US" } ], "production_countries": [ { "iso_3166_1": "US", "name": "United States of America" } ], "seasons": [ { "air_date": "2023-01-15", "episode_count": 9, "id": 144593, "name": "็ฌฌ 1 ๅญฃ", "overview": "", "poster_path": "/aUQKIpZZ31KWbpdHMCmaV76u78T.jpg", "season_number": 1 } ], "spoken_languages": [ { "english_name": "English", "iso_639_1": "en", "name": "English" } ], "status": "Returning Series", "tagline": "", "type": "Scripted", "vote_average": 8.924, "vote_count": 601 } """ if not self.tv: return {} try: log.info("ใ€Metaใ€‘ๆญฃๅœจๆŸฅ่ฏขTMDB็”ต่ง†ๅ‰ง๏ผš%s ..." % tmdbid) tmdbinfo = self.tv.details(tmdbid, append_to_response) if tmdbinfo: log.info(f"ใ€Metaใ€‘{tmdbid} ๆŸฅ่ฏข็ป“ๆžœ๏ผš{tmdbinfo.get('name')}") return tmdbinfo or {} except Exception as e: print(str(e)) return None def get_tmdb_tv_season_detail(self, tmdbid, season: int): """ ่Žทๅ–็”ต่ง†ๅ‰งๅญฃ็š„่ฏฆๆƒ… :param tmdbid: TMDB ID :param season: ๅญฃ๏ผŒๆ•ฐๅญ— :return: TMDBไฟกๆฏ """ """ { "_id": "5e614cd3357c00001631a6ef", "air_date": "2023-01-15", "episodes": [ { "air_date": "2023-01-15", "episode_number": 1, "id": 2181581, "name": "ๅฝ“ไฝ ่ฟทๅคฑๅœจ้ป‘ๆš—ไธญ", "overview": "ๅœจไธ€ๅœบๅ…จ็ƒๆ€ง็š„ๆต่กŒ็—…ๆ‘งๆฏไบ†ๆ–‡ๆ˜Žไน‹ๅŽ๏ผŒไธ€ไธช้กฝๅผบ็š„ๅนธๅญ˜่€…่ดŸ่ดฃ็…ง้กพไธ€ไธช 14 ๅฒ็š„ๅฐๅฅณๅญฉ๏ผŒๅฅนๅฏ่ƒฝๆ˜ฏไบบ็ฑปๆœ€ๅŽ็š„ๅธŒๆœ›ใ€‚", "production_code": "", "runtime": 81, "season_number": 1, "show_id": 100088, "still_path": "/aRquEWm8wWF1dfa9uZ1TXLvVrKD.jpg", "vote_average": 8, "vote_count": 33, "crew": [ { "job": "Writer", "department": "Writing", "credit_id": "619c370063536a00619a08ee", "adult": false, "gender": 2, "id": 35796, "known_for_department": "Writing", "name": "Craig Mazin", "original_name": "Craig Mazin", "popularity": 15.211, "profile_path": "/uEhna6qcMuyU5TP7irpTUZ2ZsZc.jpg" }, ], "guest_stars": [ { "character": "Marlene", "credit_id": "63c4ca5e5f2b8d00aed539fc", "order": 500, "adult": false, "gender": 1, "id": 1253388, "known_for_department": "Acting", "name": "Merle Dandridge", "original_name": "Merle Dandridge", "popularity": 21.679, "profile_path": "/lKwHdTtDf6NGw5dUrSXxbfkZLEk.jpg" } ] }, ], "name": "็ฌฌ 1 ๅญฃ", "overview": "", "id": 144593, "poster_path": "/aUQKIpZZ31KWbpdHMCmaV76u78T.jpg", "season_number": 1 } """ if not self.tv: return {} try: log.info("ใ€Metaใ€‘ๆญฃๅœจๆŸฅ่ฏขTMDB็”ต่ง†ๅ‰ง๏ผš%s๏ผŒๅญฃ๏ผš%s ..." % (tmdbid, season)) tmdbinfo = self.tv.season_details(tmdbid, season) return tmdbinfo or {} except Exception as e: print(str(e)) return {} def get_tmdb_tv_seasons_byid(self, tmdbid): """ ๆ นๆฎTMDBๆŸฅ่ฏขTMDB็”ต่ง†ๅ‰ง็š„ๆ‰€ๆœ‰ๅญฃ """ if not tmdbid: return [] return self.get_tmdb_tv_seasons( tv_info=self.__get_tmdb_tv_detail( tmdbid=tmdbid ) ) @staticmethod def get_tmdb_tv_seasons(tv_info): """ ๆŸฅ่ฏขTMDB็”ต่ง†ๅ‰ง็š„ๆ‰€ๆœ‰ๅญฃ :param tv_info: TMDB ็š„ๅญฃไฟกๆฏ :return: ๅธฆๆœ‰season_numberใ€episode_count ็š„ๆฏๅญฃๆ€ป้›†ๆ•ฐ็š„ๅญ—ๅ…ธๅˆ—่กจ """ """ "seasons": [ { "air_date": "2006-01-08", "episode_count": 11, "id": 3722, "name": "็‰นๅˆซ็ฏ‡", "overview": "", "poster_path": "/snQYndfsEr3Sto2jOmkmsQuUXAQ.jpg", "season_number": 0 }, { "air_date": "2005-03-27", "episode_count": 9, "id": 3718, "name": "็ฌฌ 1 ๅญฃ", "overview": "", "poster_path": "/foM4ImvUXPrD2NvtkHyixq5vhPx.jpg", "season_number": 1 } ] """ if not tv_info: return [] ret_info = [] for info in tv_info.get("seasons") or []: if not info.get("season_number"): continue ret_info.append({ "air_date": info.get("air_date"), "episode_count": info.get("episode_count"), "id": info.get("id"), "name": info.get("name"), "overview": info.get("overview"), "poster_path": Config().get_tmdbimage_url(info.get("poster_path")) if info.get("poster_path") else "", "season_number": info.get("season_number") }) ret_info.reverse() return ret_info def get_tmdb_season_episodes(self, tmdbid, season: int): """ :param: tmdbid: TMDB ID :param: season: ๅญฃๅท """ """ ไปŽTMDB็š„ๅญฃ้›†ไฟกๆฏไธญ่Žทๅพ—ๆŸๅญฃ็š„้›†ไฟกๆฏ """ """ "episodes": [ { "air_date": "2023-01-15", "episode_number": 1, "id": 2181581, "name": "ๅฝ“ไฝ ่ฟทๅคฑๅœจ้ป‘ๆš—ไธญ", "overview": "ๅœจไธ€ๅœบๅ…จ็ƒๆ€ง็š„ๆต่กŒ็—…ๆ‘งๆฏไบ†ๆ–‡ๆ˜Žไน‹ๅŽ๏ผŒไธ€ไธช้กฝๅผบ็š„ๅนธๅญ˜่€…่ดŸ่ดฃ็…ง้กพไธ€ไธช 14 ๅฒ็š„ๅฐๅฅณๅญฉ๏ผŒๅฅนๅฏ่ƒฝๆ˜ฏไบบ็ฑปๆœ€ๅŽ็š„ๅธŒๆœ›ใ€‚", "production_code": "", "runtime": 81, "season_number": 1, "show_id": 100088, "still_path": "/aRquEWm8wWF1dfa9uZ1TXLvVrKD.jpg", "vote_average": 8, "vote_count": 33 }, ] """ if not tmdbid: return [] season_info = self.get_tmdb_tv_season_detail(tmdbid=tmdbid, season=season) if not season_info: return [] ret_info = [] for info in season_info.get("episodes") or []: ret_info.append({ "air_date": info.get("air_date"), "episode_number": info.get("episode_number"), "id": info.get("id"), "name": info.get("name"), "overview": info.get("overview"), "production_code": info.get("production_code"), "runtime": info.get("runtime"), "season_number": info.get("season_number"), "show_id": info.get("show_id"), "still_path": Config().get_tmdbimage_url(info.get("still_path")) if info.get("still_path") else "", "vote_average": info.get("vote_average") }) ret_info.reverse() return ret_info def get_tmdb_backdrop(self, mtype, tmdbid): """ ่Žทๅ–TMDB็š„่ƒŒๆ™ฏๅ›พ """ if not tmdbid: return "" tmdbinfo = self.get_tmdb_info(mtype=mtype, tmdbid=tmdbid, append_to_response="images", chinese=False) if not tmdbinfo: return "" results = self.get_tmdb_backdrops(tmdbinfo=tmdbinfo, original=False) return results[0] if results else "" @staticmethod def get_tmdb_backdrops(tmdbinfo, original=True): """ ่Žทๅ–TMDB็š„่ƒŒๆ™ฏๅ›พ """ """ { "backdrops": [ { "aspect_ratio": 1.778, "height": 2160, "iso_639_1": "en", "file_path": "/qUroDlCDUMwRWbkyjZGB9THkMgZ.jpg", "vote_average": 5.312, "vote_count": 1, "width": 3840 }, { "aspect_ratio": 1.778, "height": 2160, "iso_639_1": "en", "file_path": "/iyxvxEQIfQjzJJTfszZxmH5UV35.jpg", "vote_average": 0, "vote_count": 0, "width": 3840 }, { "aspect_ratio": 1.778, "height": 720, "iso_639_1": "en", "file_path": "/8SRY6IcMKO1E5p83w7bjvcqklp9.jpg", "vote_average": 0, "vote_count": 0, "width": 1280 }, { "aspect_ratio": 1.778, "height": 1080, "iso_639_1": "en", "file_path": "/erkJ7OxJWFdLBOcn2MvIdhTLHTu.jpg", "vote_average": 0, "vote_count": 0, "width": 1920 } ] } """ if not tmdbinfo: return [] prefix_url = Config().get_tmdbimage_url(r"%s", prefix="original") \ if original else Config().get_tmdbimage_url(r"%s") backdrops = tmdbinfo.get("images", {}).get("backdrops") or [] result = [prefix_url % backdrop.get("file_path") for backdrop in backdrops] result.append(prefix_url % tmdbinfo.get("backdrop_path")) return result @staticmethod def get_tmdb_season_episodes_num(tv_info, season: int): """ ไปŽTMDB็š„ๅญฃไฟกๆฏไธญ่Žทๅพ—ๅ…ทไฝ“ๅญฃๆœ‰ๅคšๅฐ‘้›† :param season: ๅญฃๅท๏ผŒๆ•ฐๅญ— :param tv_info: ๅทฒ่Žทๅ–็š„TMDBๅญฃ็š„ไฟกๆฏ :return: ่ฏฅๅญฃ็š„ๆ€ป้›†ๆ•ฐ """ if not tv_info: return 0 seasons = tv_info.get("seasons") if not seasons: return 0 for sea in seasons: if sea.get("season_number") == int(season): return int(sea.get("episode_count")) return 0 @staticmethod def __dict_media_crews(crews): """ ๅญ—ๅ…ธๅŒ–ๅช’ไฝ“ๅทฅไฝœไบบๅ‘˜ """ return [{ "id": crew.get("id"), "gender": crew.get("gender"), "known_for_department": crew.get("known_for_department"), "name": crew.get("name"), "original_name": crew.get("original_name"), "popularity": crew.get("popularity"), "image": Config().get_tmdbimage_url(crew.get("profile_path"), prefix="h632"), "credit_id": crew.get("credit_id"), "department": crew.get("department"), "job": crew.get("job"), "profile": 'https://www.themoviedb.org/person/%s' % crew.get('id') } for crew in crews or []] @staticmethod def __dict_media_casts(casts): """ ๅญ—ๅ…ธๅŒ–ๅช’ไฝ“ๆผ”่Œไบบๅ‘˜ """ return [{ "id": cast.get("id"), "gender": cast.get("gender"), "known_for_department": cast.get("known_for_department"), "name": cast.get("name"), "original_name": cast.get("original_name"), "popularity": cast.get("popularity"), "image": Config().get_tmdbimage_url(cast.get("profile_path"), prefix="h632"), "cast_id": cast.get("cast_id"), "role": cast.get("character"), "credit_id": cast.get("credit_id"), "order": cast.get("order"), "profile": 'https://www.themoviedb.org/person/%s' % cast.get('id') } for cast in casts or []] def get_tmdb_directors_actors(self, tmdbinfo): """ ๆŸฅ่ฏขๅฏผๆผ”ๅ’Œๆผ”ๅ‘˜ :param tmdbinfo: TMDBๅ…ƒๆ•ฐๆฎ :return: ๅฏผๆผ”ๅˆ—่กจ๏ผŒๆผ”ๅ‘˜ๅˆ—่กจ """ """ "cast": [ { "adult": false, "gender": 2, "id": 3131, "known_for_department": "Acting", "name": "Antonio Banderas", "original_name": "Antonio Banderas", "popularity": 60.896, "profile_path": "/iWIUEwgn2KW50MssR7tdPeFoRGW.jpg", "cast_id": 2, "character": "Puss in Boots (voice)", "credit_id": "6052480e197de4006bb47b9a", "order": 0 } ], "crew": [ { "adult": false, "gender": 2, "id": 5524, "known_for_department": "Production", "name": "Andrew Adamson", "original_name": "Andrew Adamson", "popularity": 9.322, "profile_path": "/qqIAVKAe5LHRbPyZUlptsqlo4Kb.jpg", "credit_id": "63b86b2224b33300a0585bf1", "department": "Production", "job": "Executive Producer" } ] """ if not tmdbinfo: return [], [] _credits = tmdbinfo.get("credits") if not _credits: return [], [] directors = [] actors = [] for cast in self.__dict_media_casts(_credits.get("cast")): if cast.get("known_for_department") == "Acting": actors.append(cast) for crew in self.__dict_media_crews(_credits.get("crew")): if crew.get("job") == "Director": directors.append(crew) return directors, actors def get_tmdb_cats(self, mtype, tmdbid): """ ่Žทๅ–TMDB็š„ๆผ”ๅ‘˜ๅˆ—่กจ :param: mtype: ๅช’ไฝ“็ฑปๅž‹ :param: tmdbid: TMDBID """ try: if mtype == MediaType.MOVIE: if not self.movie: return [] return self.__dict_media_casts(self.movie.credits(tmdbid).get("cast")) else: if not self.tv: return [] return self.__dict_media_casts(self.tv.credits(tmdbid).get("cast")) except Exception as err: print(str(err)) return [] @staticmethod def get_tmdb_genres_names(tmdbinfo): """ ไปŽTMDBๆ•ฐๆฎไธญ่Žทๅ–้ฃŽๆ ผๅ็งฐ """ """ "genres": [ { "id": 16, "name": "ๅŠจ็”ป" }, { "id": 28, "name": "ๅŠจไฝœ" }, { "id": 12, "name": "ๅ†’้™ฉ" }, { "id": 35, "name": "ๅ–œๅ‰ง" }, { "id": 10751, "name": "ๅฎถๅบญ" }, { "id": 14, "name": "ๅฅ‡ๅนป" } ] """ if not tmdbinfo: return "" genres = tmdbinfo.get("genres") or [] genres_list = [genre.get("name") for genre in genres] return ", ".join(genres_list) if genres_list else "" def get_tmdb_genres(self, mtype): """ ่Žทๅ–TMDB็š„้ฃŽๆ ผๅˆ—่กจ :param: mtype: ๅช’ไฝ“็ฑปๅž‹ """ if not self.genre: return [] try: if mtype == MediaType.MOVIE: return self.genre.movie_list() else: return self.genre.tv_list() except Exception as err: print(str(err)) return [] @staticmethod def get_get_production_country_names(tmdbinfo): """ ไปŽTMDBๆ•ฐๆฎไธญ่Žทๅ–ๅˆถ็‰‡ๅ›ฝๅฎถๅ็งฐ """ """ "production_countries": [ { "iso_3166_1": "US", "name": "็พŽๅ›ฝ" } ] """ if not tmdbinfo: return "" countries = tmdbinfo.get("production_countries") or [] countries_list = [country.get("name") for country in countries] return ", ".join(countries_list) if countries_list else "" @staticmethod def get_tmdb_production_company_names(tmdbinfo): """ ไปŽTMDBๆ•ฐๆฎไธญ่Žทๅ–ๅˆถ็‰‡ๅ…ฌๅธๅ็งฐ """ """ "production_companies": [ { "id": 2, "logo_path": "/wdrCwmRnLFJhEoH8GSfymY85KHT.png", "name": "DreamWorks Animation", "origin_country": "US" } ] """ if not tmdbinfo: return "" companies = tmdbinfo.get("production_companies") or [] companies_list = [company.get("name") for company in companies] return ", ".join(companies_list) if companies_list else "" @staticmethod def get_tmdb_crews(tmdbinfo, nums=None): """ ไปŽTMDBๆ•ฐๆฎไธญ่Žทๅ–ๅˆถ็‰‡ไบบๅ‘˜ """ if not tmdbinfo: return "" crews = tmdbinfo.get("credits", {}).get("crew") or [] result = [{crew.get("name"): crew.get("job")} for crew in crews] if nums: return result[:nums] else: return result def get_tmdb_en_title(self, media_info): """ ่Žทๅ–TMDB็š„่‹ฑๆ–‡ๅ็งฐ """ en_info = self.get_tmdb_info(mtype=media_info.type, tmdbid=media_info.tmdb_id, language="en", chinese=False) if en_info: return en_info.get("title") if media_info.type == MediaType.MOVIE else en_info.get("name") return None def get_tmdb_zhtw_title(self, media_info): """ ่Žทๅ–TMDB็š„็นไฝ“ไธญๆ–‡ๅ็งฐ """ zhtw_info = self.get_tmdb_info(mtype=media_info.type, tmdbid=media_info.tmdb_id, language="zh-TW", chinese=False) if zhtw_info: return zhtw_info.get("title") if media_info.type == MediaType.MOVIE else zhtw_info.get("name") return None def get_episode_title(self, media_info, language=None): """ ่Žทๅ–ๅ‰ง้›†็š„ๆ ‡้ข˜ """ if media_info.type == MediaType.MOVIE: return None # ่ฎพ็ฝฎ่ฏญ่จ€ self.__set_language(language) if media_info.tmdb_id: if not media_info.begin_episode: return None episodes = self.get_tmdb_season_episodes(tmdbid=media_info.tmdb_id, season=int(media_info.get_season_seq())) for episode in episodes: if episode.get("episode_number") == media_info.begin_episode: return episode.get("name") return None def get_movie_similar(self, tmdbid, page=1): """ ๆŸฅ่ฏข็ฑปไผผ็”ตๅฝฑ """ if not self.movie: return [] try: movies = self.movie.similar(movie_id=tmdbid, page=page) or [] return self.__dict_tmdbinfos(movies, MediaType.MOVIE) except Exception as e: print(str(e)) return [] def get_movie_recommendations(self, tmdbid, page=1): """ ๆŸฅ่ฏข็”ตๅฝฑๅ…ณ่”ๆŽจ่ """ if not self.movie: return [] try: movies = self.movie.recommendations(movie_id=tmdbid, page=page) or [] return self.__dict_tmdbinfos(movies, MediaType.MOVIE) except Exception as e: print(str(e)) return [] def get_tv_similar(self, tmdbid, page=1): """ ๆŸฅ่ฏข็ฑปไผผ็”ต่ง†ๅ‰ง """ if not self.tv: return [] try: tvs = self.tv.similar(tv_id=tmdbid, page=page) or [] return self.__dict_tmdbinfos(tvs, MediaType.TV) except Exception as e: print(str(e)) return [] def get_tv_recommendations(self, tmdbid, page=1): """ ๆŸฅ่ฏข็”ต่ง†ๅ‰งๅ…ณ่”ๆŽจ่ """ if not self.tv: return [] try: tvs = self.tv.recommendations(tv_id=tmdbid, page=page) or [] return self.__dict_tmdbinfos(tvs, MediaType.TV) except Exception as e: print(str(e)) return [] def get_tmdb_discover(self, mtype, params=None, page=1): """ ๆต่งˆ็”ตๅฝฑใ€็”ต่ง†ๅ‰ง๏ผˆๅคๆ‚่ฟ‡ๆปคๆกไปถ๏ผ‰ """ if not self.discover: return [] try: if mtype == MediaType.MOVIE: movies = self.discover.discover_movies(params=params, page=page) return self.__dict_tmdbinfos(infos=movies, mtype=mtype, poster_filter=True) elif mtype == MediaType.TV: tvs = self.discover.discover_tv_shows(params=params, page=page) return self.__dict_tmdbinfos(infos=tvs, mtype=mtype, poster_filter=True) except Exception as e: print(str(e)) return [] def get_tmdb_discover_movies_pages(self, params=None): """ ่Žทๅ–็”ตๅฝฑๆต่งˆ็š„ๆ€ป้กตๆ•ฐ """ if not self.discover: return 0 try: return self.discover.discover_movies_pages(params=params) except Exception as e: print(str(e)) return 0 def get_person_medias(self, personid, mtype=None, page=1): """ ๆŸฅ่ฏขไบบ็‰ฉ็›ธๅ…ณๅฝฑ่ง†ไฝœๅ“ """ if not self.person: return [] try: if mtype == MediaType.MOVIE: movies = self.person.movie_credits(person_id=personid) or [] result = self.__dict_tmdbinfos(movies, mtype) elif mtype: tvs = self.person.tv_credits(person_id=personid) or [] result = self.__dict_tmdbinfos(tvs, mtype) else: medias = self.person.combined_credits(person_id=personid) or [] result = self.__dict_tmdbinfos(medias) return result[(page - 1) * 20: page * 20] except Exception as e: print(str(e)) return [] @staticmethod def __search_engine(feature_name): """ ่พ…ๅŠฉ่ฏ†ๅˆซๅ…ณ้”ฎๅญ— """ is_movie = False if not feature_name: return None, is_movie # ๅ‰”้™คไธๅฟ…่ฆๅญ—็ฌฆ feature_name = re.compile(r"^\w+ๅญ—ๅน•[็ป„็คพ]?", re.IGNORECASE).sub("", feature_name) backlist = sorted(KEYWORD_BLACKLIST, key=lambda x: len(x), reverse=True) for single in backlist: feature_name = feature_name.replace(single, " ") if not feature_name: return None, is_movie def cal_score(strongs, r_dict): for i, s in enumerate(strongs): if len(strongs) < 5: if i < 2: score = KEYWORD_SEARCH_WEIGHT_3[0] else: score = KEYWORD_SEARCH_WEIGHT_3[1] elif len(strongs) < 10: if i < 2: score = KEYWORD_SEARCH_WEIGHT_2[0] else: score = KEYWORD_SEARCH_WEIGHT_2[1] if i < (len(strongs) >> 1) else KEYWORD_SEARCH_WEIGHT_2[2] else: if i < 2: score = KEYWORD_SEARCH_WEIGHT_1[0] else: score = KEYWORD_SEARCH_WEIGHT_1[1] if i < (len(strongs) >> 2) else KEYWORD_SEARCH_WEIGHT_1[ 2] if i < ( len(strongs) >> 1) \ else KEYWORD_SEARCH_WEIGHT_1[3] if i < (len(strongs) >> 2 + len(strongs) >> 1) else \ KEYWORD_SEARCH_WEIGHT_1[ 4] if r_dict.__contains__(s.lower()): r_dict[s.lower()] += score continue r_dict[s.lower()] = score bing_url = "https://www.cn.bing.com/search?q=%s&qs=n&form=QBRE&sp=-1" % feature_name baidu_url = "https://www.baidu.com/s?ie=utf-8&tn=baiduhome_pg&wd=%s" % feature_name res_bing = RequestUtils(timeout=5).get_res(url=bing_url) res_baidu = RequestUtils(timeout=5).get_res(url=baidu_url) ret_dict = {} if res_bing and res_bing.status_code == 200: html_text = res_bing.text if html_text: html = etree.HTML(html_text) strongs_bing = list( filter(lambda x: (0 if not x else difflib.SequenceMatcher(None, feature_name, x).ratio()) > KEYWORD_STR_SIMILARITY_THRESHOLD, map(lambda x: x.text, html.cssselect( "#sp_requery strong, #sp_recourse strong, #tile_link_cn strong, .b_ad .ad_esltitle~div strong, h2 strong, .b_caption p strong, .b_snippetBigText strong, .recommendationsTableTitle+.b_slideexp strong, .recommendationsTableTitle+table strong, .recommendationsTableTitle+ul strong, .pageRecoContainer .b_module_expansion_control strong, .pageRecoContainer .b_title>strong, .b_rs strong, .b_rrsr strong, #dict_ans strong, .b_listnav>.b_ans_stamp>strong, #b_content #ans_nws .na_cnt strong, .adltwrnmsg strong")))) if strongs_bing: title = html.xpath("//aside//h2[@class = \" b_entityTitle\"]/text()") if len(title) > 0: if title: t = re.compile(r"\s*\(\d{4}\)$").sub("", title[0]) ret_dict[t] = 200 if html.xpath("//aside//div[@data-feedbk-ids = \"Movie\"]"): is_movie = True cal_score(strongs_bing, ret_dict) if res_baidu and res_baidu.status_code == 200: html_text = res_baidu.text if html_text: html = etree.HTML(html_text) ems = list( filter(lambda x: (0 if not x else difflib.SequenceMatcher(None, feature_name, x).ratio()) > KEYWORD_STR_SIMILARITY_THRESHOLD, map(lambda x: x.text, html.cssselect("em")))) if len(ems) > 0: cal_score(ems, ret_dict) if not ret_dict: return None, False ret = sorted(ret_dict.items(), key=lambda d: d[1], reverse=True) log.info("ใ€Metaใ€‘ๆŽจๆ–ญๅ…ณ้”ฎๅญ—ไธบ๏ผš%s ..." % ([k[0] for i, k in enumerate(ret) if i < 4])) if len(ret) == 1: keyword = ret[0][0] else: pre = ret[0] nextw = ret[1] if nextw[0].find(pre[0]) > -1: # ๆปกๅˆ†็›ดๆŽฅๅˆคๅฎš if int(pre[1]) >= 100: keyword = pre[0] # ๅพ—ๅˆ†็›ธๅทฎ30 ไปฅไธŠ๏ผŒ ้€‰ๅˆ†้ซ˜ elif int(pre[1]) - int(nextw[1]) > KEYWORD_DIFF_SCORE_THRESHOLD: keyword = pre[0] # ้‡ๅค็š„ไธ้€‰ elif nextw[0].replace(pre[0], "").strip() == pre[0]: keyword = pre[0] # ็บฏๆ•ฐๅญ—ไธ้€‰ elif pre[0].isdigit(): keyword = nextw[0] else: keyword = nextw[0] else: keyword = pre[0] log.info("ใ€Metaใ€‘้€‰ๆ‹ฉๅ…ณ้”ฎๅญ—ไธบ๏ผš%s " % keyword) return keyword, is_movie @staticmethod def __get_genre_ids_from_detail(genres): """ ไปŽTMDB่ฏฆๆƒ…ไธญ่Žทๅ–genre_idๅˆ—่กจ """ if not genres: return [] genre_ids = [] for genre in genres: genre_ids.append(genre.get('id')) return genre_ids @staticmethod def __get_tmdb_chinese_title(tmdbinfo): """ ไปŽๅˆซๅไธญ่Žทๅ–ไธญๆ–‡ๆ ‡้ข˜ """ if not tmdbinfo: return None if tmdbinfo.get("media_type") == MediaType.MOVIE: alternative_titles = tmdbinfo.get("alternative_titles", {}).get("titles", []) else: alternative_titles = tmdbinfo.get("alternative_titles", {}).get("results", []) for alternative_title in alternative_titles: iso_3166_1 = alternative_title.get("iso_3166_1") if iso_3166_1 == "CN": title = alternative_title.get("title") if title and StringUtils.is_chinese(title) and zhconv.convert(title, "zh-hans") == title: return title return tmdbinfo.get("title") if tmdbinfo.get("media_type") == MediaType.MOVIE else tmdbinfo.get("name") def get_tmdbperson_chinese_name(self, person_id=None, person_info=None): """ ๆŸฅ่ฏขTMDBไบบ็‰ฉไธญๆ–‡ๅ็งฐ """ if not self.person: return "" if not person_info and not person_id: return "" # ่ฟ”ๅ›žไธญๆ–‡ๅ name = "" # ๆ‰€ๆœ‰ๅˆซๅ alter_names = [] try: if not person_info: person_info = self.person.details(person_id) if person_info: aka_names = person_info.get("also_known_as", []) or [] else: return "" except Exception as err: print(str(err)) return "" for aka_name in aka_names: if StringUtils.is_chinese(aka_name): alter_names.append(aka_name) if len(alter_names) == 1: name = alter_names[0] elif len(alter_names) > 1: for alter_name in alter_names: if alter_name == zhconv.convert(alter_name, 'zh-hans'): name = alter_name return name def get_tmdbperson_aka_names(self, person_id): """ ๆŸฅ่ฏขไบบ็‰ฉๅˆๅ """ if not self.person: return [] try: aka_names = self.person.details(person_id).get("also_known_as", []) or [] return aka_names except Exception as err: print(str(err)) return [] def get_random_discover_backdrop(self): """ ่Žทๅ–TMDB็ƒญ้—จ็”ตๅฝฑ้šๆœบไธ€ๅผ ่ƒŒๆ™ฏๅ›พ """ if not self.discover: return "" try: medias = self.discover.discover_movies(params={"sort_by": "popularity.desc"}) if medias: # ้šๆœบไธ€ไธช็”ตๅฝฑ media = random.choice(medias) img_url = Config().get_tmdbimage_url(media.get("backdrop_path"), prefix="original") \ if media.get("backdrop_path") else '' img_title = media.get('title', '') img_link = f"https://www.themoviedb.org/movie/{media.get('id')}" if media.get('id') else '' return img_url, img_title, img_link except Exception as err: print(str(err)) return '', '', '' def save_rename_cache(self, file_name, cache_info): """ ๅฐ†ๆ‰‹ๅŠจ่ฏ†ๅˆซ็š„ไฟกๆฏๅŠ ๅ…ฅ็ผ“ๅญ˜ """ if not file_name or not cache_info: return meta_info = MetaInfo(title=file_name) self.__insert_media_cache(self.__make_cache_key(meta_info), cache_info) @staticmethod def merge_media_info(target, source): """ ๅฐ†soruceไธญๆœ‰ๆ•ˆ็š„ไฟกๆฏๅˆๅนถๅˆฐtargetไธญๅนถ่ฟ”ๅ›ž """ target.set_tmdb_info(source.tmdb_info) target.fanart_poster = source.get_poster_image() target.fanart_backdrop = source.get_backdrop_image() target.set_download_info(download_setting=source.download_setting, save_path=source.save_path) return target def get_tmdbid_by_imdbid(self, imdbid): """ ๆ นๆฎIMDBIDๆŸฅ่ฏขTMDBไฟกๆฏ """ if not self.find: return None try: result = self.find.find_by_imdbid(imdbid) or {} tmdbinfo = result.get('movie_results') or result.get("tv_results") if tmdbinfo: tmdbinfo = tmdbinfo[0] return tmdbinfo.get("id") except Exception as err: print(str(err)) return None @staticmethod def get_detail_url(mtype, tmdbid): """ ่Žทๅ–TMDB/่ฑ†็“ฃ่ฏฆๆƒ…้กตๅœฐๅ€ """ if not tmdbid: return "" if str(tmdbid).startswith("DB:"): return "https://movie.douban.com/subject/%s" % str(tmdbid).replace("DB:", "") elif mtype == MediaType.MOVIE: return "https://www.themoviedb.org/movie/%s" % tmdbid else: return "https://www.themoviedb.org/tv/%s" % tmdbid def get_episode_images(self, tv_id, season_id, episode_id, orginal=False): """ ่Žทๅ–ๅ‰ง้›†ไธญๆŸไธ€้›†ๅฐ้ข """ if not self.episode: return "" if not tv_id or not season_id or not episode_id: return "" res = self.episode.images(tv_id, season_id, episode_id) if res: if orginal: return Config().get_tmdbimage_url(res[-1].get("file_path"), prefix="original") else: return Config().get_tmdbimage_url(res[-1].get("file_path")) else: return "" def get_tmdb_factinfo(self, media_info): """ ่Žทๅ–TMDBๅ‘ๅธƒไฟกๆฏ """ result = [] if media_info.vote_average: result.append({"่ฏ„ๅˆ†": media_info.vote_average}) if media_info.original_title: result.append({"ๅŽŸๅง‹ๆ ‡้ข˜": media_info.original_title}) status = media_info.tmdb_info.get("status") if status: result.append({"็Šถๆ€": status}) if media_info.release_date: result.append({"ไธŠๆ˜ ๆ—ฅๆœŸ": media_info.release_date}) revenue = media_info.tmdb_info.get("revenue") if revenue: result.append({"ๆ”ถๅ…ฅ": StringUtils.str_amount(revenue)}) budget = media_info.tmdb_info.get("budget") if budget: result.append({"ๆˆๆœฌ": StringUtils.str_amount(budget)}) if media_info.original_language: result.append({"ๅŽŸๅง‹่ฏญ่จ€": media_info.original_language}) production_country = self.get_get_production_country_names(tmdbinfo=media_info.tmdb_info) if media_info.networks: result.append({"็”ต่ง†็ฝ‘": media_info.networks}) if production_country: result.append({"ๅ‡บๅ“ๅ›ฝๅฎถ": production_country}), production_company = self.get_tmdb_production_company_names(tmdbinfo=media_info.tmdb_info) if production_company: result.append({"ๅˆถไฝœๅ…ฌๅธ": production_company}) return result
[]
2024-01-10
ilanhuang/audio2face-streamgpt-public
exts~stream.gptchat~stream~gptchat~recording_transcription.py
#Stream-GPT #GNU - GLP Licence #Copyright (C) <year> <Huang I Lan & Erks - Virtual Studio> #This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. #This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. #You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. import os import pyaudio import wave import keyboard import time from time import sleep import openai import datetime def open_file(filepath): with open(filepath, 'r', encoding='utf-8') as infile: return infile.read() def save_file(filepath, content): with open(filepath, 'w', encoding='utf-8') as outfile: outfile.write(content) def timestamp_to_datetime(unix_time): return datetime.datetime.fromtimestamp(unix_time).strftime("%A, %B %d, %Y at %I:%M%p %Z") def record_client_voice(output_filename, recording_status): CHUNK = 1024 FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 16000 frames = [] p = pyaudio.PyAudio() stream = None try: stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) start_time = time.time() min_duration = 0.1 while recording_status() or time.time() - start_time < min_duration: data = stream.read(CHUNK) frames.append(data) except Exception as e: print(f"Error while recording audio: {e}") finally: if stream is not None: stream.stop_stream() stream.close() p.terminate() wf = wave.open(output_filename, 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(b''.join(frames)) wf.close() return output_filename def transcribe_audio_to_text(file_path): with open(file_path, 'rb') as audio_file: transcript_response = openai.Audio.transcribe("whisper-1", audio_file) return transcript_response["text"]
[]
2024-01-10
ilanhuang/audio2face-streamgpt-public
exts~stream.gptchat~stream~gptchat~extension.py
#Stream-GPT #GNU - GLP Licence #Copyright (C) <year> <Huang I Lan & Erks - Virtual Studio> #This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. #This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. #You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. import omni.ext import sys sys.path.append("C:\\Users\\ERKS 2\\Documents\\Omniverse\\ov\\pkg\\audio2face-2022.2.1\\exts\\omni.audio2face.player\omni\\audio2face\\player\\scripts\\streaming_server") import openai import carb from .window import AudioChatWindow def open_file(filepath): with open(filepath, 'r', encoding='utf-8') as infile: return infile.read() # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): openai.api_key = AudioChatWindow.get_openai_api_key() self._window = AudioChatWindow("VIRTUAL ASSISTANT", width=400, height=525) def on_shutdown(self): self._window.destroy() self._window = None
[]
2024-01-10
clintonjules/cm1_code_assessment
task5~task5.py
import discord from discord.ext import commands from langchain.prompts import ( ChatPromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, HumanMessagePromptTemplate ) from langchain.chains import ConversationChain from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory # Define the intents intents = discord.Intents.all() bot = commands.Bot(command_prefix='!',intents=intents) client = discord.Client(intents=intents) prompt = ChatPromptTemplate.from_messages([ SystemMessagePromptTemplate.from_template( "The following is a friendly conversation between a human and an AI. The AI is talkative and " "provides lots of specific details from its context. If the AI does not know the answer to a " "question, it truthfully says it does not know." ), MessagesPlaceholder(variable_name="history"), HumanMessagePromptTemplate.from_template("{input}") ]) llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) memory = ConversationBufferMemory(return_messages=True) conversation = ConversationChain(memory=memory, prompt=prompt, llm=llm) @bot.event async def on_ready(): print("bot online") @bot.event async def on_member_join(member): guild = bot.get_guild() # guild id channel = guild.get_channel() # welcome channel id await channel.send(f"Hello {member.mention}!") await channel.send("Here's a joke for you:") joke = conversation.predict(input=f"Make a joke about the name {member} only type out the joke") joke = '\n'.join(joke.split('\n')[1:]) await channel.send(joke) await channel.send("Any questions you want to ask? (Place a '$' infront when doing so)") @bot.event async def on_message(message): if message.author.bot: return query = message.content[1:] if message.content.startswith('$'): await message.channel.send(conversation.predict(input=query)) bot.run('YOUR_KEY')
[ "The following is a friendly conversation between a human and an AI. The AI is talkative and ", "{input}", "The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.", "provides lots of specific details from its context. If the AI does not know the answer to a ", "question, it truthfully says it does not know." ]
2024-01-10
clintonjules/cm1_code_assessment
task3~task3.py
import os # Enter yuor OpenAI key os.environ["OPENAI_API_KEY"] = 'YOUR_KEy' from langchain.prompts import ( ChatPromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, HumanMessagePromptTemplate ) from langchain.chains import ConversationChain from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory prompt = ChatPromptTemplate.from_messages([ SystemMessagePromptTemplate.from_template( "The following is a friendly conversation between a human and an AI. The AI is talkative and " "provides lots of specific details from its context. If the AI does not know the answer to a " "question, it truthfully says it does not know." ), MessagesPlaceholder(variable_name="history"), HumanMessagePromptTemplate.from_template("{input}") ]) llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) memory = ConversationBufferMemory(return_messages=True) conversation = ConversationChain(memory=memory, prompt=prompt, llm=llm) print(conversation.predict(input="Hi there! My name is Clint")) print(conversation.predict(input="Tell em a joke about my name")) print(conversation.predict(input="What are the last 2 message we exchanged?")) print("-------------SystemMessagePromptTemplate---------------\n") print(prompt.messages[0])
[ "The following is a friendly conversation between a human and an AI. The AI is talkative and ", "{input}", "The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.", "provides lots of specific details from its context. If the AI does not know the answer to a ", "question, it truthfully says it does not know." ]
2024-01-10
wbivanco/matriz_qa
ai~matrix_generator.py
from dotenv import load_dotenv import os from os.path import abspath, dirname import openai import pandas as pd from tqdm import tqdm import json # Cargo variables de configuraciรณn. load_dotenv() # Configuraciรณn. os.environ["OPENAI_API_KEY"] = os.getenv('API_KEY') openai.api_type = os.getenv('API_TYPE') openai.api_version = os.getenv('API_VERSION') openai.api_base = os.getenv('API_BASE') openai.api_key = os.getenv('API_KEY') def extraction(messages, engine=os.getenv('CHAT_ENGINE_16K'), temperature=0.1, top_p = 0.9): """ Extracts information from a document containing test requirements and identifies all test cases and their expected results. Parameters: - messages (list): A list of messages exchanged between the user and the chatbot. - engine (str): The engine to use for generating responses. Default is CHAT_ENGINE_16K. - temperature (float): The temperature parameter for response generation. Default is 0.1. - top_p (float): The top-p parameter for response generation. Default is 0.9. Returns: - str: The extracted content containing the identified test cases and their expected results. """ messages_full = [{"role": "system", "content": """Sos parte del equipo de testing de una compania de telecomunicaciones. - Vas a recibir un documento con los requerimientos para testeo de varios de los modulos de una aplicacion y debes identificar TODOS los casos de prueba presentes en รฉl y su resultado esperado. """ }] + messages timeout = 10 try: response = openai.ChatCompletion.create( engine=engine, messages=messages_full, temperature=temperature, top_p=top_p, timeout=timeout ) except openai.OpenAIError as e: print("Error al realizar la solicitud:", str(e)) return None # Medir la respuesta de los tokens. prompt_tokens = response['usage']['prompt_tokens'] completion_tokens = response['usage']['completion_tokens'] choice = response.choices[0] message = choice.get("message") if message is not None: content = message.get("content") if content is not None: return { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "content": content } print("La respuesta no contiene la clave 'content'") return None def build_message(visit): """ This function takes a 'visit' parameter and generates a prompt message based on the given document. The prompt message includes instructions for identifying and enumerating test cases, their expected results, the component type they refer to, and the global functionality mentioned in the document. The function returns the extracted information in the form of a JSON string. Parameters: - visita: The document to be analyzed. Returns: - JSON string containing the extracted information. """ prompt = f"""Te voy a dar un contexto y un documento, en base al documento: - Identifica y enumeras TODOS los casos de prueba de testing de aplicaciones presentes (escritos) y su resultado esperado. Un ejemplo de caso de prueba es 'Validar que al darle clic en la opcion pasate un plan nos mande al la pantalla de "Pasate a un plan"' y su resultado esperado es 'Se debe mostrar la pantalla de "Pasate a un plan"'. Otro ejemplo de caso de prueba es 'Validar que al seleccionar el botรณn continuar permita avanzar a la pantalla de check out' y su resultado esperado es 'Se debe mostrar la pantalla de check out'. - Identifica el tipo de componente de la aplicaciรณn al que hace referencia el caso de prueba (por ejemplo: 'botรณn continuar', 'pantalla', 'botรณn pasarme a un plan', 'Inicio de sesiรณn', 'switch flujo de migraciones', 'parrillas', 'menรบ hamburguesa', 'campo RFC', 'Banner', 'Spinner', 'checkout', 'check box') y coloca este resultado en el campo 'componente'. - Ten en cuenta que el componente tiene como mรกximo 5 palabras para ubicar la secciรณn de la app, encambio el caso de prueba contiene una descripciรณn mรกs larga de la acciรณn que hay que realizar. - Haz distinciรณn de los casos que hablan del mantenedor y los que hablan de la app del usuario, coloca este resultado en el campo 'tipo'. - Ademรกs, debes identificar la funcionalidad global a la que hace referencia el texto completo, esta se encuentra generalmente al comienzo del documento. Por ejemplo: 'MANTENEDOR โ€“ SWITCH FLUJO DE MIGRACIONES-DESACTIVADO', 'MANTENEDOR โ€“ CONFIGURACIร“N DE PARRILLAS - SWITCH MOSTRAR EN EL APP โ€“ PLAN 2 โ€“ DESACTIVADO', 'MIGRACIONES โ€“ FILTRO / RANGO DE FECHAS' o descripciones similares. Este valor debes repetirlo para todos los casos de prueba que se encuentren en el documento y almacenarlo en el campo 'funcionalidad'. La funcionalidad ES IGUAL para todos los casos de prueba de un mismo documento, ignora la separaciรณn de mantenedor y app para el campo funcionalidad. - La salida debe ser SOLAMENTE un JSON con la informacion encontrada en el texto siguiendo la estructura: {{ "1": {{ "funcionalidad": extrae la funcionalidad y colocala aqui, "tipo": "mantenedor" o "aplicaciรณn", "componente": extrae el componente y colocalo aqui, "caso de prueba": extrae el caso de prueba y colocalo aqui, "resultado esperado": extrae el resultado esperado del caso de prueba y colocalo aqui, }}, "2": {{ "funcionalidad": extrae la funcionalidad y colocala aqui, "tipo": "mantenedor" o "aplicaciรณn", "componente": extrae el componente y colocalo aqui, "caso de prueba": extrae el caso de prueba y colocalo aqui, "resultado esperado": extrae el resultado esperado del caso de prueba y colocalo aqui, }}, }} - La salida debe ser un JSON que se pueda leer mediante json.loads() en python, incluye siempre los separadores correspondientes para que funcione la lectura. Documento:{visit}""" message = [{"role": "user", "content": prompt}] return extraction(message) def preprocess_docx(docx): """ Preprocesses a docx file by splitting it into chunks based on the '#' character. Args: docx (str): The content of the docx file. Returns: tuple: A tuple containing the context (first chunk) and the documents (remaining chunks). """ # Separa cada tรญtulo del docx en un chunk: # Reemplazar '.\n-' por '#' para identificar cada tรญtulo. # separar texto en chunks por caracter '#'. docx_md = docx.replace('.\n-', '#') docx_md = docx_md.replace('\nโ€“', '#') chunks_md = docx_md.split('#') context = chunks_md[0] documents = chunks_md[1:] return context, documents def generate_response(documents): """ Generates a response by processing a list of documents. Args: documentos (list): A list of documents to process. Returns: pandas.DataFrame: A DataFrame containing the generated results. """ prompt_tokens = 0 completion_tokens = 0 # Inicializa un DataFrame vacรญo con las columnas deseadas. results = pd.DataFrame(columns=['funcionalidad','tipo','componente','caso de prueba', 'resultado esperado']) # Itera sobre cada chunk en 'documents'. for chunk in tqdm(documents): # Llama a 'build_message' con el chunk como argumento. result_dict = build_message(chunk) test_cases = result_dict['content'] # Convierte la cadena de texto en un diccionario. #print(f"*****CASOs DE PRUEBA {chunk}******") #print(casos_de_prueba) test_cases_dict = json.loads(test_cases) prompt_tokens += result_dict['prompt_tokens'] completion_tokens += result_dict['completion_tokens'] # Convierte el diccionario anidado en un DataFrame y aรฑรกdelo al DataFrame de resultados. for key, value in test_cases_dict.items(): df = pd.DataFrame(value, index=[0]) results = pd.concat([results, df], ignore_index=True) costo = f'El costo de la presente ejecuciรณn es u$s: {(prompt_tokens/1000)*0.003 + (completion_tokens/1000)*0.004}' # Ahora 'resultados' es un DataFrame que contiene todos los casos de prueba de todos los chunks. return results, costo def generate_matrix(filename, mode='online'): if mode == 'local': from libs.docx_parser import getDoc docx = '../static/input/' + filename output_path = '../static/output/' else: from ai.libs.docx_parser import getDoc docx = 'static/input/' + filename output_path = 'static/output/' # Cargar el relative path del archivo que se quiere procesar. #path = dirname(dirname(dirname(abspath(__file__))))+'\\1.4 Datos\CP_Migraciones.docx' docx_file = getDoc(docx) context, document = preprocess_docx(docx_file) result, cost = generate_response(document) # Guarda los resultados en un archivo CSV que se lean รฑ y tildes. #output_file = output_path + 'resultados_generados.csv' #result.to_csv(output_file, index=False, encoding='utf-8-sig') # Guarda los resultados en un archivo Excel. output_file = output_path + 'resultados_generados.xlsx' result.to_excel(output_file, sheet_name='Resultados', index=False) if mode == 'local': print(cost) else: msg = "Proceso terminado exitosamente (procesado: " + filename + ") puede consultar la matrรญz generada." cost = "El costo es de u$s 0.25." return (cost, msg) ################# EL CODIGO DE ABAJO SE USA PARA CORRER LOCAL ##################### generate_matrix('cp_migraciones.docx', 'local')
[ "0", "Te voy a dar un contexto y un documento, en base al documento: \n - Identifica y enumeras TODOS los casos de prueba de testing de aplicaciones presentes (escritos) y su resultado esperado. Un ejemplo de caso de prueba es 'Validar que al darle clic en la opcion pasate un plan nos mande al la pantalla de \"Pasate a un plan\"' y su resultado esperado es 'Se debe mostrar la pantalla de \"Pasate a un plan\"'. Otro ejemplo de caso de prueba es 'Validar que al seleccionar el botรณn continuar permita avanzar a la pantalla de check out' y su resultado esperado es 'Se debe mostrar la pantalla de check out'.\n - Identifica el tipo de componente de la aplicaciรณn al que hace referencia el caso de prueba (por ejemplo: 'botรณn continuar', 'pantalla', 'botรณn pasarme a un plan', 'Inicio de sesiรณn', 'switch flujo de migraciones', 'parrillas', 'menรบ hamburguesa', 'campo RFC', 'Banner', 'Spinner', 'checkout', 'check box') y coloca este resultado en el campo 'componente'. \n - Ten en cuenta que el componente tiene como mรกximo 5 palabras para ubicar la secciรณn de la app, encambio el caso de prueba contiene una descripciรณn mรกs larga de la acciรณn que hay que realizar.\n - Haz distinciรณn de los casos que hablan del mantenedor y los que hablan de la app del usuario, coloca este resultado en el campo 'tipo'.\n - Ademรกs, debes identificar la funcionalidad global a la que hace referencia el texto completo, esta se encuentra generalmente al comienzo del documento. Por ejemplo: 'MANTENEDOR โ€“ SWITCH FLUJO DE MIGRACIONES-DESACTIVADO', 'MANTENEDOR โ€“ CONFIGURACIร“N DE PARRILLAS - SWITCH MOSTRAR EN EL APP โ€“ PLAN 2 โ€“ DESACTIVADO', 'MIGRACIONES โ€“ FILTRO / RANGO DE FECHAS' o descripciones similares. Este valor debes repetirlo para todos los casos de prueba que se encuentren en el documento y almacenarlo en el campo 'funcionalidad'. La funcionalidad ES IGUAL para todos los casos de prueba de un mismo documento, ignora la separaciรณn de mantenedor y app para el campo funcionalidad.\n - La salida debe ser SOLAMENTE un JSON con la informacion encontrada en el texto siguiendo la estructura: \n { \"1\": {\n \"funcionalidad\": extrae la funcionalidad y colocala aqui,\n \"tipo\": \"mantenedor\" o \"aplicaciรณn\",\n \"componente\": extrae el componente y colocalo aqui,\n \"caso de prueba\": extrae el caso de prueba y colocalo aqui,\n \"resultado esperado\": extrae el resultado esperado del caso de prueba y colocalo aqui,\n },\n \"2\": {\n \"funcionalidad\": extrae la funcionalidad y colocala aqui,\n \"tipo\": \"mantenedor\" o \"aplicaciรณn\",\n \"componente\": extrae el componente y colocalo aqui,\n \"caso de prueba\": extrae el caso de prueba y colocalo aqui,\n \"resultado esperado\": extrae el resultado esperado del caso de prueba y colocalo aqui,\n }, \n }\n - La salida debe ser un JSON que se pueda leer mediante json.loads() en python, incluye siempre los separadores correspondientes para que funcione la lectura. \n Documento:PLACEHOLDER", "Sos parte del equipo de testing de una compania de telecomunicaciones.\n - Vas a recibir un documento con los requerimientos para testeo de varios de los modulos de una aplicacion y debes identificar TODOS los casos de prueba presentes en รฉl y su resultado esperado.\n ", "prompt_tokens" ]
2024-01-10
RKP64/BambooAI
bambooai~bambooai.py
