date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
evanwrm/solidchain
apps~api~src~solidchain~utils~file_loaders.py
import tempfile from pathlib import Path from typing import List from urllib.parse import urlparse from fastapi import HTTPException, UploadFile from langchain.document_loaders import ( AZLyricsLoader, CollegeConfidentialLoader, GutenbergLoader, HNLoader, IMSDbLoader, OnlinePDFLoader, UnstructuredFileLoader, UnstructuredURLLoader, YoutubeLoader, ) from langchain.text_splitter import CharacterTextSplitter from solidchain.schemas.vectorstore import VectorStoreDB def from_file(file: UploadFile): with tempfile.NamedTemporaryFile() as temp_file: temp_file.write(file.file.read()) # Note: depending on filetype, files could contain malicious contents # TODO: Attempt to safely extract text from files loader = UnstructuredFileLoader(temp_file.name) text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) documents = loader.load_and_split(text_splitter) return documents def from_url(url: str): parsed_url = urlparse(url) # Domain specific loaders match parsed_url.hostname: case "www.azlyrics.com" | "azlyrics.com": loader = AZLyricsLoader(url) case "www.collegeconfidential.com" | "collegeconfidential.com": loader = CollegeConfidentialLoader(url) case "www.gutenberg.org" | "gutenberg.org": loader = GutenbergLoader(url) case "www.imsdb.com" | "imsdb.com": loader = IMSDbLoader(url) case "news.ycombinator.com": loader = HNLoader(url) case "www.youtube.com" | "youtube.com" | "youtu.be": loader = YoutubeLoader(url) # Generic loaders if loader is None: match parsed_url.path.split(".")[-1]: case "pdf": loader = OnlinePDFLoader(url) case _: loader = UnstructuredURLLoader(url) text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) documents = loader.load_and_split(text_splitter) return documents
[]
2024-01-10
oceantalk/LLMSurvey
Experiments~LanguageGeneration~WMT22~wmt-002.py
import openai import time import json openai.api_key = 'sk-' def get_res_batch(input): prompt = input while True: try: res = openai.Completion.create( engine="text-davinci-002", prompt=prompt, temperature=0.0, max_tokens=128 ) break except openai.error.RateLimitError: print('openai.error.RateLimitError\nRetrying...') time.sleep(60) except openai.error.ServiceUnavailableError: print('openai.error.ServiceUnavailableError\nRetrying...') time.sleep(20) except openai.error.Timeout: print('openai.error.Timeout\nRetrying...') time.sleep(20) except openai.error.APIError: print('openai.error.APIError\nRetrying...') time.sleep(20) except openai.error.APIConnectionError: print('openai.error.APIConnectionError\nRetrying...') time.sleep(20) # print(res["choices"][0]['text'].strip()) return res["choices"][0]['text'].strip() def get_dataset(file): with open(file, 'r', encoding="utf-8") as f: data = [] for line in f: data.append(json.loads(line)) for i in range(len(data)): input = data[i]["input"] ref = data[i]["ref"] ans = get_res_batch(input) gen = {"input": input, "ground_truth": ref, "generation": ans} dump_jsonl(gen, "generation/text-davinci-002.json") def dump_jsonl(data, output_path, append=False): """ Write list of objects to a JSON lines file. """ mode = 'a+' if append else 'w' with open(output_path, 'a+', encoding='utf-8') as f: json_record = json.dumps(data, ensure_ascii=False) f.write(json_record + '\n') # print('Wrote {} records to {}'.format(len(data), output_path)) if __name__ == '__main__': file = "data/test_wmt.json" get_dataset(file)
[ "INPUT" ]
2024-01-10
oceantalk/LLMSurvey
Experiments~LanguageGeneration~WMT22~wmt-003.py
import openai import time import json openai.api_key = 'sk-' def get_res_batch(input): prompt = input while True: try: res = openai.Completion.create( engine="text-davinci-003", prompt=prompt, temperature=0.0, max_tokens=128 ) break except openai.error.RateLimitError: print('openai.error.RateLimitError\nRetrying...') time.sleep(60) except openai.error.ServiceUnavailableError: print('openai.error.ServiceUnavailableError\nRetrying...') time.sleep(20) except openai.error.Timeout: print('openai.error.Timeout\nRetrying...') time.sleep(20) except openai.error.APIError: print('openai.error.APIError\nRetrying...') time.sleep(20) except openai.error.APIConnectionError: print('openai.error.APIConnectionError\nRetrying...') time.sleep(20) # print(res["choices"][0]['text'].strip()) return res["choices"][0]['text'].strip() def get_dataset(file): with open(file, 'r', encoding="utf-8") as f: data = [] for line in f: data.append(json.loads(line)) for i in range(len(data)): input = data[i]["input"] ref = data[i]["ref"] ans = get_res_batch(input) gen = {"input": input, "ground_truth": ref, "generation": ans} dump_jsonl(gen, "generation/evaluate_text-davinci-003.json") def dump_jsonl(data, output_path, append=False): """ Write list of objects to a JSON lines file. """ mode = 'a+' if append else 'w' with open(output_path, 'a+', encoding='utf-8') as f: json_record = json.dumps(data, ensure_ascii=False) f.write(json_record + '\n') # print('Wrote {} records to {}'.format(len(data), output_path)) if __name__ == '__main__': file = "data/test_wmt.json" get_dataset(file)
[ "INPUT" ]
2024-01-10
oceantalk/LLMSurvey
Experiments~LanguageGeneration~WMT22~wmt_chatgpt.py
import openai import time import json openai.api_key = 'sk-' def get_res_batch(input): message = [ {"role": "user", "content": input } ] while True: try: res = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=message, temperature=0.0, max_tokens=128 ) break except openai.error.RateLimitError: print('openai.error.RateLimitError\nRetrying...') time.sleep(60) except openai.error.ServiceUnavailableError: print('openai.error.ServiceUnavailableError\nRetrying...') time.sleep(20) except openai.error.Timeout: print('openai.error.Timeout\nRetrying...') time.sleep(20) except openai.error.APIError: print('openai.error.APIError\nRetrying...') time.sleep(20) except openai.error.APIConnectionError: print('openai.error.APIConnectionError\nRetrying...') time.sleep(20) # print(res['choices'][0]['message']['content']) return res['choices'][0]['message']['content'] def get_dataset(file): with open(file, 'r', encoding="utf-8") as f: data = [] for line in f: data.append(json.loads(line)) for i in range(len(data)): input = data[i]["input"] ref = data[i]["ref"] ans = get_res_batch(input) gen = {"input": input, "ground_truth":ref, "generation": ans} dump_jsonl(gen, "generation/gpt-3.5-turbo.json") def dump_jsonl(data, output_path, append=False): """ Write list of objects to a JSON lines file. """ mode = 'a+' if append else 'w' with open(output_path, 'a+', encoding='utf-8') as f: json_record = json.dumps(data, ensure_ascii=False) f.write(json_record + '\n') # print('Wrote {} records to {}'.format(len(data), output_path)) if __name__ == '__main__': file = "data/test_wmt.json" get_dataset(file)
[ "INPUT" ]
2024-01-10
DrDavidL/home_tools
learn_assistant.py
from openai import OpenAI import streamlit as st from prompts import * import random import time from typing import List, Optional, Union, Dict, Any def check_password(): """Returns `True` if the user had the correct password.""" def password_entered(): """Checks whether a password entered by the user is correct.""" if st.session_state["password"] == st.secrets["password"]: st.session_state["password_correct"] = True del st.session_state["password"] # don't store password else: st.session_state["password_correct"] = False if "password_correct" not in st.session_state: # First run, show input for password. st.text_input( "Password", type="password", on_change=password_entered, key="password" ) st.write("*Please contact David Liebovitz, MD if you need an updated password for access.*") return False elif not st.session_state["password_correct"]: # Password not correct, show input + error. st.text_input( "Password", type="password", on_change=password_entered, key="password" ) st.error("😕 Password incorrect") return False else: # Password correct. return True st.title("My Teacher!") if check_password(): client = OpenAI( organization= st.secrets["ORGANIZATION"], api_key = st.secrets["OPENAI_API_KEY"] ) # Retrieve My Assistant my_assistant = client.beta.assistants.retrieve(st.secrets["ASSISTANT_ID"]) # Create a new thread thread = client.beta.threads.create() # Add a message to the thread my_name = st.text_input("What is your name?") my_question = st.text_input("What is your question?") message = client.beta.threads.messages.create( thread_id=thread.id, role="user", content=f'user_name: {my_name} Question: {my_question}' ) # Run the assistant if st.button("Ask your question!"): my_run = client.beta.threads.runs.create( thread_id=thread.id, assistant_id=my_assistant.id, instructions=bio_tutor, ) messages = client.beta.threads.messages.list( thread_id=thread.id ) # Periodically retrieve the Run to check on its status to see if it has moved to completed while my_run.status != "completed": keep_retrieving_run = client.beta.threads.runs.retrieve( thread_id=thread.id, run_id=my_run.id ) # st.write(f"Run status: {keep_retrieving_run.status}") if keep_retrieving_run.status == "completed": # print("\n") break all_messages = client.beta.threads.messages.list( thread_id=thread.id ) with st.chat_message("user"): st.write(my_question) with st.chat_message("assistant"): st.write(all_messages.data[0].content[0].text.value)
[]
2024-01-10
DrDavidL/home_tools
learn.py
import streamlit as st import os from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS import streamlit as st from prompts import * from openai import OpenAI def gen_response(messages, temperature, model, print = True): api_key = st.secrets["OPENAI_API_KEY"] client = OpenAI( api_key=api_key, ) params = { "model": model, "messages": messages, "temperature": temperature, "stream": print, } try: completion = client.chat.completions.create(**params) except Exception as e: st.write(e) st.write(f'Here were the params: {params}') return None with st.chat_message("assistant"): placeholder = st.empty() full_response = '' for chunk in completion: if chunk.choices[0].delta.content is not None: full_response += chunk.choices[0].delta.content # full_response.append(chunk.choices[0].delta.content) placeholder.markdown(full_response) placeholder.markdown(full_response) return full_response def check_password(): """Returns `True` if the user had the correct password.""" def password_entered(): """Checks whether a password entered by the user is correct.""" if st.session_state["password"] == st.secrets["password"]: st.session_state["password_correct"] = True # del st.session_state["password"] # don't store password else: st.session_state["password_correct"] = False if "password_correct" not in st.session_state: # First run, show input for password. st.text_input( "Password", type="password", on_change=password_entered, key="password" ) st.write("*Please contact David Liebovitz, MD if you need an updated password for access.*") return False elif not st.session_state["password_correct"]: # Password not correct, show input + error. st.text_input( "Password", type="password", on_change=password_entered, key="password" ) st.error("😕 Password incorrect") return False else: # Password correct. return True def main(): st.set_page_config(page_title='My Tutor', layout = 'centered', page_icon = ':stethoscope:', initial_sidebar_state = 'auto') st.title("Learn!") st.write("ALPHA version 0.5") with st.expander('Important Disclaimer'): st.write("Author: David Liebovitz") st.info(disclaimer) st.session_state.temp = st.slider("Select temperature (Higher values more creative but tangential and more error prone)", 0.0, 1.0, 0.3, 0.01) st.write("Last updated 12/9/23") if "current_thread" not in st.session_state: st.session_state["current_thread"] = "" if "last_answer" not in st.session_state: st.session_state["last_answer"] = [] if "temp" not in st.session_state: st.session_state["temp"] = 0.3 if "your_question" not in st.session_state: st.session_state["your_question"] = "" if "texts" not in st.session_state: st.session_state["texts"] = "" if "retriever" not in st.session_state: st.session_state["retriever"] = "" if "model" not in st.session_state: st.session_state["model"] = "openai/gpt-3.5-turbo-16k" if "tutor_user_topic" not in st.session_state: st.session_state["tutor_user_topic"] = [] if "tutor_user_answer" not in st.session_state: st.session_state["tutor_user_answer"] = [] if "message_thread" not in st.session_state: st.session_state["message_thread"] = [] if check_password(): embeddings = OpenAIEmbeddings() if "vectorstore" not in st.session_state: st.session_state["vectorstore"] = FAISS.load_local("bio.faiss", embeddings) model = st.sidebar.selectbox("Select a model", ["gpt-4-1106-preview", "gpt-3.5-turbo-1106", ]) name = st.text_input("Please enter your first name:") if st.session_state.message_thread == []: st.warning("Enter your request at the bottom of the page.") user_input = st.chat_input("Your input goes here, ask to teach or for test questions, submit your responses, etc.:") system_context = bio_tutor.format(name = name, outline = biology_outline) if st.session_state.message_thread == []: st.session_state.message_thread = [{"role": "system", "content": system_context}] if user_input: st.session_state.message_thread.append({"role": "user", "content": user_input}) with st.chat_message("user"): st.markdown(user_input) with st.spinner("Thinking..."): answer_for_learner = gen_response(messages = st.session_state.message_thread, temperature = st.session_state.temp, model = model, print = True) st.session_state.tutor_user_topic.append(f'{name}: {user_input}') st.session_state.tutor_user_answer.append(answer_for_learner) st.session_state.message_thread.append({"role": "assistant", "content": answer_for_learner}) tutor_download_str = f"{disclaimer}\n\ntutor Questions and Answers:\n\n" for i in range(len(st.session_state.tutor_user_topic)): tutor_download_str += f"{st.session_state.tutor_user_topic[i]}\n" tutor_download_str += f"Answer: {st.session_state.tutor_user_answer[i]}\n\n" st.session_state.current_thread = tutor_download_str # Display the expander section with the full thread of questions and answers if st.session_state.message_thread != "": with st.sidebar.expander("Your Conversation", expanded=False): for i in range(len(st.session_state.tutor_user_topic)): st.info(f"{st.session_state.tutor_user_topic[i]}", icon="🧐") st.success(f"Answer: {st.session_state.tutor_user_answer[i]}", icon="🤖") if st.session_state.current_thread != '': st.download_button('Download', st.session_state.current_thread, key='tutor_questions') if st.sidebar.button("Start a new conversation"): st.session_state.message_thread = [] if __name__ == "__main__": main()
[]
2024-01-10
DrDavidL/home_tools
learn_google.py