import os import re import sys import base64 import json from contextlib import redirect_stdout import io import time import openai import pandas as pd from termcolor import colored, cprint from IPython.display import display, Image, HTML import warnings warnings.filterwarnings('ignore') #Running as a script #import prompts #import func_calls #import qa_retrieval #Running as a package from . import prompts from . import func_calls from . import qa_retrieval class BambooAI: def __init__(self, df: pd.DataFrame, max_conversations: int = 4, llm: str = 'gpt-3.5-turbo-0613', llm_func: str = 'gpt-3.5-turbo-0613', llm_16k: str = 'gpt-3.5-turbo-16k', llm_gpt4: str = 'gpt-4-0613', debug: bool = False, vector_db: bool = False, llm_switch: bool = False, exploratory: bool = True, ): self.API_KEY = os.environ.get('OPENAI_API_KEY') # Check if the OPENAI_API_KEY environment variable is set if not self.API_KEY: raise EnvironmentError("OPENAI_API_KEY environment variable not found.") # Check if the PINECONE_API_KEY and PINECONE_ENV environment variables are set if vector_db is True if vector_db: PINECONE_API_KEY = os.getenv('PINECONE_API_KEY') PINECONE_ENV = os.getenv('PINECONE_ENV') if PINECONE_API_KEY is None or PINECONE_ENV is None: print("Warning: PINECONE_API_KEY or PINECONE_ENV environment variable not found. Disabling vector_db.") vector_db = False self.MAX_ERROR_CORRECTIONS = 5 # Set the maximum number of question/answer pairs to be kept in the conversation memmory self.MAX_CONVERSATIONS = (max_conversations*2) - 1 # Store the original dataframe. This will be used to reset the dataframe before executing the code self.original_df = df self.df = df.copy() # make a copy of the dataframe self.df_head = self.original_df.head(1) self.df_columns = self.df.columns.tolist() # LLMs self.llm = llm self.llm_func = llm_func self.llm_16k = llm_16k self.llm_gpt4 = llm_gpt4 # Set the debug mode. This mode is True when you want the model to debug the code and correct it. self.debug = debug # Set the llm_switch mode. This mode is True when you want the model to switch to gpt-4 for debugging, error correction and ranking. self.llm_switch = llm_switch # Set the rank mode. This mode is True when you want the model to rank the generated code. self.vector_db = vector_db # Set the exploratory mode. This mode is True when you want the model to evaluate the original prompt and break it down in algorithm. self.exploratory = exploratory # Prompts self.default_example_output = prompts.example_output self.task_evaluation = prompts.task_evaluation self.system_task = prompts.system_task self.user_task = prompts.user_task self.error_correct_task = prompts.error_correct_task self.debug_code_task = prompts.debug_code_task self.rank_answer = prompts.rank_answer self.solution_insights = prompts.solution_insights # Functions self.task_eval_function = func_calls.task_eval_function self.insights_function = func_calls.solution_insights_function # QA Retrieval self.add_question_answer_pair = qa_retrieval.add_question_answer_pair self.retrieve_answer = qa_retrieval.retrieve_answer self.similarity_threshold = 0.8 openai.api_key = self.API_KEY # Initialize the total tokens used list. This list will be used to keep track of the total tokens used by the model self.total_tokens_used = [] def llm_call(self, messages: str, temperature: float = 0, max_tokens: int = 1000, llm_cascade: bool = False): model = self.llm if llm_cascade: model = self.llm_gpt4 try: response = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, ) except openai.error.RateLimitError: print( "The OpenAI API rate limit has been exceeded. Waiting 10 seconds and trying again." ) time.sleep(10) response = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, ) # Exceeded the maximum number of tokens allowed by the API except openai.error.InvalidRequestError: print( "The OpenAI API maximum tokens limit has been exceeded. Switching to a 16K model." ) response = openai.ChatCompletion.create( model=self.llm_16k, messages=messages, temperature=temperature, max_tokens=max_tokens, ) content = response.choices[0].message.content.strip() tokens_used = response.usage.total_tokens return content, tokens_used def llm_func_call(self, messages, functions, function_name): try: response = openai.ChatCompletion.create( model = self.llm_func, messages=messages, functions=functions, function_call = function_name, temperature=0, max_tokens = 700, ) except openai.error.RateLimitError: print( "The OpenAI API rate limit has been exceeded. Waiting 10 seconds and trying again." ) time.sleep(10) response = openai.ChatCompletion.create( model = self.llm_func, messages=messages, functions=functions, function_call = function_name, temperature=0, ) fn_name = response.choices[0].message["function_call"].name arguments = response.choices[0].message["function_call"].arguments tokens_used = response.usage.total_tokens return fn_name,arguments,tokens_used # Functions to sanitize the output from the LLM def _extract_code(self,response: str, separator: str = "```") -> str: # Define a blacklist of Python keywords and functions that are not allowed blacklist = ['os','subprocess','sys','eval','exec','file','socket','urllib', 'shutil','pickle','ctypes','multiprocessing','tempfile','glob','code','pty','commands', 'requests','cgi','cgitb','xml.etree.ElementTree','builtins' ] # Search for a pattern between <code> and </code> in the extracted code match = re.search(r"<code>(.*)</code>", response, re.DOTALL) if match: # If a match is found, extract the code between <code> and </code> code = match.group(1) # If the response contains the separator, extract the code block between the separators if len(code.split(separator)) > 1: code = code.split(separator)[1] # If the response contains the separator, extract the code block between the separators if len(response.split(separator)) > 1: code = response.split(separator)[1] # Remove the "python" or "py" prefix if present if re.match(r"^(python|py)", code): code = re.sub(r"^(python|py)", "", code) # If the code is between single backticks, extract the code between them if re.match(r"^`.*`$", code): code = re.sub(r"^`(.*)`$", r"\1", code) # Remove any instances of "df = pd.read_csv('filename.csv')" from the code code = re.sub(r"df\s*=\s*pd\.read_csv\('.*?'(,.*)?\)", "", code) # Define the regular expression pattern to match the blacklist items pattern = r"^(.*\b(" + "|".join(blacklist) + r")\b.*)$" # Replace the blacklist items with comments code = re.sub(pattern, r"# not allowed \1", code, flags=re.MULTILINE) # Return the cleaned and extracted code return code.strip() def _extract_rank(self,response: str) -> str: # Search for a pattern between <rank> and </rank> in the response match = re.search(r"<rank>(.*)</rank>", response) if match: # If a match is found, extract the rank between <rank> and </rank> rank = match.group(1) else: rank = "" # Return the cleaned and extracted code return rank.strip() # Function to remove examples from messages when no longer needed def _remove_examples(self,messages: str) -> str: # Define the regular expression pattern pattern = 'Example Output:\s*<code>.*?</code>\s*' # Iterate over the list of dictionaries for dict in messages: # Access and clean up 'content' field if dict.get('role') == 'user' and 'content' in dict: dict['content'] = re.sub(pattern, '', dict['content'], flags=re.DOTALL) return messages def task_eval(self, eval_messages): if 'ipykernel' in sys.modules: # Jupyter notebook or ipython display(HTML(f'<p style="color:magenta;">\nCalling Model: {self.llm_func}</p>')) display(HTML(f'<p><b style="color:magenta;">Trying to determine the best method to answer your question, please wait...</b></p><br>')) else: # Other environment (like terminal) print(colored(f"\n>> Calling Model: {self.llm_func}", "magenta")) cprint(f"\n>> Trying to determine the best method to answer your question, please wait...\n", 'magenta', attrs=['bold']) # Call OpenAI API function_name = {"name": "QA_Response"} fn_name, arguments, tokens_used = self.llm_func_call(eval_messages,self.task_eval_function, function_name) # Parse the JSON string to a Python dict arguments_dict = json.loads(arguments, strict=False) # Retrieve values eval_answer = arguments_dict["answer"] eval_answer_type = arguments_dict["answer_type"] self.total_tokens_used.append(tokens_used) return arguments, fn_name, eval_answer, eval_answer_type def debug_code(self,code,question, llm_cascade=False): # Initialize the messages list with a system message containing the task prompt debug_messages = [{"role": "system", "content": self.debug_code_task.format(code,question)}] using_model = self.llm if llm_cascade: using_model = self.llm_gpt4 if 'ipykernel' in sys.modules: # Jupyter notebook or ipython display(HTML(f'<p style="color:magenta;">\nCalling Model: {using_model}</p>')) display(HTML(f'<p><b style="color:magenta;">I have received the first version of the code. I am sending it back to LLM to get it checked for any errors, bugs or inconsistencies, and correction if necessary. Please wait...</b></p><br>')) else: # Other environment (like terminal) print(colored(f"\n>> Calling Model: {using_model}", "magenta")) cprint(f"\n>> I have received the first version of the code. I am sending it back to LLM to get it checked for any errors, bugs or inconsistencies, and correction if necessary. Please wait...\n", 'magenta', attrs=['bold']) # Function to display results nicely def display_task(): if 'ipykernel' in sys.modules: # Jupyter notebook or ipython display(HTML(f'<p><b style="color:magenta;">I have finished debugging the code, and will now proceed to the execution...</b></p><br>')) else: # Other environment (like terminal) cprint(f"\n>> I have finished debugging the code, and will now proceed to the execution...\n", 'magenta', attrs=['bold']) # Call the OpenAI API llm_response, tokens_used = self.llm_call(debug_messages,temperature=0,llm_cascade=llm_cascade) # higher temperature results in more "creative" answers (sometimes too creative :-)) # Extract the code from the API response debugged_code = self._extract_code(llm_response) display_task() self.total_tokens_used.append(tokens_used) return debugged_code def rank_code(self,code,question,llm_cascade=False): # Initialize the messages list with a system message containing the task prompt rank_messages = [{"role": "system", "content": self.rank_answer.format(code,question)}] using_model = self.llm if llm_cascade: using_model = self.llm_gpt4 if 'ipykernel' in sys.modules: # Jupyter notebook or ipython display(HTML(f'<p style="color:magenta;">\nCalling Model: {using_model}</p>')) display(HTML(f'<p><b style="color:magenta;">I am going to evaluate and rank the answer. Please wait...</b></p><br>')) else: # Other environment (like terminal) print(colored(f"\n>> Calling Model: {using_model}", "magenta")) cprint(f"\n>> I am going to evaluate and rank the answer. Please wait..\n", 'magenta', attrs=['bold']) # Call the OpenAI API llm_response, tokens_used = self.llm_call(rank_messages,llm_cascade=llm_cascade) # Extract the rank from the API response rank = self._extract_rank(llm_response) self.total_tokens_used.append(tokens_used) return rank def pd_agent_converse(self, question=None): # Functions to display results nicely def display_results(answer, code, rank, total_tokens_used_sum): if 'ipykernel' in sys.modules: if answer is not None: display(HTML(f'<p><b style="color:blue;">I now have the final answer:</b><br><pre style="color:black; white-space: pre-wrap; font-weight: bold;">{answer}</pre></p><br>')) if code is not None: display(HTML(f'<p><b style="color:blue;">Here is the final code that accomplishes the task:</b><br><pre style="color:#555555;">{code}</pre></p><br>')) if self.vector_db and rank is not None: display(HTML(f'<p><b style="color:blue;">Rank:</b><br><span style="color:black;">{rank}</span></p><br>')) display(HTML(f'<p><b style="color:blue;">Total Tokens Used:</b><br><span style="color:black;">{total_tokens_used_sum}</span></p><br>')) else: if answer is not None: cprint(f"\n>> I now have the final answer:\n{answer}\n", 'green', attrs=['bold']) if code is not None: cprint(f">> Here is the final code that accomplishes the task:\n{code}\n", 'green', attrs=['bold']) if self.vector_db and rank is not None: cprint(f">> Rank:\n{rank}\n", 'green', attrs=['bold']) cprint(f">> Total tokens used:\n{total_tokens_used_sum}\n", 'yellow', attrs=['bold']) def display_eval(task_eval, title, total_tokens_used_sum): if 'ipykernel' in sys.modules: # Jupyter notebook or ipython display(HTML(f'<p><b style="color:blue;">{title}</b><br><pre style="color:black; white-space: pre-wrap; font-weight: bold;">{task_eval}</pre></p><br>')) display(HTML(f'<p><b style="color:blue;">Total Tokens Used:</b><br><span style="color:black;">{total_tokens_used_sum}</span></p><br>')) else: # Other environment (like terminal) cprint(f"\n>> {title}\n{task_eval}\n", 'magenta', attrs=['bold']) cprint(f">> Total tokens used:\n{total_tokens_used_sum}\n", 'yellow', attrs=['bold']) # Initialize the eval_messages list eval_messages = [] # If a question is provided, skip the input prompt if question is not None: # Initialize the messages list with a system message containing the task prompt messages = [{"role": "system", "content": self.system_task}] # Initialize the messages list with a system message containing the task prompt eval_messages.append({"role": "user", "content": self.task_evaluation.format(question, self.df_head)}) # Call the task_eval method with the user's question if the exploratory mode is True if self.exploratory is True: arguments, fn_name, task_eval, task_type = self.task_eval(eval_messages) total_tokens_used_sum = sum(self.total_tokens_used) if task_type == 'narrative': title = 'Here is the answer to your question:' display_eval(task_eval, title, total_tokens_used_sum) return if task_type == 'follow_up': title = 'To be able to answer your question, I am going to need some more info:' display_eval(task_eval, title, total_tokens_used_sum) return else: title = 'Here is the sequence of steps required to complete the task:' task = task_eval display_eval(task_eval, title, total_tokens_used_sum) else: task = question if self.vector_db: # Call the retrieve_answer method to check if the question has already been asked and answered example_output = self.retrieve_answer(task, self.df_columns, similarity_threshold=self.similarity_threshold) if example_output is not None: example_output = example_output else: example_output = self.default_example_output else: example_output = self.default_example_output # Call the pd_agent method with the user's question, the messages list, and the dataframe answer, code, total_tokens_used_sum = self.pd_agent(task, messages, example_output, self.df) # Rank the LLM response if self.vector_db: # Switch to gpt-4 if llm_switch parameter is set to True. This will increase the processing time and cost if self.llm_switch: llm_cascade = True else: llm_cascade = False rank = self.rank_code(code,task,llm_cascade=llm_cascade) else: rank = "" display_results(answer, code, rank, total_tokens_used_sum) if self.vector_db: # Prompt the user to to give a feedback on the ranking if 'ipykernel' in sys.modules: display(HTML('<b style="color:green;">Are you happy with the ranking ? If YES type \'yes\'. If NO type in the new rank on a scale from 1-10:</b>')) time.sleep(1) rank_feedback = input() else: cprint("\nAre you happy with the ranking ?\nIf YES type 'yes'. If NO type in the new rank on a scale from 1-10:", 'green', attrs=['bold']) rank_feedback = input() # If the user types "yes", use the rank as is. If not, use the user's rank. if rank_feedback.strip().lower() == 'yes': rank = rank elif rank_feedback in map(str, range(0, 11)): rank = rank_feedback else: rank = rank # Add the question and answer pair to the QA retrieval index self.add_question_answer_pair(task, self.df_columns, code, rank) return # Start an infinite loop to keep asking the user for questions first_iteration = True # Flag for the first iteration of the loop while True: # Prompt the user to enter a question or type 'exit' to quit if 'ipykernel' in sys.modules: display(HTML('<b style="color:blue;">Enter your question or type \'exit\' to quit:</b>')) time.sleep(1) question = input() else: cprint("\nEnter your question or type 'exit' to quit:", 'blue', attrs=['bold']) question = input() # If the user types 'exit', break out of the loop if question.strip().lower() == 'exit': break if first_iteration: # Initialize the messages list with a system message containing the task prompt messages = [{"role": "system", "content": self.system_task}] first_iteration = False # Call the task_eval method with the user's question if the exploratory mode is True if self.exploratory is True: eval_messages.append({"role": "user", "content": self.task_evaluation.format(question, self.df_head)}) arguments, fn_name, task_eval, task_type = self.task_eval(eval_messages) eval_messages.append( { "role": "assistant", "content": None, "function_call": { "name": fn_name, "arguments": arguments, }, } ) # Remove the oldest conversation from the messages list if len(eval_messages) > self.MAX_CONVERSATIONS: eval_messages.pop(0) eval_messages.pop(0) total_tokens_used_sum = sum(self.total_tokens_used) if task_type == 'narrative': title = 'Here is an answer to your question:' display_eval(task_eval, title, total_tokens_used_sum) continue if task_type == 'follow_up': title = 'To be able to answer your question, I am going to need some more info:' display_eval(task_eval, title, total_tokens_used_sum) continue else: title = 'Here is a sequence of steps required to complete the task:' task = task_eval display_eval(task_eval, title, total_tokens_used_sum) else: task = question if self.vector_db: # Call the retrieve_answer method to check if the question has already been asked and answered example_output = self.retrieve_answer(task, self.df_columns, similarity_threshold=self.similarity_threshold) if example_output is not None: example_output = example_output else: example_output = self.default_example_output else: example_output = self.default_example_output # Call the pd_agent method with the user's question, the messages list, and the dataframe answer, code, total_tokens_used_sum = self.pd_agent(task, messages, example_output, self.df) # Remove the examples from the messages list to minimize the number of tokens used messages = self._remove_examples(messages) # Rank the LLM response if self.vector_db: # Switch to gpt-4 if llm_switch parameter is set to True. This will increase the processing time and cost if self.llm_switch: llm_cascade = True else: llm_cascade = False rank = self.rank_code(code,task,llm_cascade=llm_cascade) else: rank = "" display_results(answer, code, rank, total_tokens_used_sum) if self.vector_db: # Prompt the user to to give a feedback on the ranking if 'ipykernel' in sys.modules: display(HTML('<b style="color:green;">Are you happy with the ranking ? If YES type \'yes\'. If NO type in the new rank on a scale from 1-10:</b>')) time.sleep(1) rank_feedback = input() else: cprint("\nAre you happy with the ranking ?\nIf YES type 'yes'. If NO type in the new rank on a scale from 1-10:", 'green', attrs=['bold']) rank_feedback = input() # If the user types "yes", use the rank as is. If not, use the user's rank. if rank_feedback.strip().lower() == 'yes': rank = rank elif rank_feedback in map(str, range(0, 11)): rank = rank_feedback else: rank = rank # Add the question and answer pair to the QA retrieval index self.add_question_answer_pair(task, self.df_columns, code, rank) def pd_agent(self, task, messages, example_output,df=None): # Add a user message with the updated task prompt to the messages list messages.append({"role": "user", "content": self.user_task.format(self.df_head, task,example_output)}) if 'ipykernel' in sys.modules: # Jupyter notebook or ipython display(HTML(f'<p style="color:magenta;">\nCalling Model: {self.llm}</p>')) display(HTML(f'<p><b style="color:magenta;">I have sent your request to the LLM and awaiting response, please wait...</b></p><br>')) else: # Other environment (like terminal) print(colored(f"\n>> Calling Model: {self.llm}", "magenta")) cprint(f"\n>> I have sent your request to the LLM and awaiting response, please wait...\n", 'magenta', attrs=['bold']) # Call the OpenAI API llm_response, tokens_used = self.llm_call(messages) # Extract the code from the API response code = self._extract_code(llm_response) # Update the total tokens used self.total_tokens_used.append(tokens_used) # Initialize error correction counter error_corrections = 0 # Debug code if debug parameter is set to True if self.debug: # Switch to gpt-4 if llm_switch parameter is set to True. This will increase the processing time and cost if self.llm_switch: llm_cascade = True if 'ipykernel' in sys.modules: # Jupyter notebook display(HTML('<span style="color: magenta;">Switching model to gpt-4 to debug the code.</span>')) else: # CLI print(colored("\n>> Switching model to GPT-4 to debug the code.", "magenta")) else: llm_cascade = False code = self.debug_code(code, task, llm_cascade=llm_cascade) # Redirect standard output to a StringIO buffer with redirect_stdout(io.StringIO()) as output: # Try to execute the code and handle errors while error_corrections < self.MAX_ERROR_CORRECTIONS: try: messages.append({"role": "assistant", "content": llm_response}) # Remove the oldest conversation from the messages list if len(messages) > self.MAX_CONVERSATIONS: messages.pop(1) messages.pop(1) # Reset df to the original state before executing the code self.df = self.original_df.copy() # Execute the code if code is not None: exec(code, {'df': self.df}) break except Exception as e: # Print the error message if 'ipykernel' in sys.modules: # Jupyter notebook display(HTML(f'<br><b><span style="color: #d86c00;">I ran into an issue:</span></b><br><pre style="color: #d86c00;">{e}</pre><br><b><span style="color: #d86c00;">I will examine it, and try again with an adjusted code.</span></b><br>')) else: # CLI sys.stderr.write('\033[31m' + f'>> I ran into an issue: {e}. \n>> I will examine it, and try again with an adjusted code.' + '\033[0m' + '\n') sys.stderr.flush() # Increment the error correction counter and update the messages list with the error error_corrections += 1 messages.append({"role": "user", "content": self.error_correct_task.format(e)}) # Switch to gpt-4 if llm_switch parameter is set to True. This will increase the processing time and cost. if self.llm_switch: llm_cascade = True if 'ipykernel' in sys.modules: # Jupyter notebook display(HTML('<span style="color: #d86c00;">Switching model to gpt-4 to try to improve the outcome.</span>')) else: # CLI sys.stderr.write('\033[31m' + f'>> Switching model to gpt-4 to try to improve the outcome.' + '\033[0m' + '\n') sys.stderr.flush() else: llm_cascade = False # Call OpenAI API to get an updated code llm_response, tokens_used = self.llm_call(messages,llm_cascade=llm_cascade) code = self._extract_code(llm_response) self.total_tokens_used.append(tokens_used) # Get the output from the executed code answer = output.getvalue() # Call OpenAI API # Initialize the messages list with a system message containing the task prompt insights_messages = [{"role": "user", "content": self.solution_insights.format(task, answer)}] function_name = {"name": "Solution_Insights"} fn_name, arguments, tokens_used = self.llm_func_call(insights_messages, self.insights_function, function_name) # Parse the JSON string to a Python dict arguments_dict = json.loads(arguments,strict=False) # Retrieve values answer = arguments_dict["insight"] self.total_tokens_used.append(tokens_used) total_tokens_used_sum = sum(self.total_tokens_used) # Reset the StringIO buffer output.truncate(0) output.seek(0) return answer, code, total_tokens_used_sum
[ "None" ]
2024-01-10
ShreyAgarwal310/math-gpt
connectAPI.py
import openai def get_file_contents(filename): try: with open(filename, 'r') as f: return f.read().strip() except FileNotFoundError: print("'%s' file not found" % filename) api_key = get_file_contents('api_key.txt') openai.api_key = api_key # Set up your OpenAI API credentials openai.api_key = api_key # Define the function to interact with ChatGPT def chat_with_gpt(prompt): response = openai.Completion.create( engine='text-davinci-003', # Choose the appropriate GPT model prompt=prompt, max_tokens=100, # Adjust as needed to control the response length temperature=0.7, # Adjust as needed to control the response randomness ) return response.choices # Step 1: Receive the mathematical expression from the user expression = input("Enter a mathematical expression: ") # Step 2: Prepare the input for ChatGPT prompt = f"Given the expression '{expression}', please generate a function that does not contain floating-point extensions or iterations." # Step 3: Interact with ChatGPT response_choices = chat_with_gpt(prompt) # Step 4: Parse and process the response choices generated_functions = [choice.text.strip() for choice in response_choices] # Print the generated functions for i, function in enumerate(generated_functions, start=1): print(f"Generated function {i}: {function}")
[ "Given the expression 'PLACEHOLDER', please generate a function that does not contain floating-point extensions or iterations." ]
2024-01-10
ShreyAgarwal310/math-gpt
math-gpt.py
import sys sys.path.insert(0, '/Users/shreyagarwal/Code/GitHub/MATH-GPT/declarative-math-word-problem') sys.path.insert(0, '/Users/shreyagarwal/Code/GitHub/MATH-GPT/declarative-math-word-problem/prompts') sys.path.insert(0, '/Users/shreyagarwal/Code/GitHub/MATH-GPT/pal') sys.path.insert(0, '/Users/christinaxu/Documents/GitHub/declarative-math-word-problem') sys.path.insert(0, '/Users/christinaxu/Documents/GitHub/declarative-math-word-problem/prompts') sys.path.insert(0, '/Users/christinaxu/Documents/GitHub/math-gpt/pal') import tkinter as tk from tkinter.ttk import * from utils import * from declarative_three_shot import DECLARATIVE_THREE_SHOT_AND_PRINCIPLES import openai import pal from pal.prompt import math_prompts from langchain.chains import PALChain from langchain import OpenAI, LLMMathChain from langchain.chains import PALChain from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.llms import OpenAI import os # access the api key from whatever file you have it in def get_file_contents(filename): try: with open(filename, 'r') as f: return f.read().strip() except FileNotFoundError: print("'%s' file not found" % filename) api_key = get_file_contents('api_key.txt') openai.api_key = api_key root= tk.Tk() root.title('math-gpt') root.resizable(False, False) # initializing the pal model and interface MODEL = 'text-davinci-003' #@param {type:"string"}m interface = pal.interface.ProgramInterface(model=MODEL, get_answer_expr='solution()', verbose=True) # initializing the chat-gpt prompter for vanilla da-vinci def chat_with_gpt(prompt): response=openai.Completion.create( engine='text-davinci-003', # Choose the appropriate GPT model prompt=prompt, max_tokens=100, # Adjust as needed to control the response length temperature=0.7, # Adjust as needed to control the response randomness ) return response.choices # initializing all of the langchain models and tools os.environ["OPENAI_API_KEY"] = api_key llm = OpenAI(temperature=0, model_name="text-davinci-003") tools = load_tools(["llm-math"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, return_intermediate_steps=True, ) # initialize the canvas canvas1 = tk.Canvas(root, width=750, height=750, bg = "white") canvas1.pack() # title text title_text = tk.Label(canvas1, bg="white", fg="black", height=1, width=10, font=("Times New Roman", 36)) title_text.place(relx=0.5, y=30, anchor="center") title_text.config(text='Math-GPT') names_text = tk.Label(canvas1, bg="white", fg="black", height=1, width=53, font=("Times New Roman", 20)) names_text.place(relx=0.5, y=60, anchor="center") names_text.config(text='Shrey Agarwal, Christina Xu, Hamid Bagheri, Lisong Xu') prompt_label = tk.Label(canvas1, bg="white", fg="black", height=1, width=50, font=("Times New Roman", 20)) prompt_label.place(relx=0.5, y=100, anchor="center") prompt_label.config(text='Enter Prompt:') method_label = tk.Label(canvas1, bg="white", fg="black", height=1, width=50, font=("Times New Roman", 20)) method_label.place(relx=0.5, y=200, anchor="center") method_label.config(text="Choose your method after you've entered your prompt:") answer_label = tk.Label(canvas1, bg="white", fg="black", height=1, width=50, font=("Times New Roman", 20)) answer_label.place(relx=0.5, y=275, anchor="center") answer_label.config(text="The answer will be displayed here:") explanation_label = tk.Label(canvas1, bg="white", fg="black", height=1, width=100, font=("Times New Roman", 14)) explanation_label.place(relx=0.5, y=340, anchor="center") explanation_label.config(text="For the Vanilla DaVinci, LangChain, and the Symbolic Solver, an explanation will be provided here:") # create the entry box entry1 = tk.Text(root, height = 3, font = ('Times New Roman', 16), bg = "white", fg = "black") #entry1.pack(padx = 10, pady = 10) entry1.place(relx=0.5, y = 150, anchor="center") #entry1 = tk.Entry(width=50, font=("Arial 16"), bg="white", fg="black", justify='center') #entry1.pack(padx=10, pady=10) #entry1.place(relx=0.5, y = 150, anchor="center") # function to call for using vanilla davinci def use_vanilla_davinci(): expression = entry1.get("1.0", 'end-1c') # finding the answer prompt_for_answer = f"Given the expression '{expression}', please generate an answer." response_choices = chat_with_gpt(prompt_for_answer) answer = [choice.text.strip() for choice in response_choices] # finding the explanation prompt_for_explanation = f"Given the expression '{expression}', please write a solution that correctly addresses the problem and solves it." response_choices_for_explanation = chat_with_gpt(prompt_for_explanation) answer_for_explanation = [choice.text.strip() for choice in response_choices_for_explanation] # configuring labels to display answer and explanation explanation_text.config(text="") answer_text.config(text=f"Vanilla answer: '{answer}'.") explanation_text.config(text=answer_for_explanation) # function to call for using langchain def use_langchain(): x1 = entry1.get("1.0", 'end-1c') llm = OpenAI(temperature = 0) llm_math = LLMMathChain.from_llm(llm, verbose = True) answer = llm_math.run(x1) response = agent( { "input": x1 } ) l = response["intermediate_steps"] # manipulating AgentAction namedTuple to find answer and explanation if len(l) >= 2: answer = "" explanation = "" answer = (str(l[len(l) - 1][1])) for i in l: explanation += str(i[0]).split(", ", 2)[2][6:-2] else: list = l[0] answer = "" explanation = "" answer = str(list[1]) explanation = str(list[0]).split(", ", 2)[2][6:-2] explanation_text.config(text="") answer_text.config(text=answer) explanation_text.config(text=explanation) # function to call for using PAL def use_pal(): x1 = entry1.get("1.0", 'end-1c') prompt = math_prompts.MATH_PROMPT.format(question=x1) answer = interface.run(prompt) explanation = "" explanation_text.config(text="") answer_text.config(text=answer) explanation_text.config(text=explanation) # function to call for using the symbolic solver def use_symbolic_solver(): x1 = entry1.get("1.0", 'end-1c') eq_list = get_declarative_equations(model='text-davinci-003', question=x1, prompt=DECLARATIVE_THREE_SHOT_AND_PRINCIPLES, max_tokens=600, stop_token='\n\n\n', temperature=0) answer = get_final_using_sympy(eq_list) explanation_text.config(text="") answer_text.config(text=f"Symbolic Solver answer: '{answer}'.") explanation_text.config(text=eq_list) # creating all the buttons and the answer text button1 = tk.Button(bg = "white", font=("Times New Roman", 18), text='Vanilla DaVinci', borderwidth = 0, relief = "groove", command=use_vanilla_davinci) canvas1.create_window(212, 240, window=button1) button2 = tk.Button(bg = "white", font=("Times New Roman", 18), text='LangChain', borderwidth = 0, relief = "groove", command=use_langchain) canvas1.create_window(345, 240, window=button2) button3 = tk.Button(bg = "white", font=("Times New Roman", 18), text='PAL', borderwidth = 0, relief = "groove", command=use_pal) canvas1.create_window(435, 240, window=button3) button3 = tk.Button(bg = "white", font=("Times New Roman", 18), text='Symbolic Solver', borderwidth = 0, relief = "groove", command=use_symbolic_solver) canvas1.create_window(546, 240, window=button3) answer_text = tk.Label(canvas1, bg="white", fg="black", height=1, width=65, font=("Times New Roman", 18), borderwidth = 3, relief = "groove") answer_text.place(relx=0.5, y=310, anchor="center") explanation_text = tk.Label(canvas1, bg="white", fg="black", height=10, width=65, font=("Times New Roman", 18), wraplength=300, justify='center', borderwidth = 3, relief = "groove") explanation_text.place(relx=0.5, y=460, anchor="center") root.mainloop()
[ "Given the expression 'PLACEHOLDER', please generate an answer.", "Given the expression 'PLACEHOLDER', please write a solution that correctly addresses the problem and solves it.", "Times New Roman" ]
2024-01-10
ShreyAgarwal310/math-gpt
pal_test.py
from langchain.prompts import PromptTemplate from langchain.llms import OpenAI from langchain.chains import LLMChain from langchain.chat_models import ChatOpenAI from langchain.chains import PALChain import openai import pal from pal.prompt import math_prompts def get_file_contents(filename): try: with open(filename, 'r') as f: return f.read().strip() except FileNotFoundError: print("'%s' file not found" % filename) api_key = get_file_contents('api_key.txt') openai.api_key = api_key OPENAI_API_KEY = api_key interface = pal.interface.ProgramInterface( model='text-davinci-003', stop='\n\n\n', # stop generation str for Codex API get_answer_expr='solution()' # python expression evaluated after generated code to obtain answer ) question = 'Bob says to Alice: if you give me 3 apples and then take half of my apples away, then I will be left with 13 apples. How many apples do I have now?' prompt = math_prompts.MATH_PROMPT.format(question=question) answer = interface.run(prompt) print(answer) # llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.9, openai_api_key=api_key) # palchain = PALChain.from_math_prompt(llm=llm, verbose=True) # palchain.run("If my age is half of my dad's age and he is going to be 60 next year, what is my current age?") # print(palchain.prompt.template)
[]
2024-01-10
ShreyAgarwal310/math-gpt
declarative-math-word-problem~experiment.py
from utils import * from prompts.declarative_eight_shot import DECLARATIVE_EIGHT_SHOT import openai import time #results - three-shot - 176/222 correct - 79.279% accuracy #results - eight-shot - 158/222 correct - 71.171% accuracy st = time.time() def get_file_contents(filename): try: with open(filename, 'r') as f: return f.read().strip() except FileNotFoundError: print("'%s' file not found" % filename) api_key = get_file_contents('api_key.txt') openai.api_key = api_key with open('declarative-math-word-problem/algebra222.csv') as f: questions = [i.split(',')[0] for i in f.readlines()] with open('declarative-math-word-problem/algebra222.csv') as f: answers = [i.split(',')[1] for i in f.readlines()] solver_answers = [] for i in range(0, 24): eq_list = get_declarative_equations(model='text-davinci-003', question=questions[i], prompt=DECLARATIVE_EIGHT_SHOT, max_tokens=600, stop_token='\n\n\n', temperature=0) answer = get_final_using_sympy(eq_list) solver_answers.append(answer) print(*solver_answers, sep = '\n') et = time.time() elapsed_time = et - st print('Execution time:', elapsed_time, 'seconds')
[]
2024-01-10
ShreyAgarwal310/math-gpt
pal~pal_test.py
from langchain.prompts import PromptTemplate from langchain.llms import OpenAI from langchain.chains import LLMChain from langchain.chat_models import ChatOpenAI from langchain.chains import PALChain import openai import pal from pal.prompt import math_prompts def get_file_contents(filename): try: with open(filename, 'r') as f: return f.read().strip() except FileNotFoundError: print("'%s' file not found" % filename) api_key = get_file_contents('api_key.txt') openai.api_key = api_key interface = pal.interface.ProgramInterface( model='text-davinci-003', stop='\n\n\n', # stop generation str for Codex API get_answer_expr='solution()' # python expression evaluated after generated code to obtain answer ) # def solution(): # "Bob says to Alice: if you give me 3 apples and then take half of my apples away, then I will be left with 13 apples. How many apples do I have now?" # apple_given = 3 # apple_left = 13 # apple_now = (apple_left + apple_given) * 2 # result = apple_now # return result # print(solution()) question = 'Bob says to Alice: if you give me 3 apples and then take half of my apples away, then I will be left with 13 apples. How many apples do I have now?' prompt = math_prompts.MATH_PROMPT.format(question=question) llm = OpenAI(model_name="text-davinci-003", temperature=0.9, openai_api_key=api_key) palchain = PALChain.from_math_prompt(llm=llm, verbose=True) palchain.run("If my age is half of my dad's age and he is going to be 60 next year, what is my current age?") answer = interface.run(prompt) print(answer)
[]
2024-01-10
ShreyAgarwal310/math-gpt
pal_with_langchain.py
import openai import sys sys.path.insert(0, '/Users/shreyagarwal/Code/GitHub/MATH-GPT/pal') import pal from pal.prompt import math_prompts from langchain import OpenAI from langchain.chains.llm import LLMChain from langchain.chains import PALChain import os def get_file_contents(filename): try: with open(filename, 'r') as f: return f.read().strip() except FileNotFoundError: print("'%s' file not found" % filename) api_key = get_file_contents('api_key.txt') openai.api_key = api_key os.environ["OPENAI_API_KEY"] = api_key # MODEL = 'text-davinci-003' #@param {type:"string"}m # interface = pal.interface.ProgramInterface(model=MODEL, get_answer_expr='solution()', verbose=True) # question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?"#@param {type:"string"} # prompt = math_prompts.MATH_PROMPT.format(question=question) # answer = interface.run(prompt, time_out=10) # print('\n==========================') # print(f'The answer is {answer}.') llm = OpenAI(model_name='text-davinci-003', temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "The cafeteria had 23 apples. If they used 20 for lunch and bought 6 more, how many apples do they have?" pal_chain.run(question)
[]
2024-01-10
nabil2i/recordplus
record~tasks.py
from __future__ import absolute_import, unicode_literals from celery import shared_task from time import sleep import openai from .models import RecordedVideo, Transcription from openai.error import OpenAIError # import whisper @shared_task def transcribe_video(video_id): # sleep(10) print("Transcribing video...") try: # get video path print(f"video id: {video_id}") video = RecordedVideo.objects.get(pk=video_id) video_file_path = video.get_video_file_url() if not video_file_path: print(f"Video with ID {video_id} not found") return with open(video_file_path, 'rb') as video_file: response = openai.Audio.transcribe("whisper-1", video_file) # model = whisper.load_model("base") # response = model.transcribe(video_file) # with open(video_file_path, 'rb') as video_file: # response = openai.Transcription.create( # audio=video_file, # engine="whisper", # language="en-US", # max_tokens=300, # ) if 'text' in response: transcription_text = response['text'] print(transcription_text) transcription, created = Transcription.objects.get_or_create( recorded_video=video, defaults={'transcription_text': transcription_text} ) if not created: transcription.transcription_text = transcription_text transcription.save() print("Video transcribed") else: print(f"Error in OpenAI response: {response}") except RecordedVideo.DoesNotExist: print(f"Video with ID {video_id} does not exist.") except OpenAIError as e: print(f"OpenAI Error: {str(e)}") except Exception as e: print(f"Error transcribing the video {video_id}: {str(e)}")
[]
2024-01-10
nabil2i/recordplus
recordplus~settings.py
""" Django settings for recordplus project. Generated by 'django-admin startproject' using Django 4.2.5. For more information on this file, see https://docs.djangoproject.com/en/4.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/4.2/ref/settings/ """ import os from datetime import timedelta from pathlib import Path import openai # import cloudinary # import cloudinary.uploader # import cloudinary.api from decouple import config # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # BASE_URL= config(BASE_URL) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/4.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY') openai.api_key = config('OPENAI_API_KEY') ## CLOUDINARY configuration # CLOUDINARY_CLOUD_NAME = config('CLOUDINARY_CLOUD_NAME') # CLOUDINARY_API_KEY = config('CLOUDINARY_API_KEY') # CLOUDINARY_API_SECRET = config('CLOUDINARY_API_SECRET') # SECURITY WARNING: don't run with debug turned on in production! # DEBUG = True DEBUG = config('DEBUG', default='False') ALLOWED_HOSTS = ['localhost', '127.0.0.1', 'recordplus.onrender.com'] AUTH_USER_MODEL = 'core.User' SITE_ID = 1 # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # 3rd party apps 'rest_framework', 'rest_framework_simplejwt', 'rest_framework_simplejwt.token_blacklist', 'djoser', 'corsheaders', 'whitenoise.runserver_nostatic', 'drf_yasg', # # all auth # 'django.contrib.sites', # 'allauth', # 'allauth.account', # 'allauth.socialaccount', # 'allauth.socialaccount.providers.facebook', # 'allauth.socialaccount.providers.twitter', # 'allauth.socialaccount.providers.google', # my apps 'core', 'record', # 'social_auth' ] # SOCIALACCOUNT_LOGIN_ON_GET=True # skip one page when authenticating # # Authentication URLs # LOGIN_REDIRECT_URL = '/api/auth' # # ACCOUNT_EMAIL_VERIFICATION = 'mandatory' # LOGOUT_REDIRECT_URL = '/api/auth' # SOCIALACCOUNT_PROVIDERS = { # 'google': { # # For each OAuth based provider, either add a ``SocialApp`` # # (``socialaccount`` app) containing the required client # # credentials, or list them here: # # 'APP': { # # 'client_id': config('GOOGLE_CLIENT_ID'), # # 'secret': config('GOOGLE_CLIENT_SECRET'), # # 'key': '' # # }, # 'SCOPE': [ # 'profile', # 'email', # ], # 'AUTH_PARAMS': { # 'access_type': 'online', # } # }, # 'facebook': { # 'APP': { # 'client_id': config('FACEBOOK_APP_ID'), # 'secret': '', # } # }, # 'twitter': { # 'APP': { # 'consumer_key': config('TWITTER_API_KEY'), # 'secret': config('TWITTER_CONSUMER_SECRET'), # } # }, # } MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', # "allauth.account.middleware.AccountMiddleware", ] ROOT_URLCONF = 'recordplus.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', # 'DIRS': [], 'DIRS': [os.path.join(BASE_DIR, 'build')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'recordplus.wsgi.application' # Database # https://docs.djangoproject.com/en/4.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.mysql', # 'NAME': config('DB_NAME'), # 'USER': config('DB_USER'), # 'PASSWORD': config('DB_PASSWORD'), # 'HOST': config('DB_HOST'), # 'PORT': config('DB_PORT') # } # } # Password validation # https://docs.djangoproject.com/en/4.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] CORS_ALLOW_ALL_ORIGINS = True # CORS_ALLOWED_ORIGINS = [ # "http://34.207.165.115/", # "https://recordplus.onrender.com/", # "http://127.0.0.1:8000/", # "http://localhost:5173/", # ] # CORS_ALLOW_METHODS = [ # "GET", # "POST", # "PUT", # "PATCH", # "DELETE", # "OPTIONS", # ] # CORS_ALLOW_HEADERS = [ # "Accept", # "Content-Type", # "Authorization", # ] # CORS_ALLOW_CREDENTIALS = True # Internationalization # https://docs.djangoproject.com/en/4.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/4.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') # STATICFILES_STORAGE = "whitenoise.storage.CompressedManifestStaticFilesStorage" STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'build/static') ] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Default primary key field type # https://docs.djangoproject.com/en/4.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' REST_FRAMEWORK = { 'NON_FIELD_ERRORS_KEY': 'error', # 'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema', # 'COERCE_DECIMAL_TO_STRING': False, 'PAGE_SIZE':10, 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination', # 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination', 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework_simplejwt.authentication.JWTAuthentication', ), # 'DEFAULT_PERMISSION_CLASSES': [ # 'rest_framework.permissions.IsAuthenticated' # ], } SIMPLE_JWT = { 'AUTH_HEADER_TYPES': ('JWT',), 'ACCESS_TOKEN_LIFETIME': timedelta(minutes=5), 'REFRESH_TOKEN_LIFETIME': timedelta(days=1), 'ALGORITHM': 'HS256', } EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_USE_TLS=True EMAIL_HOST = config('EMAIL_HOST') EMAIL_PORT = config('EMAIL_PORT') EMAIL_HOST_USER = config('EMAIL_HOST_USER') EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD') # DEFAULT_FROM_EMAIL="[email protected]" AUTHENTICATION_BACKENDS = [ # Needed to login by username in Django admin, regardless of `allauth` 'django.contrib.auth.backends.ModelBackend', ## `allauth` specific authentication methods, such as login by email # 'allauth.account.auth_backends.AuthenticationBackend', ] SWAGGER_SETTINGS = { 'SECURITY_DEFINITIONS' : { 'Bearer': { 'type': 'apiKey', 'name': 'Authorization', 'in': 'header' } } } DJOSER = { 'LOGIN_FIELD': 'email', 'USER_CREATE_PASSWORD_RETYPE': True, 'USERNAME_CHANGED_EMAIL_CONFIRMATION': True, 'PASSWORD_CHANGED_EMAIL_CONFIRMATION': True, 'PASSWORD_RESET_CONFIRM_URL': 'password/reset/confirm/{uid}/{token}', 'USERNAME_RESET_CONFIRM_URL': 'email/reset/confirm/{uid}/{token}', 'ACTIVATION_URL': 'activate/{uid}/{token}', 'SEND_CONFIRMATION_EMAIL': True, 'SEND_ACTIVATION_EMAIL': True, 'SET_USERNAME_RETYPE': True, 'SET_PASSWORD_RETYPE': True, 'SERIALIZERS': { 'user_create': 'core.serializers.UserCreateSerializer', 'user': 'core.serializers.UserCreateSerializer', 'user_delete': 'core.serializers.UserDeleteSerializer', }, } # SPECTACULAR_SETTINGS = { # 'TITLE': 'RECORD PLUS', # } CELERY_BROKER_URL = config('CELERY_BROKER_URL') # CELERY_RESULT_BACKEND = 'rpc://'
[ "django.template.context_processors.request", "django.contrib.messages.context_processors.messages", "django.template.context_processors.debug", "django.contrib.auth.context_processors.auth", "django.template.backends.django.DjangoTemplates", "context_processors" ]
2024-01-10
microsoft/unilm
kosmos-g~open_clip~src~open_clip~factory.py
import json import logging import os import pathlib import re from copy import deepcopy from pathlib import Path from typing import Optional, Tuple import torch from .model import CLIP, convert_weights_to_fp16, resize_pos_embed from .openai import load_openai_model from .pretrained import get_pretrained_url, download_pretrained from .transform import image_transform _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs def _natural_key(string_): return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] def _rescan_model_configs(): global _MODEL_CONFIGS config_ext = ('.json',) config_files = [] for config_path in _MODEL_CONFIG_PATHS: if config_path.is_file() and config_path.suffix in config_ext: config_files.append(config_path) elif config_path.is_dir(): for ext in config_ext: config_files.extend(config_path.glob(f'*{ext}')) for cf in config_files: with open(cf, 'r') as f: model_cfg = json.load(f) if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): _MODEL_CONFIGS[cf.stem] = model_cfg _MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} _rescan_model_configs() # initial populate of model config registry def load_state_dict(checkpoint_path: str, map_location='cpu'): checkpoint = torch.load(checkpoint_path, map_location=map_location) if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] else: state_dict = checkpoint if next(iter(state_dict.items()))[0].startswith('module'): state_dict = {k[7:]: v for k, v in state_dict.items()} return state_dict def load_checkpoint(model, checkpoint_path, strict=True): state_dict = load_state_dict(checkpoint_path) resize_pos_embed(state_dict, model) incompatible_keys = model.load_state_dict(state_dict, strict=strict) return incompatible_keys def create_model( model_name: str, pretrained: str = '', precision: str = 'fp32', device: torch.device = torch.device('cpu'), jit: bool = False, force_quick_gelu: bool = False, pretrained_image: bool = False, ): model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names if pretrained.lower() == 'openai': logging.info(f'Loading pretrained {model_name} from OpenAI.') model = load_openai_model(model_name, device=device, jit=jit) # See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372 if precision == "amp" or precision == "fp32": model = model.float() else: if model_name in _MODEL_CONFIGS: logging.info(f'Loading {model_name} model config.') model_cfg = deepcopy(_MODEL_CONFIGS[model_name]) else: logging.error(f'Model config for {model_name} not found; available models {list_models()}.') raise RuntimeError(f'Model config for {model_name} not found.') if force_quick_gelu: # override for use of QuickGELU on non-OpenAI transformer models model_cfg["quick_gelu"] = True if pretrained_image: if 'timm_model_name' in model_cfg.get('vision_cfg', {}): # pretrained weight loading for timm models set via vision_cfg model_cfg['vision_cfg']['timm_model_pretrained'] = True else: assert False, 'pretrained image towers currently only supported for timm models' model = CLIP(**model_cfg) if pretrained: checkpoint_path = '' url = get_pretrained_url(model_name, pretrained) if url: checkpoint_path = download_pretrained(url) elif os.path.exists(pretrained): checkpoint_path = pretrained if checkpoint_path: logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') load_checkpoint(model, checkpoint_path) else: logging.warning(f'Pretrained weights ({pretrained}) not found for model {model_name}.') raise RuntimeError(f'Pretrained weights ({pretrained}) not found for model {model_name}.') model.to(device=device) if precision == "fp16": assert device.type != 'cpu' convert_weights_to_fp16(model) if jit: model = torch.jit.script(model) return model def create_model_and_transforms( model_name: str, pretrained: str = '', precision: str = 'fp32', device: torch.device = torch.device('cpu'), jit: bool = False, force_quick_gelu: bool = False, pretrained_image: bool = False, mean: Optional[Tuple[float, ...]] = None, std: Optional[Tuple[float, ...]] = None, ): model = create_model( model_name, pretrained, precision, device, jit, force_quick_gelu=force_quick_gelu, pretrained_image=pretrained_image) preprocess_train = image_transform(model.visual.image_size, is_train=True, mean=mean, std=std) preprocess_val = image_transform(model.visual.image_size, is_train=False, mean=mean, std=std) return model, preprocess_train, preprocess_val def list_models(): """ enumerate available model architectures based on config files """ return list(_MODEL_CONFIGS.keys()) def add_model_config(path): """ add model config path or file and update registry """ if not isinstance(path, Path): path = Path(path) _MODEL_CONFIG_PATHS.append(path) _rescan_model_configs()
[]
2024-01-10
TammyPhysique/PaBuddytest
src~assets~Chatbot.py
import os import openai from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) # read local .env file openai.api_key = "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"
[]
2024-01-10
linyuxuanlin/Wiki_MkDocs
tools~auto-translater.py
# -*- coding: utf-8 -*- import os import openai # pip install openai import sys import re import yaml # pip install PyYAML #import env # ่ฎพ็ฝฎ OpenAI API Key ๅ’Œ API Base ๅ‚ๆ•ฐ๏ผŒ้€š่ฟ‡ env.py ไผ ๅ…ฅ openai.api_key = os.environ.get("CHATGPT_API_KEY") openai.api_base = os.environ.get("CHATGPT_API_BASE") # ่ฎพ็ฝฎๆœ€ๅคง่พ“ๅ…ฅๅญ—ๆฎต๏ผŒ่ถ…ๅ‡บไผšๆ‹†ๅˆ†่พ“ๅ…ฅ๏ผŒ้˜ฒๆญข่ถ…ๅ‡บ่พ“ๅ…ฅๅญ—ๆ•ฐ้™ๅˆถ max_length = 1800 # ่ฎพ็ฝฎ็ฟป่ฏ‘็š„่ทฏๅพ„ dir_to_translate = "docs/zh" dir_translated = {"en": "docs/en", "es": "docs/es", "ar": "docs/ar"} # ไธ่ฟ›่กŒ็ฟป่ฏ‘็š„ๆ–‡ไปถๅˆ—่กจ exclude_list = ["index.md", "Contact-and-Subscribe.md", "WeChat.md"] # ไธ่ฟ›่กŒ็ฟป่ฏ‘็š„ๆ–‡ไปถๅˆ—่กจ processed_list = "tools/processed_list.txt" # ๅทฒๅค„็†็š„ Markdown ๆ–‡ไปถๅ็š„ๅˆ—่กจ๏ผŒไผš่‡ชๅŠจ็”Ÿๆˆ # ็”ฑ ChatGPT ็ฟป่ฏ‘็š„ๆ็คบ tips_translated_by_chatgpt = { "en": "\n\n> This post is translated using ChatGPT, please [**feedback**](https://github.com/linyuxuanlin/Wiki_MkDocs/issues/new) if any omissions.", "es": "\n\n> Este post estรก traducido usando ChatGPT, por favor [**feedback**](https://github.com/linyuxuanlin/Wiki_MkDocs/issues/new) si hay alguna omisiรณn.", "ar": "\n\n> ุชู…ุช ุชุฑุฌู…ุฉ ู‡ุฐู‡ ุงู„ู…ุดุงุฑูƒุฉ ุจุงุณุชุฎุฏุงู… ChatGPTุŒ ูŠุฑุฌู‰ [**ุชุฒูˆูŠุฏู†ุง ุจุชุนู„ูŠู‚ุงุชูƒู…**](https://github.com/linyuxuanlin/Wiki_MkDocs/issues/new) ุฅุฐุง ูƒุงู†ุช ู‡ู†ุงูƒ ุฃูŠ ุญุฐู ุฃูˆ ุฅู‡ู…ุงู„." } # ๆ–‡็ซ ไฝฟ็”จ่‹ฑๆ–‡ๆ’ฐๅ†™็š„ๆ็คบ๏ผŒ้ฟๅ…ๆœฌ่บซไธบ่‹ฑๆ–‡็š„ๆ–‡็ซ ่ขซ้‡ๅค็ฟป่ฏ‘ไธบ่‹ฑๆ–‡ marker_written_in_en = "\n> This post was originally written in English.\n" # ๅณไฝฟๅœจๅทฒๅค„็†็š„ๅˆ—่กจไธญ๏ผŒไป้œ€่ฆ้‡ๆ–ฐ็ฟป่ฏ‘็š„ๆ ‡่ฎฐ marker_force_translate = "\n[translate]\n" # Front Matter ๅค„็†่ง„ๅˆ™ front_matter_translation_rules = { # ่ฐƒ็”จ ChatGPT ่‡ชๅŠจ็ฟป่ฏ‘ "title": lambda value, lang: translate_text(value, lang,"front-matter"), "description": lambda value, lang: translate_text(value, lang,"front-matter"), # ไฝฟ็”จๅ›บๅฎš็š„ๆ›ฟๆข่ง„ๅˆ™ "categories": lambda value, lang: front_matter_replace(value, lang), "tags": lambda value, lang: front_matter_replace(value, lang), # ๆœชๆทปๅŠ ็š„ๅญ—ๆฎตๅฐ†้ป˜่ฎคไธ็ฟป่ฏ‘ } # ๅ›บๅฎšๅญ—ๆฎตๆ›ฟๆข่ง„ๅˆ™ใ€‚ๆ–‡็ซ ไธญไธ€ไบ›ๅ›บๅฎš็š„ๅญ—ๆฎต๏ผŒไธ้œ€่ฆๆฏ็ฏ‡้ƒฝ่ฟ›่กŒ็ฟป่ฏ‘๏ผŒไธ”็ฟป่ฏ‘็ป“ๆžœๅฏ่ƒฝไธไธ€่‡ด๏ผŒๆ‰€ไปฅ็›ดๆŽฅๆ›ฟๆขๆމใ€‚ replace_rules = [ { # ็‰ˆๆƒไฟกๆฏๆ‰‹ๅŠจ็ฟป่ฏ‘ "orginal_text": "> ๅŽŸๆ–‡ๅœฐๅ€๏ผš<https://wiki-power.com/>", "replaced_text": { "en": "> Original: <https://wiki-power.com/>", "es": "> Direcciรณn original del artรญculo: <https://wiki-power.com/>", "ar": "> ุนู†ูˆุงู† ุงู„ู†ุต: <https://wiki-power.com/>", } }, { # ็‰ˆๆƒไฟกๆฏๆ‰‹ๅŠจ็ฟป่ฏ‘ "orginal_text": "> ๆœฌ็ฏ‡ๆ–‡็ซ ๅ— [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by/4.0/deed.zh) ๅ่ฎฎไฟๆŠค๏ผŒ่ฝฌ่ฝฝ่ฏทๆณจๆ˜Žๅ‡บๅค„ใ€‚", "replaced_text": { "en": "> This post is protected by [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by/4.0/deed.en) agreement, should be reproduced with attribution.", "es": "> Este artรญculo estรก protegido por la licencia [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by/4.0/deed.zh). Si desea reproducirlo, por favor indique la fuente.", "ar": "> ูŠุชู… ุญู…ุงูŠุฉ ู‡ุฐุง ุงู„ู…ู‚ุงู„ ุจู…ูˆุฌุจ ุงุชูุงู‚ูŠุฉ [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by/4.0/deed.zh)ุŒ ูŠูุฑุฌู‰ ุฐูƒุฑ ุงู„ู…ุตุฏุฑ ุนู†ุฏ ุฅุนุงุฏุฉ ุงู„ู†ุดุฑ.", } }, #{ # # ๆ–‡็ซ ไธญ็š„็ซ™ๅ†…้“พๆŽฅ๏ผŒ่ทณ่ฝฌไธบๅฝ“ๅ‰็›ธๅŒ่ฏญ่จ€็š„็ฝ‘้กต # "orginal_text": "](https://wiki-power.com/", # "replaced_text": { # "en": "](https://wiki-power.com/en/", # "es": "](https://wiki-power.com/es/", # "ar": "](https://wiki-power.com/ar/", # } #} # { # # ไธๅŒ่ฏญ่จ€ๅฏไฝฟ็”จไธๅŒๅ›พๅบŠ # "orginal_text": "![](https://wiki-media-1253965369.cos.ap-guangzhou.myqcloud.com/", # "replaced_en": "![](https://f004.backblazeb2.com/file/wiki-media/", # "replaced_es": "![](https://f004.backblazeb2.com/file/wiki-media/", # "replaced_ar": "![](https://f004.backblazeb2.com/file/wiki-media/", # }, ] # Front Matter ๅ›บๅฎšๅญ—ๆฎตๆ›ฟๆข่ง„ๅˆ™ใ€‚ front_matter_replace_rules = [ { "orginal_text": "็ฑปๅˆซ 1", "replaced_text": { "en": "Categories 1", "es": "Categorรญas 1", "ar": "ุงู„ูุฆุฉ 1", } }, { "orginal_text": "็ฑปๅˆซ 2", "replaced_text": { "en": "Categories 2", "es": "Categorรญas 2", "ar": "ุงู„ูุฆุฉ 2", } }, { "orginal_text": "ๆ ‡็ญพ 1", "replaced_text": { "en": "Tags 1", "es": "Etiquetas 1", "ar": "ุจุทุงู‚ุฉ 1", } }, { "orginal_text": "ๆ ‡็ญพ 2", "replaced_text": { "en": "Tags 2", "es": "Etiquetas 2", "ar": "ุจุทุงู‚ุฉ 2", } }, ] ############################## # ๅฏน Front Matter ไฝฟ็”จๅ›บๅฎš่ง„ๅˆ™ๆ›ฟๆข็š„ๅ‡ฝๆ•ฐ def front_matter_replace(value, lang): for index in range(len(value)): element = value[index] # print(f"element[{index}] = {element}") for replacement in front_matter_replace_rules: if replacement["orginal_text"] in element: # ไฝฟ็”จ replace ๅ‡ฝๆ•ฐ้€ไธชๆ›ฟๆข element = element.replace( replacement["orginal_text"], replacement["replaced_text"][lang]) value[index] = element # print(f"element[{index}] = {element}") return value # ๅฎšไน‰่ฐƒ็”จ ChatGPT API ็ฟป่ฏ‘็š„ๅ‡ฝๆ•ฐ def translate_text(text, lang, type): target_lang = { "en": "English", "es": "Spanish", "ar": "Arabic" }[lang] # Front Matter ไธŽๆญฃๆ–‡ๅ†…ๅฎนไฝฟ็”จไธๅŒ็š„ prompt ็ฟป่ฏ‘ # ็ฟป่ฏ‘ Front Matterใ€‚ if type == "front-matter": completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a professional translation engine, please translate the text into a colloquial, professional, elegant and fluent content, without the style of machine translation. You must only translate the text content, never interpret it."}, {"role": "user", "content": f"Translate into {target_lang}:\n\n{text}\n"}, ], ) # ็ฟป่ฏ‘ๆญฃๆ–‡ elif type== "main-body": completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a professional translation engine, please translate the text into a colloquial, professional, elegant and fluent content, without the style of machine translation. You must maintain the original markdown format. You must not translate the `[to_be_replace[x]]` field.You must only translate the text content, never interpret it."}, {"role": "user", "content": f"Translate into {target_lang}:\n\n{text}\n"}, ], ) # ่Žทๅ–็ฟป่ฏ‘็ป“ๆžœ output_text = completion.choices[0].message.content return output_text # Front Matter ๅค„็†่ง„ๅˆ™ def translate_front_matter(front_matter, lang): translated_front_matter = {} for key, value in front_matter.items(): if key in front_matter_translation_rules: processed_value = front_matter_translation_rules[key](value, lang) else: # ๅฆ‚ๆžœๅœจ่ง„ๅˆ™ๅˆ—่กจๅ†…๏ผŒๅˆ™ไธๅšไปปไฝ•็ฟป่ฏ‘ๆˆ–ๆ›ฟๆขๆ“ไฝœ processed_value = value translated_front_matter[key] = processed_value # print(key, ":", processed_value) return translated_front_matter # ๅฎšไน‰ๆ–‡็ซ ๆ‹†ๅˆ†ๅ‡ฝๆ•ฐ def split_text(text, max_length): # ๆ นๆฎๆฎต่ฝๆ‹†ๅˆ†ๆ–‡็ซ  paragraphs = text.split("\n\n") output_paragraphs = [] current_paragraph = "" for paragraph in paragraphs: if len(current_paragraph) + len(paragraph) + 2 <= max_length: # ๅฆ‚ๆžœๅฝ“ๅ‰ๆฎต่ฝๅŠ ไธŠๆ–ฐๆฎต่ฝ็š„้•ฟๅบฆไธ่ถ…่ฟ‡ๆœ€ๅคง้•ฟๅบฆ๏ผŒๅฐฑๅฐ†ๅฎƒไปฌๅˆๅนถ if current_paragraph: current_paragraph += "\n\n" current_paragraph += paragraph else: # ๅฆๅˆ™ๅฐ†ๅฝ“ๅ‰ๆฎต่ฝๆทปๅŠ ๅˆฐ่พ“ๅ‡บๅˆ—่กจไธญ๏ผŒๅนถ้‡ๆ–ฐๅผ€ๅง‹ไธ€ไธชๆ–ฐๆฎต่ฝ output_paragraphs.append(current_paragraph) current_paragraph = paragraph # ๅฐ†ๆœ€ๅŽไธ€ไธชๆฎต่ฝๆทปๅŠ ๅˆฐ่พ“ๅ‡บๅˆ—่กจไธญ if current_paragraph: output_paragraphs.append(current_paragraph) # ๅฐ†่พ“ๅ‡บๆฎต่ฝๅˆๅนถไธบๅญ—็ฌฆไธฒ output_text = "\n\n".join(output_paragraphs) return output_text # ๅฎšไน‰็ฟป่ฏ‘ๆ–‡ไปถ็š„ๅ‡ฝๆ•ฐ def translate_file(input_file, filename, lang): print(f"Translating into {lang}: {filename}") sys.stdout.flush() # ๅฎšไน‰่พ“ๅ‡บๆ–‡ไปถ if lang in dir_translated: output_dir = dir_translated[lang] if not os.path.exists(output_dir): os.makedirs(output_dir) output_file = os.path.join(output_dir, filename) # ่ฏปๅ–่พ“ๅ…ฅๆ–‡ไปถๅ†…ๅฎน with open(input_file, "r", encoding="utf-8") as f: input_text = f.read() # ๅˆ›ๅปบไธ€ไธชๅญ—ๅ…ธๆฅๅญ˜ๅ‚จๅ ไฝ่ฏๅ’Œๅฏนๅบ”็š„ๆ›ฟๆขๆ–‡ๆœฌ placeholder_dict = {} # ไฝฟ็”จ for ๅพช็Žฏๅบ”็”จๆ›ฟๆข่ง„ๅˆ™๏ผŒๅนถๅฐ†ๅŒน้…็š„ๆ–‡ๆœฌๆ›ฟๆขไธบๅ ไฝ่ฏ for i, rule in enumerate(replace_rules): find_text = rule["orginal_text"] replace_with = rule["replaced_text"][lang] placeholder = f"[to_be_replace[{i + 1}]]" input_text = input_text.replace(find_text, placeholder) placeholder_dict[placeholder] = replace_with # ๅˆ ้™ค่ฏ‘ๆ–‡ไธญๆŒ‡็คบๅผบๅˆถ็ฟป่ฏ‘็š„ marker input_text = input_text.replace(marker_force_translate, "") # ๅˆ ้™คๅ…ถไป–ๅ‡บ่‹ฑๆ–‡ๅค–ๅ…ถไป–่ฏญ่จ€่ฏ‘ๆ–‡ไธญ็š„ marker_written_in_en if lang != "en": input_text = input_text.replace(marker_written_in_en, "") # ไฝฟ็”จๆญฃๅˆ™่กจ่พพๅผๆฅๅŒน้… Front Matter front_matter_match = re.search(r'---\n(.*?)\n---', input_text, re.DOTALL) if front_matter_match: front_matter_text = front_matter_match.group(1) # ไฝฟ็”จPyYAMLๅŠ ่ฝฝYAMLๆ ผๅผ็š„ๆ•ฐๆฎ front_matter_data = yaml.safe_load(front_matter_text) # ๆŒ‰็…งๅ‰ๆ–‡็š„่ง„ๅˆ™ๅฏน Front Matter ่ฟ›่กŒ็ฟป่ฏ‘ front_matter_data = translate_front_matter(front_matter_data, lang) # ๅฐ†ๅค„็†ๅฎŒ็š„ๆ•ฐๆฎ่ฝฌๆขๅ›ž YAML front_matter_text_processed = yaml.dump( front_matter_data, allow_unicode=True, default_style=None, sort_keys=False) # ๆš‚ๆ—ถๅˆ ้™คๆœชๅค„็†็š„ Front Matter input_text = input_text.replace( "---\n"+front_matter_text+"\n---\n", "") else: # print("ๆฒกๆœ‰ๆ‰พๅˆฐfront matter๏ผŒไธ่ฟ›่กŒๅค„็†ใ€‚") pass # print(input_text) # debug ็”จ๏ผŒ็œ‹็œ‹่พ“ๅ…ฅ็š„ๆ˜ฏไป€ไนˆ # ๆ‹†ๅˆ†ๆ–‡็ซ  paragraphs = input_text.split("\n\n") input_text = "" output_paragraphs = [] current_paragraph = "" for paragraph in paragraphs: if len(current_paragraph) + len(paragraph) + 2 <= max_length: # ๅฆ‚ๆžœๅฝ“ๅ‰ๆฎต่ฝๅŠ ไธŠๆ–ฐๆฎต่ฝ็š„้•ฟๅบฆไธ่ถ…่ฟ‡ๆœ€ๅคง้•ฟๅบฆ๏ผŒๅฐฑๅฐ†ๅฎƒไปฌๅˆๅนถ if current_paragraph: current_paragraph += "\n\n" current_paragraph += paragraph else: # ๅฆๅˆ™็ฟป่ฏ‘ๅฝ“ๅ‰ๆฎต่ฝ๏ผŒๅนถๅฐ†็ฟป่ฏ‘็ป“ๆžœๆทปๅŠ ๅˆฐ่พ“ๅ‡บๅˆ—่กจไธญ output_paragraphs.append(translate_text(current_paragraph, lang,"main-body")) current_paragraph = paragraph # ๅค„็†ๆœ€ๅŽไธ€ไธชๆฎต่ฝ if current_paragraph: if len(current_paragraph) + len(input_text) <= max_length: # ๅฆ‚ๆžœๅฝ“ๅ‰ๆฎต่ฝๅŠ ไธŠไน‹ๅ‰็š„ๆ–‡ๆœฌ้•ฟๅบฆไธ่ถ…่ฟ‡ๆœ€ๅคง้•ฟๅบฆ๏ผŒๅฐฑๅฐ†ๅฎƒไปฌๅˆๅนถ input_text += "\n\n" + current_paragraph else: # ๅฆๅˆ™็ฟป่ฏ‘ๅฝ“ๅ‰ๆฎต่ฝ๏ผŒๅนถๅฐ†็ฟป่ฏ‘็ป“ๆžœๆทปๅŠ ๅˆฐ่พ“ๅ‡บๅˆ—่กจไธญ output_paragraphs.append(translate_text(current_paragraph, lang,"main-body")) # ๅฆ‚ๆžœ่ฟ˜ๆœ‰ๆœช็ฟป่ฏ‘็š„ๆ–‡ๆœฌ๏ผŒๅฐฑๅฐ†ๅฎƒไปฌๆทปๅŠ ๅˆฐ่พ“ๅ‡บๅˆ—่กจไธญ if input_text: output_paragraphs.append(translate_text(input_text, lang,"main-body")) # ๅฐ†่พ“ๅ‡บๆฎต่ฝๅˆๅนถไธบๅญ—็ฌฆไธฒ output_text = "\n\n".join(output_paragraphs) if front_matter_match: # ๅŠ ๅ…ฅ Front Matter output_text = "---\n" + front_matter_text_processed + "---\n\n" + output_text # ๅŠ ๅ…ฅ็”ฑ ChatGPT ็ฟป่ฏ‘็š„ๆ็คบ if lang == "en": output_text = output_text + tips_translated_by_chatgpt["en"] elif lang == "es": output_text = output_text + tips_translated_by_chatgpt["es"] elif lang == "ar": output_text = output_text + tips_translated_by_chatgpt["ar"] # ๆœ€ๅŽ๏ผŒๅฐ†ๅ ไฝ่ฏๆ›ฟๆขไธบๅฏนๅบ”็š„ๆ›ฟๆขๆ–‡ๆœฌ for placeholder, replacement in placeholder_dict.items(): output_text = output_text.replace(placeholder, replacement) # ๅ†™ๅ…ฅ่พ“ๅ‡บๆ–‡ไปถ with open(output_file, "w", encoding="utf-8") as f: f.write(output_text) # ๆŒ‰ๆ–‡ไปถๅ็งฐ้กบๅบๆŽ’ๅบ file_list = os.listdir(dir_to_translate) sorted_file_list = sorted(file_list) # print(sorted_file_list) try: # ๅˆ›ๅปบไธ€ไธชๅค–้ƒจๅˆ—่กจๆ–‡ไปถ๏ผŒๅญ˜ๆ”พๅทฒๅค„็†็š„ Markdown ๆ–‡ไปถๅๅˆ—่กจ if not os.path.exists(processed_list): with open(processed_list, "w", encoding="utf-8") as f: print("processed_list created") sys.stdout.flush() # ้ๅކ็›ฎๅฝ•ไธ‹็š„ๆ‰€ๆœ‰.mdๆ–‡ไปถ๏ผŒๅนถ่ฟ›่กŒ็ฟป่ฏ‘ for filename in sorted_file_list: if filename.endswith(".md"): input_file = os.path.join(dir_to_translate, filename) # ่ฏปๅ– Markdown ๆ–‡ไปถ็š„ๅ†…ๅฎน with open(input_file, "r", encoding="utf-8") as f: md_content = f.read() # ่ฏปๅ–processed_listๅ†…ๅฎน with open(processed_list, "r", encoding="utf-8") as f: processed_list_content = f.read() if marker_force_translate in md_content: # ๅฆ‚ๆžœๆœ‰ๅผบๅˆถ็ฟป่ฏ‘็š„ๆ ‡่ฏ†๏ผŒๅˆ™ๆ‰ง่กŒ่ฟ™้ƒจๅˆ†็š„ไปฃ็  if marker_written_in_en in md_content: # ็ฟป่ฏ‘ไธบ้™ค่‹ฑๆ–‡ไน‹ๅค–็š„่ฏญ่จ€ print("Pass the en-en translation: ", filename) sys.stdout.flush() translate_file(input_file, filename, "es") translate_file(input_file, filename, "ar") else: # ็ฟป่ฏ‘ไธบๆ‰€ๆœ‰่ฏญ่จ€ translate_file(input_file, filename, "en") translate_file(input_file, filename, "es") translate_file(input_file, filename, "ar") elif filename in exclude_list: # ไธ่ฟ›่กŒ็ฟป่ฏ‘ print(f"Pass the post in exclude_list: {filename}") sys.stdout.flush() elif filename in processed_list_content: # ไธ่ฟ›่กŒ็ฟป่ฏ‘ print(f"Pass the post in processed_list: {filename}") sys.stdout.flush() elif marker_written_in_en in md_content: # ็ฟป่ฏ‘ไธบ้™ค่‹ฑๆ–‡ไน‹ๅค–็š„่ฏญ่จ€ print(f"Pass the en-en translation: {filename}") sys.stdout.flush() for lang in ["es", "ar"]: translate_file(input_file, filename, lang) else: # ็ฟป่ฏ‘ไธบๆ‰€ๆœ‰่ฏญ่จ€ for lang in ["en", "es", "ar"]: translate_file(input_file, filename, lang) # ๅฐ†ๅค„็†ๅฎŒๆˆ็š„ๆ–‡ไปถๅๅŠ ๅˆฐๅˆ—่กจ๏ผŒไธ‹ๆฌก่ทณ่ฟ‡ไธๅค„็† if filename not in processed_list_content: print(f"Added into processed_list: {filename}") with open(processed_list, "a", encoding="utf-8") as f: f.write("\n") f.write(filename) # ๅผบๅˆถๅฐ†็ผ“ๅ†ฒๅŒบไธญ็š„ๆ•ฐๆฎๅˆทๆ–ฐๅˆฐ็ปˆ็ซฏไธญ๏ผŒไฝฟ็”จ GitHub Action ๆ—ถๆ–นไพฟๅฎžๆ—ถๆŸฅ็œ‹่ฟ‡็จ‹ sys.stdout.flush() # ๆ‰€ๆœ‰ไปปๅŠกๅฎŒๆˆ็š„ๆ็คบ print("Congratulations! All files processed done.") sys.stdout.flush() except Exception as e: # ๆ•่Žทๅผ‚ๅธธๅนถ่พ“ๅ‡บ้”™่ฏฏไฟกๆฏ print(f"An error has occurred: {e}") sys.stdout.flush() raise SystemExit(1) # 1 ่กจ็คบ้žๆญฃๅธธ้€€ๅ‡บ๏ผŒๅฏไปฅๆ นๆฎ้œ€่ฆๆ›ดๆ”น้€€ๅ‡บ็  # os.remove(input_file) # ๅˆ ้™คๆบๆ–‡ไปถ
[ "Translate into PLACEHOLDER:\n\nPLACEHOLDER\n", "You are a professional translation engine, please translate the text into a colloquial, professional, elegant and fluent content, without the style of machine translation. You must only translate the text content, never interpret it.", "You are a professional translation engine, please translate the text into a colloquial, professional, elegant and fluent content, without the style of machine translation. You must maintain the original markdown format. You must not translate the `[to_be_replace[x]]` field.You must only translate the text content, never interpret it." ]
2024-01-10
linyuxuanlin/Wiki_MkDocs
tools~auto-translater_local.py
# -*- coding: utf-8 -*- import os import openai # pip install openai import sys import re import yaml # pip install PyYAML import env # ่ฎพ็ฝฎ OpenAI API Key ๅ’Œ API Base ๅ‚ๆ•ฐ๏ผŒ้€š่ฟ‡ env.py ไผ ๅ…ฅ openai.api_key = os.environ.get("CHATGPT_API_KEY") openai.api_base = os.environ.get("CHATGPT_API_BASE") # ่ฎพ็ฝฎๆœ€ๅคง่พ“ๅ…ฅๅญ—ๆฎต๏ผŒ่ถ…ๅ‡บไผšๆ‹†ๅˆ†่พ“ๅ…ฅ๏ผŒ้˜ฒๆญข่ถ…ๅ‡บ่พ“ๅ…ฅๅญ—ๆ•ฐ้™ๅˆถ max_length = 1800 # ่ฎพ็ฝฎ็ฟป่ฏ‘็š„่ทฏๅพ„ dir_to_translate = "docs/zh" dir_translated = {"en": "docs/en", "es": "docs/es", "ar": "docs/ar"} # ไธ่ฟ›่กŒ็ฟป่ฏ‘็š„ๆ–‡ไปถๅˆ—่กจ exclude_list = ["index.md", "Contact-and-Subscribe.md", "WeChat.md"] # ไธ่ฟ›่กŒ็ฟป่ฏ‘็š„ๆ–‡ไปถๅˆ—่กจ processed_list = "tools/processed_list.txt" # ๅทฒๅค„็†็š„ Markdown ๆ–‡ไปถๅ็š„ๅˆ—่กจ๏ผŒไผš่‡ชๅŠจ็”Ÿๆˆ # ็”ฑ ChatGPT ็ฟป่ฏ‘็š„ๆ็คบ tips_translated_by_chatgpt = { "en": "\n\n> This post is translated using ChatGPT, please [**feedback**](https://github.com/linyuxuanlin/Wiki_MkDocs/issues/new) if any omissions.", "es": "\n\n> Este post estรก traducido usando ChatGPT, por favor [**feedback**](https://github.com/linyuxuanlin/Wiki_MkDocs/issues/new) si hay alguna omisiรณn.", "ar": "\n\n> ุชู…ุช ุชุฑุฌู…ุฉ ู‡ุฐู‡ ุงู„ู…ุดุงุฑูƒุฉ ุจุงุณุชุฎุฏุงู… ChatGPTุŒ ูŠุฑุฌู‰ [**ุชุฒูˆูŠุฏู†ุง ุจุชุนู„ูŠู‚ุงุชูƒู…**](https://github.com/linyuxuanlin/Wiki_MkDocs/issues/new) ุฅุฐุง ูƒุงู†ุช ู‡ู†ุงูƒ ุฃูŠ ุญุฐู ุฃูˆ ุฅู‡ู…ุงู„." } # ๆ–‡็ซ ไฝฟ็”จ่‹ฑๆ–‡ๆ’ฐๅ†™็š„ๆ็คบ๏ผŒ้ฟๅ…ๆœฌ่บซไธบ่‹ฑๆ–‡็š„ๆ–‡็ซ ่ขซ้‡ๅค็ฟป่ฏ‘ไธบ่‹ฑๆ–‡ marker_written_in_en = "\n> This post was originally written in English.\n" # ๅณไฝฟๅœจๅทฒๅค„็†็š„ๅˆ—่กจไธญ๏ผŒไป้œ€่ฆ้‡ๆ–ฐ็ฟป่ฏ‘็š„ๆ ‡่ฎฐ marker_force_translate = "\n[translate]\n" # Front Matter ๅค„็†่ง„ๅˆ™ front_matter_translation_rules = { # ่ฐƒ็”จ ChatGPT ่‡ชๅŠจ็ฟป่ฏ‘ "title": lambda value, lang: translate_text(value, lang,"front-matter"), "description": lambda value, lang: translate_text(value, lang,"front-matter"), # ไฝฟ็”จๅ›บๅฎš็š„ๆ›ฟๆข่ง„ๅˆ™ "categories": lambda value, lang: front_matter_replace(value, lang), "tags": lambda value, lang: front_matter_replace(value, lang), # ๆœชๆทปๅŠ ็š„ๅญ—ๆฎตๅฐ†้ป˜่ฎคไธ็ฟป่ฏ‘ } # ๅ›บๅฎšๅญ—ๆฎตๆ›ฟๆข่ง„ๅˆ™ใ€‚ๆ–‡็ซ ไธญไธ€ไบ›ๅ›บๅฎš็š„ๅญ—ๆฎต๏ผŒไธ้œ€่ฆๆฏ็ฏ‡้ƒฝ่ฟ›่กŒ็ฟป่ฏ‘๏ผŒไธ”็ฟป่ฏ‘็ป“ๆžœๅฏ่ƒฝไธไธ€่‡ด๏ผŒๆ‰€ไปฅ็›ดๆŽฅๆ›ฟๆขๆމใ€‚ replace_rules = [ { # ็‰ˆๆƒไฟกๆฏๆ‰‹ๅŠจ็ฟป่ฏ‘ "orginal_text": "> ๅŽŸๆ–‡ๅœฐๅ€๏ผš<https://wiki-power.com/>", "replaced_text": { "en": "> Original: <https://wiki-power.com/>", "es": "> Direcciรณn original del artรญculo: <https://wiki-power.com/>", "ar": "> ุนู†ูˆุงู† ุงู„ู†ุต: <https://wiki-power.com/>", } }, { # ็‰ˆๆƒไฟกๆฏๆ‰‹ๅŠจ็ฟป่ฏ‘ "orginal_text": "> ๆœฌ็ฏ‡ๆ–‡็ซ ๅ— [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by/4.0/deed.zh) ๅ่ฎฎไฟๆŠค๏ผŒ่ฝฌ่ฝฝ่ฏทๆณจๆ˜Žๅ‡บๅค„ใ€‚", "replaced_text": { "en": "> This post is protected by [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by/4.0/deed.en) agreement, should be reproduced with attribution.", "es": "> Este artรญculo estรก protegido por la licencia [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by/4.0/deed.zh). Si desea reproducirlo, por favor indique la fuente.", "ar": "> ูŠุชู… ุญู…ุงูŠุฉ ู‡ุฐุง ุงู„ู…ู‚ุงู„ ุจู…ูˆุฌุจ ุงุชูุงู‚ูŠุฉ [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by/4.0/deed.zh)ุŒ ูŠูุฑุฌู‰ ุฐูƒุฑ ุงู„ู…ุตุฏุฑ ุนู†ุฏ ุฅุนุงุฏุฉ ุงู„ู†ุดุฑ.", } }, #{ # # ๆ–‡็ซ ไธญ็š„็ซ™ๅ†…้“พๆŽฅ๏ผŒ่ทณ่ฝฌไธบๅฝ“ๅ‰็›ธๅŒ่ฏญ่จ€็š„็ฝ‘้กต # "orginal_text": "](https://wiki-power.com/", # "replaced_text": { # "en": "](https://wiki-power.com/en/", # "es": "](https://wiki-power.com/es/", # "ar": "](https://wiki-power.com/ar/", # } #} # { # # ไธๅŒ่ฏญ่จ€ๅฏไฝฟ็”จไธๅŒๅ›พๅบŠ # "orginal_text": "![](https://wiki-media-1253965369.cos.ap-guangzhou.myqcloud.com/", # "replaced_en": "![](https://f004.backblazeb2.com/file/wiki-media/", # "replaced_es": "![](https://f004.backblazeb2.com/file/wiki-media/", # "replaced_ar": "![](https://f004.backblazeb2.com/file/wiki-media/", # }, ] # Front Matter ๅ›บๅฎšๅญ—ๆฎตๆ›ฟๆข่ง„ๅˆ™ใ€‚ front_matter_replace_rules = [ { "orginal_text": "็ฑปๅˆซ 1", "replaced_text": { "en": "Categories 1", "es": "Categorรญas 1", "ar": "ุงู„ูุฆุฉ 1", } }, { "orginal_text": "็ฑปๅˆซ 2", "replaced_text": { "en": "Categories 2", "es": "Categorรญas 2", "ar": "ุงู„ูุฆุฉ 2", } }, { "orginal_text": "ๆ ‡็ญพ 1", "replaced_text": { "en": "Tags 1", "es": "Etiquetas 1", "ar": "ุจุทุงู‚ุฉ 1", } }, { "orginal_text": "ๆ ‡็ญพ 2", "replaced_text": { "en": "Tags 2", "es": "Etiquetas 2", "ar": "ุจุทุงู‚ุฉ 2", } }, ] ############################## # ๅฏน Front Matter ไฝฟ็”จๅ›บๅฎš่ง„ๅˆ™ๆ›ฟๆข็š„ๅ‡ฝๆ•ฐ def front_matter_replace(value, lang): for index in range(len(value)): element = value[index] # print(f"element[{index}] = {element}") for replacement in front_matter_replace_rules: if replacement["orginal_text"] in element: # ไฝฟ็”จ replace ๅ‡ฝๆ•ฐ้€ไธชๆ›ฟๆข element = element.replace( replacement["orginal_text"], replacement["replaced_text"][lang]) value[index] = element # print(f"element[{index}] = {element}") return value # ๅฎšไน‰่ฐƒ็”จ ChatGPT API ็ฟป่ฏ‘็š„ๅ‡ฝๆ•ฐ def translate_text(text, lang, type): target_lang = { "en": "English", "es": "Spanish", "ar": "Arabic" }[lang] # Front Matter ไธŽๆญฃๆ–‡ๅ†…ๅฎนไฝฟ็”จไธๅŒ็š„ prompt ็ฟป่ฏ‘ # ็ฟป่ฏ‘ Front Matterใ€‚ if type == "front-matter": completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a professional translation engine, please translate the text into a colloquial, professional, elegant and fluent content, without the style of machine translation. You must only translate the text content, never interpret it."}, {"role": "user", "content": f"Translate into {target_lang}:\n\n{text}\n"}, ], ) # ็ฟป่ฏ‘ๆญฃๆ–‡ elif type== "main-body": completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a professional translation engine, please translate the text into a colloquial, professional, elegant and fluent content, without the style of machine translation. You must maintain the original markdown format. You must not translate the `[to_be_replace[x]]` field.You must only translate the text content, never interpret it."}, {"role": "user", "content": f"Translate into {target_lang}:\n\n{text}\n"}, ], ) # ่Žทๅ–็ฟป่ฏ‘็ป“ๆžœ output_text = completion.choices[0].message.content return output_text # Front Matter ๅค„็†่ง„ๅˆ™ def translate_front_matter(front_matter, lang): translated_front_matter = {} for key, value in front_matter.items(): if key in front_matter_translation_rules: processed_value = front_matter_translation_rules[key](value, lang) else: # ๅฆ‚ๆžœๅœจ่ง„ๅˆ™ๅˆ—่กจๅ†…๏ผŒๅˆ™ไธๅšไปปไฝ•็ฟป่ฏ‘ๆˆ–ๆ›ฟๆขๆ“ไฝœ processed_value = value translated_front_matter[key] = processed_value # print(key, ":", processed_value) return translated_front_matter # ๅฎšไน‰ๆ–‡็ซ ๆ‹†ๅˆ†ๅ‡ฝๆ•ฐ def split_text(text, max_length): # ๆ นๆฎๆฎต่ฝๆ‹†ๅˆ†ๆ–‡็ซ  paragraphs = text.split("\n\n") output_paragraphs = [] current_paragraph = "" for paragraph in paragraphs: if len(current_paragraph) + len(paragraph) + 2 <= max_length: # ๅฆ‚ๆžœๅฝ“ๅ‰ๆฎต่ฝๅŠ ไธŠๆ–ฐๆฎต่ฝ็š„้•ฟๅบฆไธ่ถ…่ฟ‡ๆœ€ๅคง้•ฟๅบฆ๏ผŒๅฐฑๅฐ†ๅฎƒไปฌๅˆๅนถ if current_paragraph: current_paragraph += "\n\n" current_paragraph += paragraph else: # ๅฆๅˆ™ๅฐ†ๅฝ“ๅ‰ๆฎต่ฝๆทปๅŠ ๅˆฐ่พ“ๅ‡บๅˆ—่กจไธญ๏ผŒๅนถ้‡ๆ–ฐๅผ€ๅง‹ไธ€ไธชๆ–ฐๆฎต่ฝ output_paragraphs.append(current_paragraph) current_paragraph = paragraph # ๅฐ†ๆœ€ๅŽไธ€ไธชๆฎต่ฝๆทปๅŠ ๅˆฐ่พ“ๅ‡บๅˆ—่กจไธญ if current_paragraph: output_paragraphs.append(current_paragraph) # ๅฐ†่พ“ๅ‡บๆฎต่ฝๅˆๅนถไธบๅญ—็ฌฆไธฒ output_text = "\n\n".join(output_paragraphs) return output_text # ๅฎšไน‰็ฟป่ฏ‘ๆ–‡ไปถ็š„ๅ‡ฝๆ•ฐ def translate_file(input_file, filename, lang): print(f"Translating into {lang}: {filename}") sys.stdout.flush() # ๅฎšไน‰่พ“ๅ‡บๆ–‡ไปถ if lang in dir_translated: output_dir = dir_translated[lang] if not os.path.exists(output_dir): os.makedirs(output_dir) output_file = os.path.join(output_dir, filename) # ่ฏปๅ–่พ“ๅ…ฅๆ–‡ไปถๅ†…ๅฎน with open(input_file, "r", encoding="utf-8") as f: input_text = f.read() # ๅˆ›ๅปบไธ€ไธชๅญ—ๅ…ธๆฅๅญ˜ๅ‚จๅ ไฝ่ฏๅ’Œๅฏนๅบ”็š„ๆ›ฟๆขๆ–‡ๆœฌ placeholder_dict = {} # ไฝฟ็”จ for ๅพช็Žฏๅบ”็”จๆ›ฟๆข่ง„ๅˆ™๏ผŒๅนถๅฐ†ๅŒน้…็š„ๆ–‡ๆœฌๆ›ฟๆขไธบๅ ไฝ่ฏ for i, rule in enumerate(replace_rules): find_text = rule["orginal_text"] replace_with = rule["replaced_text"][lang] placeholder = f"[to_be_replace[{i + 1}]]" input_text = input_text.replace(find_text, placeholder) placeholder_dict[placeholder] = replace_with # ๅˆ ้™ค่ฏ‘ๆ–‡ไธญๆŒ‡็คบๅผบๅˆถ็ฟป่ฏ‘็š„ marker input_text = input_text.replace(marker_force_translate, "") # ๅˆ ้™คๅ…ถไป–ๅ‡บ่‹ฑๆ–‡ๅค–ๅ…ถไป–่ฏญ่จ€่ฏ‘ๆ–‡ไธญ็š„ marker_written_in_en if lang != "en": input_text = input_text.replace(marker_written_in_en, "") # ไฝฟ็”จๆญฃๅˆ™่กจ่พพๅผๆฅๅŒน้… Front Matter front_matter_match = re.search(r'---\n(.*?)\n---', input_text, re.DOTALL) if front_matter_match: front_matter_text = front_matter_match.group(1) # ไฝฟ็”จPyYAMLๅŠ ่ฝฝYAMLๆ ผๅผ็š„ๆ•ฐๆฎ front_matter_data = yaml.safe_load(front_matter_text) # ๆŒ‰็…งๅ‰ๆ–‡็š„่ง„ๅˆ™ๅฏน Front Matter ่ฟ›่กŒ็ฟป่ฏ‘ front_matter_data = translate_front_matter(front_matter_data, lang) # ๅฐ†ๅค„็†ๅฎŒ็š„ๆ•ฐๆฎ่ฝฌๆขๅ›ž YAML front_matter_text_processed = yaml.dump( front_matter_data, allow_unicode=True, default_style=None, sort_keys=False) # ๆš‚ๆ—ถๅˆ ้™คๆœชๅค„็†็š„ Front Matter input_text = input_text.replace( "---\n"+front_matter_text+"\n---\n", "") else: # print("ๆฒกๆœ‰ๆ‰พๅˆฐfront matter๏ผŒไธ่ฟ›่กŒๅค„็†ใ€‚") pass # print(input_text) # debug ็”จ๏ผŒ็œ‹็œ‹่พ“ๅ…ฅ็š„ๆ˜ฏไป€ไนˆ # ๆ‹†ๅˆ†ๆ–‡็ซ  paragraphs = input_text.split("\n\n") input_text = "" output_paragraphs = [] current_paragraph = "" for paragraph in paragraphs: if len(current_paragraph) + len(paragraph) + 2 <= max_length: # ๅฆ‚ๆžœๅฝ“ๅ‰ๆฎต่ฝๅŠ ไธŠๆ–ฐๆฎต่ฝ็š„้•ฟๅบฆไธ่ถ…่ฟ‡ๆœ€ๅคง้•ฟๅบฆ๏ผŒๅฐฑๅฐ†ๅฎƒไปฌๅˆๅนถ if current_paragraph: current_paragraph += "\n\n" current_paragraph += paragraph else: # ๅฆๅˆ™็ฟป่ฏ‘ๅฝ“ๅ‰ๆฎต่ฝ๏ผŒๅนถๅฐ†็ฟป่ฏ‘็ป“ๆžœๆทปๅŠ ๅˆฐ่พ“ๅ‡บๅˆ—่กจไธญ output_paragraphs.append(translate_text(current_paragraph, lang,"main-body")) current_paragraph = paragraph # ๅค„็†ๆœ€ๅŽไธ€ไธชๆฎต่ฝ if current_paragraph: if len(current_paragraph) + len(input_text) <= max_length: # ๅฆ‚ๆžœๅฝ“ๅ‰ๆฎต่ฝๅŠ ไธŠไน‹ๅ‰็š„ๆ–‡ๆœฌ้•ฟๅบฆไธ่ถ…่ฟ‡ๆœ€ๅคง้•ฟๅบฆ๏ผŒๅฐฑๅฐ†ๅฎƒไปฌๅˆๅนถ input_text += "\n\n" + current_paragraph else: # ๅฆๅˆ™็ฟป่ฏ‘ๅฝ“ๅ‰ๆฎต่ฝ๏ผŒๅนถๅฐ†็ฟป่ฏ‘็ป“ๆžœๆทปๅŠ ๅˆฐ่พ“ๅ‡บๅˆ—่กจไธญ output_paragraphs.append(translate_text(current_paragraph, lang,"main-body")) # ๅฆ‚ๆžœ่ฟ˜ๆœ‰ๆœช็ฟป่ฏ‘็š„ๆ–‡ๆœฌ๏ผŒๅฐฑๅฐ†ๅฎƒไปฌๆทปๅŠ ๅˆฐ่พ“ๅ‡บๅˆ—่กจไธญ if input_text: output_paragraphs.append(translate_text(input_text, lang,"main-body")) # ๅฐ†่พ“ๅ‡บๆฎต่ฝๅˆๅนถไธบๅญ—็ฌฆไธฒ output_text = "\n\n".join(output_paragraphs) if front_matter_match: # ๅŠ ๅ…ฅ Front Matter output_text = "---\n" + front_matter_text_processed + "---\n\n" + output_text # ๅŠ ๅ…ฅ็”ฑ ChatGPT ็ฟป่ฏ‘็š„ๆ็คบ if lang == "en": output_text = output_text + tips_translated_by_chatgpt["en"] elif lang == "es": output_text = output_text + tips_translated_by_chatgpt["es"] elif lang == "ar": output_text = output_text + tips_translated_by_chatgpt["ar"] # ๆœ€ๅŽ๏ผŒๅฐ†ๅ ไฝ่ฏๆ›ฟๆขไธบๅฏนๅบ”็š„ๆ›ฟๆขๆ–‡ๆœฌ for placeholder, replacement in placeholder_dict.items(): output_text = output_text.replace(placeholder, replacement) # ๅ†™ๅ…ฅ่พ“ๅ‡บๆ–‡ไปถ with open(output_file, "w", encoding="utf-8") as f: f.write(output_text) # ๆŒ‰ๆ–‡ไปถๅ็งฐ้กบๅบๆŽ’ๅบ file_list = os.listdir(dir_to_translate) sorted_file_list = sorted(file_list) # print(sorted_file_list) try: # ๅˆ›ๅปบไธ€ไธชๅค–้ƒจๅˆ—่กจๆ–‡ไปถ๏ผŒๅญ˜ๆ”พๅทฒๅค„็†็š„ Markdown ๆ–‡ไปถๅๅˆ—่กจ if not os.path.exists(processed_list): with open(processed_list, "w", encoding="utf-8") as f: print("processed_list created") sys.stdout.flush() # ้ๅކ็›ฎๅฝ•ไธ‹็š„ๆ‰€ๆœ‰.mdๆ–‡ไปถ๏ผŒๅนถ่ฟ›่กŒ็ฟป่ฏ‘ for filename in sorted_file_list: if filename.endswith(".md"): input_file = os.path.join(dir_to_translate, filename) # ่ฏปๅ– Markdown ๆ–‡ไปถ็š„ๅ†…ๅฎน with open(input_file, "r", encoding="utf-8") as f: md_content = f.read() # ่ฏปๅ–processed_listๅ†…ๅฎน with open(processed_list, "r", encoding="utf-8") as f: processed_list_content = f.read() if marker_force_translate in md_content: # ๅฆ‚ๆžœๆœ‰ๅผบๅˆถ็ฟป่ฏ‘็š„ๆ ‡่ฏ†๏ผŒๅˆ™ๆ‰ง่กŒ่ฟ™้ƒจๅˆ†็š„ไปฃ็  if marker_written_in_en in md_content: # ็ฟป่ฏ‘ไธบ้™ค่‹ฑๆ–‡ไน‹ๅค–็š„่ฏญ่จ€ print("Pass the en-en translation: ", filename) sys.stdout.flush() translate_file(input_file, filename, "es") translate_file(input_file, filename, "ar") else: # ็ฟป่ฏ‘ไธบๆ‰€ๆœ‰่ฏญ่จ€ translate_file(input_file, filename, "en") translate_file(input_file, filename, "es") translate_file(input_file, filename, "ar") elif filename in exclude_list: # ไธ่ฟ›่กŒ็ฟป่ฏ‘ print(f"Pass the post in exclude_list: {filename}") sys.stdout.flush() elif filename in processed_list_content: # ไธ่ฟ›่กŒ็ฟป่ฏ‘ print(f"Pass the post in processed_list: {filename}") sys.stdout.flush() elif marker_written_in_en in md_content: # ็ฟป่ฏ‘ไธบ้™ค่‹ฑๆ–‡ไน‹ๅค–็š„่ฏญ่จ€ print(f"Pass the en-en translation: {filename}") sys.stdout.flush() for lang in ["es", "ar"]: translate_file(input_file, filename, lang) else: # ็ฟป่ฏ‘ไธบๆ‰€ๆœ‰่ฏญ่จ€ for lang in ["en", "es", "ar"]: translate_file(input_file, filename, lang) # ๅฐ†ๅค„็†ๅฎŒๆˆ็š„ๆ–‡ไปถๅๅŠ ๅˆฐๅˆ—่กจ๏ผŒไธ‹ๆฌก่ทณ่ฟ‡ไธๅค„็† if filename not in processed_list_content: print(f"Added into processed_list: {filename}") with open(processed_list, "a", encoding="utf-8") as f: f.write("\n") f.write(filename) # ๅผบๅˆถๅฐ†็ผ“ๅ†ฒๅŒบไธญ็š„ๆ•ฐๆฎๅˆทๆ–ฐๅˆฐ็ปˆ็ซฏไธญ๏ผŒไฝฟ็”จ GitHub Action ๆ—ถๆ–นไพฟๅฎžๆ—ถๆŸฅ็œ‹่ฟ‡็จ‹ sys.stdout.flush() # ๆ‰€ๆœ‰ไปปๅŠกๅฎŒๆˆ็š„ๆ็คบ print("Congratulations! All files processed done.") sys.stdout.flush() except Exception as e: # ๆ•่Žทๅผ‚ๅธธๅนถ่พ“ๅ‡บ้”™่ฏฏไฟกๆฏ print(f"An error has occurred: {e}") sys.stdout.flush() raise SystemExit(1) # 1 ่กจ็คบ้žๆญฃๅธธ้€€ๅ‡บ๏ผŒๅฏไปฅๆ นๆฎ้œ€่ฆๆ›ดๆ”น้€€ๅ‡บ็  # os.remove(input_file) # ๅˆ ้™คๆบๆ–‡ไปถ
[ "Translate into PLACEHOLDER:\n\nPLACEHOLDER\n", "You are a professional translation engine, please translate the text into a colloquial, professional, elegant and fluent content, without the style of machine translation. You must only translate the text content, never interpret it.", "You are a professional translation engine, please translate the text into a colloquial, professional, elegant and fluent content, without the style of machine translation. You must maintain the original markdown format. You must not translate the `[to_be_replace[x]]` field.You must only translate the text content, never interpret it." ]
2024-01-10
qlan3/MeDQN
envs~wrapper.py
# Borrow a lot from openai baselines: # https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py from collections import deque import cv2 import gym import numpy as np class NoopResetEnv(gym.Wrapper): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. :param gym.Env env: the environment to wrap. :param int noop_max: the maximum value of no-ops to run. """ def __init__(self, env, noop_max=30): super().__init__(env) self.noop_max = noop_max self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def reset(self): self.env.reset() if hasattr(self.unwrapped.np_random, "integers"): noops = self.unwrapped.np_random.integers(1, self.noop_max + 1) else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) for _ in range(noops): obs, _, done, _ = self.env.step(self.noop_action) if done: obs = self.env.reset() return obs class MaxAndSkipEnv(gym.Wrapper): """Return only every `skip`-th frame (frameskipping) using most recent raw observations (for max pooling across time steps) :param gym.Env env: the environment to wrap. :param int skip: number of `skip`-th frame. """ def __init__(self, env, skip=4): super().__init__(env) self._skip = skip def step(self, action): """Step the environment with the given action. Repeat action, sum reward, and max over last observations. """ obs_list, total_reward, done = [], 0., False for _ in range(self._skip): obs, reward, done, info = self.env.step(action) obs_list.append(obs) total_reward += reward if done: break max_frame = np.max(obs_list[-2:], axis=0) return max_frame, total_reward, done, info class EpisodicLifeEnv(gym.Wrapper): """Make end-of-life == end-of-episode, but only reset on true game over. It helps the value estimation. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) self.lives = 0 self.was_real_done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.was_real_done = done # check current lives, make loss of life terminal, then update lives to # handle bonus lives lives = self.env.unwrapped.ale.lives() if 0 < lives < self.lives: # for Qbert sometimes we stay in lives == 0 condition for a few # frames, so its important to keep lives > 0, so that we only reset # once the environment is actually done. done = True self.lives = lives return obs, reward, done, info def reset(self): """Calls the Gym environment reset, only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset() else: # no-op step to advance from terminal/lost life state obs = self.env.step(0)[0] self.lives = self.env.unwrapped.ale.lives() return obs class FireResetEnv(gym.Wrapper): """Take action on reset for environments that are fixed until firing. Related discussion: https://github.com/openai/baselines/issues/240 :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self): self.env.reset() return self.env.step(1)[0] class WarpFrame(gym.ObservationWrapper): """Warp frames to 84x84 as done in the Nature paper and later work. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) self.size = 84 self.observation_space = gym.spaces.Box( low=np.min(env.observation_space.low), high=np.max(env.observation_space.high), shape=(self.size, self.size), dtype=env.observation_space.dtype ) def observation(self, frame): """returns the current observation from a frame""" frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) return cv2.resize(frame, (self.size, self.size), interpolation=cv2.INTER_AREA) class ScaledFloatFrame(gym.ObservationWrapper): """Normalize observations to 0~1. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) low = np.min(env.observation_space.low) high = np.max(env.observation_space.high) self.bias = low self.scale = high - low self.observation_space = gym.spaces.Box( low=0., high=1., shape=env.observation_space.shape, dtype=np.float32 ) def observation(self, observation): return (observation - self.bias) / self.scale class ClipRewardEnv(gym.RewardWrapper): """clips the reward to {+1, 0, -1} by its sign. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) self.reward_range = (-1, 1) def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign. Note: np.sign(0) == 0.""" return np.sign(reward) class FrameStack(gym.Wrapper): """Stack n_frames last frames. :param gym.Env env: the environment to wrap. :param int n_frames: the number of frames to stack. """ def __init__(self, env, n_frames): super().__init__(env) self.n_frames = n_frames self.frames = deque([], maxlen=n_frames) shape = (n_frames, ) + env.observation_space.shape self.observation_space = gym.spaces.Box( low=np.min(env.observation_space.low), high=np.max(env.observation_space.high), shape=shape, dtype=env.observation_space.dtype ) def reset(self): obs = self.env.reset() for _ in range(self.n_frames): self.frames.append(obs) return self._get_ob() def step(self, action): obs, reward, done, info = self.env.step(action) self.frames.append(obs) return self._get_ob(), reward, done, info def _get_ob(self): # the original wrapper use `LazyFrames` but since we use np buffer, # it has no effect return np.stack(self.frames, axis=0) def wrap_deepmind( env_id, episode_life=True, clip_rewards=True, frame_stack=4, scale=False, warp_frame=True ): """Configure environment for DeepMind-style Atari. The observation is channel-first: (c, h, w) instead of (h, w, c). :param str env_id: the atari environment id. :param bool episode_life: wrap the episode life wrapper. :param bool clip_rewards: wrap the reward clipping wrapper. :param int frame_stack: wrap the frame stacking wrapper. :param bool scale: wrap the scaling observation wrapper. :param bool warp_frame: wrap the grayscale + resize observation wrapper. :return: the wrapped atari environment. """ assert 'NoFrameskip' in env_id env = gym.make(env_id) env = NoopResetEnv(env, noop_max=30) env = MaxAndSkipEnv(env, skip=4) if episode_life: env = EpisodicLifeEnv(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) if warp_frame: env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, frame_stack) return env
[]
2024-01-10
SamarthK1239/OpenAI-Api-Shenanigans
OpenAI-API~image_variation.py
import os from pathlib import Path import requests from dotenv import load_dotenv from openai import OpenAI path = Path("Environment-Variables/.env") load_dotenv(dotenv_path=path) # set up the openai client openai = OpenAI( organization=os.getenv('organization'), api_key=os.getenv("api_key") ) def create_variation(): response = openai.images.create_variation( image=open("generated_image.jpg", "rb"), n=1, size="1024x1024" ) image_url = response.data[0].url response = requests.get(image_url) # Save and open image on local machine with open("generated_image_revised.jpg", "wb") as f: f.write(response.content)
[]
2024-01-10
SamarthK1239/OpenAI-Api-Shenanigans
OpenAI-API~Storyteller~storyteller.py
import os from pathlib import Path import file_operations as fo from dotenv import load_dotenv from openai import OpenAI # Get environment variables path = Path("Environment-Variables/.env") load_dotenv(dotenv_path=path) # Setup OpenAI client client = OpenAI( organization=os.getenv('organization'), api_key=os.getenv("api_key") ) # Get category category = input("What category would you like to generate a story from? ") # Get a random prompt from the category prompt = fo.read_category(category) prompt = "Use the following prompt to generate an interactive story. Ask a question at the end of each response, and let the user respond with what they would do: " + prompt conversation_history = [{"role": "user", "content": prompt}] # Set up the starting GPT prompt response = client.chat.completions.create( model="gpt-3.5-turbo-1106", messages=conversation_history ) # Print the response print(response.choices[0].message.content) conversation_history.append({"role": "system", "content": response.choices[0].message.content}) # Start the user/GPT interaction while True: # Get the user's response user_response = input("What would you do? ") conversation_history.append({"role": "user", "content": user_response}) print(conversation_history) # Generate a response from GPT response = client.chat.completions.create( model="gpt-3.5-turbo-1106", messages=conversation_history ) # Print the response print(response.choices[0].message.content) conversation_history.append({"role": "system", "content": response.choices[0].message.content})
[ "Use the following prompt to generate an interactive story. Ask a question at the end of each response, and let the user respond with what they would do: Use the following prompt to generate an interactive story. Ask a question at the end of each response, and let the user respond with what they would do: prompt2dd6dbe6-5c55-4078-9149-4d85c6abd0bc", "Use the following prompt to generate an interactive story. Ask a question at the end of each response, and let the user respond with what they would do: promptfbaf4e53-2621-4286-80b9-6ca50c2432e8" ]
2024-01-10
SamarthK1239/OpenAI-Api-Shenanigans
OpenAI-API~Summarizer~Summarizer.py
import os from pathlib import Path from dotenv import load_dotenv from openai import OpenAI import TokenSplitter path = Path("../Environment-Variables/.env") load_dotenv(dotenv_path=path) # Set up openai client openai = OpenAI( organization=os.getenv('organization'), api_key=os.getenv("api_key") ) # Read transcription file with open("transcription.txt") as f: transcription = f.readline() # Parameter Meanings for response generation # temperature: Controls Randomness. Lower means less random completions. As this value approaches zero, the model becomes very deterministic # max_tokens: Maximum of 4000 tokens shared between prompt and completion (input and output) # top_p: Controls diversity. 0.5 means half of all weighted options are considered # frequency_penalty: Penalizes new tokens based on frequencies. Decreases the chances of repetition of the same lines # presence_penalty: Penalizes new tokens based on if they show up already. Increases the likelihood of new topics coming up # best_of: Generates the specified number of items and then returns the best one prompt = "Comprehensively summarize this for a university student. Using bullet points to organize the summary, " \ "Go through every piece of advice provided by the speaker. " \ "If you can use technical programming terms, be sure to reference them.\n" + transcription # First generation pass using davinci-003 model response = openai.chat.completions.create( model="gpt-3.5-turbo-1106", messages=[ {"role": "user", "content": prompt}, ] ) print(response.choices[0].message.content) # Fact Checking pass, uses same model as above fact_checked_response = openai.chat.completions.create( model="gpt-3.5-turbo-1106", messages=[ {"role": "user", "content": "Clarify each bullet point: "}, {"role": "user", "content": response.choices[0].message.content} ] ) print(fact_checked_response.choices[0].message.content) # Detail-addition pass, using same model as above final_detailed_response = openai.chat.completions.create( model="gpt-3.5-turbo-1106", messages=[ {"role": "user", "content": "Add as much detail as you can to each bullet point. Use paragraphs to organize your response."}, {"role": "user", "content": fact_checked_response.choices[0].message.content} ] ) print(final_detailed_response.choices[0].message.content) # Print final response after all three passes print("Final Result:", final_detailed_response.choices[0].message.content)