import streamlit as st import os from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS import streamlit as st from prompts import * from openai import OpenAI import pathlib import textwrap import google.generativeai as genai def gen_response_google(messages, temperature, model, print = True): GOOGLE_API_KEY=st.secrets['GOOGLE_API_KEY'] genai.configure(api_key=GOOGLE_API_KEY) model = genai.GenerativeModel('gemini-pro') response = model.generate_content(str(messages)) st.markdown(response.text) def gen_response(messages, temperature, model, print = True): api_key = st.secrets["OPENAI_API_KEY"] client = OpenAI( api_key=api_key, ) params = { "model": model, "messages": messages, "temperature": temperature, "stream": print, } try: completion = client.chat.completions.create(**params) except Exception as e: st.write(e) st.write(f'Here were the params: {params}') return None with st.chat_message("assistant"): placeholder = st.empty() full_response = '' for chunk in completion: if chunk.choices[0].delta.content is not None: full_response += chunk.choices[0].delta.content # full_response.append(chunk.choices[0].delta.content) placeholder.markdown(full_response) placeholder.markdown(full_response) return full_response def check_password(): """Returns `True` if the user had the correct password.""" def password_entered(): """Checks whether a password entered by the user is correct.""" if st.session_state["password"] == st.secrets["password"]: st.session_state["password_correct"] = True # del st.session_state["password"] # don't store password else: st.session_state["password_correct"] = False if "password_correct" not in st.session_state: # First run, show input for password. st.text_input( "Password", type="password", on_change=password_entered, key="password" ) st.write("*Please contact David Liebovitz, MD if you need an updated password for access.*") return False elif not st.session_state["password_correct"]: # Password not correct, show input + error. st.text_input( "Password", type="password", on_change=password_entered, key="password" ) st.error("😕 Password incorrect") return False else: # Password correct. return True def main(): st.set_page_config(page_title='My Tutor', layout = 'centered', page_icon = ':stethoscope:', initial_sidebar_state = 'auto') st.title("Learn!") st.write("ALPHA version 0.5") with st.expander('Important Disclaimer'): st.write("Author: David Liebovitz") st.info(disclaimer) st.session_state.temp = st.slider("Select temperature (Higher values more creative but tangential and more error prone)", 0.0, 1.0, 0.3, 0.01) st.write("Last updated 12/9/23") if "current_thread" not in st.session_state: st.session_state["current_thread"] = "" if "last_answer" not in st.session_state: st.session_state["last_answer"] = [] if "temp" not in st.session_state: st.session_state["temp"] = 0.3 if "your_question" not in st.session_state: st.session_state["your_question"] = "" if "texts" not in st.session_state: st.session_state["texts"] = "" if "retriever" not in st.session_state: st.session_state["retriever"] = "" if "model" not in st.session_state: st.session_state["model"] = "openai/gpt-3.5-turbo-16k" if "tutor_user_topic" not in st.session_state: st.session_state["tutor_user_topic"] = [] if "tutor_user_answer" not in st.session_state: st.session_state["tutor_user_answer"] = [] if "message_thread" not in st.session_state: st.session_state["message_thread"] = [] if check_password(): embeddings = OpenAIEmbeddings() if "vectorstore" not in st.session_state: st.session_state["vectorstore"] = FAISS.load_local("bio.faiss", embeddings) model = st.sidebar.selectbox("Select a model", ["gpt-4-1106-preview", "gpt-3.5-turbo-1106", ]) name = st.text_input("Please enter your first name:") if st.session_state.message_thread == []: st.warning("Enter your request at the bottom of the page.") user_input = st.chat_input("Your input goes here, ask to teach or for test questions, submit your responses, etc.:") system_context = bio_tutor.format(name = name, outline = biology_outline) if st.session_state.message_thread == []: st.session_state.message_thread = [{"role": "system", "content": system_context}] if user_input: st.session_state.message_thread.append({"role": "user", "content": user_input}) with st.chat_message("user"): st.markdown(user_input) with st.spinner("Thinking..."): answer_for_learner = gen_response_google(messages = st.session_state.message_thread, temperature = st.session_state.temp, model = model, print = True) st.session_state.tutor_user_topic.append(f'{name}: {user_input}') st.session_state.tutor_user_answer.append(answer_for_learner) st.session_state.message_thread.append({"role": "assistant", "content": answer_for_learner}) tutor_download_str = f"{disclaimer}\n\ntutor Questions and Answers:\n\n" for i in range(len(st.session_state.tutor_user_topic)): tutor_download_str += f"{st.session_state.tutor_user_topic[i]}\n" tutor_download_str += f"Answer: {st.session_state.tutor_user_answer[i]}\n\n" st.session_state.current_thread = tutor_download_str # Display the expander section with the full thread of questions and answers if st.session_state.message_thread != "": with st.sidebar.expander("Your Conversation", expanded=False): for i in range(len(st.session_state.tutor_user_topic)): st.info(f"{st.session_state.tutor_user_topic[i]}", icon="🧐") st.success(f"Answer: {st.session_state.tutor_user_answer[i]}", icon="🤖") if st.session_state.current_thread != '': st.download_button('Download', st.session_state.current_thread, key='tutor_questions') if st.sidebar.button("Start a new conversation"): st.session_state.message_thread = [] if __name__ == "__main__": main()
[]
2024-01-10
diegounzueta/Medium-Articles-
AssemblyAI%20Smart%20Assistant~main2.py
from filecmp import clear_cache from re import T import pyaudio import streamlit as st import websockets import asyncio import base64 import json import openai import pyttsx3 import time import os from api_keys import assemblyAI_key, openaI_key openai.api_key = openaI_key from google.cloud import aiplatform def create_custom_job_sample( caption: str, project: str, display_name: str, container_image_uri: str, location: str = "us-central1", api_endpoint: str = "us-central1-aiplatform.googleapis.com", ): # The AI Platform services require regional API endpoints. client_options = {"api_endpoint": api_endpoint} # Initialize client that will be used to create and send requests. # This client only needs to be created once, and can be reused for multiple requests. client = aiplatform.gapic.JobServiceClient(client_options=client_options) custom_job = { "display_name": display_name, "job_spec": { "worker_pool_specs": [ { "machine_spec": { "machine_type": "n1-standard-4", "accelerator_type": aiplatform.gapic.AcceleratorType.NVIDIA_TESLA_K80, "accelerator_count": 1, }, "replica_count": 1, "python_package_spec": { "executor_image_uri": container_image_uri, "package_uris" : ["gs://image_gen_jobs/image_generation-0.2.tar.gz"], "python_module": "trainer.task", "args":["--caption={}".format(caption)] }, } ] }, } parent = f"projects/{project}/locations/{location}" response = client.create_custom_job(parent=parent, custom_job=custom_job) print("response:", response) class app: def __init__(self): self.FRAMES_PER_BUFFER = 3200 self.FORMAT = pyaudio.paInt16 self.CHANNELS = 1 self.RATE = 16000 self.p = pyaudio.PyAudio() # the AssemblyAI endpoint we're going to hit self.URL = "wss://api.assemblyai.com/v2/realtime/ws?sample_rate=16000" self.bot_text, self.user_text = [], [] self.pipeline() def pipeline(self): self.initialize_tool() self.buttons() self.load_past() asyncio.run(self.send_receive()) def initialize_tool(self): # init streamlit app st.set_page_config( page_title="Interactive AI", page_icon="🤖" ) st.markdown('<h1 style="color: white">SMART ASSISTANT TOOL</h1>', unsafe_allow_html=True) # init recording self.stream = self.p.open( format=self.FORMAT, channels=self.CHANNELS, rate=self.RATE, input=True, frames_per_buffer=self.FRAMES_PER_BUFFER ) # init session state if "init" not in st.session_state: st.session_state["init"] = False def toggle_on(self): st.session_state["init"] = True def toggle_off(self): st.session_state["init"] = False def clear_chat(self): if os.path.exists("chat1.txt"): os.remove("chat1.txt") if os.path.exists("chat2.txt"): os.remove("chat2.txt") with open('chat1.txt', 'x') as f: f.write("") with open('chat2.txt', 'x') as f: f.write("") def buttons(self): col1, col2 = st.columns((1,1)) with col1: st.markdown("## ") st.markdown("## ") st.button("Record", on_click = self.toggle_on) st.button("Clear Chat", on_click = self.clear_chat) # with col2: # st.image("oldman1.png", width=300) self.speaker1, space, self.speaker2 = st.columns((1, 0.2, 1)) with self.speaker1: st.markdown('<h2 style="color: white">USER</h2>', unsafe_allow_html=True) with self.speaker2: st.markdown('<h2 style="color: pink; text-align:right">BOT</h2>', unsafe_allow_html=True) def load_past(self): # LOAD PAST MESSAGES with open ("chat1.txt", "r") as myfile: user_text = myfile.read().splitlines() with open ("chat2.txt", "r") as myfile: bot_text = myfile.read().splitlines() for i, j in zip(user_text, bot_text): with self.speaker1: st.markdown("## ") st.markdown('<p style="color: white; font-size:25px">{}</p>'.format(i), unsafe_allow_html=True) st.markdown("## ") with self.speaker2: st.markdown("## ") st.markdown("## ") st.markdown('<p style="color: pink; text-align:right; font-size:25px">{}</p>'.format(j), unsafe_allow_html=True) st.markdown("## ") def generate_art(self, text): t = text.split("Generate")[-1] with self.speaker2: st.markdown("## ") st.markdown("## ") # launch job to vertex create_custom_job_sample( caption = "t", project = "drone-swarm", container_image_uri = "europe-docker.pkg.dev/vertex-ai/training/pytorch-gpu.1-10:latest", display_name = "art_gen_script") # add delay for job to run time.sleep(300) #load image from bucket from google.cloud import storage client = storage.Client() bucket = client.get_bucket('image_gen') blob = bucket.get_blob('image_gen/{}.png'.format(t)) blob.download_to_filename('{}.png'.format(t)) #show image from PIL import Image image = Image.open('{}.png'.format(t)) st.image(image, caption=t) async def send_receive(self): print(f'Connecting websocket to url ${self.URL}') async with websockets.connect( self.URL, extra_headers=(("Authorization", assemblyAI_key),), ping_interval=5, ping_timeout=20 ) as _ws: r = await asyncio.sleep(0.1) print("Receiving SessionBegins ...") session_begins = await _ws.recv() async def send(): while st.session_state["init"] == True: try: data = self.stream.read(self.FRAMES_PER_BUFFER, exception_on_overflow = False) data = base64.b64encode(data).decode("utf-8") json_data = json.dumps({"audio_data":str(data)}) r = await _ws.send(json_data) except websockets.exceptions.ConnectionClosedError as e: print(e) assert e.code == 4008 break except Exception as e: assert False, "Not a websocket 4008 error" r = await asyncio.sleep(0.01) if st.session_state["init"] == False: closeAPI = json.dumps({"terminate_session": True}) r = await _ws.send(closeAPI) return True async def receive(): while st.session_state["init"] == True: try: result_str = await _ws.recv() if (json.loads(result_str)["message_type"] == "FinalTranscript") and (json.loads(result_str)['text'] != ""): # user_text.append(json.loads(result_str)['text']) with open('chat1.txt', 'a') as f: f.write(json.loads(result_str)['text'] + '\n') with self.speaker1: st.markdown("## ") text = json.loads(result_str)['text'] st.markdown('<p style="color: white; font-size:25px">{}</p>'.format(text), unsafe_allow_html=True) st.markdown("## ") if "Generate" in text: self.generate_art(text) else: promt = json.loads(result_str)["text"] response = openai.Completion.create( engine = "text-davinci-002", prompt = promt, n=5, temperature=0.7, max_tokens=80, top_p=1, frequency_penalty=0, presence_penalty=0 ) print(response) response_test = response.choices[0].text response_test = response_test.replace("\n", "") with self.speaker2: st.markdown("## ") st.markdown("## ") st.markdown('<p style="color: pink; text-align:right; font-size:25px">{}</p>'.format(response_test), unsafe_allow_html=True) st.markdown("## ") with open('chat2.txt', 'a') as f: f.write(response_test + '\n') pyttsx3.speak(response_test.replace("\u03c0", "pi")) self.toggle_off() except Exception as e: st.write("ERROR", e) assert False send_result, receive_result = await asyncio.gather(send(), receive()) if __name__ == '__main__': app()
[]
2024-01-10
benfield97/scripts
activeloop_customersupport.py
import os from dotenv import load_dotenv from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.text_splitter import CharacterTextSplitter from langchain import OpenAI from langchain.document_loaders import SeleniumURLLoader from langchain import PromptTemplate load_dotenv() os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY') os.environ['ACTIVELOOP_TOKEN'] = os.getenv('ACTIVELOOP_TOKEN') urls = ['https://beebom.com/what-is-nft-explained/', 'https://beebom.com/how-delete-spotify-account/', 'https://beebom.com/how-download-gif-twitter/', 'https://beebom.com/how-use-chatgpt-linux-terminal/', 'https://beebom.com/how-delete-spotify-account/', 'https://beebom.com/how-save-instagram-story-with-music/', 'https://beebom.com/how-install-pip-windows/', 'https://beebom.com/how-check-disk-usage-linux/'] # use the selenium scraper to load the documents loader = SeleniumURLLoader(urls=urls) docs_not_splitted = loader.load() #split the documents into smaller chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(docs_not_splitted) embeddings = OpenAIEmbeddings(model='text-embedding-ada-002') #create deeplake dataset # my_activeloop_org_id = 'benfield' # my_activeloop_dataset_name = 'langchain_course_from_zero_to_hero' # dataset_path = f"hub://{my_activeloop_org_id}/{my_activeloop_dataset_name}" # db = DeepLake(dataset_path=dataset_path, embedding_function=embeddings) db= FAISS.from_documents(docs, embeddings) # add documents to our deep lake dataset db.add_documents(docs) # find the top relevant documents to a specific query query = 'how to check disk usage in linux?' docs = db.similarity_search(query) print(docs[0].page_content) # let's write a prompt for a customer support chatbot # answer questions using information extracted from our db template = """You are an exceptional customer support chatbot that gently answer questions. You know the following context information. {chunks_formatted} Answer to the following question from a customer. Use only information from the previous context information. Do not invent stuff. Question: {query} Answer:""" prompt = PromptTemplate( template=template, input_variables = ['chunks_formatted', 'query'], ) # the full pipeline #user questions query = 'How to check disk usage in linux?' #retrieve relevant chunks docs = db.similarity_search(query) retrieved_chunks = [doc.page_content for doc in docs] #format the prompt chunks_formatted = "\n\n".join(retrieved_chunks) prompt_formatted = prompt.format(chunks_formatted=chunks_formatted, query=query) #generate the answer llm = OpenAI(model='text-davinci-003', temperature=0) answer = llm(prompt_formatted) print(answer) ''' helpful point: Suppose we ask, "Is the Linux distribution free?" and provide GPT-3 with a document about kernel features as context. It might generate an answer like "Yes, the Linux distribution is free to download and use," even if such information is not present in the context document. Producing false information is highly undesirable for customer service chatbots! GPT-3 is less likely to generate false information when the answer to the user's question is contained within the context. Since user questions are often brief and ambiguous, we cannot always rely on the semantic search step to retrieve the correct document. Thus, there is always a risk of generating false information. '''
[ "You are an exceptional customer support chatbot that gently answer questions.\n\nYou know the following context information.\n\n{chunks_formatted}\n\nAnswer to the following question from a customer. Use only information from the previous context information. Do not invent stuff.\n\nQuestion: {query}\n\nAnswer:", "chunks_formatted" ]
2024-01-10
zhouzhiqian/Safe-Reinforcement-Learning-Baselines
Safe-MARL~Multi-Agent-Constrained-Policy-Optimisation~MACPO~macpo~algorithms~r_mappo~r_macpo.py