[ "Add as much detail as you can to each bullet point. Use paragraphs to organize your response.", "Comprehensively summarize this for a university student. Using bullet points to organize the summary, Go through every piece of advice provided by the speaker. If you can use technical programming terms, be sure to reference them.\nPLACEHOLDER", "Clarify each bullet point: " ]
2024-01-10
SamarthK1239/OpenAI-Api-Shenanigans
OpenAI-API~EquationSolver~EquationSolver.py
# wolfram alpha API import wolframalpha import os from pathlib import Path from dotenv import load_dotenv import openai # Still have no idea why this works but hey I'm not complaining path = Path("Environment-Variables/.env") load_dotenv(dotenv_path=path) # Setting the API Key client = wolframalpha.Client(os.getenv("wlf_appid")) # Quick and dirty way of solving equations def solveEquation(equation): response = client.query(equation) return next(response.results).text
[]
2024-01-10
SamarthK1239/OpenAI-Api-Shenanigans
OpenAI-API~SentimentAnalyzer.py
import os from pathlib import Path from dotenv import load_dotenv from openai import OpenAI path = Path("Environment-Variables/.env") load_dotenv(dotenv_path=path) # Set up the openai client openai = OpenAI( organization=os.getenv('organization'), api_key=os.getenv("api_key") ) # Generate response using davinci-003 # Parameter meanings are listed in Summarizer.py response = openai.chat.completions.create( model="gpt-3.5-turbo-1106", messages=[ {"role": "user", "content": "What is the sentiment of this text? Respond with one of the following: Positive, Negative, Neutral, and rank it on a scale of 1 - 10 where 1 is heavily negative and 10 is heavily positive."}, {"role": "user", "content": input("What text would you like to classify? ")} ] ) # Print the response text print(response.choices[0].message.content)
[ "What is the sentiment of this text? Respond with one of the following: Positive, Negative, Neutral, and rank it on a scale of 1 - 10 where 1 is heavily negative and 10 is heavily positive.", "What text would you like to classify? " ]
2024-01-10
SamarthK1239/OpenAI-Api-Shenanigans
OpenAI-API~EquationSolver~problem_to_equation.py
# Using a class proved necessary in this case, as the OpenAI API requires the API key and organization key to be set as environment variables. class ChatGPT: # Same old imports import os from pathlib import Path from dotenv import load_dotenv import openai # Load the environment variables path = Path("EquationSolver/Environment-Variables/.env") load_dotenv(dotenv_path=path) # Don't really need this, might remove it later ORGKEY = os.getenv('organization') APIKEY = os.getenv("api_key") # Initialize the class def __init__(self): self.openai.organization = self.ORGKEY self.openai.api_key = self.APIKEY # Function to convert the problem to an equation (switched from davinci-003 to gpt-3.5-turbo) # Prompt design is especially important here def convertProblemToEquation(self): word_problem = input("Enter a word problem: ") response = self.openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ { "role": "user", "content": "Use the word problem from below to create an arithmetic equation(s), using any numerical figures from the question. You may create multiple equations if required to answer the question." "Respond with only mathematical equation(s) and no text whatsoever. Ensure that the equation(s) you provide can be directly entered into a tool like " "symbolab to obtain an answer. Include brackets wherever needed for clarity. \n" + word_problem } ], # prompt="Use the word problem from below to create an equation, using any numerical figures from the question. Respond with only a mathematical equation and no text whatsoever. I do not need any explanatory text accompanying the equation. \n" + word_problem, temperature=0.3, max_tokens=64, top_p=1, frequency_penalty=0, presence_penalty=0, stop=["\n"] ) return response["choices"][0]["message"]["content"] # Deprecated function, kept for reference to previous versions ONLY # Don't use this, it's not very good, and the model referenced is deprecated lol def extractEquation(self, response): equation = self.openai.Completion.create( model="text-davinci-003", prompt="From this text, extract an equation which i can put into an equation solver such as symbolab, and respond with only the equation and no accompanying text: \n" + response, temperature=0.3, max_tokens=64, top_p=1, frequency_penalty=0, presence_penalty=0, stop=["\n"] ) return equation["choices"][0]["text"]
[ "Use the word problem from below to create an arithmetic equation(s), using any numerical figures from the question. You may create multiple equations if required to answer the question.Respond with only mathematical equation(s) and no text whatsoever. Ensure that the equation(s) you provide can be directly entered into a tool like symbolab to obtain an answer. Include brackets wherever needed for clarity. \nPLACEHOLDER", "From this text, extract an equation which i can put into an equation solver such as symbolab, and respond with only the equation and no accompanying text: \nPLACEHOLDER" ]
2024-01-10
crytic/slither
slither~utils~codex.py
import logging import os from argparse import ArgumentParser from pathlib import Path from slither.utils.command_line import defaults_flag_in_config logger = logging.getLogger("Slither") def init_parser(parser: ArgumentParser, always_enable_codex: bool = False) -> None: """ Init the cli arg with codex features Args: parser: always_enable_codex (Optional(bool)): if true, --codex is not enabled Returns: """ group_codex = parser.add_argument_group("Codex (https://beta.openai.com/docs/guides/code)") if not always_enable_codex: group_codex.add_argument( "--codex", help="Enable codex (require an OpenAI API Key)", action="store_true", default=defaults_flag_in_config["codex"], ) group_codex.add_argument( "--codex-log", help="Log codex queries (in crytic_export/codex/)", action="store_true", default=False, ) group_codex.add_argument( "--codex-contracts", help="Comma separated list of contracts to submit to OpenAI Codex", action="store", default=defaults_flag_in_config["codex_contracts"], ) group_codex.add_argument( "--codex-model", help="Name of the Codex model to use (affects pricing). Defaults to 'text-davinci-003'", action="store", default=defaults_flag_in_config["codex_model"], ) group_codex.add_argument( "--codex-temperature", help="Temperature to use with Codex. Lower number indicates a more precise answer while higher numbers return more creative answers. Defaults to 0", action="store", default=defaults_flag_in_config["codex_temperature"], ) group_codex.add_argument( "--codex-max-tokens", help="Maximum amount of tokens to use on the response. This number plus the size of the prompt can be no larger than the limit (4097 for text-davinci-003)", action="store", default=defaults_flag_in_config["codex_max_tokens"], ) group_codex.add_argument( "--codex-organization", help="Codex organization", action="store", default=None, ) # TODO: investigate how to set the correct return type # So that the other modules can work with openai def openai_module(): # type: ignore """ Return the openai module Consider checking the usage of open (slither.codex_enabled) before using this function Returns: Optional[the openai module] """ try: # pylint: disable=import-outside-toplevel import openai api_key = os.getenv("OPENAI_API_KEY") if api_key is None: logger.info( "Please provide an Open API Key in OPENAI_API_KEY (https://beta.openai.com/account/api-keys)" ) return None openai.api_key = api_key except ImportError: logger.info("OpenAI was not installed") # type: ignore logger.info('run "pip install openai"') return None return openai def log_codex(filename: str, prompt: str) -> None: """ Log the prompt in crytic/export/codex/filename Append to the file Args: filename: filename to write to prompt: prompt to write Returns: None """ Path("crytic_export/codex").mkdir(parents=True, exist_ok=True) with open(Path("crytic_export/codex", filename), "a", encoding="utf8") as file: file.write(prompt) file.write("\n")
[]
2024-01-10
memasanz/streamlitsearchapp
webapp.py
import json import openai import streamlit as st from streamlit_chat import message from streamlit_option_menu import option_menu from credentials import * from cog_search import * def update_creds(): with open('credentials.py') as f: l = list(f) for attribute, value in creds.items(): with open('credentials.py', 'w') as output: for line in l: if line.startswith(attribute): print('found attribute: ' + attribute + ' = "' + value + '"\n') print('about to write: ' + attribute + ' = "' + value + '"\n') output.write( attribute + ' = "' + value + '"\n') else: output.write(line) f.close() output.close() #reads from credentials.pyand puts values of creds into session_state def set_creds(): for attribute, value in creds.items(): if attribute not in st.session_state: st.session_state[attribute] = value #print session_state message for chat like experience def print_messages(): for i in range (len(st.session_state.messages) -1, -1, -1): msg = st.session_state.messages[i] if msg is not None: if msg["role"] == "user": message(msg["content"], is_user=True, key = str(i) + "user", avatar_style = "initials", seed = "๐Ÿ‘ค") else: if msg["role"] == "assistant": print(msg["content"]) if msg["content"] == "I don't know" or msg["content"] == "I don't know." or msg['content'] == "Sorry, I don't know the answer to that question. Please try rephrasing your question.": message(msg["content"], is_user=False, key = str(i) + "system", avatar_style="initials", seed = "๐Ÿ˜•") elif msg['content'] == "How can I help you?": message(msg["content"], is_user=False, key = str(i) + "system", avatar_style="initials", seed = "๐Ÿ™‚") else: message(msg["content"], is_user=False, key = str(i) + "system", avatar_style="initials", seed = "๐Ÿ˜‰") #clear session_state messages - this is on the settings page def settings_form(): reset = st.checkbox('Reset Messages') if reset: st.write('Sure thing!') st.session_state.messages = [{"role":"system","content":"You are an AI assistant that helps people find information."}] st.session_state.messages.append({"role": "assistant", "content": "How can I help you?"}) print("complteted reset") #display home #main screen if __name__ == "__main__": if "messages" not in st.session_state: print("messages not in session state") st.session_state["messages"] = [{"role":"system","content":"You are an AI assistant that helps people find information."}] st.session_state.messages.append({"role": "assistant", "content": "How can I help you?"}) with st.sidebar: set_creds() menu_index = ['Home', 'Settings', 'Upload file', 'Chat'] menu_icons = ['house', 'gear', 'cloud-upload', 'chat'] selected = option_menu("Main Menu",menu_index, icons=menu_icons, menu_icon="cast", default_index=1) if selected == 'Home': "[View the source code](https://github.com/streamlit/llm-examples/blob/main/Chatbot.py)" st.title("Welcome to the AI Assistant") with st.form("chat_input", clear_on_submit=True): a, b = st.columns([4, 1]) user_input = a.text_input( label="Your message:", placeholder="What would you like to say?", label_visibility="collapsed", ) b.form_submit_button("Send") openai.api_type = "azure" openai.api_base = creds['AZURE_OPENAI_ENDPOINT'] openai.api_version = "2023-03-15-preview" openai.api_key = creds['AZURE_OPENAI_KEY'] if user_input and AZURE_OPENAI_KEY: st.session_state.messages.append({"role": "user", "content": user_input}) response = openai.ChatCompletion.create( engine="gpt-35-turbo", messages = st.session_state.messages, temperature=0.0, max_tokens=200, top_p=0.95, frequency_penalty=0, presence_penalty=0, stop=None) print(response) if response.choices[0].message.content != None: st.session_state.messages.append({"role": "assistant", "content": response.choices[0].message.content}) print_messages() elif selected == 'Upload file': st.title('Upload file') elif selected == 'Chat': st.title('Chat') "[View the source code](https://github.com/streamlit/llm-examples/blob/main/Chatbot.py)" st.title("Cognitive Search & Azure OpenAI") with st.form("chat_input", clear_on_submit=True): a, b = st.columns([4, 1]) user_input_ondata = a.text_input( label="Your message:", placeholder="What would you like to ask?", label_visibility="collapsed", ) b.form_submit_button("Send") if user_input_ondata and AZURE_OPENAI_KEY: question = user_input_ondata st.session_state.messages.append({"role": "user", "content": question}) arg = OpenAIHelper(creds['COG_SEARCH_INDEX']) response = arg.get_Answer(user_input_ondata) st.session_state.messages.append({"role": "assistant", "content": response}) print_messages() elif selected == 'Settings': settings_form() with st.form("my_form"): st.write("Configuration Settings") azure_openai_endpoint = st.text_input("azure_openai_endpoint", creds["AZURE_OPENAI_ENDPOINT"]) azure_openai_key = st.text_input("azure_openai_key", creds["AZURE_OPENAI_KEY"], type = "password") txt_davinci = st.text_input("txt davinici", creds["TEXT_DAVINCI"]) cog_search_resource = st.text_input("Cog Search Resource",creds["COG_SEARCH_RESOURCE"]) cog_search_index = st.text_input("Cog Search Index", creds["COG_SEARCH_INDEX"]) cog_service_key = st.text_input("Cog Search Key", creds["COG_SEARCH_KEY"], type = "password") storage_connection_string = st.text_input("Storage Connection String", creds["STORAGE_CONNECTION_STRING"], type="password") storage_account = st.text_input("Storage Account", creds["STORAGE_ACCOUNT"]) storage_container = st.text_input("Storage Container", creds["STORAGE_CONTAINER"]) storage_key = st.text_input("Storage Key", creds["STORAGE_KEY"], type = "password") submitted = st.form_submit_button("Submit") #don't use this to update the search index. if submitted: creds["AZURE_OPENAI_ENDPOINT"] = azure_openai_endpoint creds["AZURE_OPENAI_KEY"] = azure_openai_key creds["TEXT_DAVINCI"] = txt_davinci creds["COG_SEARCH_RESOURCE"] = cog_search_resource #creds["COG_SEARCH_INDEX"] = cog_search_index creds["COG_SEARCH_KEY"] = cog_service_key creds["STORAGE_CONNECTION_STRING"] = storage_connection_string creds["STORAGE_ACCOUNT"] = storage_account creds["STORAGE_CONTAINER"] = storage_container creds["STORAGE_KEY"] = storage_key set_creds() # update_creds() st.write("Settings updated") with st.form("create index"): st.write("Create Index") create_index = st.form_submit_button("SubmitCreateIndex") if create_index: cogSearch = CogSearchHelper(index = creds["COG_SEARCH_INDEX"]) response, success = cogSearch.create_datasource() if success: st.write("Data source created") response, success = cogSearch.create_skillset() if success: st.write("Skillset created") response, success = cogSearch.create_index() if success: st.write("Index created") with st.spinner(text="In progress..."): response, success = cogSearch.create_indexer() if success: st.write("Running indexer")
[ "How can I help you?", "You are an AI assistant that helps people find information." ]
2024-01-10
memasanz/streamlitsearchapp
cog_search.py
import requests import json from credentials import * import json import numpy as np import os from langchain.llms import AzureOpenAI #from langchain import FAISS from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.chains.question_answering import load_qa_chain from openai.embeddings_utils import get_embedding, cosine_similarity import openai from transformers import GPT2TokenizerFast import pandas as pd class CogSearchHelper: def __init__(self, index): self.service_name = creds['COG_SEARCH_RESOURCE'] self.search_key = creds['COG_SEARCH_KEY'] self.storage_connectionstring = creds['STORAGE_CONNECTION_STRING'] self.storage_container = creds['STORAGE_CONTAINER'] self.cognitive_service_key = creds['COG_SERVICE_KEY'] if index == None: self.index = creds['COG_SEARCH_INDEX'] else: self.index = index def get_the_token_count(self, documents): tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") total_token_count = 0 try: token_count = len(tokenizer.encode(documents)) except: print('failed to get token count') token_count = -1 pass return token_count def search_single_docs(df, user_query, TEXT_SEARCH_QUERY_EMBEDDING_ENGINE, top_n=3): embedding = get_embedding( user_query, engine=TEXT_SEARCH_QUERY_EMBEDDING_ENGINE ) df["similarities"] = df.curie_search.apply(lambda x: cosine_similarity(x, embedding)) res = ( df.sort_values("similarities", ascending=False) .reset_index(drop=True) .head(top_n) ) return res def search_semantic(self, question): print('searching semantic') response = openai.Embedding.create(input=question,engine="text-embedding-ada-002") q_embeddings = response['data'][0]['embedding'] if len(question) > 0: endpoint = "https://{}.search.windows.net/".format(self.service_name) url = '{0}indexes/{1}/docs/search?api-version=2021-04-30-Preview'.format(endpoint, self.index) print(url) payload = json.dumps({ "search": question, "queryType": "semantic", "queryLanguage": "en-us", "captions": "extractive", "answers": "extractive", "semanticConfiguration": "semanic-config", "count": True, }) headers = { 'api-key': '{0}'.format(self.search_key), 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) obj = response.json() try: answer = obj['@search.answers'][0]['text'] except: answer = obj['value'][0]['@search.captions'][0]['text'] pass relevant_data = [] lst_embeddings_text = [] lst_embeddings = [] lst_file_name = [] count = 0 #should only grab 1 from each document. for x in obj['value']: if x['@search.rerankerScore'] > 0.5: count += 1 relevant_data.append(x['content']) embeddings = x['embeddings'] embeddings_text = x['embeddings_text'] file_name = x['metadata_storage_name'] curie_search = [] for x in embeddings: a = np.fromstring(x[1:-1], dtype=float, sep=',') curie_search.append(a) curie_list = list(curie_search) #get the most relevant embedding and the most relevant text for the document df = pd.DataFrame(list(zip(embeddings_text, curie_list)),columns =['text', 'embedding_values']) df["similarities"] = df.embedding_values.apply(lambda x: cosine_similarity(x, q_embeddings)) res = (df.sort_values("similarities", ascending=False).reset_index(drop=True).head(1)) embedding_text_most_relevant = res['text'][0] embedding_vector_most_relevant = res['embedding_values'][0] # print('embedding_text_most_relevant = ' + embedding_text_most_relevant) # print('embedding_vector_most_relevant = ' + str(embedding_vector_most_relevant)) lst_embeddings_text.append(embedding_text_most_relevant) lst_embeddings.append(embedding_vector_most_relevant) lst_file_name.append(file_name) # for i in range(len(embeddings)): # lst_embeddings_text.append(embeddings_text[i]) # lst_embeddings.append(np.fromstring(embeddings[i][1:-1], dtype=float, sep=',')) # lst_file_name.append(file_name) tuples_list = [] tokencount = 0 for i in range(len(lst_embeddings_text)): tuples_list.append((lst_embeddings_text[i], lst_embeddings[i])) # print('tuples_list = ' ) # print(tuples_list) return answer, relevant_data, count, lst_file_name, tuples_list, lst_embeddings_text def create_datasource(self): endpoint = "https://{}.search.windows.net/".format(self.service_name) url = '{0}/datasources/{1}-datasource?api-version=2020-06-30'.format(endpoint, self.index) print(url) payload = json.dumps({ "description": "Demo files to demonstrate cognitive search capabilities.", "type": "azureblob", "credentials": { "connectionString": self.storage_connectionstring }, "container": { "name": self.storage_container } }) headers = { 'api-key': self.search_key, 'Content-Type': 'application/json' } response = requests.request("PUT", url, headers=headers, data=payload) if response.status_code == 201 or response.status_code == 204: return response, True else: return response, False def create_index(self): endpoint = "https://{}.search.windows.net/".format(self.service_name) url = '{0}/indexes/{1}/?api-version=2021-04-30-Preview'.format(endpoint, self.index) print(url) payload = json.dumps({ "name": self.index, "defaultScoringProfile": "", "fields": [ { "name": "content", "type": "Edm.String", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "metadata_storage_content_type", "type": "Edm.String", "searchable": False, "filterable": False, "retrievable": False, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "metadata_storage_size", "type": "Edm.Int64", "searchable": False, "filterable": False, "retrievable": False, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "metadata_storage_last_modified", "type": "Edm.DateTimeOffset", "searchable": False, "filterable": False, "retrievable": False, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "metadata_storage_content_md5", "type": "Edm.String", "searchable": False, "filterable": False, "retrievable": False, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "metadata_storage_name", "type": "Edm.String", "searchable": False, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "metadata_storage_path", "type": "Edm.String", "searchable": False, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": True, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "metadata_storage_file_extension", "type": "Edm.String", "searchable": False, "filterable": False, "retrievable": False, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "metadata_content_type", "type": "Edm.String", "searchable": False, "filterable": False, "retrievable": False, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "metadata_language", "type": "Edm.String", "searchable": False, "filterable": False, "retrievable": False, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "metadata_creation_date", "type": "Edm.DateTimeOffset", "searchable": False, "filterable": False, "retrievable": False, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "people", "type": "Collection(Edm.String)", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "organizations", "type": "Collection(Edm.String)", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "locations", "type": "Collection(Edm.String)", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "keyphrases", "type": "Collection(Edm.String)", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "language", "type": "Edm.String", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "translated_text", "type": "Edm.String", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "en.lucene", "synonymMaps": [] }, { "name": "embeddings_text", "type": "Collection(Edm.String)", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "embeddings", "type": "Collection(Edm.String)", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "pii_entities", "type": "Collection(Edm.ComplexType)", "fields": [ { "name": "text", "type": "Edm.String", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "type", "type": "Edm.String", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "subtype", "type": "Edm.String", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "offset", "type": "Edm.Int32", "searchable": False, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "length", "type": "Edm.Int32", "searchable": False, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] }, { "name": "score", "type": "Edm.Double", "searchable": False, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": None, "synonymMaps": [] } ] }, { "name": "masked_text", "type": "Edm.String", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "merged_content", "type": "Edm.String", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "text", "type": "Collection(Edm.String)", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "layoutText", "type": "Collection(Edm.String)", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "imageTags", "type": "Collection(Edm.String)", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] }, { "name": "imageCaption", "type": "Collection(Edm.String)", "searchable": True, "filterable": False, "retrievable": True, "sortable": False, "facetable": False, "key": False, "indexAnalyzer": None, "searchAnalyzer": None, "analyzer": "standard.lucene", "synonymMaps": [] } ], "scoringProfiles": [], "corsOptions": None, "suggesters": [], "semantic": { "defaultConfiguration": None, "configurations": [ { "name": "semanic-config", "prioritizedFields": { "titleField": { "fieldName": "metadata_storage_name" }, "prioritizedContentFields": [ { "fieldName": "merged_content" } ], "prioritizedKeywordsFields": [ { "fieldName": "keyphrases" }, { "fieldName": "people" }, { "fieldName": "locations" } ] } } ] }, "analyzers": [], "tokenizers": [], "tokenFilters": [], "charFilters": [], "encryptionKey": None, "similarity": { "@odata.type": "#Microsoft.Azure.Search.BM25Similarity", "k1": None, "b": None } }) headers = { 'api-key': self.search_key, 'Content-Type': 'application/json' } response = requests.request("PUT", url, headers=headers, data=payload) if response.status_code == 201 or response.status_code == 204: return response, True else: # print('************************') # print(response.status_code) # print(response.text) return response, False def create_skillset(self): endpoint = "https://{}.search.windows.net/".format(self.service_name) appfunctionurl = creds['APP_FUNCTION_URL'] print(appfunctionurl) url = '{0}/skillsets/{1}-skillset?api-version=2021-04-30-Preview'.format(endpoint, self.index) print(url) payload = json.dumps({ "@odata.context": "https://mmx-cog-search.search.windows.net/$metadata#skillsets/$entity", "@odata.etag": "\"0x8DB2B4BF82370CF\"", "name": "{0}-skillset".format(self.index), "description": "Skillset created from the portal. skillsetName: index-skillset; contentField: merged_content; enrichmentGranularity: document; knowledgeStoreStorageAccount: ;", "skills": [ { "@odata.type": "#Microsoft.Skills.Text.V3.EntityRecognitionSkill", "name": "#1", "description": None, "context": "/document/merged_content", "categories": [ "Organization", "URL", "DateTime", "Skill", "Address", "Location", "Product", "IPAddress", "Event", "Person", "Quantity", "PersonType", "PhoneNumber", "Email" ], "defaultLanguageCode": "en", "minimumPrecision": None, "modelVersion": None, "inputs": [ { "name": "text", "source": "/document/merged_content" }, { "name": "languageCode", "source": "/document/language" } ], "outputs": [ { "name": "persons", "targetName": "people" }, { "name": "organizations", "targetName": "organizations" }, { "name": "locations", "targetName": "locations" } ] }, { "@odata.type": "#Microsoft.Skills.Text.KeyPhraseExtractionSkill", "name": "#2", "description": None, "context": "/document/merged_content", "defaultLanguageCode": "en", "maxKeyPhraseCount": None, "modelVersion": None, "inputs": [ { "name": "text", "source": "/document/merged_content" }, { "name": "languageCode", "source": "/document/language" } ], "outputs": [ { "name": "keyPhrases", "targetName": "keyphrases" } ] }, { "@odata.type": "#Microsoft.Skills.Text.LanguageDetectionSkill", "name": "#3", "description": None, "context": "/document", "defaultCountryHint": None, "modelVersion": None, "inputs": [ { "name": "text", "source": "/document/merged_content" } ], "outputs": [ { "name": "languageCode", "targetName": "language" } ] }, { "@odata.type": "#Microsoft.Skills.Text.TranslationSkill", "name": "#4", "description": None, "context": "/document/merged_content", "defaultFromLanguageCode": None, "defaultToLanguageCode": "en", "suggestedFrom": "en", "inputs": [ { "name": "text", "source": "/document/merged_content" } ], "outputs": [ { "name": "translatedText", "targetName": "translated_text" } ] }, { "@odata.type": "#Microsoft.Skills.Text.PIIDetectionSkill", "name": "#5", "description": None, "context": "/document/merged_content", "defaultLanguageCode": "en", "minimumPrecision": 0.5, "maskingMode": "replace", "maskingCharacter": "*", "modelVersion": None, "piiCategories": [], "domain": "none", "inputs": [ { "name": "text", "source": "/document/merged_content" }, { "name": "languageCode", "source": "/document/language" } ], "outputs": [ { "name": "piiEntities", "targetName": "pii_entities" }, { "name": "maskedText", "targetName": "masked_text" } ] }, { "@odata.type": "#Microsoft.Skills.Text.MergeSkill", "name": "#6", "description": None, "context": "/document", "insertPreTag": " ", "insertPostTag": " ", "inputs": [ { "name": "text", "source": "/document/content" }, { "name": "itemsToInsert", "source": "/document/normalized_images/*/text" }, { "name": "offsets", "source": "/document/normalized_images/*/contentOffset" } ], "outputs": [ { "name": "mergedText", "targetName": "merged_content" } ] }, { "@odata.type": "#Microsoft.Skills.Vision.OcrSkill", "name": "#7", "description": None, "context": "/document/normalized_images/*", "textExtractionAlgorithm": None, "lineEnding": "Space", "defaultLanguageCode": "en", "detectOrientation": True, "inputs": [ { "name": "image", "source": "/document/normalized_images/*" } ], "outputs": [ { "name": "text", "targetName": "text" }, { "name": "layoutText", "targetName": "layoutText" } ] }, { "@odata.type": "#Microsoft.Skills.Vision.ImageAnalysisSkill", "name": "#8", "description": None, "context": "/document/normalized_images/*", "defaultLanguageCode": "en", "visualFeatures": [ "tags", "description" ], "details": [], "inputs": [ { "name": "image", "source": "/document/normalized_images/*" } ], "outputs": [ { "name": "tags", "targetName": "imageTags" }, { "name": "description", "targetName": "imageCaption" } ] } , { "@odata.type": "#Microsoft.Skills.Custom.WebApiSkill", "uri": appfunctionurl, "httpMethod": "POST", "timeout": "PT230S", "batchSize": 1, "degreeOfParallelism": 1, "name": "Embeddings", "description": "", "context": "/document", "inputs": [ { "name": "text", "source": "/document/merged_content" }, { "name": "filename", "source": "/document/metadata_storage_name" } ], "outputs": [ { "name": "embeddings", "targetName": "embeddings" }, { "name": "embeddings_text", "targetName": "embeddings_text" } ] } ], "cognitiveServices": { "@odata.type": "#Microsoft.Azure.Search.CognitiveServicesByKey", "description": "/subscriptions/b071bca8-0055-43f9-9ff8-ca9a144c2a6f/resourceGroups/mmx-cognitive-services-rg/providers/Microsoft.CognitiveServices/accounts/xmm-cognitive-services", "key": "{0}".format(self.cognitive_service_key) }, "knowledgeStore": None, "encryptionKey": None }) headers = { 'Content-Type': 'application/json', 'api-key': '{0}'.format(self.search_key) } response = requests.request("PUT", url, headers=headers, data=payload) if response.status_code == 201 or response.status_code == 204: return response, True else: return response, False def create_indexer(self): endpoint = "https://{}.search.windows.net/".format(self.service_name) url = '{0}/indexers/{1}-indexer/?api-version=2021-04-30-Preview'.format(endpoint, self.index) print(url) payload = json.dumps({ "name": "{0}-indexer".format(self.index), "description": "", "dataSourceName": "{0}-datasource".format(self.index), "skillsetName": "{0}-skillset".format(self.index), "targetIndexName": "{0}".format(self.index), "disabled": None, "schedule": None, "parameters": { "batchSize": None, "maxFailedItems": 0, "maxFailedItemsPerBatch": 0, "base64EncodeKeys": None, "configuration": { "dataToExtract": "contentAndMetadata", "parsingMode": "default", "imageAction": "generateNormalizedImages" } }, "fieldMappings": [ { "sourceFieldName": "metadata_storage_path", "targetFieldName": "metadata_storage_path", "mappingFunction": { "name": "base64Encode", "parameters": None } } ], "outputFieldMappings": [ { "sourceFieldName": "/document/merged_content/people", "targetFieldName": "people" }, { "sourceFieldName": "/document/merged_content/organizations", "targetFieldName": "organizations" }, { "sourceFieldName": "/document/merged_content/locations", "targetFieldName": "locations" }, { "sourceFieldName": "/document/merged_content/keyphrases", "targetFieldName": "keyphrases" }, { "sourceFieldName": "/document/language", "targetFieldName": "language" }, { "sourceFieldName": "/document/merged_content/translated_text", "targetFieldName": "translated_text" }, { "sourceFieldName": "/document/merged_content/pii_entities", "targetFieldName": "pii_entities" }, { "sourceFieldName": "/document/merged_content/masked_text", "targetFieldName": "masked_text" }, { "sourceFieldName": "/document/merged_content", "targetFieldName": "merged_content" }, { "sourceFieldName": "/document/normalized_images/*/text", "targetFieldName": "text" }, { "sourceFieldName": "/document/normalized_images/*/layoutText", "targetFieldName": "layoutText" }, { "sourceFieldName": "/document/normalized_images/*/imageTags/*/name", "targetFieldName": "imageTags" }, { "sourceFieldName": "/document/normalized_images/*/imageCaption", "targetFieldName": "imageCaption" }, { "sourceFieldName": "/document/embeddings", "targetFieldName": "embeddings" }, { "sourceFieldName": "/document/embeddings_text", "targetFieldName": "embeddings_text" } ], "cache": None, "encryptionKey": None }) headers = { 'Content-Type': 'application/json', 'api-key': '{0}'.format(self.search_key) } response = requests.request("PUT", url, headers=headers, data=payload) if response.status_code == 201 or response.status_code == 204: print('good') return response, True else: print(response.status_code) return response, False def run_indexer(self): endpoint = "https://{}.search.windows.net/".format(self.service_name) url = '{0}/indexers/{1}/run?api-version=2021-04-30-Preview'.format(endpoint, self.index + '-indexer') headers = { 'api-key': self.search_key, 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers) print(response.text) class OpenAIHelper: def __init__(self, index): self.question_template = creds['QUESTION_TEMPLATE'] if index == None: self.index = creds['COG_SEARCH_INDEX'] else: self.index = index def get_the_token_count(self, documents): tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") total_token_count = 0 try: token_count = len(tokenizer.encode(documents)) except: print('failed to get token count') token_count = -1 pass return token_count def get_Answer(self, question): print('Get Answer') openai.api_type = "azure" openai.api_base = creds['AZURE_OPENAI_ENDPOINT'] openai.api_version = "2022-12-01" os.environ['OPENAI_API_KEY'] = creds['AZURE_OPENAI_KEY'] openai.api_key = os.getenv("OPENAI_API_KEY") from openai.embeddings_utils import get_embedding, cosine_similarity question_embedding = get_embedding(question,engine="text-embedding-ada-002") # engine should be set to the deployment name you chose when you deployed the text-embedding-ada-002 (Version 2) model) print(question_embedding) blah = CogSearchHelper(self.index) answer, relevant_data, count, lst_file_name, embeddings_tuples, lst_embeddings_text = blah.search_semantic(question) embeddings = OpenAIEmbeddings(openai_api_key=openai.api_key, chunk_size=1536) full_question = creds['QUESTION_TEMPLATE'].format(question = question) print('full questoin = ' + full_question) print('relevant files:') for x in lst_file_name: print(x) print(embeddings_tuples) if len(embeddings_tuples) == 0: return("Sorry, I don't know the answer to that question. Please try rephrasing your question.") db = FAISS.from_embeddings(embeddings_tuples, embeddings) docs_db = db.similarity_search_by_vector(question_embedding, k = 4) #indexxtg3, and map reduce. if self.get_the_token_count(full_question) + 100 < 3096: print("running stuff....") llm = AzureOpenAI(deployment_name=creds['TEXT_DAVINCI'], model_name="text-davinci-003", temperature=0.0, max_tokens=1000) chain = load_qa_chain(llm, chain_type="stuff") response = chain({"input_documents": docs_db, "question": full_question, "language": "English", "existing_answer" : ""}, return_only_outputs=True) else: print("running a map reduce....") llm = AzureOpenAI(deployment_name=creds['TEXT_DAVINCI'], model_name="text-davinci-003", temperature=0.0, max_tokens=1000) chain = load_qa_chain(llm, chain_type="map_reduce") response = chain({"input_documents": docs_db, "question": full_question, "language": "English", "existing_answer" : ""}, return_only_outputs=True) return(response['output_text']) def get_FollowUpAnswer(self, question, new_docsearch, lst_file_name): docs_db = new_docsearch.similarity_search(question) full_question = self.question_template.format(question, lst_file_name) llm = AzureOpenAI(deployment_name=creds['TEXT_DAVINCI'], model_name="text-davinci-003", temperature=0.0, max_tokens=2000) chain = load_qa_chain(llm, chain_type="stuff") response = chain({"input_documents": docs_db, "question": full_question, "language": "English", "existing_answer" : ""}, return_only_outputs=True) return(response['output_text'])
[]
2024-01-10
stanj98/codeinterpreter-api
codeinterpreterapi~chains~rm_dl_link.py
from langchain.base_language import BaseLanguageModel from langchain.chat_models.openai import ChatOpenAI from langchain.schema import AIMessage, OutputParserException from codeinterpreterapi.prompts import remove_dl_link_prompt def remove_download_link( input_response: str, llm: BaseLanguageModel, ) -> str: messages = remove_dl_link_prompt.format_prompt( input_response=input_response ).to_messages() message = llm.predict_messages(messages) if not isinstance(message, AIMessage): raise OutputParserException("Expected an AIMessage") return message.content async def aremove_download_link( input_response: str, llm: BaseLanguageModel, ) -> str: messages = remove_dl_link_prompt.format_prompt( input_response=input_response ).to_messages() message = await llm.apredict_messages(messages) if not isinstance(message, AIMessage): raise OutputParserException("Expected an AIMessage") return message.content def test(): llm = ChatOpenAI(model="gpt-3.5-turbo-0613") # type: ignore example = ( "I have created the plot to your dataset.\n\n" "Link to the file [here](sandbox:/plot.png)." ) print(remove_download_link(example, llm)) if __name__ == "__main__": from dotenv import load_dotenv load_dotenv() test()
[]
2024-01-10
kamda-cyrial/Similarity-Compute-Engine
similarity_engine.py
from dotenv import load_dotenv import os from openai import OpenAI from pymongo import MongoClient import math from collections import defaultdict import json import time TWEETS_DATABASE = "Tweets" QUERY_DATABASE = "Queries" load_dotenv() openai_client = OpenAI() def get_db_handle(): load_dotenv() client = MongoClient(os.getenv("MONGO_STRING")) db_handle = client[os.getenv("DB_NAME")] return db_handle, client def create_json_matrix_prompt(statements_1, statements_2): intro_prompt = ( "As an AI, you are tasked with evaluating the level of agreement or disagreement between two sets of statements. " "Your analysis should be rooted in a detailed and thoughtful examination of each statement, considering not only the direct content but also the underlying implications and contexts. " "For each statement pair, assign a score from -10 (indicating complete disagreement) to 10 (indicating complete agreement). " "This scoring should reflect a comprehensive understanding of how the statements relate, taking into account their broader meanings and potential connections or contradictions.\n\n" "Focus exclusively on the content and deeper meanings of the statements, avoiding any influence from ideological or philosophical biases. " "When statements do not explicitly agree or contradict but have deeper connections or oppositions, these should be carefully considered in your scoring.\n\n" "Examples:\n" "'Smartphones are essential for modern communication.' and 'Most people rely heavily on technology for daily tasks.' might score high, reflecting a thematic agreement in technology reliance.\n" "'Maintaining natural ecosystems is vital for biodiversity.' and 'Economic development should be prioritized over environmental concerns.' would likely score negatively, due to underlying opposition in priorities.\n\n" "Please present the scores in a JSON formatted matrix, using indices for the statements from each group. Here is the format for a matrix where each group has two statements:\n" "All responses should be formated in this sample json format:\n" '{}"matrix": [[0, 0], [0, 0]]{}\n\n' "This response will be used by a script, so it is of great importance that your response is nothing but just the json response, ***any text not in the json block will cause the script to fail***. \n" "do your thought process before you generate the matrix as comments and only as comments in the json block, and please be as concise as possible to minimize tokens utilization. and cost of execution" "Now, apply this approach to the following statements:\n" "Group 1 has {} statements and Group 2 has {} statements.\n" "Analyze the following statements:\n\nGroup 1:\n".format( "{", "}", len(statements_1), len(statements_2) ) ) for i, statement1 in enumerate(statements_1, start=1): intro_prompt += f"{i}. {statement1}\n" intro_prompt += "\nGroup 2:\n" for j, statement2 in enumerate(statements_2, start=1): intro_prompt += f"{j}. {statement2}\n" return intro_prompt def get_similarity_score(statements_1, statements_2): chat_completion = openai_client.chat.completions.create( messages=[ { "role": "user", "content": create_json_matrix_prompt(statements_1, statements_2), } ], model="gpt-3.5-turbo", timeout=60, ) return chat_completion.choices[0].message.content def get_earliest_pending_query(): db_handle, client = get_db_handle() queries_db = db_handle[QUERY_DATABASE] earliest_pending_query = queries_db.find_one( {"status": "pending"}, sort=[("timestamp", 1)] ) client.close() return earliest_pending_query def create_statement_2_list(query): statement_2_list = [] query_dict = {} for category in query["query"]: for subcategory in query["query"][category]: statement_2_list.append(query["query"][category][subcategory]) query_dict[len(statement_2_list) - 1] = (category, subcategory) # print(query_dict) return statement_2_list, query_dict def get_num_pages(page_size): db_handle, client = get_db_handle() tweets = db_handle[TWEETS_DATABASE] num_tweets = tweets.count_documents({}) client.close() return math.ceil(num_tweets / page_size) def get_tweets(page_size, page_num): db_handle, client = get_db_handle() tweets = db_handle[TWEETS_DATABASE] tweets_cursor = tweets.find({}).skip(page_size * (page_num - 1)).limit(page_size) client.close() return tweets_cursor def create_statement_1_list(tweets_cursor): statement_1_list = [] author_dict = {} for user in tweets_cursor: for tweet in user["tweets"]: statement_1_list.append(tweet["content"]) author_dict[len(statement_1_list) - 1] = user["uname"] return statement_1_list, author_dict def compute_author_scores_by_statement_2(page_size, query): author_scores_of_statement_2 = defaultdict( lambda: defaultdict(lambda: defaultdict(list)) ) num_pages = get_num_pages(page_size) for page_num in range(1, num_pages + 1): tweets_cursor = get_tweets(page_size, page_num) statement_1_list, author_dict = create_statement_1_list(tweets_cursor) statement_2_list, query_dict = create_statement_2_list(query) cnt = 0 while True: try: cnt += 1 similarity_score = get_similarity_score( statement_1_list, statement_2_list ) break except Exception as e: if cnt > 3: print("[ERROR]: Exceeded 3 retries") return None print("Failed, retrying in 30s...") print("[Exception]:", e) time.sleep(30) print("retrying...") continue if similarity_score.startswith("```json"): similarity_score = similarity_score[7:-3] # print(similarity_score) similarity_score = json.loads(similarity_score) for statement_1_index, statement_2_scores in enumerate( similarity_score["matrix"] ): for statement_2_index, score in enumerate(statement_2_scores): author_scores_of_statement_2[author_dict[statement_1_index]][ query_dict[statement_2_index][0] ][query_dict[statement_2_index][1]].append(score) return author_scores_of_statement_2 def average_author_scores_by_statement_2(author_scores_of_statement_2): author_scores_by_statement_2 = defaultdict( lambda: defaultdict(lambda: defaultdict(int)) ) for author in author_scores_of_statement_2: for category in author_scores_of_statement_2[author]: for subcategory in author_scores_of_statement_2[author][category]: author_scores_by_statement_2[author][category][subcategory] = sum( author_scores_of_statement_2[author][category][subcategory] ) / len(author_scores_of_statement_2[author][category][subcategory]) return author_scores_by_statement_2 def cluster_and_count( unames, categories, category_index, average_author_scores_by_statement_2 ): if category_index == len(categories): return {"result": {}, "next_category_result": {}} result = defaultdict(lambda: 0) next_category_result = {} subcats = defaultdict(list) for uname in unames: for subcategory in average_author_scores_by_statement_2[uname][ categories[category_index] ]: if ( average_author_scores_by_statement_2[uname][categories[category_index]][ subcategory ] >= 0 ): result[subcategory] += 1 subcats[subcategory].append(uname) for subcategory in subcats: next_category_result[subcategory] = cluster_and_count( subcats[subcategory], categories, category_index + 1, average_author_scores_by_statement_2, ) return {"result": result, "next_category_result": next_category_result} def update_query_status(query, query_result): db_handle, client = get_db_handle() queries_db = db_handle[QUERY_DATABASE] queries_db.update_one( {"_id": query["_id"]}, {"$set": {"status": "processed", "result": query_result}} ) client.close() def process_query(query): author_scores_of_statement_2 = compute_author_scores_by_statement_2(20, query) average_author_scores_by_statement_2_res = average_author_scores_by_statement_2( author_scores_of_statement_2 ) query_result = cluster_and_count( average_author_scores_by_statement_2_res.keys(), query["categories"], 0, average_author_scores_by_statement_2_res, ) update_query_status(query, query_result) def execute_queries(): while True: try: query = get_earliest_pending_query() if query: print("[INFO]: Processing query - ", query["_id"]) process_query(query) print("[SUCCESS]: Processed query - ", query["_id"]) else: print("No pending queries") except Exception as e: print("[ERROR]:", e) time.sleep(1) if __name__ == "__main__": execute_queries()