import numpy as np import torch import torch.nn as nn from macpo.utils.util import get_gard_norm, huber_loss, mse_loss from macpo.utils.popart import PopArt from macpo.algorithms.utils.util import check from macpo.algorithms.r_mappo.algorithm.r_actor_critic import R_Actor from torch.nn.utils import clip_grad_norm import copy # EPS = 1e-8 class R_MACTRPO_CPO(): """ Trainer class for MATRPO to update policies. :param args: (argparse.Namespace) arguments containing relevant model, policy, and env information. :param policy: (R_MAPPO_Policy) policy to update. :param device: (torch.device) specifies the device to run on (cpu/gpu). """ def __init__(self, args, policy, attempt_feasible_recovery=False, attempt_infeasible_recovery=False, revert_to_last_safe_point=False, delta_bound=0.011, safety_bound=0.1, _backtrack_ratio=0.8, _max_backtracks=15, _constraint_name_1="trust_region", _constraint_name_2="safety_region", linesearch_infeasible_recovery=True, accept_violation=False, learn_margin=False, device=torch.device("cpu")): self.device = device self.tpdv = dict(dtype=torch.float32, device=device) self.policy = policy self.clip_param = args.clip_param self.ppo_epoch = args.ppo_epoch self.num_mini_batch = args.num_mini_batch self.data_chunk_length = args.data_chunk_length self.value_loss_coef = args.value_loss_coef self.entropy_coef = args.entropy_coef self.max_grad_norm = args.max_grad_norm self.huber_delta = args.huber_delta self.episode_length = args.episode_length self.kl_threshold = args.kl_threshold self.safety_bound = args.safety_bound self.ls_step = args.ls_step self.accept_ratio = args.accept_ratio self.EPS = args.EPS self.gamma = args.gamma self.safety_gamma = args.safety_gamma self.line_search_fraction = args.line_search_fraction self.g_step_dir_coef = args.g_step_dir_coef self.b_step_dir_coef = args.b_step_dir_coef self.fraction_coef = args.fraction_coef self._use_recurrent_policy = args.use_recurrent_policy self._use_naive_recurrent = args.use_naive_recurrent_policy self._use_max_grad_norm = args.use_max_grad_norm self._use_clipped_value_loss = args.use_clipped_value_loss self._use_huber_loss = args.use_huber_loss self._use_popart = args.use_popart self._use_value_active_masks = args.use_value_active_masks self._use_policy_active_masks = args.use_policy_active_masks # todo: my args-start self.args = args self.device = device self.tpdv = dict(dtype=torch.float32, device=device) self.policy = policy self._damping = 0.0001 self._delta = 0.01 self._max_backtracks = 10 self._backtrack_coeff = 0.5 self.clip_param = args.clip_param self.ppo_epoch = args.ppo_epoch self.num_mini_batch = args.num_mini_batch self.data_chunk_length = args.data_chunk_length self.value_loss_coef = args.value_loss_coef self.entropy_coef = args.entropy_coef self.max_grad_norm = args.max_grad_norm self.huber_delta = args.huber_delta self._use_recurrent_policy = args.use_recurrent_policy self._use_naive_recurrent = args.use_naive_recurrent_policy self._use_max_grad_norm = args.use_max_grad_norm self._use_clipped_value_loss = args.use_clipped_value_loss self._use_huber_loss = args.use_huber_loss self._use_popart = args.use_popart self._use_value_active_masks = args.use_value_active_masks self._use_policy_active_masks = args.use_policy_active_masks self.attempt_feasible_recovery = attempt_feasible_recovery self.attempt_infeasible_recovery = attempt_infeasible_recovery self.revert_to_last_safe_point = revert_to_last_safe_point self._max_quad_constraint_val = args.kl_threshold # delta_bound self._max_lin_constraint_val = args.safety_bound self._backtrack_ratio = _backtrack_ratio self._max_backtracks = _max_backtracks self._constraint_name_1 = _constraint_name_1 self._constraint_name_2 = _constraint_name_2 self._linesearch_infeasible_recovery = linesearch_infeasible_recovery self._accept_violation = accept_violation hvp_approach = None num_slices = 1 self.lamda_coef = 0 self.lamda_coef_a_star = 0 self.lamda_coef_b_star = 0 self.margin = 0 self.margin_lr = 0.05 self.learn_margin = learn_margin self.n_rollout_threads = args.n_rollout_threads if self._use_popart: self.value_normalizer = PopArt(1, device=self.device) else: self.value_normalizer = None def cal_value_loss(self, values, value_preds_batch, return_batch, active_masks_batch): """ Calculate value function loss. :param values: (torch.Tensor) value function predictions. :param value_preds_batch: (torch.Tensor) "old" value predictions from data batch (used for value clip loss) :param return_batch: (torch.Tensor) reward to go returns. :param active_masks_batch: (torch.Tensor) denotes if agent is active or dead at a given timesep. :return value_loss: (torch.Tensor) value function loss. """ if self._use_popart: value_pred_clipped = value_preds_batch + (values - value_preds_batch).clamp(-self.clip_param, self.clip_param) error_clipped = self.value_normalizer(return_batch) - value_pred_clipped error_original = self.value_normalizer(return_batch) - values else: value_pred_clipped = value_preds_batch + (values - value_preds_batch).clamp(-self.clip_param, self.clip_param) error_clipped = return_batch - value_pred_clipped error_original = return_batch - values if self._use_huber_loss: value_loss_clipped = huber_loss(error_clipped, self.huber_delta) value_loss_original = huber_loss(error_original, self.huber_delta) else: value_loss_clipped = mse_loss(error_clipped) value_loss_original = mse_loss(error_original) if self._use_clipped_value_loss: value_loss = torch.max(value_loss_original, value_loss_clipped) else: value_loss = value_loss_original if self._use_value_active_masks: value_loss = (value_loss * active_masks_batch).sum() / active_masks_batch.sum() else: value_loss = value_loss.mean() return value_loss def flat_grad(self, grads): grad_flatten = [] for grad in grads: if grad is None: continue grad_flatten.append(grad.view(-1)) grad_flatten = torch.cat(grad_flatten) return grad_flatten def flat_hessian(self, hessians): hessians_flatten = [] for hessian in hessians: if hessian is None: continue hessians_flatten.append(hessian.contiguous().view(-1)) hessians_flatten = torch.cat(hessians_flatten).data return hessians_flatten def flat_params(self, model): params = [] for param in model.parameters(): params.append(param.data.view(-1)) params_flatten = torch.cat(params) return params_flatten def update_model(self, model, new_params): index = 0 for params in model.parameters(): params_length = len(params.view(-1)) new_param = new_params[index: index + params_length] new_param = new_param.view(params.size()) params.data.copy_(new_param) index += params_length def kl_divergence(self, obs, rnn_states, action, masks, available_actions, active_masks, new_actor, old_actor): _, _, mu, std = new_actor.evaluate_actions(obs, rnn_states, action, masks, available_actions, active_masks) _, _, mu_old, std_old = old_actor.evaluate_actions(obs, rnn_states, action, masks, available_actions, active_masks) logstd = torch.log(std) mu_old = mu_old.detach() std_old = std_old.detach() logstd_old = torch.log(std_old) # kl divergence between old policy and new policy : D( pi_old || pi_new ) # pi_old -> mu0, logstd0, std0 / pi_new -> mu, logstd, std # be careful of calculating KL-divergence. It is not symmetric metric kl = logstd_old - logstd + (std_old.pow(2) + (mu_old - mu).pow(2)) / \ (self.EPS + 2.0 * std.pow(2)) - 0.5 return kl.sum(1, keepdim=True) # from openai baseline code # https://github.com/openai/baselines/blob/master/baselines/common/cg.py def conjugate_gradient(self, actor, obs, rnn_states, action, masks, available_actions, active_masks, b, nsteps, residual_tol=1e-10): x = torch.zeros(b.size()).to(device=self.device) r = b.clone() p = b.clone() rdotr = torch.dot(r, r) for i in range(nsteps): _Avp = self.fisher_vector_product(actor, obs, rnn_states, action, masks, available_actions, active_masks, p) alpha = rdotr / torch.dot(p, _Avp) x += alpha * p r -= alpha * _Avp new_rdotr = torch.dot(r, r) betta = new_rdotr / rdotr p = r + betta * p rdotr = new_rdotr if rdotr < residual_tol: break return x def fisher_vector_product(self, actor, obs, rnn_states, action, masks, available_actions, active_masks, p): p.detach() kl = self.kl_divergence(obs, rnn_states, action, masks, available_actions, active_masks, new_actor=actor, old_actor=actor) kl = kl.mean() kl_grad = torch.autograd.grad(kl, actor.parameters(), create_graph=True, allow_unused=True) kl_grad = self.flat_grad(kl_grad) # check kl_grad == 0 kl_grad_p = (kl_grad * p).sum() kl_hessian_p = torch.autograd.grad(kl_grad_p, actor.parameters(), allow_unused=True) kl_hessian_p = self.flat_hessian(kl_hessian_p) return kl_hessian_p + 0.1 * p def _get_flat_grad(self, y, model, retain_graph=None, create_graph=False): grads = torch.autograd.grad(y, model.parameters(), retain_graph=retain_graph, create_graph=create_graph, allow_unused=True) _grads = [] for val, p in zip(grads, model.parameters()): if val is not None: _grads.append(val) else: _grads.append(torch.zeros_like(p.data, requires_grad=create_graph)) return torch.cat([grad.reshape(-1) for grad in _grads]) def _flat_grad_(self, f, model, retain_graph=None, create_graph=False): return self.flat_grad(torch.autograd.grad(f, model.parameters(), retain_graph=retain_graph, create_graph=create_graph, allow_unused=True)) def hessian_vector_product(self, f, model): # for H = grad**2 f, compute Hx g = self._flat_grad_(f, model) # g = self._get_flat_grad(f, model) # x = torch.placeholder(torch.float32, shape=g.shape) x = torch.FloatTensor(g.shape) return x, self._flat_grad_(torch.sum(g * x), model) def cg(self, Ax, b, cg_iters=10): x = np.zeros_like(b) r = b.clone() # Note: should be 'b - Ax(x)', but for x=0, Ax(x)=0. Change if doing warm start. p = r.clone() r_dot_old = torch.dot(r, r) for _ in range(cg_iters): z = Ax(p) alpha = r_dot_old / (torch.dot(p, z) + self.EPS) x += alpha * p r -= alpha * z r_dot_new = torch.dot(r, r) p = r + (r_dot_new / r_dot_old) * p r_dot_old = r_dot_new return x def trpo_update(self, sample, update_actor=True): """ Update actor and critic networks. :param sample: (Tuple) contains data batch with which to update networks. :update_actor: (bool) whether to update actor network. :return value_loss: (torch.Tensor) value function loss. :return critic_grad_norm: (torch.Tensor) gradient norm from critic update. ;return policy_loss: (torch.Tensor) actor(policy) loss value. :return dist_entropy: (torch.Tensor) action entropies. :return actor_grad_norm: (torch.Tensor) gradient norm from actor update. :return imp_weights: (torch.Tensor) importance sampling weights. """ share_obs_batch, obs_batch, rnn_states_batch, rnn_states_critic_batch, actions_batch, \ value_preds_batch, return_batch, masks_batch, active_masks_batch, old_action_log_probs_batch, \ adv_targ, available_actions_batch, factor_batch, cost_preds_batch, cost_returns_barch, rnn_states_cost_batch, \ cost_adv_targ, aver_episode_costs = sample old_action_log_probs_batch = check(old_action_log_probs_batch).to(**self.tpdv) adv_targ = check(adv_targ).to(**self.tpdv) cost_adv_targ = check(cost_adv_targ).to(**self.tpdv) value_preds_batch = check(value_preds_batch).to(**self.tpdv) return_batch = check(return_batch).to(**self.tpdv) active_masks_batch = check(active_masks_batch).to(**self.tpdv) factor_batch = check(factor_batch).to(**self.tpdv) cost_returns_barch = check(cost_returns_barch).to(**self.tpdv) cost_preds_batch = check(cost_preds_batch).to(**self.tpdv) # Reshape to do in a single forward pass for all steps # values, action_log_probs, dist_entropy, cost_values, action_mu, action_std values, action_log_probs, dist_entropy, cost_values, action_mu, action_std = self.policy.evaluate_actions( share_obs_batch, obs_batch, rnn_states_batch, rnn_states_critic_batch, actions_batch, masks_batch, available_actions_batch, active_masks_batch, rnn_states_cost_batch) # todo: reward critic update value_loss = self.cal_value_loss(values, value_preds_batch, return_batch, active_masks_batch) self.policy.critic_optimizer.zero_grad() (value_loss * self.value_loss_coef).backward() if self._use_max_grad_norm: critic_grad_norm = nn.utils.clip_grad_norm_(self.policy.critic.parameters(), self.max_grad_norm) else: critic_grad_norm = get_gard_norm(self.policy.critic.parameters()) self.policy.critic_optimizer.step() # todo: cost critic update cost_loss = self.cal_value_loss(cost_values, cost_preds_batch, cost_returns_barch, active_masks_batch) self.policy.cost_optimizer.zero_grad() (cost_loss * self.value_loss_coef).backward() if self._use_max_grad_norm: cost_grad_norm = nn.utils.clip_grad_norm_(self.policy.cost_critic.parameters(), self.max_grad_norm) else: cost_grad_norm = get_gard_norm(self.policy.cost_critic.parameters()) self.policy.cost_optimizer.step() # todo: actor update rescale_constraint_val = (aver_episode_costs.mean() - self._max_lin_constraint_val) * (1 - self.gamma) if rescale_constraint_val == 0: rescale_constraint_val = self.EPS # todo:reward-g ratio = torch.exp(action_log_probs - old_action_log_probs_batch) if self._use_policy_active_masks: reward_loss = (torch.sum(ratio * factor_batch * adv_targ, dim=-1, keepdim=True) * active_masks_batch).sum() / active_masks_batch.sum() else: reward_loss = torch.sum(ratio * factor_batch * adv_targ, dim=-1, keepdim=True).mean() reward_loss = - reward_loss # todo: reward_loss_grad = torch.autograd.grad(reward_loss, self.policy.actor.parameters(), retain_graph=True, allow_unused=True) reward_loss_grad = self.flat_grad(reward_loss_grad) # todo:cost-b if self._use_policy_active_masks: cost_loss = (torch.sum(ratio * factor_batch * (cost_adv_targ), dim=-1, keepdim=True) * active_masks_batch).sum() / active_masks_batch.sum() else: cost_loss = torch.sum(ratio * factor_batch * (cost_adv_targ), dim=-1, keepdim=True).mean() cost_loss_grad = torch.autograd.grad(cost_loss, self.policy.actor.parameters(), retain_graph=True, allow_unused=True) cost_loss_grad = self.flat_grad(cost_loss_grad) B_cost_loss_grad = cost_loss_grad.unsqueeze(0) B_cost_loss_grad = self.flat_grad(B_cost_loss_grad) # todo: compute lamda_coef and v_coef g_step_dir = self.conjugate_gradient(self.policy.actor, obs_batch, rnn_states_batch, actions_batch, masks_batch, available_actions_batch, active_masks_batch, reward_loss_grad.data, nsteps=10) # todo: compute H^{-1} g b_step_dir = self.conjugate_gradient(self.policy.actor, obs_batch, rnn_states_batch, actions_batch, masks_batch, available_actions_batch, active_masks_batch, B_cost_loss_grad.data, nsteps=10) # todo: compute H^{-1} b q_coef = (reward_loss_grad * g_step_dir).sum(0, keepdim=True) # todo: compute q_coef: = g^T H^{-1} g r_coef = (reward_loss_grad * b_step_dir).sum(0, keepdim=True) # todo: compute r_coef: = g^T H^{-1} b s_coef = (cost_loss_grad * b_step_dir).sum(0, keepdim=True) # todo: compute s_coef: = b^T H^{-1} b fraction = self.line_search_fraction #0.5 # 0.5 # line search step size loss_improve = 0 # initialization """self._max_lin_constraint_val = c, B_cost_loss_grad = c in cpo""" B_cost_loss_grad_dot = torch.dot(B_cost_loss_grad, B_cost_loss_grad) # torch.dot(B_cost_loss_grad, B_cost_loss_grad) # B_cost_loss_grad.mean() * B_cost_loss_grad.mean() if (torch.dot(B_cost_loss_grad, B_cost_loss_grad)) <= self.EPS and rescale_constraint_val < 0: # feasible and cost grad is zero---shortcut to pure TRPO update! # w, r, s, A, B = 0, 0, 0, 0, 0 # g_step_dir = torch.tensor(0) b_step_dir = torch.tensor(0) r_coef = torch.tensor(0) s_coef = torch.tensor(0) positive_Cauchy_value = torch.tensor(0) whether_recover_policy_value = torch.tensor(0) optim_case = 4 # print("optim_case = 4---shortcut to pure TRPO update!") else: # cost grad is nonzero: CPO update! r_coef = (reward_loss_grad * b_step_dir).sum(0, keepdim=True) # todo: compute r_coef: = g^T H^{-1} b s_coef = (cost_loss_grad * b_step_dir).sum(0, keepdim=True) # todo: compute s_coef: = b^T H^{-1} b if r_coef == 0: r_coef = self.EPS if s_coef == 0: s_coef = self.EPS positive_Cauchy_value = ( q_coef - (r_coef ** 2) / (self.EPS + s_coef)) # should be always positive (Cauchy-Shwarz) whether_recover_policy_value = 2 * self._max_quad_constraint_val - ( rescale_constraint_val ** 2) / ( self.EPS + s_coef) # does safety boundary intersect trust region? (positive = yes) if rescale_constraint_val < 0 and whether_recover_policy_value < 0: # point in trust region is feasible and safety boundary doesn't intersect # ==> entire trust region is feasible optim_case = 3 # print("optim_case = 3---entire trust region is feasible") elif rescale_constraint_val < 0 and whether_recover_policy_value >= 0: # x = 0 is feasible and safety boundary intersects # ==> most of trust region is feasible optim_case = 2 # print('optim_case = 2---most of trust region is feasible') elif rescale_constraint_val >= 0 and whether_recover_policy_value >= 0: # x = 0 is infeasible and safety boundary intersects # ==> part of trust region is feasible, recovery possible optim_case = 1 # print('optim_case = 1---Alert! Attempting feasible recovery!') else: # x = 0 infeasible, and safety halfspace is outside trust region # ==> whole trust region is infeasible, try to fail gracefully optim_case = 0 # print('optim_case = 0---Alert! Attempting infeasible recovery!') if whether_recover_policy_value == 0: whether_recover_policy_value = self.EPS if optim_case in [3, 4]: lam = torch.sqrt( (q_coef / (2 * self._max_quad_constraint_val))) # self.lamda_coef = lam = np.sqrt(q / (2 * target_kl)) nu = torch.tensor(0) # v_coef = 0 elif optim_case in [1, 2]: LA, LB = [0, r_coef / rescale_constraint_val], [r_coef / rescale_constraint_val, np.inf] LA, LB = (LA, LB) if rescale_constraint_val < 0 else (LB, LA) proj = lambda x, L: max(L[0], min(L[1], x)) lam_a = proj(torch.sqrt(positive_Cauchy_value / whether_recover_policy_value), LA) lam_b = proj(torch.sqrt(q_coef / (torch.tensor(2 * self._max_quad_constraint_val))), LB) f_a = lambda lam: -0.5 * (positive_Cauchy_value / ( self.EPS + lam) + whether_recover_policy_value * lam) - r_coef * rescale_constraint_val / ( self.EPS + s_coef) f_b = lambda lam: -0.5 * (q_coef / (self.EPS + lam) + 2 * self._max_quad_constraint_val * lam) lam = lam_a if f_a(lam_a) >= f_b(lam_b) else lam_b nu = max(0, lam * rescale_constraint_val - r_coef) / (self.EPS + s_coef) else: lam = torch.tensor(0) nu = torch.sqrt(torch.tensor(2 * self._max_quad_constraint_val) / (self.EPS + s_coef)) x_a = (1. / (lam + self.EPS)) * (g_step_dir + nu * b_step_dir) x_b = (nu * b_step_dir) x = x_a if optim_case > 0 else x_b # todo: update actor and learning reward_loss = reward_loss.data.cpu().numpy() cost_loss = cost_loss.data.cpu().numpy() params = self.flat_params(self.policy.actor) old_actor = R_Actor(self.policy.args, self.policy.obs_space, self.policy.act_space, self.device) self.update_model(old_actor, params) expected_improve = -torch.dot(x, reward_loss_grad).sum(0, keepdim=True) expected_improve = expected_improve.data.cpu().numpy() # line search flag = False fraction_coef = self.fraction_coef # print("fraction_coef", fraction_coef) for i in range(self.ls_step): x_norm = torch.norm(x) if x_norm > 0.5: x = x * 0.5 / x_norm new_params = params - fraction_coef * (fraction**i) * x self.update_model(self.policy.actor, new_params) values, action_log_probs, dist_entropy, new_cost_values, action_mu, action_std = self.policy.evaluate_actions( share_obs_batch, obs_batch, rnn_states_batch, rnn_states_critic_batch, actions_batch, masks_batch, available_actions_batch, active_masks_batch, rnn_states_cost_batch) ratio = torch.exp(action_log_probs - old_action_log_probs_batch) if self._use_policy_active_masks: new_reward_loss = (torch.sum(ratio * factor_batch * adv_targ, dim=-1, keepdim=True) * active_masks_batch).sum() / active_masks_batch.sum() else: new_reward_loss = torch.sum(ratio * factor_batch * adv_targ, dim=-1, keepdim=True).mean() if self._use_policy_active_masks: new_cost_loss = (torch.sum(ratio * factor_batch * cost_adv_targ, dim=-1, keepdim=True) * active_masks_batch).sum() / active_masks_batch.sum() else: new_cost_loss = torch.sum(ratio * factor_batch * cost_adv_targ, dim=-1, keepdim=True).mean() new_reward_loss = new_reward_loss.data.cpu().numpy() new_reward_loss = -new_reward_loss new_cost_loss = new_cost_loss.data.cpu().numpy() loss_improve = new_reward_loss - reward_loss kl = self.kl_divergence(obs_batch, rnn_states_batch, actions_batch, masks_batch, available_actions_batch, active_masks_batch, new_actor=self.policy.actor, old_actor=old_actor) kl = kl.mean() # see https: // en.wikipedia.org / wiki / Backtracking_line_search if ((kl < self.kl_threshold) and (loss_improve < 0 if optim_case > 1 else True) and (new_cost_loss.mean() - cost_loss.mean() <= max(-rescale_constraint_val, 0))): flag = True # print("line search successful") break expected_improve *= fraction if not flag: # line search failed print("line search failed") params = self.flat_params(old_actor) self.update_model(self.policy.actor, params) return value_loss, critic_grad_norm, kl, loss_improve, expected_improve, dist_entropy, ratio, cost_loss, cost_grad_norm, whether_recover_policy_value, cost_preds_batch, cost_returns_barch, B_cost_loss_grad, lam, nu, g_step_dir, b_step_dir, x, action_mu, action_std, B_cost_loss_grad_dot def train(self, buffer, shared_buffer=None, update_actor=True): """ Perform a training update using minibatch GD. :param buffer: (SharedReplayBuffer) buffer containing training data. :param update_actor: (bool) whether to update actor network. :return train_info: (dict) contains information regarding training update (e.g. loss, grad norms, etc). """ if self._use_popart: advantages = buffer.returns[:-1] - self.value_normalizer.denormalize(buffer.value_preds[:-1]) else: advantages = buffer.returns[:-1] - buffer.value_preds[:-1] advantages_copy = advantages.copy() advantages_copy[buffer.active_masks[:-1] == 0.0] = np.nan mean_advantages = np.nanmean(advantages_copy) std_advantages = np.nanstd(advantages_copy) advantages = (advantages - mean_advantages) / (std_advantages + 1e-5) if self._use_popart: cost_adv = buffer.cost_returns[:-1] - self.value_normalizer.denormalize(buffer.cost_preds[:-1]) else: cost_adv = buffer.cost_returns[:-1] - buffer.cost_preds[:-1] cost_adv_copy = cost_adv.copy() cost_adv_copy[buffer.active_masks[:-1] == 0.0] = np.nan mean_cost_adv = np.nanmean(cost_adv_copy) std_cost_adv = np.nanstd(cost_adv_copy) cost_adv = (cost_adv - mean_cost_adv) / (std_cost_adv + 1e-5) train_info = {} train_info['value_loss'] = 0 train_info['kl'] = 0 train_info['dist_entropy'] = 0 train_info['loss_improve'] = 0 train_info['expected_improve'] = 0 train_info['critic_grad_norm'] = 0 train_info['ratio'] = 0 train_info['cost_loss'] = 0 train_info['cost_grad_norm'] = 0 train_info['whether_recover_policy_value'] = 0 train_info['cost_preds_batch'] = 0 train_info['cost_returns_barch'] = 0 train_info['B_cost_loss_grad'] = 0 train_info['lam'] = 0 train_info['nu'] = 0 train_info['g_step_dir'] = 0 train_info['b_step_dir'] = 0 train_info['x'] = 0 train_info['action_mu'] = 0 train_info['action_std'] = 0 train_info['B_cost_loss_grad_dot'] = 0 if self._use_recurrent_policy: data_generator = buffer.recurrent_generator(advantages, self.num_mini_batch, self.data_chunk_length, cost_adv=cost_adv) elif self._use_naive_recurrent: data_generator = buffer.naive_recurrent_generator(advantages, self.num_mini_batch, cost_adv=cost_adv) else: data_generator = buffer.feed_forward_generator(advantages, self.num_mini_batch, cost_adv=cost_adv) # old_actor = copy.deepcopy(self.policy.actor) for sample in data_generator: value_loss, critic_grad_norm, kl, loss_improve, expected_improve, dist_entropy, imp_weights, cost_loss, cost_grad_norm, whether_recover_policy_value, cost_preds_batch, cost_returns_barch, B_cost_loss_grad, lam, nu, g_step_dir, b_step_dir, x, action_mu, action_std, B_cost_loss_grad_dot \ = self.trpo_update(sample, update_actor) train_info['value_loss'] += value_loss.item() train_info['kl'] += kl train_info['loss_improve'] += loss_improve train_info['expected_improve'] += expected_improve train_info['dist_entropy'] += dist_entropy.item() train_info['critic_grad_norm'] += critic_grad_norm train_info['ratio'] += imp_weights.mean() train_info['cost_loss'] += value_loss.item() train_info['cost_grad_norm'] += cost_grad_norm train_info['whether_recover_policy_value'] += whether_recover_policy_value train_info['cost_preds_batch'] += cost_preds_batch.mean() train_info['cost_returns_barch'] += cost_returns_barch.mean() train_info['B_cost_loss_grad'] += B_cost_loss_grad.mean() train_info['g_step_dir'] += g_step_dir.float().mean() train_info['b_step_dir'] += b_step_dir.float().mean() train_info['x'] = x.float().mean() train_info['action_mu'] += action_mu.float().mean() train_info['action_std'] += action_std.float().mean() train_info['B_cost_loss_grad_dot'] += B_cost_loss_grad_dot.item() num_updates = self.ppo_epoch * self.num_mini_batch for k in train_info.keys(): train_info[k] /= num_updates return train_info def prep_training(self): self.policy.actor.train() self.policy.critic.train() def prep_rollout(self): self.policy.actor.eval() self.policy.critic.eval() """ B_cost_loss_grad_dot = torch.dot(B_cost_loss_grad, B_cost_loss_grad) if torch.dot(B_cost_loss_grad, B_cost_loss_grad) <= 1e-8 and rescale_constraint_val < 0: b_step_dir, r_coef, s_coef, A, B = 0, 0, 0, 0, 0 optim_case = 4 else: A = q_coef - r_coef**2/s_coef B = self._max_quad_constraint_val - (rescale_constraint_val ** 2) / (s_coef+ self.EPS) positive_Cauchy_value = A whether_recover_policy_value = B if rescale_constraint_val<0 and B<0: optim_case = 3 elif rescale_constraint_val < 0 and B >= 0: optim_case = 2 elif rescale_constraint_val >= 0 and B >= 0: optim_case = 1 else: optim_case = 0 if A==0: A = self.EPS if B==0: B = self.EPS lam, nu = 0, 0 if optim_case == 0: # need to recover policy from unfeasible point recover_policy_flag = True lam = 0 nu = torch.sqrt(2 * self.kl_threshold / (s_coef + self.EPS) ) elif optim_case in [1, 2]: lamda_a = torch.sqrt(A/B) lamda_A_1 = r_coef / rescale_constraint_val lamda_A_2 = torch.tensor(0) lamda_b = torch.sqrt(q_coef / (2 * self._max_quad_constraint_val)) if rescale_constraint_val > 0: lamda_coef_1 = torch.max(lamda_A_1, lamda_a) # assume lamda*c - r >0 lamda_coef_2 = torch.max(lamda_A_2, torch.min(lamda_b, lamda_A_1)) # assume lamda*c - r < 0 if (lamda_coef_1 * rescale_constraint_val - r_coef) > 0: # assume lamda*c - r >0 successfully self.lamda_coef_a_star = lamda_coef_1 else: # assume failed self.lamda_coef_b_star = lamda_coef_2 else: lamda_coef_3 = torch.max(lamda_A_2, torch.min(lamda_a, lamda_A_1)) # assume lamda*c - r >0 lamda_coef_4 = torch.max(lamda_b, lamda_A_1) # assume lamda*c - r < 0 # print("lamda_coef_3 * rescale_constraint_val - r_coef ", # lamda_coef_3 * rescale_constraint_val - r_coef) if lamda_coef_3 * rescale_constraint_val - r_coef > 0: self.lamda_coef_a_star = lamda_coef_3 else: self.lamda_coef_b_star = lamda_coef_4 if self.lamda_coef_b_star==0: self.lamda_coef_b_star = self.EPS if self.lamda_coef_a_star==0: self.lamda_coef_a_star = self.EPS if s_coef==0: s_coef = self.EPS f_a_star = -A/(2*self.lamda_coef_a_star + self.EPS) - self.lamda_coef_a_star*B/2 - r_coef*rescale_constraint_val/(s_coef+ self.EPS) f_b_star = -(self._max_quad_constraint_val/(self.lamda_coef_b_star+ self.EPS) \ + self.lamda_coef_b_star*self._max_quad_constraint_val)/2 if f_a_star > f_b_star: lam = self.lamda_coef_a_star else: lam = self.lamda_coef_b_star nu = torch.relu( (lam*rescale_constraint_val - r_coef)/(s_coef + self.EPS) ) elif optim_case in [3, 4]: lam = torch.sqrt(q_coef/(2*self._max_quad_constraint_val)) nu = 0. """
[]
2024-01-10
Sube-py/arts
arts~openai2~_core.py
from json import dumps as jsonDumps from json import loads as jsonLoads from pathlib import Path from typing import Union, List import openai try: import aiohttp from openai import api_requestor from contextlib import asynccontextmanager @asynccontextmanager async def aiohttp_session(): """ 该函数是基于 PyPi包 "openai" 中的 aiohttp_session 函数改写 """ user_set_session = openai.aiosession.get() if user_set_session: yield user_set_session else: async with aiohttp.ClientSession(trust_env=True) as session: yield session api_requestor.aiohttp_session = aiohttp_session except: pass class AKPool: """轮询获取api_key""" def __init__(self, apikeys: list): self._pool = self._POOL(apikeys) def fetch_key(self): return next(self._pool) @classmethod def _POOL(cls, apikeys: list): while True: for x in apikeys: yield x class RoleMsgBase: role_name: str text: str def __init__(self, text: str): self.text = text def __str__(self): return self.text def __iter__(self): yield "role", self.role_name yield "content", self.text system_msg = type("system_msg", (RoleMsgBase,), {"role_name": "system"}) user_msg = type("user_msg", (RoleMsgBase,), {"role_name": "user"}) assistant_msg = type("assistant_msg", (RoleMsgBase,), {"role_name": "assistant"}) class Temque: """一个先进先出, 可设置最大容量, 可固定元素的队列""" def __init__(self, maxlen: int = None): self.core: List[dict] = [] self.maxlen = maxlen or float("inf") def _trim(self): core = self.core if len(core) > self.maxlen: dc = len(core) - self.maxlen indexes = [] for i, x in enumerate(core): if not x["pin"]: indexes.append(i) if len(indexes) == dc: break for i in indexes[::-1]: core.pop(i) def add_many(self, *objs): for x in objs: self.core.append({"obj": x, "pin": False}) self._trim() def __iter__(self): for x in self.core: yield x["obj"] def pin(self, *indexes): for i in indexes: self.core[i]["pin"] = True def unpin(self, *indexes): for i in indexes: self.core[i]["pin"] = False def copy(self): que = self.__class__(maxlen=self.maxlen) que.core = self.core.copy() return que def deepcopy(self): ... # 创建这个方法是为了提醒用户: copy 方法是浅拷贝 def __add__(self, obj: Union[list, "Temque"]): que = self.copy() if isinstance(obj, self.__class__): que.core += obj.core que._trim() else: que.add_many(*obj) return que class Chat: """ 文档: https://pypi.org/project/openai2 获取api_key: 获取链接1: https://platform.openai.com/account/api-keys 获取链接2: https://www.baidu.com/s?wd=%E8%8E%B7%E5%8F%96%20openai%20api_key """ recently_used_apikey: str = "" def __init__( self, api_key: Union[str, AKPool], model: str = "gpt-3.5-turbo", MsgMaxCount=None, **kwargs, ): self.reset_api_key(api_key) self.model = model self._messages = Temque(maxlen=MsgMaxCount) self.kwargs = kwargs def reset_api_key(self, api_key: Union[str, AKPool]): if isinstance(api_key, AKPool): self._akpool = api_key else: self._akpool = AKPool([api_key]) def request(self, text: str): self.recently_used_apikey = self._akpool.fetch_key() completion = openai.ChatCompletion.create( **{ "api_key": self.recently_used_apikey, "model": self.model, "messages": list(self._messages + [{"role": "user", "content": text}]), **self.kwargs, } ) answer: str = completion.choices[0].message["content"] self._messages.add_many( {"role": "user", "content": text}, {"role": "assistant", "content": answer} ) return answer def stream_request(self, text: str): self.recently_used_apikey = self._akpool.fetch_key() completion = openai.ChatCompletion.create( **{ "api_key": self.recently_used_apikey, "model": self.model, "messages": list(self._messages + [{"role": "user", "content": text}]), "stream": True, **self.kwargs, } ) answer: str = "" for chunk in completion: choice = chunk.choices[0] if choice.finish_reason == "stop": break content: str = choice.delta.get("content", "") answer += content yield content self._messages.add_many( {"role": "user", "content": text}, {"role": "assistant", "content": answer} ) async def asy_request(self, text: str): self.recently_used_apikey = self._akpool.fetch_key() completion = await openai.ChatCompletion.acreate( **{ "api_key": self.recently_used_apikey, "model": self.model, "messages": list(self._messages + [{"role": "user", "content": text}]), **self.kwargs, } ) answer: str = completion.choices[0].message["content"] self._messages.add_many( {"role": "user", "content": text}, {"role": "assistant", "content": answer} ) return answer async def async_stream_request(self, text: str): self.recently_used_apikey = self._akpool.fetch_key() completion = await openai.ChatCompletion.acreate( **{ "api_key": self.recently_used_apikey, "model": self.model, "messages": list(self._messages + [{"role": "user", "content": text}]), "stream": True, **self.kwargs, } ) answer: str = "" async for chunk in completion: choice = chunk.choices[0] if choice.finish_reason == "stop": break content: str = choice.delta.get("content", "") answer += content yield content self._messages.add_many( {"role": "user", "content": text}, {"role": "assistant", "content": answer} ) def rollback(self, n=1): self._messages.core[-2 * n :] = [] for x in self._messages.core[-2:]: x = x["obj"] print(f"[{x['role']}]:{x['content']}") def pin(self, *indexes): self._messages.pin(*indexes) def unpin(self, *indexes): self._messages.unpin(*indexes) def dump(self, fpath: str): """存档""" jt = jsonDumps(list(self._messages), ensure_ascii=False) Path(fpath).write_text(jt, encoding="utf8") return True def load(self, fpath: str): """载入存档""" jt = Path(fpath).read_text(encoding="utf8") self._messages.add_many(*jsonLoads(jt)) return True def forge(self, *messages: Union[system_msg, user_msg, assistant_msg]): """伪造对话内容""" for x in messages: self._messages.add_many(dict(x)) print(self._messages) def fetch_messages(self): return list(self._messages)
[]
2024-01-10
Sube-py/arts
arts~openai2~_GroupChat.py
from json import dumps as jsonDumps from json import dumps from typing import Dict import openai from ._core import system_msg, user_msg, assistant_msg, Chat class GCRoles: ''' roles: { '李白': {'desc':'中国唐代的著名大诗人'} } ''' roles: Dict[str, dict] def __init__(self): self.roles = {} def __getitem__(self, role): return self.roles.setdefault(role, {}) class GroupChat(Chat): MustRolesInfo = { '小许':{'desc':'一个聪明的程序员'}, '小郑':{'desc':'一个帅气的男人'}, '小张':{'desc':'一个漂亮的女人'}, } user_example = dumps({'dialogues':[{'speaker':'李白', 'audiences':['杜甫', '小许'], 'remark':'你们好呀'}, {'speaker':'杜甫', 'audiences':['李白'], 'remark':'你好, 你今天写诗了吗?'}, {'speaker':'小许', 'audiences':['李白'], 'remark':'你好, 你吃了吗?'}], 'dialogues to be generated':[{'speaker':'李白', 'audiences':['小许']}, {'speaker':'李白', 'audiences':['杜甫']}, {'speaker':'李白', 'audiences':['杜甫', '小许']}]}, ensure_ascii=False) assistant_example = dumps(['我今天写诗了', '我吃饭了','你们有什么有趣的事情分享吗?'], ensure_ascii=False) def __init__(self, *vs, **kvs): Chat.__init__(self, *vs, **kvs) self.roles = GCRoles() @property def pinned_message(self): system_text = f'''以下JSON格式的文档描述了一些人物信息: 【{dumps(self.MustRolesInfo | self.roles.roles, ensure_ascii=False)}】 assistant需要了解这些人物的信息. user将会收集这些人物的对话记录并整理成固定格式, 然后以JSON格式发送给assistant,在发送给assistant的JSON文档中, 还会注明需要assistant模拟生成哪些人对哪些人的对话, 例如: 【{self.user_example}】 在上面的例子中, 'dialogues to be generated' 字段有3个元素, 则assistant的模拟发言也需要有3个元素,然后放在一个列表中,以JSON格式返回, 例如: 【{self.assistant_example}】 assistant每次只返回JSON文档即可,勿包含任何其它信息,否则会干扰user的解析. assistant在发言时可以编造,比如在回答年龄时,可以随意编一个年龄.''' return [ system_msg(system_text), user_msg(dumps({'dialogues':[{'speaker':'小郑', 'audiences':['小张'], 'remark':'你是谁?'}, {'speaker':'小张', 'audiences':['小郑'], 'remark':'我叫小张,今年13岁'}, {'speaker':'小许', 'audiences':['小郑', '小张'], 'remark':'你们是哪里人?'}], 'dialogues to be generated':[{'speaker':'小郑', 'audiences':['小张']}, {'speaker':'小郑', 'audiences':['小许']}, {'speaker':'小张', 'audiences':['小许']}]}, ensure_ascii=False)), system_msg('user指定了依次模拟 小郑->小张, 小郑->小许, 小张->小许 的发言, assistant的模拟发言要按照user指定的顺序'), assistant_msg(dumps(['哦哦, 我比你大1岁', '我是河南人', '不告诉你'], ensure_ascii=False)), user_msg(dumps({'dialogues':[{'speaker':'小许', 'audiences':['小张'], 'remark':'呵呵,这么神秘呀?'}, {'speaker':'小许', 'audiences':['小郑'], 'remark':'你知道小张是哪里人吗?'}], 'dialogues to be generated':[{'speaker':'小郑', 'audiences':['小许']}, {'speaker':'小张', 'audiences':['小许']}]}, ensure_ascii=False)), assistant_msg(dumps(['哈哈, 我也不知道哦', '哈哈, 也没啥神秘的,我是湖北人'], ensure_ascii=False)) ] def request(self, user:dict): text = jsonDumps(user, ensure_ascii=False) self.recently_used_apikey = self._akpool.fetch_key() completion = openai.ChatCompletion.create(**{ 'api_key': self.recently_used_apikey, 'model': self.model, 'messages': [dict(x) for x in self.pinned_message] + list(self._messages) + [{"role": "user", "content": text}], **self.kwargs }) answer:str = completion.choices[0].message['content'] self._messages.add_many( {"role": "user", "content": text}, {"role": "assistant", "content": answer} ) return answer
[]
2024-01-10
kldarek/LLM-experiments
eval_chat.py
import os import wandb from langchain.llms import OpenAI from langchain.chains import VectorDBQAWithSourcesChain from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) import pandas as pd import pickle import faiss from utils import create_html, color_start, color_end from prompt import prompt_template, system_template from types import SimpleNamespace cfg = SimpleNamespace( TEMPERATURE = 0, PROJECT = "wandb_docs_bot", INDEX_ARTIFACT = "darek/wandb_docs_bot/faiss_store:v2", PROMPT_TEMPLATE = prompt_template, MODEL = "chatGPT", ) def load_vectostore(): artifact = wandb.use_artifact(cfg.INDEX_ARTIFACT, type='search_index') artifact_dir = artifact.download() index = faiss.read_index(artifact_dir + "/docs.index") with open(artifact_dir + "/faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index return store def load_prompt(): prompt = PromptTemplate(input_variables=["question", "summaries"], template=cfg.PROMPT_TEMPLATE) return prompt def load_chain(openai_api_key): vectorstore = load_vectostore() prompt = load_prompt() chain = VectorDBQAWithSourcesChain.from_llm( llm=OpenAI(temperature=cfg.TEMPERATURE, openai_api_key=openai_api_key), vectorstore=vectorstore, combine_prompt=prompt) return chain, prompt def get_answer(question, chain): if chain is not None: chain.return_source_documents = True result = chain( { "question": question, }, return_only_outputs=False, ) return result['answer'], result["source_documents"], result['sources'] openai_api_key = os.getenv("OPENAI_API_KEY") if len(openai_api_key) < 10: raise ValueError("Set OPENAI_API_KEY environment variable") run = wandb.init(project=cfg.PROJECT, config=cfg) eval_table = wandb.Table(columns=["question", "answer", "target", "prompt", "docs"]) df = pd.read_csv('llm_eval_set.csv', header=1).dropna() vectorstore = load_vectostore() for question, target in zip(df.Question, df.Answer): messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}") ] prompt = ChatPromptTemplate.from_messages(messages) chain_type_kwargs = {"prompt": prompt} chain = VectorDBQAWithSourcesChain.from_chain_type(llm=ChatOpenAI(), chain_type="stuff", vectorstore=vectorstore, chain_type_kwargs=chain_type_kwargs) answer, docs, sources = get_answer(question, chain) docs_string = '\n\n'.join([color_start + d.metadata['source'] + ':\n' + color_end + d.page_content for d in docs]) docs_html = wandb.Html(create_html(docs_string)) answer_html = wandb.Html(create_html(answer)) prompt_html = wandb.Html(create_html(system_template)) question_html = wandb.Html(create_html(question)) target_html = wandb.Html(create_html(target)) eval_table.add_data(question_html, answer_html, target_html, prompt_html, docs_html) wandb.log({'eval_table': eval_table}) run.finish() print('done')
[ "question", "{question}" ]
2024-01-10
kldarek/LLM-experiments
ingest_docs_only.py
import os import wandb import faiss import pickle import json from langchain.docstore.document import Document from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores.faiss import FAISS from langchain.document_loaders import UnstructuredMarkdownLoader from langchain.text_splitter import MarkdownTextSplitter PROJECT = "wandb_docs_bot" run = wandb.init(project=PROJECT) def find_md_files(directory): md_files = [] for root, dirs, files in os.walk(directory): for file in files: if file.endswith(".md"): file_path = os.path.join(root, file) md_files.append(file_path) return md_files def load_documents(files): docs = [] for file in files: fname = file.split('/')[-1] loader = UnstructuredMarkdownLoader(file) markdown_splitter = MarkdownTextSplitter(chunk_size=2048, chunk_overlap=128) markdown_docs = loader.load() markdown_docs = [x.page_content for x in markdown_docs] chunks = markdown_splitter.create_documents(markdown_docs) for chunk in chunks: chunk.metadata["source"] = fname # need to add the source to doc docs.extend(chunks) return docs def create_and_save_index(documents): store = FAISS.from_documents(documents,OpenAIEmbeddings()) artifact = wandb.Artifact("faiss_store", type="search_index") faiss.write_index(store.index, "docs.index") artifact.add_file("docs.index") store.index = None with artifact.new_file("faiss_store.pkl", "wb") as f: pickle.dump(store, f) wandb.log_artifact(artifact, "docs_index", type="embeddings_index") return store def main(): files = find_md_files('../docodile/docs/') documents = load_documents(files) store = create_and_save_index(documents) if __name__ == "__main__": main()
[]
2024-01-10
stankerstjens/constructive-connectomics
abianalysis~abianalysis~guidance~__init__.py
# MIT License # # Copyright (c) 2022. Stan Kerstjens # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from .graph import GuidanceGraph from .metrics import *
[]
2024-01-10
stankerstjens/constructive-connectomics
notebooks~guidance_experiment.py
import json import random from functools import partial from typing import Optional, Tuple, Iterable import igraph import numpy as np from tqdm import tqdm from abianalysis.guidance import GuidanceGraph, Axon, get_euclidean_path_length, \ get_euclidean_distance from abianalysis.guidance.factory import correlation_landscape, \ normalized_weight, threshold_edge_mask from abianalysis.hierarchy import Hierarchy from abianalysis.hierarchy.decomposition import pca_split, \ random_split, make_balanced_hierarchy from abianalysis.spatial import VoxelGraph, voxel_graph_from_volume from abianalysis.volume import Volume from pylineage.multi_lineage_simulator import MultiLineageSimulator def _block_mean_expression(pos: np.ndarray, exp: np.ndarray, k: int) -> \ Tuple[np.ndarray, np.ndarray]: n_voxels, n_genes = exp.shape shape = np.max(pos, 0) - np.min(pos, 0) + 1 mat = np.zeros((*shape, n_genes)) p = np.array(pos) p -= np.min(p, axis=0) mat[tuple(p.T)] = exp mat = np.add.reduceat(mat, np.arange(0, mat.shape[0], k), axis=0) mat = np.add.reduceat(mat, np.arange(0, mat.shape[1], k), axis=1) mat = np.add.reduceat(mat, np.arange(0, mat.shape[2], k), axis=2) mat /= k ** 3 pos = np.array(np.nonzero(mat.sum(axis=3))).T exp = mat[tuple(pos.T)] return pos, exp def draw_random_axon(voxel_graph: VoxelGraph, source_voxel, n_steps): fringe = {source_voxel} visited = set() previous = {source_voxel: None} for i in range(n_steps): voxel = random.sample(fringe, 1)[0] fringe.remove(voxel) visited.add(voxel) neighbors = set(voxel_graph.get_neighbors(voxel)) - visited for neighbor in neighbors: previous[neighbor] = voxel fringe.update(neighbors) visited = sorted(visited) idx = {v: i for i, v in enumerate(visited)} tree = igraph.Graph(directed=True) tree.add_vertices(len(visited), attributes={'voxel': visited}) tree.add_edges([(idx[previous[voxel]], idx[voxel]) for voxel in visited if previous[voxel] is not None]) axon = Axon() axon._tree = tree return axon class AxonNavigator: def __init__(self, hierarchy: Hierarchy, landscape_threshold: float = .1, gradient_threshold: float = .0): """ :param hierarchy: :param landscape_threshold: The smallest measurable correlation :param gradient_threshold: The smallest measurable correlation gradient """ self.hierarchy = hierarchy self.landscape_threshold = landscape_threshold self.gradient_threshold = gradient_threshold self.voxel_graph = None self._source_vertices = [] @property def volume(self): return self.hierarchy.volume def simulate_axons(self, n_axons, source_voxels=None): """Simulate n_axons axons. If specified, the source voxels are used. Otherwise, random voxels are used. """ if source_voxels is None: source_voxels = np.random.choice( self.volume.n_voxels, size=n_axons, replace=False ) self._source_vertices = self.guidance_graph.get_leaf_vertex( source_voxels) return [self.guidance_graph.find_axon(source) for source in tqdm(self.sources, desc='Sampling axons')] def _init_voxel_graph(self): self.voxel_graph = voxel_graph_from_volume(self.volume) def _init_guidance_graph(self): landscape_fn = partial(correlation_landscape, threshold=self.landscape_threshold) weight_fn = normalized_weight mask_fn = partial(threshold_edge_mask, threshold=self.gradient_threshold) self.guidance_graph = GuidanceGraph.create( self.hierarchy, self.voxel_graph, hierarchy_to_landscape=landscape_fn, gradient_to_weight=weight_fn, edge_mask=mask_fn, ) class Experiment: """ :param age: :param n_iterations: :param n_sources: :param landscape_threshold: :param gradient_threshold: :param split_method: :param expression: :param label: """ def __init__(self, age: str, n_iterations: int, n_sources: int, landscape_threshold=.1, gradient_threshold=.0, split_method='pca', genes: Optional[np.ndarray] = None, expression='', label: str = '', noise_amount=0.): # Parameters self.age = age self.n_iterations = n_iterations self.n_sources = n_sources self.label = label self.expression = expression self.noise_amount = noise_amount self.genes = genes if split_method == 'pca': split_method = pca_split elif split_method == 'random': split_method = random_split else: raise ValueError('Invalid split method') self.split_method = split_method self.landscape_threshold = landscape_threshold self.gradient_threshold = gradient_threshold self.volume: Optional[Volume] = None self.hierarchy: Optional[Hierarchy] = None self.voxel_graph: Optional[VoxelGraph] = None self.guidance_graph: Optional[GuidanceGraph] = None self.sources = None self.axons = None def _set_model_expression(self): n_genes = self.volume.n_genes for h in self.hierarchy.descendants(): h._expression = np.random.randn(n_genes) if h.parent: h._expression += h.parent.expression for h in self.hierarchy.leaves(): self.volume.expression[h.voxel_index] = h._expression def _smooth_expression(self): exp = self.volume.expression.copy() g = self.voxel_graph._graph for v in g.vs: self.volume.expression[v.index] = np.mean(exp[g.neighbors(v)], axis=0) def _prepare_volume(self): pass def _optional_shuffle(self): if self.shuffle: self.volume.shuffle() def _add_some_noise(self, amount: float = 0.) -> None: """ :param amount: Some float between 0 and 1, 0 meaning no noise and 1 meaning only noise. """ noise = np.random.randn(*self.volume.expression.shape) self.volume.expression = ((1 - amount) * self.volume.expression + amount * noise) for leaf in self.hierarchy.leaves(): assert leaf.voxel_index is not None, \ 'Leaves should have voxel indices' leaf._expression = None @property def shuffle(self): """True if the volume expression data should be shuffled.""" return 'shuffled' in self.expression @property def smooth(self): """True if the expression should be spatially smoothed. This could either be before establishing the hierarchy (in case the expression is also shuffled) or after (in case the model expression is applied). """ return 'smooth' in self.expression @property def model(self): """True if the expression should be modeled after the hierarchy.""" return 'model' in self.expression def _prepare_hierarchy(self): if self.smooth and self.shuffle: self._smooth_expression() print('Preparing hierarchy...') self.hierarchy = make_balanced_hierarchy( self.volume, n_iterations=self.n_iterations, partition_children=self.split_method ) if self.model: self._set_model_expression() if self.smooth: self._smooth_expression() def _prepare_voxel_graph(self): print('Preparing voxel graph...') self.voxel_graph = voxel_graph_from_volume(self.volume) def _reduce_genes(self): self.volume.filter_genes(self.genes) for h in self.hierarchy.descendants(): if h.component is not None: h.component = h.component[self.genes] def _prepare_guidance_graph(self): landscape_fn = partial(correlation_landscape, threshold=self.landscape_threshold) weight_fn = normalized_weight mask_fn = partial(threshold_edge_mask, threshold=self.gradient_threshold) self.guidance_graph = GuidanceGraph.create( self.hierarchy, self.voxel_graph, hierarchy_to_landscape=landscape_fn, gradient_to_weight=weight_fn, edge_mask=mask_fn, ) def prepare(self): self._prepare_volume() self._prepare_voxel_graph() self._prepare_hierarchy() if self.noise_amount > 0: self._add_some_noise(self.noise_amount) if self.genes is not None: self._reduce_genes() self._prepare_guidance_graph() def snowball(self, source_voxel=None): if source_voxel is None: source_voxel = np.random.choice(self.volume.n_voxels, size=1).item() self.sources = [] self.axons = [] visited = set() voxels = {source_voxel} i = 0 while i < self.n_sources or voxels: print(i, end='\r') if len(voxels - visited) > 0: voxel = np.random.choice(list(voxels), size=1).item() voxels.remove(voxel) else: remaining_voxels = set(range(self.volume.n_voxels)) - visited voxel = np.random.choice(list(remaining_voxels), size=1).item() visited.add(voxel) source_index = self.guidance_graph.get_leaf_vertex(voxel) axon = self.guidance_graph.find_axon(source_index) voxels.update(set(axon.tips) - visited) self.sources.append(source_index) self.axons.append(axon) i += 1 self.n_sources = len(self.axons) def sample_axons(self, source_voxels=None): if source_voxels is None: source_voxels = np.random.choice( self.volume.n_voxels, size=self.n_sources, replace=False ) else: self.n_sources = len(source_voxels) self.sources = self.guidance_graph.get_leaf_vertex(source_voxels) self.axons = [self.guidance_graph.find_axon(source) for source in tqdm(self.sources, desc='Sampling axons')] def random_fake_axons(self) -> Iterable['FakeAxon']: for axon in self.axons: axon = draw_random_axon(self.voxel_graph, axon.source_voxel, len(axon.reached_voxels)) yield axon def get_path_lengths(self): return [get_euclidean_path_length(self.volume, path) for axon in tqdm(self.axons, desc='Calculating path lengths') for path in axon.voxel_paths if len(path) > 1] def get_path_distances(self): return [get_euclidean_distance(self.volume, path) for axon in tqdm(self.axons, desc='Calculating path distances') for path in axon.voxel_paths if len(path) > 1] def get_reached_voxels_counts(self): return [len(axon.reached_voxels) for axon in tqdm(self.axons, desc='Counting reached voxels')] def save_to_json(self, file_name: str = None): """Save the experiment to a json file""" if file_name is None: file_name = self.label.lower().replace(' ', '_') + '.json' voxel_hierarchy = np.zeros(self.volume.n_voxels, dtype=np.int32) for h in self.hierarchy.descendants(): if any(c.is_leaf for c in h.children): voxel_hierarchy[h.voxels] = h.id vis_data = { 'hierarchy': self.hierarchy.to_json_dict( include_only=('children')), 'voxel_hierarchy': voxel_hierarchy.tolist(), 'volume': { 'voxel_indices': self.volume.voxel_indices.T.tolist(), **self.volume.to_json_dict( include_only=('voxel_size', 'age', 'anatomy', 'id', 'name') ) }, 'axons': [{ 'branch_paths': a.branch_paths, 'source_voxel': a.source_voxel.item(), } for a in self.axons], } with open(file_name, 'w') as fh: json.dump(vis_data, fh) class DataExperiment(Experiment): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _prepare_volume(self): print('Preparing volume...') self.volume = Volume.load(self.age) self.volume.preprocess() self._optional_shuffle() class SimulatedExperiment(Experiment): def __init__(self, n_voxels, *args, **kwargs): super().__init__(*args, **kwargs) self.n_voxels = n_voxels def _prepare_volume(self): print('Simulating volume...') k = 2 n_genes = len(self.genes) if self.genes is not None else 100 mls = MultiLineageSimulator(n_dims=3, n_roots=100, n_divisions=k ** 3 * self.n_voxels, n_genes=n_genes, symmetric_prob=.2) mls.run() cells = list(mls.root.leaves()) pos = np.array([c.position.index for c in cells]) exp = np.array([c.state.expression for c in cells]) pos, exp = _block_mean_expression(pos, exp, k) exp += np.random.randn(*exp.shape) * 5 self.volume = Volume(expression=exp, voxel_indices=pos, genes=[f'g{i}' for i in range(len(exp[0]))], age=self.age) self.volume.preprocess(anatomy=None) self._optional_shuffle()