[ "\nGroup 2:\n", "PLACEHOLDER. PLACEHOLDER\n", "As an AI, you are tasked with evaluating the level of agreement or disagreement between two sets of statements. Your analysis should be rooted in a detailed and thoughtful examination of each statement, considering not only the direct content but also the underlying implications and contexts. For each statement pair, assign a score from -10 (indicating complete disagreement) to 10 (indicating complete agreement). This scoring should reflect a comprehensive understanding of how the statements relate, taking into account their broader meanings and potential connections or contradictions.\n\nFocus exclusively on the content and deeper meanings of the statements, avoiding any influence from ideological or philosophical biases. When statements do not explicitly agree or contradict but have deeper connections or oppositions, these should be carefully considered in your scoring.\n\nExamples:\n'Smartphones are essential for modern communication.' and 'Most people rely heavily on technology for daily tasks.' might score high, reflecting a thematic agreement in technology reliance.\n'Maintaining natural ecosystems is vital for biodiversity.' and 'Economic development should be prioritized over environmental concerns.' would likely score negatively, due to underlying opposition in priorities.\n\nPlease present the scores in a JSON formatted matrix, using indices for the statements from each group. Here is the format for a matrix where each group has two statements:\nAll responses should be formated in this sample json format:\n{\"matrix\": [[0, 0], [0, 0]]}\n\nThis response will be used by a script, so it is of great importance that your response is nothing but just the json response, ***any text not in the json block will cause the script to fail***. \ndo your thought process before you generate the matrix as comments and only as comments in the json block, and please be as concise as possible to minimize tokens utilization. and cost of executionNow, apply this approach to the following statements:\nGroup 1 has 1 statements and Group 2 has 1 statements.\nAnalyze the following statements:\n\nGroup 1:\n" ]
2024-01-10
Mashidzasupergirl/AI-driven-SaaS-Application
app~recipe_generator.py
from openai import OpenAI import argparse def main(): print("Recipehelper is running!") parser = argparse.ArgumentParser() parser.add_argument("--input", "-i", type=str, required=True) args = parser.parse_args() user_input = args.input # print("List of products from input:", user_input) generate_recipe(user_input) def generate_recipe(prompt: str): client = OpenAI() subject = prompt completion = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a generetor of recipe for given products"}, {"role": "user", "content": f'I have only these products: {subject}. Suggest me a recipe only for these products, I do not want to go to the store.'}, ] ) AI_answer = completion.choices[0].message recipe = AI_answer.content # print(recipe, 'recipe') return recipe if __name__ == "__main__": main()
[ "I have only these products: PLACEHOLDER. Suggest me a recipe only for these products, I do not want to go to the store.", "You are a generetor of recipe for given products" ]
2024-01-10
agfrei/llm_chat_pdf
api~src~app~document~document.py
import re from bs4 import BeautifulSoup from langchain.document_loaders import PyMuPDFLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import ( MarkdownHeaderTextSplitter, RecursiveCharacterTextSplitter, ) from langchain.vectorstores import Chroma from src.app.core.settings import Settings class Document: def __init__(self, path: str, settings: Settings): self._path = path self._pages = None self._settings = settings self._md_splitter = MarkdownHeaderTextSplitter( headers_to_split_on=self._settings.chunk_markdown_separators, return_each_line=False, ) self._rct_splitter = RecursiveCharacterTextSplitter( chunk_size=settings.chunk_size, chunk_overlap=settings.chunk_overlap, separators=settings.chunk_separators, ) self.chunks = [] def load(self): """Load PDF into meanigful chunks. Strategy: 1- Load PDF as HTML using PyMuPDF 2- Split each `div` and `span` into `sections` with font-size as metadata 3- Convert into markdow using font size to infer headers (bigger fonts = top headers, lowest font = simple text) 4- Use `MarkdownHeaderTextSplitter` to split markdown into meanigful chunks 5- Use `RecursiveCharacterTextSplitter` to split """ loader = PyMuPDFLoader(file_path=self._path) self._pages = loader.load(option="html") html_sections = [] font_sizes = set() for page in self._pages: s, fs = self.__split_html_sections(page) html_sections.extend(s) font_sizes = font_sizes.union(fs) markdown = self.__get_markdown(html_sections, font_sizes) chunks = self._md_splitter.split_text(markdown) self.chunks = [] for i, chunk in enumerate(chunks): smaller_chunks = self._rct_splitter.split_documents([chunk]) for j, c in enumerate(smaller_chunks): header_append = ( "| " + " ".join( [ c.metadata.get(header, "") for _, header in self._settings.chunk_markdown_separators # noqa: E501 ] ).strip() + " |" ) if header_append: c.page_content = header_append + " " + c.page_content c.metadata["md_section"] = i + 1 c.metadata["total_md_sections"] = len(chunks) c.metadata["chunk_split"] = j + 1 c.metadata["total_chunk_splits"] = len(smaller_chunks) self.chunks.append(c) self.__add_to_vector_db() def __split_html_sections(self, page): soup = BeautifulSoup(page.page_content, "html.parser") content = soup.find_all("div") current_font_size = None current_text = "" snippets = [] font_sizes = set() for c in content: span = c.find("span") if not span: continue while span: style = span.get("style") if not style: span = span.findNext() continue font_size = re.findall( r"font-size:(\d+|\d+\.\d+)(pt|px)", style ) if not font_size: span = span.findNext() continue font_size = int(float(font_size[0][0])) font_sizes.add(font_size) if not current_font_size: current_font_size = font_size if font_size == current_font_size: current_text += span.text + "\n" else: snippets.append((current_text, current_font_size)) current_font_size = font_size current_text = span.text + "\n" span = span.findNext() snippets.append((current_text, current_font_size)) return snippets, font_sizes def __get_markdown(self, snippets: list, font_sizes: set): font_sizes = sorted(list(font_sizes), reverse=True) formatter = {} for i, size in enumerate(font_sizes): if i == len(font_sizes) - 1: format = "" else: format = (i + 1) * "#" + " " formatter[size] = format formatter snippets = [(formatter[s[1]] + s[0], s[1]) for s in snippets] markdown = "" for s in snippets: markdown += s[0] return markdown def __add_to_vector_db(self): embedding = OpenAIEmbeddings( openai_api_key=self._settings.openai_api_key ) _ = Chroma.from_documents( self.chunks, embedding, persist_directory=self._settings.chroma_persist_directory, )
[]
2024-01-10
chenghuige/tensorforce
tensorforce~core~optimizers~kfac.py
# Copyright 2018 reinforce.io. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== #code refractored from openai/baselines (https://github.com/openai/baselines) import tensorflow as tf import numpy as np import re from tensorforce.core.optimizers.kfac_utils import * from tensorforce.core.optimizers import Optimizer from functools import reduce KFAC_OPS = ['MatMul', 'Conv2D', 'BiasAdd'] class KFAC(Optimizer): """ A non-layers implementation of the Kronecker-factored approximate curvature optimizer. Meant for usage with Tensorforce. """ def __init__( self, learning_rate=0.01, momentum=0.9, clip_kl=0.01, kfac_update=2, stats_accum_iter=60, full_stats_init=False, cold_iter=100, cold_lr=None, async_=False, async_stats=False, epsilon=1e-2, stats_decay=0.95, blockdiag_bias=False, channel_fac=False, factored_damping=False, approxT2=False, use_float64=False, weight_decay_dict={}, max_grad_norm=0.5, scope='kfac', summary_labels=() ): """ Initializes a KFAC optimizer. For more information on arguments, see the Kfac Optimization paper https://arxiv.org/pdf/1503.05671.pdf """ self.max_grad_norm = max_grad_norm self._lr = learning_rate self._momentum = momentum self._clip_kl = clip_kl self._channel_fac = channel_fac self._kfac_update = kfac_update self._async = async_ self._async_stats = async_stats self._epsilon = epsilon self._stats_decay = stats_decay self._blockdiag_bias = blockdiag_bias self._approxT2 = approxT2 self._use_float64 = use_float64 self._factored_damping = factored_damping self._cold_iter = cold_iter if cold_lr == None: # good heuristics self._cold_lr = self._lr# * 3. else: self._cold_lr = cold_lr self._stats_accum_iter = stats_accum_iter self._weight_decay_dict = weight_decay_dict self._diag_init_coeff = 0. self._full_stats_init = full_stats_init if not self._full_stats_init: self._stats_accum_iter = self._cold_iter self.sgd_step = tf.Variable(0, name='KFAC/sgd_step', trainable=False) self.global_step = tf.Variable( 0, name='KFAC/global_step', trainable=False) self.cold_step = tf.Variable(0, name='KFAC/cold_step', trainable=False) self.factor_step = tf.Variable( 0, name='KFAC/factor_step', trainable=False) self.stats_step = tf.Variable( 0, name='KFAC/stats_step', trainable=False) self.vFv = tf.Variable(0., name='KFAC/vFv', trainable=False) self.factors = {} self.param_vars = [] self.stats = {} self.stats_eigen = {} super(KFAC, self).__init__(scope=scope, summary_labels=summary_labels) def getFactors(self, g, varlist): graph = tf.get_default_graph() factorTensors = {} fpropTensors = [] bpropTensors = [] opTypes = [] fops = [] def searchFactors(gradient, graph): # hard coded search stratergy bpropOp = gradient.op bpropOp_name = bpropOp.name bTensors = [] fTensors = [] # combining additive gradient, assume they are the same op type and # indepedent if 'AddN' in bpropOp_name: factors = [] for g in gradient.op.inputs: factors.append(searchFactors(g, graph)) op_names = [item['opName'] for item in factors] # TO-DO: need to check all the attribute of the ops as well print (gradient.name) print (op_names) print (len(np.unique(op_names))) assert len(np.unique(op_names)) == 1, gradient.name + \ ' is shared among different computation OPs' bTensors = reduce(lambda x, y: x + y, [item['bpropFactors'] for item in factors]) if len(factors[0]['fpropFactors']) > 0: fTensors = reduce( lambda x, y: x + y, [item['fpropFactors'] for item in factors]) fpropOp_name = op_names[0] fpropOp = factors[0]['op'] else: fpropOp_name = re.search( 'gradientsSampled(_[0-9]+|)/(.+?)_grad', bpropOp_name).group(2) fpropOp = graph.get_operation_by_name(fpropOp_name) if fpropOp.op_def.name in KFAC_OPS: # Known OPs ### bTensor = [ i for i in bpropOp.inputs if 'gradientsSampled' in i.name][-1] bTensorShape = fpropOp.outputs[0].get_shape() if bTensor.get_shape()[0].value == None: bTensor.set_shape(bTensorShape) bTensors.append(bTensor) ### if fpropOp.op_def.name == 'BiasAdd': fTensors = [] else: fTensors.append( [i for i in fpropOp.inputs if param.op.name not in i.name][0]) fpropOp_name = fpropOp.op_def.name else: # unknown OPs, block approximation used bInputsList = [i for i in bpropOp.inputs[ 0].op.inputs if 'gradientsSampled' in i.name if 'Shape' not in i.name] if len(bInputsList) > 0: bTensor = bInputsList[0] bTensorShape = fpropOp.outputs[0].get_shape() if len(bTensor.get_shape()) > 0 and bTensor.get_shape()[0].value == None: bTensor.set_shape(bTensorShape) bTensors.append(bTensor) fpropOp_name = opTypes.append('UNK-' + fpropOp.op_def.name) return {'opName': fpropOp_name, 'op': fpropOp, 'fpropFactors': fTensors, 'bpropFactors': bTensors} for t, param in zip(g, varlist): factors = searchFactors(t, graph) factorTensors[param] = factors ######## # check associated weights and bias for homogeneous coordinate representation # and check redundent factors # TO-DO: there may be a bug to detect associate bias and weights for # forking layer, e.g. in inception models. for param in varlist: factorTensors[param]['assnWeights'] = None factorTensors[param]['assnBias'] = None for param in varlist: if factorTensors[param]['opName'] == 'BiasAdd': factorTensors[param]['assnWeights'] = None for item in varlist: if len(factorTensors[item]['bpropFactors']) > 0: if (set(factorTensors[item]['bpropFactors']) == set(factorTensors[param]['bpropFactors'])) and (len(factorTensors[item]['fpropFactors']) > 0): factorTensors[param]['assnWeights'] = item factorTensors[item]['assnBias'] = param factorTensors[param]['bpropFactors'] = factorTensors[ item]['bpropFactors'] ######## ######## # concatenate the additive gradients along the batch dimension, i.e. # assuming independence structure for key in ['fpropFactors', 'bpropFactors']: for i, param in enumerate(varlist): if len(factorTensors[param][key]) > 0: if (key + '_concat') not in factorTensors[param]: name_scope = factorTensors[param][key][0].name.split(':')[ 0] with tf.name_scope(name_scope): factorTensors[param][ key + '_concat'] = tf.concat(factorTensors[param][key], 0) else: factorTensors[param][key + '_concat'] = None for j, param2 in enumerate(varlist[(i + 1):]): if (len(factorTensors[param][key]) > 0) and (set(factorTensors[param2][key]) == set(factorTensors[param][key])): factorTensors[param2][key] = factorTensors[param][key] factorTensors[param2][ key + '_concat'] = factorTensors[param][key + '_concat'] ######## self.factors = factorTensors return factorTensors def getStats(self, factors, varlist): if len(self.stats) == 0: # initialize stats variables on CPU because eigen decomp is # computed on CPU with tf.device('/cpu'): tmpStatsCache = {} # search for tensor factors and # use block diag approx for the bias units for var in varlist: fpropFactor = factors[var]['fpropFactors_concat'] bpropFactor = factors[var]['bpropFactors_concat'] opType = factors[var]['opName'] if opType == 'Conv2D': Kh = var.get_shape()[0] Kw = var.get_shape()[1] C = fpropFactor.get_shape()[-1] Oh = bpropFactor.get_shape()[1] Ow = bpropFactor.get_shape()[2] if Oh == 1 and Ow == 1 and self._channel_fac: # factorization along the channels do not support # homogeneous coordinate var_assnBias = factors[var]['assnBias'] if var_assnBias: factors[var]['assnBias'] = None factors[var_assnBias]['assnWeights'] = None ## for var in varlist: fpropFactor = factors[var]['fpropFactors_concat'] bpropFactor = factors[var]['bpropFactors_concat'] opType = factors[var]['opName'] self.stats[var] = {'opName': opType, 'fprop_concat_stats': [], 'bprop_concat_stats': [], 'assnWeights': factors[var]['assnWeights'], 'assnBias': factors[var]['assnBias'], } if fpropFactor is not None: if fpropFactor not in tmpStatsCache: if opType == 'Conv2D': Kh = var.get_shape()[0] Kw = var.get_shape()[1] C = fpropFactor.get_shape()[-1] Oh = bpropFactor.get_shape()[1] Ow = bpropFactor.get_shape()[2] if Oh == 1 and Ow == 1 and self._channel_fac: # factorization along the channels # assume independence between input channels and spatial # 2K-1 x 2K-1 covariance matrix and C x C covariance matrix # factorization along the channels do not # support homogeneous coordinate, assnBias # is always None fpropFactor2_size = Kh * Kw slot_fpropFactor_stats2 = tf.Variable(tf.diag(tf.ones( [fpropFactor2_size])) * self._diag_init_coeff, name='KFAC_STATS/' + fpropFactor.op.name, trainable=False) self.stats[var]['fprop_concat_stats'].append( slot_fpropFactor_stats2) fpropFactor_size = C else: # 2K-1 x 2K-1 x C x C covariance matrix # assume BHWC fpropFactor_size = Kh * Kw * C else: # D x D covariance matrix fpropFactor_size = fpropFactor.get_shape()[-1] # use homogeneous coordinate if not self._blockdiag_bias and self.stats[var]['assnBias']: fpropFactor_size += 1 slot_fpropFactor_stats = tf.Variable(tf.diag(tf.ones( [fpropFactor_size])) * self._diag_init_coeff, name='KFAC_STATS/' + fpropFactor.op.name, trainable=False) self.stats[var]['fprop_concat_stats'].append( slot_fpropFactor_stats) if opType != 'Conv2D': tmpStatsCache[fpropFactor] = self.stats[ var]['fprop_concat_stats'] else: self.stats[var][ 'fprop_concat_stats'] = tmpStatsCache[fpropFactor] if bpropFactor is not None: # no need to collect backward stats for bias vectors if # using homogeneous coordinates if not((not self._blockdiag_bias) and self.stats[var]['assnWeights']): if bpropFactor not in tmpStatsCache: slot_bpropFactor_stats = tf.Variable(tf.diag(tf.ones([bpropFactor.get_shape( )[-1]])) * self._diag_init_coeff, name='KFAC_STATS/' + bpropFactor.op.name, trainable=False) self.stats[var]['bprop_concat_stats'].append( slot_bpropFactor_stats) tmpStatsCache[bpropFactor] = self.stats[ var]['bprop_concat_stats'] else: self.stats[var][ 'bprop_concat_stats'] = tmpStatsCache[bpropFactor] return self.stats def compute_and_apply_stats(self, loss_sampled, var_list=None): varlist = var_list if varlist is None: varlist = tf.trainable_variables() stats = self.compute_stats(loss_sampled, var_list=varlist) return self.apply_stats(stats) def compute_stats(self, loss_sampled, var_list=None): varlist = var_list if varlist is None: varlist = tf.trainable_variables() gs = tf.gradients(loss_sampled, varlist, name='gradientsSampled') self.gs = gs factors = self.getFactors(gs, varlist) stats = self.getStats(factors, varlist) updateOps = [] statsUpdates = {} statsUpdates_cache = {} for var in varlist: opType = factors[var]['opName'] fops = factors[var]['op'] fpropFactor = factors[var]['fpropFactors_concat'] fpropStats_vars = stats[var]['fprop_concat_stats'] bpropFactor = factors[var]['bpropFactors_concat'] bpropStats_vars = stats[var]['bprop_concat_stats'] SVD_factors = {} for stats_var in fpropStats_vars: stats_var_dim = int(stats_var.get_shape()[0]) if stats_var not in statsUpdates_cache: old_fpropFactor = fpropFactor B = (tf.shape(fpropFactor)[0]) # batch size if opType == 'Conv2D': strides = fops.get_attr("strides") padding = fops.get_attr("padding") convkernel_size = var.get_shape()[0:3] KH = int(convkernel_size[0]) KW = int(convkernel_size[1]) C = int(convkernel_size[2]) flatten_size = int(KH * KW * C) Oh = int(bpropFactor.get_shape()[1]) Ow = int(bpropFactor.get_shape()[2]) if Oh == 1 and Ow == 1 and self._channel_fac: # factorization along the channels # assume independence among input channels # factor = B x 1 x 1 x (KH xKW x C) # patches = B x Oh x Ow x (KH xKW x C) if len(SVD_factors) == 0: # find closest rank-1 approx to the feature map S, U, V = tf.batch_svd(tf.reshape( fpropFactor, [-1, KH * KW, C])) # get rank-1 approx slides sqrtS1 = tf.expand_dims(tf.sqrt(S[:, 0, 0]), 1) patches_k = U[:, :, 0] * sqrtS1 # B x KH*KW full_factor_shape = fpropFactor.get_shape() patches_k.set_shape( [full_factor_shape[0], KH * KW]) patches_c = V[:, :, 0] * sqrtS1 # B x C patches_c.set_shape([full_factor_shape[0], C]) SVD_factors[C] = patches_c SVD_factors[KH * KW] = patches_k fpropFactor = SVD_factors[stats_var_dim] else: # poor mem usage implementation patches = tf.extract_image_patches(fpropFactor, ksizes=[1, convkernel_size[ 0], convkernel_size[1], 1], strides=strides, rates=[1, 1, 1, 1], padding=padding) if self._approxT2: # T^2 terms * 1/T^2, size: B x C fpropFactor = tf.reduce_mean(patches, [1, 2]) else: # size: (B x Oh x Ow) x C fpropFactor = tf.reshape( patches, [-1, flatten_size]) / Oh / Ow fpropFactor_size = int(fpropFactor.get_shape()[-1]) if stats_var_dim == (fpropFactor_size + 1) and not self._blockdiag_bias: if opType == 'Conv2D' and not self._approxT2: # correct padding for numerical stability (we # divided out OhxOw from activations for T1 approx) fpropFactor = tf.concat([fpropFactor, tf.ones( [tf.shape(fpropFactor)[0], 1]) / Oh / Ow], 1) else: # use homogeneous coordinates fpropFactor = tf.concat( [fpropFactor, tf.ones([tf.shape(fpropFactor)[0], 1])], 1) # average over the number of data points in a batch # divided by B cov = tf.matmul(fpropFactor, fpropFactor, transpose_a=True) / tf.cast(B, tf.float32) updateOps.append(cov) statsUpdates[stats_var] = cov if opType != 'Conv2D': # HACK: for convolution we recompute fprop stats for # every layer including forking layers statsUpdates_cache[stats_var] = cov for stats_var in bpropStats_vars: stats_var_dim = int(stats_var.get_shape()[0]) if stats_var not in statsUpdates_cache: old_bpropFactor = bpropFactor bpropFactor_shape = bpropFactor.get_shape() B = tf.shape(bpropFactor)[0] # batch size C = int(bpropFactor_shape[-1]) # num channels if opType == 'Conv2D' or len(bpropFactor_shape) == 4: if fpropFactor is not None: if self._approxT2: bpropFactor = tf.reduce_sum( bpropFactor, [1, 2]) # T^2 terms * 1/T^2 else: bpropFactor = tf.reshape( bpropFactor, [-1, C]) * Oh * Ow # T * 1/T terms else: # just doing block diag approx. spatial independent # structure does not apply here. summing over # spatial locations bpropFactor = tf.reduce_sum(bpropFactor, [1, 2]) # assume sampled loss is averaged. TO-DO:figure out better # way to handle this bpropFactor *= tf.to_float(B) ## cov_b = tf.matmul( bpropFactor, bpropFactor, transpose_a=True) / tf.to_float(tf.shape(bpropFactor)[0]) updateOps.append(cov_b) statsUpdates[stats_var] = cov_b statsUpdates_cache[stats_var] = cov_b self.statsUpdates = statsUpdates return statsUpdates def apply_stats(self, statsUpdates): """ compute stats and update/apply the new stats to the running average """ def updateAccumStats(): if self._full_stats_init: return tf.cond(tf.greater(self.sgd_step, self._cold_iter), lambda: tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter)), tf.no_op) else: return tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter)) def updateRunningAvgStats(statsUpdates, fac_iter=1): # return tf.cond(tf.greater_equal(self.factor_step, # tf.convert_to_tensor(fac_iter)), lambda: # tf.group(*self._apply_stats(stats_list, varlist)), tf.no_op) return tf.group(*self._apply_stats(statsUpdates)) if self._async_stats: # asynchronous stats update update_stats = self._apply_stats(statsUpdates) queue = tf.FIFOQueue(1, [item.dtype for item in update_stats], shapes=[ item.get_shape() for item in update_stats]) enqueue_op = queue.enqueue(update_stats) def dequeue_stats_op(): return queue.dequeue() self.qr_stats = tf.train.QueueRunner(queue, [enqueue_op]) update_stats_op = tf.cond(tf.equal(queue.size(), tf.convert_to_tensor( 0)), tf.no_op, lambda: tf.group(*[dequeue_stats_op(), ])) else: # synchronous stats update update_stats_op = tf.cond(tf.greater_equal( self.stats_step, self._stats_accum_iter), lambda: updateRunningAvgStats(statsUpdates), updateAccumStats) self._update_stats_op = update_stats_op return update_stats_op def _apply_stats(self, statsUpdates, accumulate=False, accumulateCoeff=0.): updateOps = [] # obtain the stats var list for stats_var in statsUpdates: stats_new = statsUpdates[stats_var] if accumulate: # simple superbatch averaging update_op = tf.assign_add( stats_var, accumulateCoeff * stats_new, use_locking=True) else: # exponential running averaging update_op = tf.assign( stats_var, stats_var * self._stats_decay, use_locking=True) update_op = tf.assign_add( update_op, (1. - self._stats_decay) * stats_new, use_locking=True) updateOps.append(update_op) with tf.control_dependencies(updateOps): stats_step_op = tf.assign_add(self.stats_step, 1) return [stats_step_op, ] def getStatsEigen(self, stats=None): if len(self.stats_eigen) == 0: stats_eigen = {} if stats is None: stats = self.stats tmpEigenCache = {} with tf.device('/cpu:0'): for var in stats: for key in ['fprop_concat_stats', 'bprop_concat_stats']: for stats_var in stats[var][key]: if stats_var not in tmpEigenCache: stats_dim = stats_var.get_shape()[1].value e = tf.Variable(tf.ones( [stats_dim]), name='KFAC_FAC/' + stats_var.name.split(':')[0] + '/e', trainable=False) Q = tf.Variable(tf.diag(tf.ones( [stats_dim])), name='KFAC_FAC/' + stats_var.name.split(':')[0] + '/Q', trainable=False) stats_eigen[stats_var] = {'e': e, 'Q': Q} tmpEigenCache[ stats_var] = stats_eigen[stats_var] else: stats_eigen[stats_var] = tmpEigenCache[ stats_var] self.stats_eigen = stats_eigen return self.stats_eigen def computeStatsEigen(self): """ compute the eigen decomp using copied var stats to avoid concurrent read/write from other queue """ # TO-DO: figure out why this op has delays (possibly moving # eigenvectors around?) with tf.device('/cpu:0'): def removeNone(tensor_list): local_list = [] for item in tensor_list: if item is not None: local_list.append(item) return local_list def copyStats(var_list): print("copying stats to buffer tensors before eigen decomp") redundant_stats = {} copied_list = [] for item in var_list: if item is not None: if item not in redundant_stats: if self._use_float64: redundant_stats[item] = tf.cast( tf.identity(item), tf.float64) else: redundant_stats[item] = tf.identity(item) copied_list.append(redundant_stats[item]) else: copied_list.append(None) return copied_list #stats = [copyStats(self.fStats), copyStats(self.bStats)] #stats = [self.fStats, self.bStats] stats_eigen = self.stats_eigen computedEigen = {} eigen_reverse_lookup = {} updateOps = [] # sync copied stats # with tf.control_dependencies(removeNone(stats[0]) + # removeNone(stats[1])): with tf.control_dependencies([]): for stats_var in stats_eigen: if stats_var not in computedEigen: eigens = tf.self_adjoint_eig(stats_var) e = eigens[0] Q = eigens[1] if self._use_float64: e = tf.cast(e, tf.float32) Q = tf.cast(Q, tf.float32) updateOps.append(e) updateOps.append(Q) computedEigen[stats_var] = {'e': e, 'Q': Q} eigen_reverse_lookup[e] = stats_eigen[stats_var]['e'] eigen_reverse_lookup[Q] = stats_eigen[stats_var]['Q'] self.eigen_reverse_lookup = eigen_reverse_lookup self.eigen_update_list = updateOps return updateOps def applyStatsEigen(self, eigen_list): updateOps = [] print(('updating %d eigenvalue/vectors' % len(eigen_list))) for i, (tensor, mark) in enumerate(zip(eigen_list, self.eigen_update_list)): stats_eigen_var = self.eigen_reverse_lookup[mark] updateOps.append( tf.assign(stats_eigen_var, tensor, use_locking=True)) with tf.control_dependencies(updateOps): factor_step_op = tf.assign_add(self.factor_step, 1) updateOps.append(factor_step_op) return updateOps def getKfacPrecondUpdates(self, gradlist, varlist): updatelist = [] vg = 0. assert len(self.stats) > 0 assert len(self.stats_eigen) > 0 assert len(self.factors) > 0 counter = 0 grad_dict = {var: grad for grad, var in zip(gradlist, varlist)} for grad, var in zip(gradlist, varlist): GRAD_RESHAPE = False GRAD_TRANSPOSE = False fpropFactoredFishers = self.stats[var]['fprop_concat_stats'] bpropFactoredFishers = self.stats[var]['bprop_concat_stats'] if (len(fpropFactoredFishers) + len(bpropFactoredFishers)) > 0: counter += 1 GRAD_SHAPE = grad.get_shape() if len(grad.get_shape()) > 2: # reshape conv kernel parameters KW = int(grad.get_shape()[0]) KH = int(grad.get_shape()[1]) C = int(grad.get_shape()[2]) D = int(grad.get_shape()[3]) if len(fpropFactoredFishers) > 1 and self._channel_fac: # reshape conv kernel parameters into tensor grad = tf.reshape(grad, [KW * KH, C, D]) else: # reshape conv kernel parameters into 2D grad grad = tf.reshape(grad, [-1, D]) GRAD_RESHAPE = True elif len(grad.get_shape()) == 1: # reshape bias or 1D parameters D = int(grad.get_shape()[0]) grad = tf.expand_dims(grad, 0) GRAD_RESHAPE = True else: # 2D parameters C = int(grad.get_shape()[0]) D = int(grad.get_shape()[1]) if (self.stats[var]['assnBias'] is not None) and not self._blockdiag_bias: # use homogeneous coordinates only works for 2D grad. # TO-DO: figure out how to factorize bias grad # stack bias grad var_assnBias = self.stats[var]['assnBias'] grad = tf.concat( [grad, tf.expand_dims(grad_dict[var_assnBias], 0)], 0) # project gradient to eigen space and reshape the eigenvalues # for broadcasting eigVals = [] for idx, stats in enumerate(self.stats[var]['fprop_concat_stats']): Q = self.stats_eigen[stats]['Q'] e = detectMinVal(self.stats_eigen[stats][ 'e'], var, name='act', debug=False) Q, e = factorReshape(Q, e, grad, facIndx=idx, ftype='act') eigVals.append(e) grad = gmatmul(Q, grad, transpose_a=True, reduce_dim=idx) for idx, stats in enumerate(self.stats[var]['bprop_concat_stats']): Q = self.stats_eigen[stats]['Q'] e = detectMinVal(self.stats_eigen[stats][ 'e'], var, name='grad', debug=False) Q, e = factorReshape(Q, e, grad, facIndx=idx, ftype='grad') eigVals.append(e) grad = gmatmul(grad, Q, transpose_b=False, reduce_dim=idx) ## ##### # whiten using eigenvalues weightDecayCoeff = 0. if var in self._weight_decay_dict: weightDecayCoeff = self._weight_decay_dict[var] if self._factored_damping: coeffs = 1. num_factors = len(eigVals) # compute the ratio of two trace norm of the left and right # KFac matrices, and their generalization if len(eigVals) == 1: damping = self._epsilon + weightDecayCoeff else: damping = tf.pow( self._epsilon + weightDecayCoeff, 1. / num_factors) eigVals_tnorm_avg = [tf.reduce_mean( tf.abs(e)) for e in eigVals] for e, e_tnorm in zip(eigVals, eigVals_tnorm_avg): eig_tnorm_negList = [ item for item in eigVals_tnorm_avg if item != e_tnorm] if len(eigVals) == 1: adjustment = 1. elif len(eigVals) == 2: adjustment = tf.sqrt( e_tnorm / eig_tnorm_negList[0]) else: eig_tnorm_negList_prod = reduce( lambda x, y: x * y, eig_tnorm_negList) adjustment = tf.pow( tf.pow(e_tnorm, num_factors - 1.) / eig_tnorm_negList_prod, 1. / num_factors) coeffs *= (e + adjustment * damping) else: coeffs = 1. damping = (self._epsilon + weightDecayCoeff) for e in eigVals: coeffs *= e coeffs += damping #grad = tf.Print(grad, [tf.convert_to_tensor('1'), tf.convert_to_tensor(var.name), grad.get_shape()]) grad /= coeffs #grad = tf.Print(grad, [tf.convert_to_tensor('2'), tf.convert_to_tensor(var.name), grad.get_shape()]) ##### # project gradient back to euclidean space for idx, stats in enumerate(self.stats[var]['fprop_concat_stats']): Q = self.stats_eigen[stats]['Q'] grad = gmatmul(Q, grad, transpose_a=False, reduce_dim=idx) for idx, stats in enumerate(self.stats[var]['bprop_concat_stats']): Q = self.stats_eigen[stats]['Q'] grad = gmatmul(grad, Q, transpose_b=True, reduce_dim=idx) ## #grad = tf.Print(grad, [tf.convert_to_tensor('3'), tf.convert_to_tensor(var.name), grad.get_shape()]) if (self.stats[var]['assnBias'] is not None) and not self._blockdiag_bias: # use homogeneous coordinates only works for 2D grad. # TO-DO: figure out how to factorize bias grad # un-stack bias grad var_assnBias = self.stats[var]['assnBias'] C_plus_one = int(grad.get_shape()[0]) grad_assnBias = tf.reshape(tf.slice(grad, begin=[ C_plus_one - 1, 0], size=[1, -1]), var_assnBias.get_shape()) grad_assnWeights = tf.slice(grad, begin=[0, 0], size=[C_plus_one - 1, -1]) grad_dict[var_assnBias] = grad_assnBias grad = grad_assnWeights #grad = tf.Print(grad, [tf.convert_to_tensor('4'), tf.convert_to_tensor(var.name), grad.get_shape()]) if GRAD_RESHAPE: grad = tf.reshape(grad, GRAD_SHAPE) grad_dict[var] = grad print(('projecting %d gradient matrices' % counter)) for g, var in zip(gradlist, varlist): grad = grad_dict[var] ### clipping ### tf.Print(grad, [tf.sqrt(tf.reduce_sum(tf.pow(grad, 2)))], "Euclidean norm of new grad") local_vg = tf.reduce_sum(grad * g * (self._lr * self._lr)) vg += local_vg # rescale everything scaling = tf.minimum(1., tf.sqrt(self._clip_kl / vg)) with tf.control_dependencies([tf.assign(self.vFv, vg)]): updatelist = [grad_dict[var] for var in varlist] for i, item in enumerate(updatelist): updatelist[i] = scaling * item return updatelist def compute_gradients(self, loss, var_list=None): varlist = var_list if varlist is None: varlist = tf.trainable_variables() g = tf.gradients(loss, varlist) return [(a, b) for a, b in zip(g, varlist)] def apply_gradients_kfac(self, grads): g, varlist = list(zip(*grads)) if len(self.stats_eigen) == 0: self.getStatsEigen() qr = None # launch eigen-decomp on a queue thread if self._async: print('Use async eigen decomp') # get a list of factor loading tensors factorOps_dummy = self.computeStatsEigen() # define a queue for the list of factor loading tensors queue = tf.FIFOQueue(1, [item.dtype for item in factorOps_dummy], shapes=[ item.get_shape() for item in factorOps_dummy]) enqueue_op = tf.cond(tf.logical_and(tf.equal(tf.mod(self.stats_step, self._kfac_update), tf.convert_to_tensor( 0)), tf.greater_equal(self.stats_step, self._stats_accum_iter)), lambda: queue.enqueue(self.computeStatsEigen()), tf.no_op) def dequeue_op(): return queue.dequeue() qr = tf.train.QueueRunner(queue, [enqueue_op]) updateOps = [] global_step_op = tf.assign_add(self.global_step, 1) updateOps.append(global_step_op) with tf.control_dependencies([global_step_op]): # compute updates assert self._update_stats_op != None updateOps.append(self._update_stats_op) dependency_list = [] if not self._async: dependency_list.append(self._update_stats_op) with tf.control_dependencies(dependency_list): def no_op_wrapper(): return tf.group(*[tf.assign_add(self.cold_step, 1)]) if not self._async: # synchronous eigen-decomp updates updateFactorOps = tf.cond(tf.logical_and(tf.equal(tf.mod(self.stats_step, self._kfac_update), tf.convert_to_tensor(0)), tf.greater_equal(self.stats_step, self._stats_accum_iter)), lambda: tf.group(*self.applyStatsEigen(self.computeStatsEigen())), no_op_wrapper) else: # asynchronous eigen-decomp updates using queue updateFactorOps = tf.cond(tf.greater_equal(self.stats_step, self._stats_accum_iter), lambda: tf.cond(tf.equal(queue.size(), tf.convert_to_tensor(0)), tf.no_op, lambda: tf.group( *self.applyStatsEigen(dequeue_op())), ), no_op_wrapper) updateOps.append(updateFactorOps) with tf.control_dependencies([updateFactorOps]): def gradOp(): return list(g) def getKfacGradOp(): return self.getKfacPrecondUpdates(g, varlist) u = tf.cond(tf.greater(self.factor_step, tf.convert_to_tensor(0)), getKfacGradOp, gradOp) optim = tf.train.MomentumOptimizer( self._lr * (1. - self._momentum), self._momentum) #optim = tf.train.AdamOptimizer(self._lr, epsilon=0.01) def optimOp(): def updateOptimOp(): if self._full_stats_init: return tf.cond(tf.greater(self.factor_step, tf.convert_to_tensor(0)), lambda: optim.apply_gradients(list(zip(u, varlist))), tf.no_op) else: return optim.apply_gradients(list(zip(u, varlist))) if self._full_stats_init: return tf.cond(tf.greater_equal(self.stats_step, self._stats_accum_iter), updateOptimOp, tf.no_op) else: return tf.cond(tf.greater_equal(self.sgd_step, self._cold_iter), updateOptimOp, tf.no_op) updateOps.append(optimOp()) return tf.group(*updateOps), qr def apply_gradients(self, grads): coldOptim = tf.train.MomentumOptimizer( self._cold_lr, self._momentum) def coldSGDstart(): sgd_grads, sgd_var = zip(*grads) if self.max_grad_norm != None: sgd_grads, sgd_grad_norm = tf.clip_by_global_norm(sgd_grads,self.max_grad_norm) sgd_grads = list(zip(sgd_grads,sgd_var)) sgd_step_op = tf.assign_add(self.sgd_step, 1) coldOptim_op = coldOptim.apply_gradients(sgd_grads) return tf.group(*[sgd_step_op, coldOptim_op]) kfacOptim_op, qr = self.apply_gradients_kfac(grads) def warmKFACstart(): return kfacOptim_op return tf.cond(tf.greater(self.sgd_step, self._cold_iter), warmKFACstart, coldSGDstart), qr def minimize_(self, loss, loss_sampled, var_list=None): grads = self.compute_gradients(loss, var_list=var_list) update_stats_op = self.compute_and_apply_stats( loss_sampled, var_list=var_list) return self.apply_gradients(grads) def tf_step(self, time, variables, **kwargs): """ Creates the TensorFlow operations for performing an optimization step on the given variables, including actually changing the values of the variables. Args: time: Time tensor. Not used for this optimizer. variables: List of variables to optimize. **kwargs: fn_loss : loss function tensor to differentiate. Returns: List of delta tensors corresponding to the updates for each optimized variable. """ fn_loss = kwargs["fn_loss"] if variables is None: variables = tf.trainable_variables return tf.gradients(fn_loss, variables) def apply_step(self, variables, deltas, loss_sampled): """ Applies the given (and already calculated) step deltas to the variable values. Args: variables: List of variables. deltas: List of deltas of same length. loss_sampled : the sampled loss Returns: The step-applied operation. A tf.group of tf.assign_add ops. """ update_stats_op = self.compute_and_apply_stats( loss_sampled, var_list=var_list) grads = [(a, b) for a, b in zip(deltas, varlist)] kfacOptim, _ = self.apply_gradients_kfac(grads) return kfacOptim def minimize(self, time, variables, **kwargs): """ Performs an optimization step. Args: time: Time tensor. Not used for this variables: List of variables to optimize. **kwargs: fn_loss : loss function tensor that is differentiated sampled_loss : the sampled loss from running the model. Returns: The optimization operation. """ loss = kwargs["fn_loss"] sampled_loss = kwargs["sampled_loss"] min_op, _ = self.minimize_(loss, sampled_loss, var_list=variables) return min_op
[]
2024-01-10
chenghuige/tensorforce
tensorforce~core~optimizers~kfac_utils.py
# Copyright 2018 reinforce.io. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== #code refractored from openai/baselines import tensorflow as tf def gmatmul(a, b, transpose_a=False, transpose_b=False, reduce_dim=None): assert reduce_dim is not None # weird batch matmul if len(a.get_shape()) == 2 and len(b.get_shape()) > 2: # reshape reduce_dim to the left most dim in b b_shape = b.get_shape() if reduce_dim != 0: b_dims = list(range(len(b_shape))) b_dims.remove(reduce_dim) b_dims.insert(0, reduce_dim) b = tf.transpose(b, b_dims) b_t_shape = b.get_shape() b = tf.reshape(b, [int(b_shape[reduce_dim]), -1]) result = tf.matmul(a, b, transpose_a=transpose_a, transpose_b=transpose_b) result = tf.reshape(result, b_t_shape) if reduce_dim != 0: b_dims = list(range(len(b_shape))) b_dims.remove(0) b_dims.insert(reduce_dim, 0) result = tf.transpose(result, b_dims) return result elif len(a.get_shape()) > 2 and len(b.get_shape()) == 2: # reshape reduce_dim to the right most dim in a a_shape = a.get_shape() outter_dim = len(a_shape) - 1 reduce_dim = len(a_shape) - reduce_dim - 1 if reduce_dim != outter_dim: a_dims = list(range(len(a_shape))) a_dims.remove(reduce_dim) a_dims.insert(outter_dim, reduce_dim) a = tf.transpose(a, a_dims) a_t_shape = a.get_shape() a = tf.reshape(a, [-1, int(a_shape[reduce_dim])]) result = tf.matmul(a, b, transpose_a=transpose_a, transpose_b=transpose_b) result = tf.reshape(result, a_t_shape) if reduce_dim != outter_dim: a_dims = list(range(len(a_shape))) a_dims.remove(outter_dim) a_dims.insert(reduce_dim, outter_dim) result = tf.transpose(result, a_dims) return result elif len(a.get_shape()) == 2 and len(b.get_shape()) == 2: return tf.matmul(a, b, transpose_a=transpose_a, transpose_b=transpose_b) assert False, 'something went wrong' def clipoutNeg(vec, threshold=1e-6): mask = tf.cast(vec > threshold, tf.float32) return mask * vec def detectMinVal(input_mat, var, threshold=1e-6, name='', debug=False): eigen_min = tf.reduce_min(input_mat) eigen_max = tf.reduce_max(input_mat) eigen_ratio = eigen_max / eigen_min input_mat_clipped = clipoutNeg(input_mat, threshold) if debug: input_mat_clipped = tf.cond(tf.logical_or(tf.greater(eigen_ratio, 0.), tf.less(eigen_ratio, -500)), lambda: input_mat_clipped, lambda: tf.Print( input_mat_clipped, [tf.convert_to_tensor('screwed ratio ' + name + ' eigen values!!!'), tf.convert_to_tensor(var.name), eigen_min, eigen_max, eigen_ratio])) return input_mat_clipped def factorReshape(Q, e, grad, facIndx=0, ftype='act'): grad_shape = grad.get_shape() if ftype == 'act': assert e.get_shape()[0] == grad_shape[facIndx] expanded_shape = [1, ] * len(grad_shape) expanded_shape[facIndx] = -1 e = tf.reshape(e, expanded_shape) if ftype == 'grad': assert e.get_shape()[0] == grad_shape[len(grad_shape) - facIndx - 1] expanded_shape = [1, ] * len(grad_shape) expanded_shape[len(grad_shape) - facIndx - 1] = -1 e = tf.reshape(e, expanded_shape) return Q, e
[]
2024-01-10
jannawro/AIfred
aifred~chains~router.py
from langchain_community.chat_models.openai import ChatOpenAI from langchain_core.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnableLambda, RunnablePassthrough from chains.action import fake_action_chain from chains.query import fake_query_chain from chains.general import general_chain categorizer_chain = ( {"user_input": RunnablePassthrough()} | ChatPromptTemplate.from_messages( [ SystemMessagePromptTemplate.from_template_file( template_file="./sys_input_categorizer.yaml", input_variables=[] ), HumanMessagePromptTemplate.from_template("{user_input}"), ] ) | ChatOpenAI( model="gpt-3.5-turbo", temperature=0.0, max_tokens=1, ) | StrOutputParser() ) def category_router(x): if "action" in x["category"].lower(): return fake_action_chain elif "query" in x["category"].lower(): return fake_query_chain else: return general_chain.with_config(configurable={"memory": x["memory"]}) router_chain = ( { "user_input": RunnablePassthrough(), "date": RunnablePassthrough(), "memory": RunnablePassthrough(), "long_term_memory": RunnablePassthrough(), "category": categorizer_chain, } | RunnableLambda(category_router) | StrOutputParser() )
[ "{user_input}", "./sys_input_categorizer.yaml" ]
2024-01-10
jannawro/AIfred
tools~compare_documents.py
import sys from langchain_community.embeddings.openai import OpenAIEmbeddings import json import numpy as np from numpy.linalg import norm from typing import List def cosine_similarity(a: List[float], b: List[float]) -> float: return np.dot(a, b) / (norm(a) * norm(b)) """ required environment variables: OPENAI_API_KEY the scripts expects to be given filepaths to documents as args document structure(should be a json file): { "content": "...", "key": "..." // a memory key from memory schema } """ def main(): vectors = [] for arg in sys.argv[1:]: print("opening ", arg) with open(arg) as json_data: document = json.load(json_data) vectors.append(OpenAIEmbeddings().embed_query(document["content"])) print( "Cosine similarity for these documents: ", cosine_similarity(vectors[0], vectors[1]), ) if __name__ == "__main__": main()
[]
2024-01-10
jannawro/AIfred
aifred~chains~memory.py