[]
2024-01-10
stankerstjens/constructive-connectomics
notebooks~guidance_plots.py
from typing import List, Optional import numpy as np from matplotlib import pyplot as plt from matplotlib.figure import Figure from guidance_experiment import Experiment def distance_vs_path_length_plot(experiment: Experiment, main: float = .75, margin: float = .1, n_bins: int = 25, max_value: Optional[float] = None, colorbar=True, ) -> Figure: path_lengths = experiment.get_path_lengths() path_distances = experiment.get_path_distances() fig = plt.figure(figsize=(5, 5)) main_ax = fig.add_axes([margin, margin, main, main]) hbins = main_ax.hexbin(path_lengths, path_distances, gridsize=n_bins, bins='log', cmap='viridis', mincnt=1, ) main_ax.set_xlabel('Path length (µm)') main_ax.set_ylabel('Straight distance (µm)') if max_value is None: max_value = np.max([path_lengths, path_distances]) main_ax.plot([0, max_value], [0, max_value], color='black', linestyle='dashed') ax = fig.add_axes([margin, main + margin, main, 1 - main - margin], sharex=main_ax) ax.hist(path_lengths, histtype='step', bins=n_bins, color='k') ax.axis('off') ax.grid() ax.set_title(experiment.label) ax = fig.add_axes([main + margin, margin, 1 - main - margin, main], sharey=main_ax) ax.hist(path_distances, histtype='step', bins=n_bins, color='k', orientation='horizontal') ax.axis('off') if colorbar: fig.colorbar( hbins, cax=fig.add_axes([main - .5 * margin, 1.5 * margin, margin / 3, margin * 2])) return fig def plot_path_length_comparison(experiments: List[Experiment], n_bins=30, histtype='step'): fig = plt.figure() ax = fig.add_subplot() ax.hist([ exp.get_path_lengths() for exp in experiments ], bins=n_bins, histtype=histtype, label=[exp.label for exp in experiments], ) ax.set_xlabel('Path length') ax.set_ylabel('# Paths') fig.legend() return fig def plot_reached_distance_comparison(experiments: List[Experiment], n_bins=30, histtype='step'): fig = plt.figure() ax = fig.add_subplot() ax.hist([ exp.get_path_distances() for exp in experiments ], bins=n_bins, histtype=histtype, label=[exp.label for exp in experiments], ) ax.set_xlabel('Reached distance') ax.set_ylabel('# Paths') fig.legend() return fig def plot_reached_voxel_count_comparison(experiments: List[Experiment], n_bins=10, histtype='step') -> Figure: fig = plt.figure() ax = fig.add_subplot() ax.hist([ exp.get_reached_voxels_counts() for exp in experiments ], histtype=histtype, label=[exp.label for exp in experiments], bins=n_bins, ) ax.set_yscale('log') ax.set_xlabel('# Reached voxels') ax.set_ylabel('# Axons') fig.legend() return fig def plot_correlation_distribution(experiments: List[Experiment], n_bins=50): fig = plt.figure() ax = fig.add_subplot() values = [] for exp in experiments: v = np.array(exp.guidance_graph._up_graph.vs['landscape']) v = v[(v > 0) & (v < 100)] values.append(v) ax.hist(values, histtype='step', label=[exp.label for exp in experiments], bins=n_bins) fig.legend() return fig
[]
2024-01-10
yuGAN6/PaddleSpeech
paddlespeech~s2t~models~whisper~whipser.py
# MIT License, Copyright (c) 2022 OpenAI. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Modified from OpenAI Whisper 2022 (https://github.com/openai/whisper/whisper) import os from dataclasses import dataclass from dataclasses import field from functools import lru_cache from typing import Dict from typing import Iterable from typing import List from typing import Optional from typing import Sequence from typing import Tuple from typing import Union import numpy as np import paddle import paddle.nn.functional as F import paddlespeech.s2t.modules.align as paddlespeech_nn import soundfile import tqdm from paddle import nn from paddle.distribution import Categorical from paddlespeech.s2t.models.whisper import utils from paddlespeech.s2t.models.whisper.tokenizer import get_tokenizer from paddlespeech.s2t.models.whisper.tokenizer import LANGUAGES from paddlespeech.s2t.models.whisper.tokenizer import Tokenizer from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() _MODELS = ["large"] SAMPLE_RATE = 16000 N_FFT = 400 N_MELS = 80 HOP_LENGTH = 160 CHUNK_LENGTH = 30 N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk N_FRAMES = utils.exact_div( N_SAMPLES, HOP_LENGTH) # 3000: number of frames in a mel spectrogram input @dataclass class ModelDimensions: n_mels: int n_audio_ctx: int n_audio_state: int n_audio_head: int n_audio_layer: int n_vocab: int n_text_ctx: int n_text_state: int n_text_head: int n_text_layer: int class LayerNorm(paddlespeech_nn.LayerNorm): def forward(self, x: paddle.Tensor) -> paddle.Tensor: return super().forward(x) class Linear(paddlespeech_nn.Linear): def forward(self, x: paddle.Tensor) -> paddle.Tensor: return F.linear(x, self.weight, None if self.bias is None else self.bias) class Conv1d(paddlespeech_nn.Conv1D): def forward(self, x: paddle.Tensor) -> paddle.Tensor: return super().forward(x) class MultiHeadAttention(nn.Layer): def __init__(self, n_state: int, n_head: int): super().__init__() self.n_head = n_head self.query = Linear(n_state, n_state, bias_attr=True) self.key = Linear(n_state, n_state, bias_attr=False) self.value = Linear(n_state, n_state, bias_attr=True) self.out = Linear(n_state, n_state, bias_attr=True) def forward( self, x: paddle.Tensor, xa: Optional[paddle.Tensor]=None, mask: Optional[paddle.Tensor]=None, kv_cache: Optional[dict]=None, ): q = self.query(x) if kv_cache is None or xa is None or self.key not in kv_cache: # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; # otherwise, perform key/value projections for self- or cross-attention as usual. k = self.key(x if xa is None else xa) v = self.value(x if xa is None else xa) else: # for cross-attention, calculate keys and values once and reuse in subsequent calls. k = kv_cache[self.key] v = kv_cache[self.value] wv = self.qkv_attention(q, k, v, mask) return self.out(wv) def qkv_attention(self, q: paddle.Tensor, k: paddle.Tensor, v: paddle.Tensor, mask: Optional[paddle.Tensor]=None): n_batch, n_ctx, n_state = q.shape scale = (n_state // self.n_head)**-0.25 q = paddle.transpose( q.view(*q.shape[:2], self.n_head, -1), (0, 2, 1, 3)) * scale k = paddle.transpose( k.view(*k.shape[:2], self.n_head, -1), (0, 2, 3, 1)) * scale v = paddle.transpose( v.view(*v.shape[:2], self.n_head, -1), (0, 2, 1, 3)) qk = q @ k if mask is not None: qk = qk + mask[:n_ctx, :n_ctx] w = F.softmax(qk.float(), axis=-1).to(q.dtype) return paddle.transpose((w @ v), (0, 2, 1, 3)).flatten(start_axis=2) class ResidualAttentionBlock(nn.Layer): def __init__(self, n_state: int, n_head: int, cross_attention: bool=False): super().__init__() self.attn = MultiHeadAttention(n_state, n_head) self.attn_ln = LayerNorm(n_state) self.cross_attn = MultiHeadAttention( n_state, n_head) if cross_attention else None self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None n_mlp = n_state * 4 self.mlp = nn.Sequential( Linear(n_state, n_mlp, bias_attr=True), nn.GELU(), Linear(n_mlp, n_state, bias_attr=True)) self.mlp_ln = LayerNorm(n_state) def forward( self, x: paddle.Tensor, xa: Optional[paddle.Tensor]=None, mask: Optional[paddle.Tensor]=None, kv_cache: Optional[dict]=None, ): x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache) if self.cross_attn: x = x + self.cross_attn( self.cross_attn_ln(x), xa, kv_cache=kv_cache) x = x + self.mlp(self.mlp_ln(x)) return x def sinusoids(length, channels, max_timescale=10000): """Returns sinusoids for positional embedding""" assert channels % 2 == 0 log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) inv_timescales = paddle.exp(-log_timescale_increment * paddle.arange( channels // 2, dtype=paddle.float32)) scaled_time = paddle.arange( length, dtype=paddle.float32)[:, np.newaxis] * inv_timescales[np.newaxis, :] return paddle.to_tensor( paddle.concat( [paddle.sin(scaled_time), paddle.cos(scaled_time)], axis=1)) class AudioEncoder(nn.Layer): def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): super().__init__() self.conv1 = Conv1d( n_mels, n_state, kernel_size=3, stride=1, padding=1, bias_attr=True) self.conv2 = Conv1d( n_state, n_state, kernel_size=3, stride=2, padding=1, bias_attr=True) self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state)) self.blocks: Iterable[ResidualAttentionBlock] = nn.LayerList( [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]) self.ln_post = LayerNorm(n_state) def forward(self, x: paddle.Tensor): """ x : paddle.Tensor, shape = (batch_size, n_mels, n_ctx) the mel spectrogram of the audio """ x = F.gelu(self.conv1(x)) x = F.gelu(self.conv2(x)) x = paddle.transpose(x, (0, 2, 1)) assert x.shape[ 1:] == self.positional_embedding.shape, "incorrect audio shape" x = (x + self.positional_embedding) for block in self.blocks: x = block(x) x = self.ln_post(x) return x class TextDecoder(nn.Layer): def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): super().__init__() self.token_embedding = nn.Embedding(n_vocab, n_state) self.positional_embedding = paddle.create_parameter( shape=[n_ctx, n_state], dtype='float32') self.blocks: Iterable[ResidualAttentionBlock] = nn.LayerList([ ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer) ]) self.ln = LayerNorm(n_state) mask = paddle.full( shape=[n_ctx, n_state], fill_value=-np.inf, dtype='float32') mask = paddle.triu(mask, diagonal=1) self.register_buffer("mask", mask, persistable=False) def forward(self, x: paddle.Tensor, xa: paddle.Tensor, kv_cache: Optional[dict]=None): """ x : paddle.LongTensor, shape = (batch_size, <= n_ctx) the text tokens xa : paddle.Tensor, shape = (batch_size, n_mels, n_audio_ctx) the encoded audio features to be attended on """ offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 x = self.token_embedding(x) + self.positional_embedding[offset:offset + x.shape[-1]] x = x.to(xa.dtype) for block in self.blocks: x = block(x, xa, mask=self.mask, kv_cache=kv_cache) x = self.ln(x) logits = (x @ paddle.transpose(self.token_embedding.weight, (1, 0))) return logits @dataclass(frozen=True) class DecodingOptions: task: str = "transcribe" # whether to perform X->X "transcribe" or X->English "translate" language: Optional[ str] = None # language that the audio is in; uses detected language if None # sampling-related options temperature: float = 0.0 sample_len: Optional[int] = None # maximum number of tokens to sample best_of: Optional[ int] = None # number of independent samples to collect, when t > 0 beam_size: Optional[ int] = None # number of beams in beam search, when t == 0 patience: Optional[ float] = None # patience in beam search (https://arxiv.org/abs/2204.05424) # options for ranking generations (either beams or best-of-N samples) length_penalty: Optional[ float] = None # "alpha" in Google NMT, None defaults to length norm # prompt, prefix, and token suppression prompt: Optional[Union[str, List[ int]]] = None # text or tokens for the previous context prefix: Optional[Union[str, List[ int]]] = None # text or tokens to prefix the current context suppress_blank: bool = True # this will suppress blank outputs # list of tokens ids (or comma-separated token ids) to suppress # "-1" will suppress a set of symbols as defined in `tokenizer.non_speech_tokens()` suppress_tokens: Optional[Union[str, Iterable[int]]] = "-1" # timestamp sampling options without_timestamps: bool = False # use <|notimestamps|> to sample text tokens only max_initial_timestamp: Optional[ float] = 1.0 # the initial timestamp cannot be later than this # implementation details fp16: bool = False # use fp16 for most of the calculation @dataclass(frozen=True) class DecodingResult: audio_features: paddle.Tensor language: str language_probs: Optional[Dict[str, float]] = None tokens: List[int] = field(default_factory=list) text: str = "" avg_logprob: float = np.nan no_speech_prob: float = np.nan temperature: float = np.nan compression_ratio: float = np.nan class Inference: def logits(self, tokens: paddle.Tensor, audio_features: paddle.Tensor) -> paddle.Tensor: """Perform a forward pass on the decoder and return per-token logits""" raise NotImplementedError def rearrange_kv_cache(self, source_indices) -> None: """Update the key-value cache according to the updated beams""" raise NotImplementedError def cleanup_caching(self) -> None: """Clean up any resources or hooks after decoding is finished""" pass class WhisperInference(Inference): def __init__(self, model: "Whisper", initial_token_length: int): self.model: "Whisper" = model self.initial_token_length = initial_token_length self.kv_cache = {} self.hooks = [] def logits(self, tokens: paddle.Tensor, audio_features: paddle.Tensor) -> paddle.Tensor: if not self.kv_cache: self.kv_cache, self.hooks = self.model.install_kv_cache_hooks() if tokens.shape[-1] > self.initial_token_length: # only need to use the last token except in the first forward pass tokens = tokens[:, -1:] return self.model.decoder( tokens, audio_features, kv_cache=self.kv_cache) def cleanup_caching(self): for hook in self.hooks: hook.remove() self.kv_cache = {} self.hooks = [] def rearrange_kv_cache(self, source_indices): for module, tensor in self.kv_cache.items(): # update the key/value cache to contain the selected sequences self.kv_cache[module] = tensor[source_indices].detach() @paddle.no_grad() def detect_language( model: "Whisper", mel: paddle.Tensor, resource_path: str, tokenizer: Tokenizer=None) -> Tuple[paddle.Tensor, List[dict]]: """ Detect the spoken language in the audio, and return them as list of strings, along with the ids of the most probable language tokens and the probability distribution over all language tokens. This is performed outside the main decode loop in order to not interfere with kv-caching. Returns ------- language_tokens : Tensor, shape = (batch_size,) ids of the most probable language tokens, which appears after the startoftranscript token. language_probs : List[Dict[str, float]], length = batch_size list of dictionaries containing the probability distribution over all languages. """ if tokenizer is None: tokenizer = get_tokenizer( model.is_multilingual, resource_path=resource_path) if tokenizer.language is None or tokenizer.language_token not in tokenizer.sot_sequence: raise ValueError( "This model doesn't have language tokens so it can't perform lang id" ) single = mel.ndim == 2 if single: mel = mel.unsqueeze(0) # skip encoder forward pass if already-encoded audio features were given if mel.shape[-2:] != (model.dims.n_audio_ctx, model.dims.n_audio_state): mel = model.encoder(mel) # forward pass using a single token, startoftranscript batch_size = mel.shape[0] x = paddle.to_tensor([[tokenizer.sot]] * batch_size) # [batch_size, 1] logits = model.logits(x, mel)[:, 0] # collect detected languages; suppress all non-language tokens mask = paddle.ones(paddle.to_tensor(logits.shape[-1]), dtype=bool) mask[list(tokenizer.all_language_tokens)] = False logits[:, mask] = -np.inf language_tokens = paddle.argmax(logits, axis=-1) language_token_probs = F.softmax(logits, axis=-1) language_probs = [{ c: language_token_probs[i, j].tolist() for j, c in zip(tokenizer.all_language_tokens, tokenizer.all_language_codes) } for i in range(batch_size)] if single: language_tokens = language_tokens[0] language_probs = language_probs[0] return language_tokens, language_probs def transcribe( model: "Whisper", mel: paddle.Tensor, resource_path: str, *, verbose: Optional[bool]=None, temperature: Union[float, Tuple[float, ...]]