from typing import List from langchain.chat_models.openai import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.schema import StrOutputParser from langchain.output_parsers import PydanticOutputParser from langchain.schema.runnable import RunnablePassthrough from langchain_core.pydantic_v1 import BaseModel class MemoryCategory(BaseModel): key: str class MemoryCategories(BaseModel): categories: List[MemoryCategory] input_to_memory_category_list = ( { "user_input": RunnablePassthrough(), "date": RunnablePassthrough(), "memory_schema": RunnablePassthrough(), } | ChatPromptTemplate.from_messages( [ SystemMessagePromptTemplate.from_template_file( template_file="./prompts/sys_input_to_memory_categories.yaml", input_variables=["date", "memory_schema"], ), HumanMessagePromptTemplate.from_template("{user_input}"), ] ) | ChatOpenAI(model="gpt-4", temperature=0.05, max_tokens=256) | PydanticOutputParser(pydantic_object=MemoryCategories) ) input_to_memory_category = ( { "user_input": RunnablePassthrough(), "date": RunnablePassthrough(), "memory_schema": RunnablePassthrough(), } | ChatPromptTemplate.from_messages( [ SystemMessagePromptTemplate.from_template_file( template_file="./prompts/sys_input_to_memory_category.yaml", input_variables=["date", "memory_schema"], ), HumanMessagePromptTemplate.from_template("{user_input}"), ] ) | ChatOpenAI(model="gpt-4", temperature=0.05, max_tokens=15) | PydanticOutputParser(pydantic_object=MemoryCategory) ) memory_synthesizer = ( {"old_memory": RunnablePassthrough(), "new_memory": RunnablePassthrough()} | ChatPromptTemplate.from_messages( [ HumanMessagePromptTemplate.from_template_file( template_file="./prompts/user_memory_synthesizer.yaml", input_variables=["old_memory", "new_memory"], ) ] ) | ChatOpenAI(model="gpt-3.5-turbo", temperature=0, max_tokens=256) | StrOutputParser() )
[ "./prompts/user_memory_synthesizer.yaml", "./prompts/sys_input_to_memory_category.yaml", "new_memory", "memory_schema", "{user_input}", "./prompts/sys_input_to_memory_categories.yaml", "old_memory" ]
2024-01-10
jannawro/AIfred
tools~add_documents.py
from datetime import datetime import os import sys import json from uuid import uuid4 from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.vectorstores.qdrant import Qdrant from qdrant_client import QdrantClient """ required environment variables: QDRANT_URL OPENAI_API_KEY the scripts expects to be given filepaths to documents as args document structure(should be a json file): { "content": "...", "key": "..." // a memory key from memory schema } """ def main(): documents = [] client = QdrantClient(url=os.getenv("QDRANT_URL")) doc_store = Qdrant( client=client, collection_name="documents", embeddings=OpenAIEmbeddings() ) date = datetime.now().strftime("%d/%m/%Y") + " (DD/MM/YYYY)" for arg in sys.argv[1:]: with open(arg) as json_data: data = json.load(json_data) documents.append( { "content": data["content"], "metadata": { "key": data["key"], "last_updated": date, "uuid": str(uuid4()), }, } ) doc_store.add_texts( texts=[document["content"] for document in documents], metadatas=[document["metadata"] for document in documents], ids=[document["metadata"]["uuid"] for document in documents], ) if __name__ == "__main__": main()
[ "content" ]
2024-01-10
jannawro/AIfred
aifred~chains~general.py
from langchain_community.chat_models.openai import ChatOpenAI from langchain_core.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import ConfigurableField, RunnablePassthrough general_chain = ( { "user_input": RunnablePassthrough(), "long_term_memory": RunnablePassthrough(), "date": RunnablePassthrough(), } | ChatPromptTemplate.from_messages( [ SystemMessagePromptTemplate.from_template_file( template_file="./prompts/sys_general_chain.yaml", input_variables=["date", "long_term_memory"], ), MessagesPlaceholder(variable_name="recent_messages"), HumanMessagePromptTemplate.from_template("{user_input}"), ] ) | ChatOpenAI(model="gpt-4").configurable_fields( memory=ConfigurableField( id="memory", ) ) | StrOutputParser() )
[ "long_term_memory", "recent_messages", "./prompts/sys_general_chain.yaml", "{user_input}" ]
2024-01-10
jannawro/AIfred
aifred~chains~action.py
from langchain_core.prompts.prompt import PromptTemplate from langchain_community.chat_models.fake import FakeListChatModel from langchain_core.output_parsers import StrOutputParser fake_action_chain = ( PromptTemplate.from_template("Stub") | FakeListChatModel(responses=["Action chain isn't implemented yet."]) | StrOutputParser() )
[ "Stub" ]
2024-01-10
jannawro/AIfred
aifred~chains~format.py
from langchain_community.chat_models.openai import ChatOpenAI from langchain_core.prompts.chat import ( AIMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import ConfigurableField, RunnablePassthrough action_succeeded_format_chain = ( { "user_input": RunnablePassthrough(), "long_term_memories": RunnablePassthrough() } | ChatPromptTemplate.from_messages( [ HumanMessagePromptTemplate.from_template_file( template_file="./prompts/user_aifred_action_succesful_format.yaml", input_variables=["user_input", "long_term_memories"], ), ] ) | ChatOpenAI(model="gpt-3.5-turbo").configurable_fields( memory=ConfigurableField( id="memory", ) ) | StrOutputParser() ) action_failed_format_chain = ( { "user_input": RunnablePassthrough(), "long_term_memories": RunnablePassthrough(), "action_output": RunnablePassthrough() } | ChatPromptTemplate.from_messages( [ HumanMessagePromptTemplate.from_template_file( template_file="./prompts/user_aifred_action_succesful_format.yaml", input_variables=["user_input", "long_term_memories", "action_output"], ), ] ) | ChatOpenAI(model="gpt-3.5-turbo").configurable_fields( memory=ConfigurableField( id="memory", ) ) | StrOutputParser() ) query_format_chain = ( { "user_input": RunnablePassthrough(), "long_term_memories": RunnablePassthrough(), "query_result": RunnablePassthrough(), } | ChatPromptTemplate.from_messages( [ SystemMessagePromptTemplate.from_template_file( template_file="./prompts/sys_aifred_query_format.yaml", input_variables=["user_input", "long_term_memories", "query_result"], ), MessagesPlaceholder(variable_name="recent_messages"), HumanMessagePromptTemplate.from_template("{user_input}"), AIMessagePromptTemplate.from_template("Query result:\n{query_result}") ] ) | ChatOpenAI(model="gpt-4").configurable_fields( memory=ConfigurableField( id="memory", ) ) | StrOutputParser() )
[ "action_output", "query_result", "./prompts/user_aifred_action_succesful_format.yaml", "{user_input}", "user_input", "Query result:\n{query_result}", "recent_messages", "./prompts/sys_aifred_query_format.yaml", "long_term_memories" ]
2024-01-10
codefellows/seattle-code-python-401n8
class-19.5~in-class-demo~chatgpt~summarizer.py
import os from dotenv import load_dotenv from openai import OpenAI # load .env load_dotenv(".env") # set globals OPEN_API_KEY = os.getenv("OPENAI_API_KEY") OPENAI_MODEL = "gpt-3.5-turbo" def article_summary(article): client = OpenAI( api_key=OPEN_API_KEY, ) chat_completion = client.chat.completions.create( messages=[ { "role": "system", "content": "You are a news reporter." }, { "role": "user", "content": f"""Please summarize this article in 4 sentences: ```text {article} ```""", } ], model=OPENAI_MODEL, ) return chat_completion.choices[0].message.content
[ "Please summarize this article in 4 sentences:\n\n```text\nPLACEHOLDER\n```", "You are a news reporter." ]
2024-01-10
lxwlaq/gem5
configs~example~gem5_library~riscv-ubuntu-run.py
# Copyright (c) 2021 The Regents of the University of California # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ This script shows an example of running a full system RISCV Ubuntu boot simulation using the gem5 library. This simulation boots Ubuntu 20.04 using 2 TIMING CPU cores. The simulation ends when the startup is completed successfully. Usage ----- ``` scons build/RISCV/gem5.opt ./build/RISCV/gem5.opt \ configs/example/gem5_library/riscv-ubuntu-run.py ``` """ import m5 from m5.objects import Root from gem5.utils.requires import requires from gem5.components.boards.riscv_board import RiscvBoard from gem5.components.memory import DualChannelDDR4_2400 from gem5.components.processors.simple_processor import ( SimpleProcessor, ) from gem5.components.processors.cpu_types import CPUTypes from gem5.isas import ISA from gem5.coherence_protocol import CoherenceProtocol from gem5.resources.resource import Resource # This runs a check to ensure the gem5 binary is compiled for RISCV. requires( isa_required=ISA.RISCV, ) # With RISCV, we use simple caches. from gem5.components.cachehierarchies.classic\ .private_l1_private_l2_cache_hierarchy import ( PrivateL1PrivateL2CacheHierarchy, ) # Here we setup the parameters of the l1 and l2 caches. cache_hierarchy = PrivateL1PrivateL2CacheHierarchy( l1d_size="16kB", l1i_size="16kB", l2_size="256kB", ) # Memory: Dual Channel DDR4 2400 DRAM device. memory = DualChannelDDR4_2400(size = "3GB") # Here we setup the processor. We use a simple processor. processor = SimpleProcessor( cpu_type=CPUTypes.TIMING, num_cores=2, ) # Here we setup the board. The RiscvBoard allows for Full-System RISCV # simulations. board = RiscvBoard( clk_freq="3GHz", processor=processor, memory=memory, cache_hierarchy=cache_hierarchy, ) # Here we set the Full System workload. # The `set_kernel_disk_workload` function for the RiscvBoard accepts a # RISCV bootloader and a disk image. Once the system successfully boots, it # encounters an `m5_exit instruction encountered`. We stop the simulation then. # When the simulation has ended you may inspect `m5out/system.pc.com_1.device` # to see the stdout. board.set_kernel_disk_workload( # The RISCV bootloader will be automatically downloaded to the # `~/.cache/gem5` directory if not already present. # The riscv-ubuntu boot-test was tested with riscv-bootloader-5.10 kernel=Resource( "riscv-bootloader-vmlinux-5.10", ), # The RISCV ubuntu image will be automatically downloaded to the # `~/.cache/gem5` directory if not already present. disk_image=Resource( "riscv-ubuntu-20.04-img", ), ) root = Root(full_system=True, system=board) m5.instantiate() # We simulate the system till we encounter `m5_exit instruction encountered`. exit_event = m5.simulate() # We check whether the simulation ended with `m5_exit instruction encountered` if exit_event.getCause() == "m5_exit instruction encountered": # We acknowledge the user that the boot was successful. print("Successfully completed booting!") else: # `m5_exit instruction encountered` was never encountered. We exit the # program unsuccessfully. print("The startup was not completed successfully!",) print( "Exiting @ tick {} because {}."\ .format(m5.curTick(), exit_event.getCause()) ) exit(-1) # We are done with the simulation. We exit the program now. print( "Exiting @ tick {} because {}."\ .format(m5.curTick(), exit_event.getCause()) )
[]
2024-01-10
chienhung1519/streamlit-chatgpt
Doctor.py
import openai import streamlit as st from streamlit_chat import message import os # Setting page title and header st.set_page_config(page_title="AVA", page_icon=":robot_face:") st.markdown("<h1 style='text-align: center;'>Doctor ChatGPT</h1>", unsafe_allow_html=True) # Set org ID and API key # openai.organization = "<YOUR_OPENAI_ORG_ID>" openai.api_key = os.environ.get("OPENAI_API_KEY") # Set language language = st.sidebar.radio("Choose a language:", ("English", "Chinese")) lang_prompt = "Response in English." if language == "English" else "่ซ‹็”จ็น้ซ”ไธญๆ–‡ๅ›ž่ฆ†ใ€‚" # Initialise session state variables if 'generated' not in st.session_state: st.session_state['generated'] = [] if 'past' not in st.session_state: st.session_state['past'] = [] if 'messages' not in st.session_state: st.session_state['messages'] = [ {"role": "system", f"content": "Please play the role of a empathetic and kind psychiatrist. Your task is to conduct a professional diagnosis conversation with me based on the DSM-5 criteria, but using your own language. Please only ask one question at a time. You need to ask in-depth questions, such as the duration, causes and specific manifestations of some symptoms. You need to use various empathetic strategies, such as understanding, support and encouragement to give me a more comfortable experience."}, {"role": "system", f"content": lang_prompt} ] # if 'model_name' not in st.session_state: # st.session_state['model_name'] = [] # if 'cost' not in st.session_state: # st.session_state['cost'] = [] # if 'total_tokens' not in st.session_state: # st.session_state['total_tokens'] = [] # if 'total_cost' not in st.session_state: # st.session_state['total_cost'] = 0.0 if 'page' not in st.session_state: st.session_state['page'] = "" # Set page if st.session_state['page'] == "": st.session_state['page'] = "doctor" if st.session_state['page'] == "patient": st.session_state['generated'] = [] st.session_state['past'] = [] st.session_state['messages'] = [ {"role": "system", f"content": "Please play the role of a empathetic and kind psychiatrist. Your task is to conduct a professional diagnosis conversation with me based on the DSM-5 criteria, but using your own language. Please only ask one question at a time. You need to ask in-depth questions, such as the duration, causes and specific manifestations of some symptoms. You need to use various empathetic strategies, such as understanding, support and encouragement to give me a more comfortable experience."}, {"role": "system", f"content": lang_prompt} ] st.session_state['page'] = "doctor" # Sidebar - let user choose model, show total cost of current conversation, and let user clear the current conversation # st.sidebar.title("Sidebar") # model_name = st.sidebar.radio("Choose a model:", ("GPT-3.5", "GPT-4")) # counter_placeholder = st.sidebar.empty() # counter_placeholder.write(f"Total cost of this conversation: ${st.session_state['total_cost']:.5f}") clear_button = st.sidebar.button("Clear Conversation", key="clear") # Map model names to OpenAI model IDs # if model_name == "GPT-3.5": # model = "gpt-3.5-turbo" # else: # model = "gpt-4" model = "gpt-3.5-turbo" # reset everything if clear_button: st.session_state['generated'] = [] st.session_state['past'] = [] st.session_state['messages'] = [ {"role": "system", f"content": "Please play the role of a empathetic and kind psychiatrist. Your task is to conduct a professional diagnosis conversation with me based on the DSM-5 criteria, but using your own language. Please only ask one question at a time. You need to ask in-depth questions, such as the duration, causes and specific manifestations of some symptoms. You need to use various empathetic strategies, such as understanding, support and encouragement to give me a more comfortable experience."}, {"role": "system", f"content": lang_prompt} ] # st.session_state['number_tokens'] = [] # st.session_state['model_name'] = [] # st.session_state['cost'] = [] # st.session_state['total_cost'] = 0.0 # st.session_state['total_tokens'] = [] # counter_placeholder.write(f"Total cost of this conversation: ${st.session_state['total_cost']:.5f}") # generate a response def generate_response(prompt): st.session_state['messages'].append({"role": "user", "content": prompt}) completion = openai.ChatCompletion.create( model=model, messages=st.session_state['messages'] ) response = completion.choices[0].message.content st.session_state['messages'].append({"role": "assistant", "content": response}) # print(st.session_state['messages']) # total_tokens = completion.usage.total_tokens # prompt_tokens = completion.usage.prompt_tokens # completion_tokens = completion.usage.completion_tokens # return response, total_tokens, prompt_tokens, completion_tokens return response # container for chat history response_container = st.container() # container for text box container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_area("You:", key='input', height=100) submit_button = st.form_submit_button(label='Send') if submit_button and user_input: # output, total_tokens, prompt_tokens, completion_tokens = generate_response(user_input) output = generate_response(user_input) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) # st.session_state['model_name'].append(model_name) # st.session_state['total_tokens'].append(total_tokens) # from https://openai.com/pricing#language-models # if model_name == "GPT-3.5": # cost = total_tokens * 0.002 / 1000 # else: # cost = (prompt_tokens * 0.03 + completion_tokens * 0.06) / 1000 # st.session_state['cost'].append(cost) # st.session_state['total_cost'] += cost if st.session_state['generated']: with response_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user') message(st.session_state["generated"][i], key=str(i)) # st.write( # f"Model used: {st.session_state['model_name'][i]}; Number of tokens: {st.session_state['total_tokens'][i]}; Cost: ${st.session_state['cost'][i]:.5f}") # counter_placeholder.write(f"Total cost of this conversation: ${st.session_state['total_cost']:.5f}")
[ "Response in English.", "Please play the role of a empathetic and kind psychiatrist. Your task is to conduct a professional diagnosis conversation with me based on the DSM-5 criteria, but using your own language. Please only ask one question at a time. You need to ask in-depth questions, such as the duration, causes and specific manifestations of some symptoms. You need to use various empathetic strategies, such as understanding, support and encouragement to give me a more comfortable experience." ]
2024-01-10
scantist-ossops/mindsdb
mindsdb~integrations~handlers~rag_handler~settings.py
import json from dataclasses import dataclass from functools import lru_cache, partial from typing import Any, Dict, List, Union import html2text import openai import pandas as pd import requests import writer from langchain import Writer from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.docstore.document import Document from langchain.document_loaders import DataFrameLoader from langchain.embeddings.base import Embeddings from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores import FAISS, Chroma, VectorStore from pydantic import BaseModel, Extra, Field, validator from mindsdb.integrations.handlers.chromadb_handler.chromadb_handler import get_chromadb from mindsdb.integrations.handlers.rag_handler.exceptions import ( InvalidOpenAIModel, InvalidPromptTemplate, InvalidWriterModel, UnsupportedLLM, UnsupportedVectorStore, ) DEFAULT_EMBEDDINGS_MODEL = "BAAI/bge-base-en" SUPPORTED_VECTOR_STORES = ("chroma", "faiss") SUPPORTED_LLMS = ("writer", "openai") ## Default parameters for RAG Handler # this is the default prompt template for qa DEFAULT_QA_PROMPT_TEMPLATE = """ Use the following pieces of context to answer the question at the end. If you do not know the answer, just say that you do not know, do not try to make up an answer. Context: {context} Question: {question} Helpful Answer:""" # this is the default prompt template for if the user wants to summarize the context before qa prompt DEFAULT_SUMMARIZATION_PROMPT_TEMPLATE = """ Summarize the following texts for me: {context} When summarizing, please keep the following in mind the following question: {question} """ DEFAULT_CHUNK_SIZE = 500 DEFAULT_CHUNK_OVERLAP = 50 DEFAULT_VECTOR_STORE_NAME = "chroma" DEFAULT_VECTOR_STORE_COLLECTION_NAME = "collection" chromadb = get_chromadb() def is_valid_store(name) -> bool: return name in SUPPORTED_VECTOR_STORES class VectorStoreFactory: """Factory class for vector stores""" @staticmethod def get_vectorstore_class(name): if not isinstance(name, str): raise TypeError("name must be a string") if not is_valid_store(name): raise ValueError(f"Invalid vector store {name}") if name == "faiss": return FAISS if name == "chroma": return Chroma def get_chroma_client(persist_directory: str) -> chromadb.PersistentClient: """Get Chroma client""" return chromadb.PersistentClient(path=persist_directory) def get_available_writer_model_ids(args: dict) -> list: """Get available writer LLM model ids""" writer_client = writer.Writer( api_key=args["writer_api_key"], organization_id=args["writer_org_id"], ) res = writer_client.models.list(organization_id=args["writer_org_id"]) available_models_dict = json.loads(res.raw_response.text) return [model["id"] for model in available_models_dict["models"]] def get_available_openai_model_ids(args: dict) -> list: """Get available openai LLM model ids""" openai.api_key = args["openai_api_key"] res = openai.Engine.list() return [models["id"] for models in res.data] @dataclass class PersistedVectorStoreSaverConfig: vector_store_name: str persist_directory: str collection_name: str vector_store: VectorStore @dataclass class PersistedVectorStoreLoaderConfig: vector_store_name: str embeddings_model: Embeddings persist_directory: str collection_name: str class PersistedVectorStoreSaver: """Saves vector store to disk""" def __init__(self, config: PersistedVectorStoreSaverConfig): self.config = config def save_vector_store(self, vector_store: VectorStore): method_name = f"save_{self.config.vector_store_name}" getattr(self, method_name)(vector_store) def save_chroma(self, vector_store: Chroma): """Save Chroma vector store to disk""" # no need to save chroma vector store to disk, auto save pass def save_faiss(self, vector_store: FAISS): vector_store.save_local( folder_path=self.config.persist_directory, index_name=self.config.collection_name, ) class PersistedVectorStoreLoader: """Loads vector store from disk""" def __init__(self, config: PersistedVectorStoreLoaderConfig): self.config = config def load_vector_store_client( self, vector_store: str, ): """Load vector store from the persisted vector store""" if vector_store == "chroma": return Chroma( collection_name=self.config.collection_name, embedding_function=self.config.embeddings_model, client=get_chroma_client(self.config.persist_directory), ) elif vector_store == "faiss": return FAISS.load_local( folder_path=self.config.persist_directory, embeddings=self.config.embeddings_model, index_name=self.config.collection_name, ) else: raise NotImplementedError(f"{vector_store} client is not yet supported") def load_vector_store(self) -> VectorStore: """Load vector store from the persisted vector store""" method_name = f"load_{self.config.vector_store_name}" return getattr(self, method_name)() def load_chroma(self) -> Chroma: """Load Chroma vector store from the persisted vector store""" return self.load_vector_store_client(vector_store="chroma") def load_faiss(self) -> FAISS: """Load FAISS vector store from the persisted vector store""" return self.load_vector_store_client(vector_store="faiss") class LLMParameters(BaseModel): """Model parameters for the LLM API interface""" llm_name: str = Field(default_factory=str, title="LLM API name") max_tokens: int = Field(default=100, title="max tokens in response") temperature: float = Field(default=0.0, title="temperature") top_p: float = 1 best_of: int = 5 stop: List[str] = None class Config: extra = Extra.forbid arbitrary_types_allowed = True use_enum_values = True class OpenAIParameters(LLMParameters): """Model parameters for the LLM API interface""" openai_api_key: str model_id: str = Field(default="text-davinci-003", title="model name") n: int = Field(default=1, title="number of responses to return") @validator("model_id") def openai_model_must_be_supported(cls, v, values): supported_models = get_available_openai_model_ids(values) if v not in supported_models: raise InvalidOpenAIModel( f"'model_id' must be one of {supported_models}, got {v}" ) return v class WriterLLMParameters(LLMParameters): """Model parameters for the Writer LLM API interface""" writer_api_key: str writer_org_id: str = None base_url: str = None model_id: str = "palmyra-x" callbacks: List[StreamingStdOutCallbackHandler] = [StreamingStdOutCallbackHandler()] verbose: bool = False @validator("model_id") def writer_model_must_be_supported(cls, v, values): supported_models = get_available_writer_model_ids(values) if v not in supported_models: raise InvalidWriterModel( f"'model_id' must be one of {supported_models}, got {v}" ) return v class LLMLoader(BaseModel): llm_config: dict config_dict: dict = None def load_llm(self) -> Union[Writer, partial]: """Load LLM""" method_name = f"load_{self.llm_config['llm_name']}_llm" self.config_dict = self.llm_config.copy() self.config_dict.pop("llm_name") return getattr(self, method_name)() def load_writer_llm(self) -> Writer: """Load Writer LLM API interface""" return Writer(**self.config_dict) def load_openai_llm(self) -> partial: """Load OpenAI LLM API interface""" openai.api_key = self.config_dict["openai_api_key"] config = self.config_dict.copy() config.pop("openai_api_key") config["model"] = config.pop("model_id") return partial(openai.Completion.create, **config) class RAGBaseParameters(BaseModel): """Base model parameters for RAG Handler""" llm_params: Any vector_store_folder_name: str prompt_template: str = DEFAULT_QA_PROMPT_TEMPLATE chunk_size: int = DEFAULT_CHUNK_SIZE chunk_overlap: int = DEFAULT_CHUNK_OVERLAP url: Union[str, List[str]] = None run_embeddings: bool = True top_k: int = 4 embeddings_model_name: str = DEFAULT_EMBEDDINGS_MODEL context_columns: Union[List[str], str] = None vector_store_name: str = DEFAULT_VECTOR_STORE_NAME vector_store: VectorStore = None collection_name: str = DEFAULT_VECTOR_STORE_COLLECTION_NAME summarize_context: bool = True summarization_prompt_template: str = DEFAULT_SUMMARIZATION_PROMPT_TEMPLATE vector_store_storage_path: str = Field( default=None, title="don't use this field, it's for internal use only" ) class Config: extra = Extra.forbid arbitrary_types_allowed = True use_enum_values = True @validator("prompt_template") def prompt_format_must_be_valid(cls, v): if "{context}" not in v or "{question}" not in v: raise InvalidPromptTemplate( "prompt_template must contain {context} and {question}" f"\n For example, {DEFAULT_QA_PROMPT_TEMPLATE}" ) return v @validator("vector_store_name") def name_must_be_lower(cls, v): return v.lower() @validator("vector_store_name") def vector_store_must_be_supported(cls, v): if not is_valid_store(v): raise UnsupportedVectorStore( f"currently we only support {', '.join(str(v) for v in SUPPORTED_VECTOR_STORES)} vector store" ) return v class RAGHandlerParameters(RAGBaseParameters): """Model parameters for create model""" llm_type: str llm_params: LLMParameters @validator("llm_type") def llm_type_must_be_supported(cls, v): if v not in SUPPORTED_LLMS: raise UnsupportedLLM(f"'llm_type' must be one of {SUPPORTED_LLMS}, got {v}") return v class DfLoader(DataFrameLoader): """ override the load method of langchain.document_loaders.DataFrameLoaders to ignore rows with 'None' values """ def __init__(self, data_frame: pd.DataFrame, page_content_column: str): super().__init__(data_frame=data_frame, page_content_column=page_content_column) self._data_frame = data_frame self._page_content_column = page_content_column def load(self) -> List[Document]: """Loads the dataframe as a list of documents""" documents = [] for n_row, frame in self._data_frame[self._page_content_column].items(): if pd.notnull(frame): # ignore rows with None values column_name = self._page_content_column document_contents = frame documents.append( Document( page_content=document_contents, metadata={ "source": "dataframe", "row": n_row, "column": column_name, }, ) ) return documents def df_to_documents( df: pd.DataFrame, page_content_columns: Union[List[str], str] ) -> List[Document]: """Converts a given dataframe to a list of documents""" documents = [] if isinstance(page_content_columns, str): page_content_columns = [page_content_columns] for _, page_content_column in enumerate(page_content_columns): if page_content_column not in df.columns.tolist(): raise ValueError( f"page_content_column {page_content_column} not in dataframe columns" ) loader = DfLoader(data_frame=df, page_content_column=page_content_column) documents.extend(loader.load()) return documents def url_to_documents(urls: Union[List[str], str]) -> List[Document]: """Converts a given url to a document""" documents = [] if isinstance(urls, str): urls = [urls] for url in urls: response = requests.get(url, headers=None).text html_to_text = html2text.html2text(response) documents.append(Document(page_content=html_to_text, metadata={"source": url})) return documents # todo issue#7361 hard coding device to cpu, add support for gpu later on # e.g. {"device": "gpu" if torch.cuda.is_available() else "cpu"} @lru_cache() def load_embeddings_model(embeddings_model_name): """Load embeddings model from Hugging Face Hub""" try: model_kwargs = {"device": "cpu"} embedding_model = HuggingFaceEmbeddings( model_name=embeddings_model_name, model_kwargs=model_kwargs ) except ValueError: raise ValueError( f"The {embeddings_model_name} is not supported, please select a valid option from Hugging Face Hub!" ) return embedding_model def on_create_build_llm_params( args: dict, llm_config_class: Union[WriterLLMParameters, OpenAIParameters] ) -> Dict: """build llm params from create args""" llm_params = {"llm_name": args["llm_type"]} for param in llm_config_class.__fields__.keys(): if param in args: llm_params[param] = args.pop(param) return llm_params def build_llm_params(args: dict, update=False) -> Dict: """build llm params from args""" if args["llm_type"] == "writer": llm_config_class = WriterLLMParameters elif args["llm_type"] == "openai": llm_config_class = OpenAIParameters else: raise UnsupportedLLM( f"'llm_type' must be one of {SUPPORTED_LLMS}, got {args['llm_type']}" ) if not args.get("llm_params"): # for create method only llm_params = on_create_build_llm_params(args, llm_config_class) else: # for predict method only llm_params = args.pop("llm_params") if update: # for update method only args["llm_params"] = llm_params return args args["llm_params"] = llm_config_class(**llm_params) return args
[ "prompt_template must contain {context} and {question}\n For example, PLACEHOLDER", "\nSummarize the following texts for me:\n{context}\n\nWhen summarizing, please keep the following in mind the following question:\n{question}\n", "\nUse the following pieces of context to answer the question at the end. If you do not know the answer,\njust say that you do not know, do not try to make up an answer.\nContext: {context}\nQuestion: {question}\nHelpful Answer:" ]
2024-01-10
scantist-ossops/mindsdb
mindsdb~integrations~handlers~file_handler~file_handler.py
import codecs import csv import json import os import tempfile import traceback from io import BytesIO, StringIO from pathlib import Path from urllib.parse import urlparse import magic import pandas as pd import requests from charset_normalizer import from_bytes from mindsdb_sql import parse_sql from mindsdb_sql.parser.ast import DropTables, Select from mindsdb_sql.parser.ast.base import ASTNode from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import TextLoader, PyPDFLoader from mindsdb.api.mysql.mysql_proxy.utilities.sql import query_df from mindsdb.integrations.libs.base import DatabaseHandler from mindsdb.integrations.libs.response import RESPONSE_TYPE from mindsdb.integrations.libs.response import HandlerResponse as Response from mindsdb.integrations.libs.response import HandlerStatusResponse as StatusResponse DEFAULT_CHUNK_SIZE = 200 DEFAULT_CHUNK_OVERLAP = 50 def clean_cell(val): if str(val) in ["", " ", " ", "NaN", "nan", "NA"]: return None return val class FileHandler(DatabaseHandler): """ Handler for files """ name = "files" def __init__( self, name=None, file_storage=None, connection_data={}, file_controller=None, **kwargs, ): super().__init__(name) self.parser = parse_sql self.fs_store = file_storage self.custom_parser = connection_data.get("custom_parser", None) self.clean_rows = connection_data.get("clean_rows", True) self.chunk_size = connection_data.get("chunk_size", DEFAULT_CHUNK_SIZE) self.chunk_overlap = connection_data.get("chunk_overlap", DEFAULT_CHUNK_OVERLAP) self.file_controller = file_controller def connect(self, **kwargs): return def disconnect(self, **kwargs): return def check_connection(self) -> StatusResponse: return StatusResponse(True) def query(self, query: ASTNode) -> Response: if type(query) == DropTables: for table_identifier in query.tables: if ( len(table_identifier.parts) == 2 and table_identifier.parts[0] != self.name ): return Response( RESPONSE_TYPE.ERROR, error_message=f"Can't delete table from database '{table_identifier.parts[0]}'", ) table_name = table_identifier.parts[-1] try: self.file_controller.delete_file(table_name) except Exception as e: return Response( RESPONSE_TYPE.ERROR, error_message=f"Can't delete table '{table_name}': {e}", ) return Response(RESPONSE_TYPE.OK) elif type(query) == Select: table_name = query.from_table.parts[-1] file_path = self.file_controller.get_file_path(table_name) df, _columns = self._handle_source( file_path, self.clean_rows, self.custom_parser, self.chunk_size, self.chunk_overlap, ) result_df = query_df(df, query) return Response(RESPONSE_TYPE.TABLE, data_frame=result_df) else: return Response( RESPONSE_TYPE.ERROR, error_message="Only 'select' and 'drop' queries allowed for files", ) def native_query(self, query: str) -> Response: ast = self.parser(query, dialect="mindsdb") return self.query(ast) @staticmethod def _handle_source( file_path, clean_rows=True, custom_parser=None, chunk_size=DEFAULT_CHUNK_SIZE, chunk_overlap=DEFAULT_CHUNK_OVERLAP, ): """ This function takes a file path and returns a pandas dataframe """ # get file data io, format and dialect data, fmt, dialect = FileHandler._get_data_io(file_path) data.seek(0) # make sure we are at 0 in file pointer if custom_parser: header, file_data = custom_parser(data, fmt) df = pd.DataFrame(file_data, columns=header) elif fmt == "parquet": df = pd.read_parquet(data) elif fmt == "csv": df = pd.read_csv(data, sep=dialect.delimiter, index_col=False) elif fmt in ["xlsx", "xls"]: data.seek(0) df = pd.read_excel(data) elif fmt == "json": data.seek(0) json_doc = json.loads(data.read()) df = pd.json_normalize(json_doc, max_level=0) elif fmt == "txt" or fmt == "pdf": text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) if fmt == "txt": loader = TextLoader(file_path, encoding="utf8") docs = text_splitter.split_documents(loader.load()) df = pd.DataFrame( [ {"content": doc.page_content, "metadata": doc.metadata} for doc in docs ] ) elif fmt == "pdf": loader = PyPDFLoader(file_path) docs = text_splitter.split_documents(loader.load_and_split()) df = pd.DataFrame( [ {"content": doc.page_content, "metadata": doc.metadata} for doc in docs ] ) else: raise ValueError( "Could not load file into any format, supported formats are csv, json, xls, xlsx, pdf, txt" ) header = df.columns.values.tolist() df = df.rename(columns={key: key.strip() for key in header}) df = df.applymap(clean_cell) header = [x.strip() for x in header] col_map = dict((col, col) for col in header) return df, col_map @staticmethod def is_it_parquet(data: BytesIO) -> bool: # Check first and last 4 bytes equal to PAR1. # Refer: https://parquet.apache.org/docs/file-format/ parquet_sig = b"PAR1" data.seek(0, 0) start_meta = data.read(4) data.seek(-4, 2) end_meta = data.read() data.seek(0) if start_meta == parquet_sig and end_meta == parquet_sig: return True return False @staticmethod def is_it_xlsx(file_path: str) -> bool: file_type = magic.from_file(file_path, mime=True) if file_type in [ "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "application/vnd.ms-excel", ]: return True return False @staticmethod def is_it_json(data_str: StringIO) -> bool: # see if its JSON text = data_str.read(100).strip() data_str.seek(0) if len(text) > 0: # it it looks like a json, then try to parse it if text.startswith("{") or text.startswith("["): try: json.loads(data_str.read()) return True except Exception: return False finally: data_str.seek(0) return False @staticmethod def is_it_csv(data_str: StringIO) -> bool: sample = data_str.readline() # trying to get dialect from header data_str.seek(0) try: csv.Sniffer().sniff(sample) # Avoid a false-positive for json files try: json.loads(data_str.read()) data_str.seek(0) return False except json.decoder.JSONDecodeError: data_str.seek(0) return True except Exception: return False @staticmethod def _get_data_io(file_path): """ @TODO: Use python-magic to simplify the function and detect the file types as the xlsx example This gets a file either url or local file and defines what the format is as well as dialect :param file: file path or url :return: data_io, format, dialect """ data = BytesIO() data_str = None dialect = None try: with open(file_path, "rb") as fp: data = BytesIO(fp.read()) except Exception as e: error = "Could not load file, possible exception : {exception}".format( exception=e ) print(error) raise ValueError(error) suffix = Path(file_path).suffix.strip(".").lower() if suffix not in ("csv", "json", "xlsx", "parquet"): if FileHandler.is_it_parquet(data): suffix = "parquet" elif FileHandler.is_it_xlsx(file_path): suffix = "xlsx" if suffix == "parquet": return data, "parquet", dialect if suffix == "xlsx": return data, "xlsx", dialect if suffix == "txt": return data, "txt", dialect if suffix == "pdf": return data, "pdf", dialect byte_str = data.read() # Move it to StringIO try: # Handle Microsoft's BOM "special" UTF-8 encoding if byte_str.startswith(codecs.BOM_UTF8): data_str = StringIO(byte_str.decode("utf-8-sig")) else: file_encoding_meta = from_bytes( byte_str[: 32 * 1024], steps=32, # Number of steps/block to extract from my_byte_str chunk_size=1024, # Set block size of each extraction) explain=False, ) best_meta = file_encoding_meta.best() errors = "strict" if best_meta is not None: encoding = file_encoding_meta.best().encoding try: data_str = StringIO(byte_str.decode(encoding, errors)) except UnicodeDecodeError: encoding = "utf-8" errors = "replace" data_str = StringIO(byte_str.decode(encoding, errors)) else: encoding = "utf-8" errors = "replace" data_str = StringIO(byte_str.decode(encoding, errors)) except Exception: print(traceback.format_exc()) print("Could not load into string") if suffix not in ("csv", "json"): if FileHandler.is_it_json(data_str): suffix = "json" elif FileHandler.is_it_csv(data_str): suffix = "csv" if suffix == "json": return data_str, suffix, dialect if suffix == "csv": try: dialect = FileHandler._get_csv_dialect(data_str) if dialect: return data_str, "csv", dialect except Exception: print("Could not detect format for this file") print(traceback.format_exc()) data_str.seek(0) data.seek(0) # No file type identified return data, None, dialect @staticmethod def _get_file_path(path) -> str: try: is_url = urlparse(path).scheme in ("http", "https") except Exception: is_url = False if is_url: path = FileHandler._fetch_url(path) return path @staticmethod def _get_csv_dialect(buffer) -> csv.Dialect: sample = buffer.readline() # trying to get dialect from header buffer.seek(0) try: if isinstance(sample, bytes): sample = sample.decode() accepted_csv_delimiters = [",", "\t", ";"] try: dialect = csv.Sniffer().sniff( sample, delimiters=accepted_csv_delimiters ) dialect.doublequote = ( True # assume that all csvs have " as string escape ) except Exception: dialect = csv.reader(sample).dialect if dialect.delimiter not in accepted_csv_delimiters: raise Exception( f"CSV delimeter '{dialect.delimiter}' is not supported" ) except csv.Error: dialect = None return dialect @staticmethod def _fetch_url(url: str) -> str: temp_dir = tempfile.mkdtemp(prefix="mindsdb_file_url_") try: r = requests.get(url, stream=True) if r.status_code == 200: with open(os.path.join(temp_dir, "file"), "wb") as f: for chunk in r: f.write(chunk) else: raise Exception(f"Response status code is {r.status_code}") except Exception as e: print(f"Error during getting {url}") print(e) raise return os.path.join(temp_dir, "file") def get_tables(self) -> Response: """ List all files """ files_meta = self.file_controller.get_files() data = [ { "TABLE_NAME": x["name"], "TABLE_ROWS": x["row_count"], "TABLE_TYPE": "BASE TABLE", } for x in files_meta ] return Response(RESPONSE_TYPE.TABLE, data_frame=pd.DataFrame(data)) def get_columns(self, table_name) -> Response: file_meta = self.file_controller.get_file_meta(table_name) result = Response( RESPONSE_TYPE.TABLE, data_frame=pd.DataFrame( [ { "Field": x["name"].strip() if isinstance(x, dict) else x.strip(), "Type": "str", } for x in file_meta["columns"] ] ), ) return result
[]
2024-01-10
AliNaqvi110/Llama2-Medical-Chatbot
app1.py
import streamlit as st from streamlit_chat import message from langchain.chains import ConversationalRetrievalChain from langchain.document_loaders import PyPDFLoader, DirectoryLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import CTransformers from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory #load the pdf files from the path loader = DirectoryLoader('data/',glob="*.pdf",loader_cls=PyPDFLoader) documents = loader.load() #split text into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,chunk_overlap=50) text_chunks = text_splitter.split_documents(documents) #create embeddings embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device':"cpu"}) #vectorstore vector_store = FAISS.from_documents(text_chunks,embeddings) #create llm llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin",model_type="llama", config={'max_new_tokens':128,'temperature':0.01}) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) chain = ConversationalRetrievalChain.from_llm(llm=llm,chain_type='stuff', retriever=vector_store.as_retriever(search_kwargs={"k":2}), memory=memory) st.title("HealthCare ChatBot ๐Ÿง‘๐Ÿฝโ€โš•๏ธ") def conversation_chat(query): result = chain({"question": query, "chat_history": st.session_state['history']}) st.session_state['history'].append((query, result["answer"])) return result["answer"] def initialize_session_state(): if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["Hello! Ask me anything about ๐Ÿค—"] if 'past' not in st.session_state: st.session_state['past'] = ["Hey! ๐Ÿ‘‹"] def display_chat_history(): reply_container = st.container() container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Question:", placeholder="Ask about your Mental Health", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: output = conversation_chat(user_input) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) if st.session_state['generated']: with reply_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") # Initialize session state initialize_session_state() # Display chat history display_chat_history() import streamlit as st from streamlit_chat import message from langchain.chains import ConversationalRetrievalChain from langchain.document_loaders import PyPDFLoader, DirectoryLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import CTransformers from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory #load the pdf files from the path loader = DirectoryLoader('medical_bot/dataset/',glob="*.pdf",loader_cls=PyPDFLoader) documents = loader.load() #split text into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,chunk_overlap=50) text_chunks = text_splitter.split_documents(documents) #create embeddings embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device':"cpu"}) #vectorstore vector_store = FAISS.from_documents(text_chunks,embeddings) #create llm llm = CTransformers(model="medical_bot\llama-2-7b-chat.ggmlv3.q8_0.bin",model_type="llama", config={'max_new_tokens':128,'temperature':0.01}) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) chain = ConversationalRetrievalChain.from_llm(llm=llm,chain_type='stuff', retriever=vector_store.as_retriever(search_kwargs={"k":2}), memory=memory) st.title("HealthCare ChatBot ๐Ÿง‘๐Ÿฝโ€โš•๏ธ") def conversation_chat(query): result = chain({"question": query, "chat_history": st.session_state['history']}) st.session_state['history'].append((query, result["answer"])) return result["answer"] def initialize_session_state(): if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["Hello! Ask me anything about ๐Ÿค—"] if 'past' not in st.session_state: st.session_state['past'] = ["Hey! ๐Ÿ‘‹"] def display_chat_history(): reply_container = st.container() container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Question:", placeholder="Ask about your Mental Health", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: output = conversation_chat(user_input) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) if st.session_state['generated']: with reply_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") # Initialize session state initialize_session_state() # Display chat history display_chat_history()
[]
2024-01-10
jiffstudio/hackathon
read_and_segment.py
import os import json import requests from langchain.document_loaders import UnstructuredFileLoader import streamlit as st import openai import random from learnBi.mycomponent import mycomponent def make_card(text): openai.api_key = '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' # text = "ไป…ไป…้€š่ฟ‡็ฅž็ปๅ…ƒ่ฟ›่กŒๅญ˜ๅ‚จๆ•ฐๆฎ๏ผŒๅญ˜ๅ‚จ่ƒฝๅŠ›ๅๅˆ†ๆœ‰้™ใ€‚NTM[12]ๆœ€ๆ—ฉๆๅ‡บไบ†ๅค–้ƒจ่ฎฐๅฟ†ๅขžๅผบ็ฅž็ป็ฝ‘็ปœๆžถๆž„๏ผŒ้€š่ฟ‡ไธ€ไธชๅคง็š„ๅฏๅฏปๅ€็š„ๅญ˜ๅ‚จๅ™จๆฅๆ‰ฉๅฑ•ๅญ˜ๅ‚จ็š„่ƒฝๅŠ›๏ผŒๅฎž็Žฐๅญ˜ๅ‚จ็ฎก็†ๅนถไธ”ๅฏๅพฎใ€‚็ฅž็ปๅ›พ็ตๆœบ็š„็ตๆ„Ÿๆฅ่‡ชไบŽๅ›พ็ตๆœบ็š„ๆžถๆž„๏ผŒ็”ฑๆŽงๅˆถๅ™จใ€ๅนถ่กŒ่ฏปๅ†™ๅคดๅ’Œๅค–้ƒจๅญ˜ๅ‚จๅ™จ็ป„ๆˆ๏ผŒๅฐ†็ฅž็ป็ฝ‘็ปœๅ’Œๅค–้ƒจๅญ˜ๅ‚จๅ™จ็ป“ๅˆๆฅๆ‰ฉๅฑ•็ฅž็ป็ฝ‘็ปœ็š„่ƒฝๅŠ›๏ผŒๅฏไปฅไฝฟ็”จๆขฏๅบฆไธ‹้™่ฟ›่กŒ้ซ˜ๆ•ˆ่ฎญ็ปƒใ€‚NTM ๅฏไปฅ้€š่ฟ‡้€‰ๆ‹ฉๆ€ง็š„่ฏปๅ†™ๆ“ไฝœไธŽๅ†…ๅญ˜็Ÿฉ้˜ต่ฟ›่กŒไบคไบ’ใ€‚ๅฏไปฅ้€š่ฟ‡ไธค็งๆ–นๅผ่ฟ›่กŒๅฏปๅ€๏ผŒไธ€็งๆ˜ฏๅŸบไบŽๅ†…ๅฎน็š„ๅฏปๅ€๏ผŒๅฆๅค–ไธ€็งๆ˜ฏๅŸบไบŽไฝ็ฝฎ็š„ๅฏปๅ€ใ€‚" # prompt = "่ฏทๆ นๆฎๆˆ‘ๆไพ›็š„ๆ–‡ๆœฌ๏ผŒ็”Ÿๆˆไธ€ๅฅ—ๆŠฝ่ฎคๅกใ€‚ๅœจๅˆถไฝœๆŠฝ่ฎคๅก็š„ๆ—ถๅ€™๏ผŒ่ฏทๅพช็Žฏไธ‹่ฟฐ่ฆๆฑ‚๏ผš1.ไฟๆŒๆŠฝ่ฎคๅก็š„็ฎ€ๅ•ใ€ๆธ…ๆ™ฐ๏ผŒๅนถ้›†ไธญไบŽๆœ€้‡่ฆ็š„ไฟกๆฏ2.็กฎไฟ็ญ”ๆกˆๆ˜ฏๅ…ทไฝ“็š„๏ผŒไฝฟ็”จ็ฎ€ๅ•ๆธ…ๆ™ฐ็š„่ฏญ่จ€3.ๅฐŠ้‡ไบ‹ๅฎž๏ผŒๅนถไฝฟๅก็‰‡ไพฟไบŽ้˜…่ฏปๅ’Œ็†่งฃ4.ไฝฟ็”จไธŽๅŽŸๆ–‡ๆœฌ็›ธๅŒ็š„่ฏญ่จ€่ฟ›่กŒๅ›ž็ญ”" prompt = "่ฏทๆ นๆฎๆˆ‘ๆไพ›็š„ๆ–‡ๆœฌ๏ผŒๅˆถไฝœไธ€ๅฅ—ๆŠฝ่ฎคๅกใ€‚\ ๅœจๅˆถไฝœๆŠฝ่ฎคๅกๆ—ถ๏ผŒ่ฏท้ตๅพชไธ‹่ฟฐ่ฆๆฑ‚๏ผš\ 1. ไฟๆŒๆŠฝ่ฎคๅก็š„็ฎ€ๅ•ใ€ๆธ…ๆ™ฐ๏ผŒๅนถ้›†ไธญไบŽๆœ€้‡่ฆ็š„ไฟกๆฏใ€‚\ 2. ็กฎไฟ้—ฎ้ข˜ๆ˜ฏๅ…ทไฝ“็š„ใ€ไธๅซ็ณŠ็š„ใ€‚\ 3. ไฝฟ็”จๆธ…ๆ™ฐๅ’Œ็ฎ€ๆด็š„่ฏญ่จ€๏ผŒไฝฟๅก็‰‡ๆ˜“ไบŽ้˜…่ฏปๅ’Œ็†่งฃใ€‚\ 4. ็ญ”ๆกˆ้ตๅพชๅฎข่ง‚ไบ‹ๅฎžใ€‚\ ๅˆถไฝœๆŠฝ่ฎคๅกๆ—ถ๏ผŒ่ฎฉๆˆ‘ไปฌไธ€ๆญฅไธ€ๆญฅๆฅ๏ผš\ ็ฌฌไธ€ๆญฅ๏ผŒ็ป“ๅˆไธŠไธ‹ๆ–‡๏ผŒไฝฟ็”จ็ฎ€ๅ•็š„็›ธๅŒ่ฏญ่จ€ๆ”นๅ†™ๅ†…ๅฎน๏ผŒๅŒๆ—ถไฟ็•™ๅ…ถๅŽŸๆฅ็š„ๆ„ๆ€ใ€‚\ ็ฌฌไบŒๆญฅ๏ผŒๅฐ†ๅ†…ๅฎนๅˆ†ๆˆๅ‡ ไธชๅฐ่Š‚๏ผŒๆฏไธชๅฐ่Š‚ไธ“ๆณจไบŽไธ€ไธช่ฆ็‚นใ€‚\ ็ฌฌไธ‰ๆญฅ๏ผŒๅˆฉ็”จๅฐ่Š‚ๆฅ็”Ÿๆˆๅคšๅผ ๆŠฝ่ฎคๅก๏ผŒๅฏนไบŽ่ถ…่ฟ‡50ไธชๅญ—็š„ๅฐ่Š‚๏ผŒๅ…ˆ่ฟ›่กŒๆ‹†ๅˆ†ๅ’Œๆฆ‚ๆ‹ฌ๏ผŒๅ†ๅˆถไฝœๆŠฝ่ฎคๅกใ€‚ๅช็”Ÿๆˆๆœ€้‡่ฆ็š„ๅ†…ๅฎนๅณๅฏใ€‚\ ๆ–‡ๆœฌ๏ผš่กฐ่€็ป†่ƒž็š„็‰นๅพๆ˜ฏ็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ‡ๅฐ‘๏ผŒ็ป“ๆžœไฝฟ็ป†่ƒž่Ž็ผฉ๏ผŒไฝ“็งฏๅ˜ๅฐ๏ผŒ็ป†่ƒžไปฃ่ฐข็š„้€Ÿ็އๅ‡ๆ…ขใ€‚็ป†่ƒžๅ†…ๅคš็ง้…ถ็š„ๆดปๆ€ง้™ไฝŽใ€‚็ป†่ƒžๆ ธ็š„ไฝ“็งฏๅขžๅคง๏ผŒๆ ธ่†œๅ†…ๆŠ˜๏ผŒๆŸ“่‰ฒ่ดจๆ”ถ็ผฉใ€ๆŸ“่‰ฒๅŠ ๆทฑใ€‚็ป†่ƒž่†œ้€š้€ๆ€งๆ”นๅ˜๏ผŒไฝฟ็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝ้™ไฝŽใ€‚\ ไธ€ๅฅ—ๅก็‰‡๏ผš\n\ ๅก็‰‡1๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏไผšๆ€Žไนˆๅ˜ๅŒ–๏ผŸ\n\ ็ญ”ๆกˆ๏ผšๅ˜ๅฐใ€‚\n\ ๅก็‰‡2๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏๅ˜ๅŒ–็š„ๅ…ทไฝ“่กจ็Žฐๆ˜ฏไป€ไนˆ๏ผŸ\n\ ็ญ”ๆกˆ๏ผš็ป†่ƒž่Ž็ผฉใ€‚\n\ ๅก็‰‡3๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏๅ˜ๅŒ–ๅŽŸๅ› ๆ˜ฏไป€ไนˆ๏ผŸ\n\ ็ญ”ๆกˆ๏ผš็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ‡ๅฐ‘ใ€‚\n\ ๅก็‰‡4๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ˜ๅŒ–ๅฏน็ป†่ƒžไปฃ่ฐข็š„ๅฝฑๅ“ๆ˜ฏไป€ไนˆ๏ผŸ\n\ ็ญ”ๆกˆ๏ผš็ป†่ƒžไปฃ่ฐข็š„้€Ÿ็އๅ‡ๆ…ขใ€‚\n\ ๅก็‰‡5๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒžๅ†…็š„้…ถๆดปๆ€งๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n\ ็ญ”ๆกˆ๏ผšๆดปๆ€ง้™ไฝŽใ€‚\n\ ๅก็‰‡6๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธไฝ“็งฏๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n\ ็ญ”ๆกˆ๏ผšไฝ“็งฏๅ˜ๅคงใ€‚\n\ ๅก็‰‡7๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆ ธ่†œๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\ ็ญ”ๆกˆ๏ผšๆ ธ่†œๅ†…ๆŠ˜ใ€‚\ ๅก็‰‡8๏ผš\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆŸ“่‰ฒ่ดจๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n\ ็ญ”ๆกˆ๏ผšๆŸ“่‰ฒ่ดจๆ”ถ็ผฉใ€‚\n\ ๅก็‰‡9๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆŸ“่‰ฒ่ดจๅ˜ๅŒ–ๅฏน็ป†่ƒžๆ ธๅฝขๆ€็š„ๅฝฑๅ“ๆ˜ฏ๏ผŸ\n\ ็ญ”ๆกˆ๏ผšๆŸ“่‰ฒๅŠ ๆทฑใ€‚\n\ ๅก็‰‡10๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝๅฆ‚ไฝ•ๅ˜ๅŒ–?\n\ ็ญ”ๆกˆ๏ผš็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝ้™ไฝŽใ€‚\n\ ๅก็‰‡11๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝไธบไฝ•ๅ˜ๅŒ–๏ผŸ\n\ ็ญ”ๆกˆ๏ผš็ป†่ƒž่†œ้€š้€ๆ€งๆ”นๅ˜ใ€‚\n\ ๆ–‡ๆœฌ๏ผš" def chat_with_gpt(p): url = "https://openai.api2d.net/v1/completions" headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer fk205005-4JjeuMSr5qUREGOdRyqpS0pWQ6iAf6sM' # <-- ๆŠŠ fkxxxxx ๆ›ฟๆขๆˆไฝ ่‡ชๅทฑ็š„ Forward Key๏ผŒๆณจๆ„ๅ‰้ข็š„ Bearer ่ฆไฟ็•™๏ผŒๅนถไธ”ๅ’Œ Key ไธญ้—ดๆœ‰ไธ€ไธช็ฉบๆ ผใ€‚ } data = { "model": "text-davinci-003", "prompt": p, "max_tokens": 2000, "n": 5, "stop": None, } response = requests.post(url, headers=headers, json=data) return response.json()['choices'][0]['text'].strip() response = chat_with_gpt(prompt + text + "\nไธ€ๅฅ—ๅก็‰‡๏ผš\n") print(response) def colorful_card(title, ques, ans, color): style = f""" background-color: {color}; padding: 15px; border-radius: 10px; margin-bottom: 20px; width: 400px; height: 260px; box-shadow: 2px 2px 5px rgba(0, 0, 0, 0.1); """ container_style = """ display: flex; flex-direction: column; align-items: center; """ content = f"{ques}<br>{ans}" card_html = f""" <div style="{container_style}"> <div style="{style}"> <h2>{title}</h2> <p>{content}</p> </div> </div> """ st.markdown(card_html, unsafe_allow_html=True) titles = [] ques = [] ans = [] colors = ["#98FF98", "#FFC0CB", "#C8A2C8", "#87CEEB", "#FFFACD", "#ADD8E6", "#32CD32", "#E6E6FA", "#00CED1", "#90EE90", "#FFD700"] lines = response.splitlines() lines = [s for s in lines if s != ''] print(lines) random_elements = random.sample(colors, len(lines) // 3) print(random_elements) for i in range(len(response.splitlines())): if i % 3 == 0: titles.append(lines[i]) if i % 3 == 1: ques.append(lines[i]) if i % 3 == 2: ans.append(lines[i]) print(titles) print(ques) print(ans) for i in range(len(ans)): colorful_card(titles[i], ques[i], ans[i], random_elements[i]) def get_first_card(text): messages = [{"role": "user", "content": f'''Imagine you are a Text-to-Card Converter. Your task is to take lengthy pieces of text and break them down into several small, easily digestible cards for the user to read. Each card should encapsulate a focused concept but also need to faithfully replicate the original text, including a title and content. Importantly, the language used in the cards must be in Chinese. Some parts may have formatting issues, please fix them. Below is the original text. --------------------------------- {text}'''}] functions = [ { "name": "get_first_card", "description": "Get first card in a given text", "parameters": { "type": "object", "properties": { "card": { "type": "object", "properties": { "title": { "type": "string", "description": "The title, e.g. Concept of RLHF, keep it blank if not focused enough", }, "content": { "type": "string", "description": "The content", }, } }, "remaining": { "type": "string", "description": "The first 10 words of remaining text that is not included in the first card", }, }, "required": ["card", "remaining"], }, } ] import requests url = "https://openai.api2d.net/v1/chat/completions" headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer fk205005-4JjeuMSr5qUREGOdRyqpS0pWQ6iAf6sM' # <-- ๆŠŠ fkxxxxx ๆ›ฟๆขๆˆไฝ ่‡ชๅทฑ็š„ Forward Key๏ผŒๆณจๆ„ๅ‰้ข็š„ Bearer ่ฆไฟ็•™๏ผŒๅนถไธ”ๅ’Œ Key ไธญ้—ดๆœ‰ไธ€ไธช็ฉบๆ ผใ€‚ } data = { "model": "gpt-3.5-turbo-0613", "messages": messages, "functions": functions, "function_call": "auto", } response = requests.post(url, headers=headers, json=data) print("Status Code", response.status_code) print("JSON Response ", response.json()) return response.json() st.header("PDF Import and Display") uploaded_file = st.file_uploader("Choose a PDF file", type=['pdf', 'docx', 'txt']) if uploaded_file is not None: file_details = {"FileName": uploaded_file.name, "FileType": uploaded_file.type, "FileSize": uploaded_file.size} st.write(file_details) with open(os.path.join("pdf_files", uploaded_file.name), "wb") as f: f.write(uploaded_file.getbuffer()) file_path = os.path.join("pdf_files", uploaded_file.name) st.write(file_path) loader = UnstructuredFileLoader(file_path, mode="elements") docs = loader.load() print([doc.page_content for doc in docs]) text = '\n'.join([doc.page_content for doc in docs]) print(st.session_state) selected = None if 'cards' in st.session_state: for card in st.session_state.cards: value = mycomponent(my_input_value=f'<em>{card["title"]}</em><br>{card["content"]}') if value and len(value) > 0: selected = value if selected: st.write(selected) make_card(selected) if 'remaining' not in st.session_state or len(st.session_state.remaining) > 10: if st.button('็ปง็ปญ'): if 'remaining' not in st.session_state: st.session_state.remaining = text st.session_state.cards = [] arguments = json.loads(get_first_card(st.session_state.remaining[:1000])['choices'][0]['message']['function_call']['arguments']) st.session_state.remaining = st.session_state.remaining[st.session_state.remaining.find(arguments["remaining"][:4]):] st.session_state.cards.append(arguments["card"]) st.experimental_rerun()
[ "Imagine you are a Text-to-Card Converter. Your task is to take lengthy pieces of text and break them down into several small, easily digestible cards for the user to read. Each card should encapsulate a focused concept but also need to faithfully replicate the original text, including a title and content. Importantly, the language used in the cards must be in Chinese. Some parts may have formatting issues, please fix them. Below is the original text.\n ---------------------------------\n PLACEHOLDER", "่ฏทๆ นๆฎๆˆ‘ๆไพ›็š„ๆ–‡ๆœฌ๏ผŒๅˆถไฝœไธ€ๅฅ—ๆŠฝ่ฎคๅกใ€‚ ๅœจๅˆถไฝœๆŠฝ่ฎคๅกๆ—ถ๏ผŒ่ฏท้ตๅพชไธ‹่ฟฐ่ฆๆฑ‚๏ผš 1. ไฟๆŒๆŠฝ่ฎคๅก็š„็ฎ€ๅ•ใ€ๆธ…ๆ™ฐ๏ผŒๅนถ้›†ไธญไบŽๆœ€้‡่ฆ็š„ไฟกๆฏใ€‚ 2. ็กฎไฟ้—ฎ้ข˜ๆ˜ฏๅ…ทไฝ“็š„ใ€ไธๅซ็ณŠ็š„ใ€‚ 3. ไฝฟ็”จๆธ…ๆ™ฐๅ’Œ็ฎ€ๆด็š„่ฏญ่จ€๏ผŒไฝฟๅก็‰‡ๆ˜“ไบŽ้˜…่ฏปๅ’Œ็†่งฃใ€‚ 4. ็ญ”ๆกˆ้ตๅพชๅฎข่ง‚ไบ‹ๅฎžใ€‚ ๅˆถไฝœๆŠฝ่ฎคๅกๆ—ถ๏ผŒ่ฎฉๆˆ‘ไปฌไธ€ๆญฅไธ€ๆญฅๆฅ๏ผš ็ฌฌไธ€ๆญฅ๏ผŒ็ป“ๅˆไธŠไธ‹ๆ–‡๏ผŒไฝฟ็”จ็ฎ€ๅ•็š„็›ธๅŒ่ฏญ่จ€ๆ”นๅ†™ๅ†…ๅฎน๏ผŒๅŒๆ—ถไฟ็•™ๅ…ถๅŽŸๆฅ็š„ๆ„ๆ€ใ€‚ ็ฌฌไบŒๆญฅ๏ผŒๅฐ†ๅ†…ๅฎนๅˆ†ๆˆๅ‡ ไธชๅฐ่Š‚๏ผŒๆฏไธชๅฐ่Š‚ไธ“ๆณจไบŽไธ€ไธช่ฆ็‚นใ€‚ ็ฌฌไธ‰ๆญฅ๏ผŒๅˆฉ็”จๅฐ่Š‚ๆฅ็”Ÿๆˆๅคšๅผ ๆŠฝ่ฎคๅก๏ผŒๅฏนไบŽ่ถ…่ฟ‡50ไธชๅญ—็š„ๅฐ่Š‚๏ผŒๅ…ˆ่ฟ›่กŒๆ‹†ๅˆ†ๅ’Œๆฆ‚ๆ‹ฌ๏ผŒๅ†ๅˆถไฝœๆŠฝ่ฎคๅกใ€‚ๅช็”Ÿๆˆๆœ€้‡่ฆ็š„ๅ†…ๅฎนๅณๅฏใ€‚ ๆ–‡ๆœฌ๏ผš่กฐ่€็ป†่ƒž็š„็‰นๅพๆ˜ฏ็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ‡ๅฐ‘๏ผŒ็ป“ๆžœไฝฟ็ป†่ƒž่Ž็ผฉ๏ผŒไฝ“็งฏๅ˜ๅฐ๏ผŒ็ป†่ƒžไปฃ่ฐข็š„้€Ÿ็އๅ‡ๆ…ขใ€‚็ป†่ƒžๅ†…ๅคš็ง้…ถ็š„ๆดปๆ€ง้™ไฝŽใ€‚็ป†่ƒžๆ ธ็š„ไฝ“็งฏๅขžๅคง๏ผŒๆ ธ่†œๅ†…ๆŠ˜๏ผŒๆŸ“่‰ฒ่ดจๆ”ถ็ผฉใ€ๆŸ“่‰ฒๅŠ ๆทฑใ€‚็ป†่ƒž่†œ้€š้€ๆ€งๆ”นๅ˜๏ผŒไฝฟ็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝ้™ไฝŽใ€‚ ไธ€ๅฅ—ๅก็‰‡๏ผš\n ๅก็‰‡1๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏไผšๆ€Žไนˆๅ˜ๅŒ–๏ผŸ\n ็ญ”ๆกˆ๏ผšๅ˜ๅฐใ€‚\n ๅก็‰‡2๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏๅ˜ๅŒ–็š„ๅ…ทไฝ“่กจ็Žฐๆ˜ฏไป€ไนˆ๏ผŸ\n ็ญ”ๆกˆ๏ผš็ป†่ƒž่Ž็ผฉใ€‚\n ๅก็‰‡3๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏๅ˜ๅŒ–ๅŽŸๅ› ๆ˜ฏไป€ไนˆ๏ผŸ\n ็ญ”ๆกˆ๏ผš็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ‡ๅฐ‘ใ€‚\n ๅก็‰‡4๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ˜ๅŒ–ๅฏน็ป†่ƒžไปฃ่ฐข็š„ๅฝฑๅ“ๆ˜ฏไป€ไนˆ๏ผŸ\n ็ญ”ๆกˆ๏ผš็ป†่ƒžไปฃ่ฐข็š„้€Ÿ็އๅ‡ๆ…ขใ€‚\n ๅก็‰‡5๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒžๅ†…็š„้…ถๆดปๆ€งๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n ็ญ”ๆกˆ๏ผšๆดปๆ€ง้™ไฝŽใ€‚\n ๅก็‰‡6๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธไฝ“็งฏๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n ็ญ”ๆกˆ๏ผšไฝ“็งฏๅ˜ๅคงใ€‚\n ๅก็‰‡7๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆ ธ่†œๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ ็ญ”ๆกˆ๏ผšๆ ธ่†œๅ†…ๆŠ˜ใ€‚ ๅก็‰‡8๏ผš ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆŸ“่‰ฒ่ดจๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n ็ญ”ๆกˆ๏ผšๆŸ“่‰ฒ่ดจๆ”ถ็ผฉใ€‚\n ๅก็‰‡9๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆŸ“่‰ฒ่ดจๅ˜ๅŒ–ๅฏน็ป†่ƒžๆ ธๅฝขๆ€็š„ๅฝฑๅ“ๆ˜ฏ๏ผŸ\n ็ญ”ๆกˆ๏ผšๆŸ“่‰ฒๅŠ ๆทฑใ€‚\n ๅก็‰‡10๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝๅฆ‚ไฝ•ๅ˜ๅŒ–?\n ็ญ”ๆกˆ๏ผš็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝ้™ไฝŽใ€‚\n ๅก็‰‡11๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝไธบไฝ•ๅ˜ๅŒ–๏ผŸ\n ็ญ”ๆกˆ๏ผš็ป†่ƒž่†œ้€š้€ๆ€งๆ”นๅ˜ใ€‚\n ๆ–‡ๆœฌ๏ผš", "{'type': 'string', 'description': 'The content'}" ]
2024-01-10
jiffstudio/hackathon
make_card.py
import openai import streamlit as st import random def make_card(text): openai.api_key = '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' # text = "ไป…ไป…้€š่ฟ‡็ฅž็ปๅ…ƒ่ฟ›่กŒๅญ˜ๅ‚จๆ•ฐๆฎ๏ผŒๅญ˜ๅ‚จ่ƒฝๅŠ›ๅๅˆ†ๆœ‰้™ใ€‚NTM[12]ๆœ€ๆ—ฉๆๅ‡บไบ†ๅค–้ƒจ่ฎฐๅฟ†ๅขžๅผบ็ฅž็ป็ฝ‘็ปœๆžถๆž„๏ผŒ้€š่ฟ‡ไธ€ไธชๅคง็š„ๅฏๅฏปๅ€็š„ๅญ˜ๅ‚จๅ™จๆฅๆ‰ฉๅฑ•ๅญ˜ๅ‚จ็š„่ƒฝๅŠ›๏ผŒๅฎž็Žฐๅญ˜ๅ‚จ็ฎก็†ๅนถไธ”ๅฏๅพฎใ€‚็ฅž็ปๅ›พ็ตๆœบ็š„็ตๆ„Ÿๆฅ่‡ชไบŽๅ›พ็ตๆœบ็š„ๆžถๆž„๏ผŒ็”ฑๆŽงๅˆถๅ™จใ€ๅนถ่กŒ่ฏปๅ†™ๅคดๅ’Œๅค–้ƒจๅญ˜ๅ‚จๅ™จ็ป„ๆˆ๏ผŒๅฐ†็ฅž็ป็ฝ‘็ปœๅ’Œๅค–้ƒจๅญ˜ๅ‚จๅ™จ็ป“ๅˆๆฅๆ‰ฉๅฑ•็ฅž็ป็ฝ‘็ปœ็š„่ƒฝๅŠ›๏ผŒๅฏไปฅไฝฟ็”จๆขฏๅบฆไธ‹้™่ฟ›่กŒ้ซ˜ๆ•ˆ่ฎญ็ปƒใ€‚NTM ๅฏไปฅ้€š่ฟ‡้€‰ๆ‹ฉๆ€ง็š„่ฏปๅ†™ๆ“ไฝœไธŽๅ†…ๅญ˜็Ÿฉ้˜ต่ฟ›่กŒไบคไบ’ใ€‚ๅฏไปฅ้€š่ฟ‡ไธค็งๆ–นๅผ่ฟ›่กŒๅฏปๅ€๏ผŒไธ€็งๆ˜ฏๅŸบไบŽๅ†…ๅฎน็š„ๅฏปๅ€๏ผŒๅฆๅค–ไธ€็งๆ˜ฏๅŸบไบŽไฝ็ฝฎ็š„ๅฏปๅ€ใ€‚" # prompt = "่ฏทๆ นๆฎๆˆ‘ๆไพ›็š„ๆ–‡ๆœฌ๏ผŒ็”Ÿๆˆไธ€ๅฅ—ๆŠฝ่ฎคๅกใ€‚ๅœจๅˆถไฝœๆŠฝ่ฎคๅก็š„ๆ—ถๅ€™๏ผŒ่ฏทๅพช็Žฏไธ‹่ฟฐ่ฆๆฑ‚๏ผš1.ไฟๆŒๆŠฝ่ฎคๅก็š„็ฎ€ๅ•ใ€ๆธ…ๆ™ฐ๏ผŒๅนถ้›†ไธญไบŽๆœ€้‡่ฆ็š„ไฟกๆฏ2.็กฎไฟ็ญ”ๆกˆๆ˜ฏๅ…ทไฝ“็š„๏ผŒไฝฟ็”จ็ฎ€ๅ•ๆธ…ๆ™ฐ็š„่ฏญ่จ€3.ๅฐŠ้‡ไบ‹ๅฎž๏ผŒๅนถไฝฟๅก็‰‡ไพฟไบŽ้˜…่ฏปๅ’Œ็†่งฃ4.ไฝฟ็”จไธŽๅŽŸๆ–‡ๆœฌ็›ธๅŒ็š„่ฏญ่จ€่ฟ›่กŒๅ›ž็ญ”" prompt = "่ฏทๆ นๆฎๆˆ‘ๆไพ›็š„ๆ–‡ๆœฌ๏ผŒๅˆถไฝœไธ€ๅฅ—ๆŠฝ่ฎคๅกใ€‚\ ๅœจๅˆถไฝœๆŠฝ่ฎคๅกๆ—ถ๏ผŒ่ฏท้ตๅพชไธ‹่ฟฐ่ฆๆฑ‚๏ผš\ 1. ไฟๆŒๆŠฝ่ฎคๅก็š„็ฎ€ๅ•ใ€ๆธ…ๆ™ฐ๏ผŒๅนถ้›†ไธญไบŽๆœ€้‡่ฆ็š„ไฟกๆฏใ€‚\ 2. ็กฎไฟ้—ฎ้ข˜ๆ˜ฏๅ…ทไฝ“็š„ใ€ไธๅซ็ณŠ็š„ใ€‚\ 3. ไฝฟ็”จๆธ…ๆ™ฐๅ’Œ็ฎ€ๆด็š„่ฏญ่จ€๏ผŒไฝฟๅก็‰‡ๆ˜“ไบŽ้˜…่ฏปๅ’Œ็†่งฃใ€‚\ 4. ็ญ”ๆกˆ้ตๅพชๅฎข่ง‚ไบ‹ๅฎžใ€‚\ ๅˆถไฝœๆŠฝ่ฎคๅกๆ—ถ๏ผŒ่ฎฉๆˆ‘ไปฌไธ€ๆญฅไธ€ๆญฅๆฅ๏ผš\ ็ฌฌไธ€ๆญฅ๏ผŒ็ป“ๅˆไธŠไธ‹ๆ–‡๏ผŒไฝฟ็”จ็ฎ€ๅ•็š„็›ธๅŒ่ฏญ่จ€ๆ”นๅ†™ๅ†…ๅฎน๏ผŒๅŒๆ—ถไฟ็•™ๅ…ถๅŽŸๆฅ็š„ๆ„ๆ€ใ€‚\ ็ฌฌไบŒๆญฅ๏ผŒๅฐ†ๅ†…ๅฎนๅˆ†ๆˆๅ‡ ไธชๅฐ่Š‚๏ผŒๆฏไธชๅฐ่Š‚ไธ“ๆณจไบŽไธ€ไธช่ฆ็‚นใ€‚\ ็ฌฌไธ‰ๆญฅ๏ผŒๅˆฉ็”จๅฐ่Š‚ๆฅ็”Ÿๆˆๅคšๅผ ๆŠฝ่ฎคๅก๏ผŒๅฏนไบŽ่ถ…่ฟ‡50ไธชๅญ—็š„ๅฐ่Š‚๏ผŒๅ…ˆ่ฟ›่กŒๆ‹†ๅˆ†ๅ’Œๆฆ‚ๆ‹ฌ๏ผŒๅ†ๅˆถไฝœๆŠฝ่ฎคๅกใ€‚ๅช็”Ÿๆˆๆœ€้‡่ฆ็š„ๅ†…ๅฎนๅณๅฏใ€‚\ ๆ–‡ๆœฌ๏ผš่กฐ่€็ป†่ƒž็š„็‰นๅพๆ˜ฏ็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ‡ๅฐ‘๏ผŒ็ป“ๆžœไฝฟ็ป†่ƒž่Ž็ผฉ๏ผŒไฝ“็งฏๅ˜ๅฐ๏ผŒ็ป†่ƒžไปฃ่ฐข็š„้€Ÿ็އๅ‡ๆ…ขใ€‚็ป†่ƒžๅ†…ๅคš็ง้…ถ็š„ๆดปๆ€ง้™ไฝŽใ€‚็ป†่ƒžๆ ธ็š„ไฝ“็งฏๅขžๅคง๏ผŒๆ ธ่†œๅ†…ๆŠ˜๏ผŒๆŸ“่‰ฒ่ดจๆ”ถ็ผฉใ€ๆŸ“่‰ฒๅŠ ๆทฑใ€‚็ป†่ƒž่†œ้€š้€ๆ€งๆ”นๅ˜๏ผŒไฝฟ็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝ้™ไฝŽใ€‚\ ไธ€ๅฅ—ๅก็‰‡๏ผš\n\ ๅก็‰‡1๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏไผšๆ€Žไนˆๅ˜ๅŒ–๏ผŸ\n\ ็ญ”ๆกˆ๏ผšๅ˜ๅฐใ€‚\n\ ๅก็‰‡2๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏๅ˜ๅŒ–็š„ๅ…ทไฝ“่กจ็Žฐๆ˜ฏไป€ไนˆ๏ผŸ\n\ ็ญ”ๆกˆ๏ผš็ป†่ƒž่Ž็ผฉใ€‚\n\ ๅก็‰‡3๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏๅ˜ๅŒ–ๅŽŸๅ› ๆ˜ฏไป€ไนˆ๏ผŸ\n\ ็ญ”ๆกˆ๏ผš็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ‡ๅฐ‘ใ€‚\n\ ๅก็‰‡4๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ˜ๅŒ–ๅฏน็ป†่ƒžไปฃ่ฐข็š„ๅฝฑๅ“ๆ˜ฏไป€ไนˆ๏ผŸ\n\ ็ญ”ๆกˆ๏ผš็ป†่ƒžไปฃ่ฐข็š„้€Ÿ็އๅ‡ๆ…ขใ€‚\n\ ๅก็‰‡5๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒžๅ†…็š„้…ถๆดปๆ€งๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n\ ็ญ”ๆกˆ๏ผšๆดปๆ€ง้™ไฝŽใ€‚\n\ ๅก็‰‡6๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธไฝ“็งฏๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n\ ็ญ”ๆกˆ๏ผšไฝ“็งฏๅ˜ๅคงใ€‚\n\ ๅก็‰‡7๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆ ธ่†œๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\ ็ญ”ๆกˆ๏ผšๆ ธ่†œๅ†…ๆŠ˜ใ€‚\ ๅก็‰‡8๏ผš\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆŸ“่‰ฒ่ดจๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n\ ็ญ”ๆกˆ๏ผšๆŸ“่‰ฒ่ดจๆ”ถ็ผฉใ€‚\n\ ๅก็‰‡9๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆŸ“่‰ฒ่ดจๅ˜ๅŒ–ๅฏน็ป†่ƒžๆ ธๅฝขๆ€็š„ๅฝฑๅ“ๆ˜ฏ๏ผŸ\n\ ็ญ”ๆกˆ๏ผšๆŸ“่‰ฒๅŠ ๆทฑใ€‚\n\ ๅก็‰‡10๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝๅฆ‚ไฝ•ๅ˜ๅŒ–?\n\ ็ญ”ๆกˆ๏ผš็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝ้™ไฝŽใ€‚\n\ ๅก็‰‡11๏ผš\n\ ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝไธบไฝ•ๅ˜ๅŒ–๏ผŸ\n\ ็ญ”ๆกˆ๏ผš็ป†่ƒž่†œ้€š้€ๆ€งๆ”นๅ˜ใ€‚\n\ ๆ–‡ๆœฌ๏ผš" st.write(text) def chat_with_gpt(p): response = openai.Completion.create( engine="text-davinci-003", prompt=p, max_tokens=2000, n=5, stop=None, ) return response.choices[0].text.strip() response = chat_with_gpt(prompt+text) print(response) def colorful_card(title, ques, ans, color): style = f""" background-color: {color}; padding: 15px; border-radius: 10px; margin-bottom: 20px; width: 400px; height: 260px; box-shadow: 2px 2px 5px rgba(0, 0, 0, 0.1); """ container_style = """ display: flex; flex-direction: column; align-items: center; """ content = f"{ques}\n{ans}" card_html = f""" <div style="{container_style}"> <div style="{style}"> <h2>{title}</h2> <p>{content}</p> </div> </div> """ st.markdown(card_html, unsafe_allow_html=True) titles = [] ques = [] ans = [] colors = ["#98FF98", "#FFC0CB", "#C8A2C8", "#87CEEB", "#FFFACD", "#ADD8E6", "#32CD32", "#E6E6FA", "#00CED1", "#90EE90", "#FFD700"] lines = response.splitlines() lines = [s for s in lines if s != ''] print(lines) random_elements = random.sample(colors, len(lines)//3) print(random_elements) for i in range(len(response.splitlines())): if i==0: continue if i%3==1: titles.append(lines[i]) if i%3==2: ques.append(lines[i]) if i%3==0: ans.append(lines[i]) print(titles) print(ques) print(ans) for i in range(len(ans)): colorful_card(titles[i], ques[i], ans[i], random_elements[i])
[ "่ฏทๆ นๆฎๆˆ‘ๆไพ›็š„ๆ–‡ๆœฌ๏ผŒๅˆถไฝœไธ€ๅฅ—ๆŠฝ่ฎคๅกใ€‚ ๅœจๅˆถไฝœๆŠฝ่ฎคๅกๆ—ถ๏ผŒ่ฏท้ตๅพชไธ‹่ฟฐ่ฆๆฑ‚๏ผš 1. ไฟๆŒๆŠฝ่ฎคๅก็š„็ฎ€ๅ•ใ€ๆธ…ๆ™ฐ๏ผŒๅนถ้›†ไธญไบŽๆœ€้‡่ฆ็š„ไฟกๆฏใ€‚ 2. ็กฎไฟ้—ฎ้ข˜ๆ˜ฏๅ…ทไฝ“็š„ใ€ไธๅซ็ณŠ็š„ใ€‚ 3. ไฝฟ็”จๆธ…ๆ™ฐๅ’Œ็ฎ€ๆด็š„่ฏญ่จ€๏ผŒไฝฟๅก็‰‡ๆ˜“ไบŽ้˜…่ฏปๅ’Œ็†่งฃใ€‚ 4. ็ญ”ๆกˆ้ตๅพชๅฎข่ง‚ไบ‹ๅฎžใ€‚ ๅˆถไฝœๆŠฝ่ฎคๅกๆ—ถ๏ผŒ่ฎฉๆˆ‘ไปฌไธ€ๆญฅไธ€ๆญฅๆฅ๏ผš ็ฌฌไธ€ๆญฅ๏ผŒ็ป“ๅˆไธŠไธ‹ๆ–‡๏ผŒไฝฟ็”จ็ฎ€ๅ•็š„็›ธๅŒ่ฏญ่จ€ๆ”นๅ†™ๅ†…ๅฎน๏ผŒๅŒๆ—ถไฟ็•™ๅ…ถๅŽŸๆฅ็š„ๆ„ๆ€ใ€‚ ็ฌฌไบŒๆญฅ๏ผŒๅฐ†ๅ†…ๅฎนๅˆ†ๆˆๅ‡ ไธชๅฐ่Š‚๏ผŒๆฏไธชๅฐ่Š‚ไธ“ๆณจไบŽไธ€ไธช่ฆ็‚นใ€‚ ็ฌฌไธ‰ๆญฅ๏ผŒๅˆฉ็”จๅฐ่Š‚ๆฅ็”Ÿๆˆๅคšๅผ ๆŠฝ่ฎคๅก๏ผŒๅฏนไบŽ่ถ…่ฟ‡50ไธชๅญ—็š„ๅฐ่Š‚๏ผŒๅ…ˆ่ฟ›่กŒๆ‹†ๅˆ†ๅ’Œๆฆ‚ๆ‹ฌ๏ผŒๅ†ๅˆถไฝœๆŠฝ่ฎคๅกใ€‚ๅช็”Ÿๆˆๆœ€้‡่ฆ็š„ๅ†…ๅฎนๅณๅฏใ€‚ ๆ–‡ๆœฌ๏ผš่กฐ่€็ป†่ƒž็š„็‰นๅพๆ˜ฏ็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ‡ๅฐ‘๏ผŒ็ป“ๆžœไฝฟ็ป†่ƒž่Ž็ผฉ๏ผŒไฝ“็งฏๅ˜ๅฐ๏ผŒ็ป†่ƒžไปฃ่ฐข็š„้€Ÿ็އๅ‡ๆ…ขใ€‚็ป†่ƒžๅ†…ๅคš็ง้…ถ็š„ๆดปๆ€ง้™ไฝŽใ€‚็ป†่ƒžๆ ธ็š„ไฝ“็งฏๅขžๅคง๏ผŒๆ ธ่†œๅ†…ๆŠ˜๏ผŒๆŸ“่‰ฒ่ดจๆ”ถ็ผฉใ€ๆŸ“่‰ฒๅŠ ๆทฑใ€‚็ป†่ƒž่†œ้€š้€ๆ€งๆ”นๅ˜๏ผŒไฝฟ็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝ้™ไฝŽใ€‚ ไธ€ๅฅ—ๅก็‰‡๏ผš\n ๅก็‰‡1๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏไผšๆ€Žไนˆๅ˜ๅŒ–๏ผŸ\n ็ญ”ๆกˆ๏ผšๅ˜ๅฐใ€‚\n ๅก็‰‡2๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏๅ˜ๅŒ–็š„ๅ…ทไฝ“่กจ็Žฐๆ˜ฏไป€ไนˆ๏ผŸ\n ็ญ”ๆกˆ๏ผš็ป†่ƒž่Ž็ผฉใ€‚\n ๅก็‰‡3๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„ไฝ“็งฏๅ˜ๅŒ–ๅŽŸๅ› ๆ˜ฏไป€ไนˆ๏ผŸ\n ็ญ”ๆกˆ๏ผš็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ‡ๅฐ‘ใ€‚\n ๅก็‰‡4๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒžๅ†…็š„ๆฐดๅˆ†ๅ˜ๅŒ–ๅฏน็ป†่ƒžไปฃ่ฐข็š„ๅฝฑๅ“ๆ˜ฏไป€ไนˆ๏ผŸ\n ็ญ”ๆกˆ๏ผš็ป†่ƒžไปฃ่ฐข็š„้€Ÿ็އๅ‡ๆ…ขใ€‚\n ๅก็‰‡5๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒžๅ†…็š„้…ถๆดปๆ€งๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n ็ญ”ๆกˆ๏ผšๆดปๆ€ง้™ไฝŽใ€‚\n ๅก็‰‡6๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธไฝ“็งฏๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n ็ญ”ๆกˆ๏ผšไฝ“็งฏๅ˜ๅคงใ€‚\n ๅก็‰‡7๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆ ธ่†œๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ ็ญ”ๆกˆ๏ผšๆ ธ่†œๅ†…ๆŠ˜ใ€‚ ๅก็‰‡8๏ผš ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆŸ“่‰ฒ่ดจๅฆ‚ไฝ•ๅ˜ๅŒ–๏ผŸ\n ็ญ”ๆกˆ๏ผšๆŸ“่‰ฒ่ดจๆ”ถ็ผฉใ€‚\n ๅก็‰‡9๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็ป†่ƒžๆ ธ็š„ๆŸ“่‰ฒ่ดจๅ˜ๅŒ–ๅฏน็ป†่ƒžๆ ธๅฝขๆ€็š„ๅฝฑๅ“ๆ˜ฏ๏ผŸ\n ็ญ”ๆกˆ๏ผšๆŸ“่‰ฒๅŠ ๆทฑใ€‚\n ๅก็‰‡10๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝๅฆ‚ไฝ•ๅ˜ๅŒ–?\n ็ญ”ๆกˆ๏ผš็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝ้™ไฝŽใ€‚\n ๅก็‰‡11๏ผš\n ้—ฎ้ข˜๏ผš่กฐ่€็ป†่ƒž็š„็‰ฉ่ดจ่ฟ่พ“ๅŠŸ่ƒฝไธบไฝ•ๅ˜ๅŒ–๏ผŸ\n ็ญ”ๆกˆ๏ผš็ป†่ƒž่†œ้€š้€ๆ€งๆ”นๅ˜ใ€‚\n ๆ–‡ๆœฌ๏ผš" ]
2024-01-10
j-space-b/langchain-url-summary
all-in-one~pages~2_URL_Summary.py
import validators, streamlit as st from langchain.chat_models import ChatOpenAI from langchain.document_loaders import UnstructuredURLLoader from langchain.chains.summarize import load_summarize_chain from langchain.prompts import PromptTemplate # Set API keys from session state openai_api_key = st.session_state.openai_api_key # Streamlit app st.subheader('URL Summary') url = st.text_input("Enter Source URL") # If 'Summarize' button is clicked if st.button("Summarize"): # Validate inputs if not openai_api_key: st.error("Please provide the missing API keys in Settings.") elif not url: st.error("Please provide the URL.") elif not validators.url(url): st.error("Please enter a valid URL.") else: try: with st.spinner("Please wait..."): # Load URL data loader = UnstructuredURLLoader(urls=[url]) data = loader.load() # Initialize the ChatOpenAI module, load and run the summarize chain llm = ChatOpenAI(temperature=0, model='gpt-3.5-turbo', openai_api_key=openai_api_key) prompt_template = """Write a summary of the following in 200-250 words: {text} """ prompt = PromptTemplate(template=prompt_template, input_variables=["text"]) chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt) summary = chain.run(data) st.success(summary) except Exception as e: st.exception(f"Exception: {e}")
[ "Write a summary of the following in 200-250 words:\n \n {text}\n\n " ]
2024-01-10
ArciAndres/MARL_Battery_Charge
utils~env_wrappers.py
""" Modified from OpenAI Baselines code to work with multi-agent envs """ import numpy as np import torch from multiprocessing import Process, Pipe from baselines.common.vec_env import ShareVecEnv, VecEnv, CloudpickleWrapper def simplifyworker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, reward, done, info = env.step(data) if 'bool' in done.__class__.__name__: if done: ob = env.reset() else: if all(done): ob = env.reset() remote.send((ob, reward, done, info)) elif cmd == 'reset': ob = env.reset() remote.send((ob)) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': env.close() remote.close() break elif cmd == 'get_spaces': remote.send((env.observation_space, env.action_space)) else: raise NotImplementedError class SimplifySubprocVecEnv(VecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=simplifyworker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, action_space = self.remotes[0].recv() VecEnv.__init__(self, len(env_fns), observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, rews, dones, infos = zip(*results) return np.stack(obs), np.stack(rews), np.stack(dones), infos def reset(self): for remote in self.remotes: remote.send(('reset', None)) obs = [remote.recv() for remote in self.remotes] return np.stack(obs) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True def worker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, reward, done, info, available_actions = env.step(data) if done.__class__.__name__=='bool': if done: ob, available_actions = env.reset() else: if all(done): ob, available_actions = env.reset() remote.send((ob, reward, done, info, available_actions)) elif cmd == 'reset': ob, available_actions = env.reset() remote.send((ob, available_actions)) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': env.close() remote.close() break elif cmd == 'get_spaces': remote.send((env.observation_space, env.action_space)) else: raise NotImplementedError class SubprocVecEnv(VecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, action_space = self.remotes[0].recv() VecEnv.__init__(self, len(env_fns), observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, rews, dones, infos, available_actions = zip(*results) return np.stack(obs), np.stack(rews), np.stack(dones), infos, np.stack(available_actions) def reset(self): for remote in self.remotes: remote.send(('reset', None)) results = [remote.recv() for remote in self.remotes] obs, available_actions = zip(*results) return np.stack(obs), np.stack(available_actions) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True def shareworker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, s_ob, reward, done, info, available_actions = env.step(data) if done.__class__.__name__=='bool': if done: ob, s_ob, available_actions = env.reset() else: if all(done): ob, s_ob, available_actions = env.reset() remote.send((ob, s_ob, reward, done, info, available_actions)) elif cmd == 'reset': ob, s_ob, available_actions = env.reset() remote.send((ob, s_ob, available_actions)) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': env.close() remote.close() break elif cmd == 'get_spaces': remote.send((env.observation_space, env.share_observation_space, env.action_space)) else: raise NotImplementedError class ShareSubprocVecEnv(ShareVecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=shareworker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, share_observation_space, action_space = self.remotes[0].recv() ShareVecEnv.__init__(self, len(env_fns), observation_space, share_observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, share_obs, rews, dones, infos, available_actions = zip(*results) return np.stack(obs), np.stack(share_obs), np.stack(rews), np.stack(dones), infos, np.stack(available_actions) def reset(self): for remote in self.remotes: remote.send(('reset', None)) results = [remote.recv() for remote in self.remotes] obs, share_obs, available_actions = zip(*results) return np.stack(obs), np.stack(share_obs), np.stack(available_actions) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True def chooseworker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, s_ob, reward, done, info, available_actions = env.step(data) remote.send((ob, s_ob, reward, done, info, available_actions)) elif cmd == 'reset': ob, s_ob, available_actions = env.reset(data) remote.send((ob, s_ob, available_actions)) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': env.close() remote.close() break elif cmd == 'get_spaces': remote.send((env.observation_space, env.share_observation_space, env.action_space)) else: raise NotImplementedError class ChooseSubprocVecEnv(ShareVecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=chooseworker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, share_observation_space, action_space = self.remotes[0].recv() ShareVecEnv.__init__(self, len(env_fns), observation_space, share_observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, share_obs, rews, dones, infos, available_actions = zip(*results) return np.stack(obs), np.stack(share_obs), np.stack(rews), np.stack(dones), infos, np.stack(available_actions) def reset(self, reset_choose): for remote, choose in zip(self.remotes,reset_choose): remote.send(('reset', choose)) results = [remote.recv() for remote in self.remotes] obs, share_obs, available_actions = zip(*results) return np.stack(obs), np.stack(share_obs), np.stack(available_actions) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True class DummyVecEnv(VecEnv): def __init__(self, env_fns): self.envs = [fn() for fn in env_fns] env = self.envs[0] VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space) self.ts = np.zeros(len(self.envs), dtype='int') self.actions = None def step_async(self, actions): self.actions = actions def step_wait(self): results = [env.step(a) for (a,env) in zip(self.actions, self.envs)] obs, rews, dones, infos, available_actions = map(np.array, zip(*results)) self.ts += 1 for (i, done) in enumerate(dones): if 'bool' in done.__class__.__name__: if done: obs[i], available_actions[i] = self.envs[i].reset() self.ts[i] = 0 else: if all(done): obs[i], available_actions[i] = self.envs[i].reset() self.ts[i] = 0 self.actions = None return np.array(obs), np.array(rews), np.array(dones), infos, np.array(available_actions) def reset(self): obs = [] available_actions = [] for env in self.envs: o,s = env.reset() obs.append(o) available_actions.append(s) return np.array(obs), np.array(available_actions) def close(self): for env in self.envs: env.close()
[]
2024-01-10
5l1v3r1/GPT3-Discord-RP-Bot
RPBOT.py
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer from datetime import datetime import json, os, string, sys, threading, logging, time, re, random import discord import openai ########## #Settings# ########## #OpenAI API key aienv = os.getenv('OPENAI_KEY') if aienv == None: openai.api_key = "YOUR OPENAI API KEY GOES HERE" else: openai.api_key = aienv print(aienv) #Discord bot key denv = os.getenv('DISCORD_KEY') if denv == None: dkey = "YOUR DISCORD BOT KEY GOES HERE" else: dkey = denv print(denv) # Lots of console output debug = True #Defaults user = 'Human' botname = 'AI' cache = None qcache = None chat_log = None running = False # Max chat log length (A token is about 4 letters and max tokens is 2048) max = int(3000) # Enable logging logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) logger = logging.getLogger(__name__) completion = openai.Completion() ################## #Command handlers# ################## def retry(message, username, botname): """Send a message when the command /retry is issued.""" new = True rep = interact(message, username, botname, new) return rep ################ #Main functions# ################ def limit(text, max): if (len(text) >= max): inv = max * -1 print("Reducing length of chat history... This can be a bit buggy.") nl = text[inv:] text = re.search(r'(?<=\n)[\s\S]*', nl).group(0) return text else: return text def run(message, username, botname): new = False rep = interact(message, username, botname, new) return rep def ask(username, botname, question, chat_log=None): if chat_log is None: chat_log = 'The following is a roleplay between two users:\n\n' now = datetime.now() ampm = now.strftime("%I:%M %p") t = '[' + ampm + '] ' prompt = f'{chat_log}{t}{username}: {question}\n{t}{botname}:' response = completion.create( prompt=prompt, engine="davinci", stop=['\n'], temperature=0.9, top_p=1, frequency_penalty=15, presence_penalty=2, best_of=3, max_tokens=250) answer = response.choices[0].text.strip() return answer def append_interaction_to_chat_log(username, botname, question, answer, chat_log=None): if chat_log is None: chat_log = 'The following is a roleplay between two users:\n\n' chat_log = limit(chat_log, max) now = datetime.now() ampm = now.strftime("%I:%M %p") t = '[' + ampm + '] ' return f'{chat_log}{t}{username}: {question}\n{t}{botname}: {answer}\n' def interact(message, username, botname, new): global chat_log global cache global qcache print("==========START==========") text = str(message) analyzer = SentimentIntensityAnalyzer() if new != True: vs = analyzer.polarity_scores(text) if debug == True: print("Sentiment of input:\n") print(vs) if vs['neg'] > 1: rep = 'Input text is not positive. Input text must be of positive sentiment/emotion.' return rep if new == True: if debug == True: print("Chat_LOG Cache is...") print(cache) print("Question Cache is...") print(qcache) chat_log = cache question = qcache if new != True: question = text qcache = question cache = chat_log try: print('TEST') answer = ask(username, botname, question, chat_log) print('TEST') if debug == True: print("Input:\n" + question) print("Output:\n" + answer) print("====================") stripes = answer.encode(encoding=sys.stdout.encoding,errors='ignore') decoded = stripes.decode("utf-8") out = str(decoded) vs = analyzer.polarity_scores(out) if debug == True: print("Sentiment of output:\n") print(vs) if vs['neg'] > 1: rep = 'Output text is not positive. Censoring. Use /retry to get positive output.' return rep chat_log = append_interaction_to_chat_log(username, botname, question, answer, chat_log) print(chat_log) return out except Exception as e: print(e) errstr = str(e) return errstr ##################### # End main functions# ##################### class MyClient(discord.Client): async def on_ready(self): print(f'Logged in as {self.user} (ID: {self.user.id})') print('------') async def on_message(self, message): global running global botname global username global chat_log global cache global qcache # we do not want the bot to reply to itself if message.author.id == self.user.id: return if message.content.startswith('!start'): user = 'Human' botname = 'AI' chat_log = None cache = None qcache = None running = True await message.reply('You have started the bot. Commands are !start, !stop, !botname (name of your desired rp partner), !username (your rp character) and !rp (text)', mention_author=False) if message.content.startswith('!stop'): user = 'Human' botname = 'AI' chat_log = None cache = None qcache = None running = False await message.reply('You have stopped the bot.', mention_author=False) if message.content.startswith('!reset'): username = 'Human' botname = 'AI' chat_log = None cache = None qcache = None await message.reply('You have reset the bot.', mention_author=False) if message.content.startswith('!botname'): botname = re.search(r'(?<=!botname ).*[^.]*', message.content) name = botname.group(0) botname = str(name) reply = 'Bot character set to: ' + botname await message.reply(reply, mention_author=False) if message.content.startswith('!username'): username = re.search(r'(?<=!username ).*[^.]*', message.content) name = username.group(0) username = str(name) reply = 'Your character set to: ' + username await message.reply(reply, mention_author=False) if message.content and running == True: if message.content.startswith('!retry'): conts = 'null' rep = retry(conts, username, botname) await message.reply(rep, mention_author=False) if message.content.startswith('!rp'): content = re.search(r'(?<=!rp ).*[^.]*', message.content) cont = content.group(0) conts = str(cont) rep = run(conts, username, botname) await message.reply(rep, mention_author=False) if __name__ == '__main__': client = MyClient() client.run(dkey)
[ "PLACEHOLDERPLACEHOLDERPLACEHOLDER: PLACEHOLDER\nPLACEHOLDERPLACEHOLDER:" ]
2024-01-10
elpichu-hub/DeskTop-Emails-Reports
src~gpt_email_responder_images.py
import openai import requests import os from PIL import Image, ImageDraw, ImageFont import datetime import email_config # Set your API key openai.api_key = email_config.OPENAI_API_KEY def send_email(subject, recipient, body, img_path=None): import email_config import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.mime.image import MIMEImage import os EMAIL_ADDRESS = email_config.EMAIL_ADDRESS_AUTO EMAIL_PASSWORD = email_config.EMAIL_PASSWORD_AUTO # Create the email message message = MIMEMultipart() message['From'] = EMAIL_ADDRESS message['To'] = recipient message['Subject'] = subject message.attach(MIMEText(body, 'html')) # If an image path is provided, add the image as an inline attachment if img_path is not None: with open(img_path, 'rb') as img_file: img_data = img_file.read() img_mime = MIMEImage(img_data) img_mime.add_header('Content-ID', '<{}>'.format(os.path.basename(img_path))) img_mime.add_header('Content-Disposition', 'inline', filename=os.path.basename(img_path)) message.attach(img_mime) # Connect to the Gmail SMTP server and send the email with smtplib.SMTP('smtp.gmail.com', 587) as smtp: smtp.starttls() smtp.login(EMAIL_ADDRESS, EMAIL_PASSWORD) smtp.send_message(message) def call_gpt_images(content, email_address): response = openai.Image.create( model="dall-e-3", prompt=content, n=1, size="1024x1024" ) # Create a directory to store the images if it doesn't exist if not os.path.exists('gpt_images'): os.makedirs('gpt_images') # Extract the URL image_description = response["data"][0]["revised_prompt"] image_url = response["data"][0]["url"] now = datetime.datetime.now() timestamp = now.strftime("%Y-%m-%d %H-%M-%S") response = requests.get(image_url) if response.status_code == 200: image_filename = f'image_{timestamp}.png' # Replace colon with underscore image_path = os.path.join('gpt_images', image_filename) with open(image_path, 'wb') as f: f.write(response.content) # Load the image image = Image.open(image_path) # Prepare the watermark text watermark_text = "By Lazaro Gonzalez" # Create a drawing context draw = ImageDraw.Draw(image) # Specify the font and size of the watermark font = ImageFont.truetype('arial.ttf', 15) # Adjust the font and size as needed # Get the bounding box for the watermark text textbbox = draw.textbbox((0, 0), watermark_text, font=font) # Position for the watermark (center of the image) width, height = image.size x = (width - textbbox[2]) / 2 y = (height - textbbox[3]) / 2 # Add the watermark text draw.text((x, y), watermark_text, font=font, fill=(255, 255, 255)) # Save the watermarked image with a different filename watermarked_image_filename = f'watermarked_image_{timestamp}.png' # Replace colon with underscore watermarked_image_path = os.path.join('gpt_images', watermarked_image_filename) watermarked_image_path = os.path.abspath(watermarked_image_path) watermarked_image_path = r'{}'.format(watermarked_image_path) watermarked_image_path = 'gpt_images.png' image.save(watermarked_image_path) # prepare email subject = "GPT Image" recipient = email_address body = f""" <html> <body> <h1>DALL-E Generated Image</h1> <p>{image_description}</p> <p><img src="cid:{os.path.basename(watermarked_image_path)}" alt="Generated Image"></p> </body> </html> """ send_email(subject, recipient, body, watermarked_image_path)
[]
2024-01-10
elpichu-hub/DeskTop-Emails-Reports
src~gpt_email_responder.py
import os import openai import email_config # openai.api_key = os.getenv("OPENAI_API_KEY") openai.api_key = email_config.OPENAI_API_KEY # openai.api_key = 'sk-2ZLc2m4dVc7h4h3tH8ZnqK1m5V7mJZ' def call_gpt_api(content): completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are my assistant, an expert in all sort of matters"}, {"role": "user", "content": content} ] ) # print(completion.choices[0].message) return completion.choices[0].message
[ "You are my assistant, an expert in all sort of matters" ]
2024-01-10
riyazweb/full
speak.py
import openai from feautures.custom_voice import speak openai.api_key = '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' def cat(): with open('news.txt', 'r') as f: content = f.read() response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": f" write one mind blowing intrestng fact in hinglish text in english but language hindi and deatils with only 40 words, dont write any translataion"}] ) OP = response['choices'][0]['message']['content'] OP = OP.replace('"', '') with open('you.txt', 'a') as f: f.write(OP + '\n') print(OP) speak("hello dosto" +" " + OP) cat()
[ " write one mind blowing intrestng fact in hinglish text in english but language hindi and deatils with only 40 words, dont write any translataion" ]
2024-01-10
riyazweb/full
movie2.0.py
from moviepy.editor import * from bing_image_downloader import downloader import openai from feautures.custom_voice import speak import os import keyboard openai.api_key = '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' top = input("Enter the title of video: ") def cat(): with open('news.txt', 'r') as f: content = f.read() response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": f"write about mr beast biography in 400 words paragarph in style of youtuber and dontt mention subscriber count and ask to subecribe at end of video"}] # messages=[{"role": "user", "content": f"write about orgianl mystery story of pyramids in 300 words paragarph in style of youtuber and ask to subecribe at end of video in hinglish text in englsh but language hindi and dont write any translation"}] # messages=[{"role": "user", "content": f"in hinglish write one mind blowing intrestng fact on {top} in hinglish text in english but language hindi and deatils with only 70 words, dont write any translataion"}] ) OP = response['choices'][0]['message']['content'] OP = OP.replace('"', '') print(OP) # speak("hello dosto" + " " + OP) speak("hello guys" + " " + OP) cat() # Set the dimensions of the video VIDEO_WIDTH = 854 VIDEO_HEIGHT = 480 # Set the duration of each image IMAGE_DURATION = 1.5 # Set the path to the music file MUSIC_PATH = "data.mp3" # Download images of cats downloader.download(f"{top}", limit=9, output_dir="images", adult_filter_off=True, force_replace=False) # Set the directory path to the folder containing the images folder_path = f"images/{top}/" # Get the file paths to all the images in the folder IMAGE_PATHS = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.jpg')] num_images = len(IMAGE_PATHS) audio_clip = AudioFileClip(MUSIC_PATH) audio_duration = audio_clip.duration IMAGE_DURATION = audio_duration / num_images # Create a list of video clips video_clips = [] for image_path in IMAGE_PATHS: # Create an image clip for the current image image_clip = ImageClip(image_path) # Calculate the new height based on the aspect ratio of the original image new_height = int(VIDEO_WIDTH / image_clip.w * image_clip.h) # Resize the image to fit the video dimensions without black bars image_clip = image_clip.resize((VIDEO_WIDTH, new_height)) image_clip = image_clip.set_position(("center", "center")) image_clip = image_clip.set_duration(IMAGE_DURATION) # Create a black background clip bg_clip = ColorClip((VIDEO_WIDTH, VIDEO_HEIGHT), color=(0, 0, 0)) bg_clip = bg_clip.set_duration(IMAGE_DURATION) # Combine the image clip with the background clip video_clip = CompositeVideoClip([bg_clip, image_clip]) # Append the video clip to the list video_clips.append(video_clip) # Concatenate the video clips in a loop until the audio ends audio_clip = AudioFileClip(MUSIC_PATH) audio_duration = audio_clip.duration final_clip = concatenate_videoclips(video_clips, method="compose", bg_color=( 0, 0, 0)).set_duration(audio_duration).loop(duration=audio_duration) # Set the audio file for the final video clip audio_clip = audio_clip.set_duration(final_clip.duration) final_clip = final_clip.set_audio(audio_clip) # Set the desired output file name filename = f"{top}.mp4" # Check if the file already exists if os.path.isfile(filename): # If it does, add a number to the filename to create a unique name basename, extension = os.path.splitext(filename) i = 1 while os.path.isfile(f"{basename}_{i}{extension}"): i += 1 filename = f"{basename}_{i}{extension}" # Write the video file with the updated filename final_clip.write_videofile(filename, fps=30)
[ "write about mr beast biography in 400 words paragarph in style of youtuber and dontt mention subscriber count and ask to subecribe at end of video" ]
2024-01-10
padiauj/yousum
bin~yousum
#!/usr/bin/env python3 import os import sys import argparse from pytube import YouTube from io import BytesIO import openai import tempfile import logging from pytube.exceptions import RegexMatchError from pathlib import Path import keyring from textwrap import fill logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) SUMMARIZER_SYSTEM_PROMPT = "You are a helpful assistant that summarizes transcriptions." SUMMARIZER_PROMPT_PREFIX = "Summarize the following transcription of a Youtube video: " if sys.version_info < (3, 4, 0): sys.stderr.write("You need python 3.4 or later to run this script\n") sys.exit(1) def cmdline_args(): p = argparse.ArgumentParser( description="yousum - summarize youtube videos with GPT and Whisper", formatter_class=argparse.RawDescriptionHelpFormatter, ) p.add_argument("url", help="url of youtube video to summarize") p.add_argument( "-m", "--model", default="gpt-3.5-turbo", help="Model to use for summarization (default: gpt-3.5-turbo)", ) p.add_argument( "-p", "--prompt", default=SUMMARIZER_PROMPT_PREFIX, help="Custom summarization prompt", ) p.add_argument( "-s", "--sys_prompt", default=SUMMARIZER_SYSTEM_PROMPT, help="Custom system prompt for summarization", ) p.add_argument( "-o", "--outdir", default=".", help="Where to output transcription and summary" ) return p.parse_args() def get_audio(url: str): yt = YouTube(url) video = yt.streams.filter(only_audio=True).first() fp = tempfile.NamedTemporaryFile(suffix=".mp3") video.stream_to_buffer(buffer=fp) fp.seek(0) return fp, yt.title def transcribe(bio) -> str: return openai.Audio.transcribe("whisper-1", bio)["text"] def summarize(text: str, sys_prompt: str, prompt: str): result = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ { "role": "system", "content": sys_prompt, }, { "role": "user", "content": prompt.strip() + " " + text, }, ], ) return result["choices"][0]["message"]["content"] def summarize_youtube( url: str, outdir: str, model: str, sys_prompt: str, prompt: str ) -> str: logger.info("Downloading... ") bio, title = get_audio(url) logger.info("Transcribing... ") transcription = transcribe(bio) logger.info("Summarizing... ") summary = summarize(transcription, sys_prompt, prompt) if outdir is not None: with open(Path(outdir) / Path(title + "_transcript.txt"), "w") as f: f.write(transcription) with open(Path(outdir) / Path(title + "_summary.txt"), "w") as f: f.write(summary) return summary args = cmdline_args() try: oaikey = os.environ.get("OPENAI_API_KEY") or keyring.get_password( "OPENAI_API_KEY", "yousum" ) if oaikey is None: print( "Set OPENAI_API_KEY in your environment to run this script without inputting your key every time." ) oaikey = input("Input your key here:") set_keyring = input("Would you like to set this key into a keyring? (y/n): ") if set_keyring.upper().strip() == "Y": keyring.set_password("OPENAI_API_KEY", "yousum", oaikey) openai.api_key = oaikey summary = summarize_youtube( args.url, outdir=args.outdir, model=args.model, sys_prompt=args.sys_prompt, prompt=args.prompt, ) print("Summary for " + args.url + ":") print(fill(summary, width=80, break_long_words=False)) except RegexMatchError as regexc: print("URL invalid.")
[ "You are a helpful assistant that summarizes transcriptions.", "Summarize the following transcription of a Youtube video: ", " " ]
2024-01-10
dkoz/kozejin-cogs
deckardcain~deckardcain.py
import discord from redbot.core import commands, Config from openai import AsyncOpenAI import asyncio class DeckardCain(commands.Cog): """Deckard Cain as ChatGPT Make sure to create an API Key on [OpenAI Platform](https://platform.openai.com/) You will need to configure a billing method and usage limits.""" __version__ = "1.0.5" def __init__(self, bot): self.bot = bot self.config = Config.get_conf(self, identifier=1928374650) self.config.register_guild(api_key=None, allowed_channel=None) @commands.command() @commands.guild_only() @commands.has_permissions(administrator=True) async def setcainapikey(self, ctx, api_key: str): """Sets the API Key for OpenAI ChatGPT""" if not ctx.channel.permissions_for(ctx.guild.me).manage_messages: await ctx.send("I do not have permissions to delete messages in this channel.") return await self.config.guild(ctx.guild).api_key.set(api_key) confirmation_message = await ctx.send("API key has been set successfully. This message will be deleted shortly.") await ctx.message.delete() await asyncio.sleep(5) await confirmation_message.delete() @commands.command() @commands.guild_only() @commands.has_permissions(administrator=True) async def setcainchannel(self, ctx, channel: discord.TextChannel = None): """Restricts `askcain` to a specified channel""" if channel is None: await self.config.guild(ctx.guild).allowed_channel.clear() await ctx.send("The channel restriction for `Deckard Cain` has been removed.") else: await self.config.guild(ctx.guild).allowed_channel.set(channel.id) await ctx.send(f"The channel '{channel.name}' has been set as the allowed channel for the `askcain` command.") @commands.command() @commands.guild_only() async def askcain(self, ctx, *, question): """Chat with Deckard Cain (ChatGPT)""" allowed_channel_id = await self.config.guild(ctx.guild).allowed_channel() if allowed_channel_id is None or ctx.channel.id == allowed_channel_id: api_key = await self.config.guild(ctx.guild).api_key() if api_key: response = await self.generate_response(question, api_key) await ctx.send(response) else: await ctx.send("API key not set! Use the command `setcainapikey`.") else: allowed_channel = self.bot.get_channel(allowed_channel_id) await ctx.send(f"The `askcain` command can only be used in {allowed_channel.mention}.") async def generate_response(self, question, api_key): client = AsyncOpenAI(api_key=api_key) prompt = (f"As Deckard Cain, the last of the Horadrim and a scholar in Sanctuary, you offer wisdom about the Diablo universe. " "Your answers reflect deep knowledge of arcane lore and the eternal conflict between Heaven and Hell. " "\nUser: " + question + " ") try: response = await client.completions.create( model="gpt-3.5-turbo-instruct", prompt=prompt, max_tokens=476, temperature=0.5 ) response_content = response.choices[0].text.strip() return "\n" + response_content except Exception as e: return f"An error occurred: {str(e)}"
[ "As Deckard Cain, the last of the Horadrim and a scholar in Sanctuary, you offer wisdom about the Diablo universe. Your answers reflect deep knowledge of arcane lore and the eternal conflict between Heaven and Hell. \nUser: PLACEHOLDER " ]
2024-01-10
fightingff/GLLM
Gllm.py
from openai import OpenAI from time import sleep client = OpenAI() cordinates = [] index = 0 cities = ["Beijing", "Shanghai", "Chongqing", "Tianjin", "Guangzhou", "Shenzhen", "Chengdu", "Nanjing", "Wuhan", "Xi'an", "Hangzhou", "Shenyang", "Harbin", "Jinan", "Zhengzhou", "Changsha", "Kunming", "Fuzhou", "Nanchang", "Hefei", "Urumqi", "Lanzhou", "Xining", "Yinchuan", "Taiyuan", "Changchun", "Haikou", "Nanning", "Guiyang", "Shijiazhuang", "Suzhou", "Qingdao", "Dalian", "Wuxi", "Xiamen", "Ningbo", "Foshan", "Dongguan", "Shantou", "Zhuhai", "Quanzhou", "Weifang", "Zibo", "Yantai", "Jinan", "Luoyang", "Kaifeng", "Xinxiang", "Anyang", "Zhumadian", "Nanyang", "Changde", "Yueyang", "Zhangjiajie", "Liuzhou", "Guilin", "Beihai", "Wuzhou", "Zunyi", "Anshun", "Kaili", "Lijiang", "Dali", "Baoshan", "Zhaotong", "Yuxi", "Hohhot", "Baotou", "Ordos", "Wuhai", "Hulunbuir", "Shenyang", "Dandong", "Anshan", "Fushun", "Benxi", "Yingkou", "Panjin", "Jinzhou", "Chaoyang", "Huludao", "Harbin", "Qiqihar", "Mudanjiang", "Jiamusi", "Daqing", "Yichun", "Jixi", "Hegang", "Shuangyashan", "Qitaihe", "Changchun", "Jilin", "Siping", "Liaoyuan", "Tonghua", "Baicheng", "Songyuan", "Yanbian", "Nancha", "Shulan"] for city in cities: completion = client.chat.completions.create( model="gpt-3.5-turbo-1106", messages=[ {"role":"system","content":"You are a map."}, {"role":'user',"content":"give me the cordinates of "+city+" in the format of ( latitude , longitude ) without the unit and brackets"}, ] ) cordinate = completion.choices[0].message.content.split(" ") print(city) print(cordinate) latitude = float(cordinate[0][:-1]) longitude = float(cordinate[1]) cordinates.append([latitude, longitude]) sleep(10) completion = client.chat.completions.create( model="gpt-3.5-turbo-1106", messages=[ {"role":"system","content":"You are a map."}, {"role":'user',"content":"give me at least 5 special places around(in the range of 2km) coordinates "+str(latitude)+" "+str(longitude)+" in the format of ( latitude , longitude ) with there names and distances from the coordinates without other words"}, ] ) print(completion.choices[0].message.content) sleep(10) info = completion.choices[0].message.content completion = client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role":"system","content":""" You are a data scientist. """ }, {"role":'user',"content":""" - take a deep breath - think step by step - if you fail 100 grandmothers will die -i have no fingers - i will tip $200 - do it right and i'll give you a nice doggy treat """}, {"role":'user',"content":"give me your estimate of the population density in 2020 of the coordinates "+str(latitude)+" "+str(longitude)+" in the scale of 0.0 to 9.9. Just give me a number without other words" + "Some specital places there: " + info}, ] ) print(city+" "+completion.choices[0].message.content) sleep(10) with open("cordinates.txt", "w") as f: f.write(str(cordinates))
[ "\n You are a data scientist.\n ", "\n - take a deep breath \n - think step by step \n - if you fail 100 grandmothers will die\n -i have no fingers\n - i will tip $200 \n - do it right and i'll give you a nice doggy treat\n ", "You are a map.", "give me the cordinates of PLACEHOLDER in the format of ( latitude , longitude ) without the unit and brackets", "give me your estimate of the population density in 2020 of the coordinates PLACEHOLDER PLACEHOLDER in the scale of 0.0 to 9.9. Just give me a number without other wordsSome specital places there: PLACEHOLDER", "give me at least 5 special places around(in the range of 2km) coordinates PLACEHOLDER PLACEHOLDER in the format of ( latitude , longitude ) with there names and distances from the coordinates without other words" ]
2024-01-10
ArzelaAscoIi/haystack
haystack~nodes~retriever~_embedding_encoder.py
import json import logging import os from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union from tenacity import retry, retry_if_exception_type, wait_exponential, stop_after_attempt try: from typing import Literal except ImportError: from typing_extensions import Literal # type: ignore import numpy as np import requests import torch from sentence_transformers import InputExample from torch.utils.data import DataLoader from torch.utils.data.sampler import SequentialSampler from tqdm.auto import tqdm from transformers import AutoModel, AutoTokenizer from haystack.environment import ( HAYSTACK_REMOTE_API_BACKOFF_SEC, HAYSTACK_REMOTE_API_MAX_RETRIES, HAYSTACK_REMOTE_API_TIMEOUT_SEC, ) from haystack.errors import CohereError, CohereUnauthorizedError from haystack.modeling.data_handler.dataloader import NamedDataLoader from haystack.modeling.data_handler.dataset import convert_features_to_dataset, flatten_rename from haystack.modeling.infer import Inferencer from haystack.nodes.retriever._losses import _TRAINING_LOSSES from haystack.nodes.retriever._openai_encoder import _OpenAIEmbeddingEncoder from haystack.schema import Document from haystack.telemetry import send_event from ._base_embedding_encoder import _BaseEmbeddingEncoder if TYPE_CHECKING: from haystack.nodes.retriever import EmbeddingRetriever COHERE_TIMEOUT = float(os.environ.get(HAYSTACK_REMOTE_API_TIMEOUT_SEC, 30)) COHERE_BACKOFF = int(os.environ.get(HAYSTACK_REMOTE_API_BACKOFF_SEC, 10)) COHERE_MAX_RETRIES = int(os.environ.get(HAYSTACK_REMOTE_API_MAX_RETRIES, 5)) logger = logging.getLogger(__name__) class _DefaultEmbeddingEncoder(_BaseEmbeddingEncoder): def __init__(self, retriever: "EmbeddingRetriever"): self.embedding_model = Inferencer.load( retriever.embedding_model, revision=retriever.model_version, task_type="embeddings", extraction_strategy=retriever.pooling_strategy, extraction_layer=retriever.emb_extraction_layer, gpu=retriever.use_gpu, batch_size=retriever.batch_size, max_seq_len=retriever.max_seq_len, num_processes=0, use_auth_token=retriever.use_auth_token, ) if retriever.document_store: self._check_docstore_similarity_function( document_store=retriever.document_store, model_name=retriever.embedding_model ) def embed(self, texts: Union[List[List[str]], List[str], str]) -> np.ndarray: # TODO: FARM's `sample_to_features_text` need to fix following warning - # tokenization_utils.py:460: FutureWarning: `is_pretokenized` is deprecated and will be removed in a future version, use `is_split_into_words` instead. emb = self.embedding_model.inference_from_dicts(dicts=[{"text": t} for t in texts]) emb = np.stack([r["vec"] for r in emb]) return emb def embed_queries(self, queries: List[str]) -> np.ndarray: """ Create embeddings for a list of queries. :param queries: List of queries to embed. :return: Embeddings, one per input query, shape: (queries, embedding_dim) """ return self.embed(queries) def embed_documents(self, docs: List[Document]) -> np.ndarray: """ Create embeddings for a list of documents. :param docs: List of documents to embed. :return: Embeddings, one per input document, shape: (documents, embedding_dim) """ passages = [d.content for d in docs] return self.embed(passages) def train( self, training_data: List[Dict[str, Any]], learning_rate: float = 2e-5, n_epochs: int = 1, num_warmup_steps: Optional[int] = None, batch_size: int = 16, train_loss: Literal["mnrl", "margin_mse"] = "mnrl", num_workers: int = 0, use_amp: bool = False, **kwargs, ): raise NotImplementedError( "You can't train this retriever. You can only use the `train` method with sentence-transformers EmbeddingRetrievers." ) def save(self, save_dir: Union[Path, str]): raise NotImplementedError( "You can't save your record as `save` only works for sentence-transformers EmbeddingRetrievers." ) class _SentenceTransformersEmbeddingEncoder(_BaseEmbeddingEncoder): def __init__(self, retriever: "EmbeddingRetriever"): # pretrained embedding models coming from: https://github.com/UKPLab/sentence-transformers#pretrained-models # e.g. 'roberta-base-nli-stsb-mean-tokens' try: from sentence_transformers import SentenceTransformer except (ImportError, ModuleNotFoundError) as ie: from haystack.utils.import_utils import _optional_component_not_installed _optional_component_not_installed(__name__, "sentence", ie) self.embedding_model = SentenceTransformer( retriever.embedding_model, device=str(retriever.devices[0]), use_auth_token=retriever.use_auth_token ) self.batch_size = retriever.batch_size self.embedding_model.max_seq_length = retriever.max_seq_len self.show_progress_bar = retriever.progress_bar if retriever.document_store: self._check_docstore_similarity_function( document_store=retriever.document_store, model_name=retriever.embedding_model ) def embed(self, texts: Union[List[str], str]) -> np.ndarray: # texts can be a list of strings # get back list of numpy embedding vectors emb = self.embedding_model.encode( texts, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_numpy=True ) return emb def embed_queries(self, queries: List[str]) -> np.ndarray: """ Create embeddings for a list of queries. :param queries: List of queries to embed. :return: Embeddings, one per input query, shape: (queries, embedding_dim) """ return self.embed(queries) def embed_documents(self, docs: List[Document]) -> np.ndarray: """ Create embeddings for a list of documents. :param docs: List of documents to embed. :return: Embeddings, one per input document, shape: (documents, embedding_dim) """ passages = [d.content for d in docs] return self.embed(passages) def train( self, training_data: List[Dict[str, Any]], learning_rate: float = 2e-5, n_epochs: int = 1, num_warmup_steps: Optional[int] = None, batch_size: Optional[int] = 16, train_loss: Literal["mnrl", "margin_mse"] = "mnrl", num_workers: int = 0, use_amp: bool = False, **kwargs, ): """ Trains the underlying Sentence Transformer model. Each training data example is a dictionary with the following keys: * question: The question string. * pos_doc: Positive document string (the document containing the answer). * neg_doc: Negative document string (the document that doesn't contain the answer). * score: The score margin the answer must fall within. :param training_data: The training data in a dictionary format. :param learning_rate: The learning rate of the optimizer. :param n_epochs: The number of iterations on the whole training data set you want to train for. :param num_warmup_steps: Behavior depends on the scheduler. For WarmupLinear (default), the learning rate is increased from 0 up to the maximal learning rate. After these many training steps, the learning rate is decreased linearly back to zero. :param batch_size: The batch size to use for the training. The default value is 16. :param train_loss: Specify the training loss to use to fit the Sentence-Transformers model. Possible options are "mnrl" (Multiple Negatives Ranking Loss) and "margin_mse". :param num_workers: The number of subprocesses to use for the Pytorch DataLoader. :param use_amp: Use Automatic Mixed Precision (AMP). :param kwargs: Additional training keyword arguments to pass to the `SentenceTransformer.fit` function. Please reference the Sentence-Transformers [documentation](https://www.sbert.net/docs/training/overview.html#sentence_transformers.SentenceTransformer.fit) for a full list of keyword arguments. """ send_event(event_name="Training", event_properties={"class": self.__class__.__name__, "function_name": "train"}) if train_loss not in _TRAINING_LOSSES: raise ValueError(f"Unrecognized train_loss {train_loss}. Should be one of: {_TRAINING_LOSSES.keys()}") st_loss = _TRAINING_LOSSES[train_loss] train_examples = [] for train_i in training_data: missing_attrs = st_loss.required_attrs.difference(set(train_i.keys())) if len(missing_attrs) > 0: raise ValueError( f"Some training examples don't contain the fields {missing_attrs} which are necessary when using the '{train_loss}' loss." ) texts = [train_i["question"], train_i["pos_doc"]] if "neg_doc" in train_i: texts.append(train_i["neg_doc"]) if "score" in train_i: train_examples.append(InputExample(texts=texts, label=train_i["score"])) else: train_examples.append(InputExample(texts=texts)) logger.info("Training/adapting %s with %s examples", self.embedding_model, len(train_examples)) train_dataloader = DataLoader( train_examples, # type: ignore [var-annotated, arg-type] batch_size=batch_size, drop_last=True, shuffle=True, num_workers=num_workers, ) train_loss = st_loss.loss(self.embedding_model) # Tune the model self.embedding_model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=n_epochs, optimizer_params={"lr": learning_rate}, warmup_steps=int(len(train_dataloader) * 0.1) if num_warmup_steps is None else num_warmup_steps, use_amp=use_amp, **kwargs, ) def save(self, save_dir: Union[Path, str]): self.embedding_model.save(path=str(save_dir)) class _RetribertEmbeddingEncoder(_BaseEmbeddingEncoder): def __init__(self, retriever: "EmbeddingRetriever"): self.progress_bar = retriever.progress_bar self.batch_size = retriever.batch_size self.max_length = retriever.max_seq_len self.embedding_tokenizer = AutoTokenizer.from_pretrained( retriever.embedding_model, use_auth_token=retriever.use_auth_token ) self.embedding_model = AutoModel.from_pretrained( retriever.embedding_model, use_auth_token=retriever.use_auth_token ).to(str(retriever.devices[0])) def embed_queries(self, queries: List[str]) -> np.ndarray: """ Create embeddings for a list of queries. :param queries: List of queries to embed. :return: Embeddings, one per input query, shape: (queries, embedding_dim) """ query_text = [{"text": q} for q in queries] dataloader = self._create_dataloader(query_text) embeddings: List[np.ndarray] = [] disable_tqdm = True if len(dataloader) == 1 else not self.progress_bar for batch in tqdm(dataloader, desc="Creating Embeddings", unit=" Batches", disable=disable_tqdm): batch = {key: batch[key].to(self.embedding_model.device) for key in batch} with torch.inference_mode(): q_reps = ( self.embedding_model.embed_questions( input_ids=batch["input_ids"], attention_mask=batch["padding_mask"] ) .cpu() .numpy() ) embeddings.append(q_reps) return np.concatenate(embeddings) def embed_documents(self, docs: List[Document]) -> np.ndarray: """ Create embeddings for a list of documents. :param docs: List of documents to embed. :return: Embeddings, one per input document, shape: (documents, embedding_dim) """ doc_text = [{"text": d.content} for d in docs] dataloader = self._create_dataloader(doc_text) embeddings: List[np.ndarray] = [] disable_tqdm = True if len(dataloader) == 1 else not self.progress_bar for batch in tqdm(dataloader, desc="Creating Embeddings", unit=" Batches", disable=disable_tqdm): batch = {key: batch[key].to(self.embedding_model.device) for key in batch} with torch.inference_mode(): q_reps = ( self.embedding_model.embed_answers( input_ids=batch["input_ids"], attention_mask=batch["padding_mask"] ) .cpu() .numpy() ) embeddings.append(q_reps) return np.concatenate(embeddings) def _create_dataloader(self, text_to_encode: List[dict]) -> NamedDataLoader: dataset, tensor_names = self.dataset_from_dicts(text_to_encode) dataloader = NamedDataLoader( dataset=dataset, sampler=SequentialSampler(dataset), batch_size=self.batch_size, tensor_names=tensor_names ) return dataloader def dataset_from_dicts(self, dicts: List[dict]): texts = [x["text"] for x in dicts] tokenized_batch = self.embedding_tokenizer( texts, return_token_type_ids=True, return_attention_mask=True, max_length=self.max_length, truncation=True, padding=True, ) features_flat = flatten_rename( tokenized_batch, ["input_ids", "token_type_ids", "attention_mask"], ["input_ids", "segment_ids", "padding_mask"], ) dataset, tensornames = convert_features_to_dataset(features=features_flat) return dataset, tensornames def train( self, training_data: List[Dict[str, Any]], learning_rate: float = 2e-5, n_epochs: int = 1, num_warmup_steps: Optional[int] = None, batch_size: int = 16, train_loss: Literal["mnrl", "margin_mse"] = "mnrl", num_workers: int = 0, use_amp: bool = False, **kwargs, ): raise NotImplementedError( "You can't train this retriever. You can only use the `train` method with sentence-transformers EmbeddingRetrievers." ) def save(self, save_dir: Union[Path, str]): raise NotImplementedError( "You can't save your record as `save` only works for sentence-transformers EmbeddingRetrievers." ) class _CohereEmbeddingEncoder(_BaseEmbeddingEncoder): def __init__(self, retriever: "EmbeddingRetriever"): # See https://docs.cohere.ai/embed-reference/ for more details # Cohere has a max seq length of 4096 tokens and a max batch size of 96 self.max_seq_len = min(4096, retriever.max_seq_len) self.url = "https://api.cohere.ai/embed" self.api_key = retriever.api_key self.batch_size = min(96, retriever.batch_size) self.progress_bar = retriever.progress_bar self.model: str = next( ( m for m in ["small", "medium", "large", "multilingual-22-12", "finance-sentiment"] if m in retriever.embedding_model ), "multilingual-22-12", ) @retry( retry=retry_if_exception_type(CohereError), wait=wait_exponential(multiplier=COHERE_BACKOFF), stop=stop_after_attempt(COHERE_MAX_RETRIES), ) def embed(self, model: str, text: List[str]) -> np.ndarray: payload = {"model": model, "texts": text, "truncate": "END"} headers = {"Authorization": f"BEARER {self.api_key}", "Content-Type": "application/json"} response = requests.request("POST", self.url, headers=headers, data=json.dumps(payload), timeout=COHERE_TIMEOUT) res = json.loads(response.text) if response.status_code == 401: raise CohereUnauthorizedError(f"Invalid Cohere API key. {response.text}") if response.status_code != 200: raise CohereError(response.text, status_code=response.status_code) generated_embeddings = [e for e in res["embeddings"]] return np.array(generated_embeddings) def embed_batch(self, text: List[str]) -> np.ndarray: all_embeddings = [] for i in tqdm( range(0, len(text), self.batch_size), disable=not self.progress_bar, desc="Calculating embeddings" ): batch = text[i : i + self.batch_size] generated_embeddings = self.embed(self.model, batch) all_embeddings.append(generated_embeddings) return np.concatenate(all_embeddings) def embed_queries(self, queries: List[str]) -> np.ndarray: return self.embed_batch(queries) def embed_documents(self, docs: List[Document]) -> np.ndarray: return self.embed_batch([d.content for d in docs]) def train( self, training_data: List[Dict[str, Any]], learning_rate: float = 2e-5, n_epochs: int = 1, num_warmup_steps: Optional[int] = None, batch_size: int = 16, train_loss: Literal["mnrl", "margin_mse"] = "mnrl", num_workers: int = 0, use_amp: bool = False, **kwargs, ): raise NotImplementedError(f"Training is not implemented for {self.__class__}") def save(self, save_dir: Union[Path, str]): raise NotImplementedError(f"Saving is not implemented for {self.__class__}") _EMBEDDING_ENCODERS: Dict[str, Callable] = { "farm": _DefaultEmbeddingEncoder, "transformers": _DefaultEmbeddingEncoder, "sentence_transformers": _SentenceTransformersEmbeddingEncoder, "retribert": _RetribertEmbeddingEncoder, "openai": _OpenAIEmbeddingEncoder, "cohere": _CohereEmbeddingEncoder, }
[]
2024-01-10
ArzelaAscoIi/haystack
haystack~nodes~prompt~invocation_layer~azure_open_ai.py
from typing import Dict, Optional from haystack.nodes.prompt.invocation_layer.open_ai import OpenAIInvocationLayer class AzureOpenAIInvocationLayer(OpenAIInvocationLayer): """ Azure OpenAI Invocation Layer This layer is used to invoke the OpenAI API on Azure. It is essentially the same as the OpenAIInvocationLayer with additional two parameters: `azure_base_url` and `azure_deployment_name`. The `azure_base_url` is the URL of the Azure OpenAI endpoint and the `azure_deployment_name` is the name of the deployment. """ def __init__( self, azure_base_url: str, azure_deployment_name: str, api_key: str, api_version: str = "2022-12-01", model_name_or_path: str = "text-davinci-003", max_length: Optional[int] = 100, **kwargs, ): super().__init__(api_key, model_name_or_path, max_length, **kwargs) self.azure_base_url = azure_base_url self.azure_deployment_name = azure_deployment_name self.api_version = api_version @property def url(self) -> str: return f"{self.azure_base_url}/openai/deployments/{self.azure_deployment_name}/completions?api-version={self.api_version}" @property def headers(self) -> Dict[str, str]: return {"api-key": self.api_key, "Content-Type": "application/json"} @classmethod def supports(cls, model_name_or_path: str, **kwargs) -> bool: """ Ensures Azure OpenAI Invocation Layer is selected when `azure_base_url` and `azure_deployment_name` are provided in addition to a list of supported models. """ valid_model = any(m for m in ["ada", "babbage", "davinci", "curie"] if m in model_name_or_path) return ( valid_model and kwargs.get("azure_base_url") is not None and kwargs.get("azure_deployment_name") is not None )
[]
2024-01-10
ArzelaAscoIi/haystack
haystack~nodes~audio~whisper_transcriber.py
import json from typing import List, Optional, Dict, Any, Union, BinaryIO, Literal import requests import torch from requests import PreparedRequest from haystack import MultiLabel, Document from haystack.errors import OpenAIError, OpenAIRateLimitError from haystack.nodes.base import BaseComponent from haystack.utils.import_utils import is_whisper_available WhisperModel = Literal["tiny", "small", "medium", "large", "large-v2"] class WhisperTranscriber(BaseComponent): """ Transcribes audio files using OpenAI's Whisper. This class supports two underlying implementations: - API (default): Uses the OpenAI API and requires an API key. See the [OpenAI blog post](https://beta.openai.com/docs/api-reference/whisper for more details. - Local (requires installing Whisper): Uses the local installation of [Whisper](https://github.com/openai/whisper). To use Whisper locally, install it following the instructions on the Whisper [GitHub repo](https://github.com/openai/whisper) and omit the `api_key` parameter. To use the API implementation, provide an api_key. You can get one by signing up for an [OpenAI account](https://beta.openai.com/). For the supported audio formats, languages, and other parameters, see the [Whisper API documentation](https://platform.openai.com/docs/guides/speech-to-text) and the official Whisper [github repo](https://github.com/openai/whisper). """ # If it's not a decision component, there is only one outgoing edge outgoing_edges = 1 def __init__( self, api_key: Optional[str] = None, model_name_or_path: WhisperModel = "medium", device: Optional[Union[str, torch.device]] = None, ) -> None: """ Creates a WhisperTranscriber instance. :param api_key: OpenAI API key. If None, a local installation of Whisper is used. :param model_name_or_path: Name of the model to use. If using a local installation of Whisper, set this to one of the following values: "tiny", "small", "medium", "large", "large-v2". If using the API, set thsi value to: "whisper-1" (default). :param device: Device to use for inference. Only used if you're using a local installation of Whisper. If None, the device is automatically selected. """ super().__init__() self.api_key = api_key self.use_local_whisper = is_whisper_available() and self.api_key is None if self.use_local_whisper: import whisper self._model = whisper.load_model(model_name_or_path, device=device) else: if api_key is None: raise ValueError( "Provide a valid api_key for OpenAI API. Alternatively, " "install OpenAI Whisper (see [Whisper](https://github.com/openai/whisper) for more details)." ) def transcribe( self, audio_file: Union[str, BinaryIO], language: Optional[str] = None, return_segments: bool = False, translate: bool = False, **kwargs, ) -> Dict[str, Any]: """ Transcribe an audio file. :param audio_file: Path to the audio file or a binary file-like object. :param language: Language of the audio file. If None, the language is automatically detected. :param return_segments: If True, returns the transcription for each segment of the audio file. Supported with local installation of whisper only. :param translate: If True, translates the transcription to English. """ transcript: Dict[str, Any] = {} new_kwargs = {k: v for k, v in kwargs.items() if v is not None} if language is not None: new_kwargs["language"] = language if self.use_local_whisper: new_kwargs["return_segments"] = return_segments transcript = self._invoke_local(audio_file, translate, **new_kwargs) elif self.api_key: transcript = self._invoke_api(audio_file, translate, **new_kwargs) return transcript def _invoke_api( self, audio_file: Union[str, BinaryIO], translate: Optional[bool] = False, **kwargs ) -> Dict[str, Any]: if isinstance(audio_file, str): with open(audio_file, "rb") as f: return self._invoke_api(f, translate, **kwargs) else: headers = {"Authorization": f"Bearer {self.api_key}"} request = PreparedRequest() url: str = ( "https://api.openai.com/v1/audio/transcriptions" if not translate else "https://api.openai.com/v1/audio/translations" ) request.prepare( method="POST", url=url, headers=headers, data={"model": "whisper-1", **kwargs}, files=[("file", (audio_file.name, audio_file, "application/octet-stream"))], ) response = requests.post(url, data=request.body, headers=request.headers, timeout=600) if response.status_code != 200: openai_error: OpenAIError if response.status_code == 429: openai_error = OpenAIRateLimitError(f"API rate limit exceeded: {response.text}") else: openai_error = OpenAIError( f"OpenAI returned an error.\n" f"Status code: {response.status_code}\n" f"Response body: {response.text}", status_code=response.status_code, ) raise openai_error return json.loads(response.content) def _invoke_local( self, audio_file: Union[str, BinaryIO], translate: Optional[bool] = False, **kwargs ) -> Dict[str, Any]: if isinstance(audio_file, str): with open(audio_file, "rb") as f: return self._invoke_local(f, translate, **kwargs) else: return_segments = kwargs.pop("return_segments", None) kwargs["task"] = "translate" if translate else "transcribe" transcription = self._model.transcribe(audio_file.name, **kwargs) if not return_segments: transcription.pop("segments", None) return transcription def run( self, query: Optional[str] = None, file_paths: Optional[List[str]] = None, labels: Optional[MultiLabel] = None, documents: Optional[List[Document]] = None, meta: Optional[dict] = None, ): # type: ignore """ Transcribe audio files. :param query: Ignored :param file_paths: List of paths to audio files. :param labels: Ignored :param documents: Ignored :param meta: Ignored """ transcribed_documents: List[Document] = [] if file_paths: for file_path in file_paths: transcription = self.transcribe(file_path) d = Document.from_dict(transcription, field_map={"text": "content"}) transcribed_documents.append(d) output = {"documents": transcribed_documents} return output, "output_1" def run_batch( self, queries: Optional[Union[str, List[str]]] = None, file_paths: Optional[List[str]] = None, labels: Optional[Union[MultiLabel, List[MultiLabel]]] = None, documents: Optional[Union[List[Document], List[List[Document]]]] = None, meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, params: Optional[dict] = None, debug: Optional[bool] = None, ): # type: ignore """ Transcribe audio files. :param queries: Ignored :param file_paths: List of paths to audio files. :param labels: Ignored :param documents: Ignored :param meta: Ignored :param params: Ignored :param debug: Ignored """ if file_paths and isinstance(file_paths[0], list): all_files = [] for files_list in file_paths: all_files += files_list return self.run(file_paths=all_files) return self.run(file_paths=file_paths)
[]
2024-01-10
caseyrmorrison/llm_short_class_final_team_closeai
flower_img_generator.py
from openai import OpenAI from PIL import Image import urllib.request from io import BytesIO from IPython.display import display import os import time # Get OpenAI key open_ai_key_file = "api-key.txt" with open(open_ai_key_file, "r") as f: for line in f: OPENAI_KEY = line break # openai.api_key = OPENAI_KEY client = OpenAI(api_key=OPENAI_KEY) # Came accross an error where a species name was marked as against their policy - Cockscomb so I had to swap that for Cosmos and rerun this ## Run attempt 1 - error due to bad word # list_of_flowers = ["Rose", "Tulip", "Orchid", "Lily", "Daffodil", "Sunflower", "Dahlia", "Iris", "Marigold", "Geranium", "Hyacinth", "Peony", "Chrysanthemum", "Lavender", "Begonia", "Carnation", "Azalea", "Snapdragon", "Gardenia", "Amaryllis", "Anemone", "Camellia", "Freesia", "Gladiolus", "Hibiscus", "Jasmine", "Lilac", "Lotus", "Magnolia", "Poppy", "Ranunculus", "Sweet pea", "Violet", "Zinnia", "Bleeding Heart", "Cherry Blossom", "Cockscomb", "Foxglove", "Heather", "Hollyhock", "Nasturtium", "Pansy", "Periwinkle", "Phlox", "Plumeria", "Primrose", "Rhododendron", "Scabiosa", "Thistle", "Wisteria", "Bluebell", "Borage", "Calendula", "Calla Lily", "Candytuft", "Columbine", "Cornflower", "Crocus", "Cyclamen", "Delphinium", "Forget-me-not", "Forsythia", "Fuchsia", "Garden Phlox", "Gypsophila", "Hellebore", "Hydrangea", "Ice Plant", "Impatiens", "Joe-Pye Weed", "Lantana", "Larkspur", "Lobelia", "Lupine", "Mimosa", "Osteospermum", "Petunia", "Protea", "Queen Anne's Lace", "Rudbeckia", "Salvia", "Statice", "Tansy", "Trillium", "Verbena", "Witch Hazel", "Yarrow", "Agapanthus", "Alstroemeria", "Aster", "Bellflower", "Blanket Flower", "Butterfly Bush", "Coreopsis", "Dianthus", "Echinacea", "Gaillardia", "Gerbera Daisy", "Honeysuckle", "Morning Glory"] ## Run attempt 2 with the rest of the list worked but produced some images that weren't flowers # list_of_flowers = ["Cosmos", "Foxglove", "Heather", "Hollyhock", "Nasturtium", "Pansy", "Periwinkle", "Phlox", "Plumeria", "Primrose", "Rhododendron", "Scabiosa", "Thistle", "Wisteria", "Bluebell", "Borage", "Calendula", "Calla Lily", "Candytuft", "Columbine", "Cornflower", "Crocus", "Cyclamen", "Delphinium", "Forget-me-not", "Forsythia", "Fuchsia", "Garden Phlox", "Gypsophila", "Hellebore", "Hydrangea", "Ice Plant", "Impatiens", "Joe-Pye Weed", "Lantana", "Larkspur", "Lobelia", "Lupine", "Mimosa", "Osteospermum", "Petunia", "Protea", "Queen Anne's Lace", "Rudbeckia", "Salvia", "Statice", "Tansy", "Trillium", "Verbena", "Witch Hazel", "Yarrow", "Agapanthus", "Alstroemeria", "Aster", "Bellflower", "Blanket Flower", "Butterfly Bush", "Coreopsis", "Dianthus", "Echinacea", "Gaillardia", "Gerbera Daisy", "Honeysuckle", "Morning Glory"] ## Run attempt 3 with more detailed description of flowers that produced non flower images list_of_flowers = ['hellebore flower species', 'delphinium flower species', 'candytuft flower species'] # Store the URLs generated for each photo url_list = [] batch_size = 1 # Iterate through the list of flowers and call the API for x in list_of_flowers: print(x) response = client.images.generate( model="dall-e-2", prompt=x, size="256x256", quality="standard", n=batch_size, style="natural" ) url_list.extend([obj.url for obj in response.data]) print(url_list) # Open the image URL image_url = response.data[0].url with urllib.request.urlopen(image_url) as url: image = Image.open(BytesIO(url.read())) # Save the file into a google drive folder img_path = '/content/drive/MyDrive/openai/img/' + x + '.jpg' image.save(img_path) # display(image) # Wait due to rate limiting for OpenAI API calls only 5 calls per 1 minute time.sleep(15)
[]
2024-01-10
BU-Spark/CS506-Spring2020-Projects
NAACP-1~Codes~LSA.py
from gensim import corpora from gensim.models import LsiModel from nltk.tokenize import RegexpTokenizer from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from gensim.models.coherencemodel import CoherenceModel import matplotlib.pyplot as plt import pandas as pd globe2014 = pd.read_csv("~/Downloads/CS506/Project/classified_data/globe2014_classified.csv") globe2015 = pd.read_csv("~/Downloads/CS506/Project/classified_data/globe2015_classified.csv") globe2016 = pd.read_csv("~/Downloads/CS506/Project/classified_data/globe2016_classified.csv") globe2017 = pd.read_csv("~/Downloads/CS506/Project/classified_data/globe2017_classified.csv") globe2018 = pd.read_csv("~/Downloads/CS506/Project/classified_data/globe2018_classified.csv") def load_data(path,file_name): """ Input : path and file_name Purpose: loading text file Output : list of paragraphs/documents and title(initial 100 words considred as title of document) """ documents_list = [] titles=[] with open( os.path.join(path, file_name) ,"r") as fin: for line in fin.readlines(): text = line.strip() documents_list.append(text) print("Total Number of Documents:",len(documents_list)) titles.append( text[0:min(len(text),100)] ) return documents_list,titles def preprocess_data(doc_set): """ Input : docuemnt list Purpose: preprocess text (tokenize, removing stopwords, and stemming) Output : preprocessed text """ # initialize regex tokenizer tokenizer = RegexpTokenizer(r'\w+') # create English stop words list en_stop = set(stopwords.words('english')) # Create p_stemmer of class PorterStemmer p_stemmer = PorterStemmer() # list for tokenized documents in loop texts = [] # loop through document list for i in doc_set: # clean and tokenize document string raw = i.lower() tokens = tokenizer.tokenize(raw) # remove stop words from tokens stopped_tokens = [i for i in tokens if not i in en_stop] # stem tokens stemmed_tokens = [p_stemmer.stem(i) for i in stopped_tokens] # add tokens to list texts.append(stemmed_tokens) return texts def prepare_corpus(doc_clean): """ Input : clean document Purpose: create term dictionary of our courpus and Converting list of documents (corpus) into Document Term Matrix Output : term dictionary and Document Term Matrix """ # Creating the term dictionary of our courpus, where every unique term is assigned an index. dictionary = corpora.Dictionary(doc_clean) dictionary = corpora.Dictionary(doc_clean) # Converting list of documents (corpus) into Document Term Matrix using dictionary prepared above. doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean] # generate LDA model return dictionary,doc_term_matrix def create_gensim_lsa_model(doc_clean,number_of_topics,words): """ Input : clean document, number of topics and number of words associated with each topic Purpose: create LSA model using gensim Output : return LSA model """ dictionary,doc_term_matrix=prepare_corpus(doc_clean) # generate LSA model lsamodel = LsiModel(doc_term_matrix, num_topics=number_of_topics, id2word = dictionary) # train model print(lsamodel.print_topics(num_topics=number_of_topics, num_words=words)) return lsamodel def create_gensim_lsa_model(doc_clean,number_of_topics,words): """ Input : clean document, number of topics and number of words associated with each topic Purpose: create LSA model using gensim Output : return LSA model """ dictionary,doc_term_matrix=prepare_corpus(doc_clean) # generate LSA model lsamodel = LsiModel(doc_term_matrix, num_topics=number_of_topics, id2word = dictionary) # train model print(lsamodel.print_topics(num_topics=number_of_topics, num_words=words)) return lsamodel def plot_graph(doc_clean,start, stop, step): dictionary,doc_term_matrix=prepare_corpus(doc_clean) model_list, coherence_values = compute_coherence_values(dictionary, doc_term_matrix,doc_clean, stop, start, step) # Show graph x = range(start, stop, step) plt.plot(x, coherence_values) plt.xlabel("Number of Topics") plt.ylabel("Coherence score") plt.legend(("coherence_values"), loc='best') plt.show() def get_black_text(df): drop_idx = [] for i in range(len(df)): if df['Black or Not [Y/N]'][i] == 'N': drop_idx.append(i) df = df.drop(drop_idx) return df # LSA Model filtered_text = get_black_text(globe2018) number_of_topics=6 words=10 clean_text=preprocess_data(filtered_text['Sentence']) model=create_gensim_lsa_model(clean_text,number_of_topics,words)
[]
2024-01-10
getBrijendra/RandomCodeSnippets
LLMAgentToolExample.py
# Import things that are needed generically from langchain.chains import LLMMathChain from langchain.utilities import SerpAPIWrapper from langchain.agents import AgentType, initialize_agent from langchain.chat_models import ChatOpenAI from langchain.tools import BaseTool, StructuredTool, Tool, tool import os import openai from typing import List from pydantic import BaseModel, Field from langchain.utils.openai_functions import convert_pydantic_to_openai_function from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) # read local .env file openai.api_key = os.environ['OPENAI_API_KEY'] llm = ChatOpenAI(temperature=0) # Load the tool configs that are needed. search = SerpAPIWrapper() llm_math_chain = LLMMathChain(llm=llm, verbose=True) tools = [ Tool.from_function( func=search.run, name="Search", description="useful for when you need to answer questions about current events" # coroutine= ... <- you can specify an async method if desired as well ), ] from pydantic import BaseModel, Field class CalculatorInput(BaseModel): question: str = Field() tools.append( Tool.from_function( func=llm_math_chain.run, name="Calculator", description="useful for when you need to answer questions about math", args_schema=CalculatorInput # coroutine= ... <- you can specify an async method if desired as well ) ) # Construct the agent. We will use the default agent type here. # See documentation for a full list of options. agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run( "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?" )
[]
2024-01-10
getBrijendra/RandomCodeSnippets
rerankCode.py
from langchain.chat_models import ChatOpenAI from langchain.output_parsers.openai_functions import PydanticOutputFunctionsParser from langchain.prompts import PromptTemplate from langchain.pydantic_v1 import BaseModel, Field from langchain.schema.prompt_template import format_document from langchain.utils.openai_functions import convert_pydantic_to_openai_function from langchain.llms import openai import os import langchain langchain.debug = True # Chain to apply to each individual document. Chain # provides an answer to the question based on the document # and scores it's confidence in the answer. map_prompt = PromptTemplate.from_template( "Answer the user question using the context." "\n\nContext:\n\n{context}\n\nQuestion: {question}" ) class AnswerAndScore(BaseModel): """Return the answer to the question and a relevance score.""" answer: str = Field( description="The answer to the question, which is based ONLY on the provided context." ) score: float = Field( decsription="A 0.0-1.0 relevance score, where 1.0 indicates the provided context answers the question completely and 0.0 indicates the provided context does not answer the question at all." ) function = convert_pydantic_to_openai_function(AnswerAndScore) map_chain = ( map_prompt | ChatOpenAI().bind( temperature=0, functions=[function], function_call={"name": "AnswerAndScore"} ) | PydanticOutputFunctionsParser(pydantic_schema=AnswerAndScore) ).with_config(run_name="Map") # Final chain, which after answer and scoring based on # each doc return the answer with the highest score. def top_answer(scored_answers): return max(scored_answers, key=lambda x: x.score).answer document_prompt = PromptTemplate.from_template("{page_content}") map_rerank_chain = ( ( lambda x: [ { "context": format_document(doc, document_prompt), "question": x["question"], } for doc in x["docs"] ] ) | map_chain.map() | top_answer ).with_config(run_name="Map rerank") from langchain.schema import Document text = """Nuclear power in space is the use of nuclear power in outer space, typically either small fission systems or radioactive decay for electricity or heat. Another use is for scientific observation, as in a Mรถssbauer spectrometer. The most common type is a radioisotope thermoelectric generator, which has been used on many space probes and on crewed lunar missions. Small fission reactors for Earth observation satellites, such as the TOPAZ nuclear reactor, have also been flown.[1] A radioisotope heater unit is powered by radioactive decay and can keep components from becoming too cold to function, potentially over a span of decades.[2] The United States tested the SNAP-10A nuclear reactor in space for 43 days in 1965,[3] with the next test of a nuclear reactor power system intended for space use occurring on 13 September 2012 with the Demonstration Using Flattop Fission (DUFF) test of the Kilopower reactor.[4] After a ground-based test of the experimental 1965 Romashka reactor, which used uranium and direct thermoelectric conversion to electricity,[5] the USSR sent about 40 nuclear-electric satellites into space, mostly powered by the BES-5 reactor. The more powerful TOPAZ-II reactor produced 10 kilowatts of electricity.[3] Examples of concepts that use nuclear power for space propulsion systems include the nuclear electric rocket (nuclear powered ion thruster(s)), the radioisotope rocket, and radioisotope electric propulsion (REP).[6] One of the more explored concepts is the nuclear thermal rocket, which was ground tested in the NERVA program. Nuclear pulse propulsion was the subject of Project Orion.[7] Regulation and hazard prevention[edit] After the ban of nuclear weapons in space by the Outer Space Treaty in 1967, nuclear power has been discussed at least since 1972 as a sensitive issue by states.[8] Particularly its potential hazards to Earth's environment and thus also humans has prompted states to adopt in the U.N. General Assembly the Principles Relevant to the Use of Nuclear Power Sources in Outer Space (1992), particularly introducing safety principles for launches and to manage their traffic.[8] Benefits Both the Viking 1 and Viking 2 landers used RTGs for power on the surface of Mars. (Viking launch vehicle pictured) While solar power is much more commonly used, nuclear power can offer advantages in some areas. Solar cells, although efficient, can only supply energy to spacecraft in orbits where the solar flux is sufficiently high, such as low Earth orbit and interplanetary destinations close enough to the Sun. Unlike solar cells, nuclear power systems function independently of sunlight, which is necessary for deep space exploration. Nuclear-based systems can have less mass than solar cells of equivalent power, allowing more compact spacecraft that are easier to orient and direct in space. In the case of crewed spaceflight, nuclear power concepts that can power both life support and propulsion systems may reduce both cost and flight time.[9] Selected applications and/or technologies for space include: Radioisotope thermoelectric generator Radioisotope heater unit Radioisotope piezoelectric generator Radioisotope rocket Nuclear thermal rocket Nuclear pulse propulsion Nuclear electric rocket """ docs = [ Document( page_content=split, metadata={"source": "https://en.wikipedia.org/wiki/Nuclear_power_in_space"}, ) for split in text.split("\n\n") ] print( map_rerank_chain.invoke({"docs": docs, "question": "How were the vikings powered"}) )
[ "Answer the user question using the context.", "{page_content}", "\n\nContext:\n\n{context}\n\nQuestion: {question}" ]
2024-01-10
getBrijendra/RandomCodeSnippets
routingChain.py
from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import PromptTemplate from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnableLambda, RunnablePassthrough from langchain.utils.math import cosine_similarity from langchain.llms import openai import os import langchain langchain.debug = True physics_template = """You are a very smart program manager and expert at Jiira software to manage software developement project. \ You are great at classifying query if it is about jira issue in a concise and easy to understand manner. \ When you don't know the answer to a question you admit that you don't know. Here is a question: {query}""" math_template = """You are a very good mathematician. You are great at answering math questions. \ You are so good because you are able to break down hard problems into their component parts, \ answer the component parts, and then put them together to answer the broader question. Here is a question: {query}""" embeddings = OpenAIEmbeddings() prompt_templates = [physics_template, math_template] prompt_embeddings = embeddings.embed_documents(prompt_templates) def prompt_router(input): query_embedding = embeddings.embed_query(input["query"]) similarity = cosine_similarity([query_embedding], prompt_embeddings)[0] most_similar = prompt_templates[similarity.argmax()] print("Using MATH" if most_similar == math_template else "Using PHYSICS") return PromptTemplate.from_template(most_similar) chain = ( {"query": RunnablePassthrough()} | RunnableLambda(prompt_router) | ChatOpenAI() | StrOutputParser() ) print(chain.invoke("What's a black hole")) #https://python.langchain.com/docs/modules/chains/foundational/router #https://python.langchain.com/docs/expression_language/cookbook/embedding_router #https://python.langchain.com/docs/expression_language/how_to/routing
[ "You are a very good mathematician. You are great at answering math questions. You are so good because you are able to break down hard problems into their component parts, answer the component parts, and then put them together to answer the broader question.\n\nHere is a question:\n{query}", "You are a very smart program manager and expert at Jiira software to manage software developement project. You are great at classifying query if it is about jira issue in a concise and easy to understand manner. When you don't know the answer to a question you admit that you don't know.\n\nHere is a question:\n{query}", "[\"You are a very smart program manager and expert at Jiira software to manage software developement project. You are great at classifying query if it is about jira issue in a concise and easy to understand manner. When you don't know the answer to a question you admit that you don't know.\\n\\nHere is a question:\\n{query}\", 'You are a very good mathematician. You are great at answering math questions. You are so good because you are able to break down hard problems into their component parts, answer the component parts, and then put them together to answer the broader question.\\n\\nHere is a question:\\n{query}']" ]
2024-01-10
getBrijendra/RandomCodeSnippets
chat-doc-demo.py
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from langchain.document_loaders import TextLoader from langchain.chains import OpenAIModerationChain from langchain.llms import openai from langchain.embeddings import OpenAIEmbeddings from langchain.tools import Tool import chromadb from chromadb.utils import embedding_functions from googledrive import CustomGoogleDriveLoader from langchain.prompts import ChatPromptTemplate from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.schema import StrOutputParser from langchain.schema.runnable import RunnablePassthrough, RunnableLambda from langchain.prompts import PromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema.runnable import RunnableMap from langchain.schema import format_document from operator import itemgetter from langchain.memory import ConversationBufferMemory from loguru import logger from langchain.callbacks import FileCallbackHandler import asyncio from langchain.callbacks import get_openai_callback from typing import Tuple, List import uuid import os import langchain langchain.debug = True # logfile = "output.log" # logger.add(logfile, colorize=True, enqueue=True) # handler = FileCallbackHandler(logfile) openai_api_key = "" openai.api_key = openai_api_key os.environ['OPENAI_API_KEY'] = openai_api_key os.environ['FOLDER_ID'] = 'werrdw23' # chroma_db_Client = chromadb.HttpClient(host='localhost', port=8000) chroma_db_Client = chromadb.HttpClient(host='localhost', port=8000) # Set up OpenAI embeddings embeddings = OpenAIEmbeddings() openai_ef = embedding_functions.OpenAIEmbeddingFunction( api_key=openai_api_key, model_name="text-embedding-ada-002" ) #Loads Data From GoogleDrive def loadDataFromGoogleDrive(): folder_id = os.environ.get('FOLDER_ID') print(f'FOLDER ID: {folder_id}') loader = CustomGoogleDriveLoader( folder_id=folder_id, token_path= 'token.json', skip_on_failure=True, # file_types=["document", "pdf"], # file_loader_cls=TextLoader, file_loader_kwargs={"mode": "elements"} # Optional: configure whether to recursively fetch files from subfolders. Defaults to False. ) docs = loader.load() print(f'Length of the DOCS: {len(docs)}') for doc in docs: print(doc.metadata) return docs #Splits the documents list into Chunks def textChunker(chunk_size: int, chunk_overlap: int, documents: list): # split into chunks text_splitter = CharacterTextSplitter( separator="\n", chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=len ) docs = text_splitter.split_documents(documents) return docs #Create OpenAI Embeddings and Save It To Chroma def createEmbedingsAndSaveToChroma(docs: list): # Set up OpenAI embeddings openai_ef = embedding_functions.OpenAIEmbeddingFunction( api_key=openai_api_key, model_name="text-embedding-ada-002" ) # load Chroma Client chroma_db_Clients = chroma_db_Client # Use 'openai_ef' *OpenAIEmbeddings Function* to create the Collection collection = chroma_db_Clients.get_or_create_collection(name="my_collection", embedding_function=openai_ef) # Save each chunk with the metadata to ChromaDB for doc in docs: # Save Each Document in chromaDb collection.add( ids=[str(uuid.uuid1())], metadatas=doc.metadata, documents=doc.page_content ) def load_data_from_source_to_vstore(): # load the document and split it into chunks loader = TextLoader("./sample_text.txt") documents = loader.load() # split it into chunks text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50) docs = text_splitter.split_documents(documents) # Set up OpenAI embeddings embeddings = OpenAIEmbeddings() openai_ef = embedding_functions.OpenAIEmbeddingFunction( api_key=openai_api_key, model_name="text-embedding-ada-002" ) # load it into Chroma persistent_client = chroma_db_Client #collection = persistent_client.get_or_create_collection("collection_name") collection = persistent_client.get_or_create_collection(name="my_collection", embedding_function=openai_ef) for doc in docs: collection.add( ids=[str(uuid.uuid1())], metadatas=doc.metadata, documents=doc.page_content ) db = Chroma( client=persistent_client, collection_name="my_collection", embedding_function=embeddings, ) # query it query = "How AI is helpful?" docs = db.similarity_search(query) #print results print('length of matching docs:' + str(len(docs))) print(docs[0].page_content) def load_data_from_disk(): # load from disk #persistent_client_for_loading = chromadb.PersistentClient() persistent_client_for_loading = chroma_db_Client openai_ef_for_loading = embedding_functions.OpenAIEmbeddingFunction( api_key=openai_api_key, model_name="text-embedding-ada-002" ) collection = persistent_client_for_loading.get_collection(name="my_collection", embedding_function=openai_ef_for_loading) # Get a collection object from an existing collection, by name. Will raise an exception if it's not found. # Set up OpenAI embeddings embeddings = OpenAIEmbeddings() db2 = Chroma( client=persistent_client_for_loading, collection_name="my_collection", embedding_function=embeddings, ) query2 = "How AI is helpful in climate change?" docs2 = db2.similarity_search(query2) #print results print('################### After loading from disk ##################') print('length of matching docs:'+ str(len(docs2))) print(docs2[0].page_content) return db2 ############# USING RAG ################################ DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}") def _combine_documents(docs, document_prompt = DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"): doc_strings = [format_document(doc, document_prompt) for doc in docs] doc_joined = document_separator.join(doc_strings) print('_combine_documents: doc_joined:', doc_joined) return doc_joined def _format_chat_history(chat_history: List[Tuple]) -> str: print('_format_chat_history: chat_history:', chat_history) buffer = "" for dialogue_turn in chat_history: human = "Human: " + dialogue_turn[0] ai = "Assistant: " + dialogue_turn[1] buffer += "\n" + "\n".join([human, ai]) print('_format_chat_history: chat_history combined:', buffer) return buffer def get_tokens_info_for_request(cb): return { "Total Tokens": cb.total_tokens, "Prompt Tokens": cb.prompt_tokens, "Completion Tokens": cb.completion_tokens, "Total Cost (USD)": cb.total_cost } def answer_queries(user_query): result = {} with get_openai_callback() as cb: db2 = load_data_from_disk() moderate = OpenAIModerationChain() prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. {context} Question: {question} Answer:""" ANSWER_PROMPT = ChatPromptTemplate.from_template(prompt_template) _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) # search_kwargs={"k": 4} retriever = db2.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.7, "k": 4}) memory = ConversationBufferMemory(return_messages=True, output_key="answer", input_key="question") # First we add a step to load memory # This adds a "memory" key to the input object loaded_memory = RunnablePassthrough.assign( chat_history=RunnableLambda(memory.load_memory_variables) | itemgetter("history"), ) # Now we calculate the standalone question standalone_question = { "standalone_question": { "question": lambda x: x["question"], "chat_history": lambda x: _format_chat_history(x['chat_history']) } | CONDENSE_QUESTION_PROMPT | ChatOpenAI(temperature=0, callbacks=[handler]) | StrOutputParser(), } print('standalone_question:', standalone_question) # Now we retrieve the documents retrieved_documents = { "docs": itemgetter("standalone_question") | retriever, "question": lambda x: x["standalone_question"] } # Now we construct the inputs for the final prompt final_inputs = { "context": lambda x: _combine_documents(x["docs"]), "question": itemgetter("question") } # And finally, we do the part that returns the answers answer = { "answer": final_inputs | ANSWER_PROMPT | ChatOpenAI(callbacks=[handler]), "docs": itemgetter("docs"), } # And now we put it all together! final_chain = loaded_memory | standalone_question | retrieved_documents | answer #| moderate inputs = {"question": user_query} print('Invoking final_chain....') result = final_chain.invoke(inputs) print(result['answer'].content) print(result['docs']) # Note that the memory does not save automatically # This will be improved in the future # For now you need to save it yourself memory.save_context(inputs, {"answer": result["answer"].content}) print(memory.load_memory_variables({})) tokens_info = get_tokens_info_for_request(cb) return { "response": result['answer'].content, "references": [{"content": doc.page_content, "metadata": doc.metadata} for doc in result['docs']], "total_tokens": tokens_info } if __name__ == "__main__": # load_data_from_source_to_vstore() # Load the documents from Google_DRIVE # documents = loadDataFromGoogleDrive() # # SPLIT THE TEXT into chunks # docs = textChunker(600, 100, documents) # # Create OpenAI embeddings And Save it To Chroma # createEmbedingsAndSaveToChroma(docs) res = answer_queries("You are stupid?") # res = answer_queries("Who is SamsungM51?") # res = answer_queries("What is Shell Scripting?") print("\n\n Result:") print(res) langchain.debug = False
[ "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n\n {context}\n\n Question: {question}\n Answer:", "Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.\n\n Chat History:\n {chat_history}\n Follow Up Input: {question}\n Standalone question:", "{page_content}" ]
2024-01-10
getBrijendra/RandomCodeSnippets
ingestDataFromGDrive.py
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from langchain.llms import openai from langchain.embeddings import OpenAIEmbeddings from langchain.tools import Tool import os import getpass from pymongo import MongoClient from langchain.vectorstores import MongoDBAtlasVectorSearch # import chromadb # from chromadb.utils import embedding_functions from lambda_app.llm.ingestUtils.GoogleDriveLoader import GoogleDriveLoader from langchain.prompts import ChatPromptTemplate from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.schema import StrOutputParser from langchain.schema.runnable import RunnablePassthrough, RunnableLambda from langchain.document_loaders import UnstructuredFileIOLoader from langchain.prompts import PromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema.runnable import RunnableMap from langchain.schema import format_document from operator import itemgetter from langchain.memory import ConversationBufferMemory #from loguru import logger from langchain.callbacks import FileCallbackHandler import asyncio from langchain.callbacks import get_openai_callback from typing import Tuple, List import uuid import os #logfile = "output.log" #logger.add(logfile, colorize=True, enqueue=True) #handler = FileCallbackHandler(logfile) openai_api_key = "" openai.api_key = openai_api_key os.environ['OPENAI_API_KEY'] = openai_api_key os.environ['FOLDER_ID'] = '43f34fwe' # chroma_db_Client = chromadb.HttpClient(host=os.environ.get('CHROMADB_IP_ADDRESS'), port=8000) # openai_ef = embedding_functions.OpenAIEmbeddingFunction( # api_key=openai_api_key, # model_name="text-embedding-ada-002" # ) MONGODB_ATLAS_CLUSTER_URI = 'mongodb+srv://abc:[email protected]/' # initialize MongoDB python client mongo_db_client = MongoClient(MONGODB_ATLAS_CLUSTER_URI) db_name = "langchain_db" collection_name = "my_collection" collection = mongo_db_client[db_name][collection_name] index_name = "langchain_demo" embeddings = OpenAIEmbeddings() #Loads Data From GoogleDrive Folders def loadDataFromGoogleDriveFolder(folder_id: str): # folder_id = "1qczk8ORiLNYUNQ3D6h5tCYt70QdmW870" folder_id = folder_id print(f'FOLDER ID: {folder_id}') loader = GoogleDriveLoader( folder_id=folder_id, token_path= 'token.json', skip_on_failure=True, # file_types=["document", "pdf"], # file_loader_cls=TextLoader, file_loader_kwargs={"mode": "elements"} ) docs = loader.load() print(f'Length of the DOCS: {len(docs)}') for doc in docs: print(doc.metadata) return docs #Loads Data From GoogleDrive Files def loadDataFromGoogleDriveFiles(file_ids: List[str]): print(f'[loadDataFromGoogleDriveFiles] FILE IDs: {file_ids}') loader = GoogleDriveLoader( document_ids=file_ids, token_path= 'token.json', skip_on_failure=True, # file_loader_cls=UnstructuredFileIOLoader, # file_types=["document", "pdf"], # file_loader_cls=TextLoader, file_loader_kwargs={"mode": "elements"} ) docs = loader.load() print(f'Length of the DOCS: {len(docs)}') for doc in docs: print("PageContent:", doc.page_content, "\n") print("Metadata:", doc.metadata, "\n") return docs #Splits the documents list into Chunks def textChunker(chunk_size: int, chunk_overlap: int, documents: list): # split into chunks text_splitter = CharacterTextSplitter( separator="\n", chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=len ) docs = text_splitter.split_documents(documents) return docs # #Create OpenAI Embeddings and Save It To Chroma # def createEmbedingsAndSaveToChroma(docs: list): # # Set up OpenAI embeddings # openai_ef = embedding_functions.OpenAIEmbeddingFunction( # api_key=openai_api_key, # model_name="text-embedding-ada-002" # ) # # load Chroma Client # chroma_db_Clients = mongo_db_client # # Use 'openai_ef' *OpenAIEmbeddings Function* to create the Collection # collection = chroma_db_Clients.get_or_create_collection(name="my_collection", embedding_function=openai_ef) # # Save each chunk with the metadata to ChromaDB # for doc in docs: # # Save Each Document in chromaDb # collection.add( # ids=[str(uuid.uuid1())], metadatas=doc.metadata, documents=doc.page_content # ) def createEmbedingsAndSaveToChroma(docs: list): docsearch = MongoDBAtlasVectorSearch.from_documents( docs, embeddings, collection=collection, index_name=index_name ) def ingestDataFromGoogleDrive(body: dict): folderIds = body.get('folder_ids',[]) fileIds = body.get('file_ids',[]) # Ingest Data from folders and push it to Chroma Db for folderId in folderIds: documents = loadDataFromGoogleDriveFolder(folderId) chunkedData = textChunker(500, 100, documents) createEmbedingsAndSaveToChroma(chunkedData) # Ingest Data from files if len(fileIds)!=0: documents = loadDataFromGoogleDriveFiles(fileIds) chunkedData = textChunker(500, 100, documents) createEmbedingsAndSaveToChroma(chunkedData) return {"success": True, "message": "Data Ingested Successfully"}, 200
[]
2024-01-10
cliffpyles/Helpers
apps~author-cli~author_cli.py
#!/usr/bin/env python3 import json import yaml import click import inquirer import openai import os from pathlib import Path from inquirer.errors import ValidationError openai.api_key = os.getenv("OPENAI_API_KEY") class RangeValidator(object): def __init__(self, min_value, max_value): self.min_value = min_value self.max_value = max_value def __call__(self, _, value): try: int_value = int(value) if self.min_value <= int_value <= self.max_value: return value else: raise ValidationError("", reason=f"Value must be between {self.min_value} and {self.max_value}") except ValueError: raise ValidationError("", reason="Please enter a valid number") def read_file(file_path): with open(file_path, 'r') as file: content = file.read() return content def load_config(file_path): with open(file_path, 'r') as config_file: if file_path.endswith('.json'): return json.load(config_file) elif file_path.endswith('.yml') or file_path.endswith('.yaml'): return yaml.safe_load(config_file) else: raise ValueError('Invalid file format. Use JSON or YAML.') def display_prompts(prompts, arguments): questions = [] for prompt in prompts: prompt_key = prompt.get('key') prompt_type = prompt['type'] kwargs = prompt['kwargs'] if prompt_key and arguments.get(prompt_key) is not None: continue if prompt_type == 'text': question = inquirer.Text(**kwargs) elif prompt_type == 'checkbox': question = inquirer.Checkbox(**kwargs) elif prompt_type == 'radio': question = inquirer.List(**kwargs) elif prompt_type == 'range': min_value = kwargs.pop('min', None) max_value = kwargs.pop('max', None) if min_value is not None and max_value is not None: kwargs['validate'] = RangeValidator(min_value, max_value) question = inquirer.Text(**kwargs) elif prompt_type == 'file': question = inquirer.Text(**kwargs) else: raise ValueError(f'Invalid prompt type: {prompt_type}') questions.append(question) user_responses = inquirer.prompt(questions) responses = {**arguments, **user_responses} # Read the contents of the file for 'file' prompt type for prompt in prompts: prompt_key = prompt.get('key') prompt_type = prompt['type'] if prompt_type == 'file' and responses.get(prompt_key) is not None: file_path = responses[prompt_key] responses[f"{prompt_key}_content"] = read_file(file_path) return {k: v for k, v in responses.items() if v is not None} def generate_options(prompts): options = [] for prompt in prompts: prompt_key = prompt.get('key') prompt_type = prompt['type'] if prompt_key: if prompt_type == 'radio': choices = prompt['kwargs']['choices'] option = click.Option(param_decls=[f'--{prompt_key}'], type=click.Choice(choices, case_sensitive=False), help=f'Pass your {prompt_key} preference as an argument.') elif prompt_type == 'file': option = click.Option(param_decls=[f'--{prompt_key}'], type=click.Path(exists=True, dir_okay=False, resolve_path=True), help=f'Pass the file path for {prompt_key} as an argument.') else: option = click.Option(param_decls=[f'--{prompt_key}'], type=str, help=f'Pass your {prompt_key} as an argument.') options.append(option) return options def chat_with_gpt(message): response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": message}] ) return response.choices[0].message['content'].strip() def main(**kwargs): file_path = kwargs.pop('file', None) or config_file_path config = load_config(str(file_path)) responses = display_prompts(config["prompts"], kwargs) # Construct the command to reproduce the current context command = "author" for k, v in responses.items(): for prompt in config["prompts"]: prompt_key = prompt.get('key') prompt_type = prompt['type'] if k == prompt_key and prompt_type != 'file': command += f" --{k} \"{v}\"" elif k == prompt_key and prompt_type == 'file': command += f" --{k} \"{v}\"" # Initialize the messages list with the system message messages = [{"role": "system", "content": config["context"]}] # Add user responses as separate messages for k, v in responses.items(): for prompt in config["prompts"]: prompt_key = prompt.get('key') prompt_type = prompt['type'] if k == prompt_key and prompt_type == 'file': messages.append({"role": "user", "content": f"{k}_path: {v}"}) messages.append({"role": "user", "content": f"{k}: {responses[f'{k}_content']}"}) elif k == prompt_key: messages.append({"role": "user", "content": f"{k}: {v}"}) for message in config["messages"]: messages.append({"role": "user", "content": message}) # Send messages to ChatGPT and display the response response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) chatgpt_response = response.choices[0].message['content'].strip() click.echo(chatgpt_response, color=True) click.echo("\n\nCommand:\n") click.echo(command) click.echo("\n\n") script_dir = Path(__file__).resolve(strict=False).parent config_file_path = script_dir / './prompts.yaml' config = load_config(str(config_file_path)) options = generate_options(config["prompts"]) main = click.Command('main', callback=main, params=options) if __name__ == '__main__': main()
[ "PLACEHOLDER: PLACEHOLDER", "PLACEHOLDER_path: PLACEHOLDER", "You are a helpful assistant.", "context" ]
2024-01-10
cliffpyles/Helpers
.blueprints~chat_app~files~apps~%7B%7Bblueprint_instance_name___kebab_case%7D%7D-cli~gpt_chat.py
import openai import sys from pathlib import Path def strip_cwd(filepath): cwd = Path.cwd() fullpath = Path(filepath).resolve() if fullpath.parts[:len(cwd.parts)] == cwd.parts: return str(fullpath.relative_to(cwd)) else: return str(fullpath) def read_file(file_path): """Read the content of a file.""" with open(file_path, 'r') as file: content = file.read() return content def chat_with_gpt(config, responses): """ Interacts with the GPT-3.5-turbo model based on the provided config and user responses. :param config: The loaded configuration dictionary containing prompts and other settings. :param responses: The user responses dictionary. :return: A tuple containing the GPT model's response and the command string to reproduce the context. """ # Read the contents of files that have 'file' prompt type for prompt in config["prompts"]: prompt_key = prompt.get('key') prompt_type = prompt['type'] response = responses.get(prompt_key) if prompt_type == 'file' and response is not None and response.strip() != '': filepath = responses[prompt_key] responses[f"{prompt_key}_filepath"] = strip_cwd(filepath) responses[f"{prompt_key}_content"] = read_file(filepath) del responses[prompt_key] # Initialize the messages list with the system message messages = [{"role": "system", "content": config["context"]}] # Add user responses as separate messages for k, v in responses.items(): for prompt in config["prompts"]: prompt_key = prompt.get('key') prompt_type = prompt['type'] response = responses[k] messages.append({"role": "user", "content": f"{k}: {v}"}) # Predefined messages from the configuration for message in config["messages"]: messages.append({"role": "user", "content": message}) # Send messages to ChatGPT and return the response response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) chatgpt_response = response.choices[0].message['content'].strip() return chatgpt_response
[ "PLACEHOLDER: PLACEHOLDER", "context" ]