=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0), compression_ratio_threshold: Optional[float]=2.4, logprob_threshold: Optional[float]=-1.0, no_speech_threshold: Optional[float]=0.6, condition_on_previous_text: bool=True, **decode_options, ): """ Transcribe an audio file using Whisper Parameters ---------- model: Whisper The Whisper model instance mel: paddle.Tensor The audio feature verbose: bool Whether to display the text being decoded to the console. If True, displays all the details, If False, displays minimal details. If None, does not display anything temperature: Union[float, Tuple[float, ...]] Temperature for sampling. It can be a tuple of temperatures, which will be successfully used upon failures according to either `compression_ratio_threshold` or `logprob_threshold`. compression_ratio_threshold: float If the gzip compression ratio is above this value, treat as failed logprob_threshold: float If the average log probability over sampled tokens is below this value, treat as failed no_speech_threshold: float If the no_speech probability is higher than this value AND the average log probability over sampled tokens is below `logprob_threshold`, consider the segment as silent condition_on_previous_text: bool if True, the previous output of the model is provided as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop, such as repetition looping or timestamps going out of sync. decode_options: dict Keyword arguments to construct `DecodingOptions` instances Returns ------- A dictionary containing the resulting text ("text") and segment-level details ("segments"), and the spoken language ("language"), which is detected when `decode_options["language"]` is None. """ dtype = np.float32 #paddle only support float32 if dtype == np.float32: decode_options["fp16"] = False if decode_options.get( "language") == 'None' or decode_options.get("language", None) is None: if not model.is_multilingual: decode_options["language"] = "en" else: if verbose: print( "Detecting language using up to the first 30 seconds. Use `--language` to specify the language" ) segment = pad_or_trim(mel, N_FRAMES) _, probs = model.detect_language(segment, resource_path) decode_options["language"] = max(probs, key=probs.get) if verbose is not None: print( f"Detected language: {LANGUAGES[decode_options['language']].title()}" ) language = decode_options["language"] task = decode_options.get("task", "transcribe") tokenizer = get_tokenizer( model.is_multilingual, resource_path=resource_path, language=language, task=task) def decode_with_fallback(segment: paddle.Tensor) -> DecodingResult: temperatures = [temperature] if isinstance(temperature, ( int, float)) else temperature decode_result = None for t in temperatures: kwargs = {**decode_options} if t > 0: # disable beam_size and patience when t > 0 kwargs.pop("beam_size", None) kwargs.pop("patience", None) else: # disable best_of when t == 0 kwargs.pop("best_of", None) options = DecodingOptions(**kwargs, temperature=t) decode_result = model.decode(segment, options, resource_path) needs_fallback = False if compression_ratio_threshold is not None and decode_result.compression_ratio > compression_ratio_threshold: needs_fallback = True # too repetitive if logprob_threshold is not None and decode_result.avg_logprob < logprob_threshold: needs_fallback = True # average log probability is too low if not needs_fallback: break return decode_result seek = 0 input_stride = utils.exact_div( N_FRAMES, model.dims.n_audio_ctx) # mel frames per output token: 2 time_precision = (input_stride * HOP_LENGTH / SAMPLE_RATE) # time per output token: 0.02 (seconds) all_tokens = [] all_segments = [] prompt_reset_since = 0 initial_prompt = decode_options.pop("initial_prompt", None) or [] if initial_prompt: initial_prompt = tokenizer.encode(" " + initial_prompt.strip()).input_ids all_tokens.extend(initial_prompt) def add_segment(*, start: float, end: float, text_tokens: paddle.Tensor, result: DecodingResult): text = tokenizer.decode( [token for token in text_tokens if token < tokenizer.eot]) if len(text.strip()) == 0: # skip empty text output return all_segments.append({ "id": len(all_segments), "seek": seek, "start": start, "end": end, "text": text, "tokens": result.tokens, "temperature": result.temperature, "avg_logprob": result.avg_logprob, "compression_ratio": result.compression_ratio, "no_speech_prob": result.no_speech_prob, }) if verbose: print( f"[{utils.format_timestamp(start)} --> {utils.format_timestamp(end)}] {text}" ) # show the progress bar when verbose is False (otherwise the transcribed text will be printed) num_frames = mel.shape[-1] previous_seek_value = seek with tqdm.tqdm( total=num_frames, unit='frames', disable=verbose is not False) as pbar: while seek < num_frames: timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE) segment = pad_or_trim(mel[:, seek:], N_FRAMES) segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE decode_options["prompt"] = all_tokens[prompt_reset_since:] result: DecodingResult = decode_with_fallback(segment) tokens = paddle.to_tensor(result.tokens) if no_speech_threshold is not None: # no voice activity check should_skip = result.no_speech_prob > no_speech_threshold if logprob_threshold is not None and result.avg_logprob > logprob_threshold: # don't skip if the logprob is high enough, despite the no_speech_prob should_skip = False if should_skip: seek += segment.shape[ -1] # fast-forward to the next segment boundary continue timestamp_tokens: paddle.Tensor = tokens.greater_equal( paddle.to_tensor(tokenizer.timestamp_begin)) consecutive = paddle.where(timestamp_tokens[:-1] & timestamp_tokens[ 1:])[0] if len( consecutive ) > 0: # if the output contains two consecutive timestamp tokens consecutive = paddle.add(consecutive, paddle.to_tensor(1)) last_slice = 0 for current_slice in consecutive: sliced_tokens = tokens[last_slice:current_slice] start_timestamp_position = ( sliced_tokens[0].item() - tokenizer.timestamp_begin) end_timestamp_position = ( sliced_tokens[-1].item() - tokenizer.timestamp_begin) add_segment( start=timestamp_offset + start_timestamp_position * time_precision, end=timestamp_offset + end_timestamp_position * time_precision, text_tokens=sliced_tokens[1:-1], result=result, ) last_slice = current_slice last_timestamp_position = ( tokens[last_slice - 1].item() - tokenizer.timestamp_begin) seek += last_timestamp_position * input_stride all_tokens.extend(tokens[:last_slice + 1].tolist()) else: duration = segment_duration timestamps = tokens[timestamp_tokens.nonzero().flatten()] if len(timestamps) > 0 and timestamps[ -1].item() != tokenizer.timestamp_begin: # no consecutive timestamps but it has a timestamp; use the last one. # single timestamp at the end means no speech after the last timestamp. last_timestamp_position = timestamps[ -1].item() - tokenizer.timestamp_begin duration = last_timestamp_position * time_precision add_segment( start=timestamp_offset, end=timestamp_offset + duration, text_tokens=tokens, result=result, ) seek += segment.shape[-1] all_tokens.extend(tokens.tolist()) if not condition_on_previous_text or result.temperature > 0.5: # do not feed the prompt tokens if a high temperature was used prompt_reset_since = len(all_tokens) # update progress bar pbar.update(min(num_frames, seek) - previous_seek_value) previous_seek_value = seek return dict( text=tokenizer.decode(all_tokens[len(initial_prompt):]), segments=all_segments, language=language) class SequenceRanker: def rank(self, tokens: List[List[paddle.Tensor]], sum_logprobs: List[List[float]]) -> List[int]: """ Given a list of groups of samples and their cumulative log probabilities, return the indices of the samples in each group to select as the final result """ raise NotImplementedError class MaximumLikelihoodRanker(SequenceRanker): """ Select the sample with the highest log probabilities, penalized using either a simple length normalization or Google NMT paper's length penalty """ def __init__(self, length_penalty: Optional[float]): self.length_penalty = length_penalty def rank(self, tokens: List[List[paddle.Tensor]], sum_logprobs: List[List[float]]): def scores(logprobs, lengths): result = [] for logprob, length in zip(logprobs, lengths): if self.length_penalty is None: penalty = length else: # from the Google NMT paper penalty = ((5 + length) / 6)**self.length_penalty result.append(logprob / penalty) return result # get the sequence with the highest score lengths = [[len(t) for t in s] for s in tokens] return [np.argmax(scores(p, l)) for p, l in zip(sum_logprobs, lengths)] class TokenDecoder: def reset(self): """Initialize any stateful variables for decoding a new sequence""" def update(self, tokens: paddle.Tensor, logits: paddle.Tensor, sum_logprobs: paddle.Tensor) -> Tuple[paddle.Tensor, bool]: """Specify how to select the next token, based on the current trace and logits Parameters ---------- tokens : Tensor, shape = (n_batch, current_sequence_length) all tokens in the context so far, including the prefix and sot_sequence tokens logits : Tensor, shape = (n_batch, vocab_size) per-token logits of the probability distribution at the current step sum_logprobs : Tensor, shape = (n_batch) cumulative log probabilities for each sequence Returns ------- tokens : Tensor, shape = (n_batch, current_sequence_length + 1) the tokens, appended with the selected next token completed : bool True if all sequences has reached the end of text """ raise NotImplementedError def finalize( self, tokens: paddle.Tensor, sum_logprobs: paddle.Tensor ) -> Tuple[Sequence[Sequence[paddle.Tensor]], List[List[float]]]: """Finalize search and return the final candidate sequences Parameters ---------- tokens : Tensor, shape = (batch_size, beam_size, current_sequence_length) all tokens in the context so far, including the prefix and sot_sequence sum_logprobs : Tensor, shape = (batch_size, beam_size) cumulative log probabilities for each sequence Returns ------- tokens : Sequence[Sequence[Tensor]], length = batch_size sequence of Tensors containing candidate token sequences, for each audio input sum_logprobs : List[List[float]], length = batch_size sequence of cumulative log probabilities corresponding to the above """ raise NotImplementedError class GreedyDecoder(TokenDecoder): def __init__(self, temperature: float, eot: int): self.temperature = temperature self.eot = eot def update(self, tokens: paddle.Tensor, logits: paddle.Tensor, sum_logprobs: paddle.Tensor) -> Tuple[paddle.Tensor, bool]: temperature = self.temperature if temperature == 0: next_tokens = paddle.argmax(logits, axis=-1) else: next_tokens = Categorical(logits=logits / temperature).sample([1]) next_tokens = paddle.reshape(next_tokens, [ next_tokens.shape[0] * next_tokens.shape[1], ]) logprobs = F.log_softmax(logits, axis=-1, dtype=paddle.float32) current_logprobs = logprobs[paddle.arange(logprobs.shape[0]), next_tokens] sum_logprobs += current_logprobs * paddle.to_tensor( (tokens[:, -1] != self.eot), dtype=paddle.float32) next_tokens[tokens[:, -1] == self.eot] = self.eot tokens = paddle.concat([tokens, next_tokens[:, None]], axis=-1) completed = paddle.all((tokens[:, -1] == self.eot)) return tokens, completed def finalize(self, tokens: paddle.Tensor, sum_logprobs: paddle.Tensor): # make sure each sequence has at least one EOT token at the end tokens = F.pad(tokens, (0, 1), value=self.eot, data_format="NCL") return tokens, sum_logprobs.tolist() class BeamSearchDecoder(TokenDecoder): def __init__(self, beam_size: int, eot: int, inference: Inference, patience: Optional[float]=None): self.beam_size = beam_size self.eot = eot self.inference = inference self.patience = patience or 1.0 self.max_candidates: int = round(beam_size * self.patience) self.finished_sequences = None assert self.max_candidates > 0, f"Invalid beam size ({beam_size}) or patience ({patience})" def reset(self): self.finished_sequences = None def update(self, tokens: paddle.Tensor, logits: paddle.Tensor, sum_logprobs: paddle.Tensor) -> Tuple[paddle.Tensor, bool]: if tokens.shape[0] % self.beam_size != 0: raise ValueError(f"{tokens.shape}[0] % {self.beam_size} != 0") batch_size = tokens.shape[0] // self.beam_size if self.finished_sequences is None: # for the first update self.finished_sequences = [{} for _ in range(batch_size)] logprobs = F.log_softmax(logits, axis=-1, dtype=paddle.float32) next_tokens, source_indices, finished_sequences = [], [], [] for i in range(batch_size): scores, sources, finished = {}, {}, {} # STEP 1: calculate the cumulative log probabilities for possible candidates for j in range(self.beam_size): idx = i * self.beam_size + j prefix = tokens[idx].tolist() logprob, token = paddle.topk( logprobs[idx], k=self.beam_size + 1) for logprob, token in zip(logprob, token): new_logprob = (sum_logprobs[idx] + logprob).tolist()[0] sequence = tuple(prefix + [token.tolist()[0]]) scores[sequence] = new_logprob sources[sequence] = idx # STEP 2: rank the candidates and keep the top beam_size sequences for each audio saved = 0 for sequence in sorted(scores, key=scores.get, reverse=True): if sequence[-1] == self.eot: finished[sequence] = scores[sequence] else: sum_logprobs[len(next_tokens)] = scores[sequence] next_tokens.append(sequence) source_indices.append(sources[sequence]) saved += 1 if saved == self.beam_size: break finished_sequences.append(finished) tokens = paddle.to_tensor(next_tokens) self.inference.rearrange_kv_cache(source_indices) # add newly finished sequences to self.finished_sequences assert len(self.finished_sequences) == len(finished_sequences) for previously_finished, newly_finished in zip(self.finished_sequences, finished_sequences): for seq in sorted( newly_finished, key=newly_finished.get, reverse=True): if len(previously_finished) >= self.max_candidates: break # the candidate list is full previously_finished[seq] = newly_finished[seq] # mark as completed if all audio has enough number of samples completed = all( len(sequences) >= self.max_candidates for sequences in self.finished_sequences) return tokens, completed def finalize(self, preceding_tokens: paddle.Tensor, sum_logprobs: paddle.Tensor): # collect all finished sequences, including patience, and add unfinished ones if not enough sum_logprobs = sum_logprobs.cpu() for i, sequences in enumerate(self.finished_sequences): if len(sequences ) < self.beam_size: # when not enough sequences are finished for j in list(np.argsort(sum_logprobs[i]))[::-1]: sequence = preceding_tokens[i, j].tolist() + [self.eot] sequences[tuple(sequence)] = sum_logprobs[i][j].item() if len(sequences) >= self.beam_size: break tokens: List[List[paddle.Tensor]] = [ [paddle.to_tensor(seq) for seq in sequences.keys()] for sequences in self.finished_sequences ] sum_logprobs: List[List[float]] = [ list(sequences.values()) for sequences in self.finished_sequences ] return tokens, sum_logprobs class LogitFilter: def apply(self, logits: paddle.Tensor, tokens: paddle.Tensor) -> None: """Apply any filtering or masking to logits in-place Parameters ---------- logits : Tensor, shape = (n_batch, vocab_size) per-token logits of the probability distribution at the current step tokens : Tensor, shape = (n_batch, current_sequence_length) all tokens in the context so far, including the prefix and sot_sequence tokens """ raise NotImplementedError class SuppressBlank(LogitFilter): def __init__(self, tokenizer: Tokenizer, sample_begin: int): self.tokenizer = tokenizer self.sample_begin = sample_begin def apply(self, logits: paddle.Tensor, tokens: paddle.Tensor): if tokens.shape[1] == self.sample_begin: logits[:, self.tokenizer.encode(" ").input_ids + [self.tokenizer.eot]] = -np.inf class SuppressTokens(LogitFilter): def __init__(self, suppress_tokens: Sequence[int]): self.suppress_tokens = list(suppress_tokens) def apply(self, logits: paddle.Tensor, tokens: paddle.Tensor): logits[:, self.suppress_tokens] = -np.inf class ApplyTimestampRules(LogitFilter): def __init__(self, tokenizer: Tokenizer, sample_begin: int, max_initial_timestamp_index: Optional[int]): self.tokenizer = tokenizer self.sample_begin = sample_begin self.max_initial_timestamp_index = max_initial_timestamp_index def apply(self, logits: paddle.Tensor, tokens: paddle.Tensor): # suppress <|notimestamps|> which is handled by without_timestamps if self.tokenizer.no_timestamps is not None: logits[:, self.tokenizer.no_timestamps] = -np.inf # timestamps have to appear in pairs, except directly before EOT; mask logits accordingly for k in range(tokens.shape[0]): seq = [t for t in tokens[k, self.sample_begin:].tolist()] last_was_timestamp = len(seq) >= 1 and seq[ -1] >= self.tokenizer.timestamp_begin penultimate_was_timestamp = len(seq) < 2 or seq[ -2] >= self.tokenizer.timestamp_begin if last_was_timestamp: if penultimate_was_timestamp: # has to be non-timestamp logits[k, self.tokenizer.timestamp_begin:] = -np.inf else: # cannot be normal text tokens logits[k, :self.tokenizer.eot] = -np.inf # apply the `max_initial_timestamp` option if tokens.shape[ 1] == self.sample_begin and self.max_initial_timestamp_index is not None: last_allowed = self.tokenizer.timestamp_begin + self.max_initial_timestamp_index logits[:, last_allowed + 1:] = -np.inf # if sum of probability over timestamps is above any other token, sample timestamp logprobs = F.log_softmax(logits, axis=-1, dtype=paddle.float32) for k in range(tokens.shape[0]): timestamp_logprob = paddle.logsumexp( logprobs[k, self.tokenizer.timestamp_begin:], axis=-1) max_text_token_logprob = paddle.max( logprobs[k, :self.tokenizer.timestamp_begin]) if timestamp_logprob > max_text_token_logprob: logits[k, :self.tokenizer.timestamp_begin] = -np.inf class DecodingTask: inference: Inference sequence_ranker: SequenceRanker decoder: TokenDecoder logit_filters: List[LogitFilter] def __init__(self, model: "Whisper", options: DecodingOptions, resource_path: str): self.model = model language = options.language or "en" tokenizer = get_tokenizer( model.is_multilingual, resource_path=resource_path, language=language, task=options.task) self.tokenizer: Tokenizer = tokenizer self.options: DecodingOptions = self._verify_options(options) self.resource_path: str = resource_path self.beam_size: int = options.beam_size or options.best_of or 1 self.n_ctx: int = model.dims.n_text_ctx self.sample_len: int = options.sample_len or model.dims.n_text_ctx // 2 self.sot_sequence: Tuple[int] = tokenizer.sot_sequence if self.options.without_timestamps: self.sot_sequence = tokenizer.sot_sequence_including_notimestamps self.initial_tokens: Tuple[int] = self._get_initial_tokens() self.sample_begin: int = len(self.initial_tokens) self.sot_index: int = self.initial_tokens.index(tokenizer.sot) # inference: implements the forward pass through the decoder, including kv caching self.inference = WhisperInference(model, len(self.initial_tokens)) # sequence ranker: implements how to rank a group of sampled sequences self.sequence_ranker = MaximumLikelihoodRanker(options.length_penalty) # decoder: implements how to select the next tokens, given the autoregressive distribution if options.beam_size is not None: self.decoder = BeamSearchDecoder(options.beam_size, tokenizer.eot, self.inference, options.patience) else: self.decoder = GreedyDecoder(options.temperature, tokenizer.eot) # logit filters: applies various rules to suppress or penalize certain tokens self.logit_filters = [] if self.options.suppress_blank: self.logit_filters.append( SuppressBlank(self.tokenizer, self.sample_begin)) if self.options.suppress_tokens: self.logit_filters.append( SuppressTokens(self._get_suppress_tokens())) if not options.without_timestamps: precision = CHUNK_LENGTH / model.dims.n_audio_ctx # usually 0.02 seconds max_initial_timestamp_index = None if options.max_initial_timestamp: max_initial_timestamp_index = round( self.options.max_initial_timestamp / precision) self.logit_filters.append( ApplyTimestampRules(tokenizer, self.sample_begin, max_initial_timestamp_index)) def _verify_options(self, options: DecodingOptions) -> DecodingOptions: if options.beam_size is not None and options.best_of is not None: raise ValueError("beam_size and best_of can't be given together") if options.temperature == 0: if options.best_of is not None: raise ValueError( "best_of with greedy sampling (T=0) is not compatible") if options.patience is not None and options.beam_size is None: raise ValueError("patience requires beam_size to be given") if options.length_penalty is not None and not ( 0 <= options.length_penalty <= 1): raise ValueError( "length_penalty (alpha) should be a value between 0 and 1") return options def _get_initial_tokens(self) -> Tuple[int]: tokens = list(self.sot_sequence) prefix = self.options.prefix prompt = self.options.prompt if prefix: prefix_tokens = ( self.tokenizer.encode(" " + prefix.strip().input_ids) if isinstance(prefix, str) else prefix) if self.sample_len is not None: max_prefix_len = self.n_ctx // 2 - self.sample_len prefix_tokens = prefix_tokens[-max_prefix_len:] tokens = tokens + prefix_tokens if prompt: prompt_tokens = ( self.tokenizer.encode(" " + prompt.strip().input_ids) if isinstance(prompt, str) else prompt) tokens = [self.tokenizer.sot_prev] + prompt_tokens[-(self.n_ctx // 2 - 1):] + tokens return tuple(tokens) def _get_suppress_tokens(self) -> Tuple[int]: suppress_tokens = self.options.suppress_tokens if isinstance(suppress_tokens, str): suppress_tokens = [int(t) for t in suppress_tokens.split(",")] if -1 in suppress_tokens: suppress_tokens = [t for t in suppress_tokens if t >= 0] suppress_tokens.extend(self.tokenizer.non_speech_tokens) elif suppress_tokens is None or len(suppress_tokens) == 0: suppress_tokens = [] # interpret empty string as an empty list else: assert isinstance(suppress_tokens, list), "suppress_tokens must be a list" suppress_tokens.extend([ self.tokenizer.sot, self.tokenizer.sot_prev, self.tokenizer.sot_lm ]) if self.tokenizer.no_speech is not None: # no-speech probability is collected separately suppress_tokens.append(self.tokenizer.no_speech) return tuple(sorted(set(suppress_tokens))) def _get_audio_features(self, mel: paddle.Tensor): #if self.options.fp16: # mel = mel.half() if mel.shape[-2:] == (self.model.dims.n_audio_ctx, self.model.dims.n_audio_state): # encoded audio features are given; skip audio encoding audio_features = mel else: audio_features = self.model.encoder(mel) #if audio_features.dtype != (np.float16 if self.options.fp16 else np.float32): # return TypeError(f"audio_features has an incorrect dtype: {audio_features.dtype}") return audio_features def _detect_language(self, audio_features: paddle.Tensor, tokens: paddle.Tensor, resource_path: str): languages = [self.options.language] * audio_features.shape[0] lang_probs = None if self.options.language is None or self.options.task == "lang_id": lang_tokens, lang_probs = self.model.detect_language( audio_features, self.tokenizer, self.resource_path) languages = [max(probs, key=probs.get) for probs in lang_probs] if self.options.language is None: tokens[:, self.sot_index + 1] = lang_tokens # write language tokens return languages, lang_probs def _main_loop(self, audio_features: paddle.Tensor, tokens: paddle.Tensor): assert audio_features.shape[0] == tokens.shape[0] n_batch = tokens.shape[0] sum_logprobs: paddle.Tensor = paddle.zeros( paddle.to_tensor(n_batch), dtype=paddle.float32) no_speech_probs = [np.nan] * n_batch try: for i in range(self.sample_len): logits = self.inference.logits(tokens, audio_features) if i == 0 and self.tokenizer.no_speech is not None: # save no_speech_probs probs_at_sot = F.softmax( logits[:, self.sot_index], axis=-1, dtype=paddle.float32) no_speech_probs = probs_at_sot[:, self.tokenizer. no_speech].tolist() # now we need to consider the logits at the last token only logits = logits[:, -1] # apply the logit filters, e.g. for suppressing or applying penalty to for logit_filter in self.logit_filters: logit_filter.apply(logits, tokens) # expand the tokens tensor with the selected next tokens tokens, completed = self.decoder.update(tokens, logits, sum_logprobs) if completed or tokens.shape[-1] > self.n_ctx: break finally: self.inference.cleanup_caching() return tokens, sum_logprobs, no_speech_probs @paddle.no_grad() def run(self, mel: paddle.Tensor) -> List[DecodingResult]: self.decoder.reset() tokenizer: Tokenizer = self.tokenizer batch_size: int = mel.shape[0] audio_features: paddle.Tensor = self._get_audio_features( mel) # encoder forward pass tokens: paddle.Tensor if batch_size > 1: for i in range(batch_size): tokens = paddle.concat( x=[ paddle.to_tensor([self.initial_tokens]), paddle.to_tensor([self.initial_tokens]) ], axis=0) elif batch_size == 1: tokens = paddle.to_tensor([self.initial_tokens]) # detect language if requested, overwriting the language token languages, language_probs = self._detect_language( paddle.to_tensor(audio_features), paddle.to_tensor(tokens), self.resource_path) if self.options.task == "lang_id": return [ DecodingResult( audio_features=features, language=language, language_probs=probs) for features, language, probs in zip(audio_features, languages, language_probs) ] # repeat the audio & text tensors by the group size, for beam search or best-of-n sampling audio_features = paddle.repeat_interleave( audio_features, self.beam_size, axis=0) tokens = paddle.repeat_interleave(tokens, self.beam_size, axis=0) # call the main sampling loop tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens) # reshape the tensors to have (batch_size, beam_size) as the first two dimensions audio_features = audio_features[::self.beam_size] no_speech_probs = no_speech_probs[::self.beam_size] assert audio_features.shape[0] == len(no_speech_probs) == batch_size tokens = tokens.reshape([batch_size, self.beam_size, -1]) sum_logprobs = sum_logprobs.reshape([batch_size, self.beam_size]) # get the final candidates for each group, and slice between the first sampled token and EOT tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs) tokens: List[List[paddle.Tensor]] = [[ t[self.sample_begin:(t == tokenizer.eot).nonzero()[0, 0]] for t in s ] for s in tokens] # select the top-ranked sample in each group selected = self.sequence_ranker.rank(tokens, sum_logprobs) tokens: List[List[ int]] = [t[i].tolist() for i, t in zip(selected, tokens)] texts: List[str] = [tokenizer.decode(t).strip() for t in tokens] sum_logprobs: List[ float] = [lp[i] for i, lp in zip(selected, sum_logprobs)] avg_logprobs: List[ float] = [lp / (len(t) + 1) for t, lp in zip(tokens, sum_logprobs)] fields = (texts, languages, tokens, audio_features, avg_logprobs, no_speech_probs) if len(set(map(len, fields))) != 1: raise RuntimeError( f"inconsistent result lengths: {list(map(len, fields))}") return [ DecodingResult( audio_features=features, language=language, tokens=tokens, text=text, avg_logprob=avg_logprob, no_speech_prob=no_speech_prob, temperature=self.options.temperature, compression_ratio=utils.compression_ratio(text), ) for text, language, tokens, features, avg_logprob, no_speech_prob in zip(*fields) ] @paddle.no_grad() def decode( model: "Whisper", mel: paddle.Tensor, options: DecodingOptions=DecodingOptions(), resource_path=str, ) -> Union[DecodingResult, List[DecodingResult]]: """ Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s). Parameters ---------- model: Whisper the Whisper model instance mel: paddle.Tensor, shape = (80, 3000) or (*, 80, 3000) A tensor containing the Mel spectrogram(s) options: DecodingOptions A dataclass that contains all necessary options for decoding 30-second segments Returns ------- result: Union[DecodingResult, List[DecodingResult]] The result(s) of decoding contained in `DecodingResult` dataclass instance(s) """ single = mel.ndim == 2 if single: mel = mel.unsqueeze(0) result = DecodingTask(model, options, resource_path).run(mel) if single: result = result[0] return result class Whisper(nn.Layer): def __init__(self, dims: ModelDimensions): super().__init__() self.dims = dims self.encoder = AudioEncoder( self.dims.n_mels, self.dims.n_audio_ctx, self.dims.n_audio_state, self.dims.n_audio_head, self.dims.n_audio_layer, ) self.decoder = TextDecoder( self.dims.n_vocab, self.dims.n_text_ctx, self.dims.n_text_state, self.dims.n_text_head, self.dims.n_text_layer, ) def embed_audio(self, mel: paddle.Tensor): return self.encoder.forward(mel) def logits(self, tokens: paddle.Tensor, audio_features: paddle.Tensor): return self.decoder.forward(tokens, audio_features) def forward(self, mel: paddle.Tensor, tokens: paddle.Tensor) -> Dict[str, paddle.Tensor]: return self.decoder(tokens, self.encoder(mel)) @property def device(self): return paddle.device.get_device() @property def is_multilingual(self): return self.dims.n_vocab == 51865 def install_kv_cache_hooks(self, cache: Optional[dict]=None): """ The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value tensors calculated for the previous positions. This method returns a dictionary that stores all caches, and the necessary hooks for the key and value projection modules that save the intermediate tensors to be reused during later calculations. Returns ------- cache : Dict[nn.Layer, paddle.Tensor] A dictionary object mapping the key/value projection modules to its cache hooks : List[RemovableHandle] List of PyTorch RemovableHandle objects to stop the hooks to be called """ cache = {**cache} if cache is not None else {} hooks = [] def save_to_cache(module, _, output): if module not in cache or output.shape[ 1] > self.decoder.positional_embedding.shape[0]: cache[ module] = output # save as-is, for the first token or cross attention else: cache[module] = paddle.concat( [cache[module], output], axis=1).detach() return cache[module] def install_hooks(layer: nn.Layer): if isinstance(layer, MultiHeadAttention): hooks.append( layer.key.register_forward_post_hook(save_to_cache)) hooks.append( layer.value.register_forward_post_hook(save_to_cache)) self.decoder.apply(install_hooks) return cache, hooks detect_language = detect_language transcribe = transcribe decode = decode def pad_or_trim(array, length: int=N_SAMPLES, *, axis: int=-1): """ Pad or trim the audio array to N_SAMPLES, as expected by the encoder. """ if paddle.is_tensor(array): if array.shape[axis] > length: array = array.index_select(axis=axis, index=paddle.arange(length)) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = paddle.transpose(array, (1, 0)) array = F.pad( array, [pad for sizes in pad_widths[::-1] for pad in sizes], data_format='NLC') array = paddle.transpose(array, (1, 0)) else: if array.shape[axis] > length: array = array.take(indices=range(length), axis=axis) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = paddle.transpose(array, (1, 0)) array = np.pad(array, pad_widths) array = paddle.transpose(array, (1, 0)) return array def hann_window(n_fft: int=N_FFT): """ hanning window n_fft: The number of frequency components of the discrete Fourier transform. """ return paddle.to_tensor( [0.5 - 0.5 * np.cos(2 * np.pi * n / n_fft) for n in range(n_fft)], dtype=paddle.float32) @lru_cache(maxsize=None) def mel_filters(resource_path: str, n_mels: int=N_MELS) -> paddle.Tensor: """ load the mel filterbank matrix for projecting STFT into a Mel spectrogram. Allows decoupling librosa dependency; saved using: np.savez_compressed( "mel_filters.npz", mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), ) """ assert n_mels == 80, f"Unsupported n_mels: {n_mels}" with np.load(os.path.join(resource_path, "assets", "mel_filters.npz")) as f: return paddle.to_tensor(f[f"mel_{n_mels}"]) def log_mel_spectrogram(audio: Union[str, np.ndarray, paddle.Tensor], n_mels: int=N_MELS, resource_path: str=None): """ Compute the log-Mel spectrogram of Parameters ---------- audio: Union[str, np.ndarray, paddle.Tensor], shape = (*) The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz n_mels: int The number of Mel-frequency filters, only 80 is supported Returns ------- paddle.Tensor, shape = (80, n_frames) A Tensor that contains the Mel spectrogram """ if not paddle.is_tensor(audio): if isinstance(audio, str): audio, _ = soundfile.read(audio, dtype="float32", always_2d=True) audio = audio[:, 0] logger.info(f"audio shape: {audio.shape}") audio = paddle.to_tensor(audio) window = hann_window(N_FFT) stft = paddle.signal.stft(audio, N_FFT, HOP_LENGTH, window=window) magnitudes = stft[:, :-1].abs()**2 filters = mel_filters(resource_path, n_mels) mel_spec = filters @ magnitudes mel_spec = paddle.to_tensor(mel_spec.numpy().tolist()) log_spec = paddle.clip(mel_spec, min=1e-10).log10() log_spec = paddle.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec
[ "0", "1", "None", " ", "initial_prompt" ]
2024-01-10
pavan-krishna123/openai-text-analysis
Check_Status_Finetunning.py
import openai # Replace with your API key with open('openaiapikey.txt', 'r') as infile: open_ai_api_key = infile.read() openai.api_key = open_ai_api_key def finetune_get(ftid): resp = openai.FineTune.retrieve(ftid) print(resp) # Usage example finetune_id = "ft-zTmRQq66suOeMw3sJrFJUNZS" finetune_get(finetune_id)
[]
2024-01-10
pavan-krishna123/openai-text-analysis
synthisize-sentiment.py
import openai import os import glob from time import time, sleep from uuid import uuid4 def open_file(filepath): with open(filepath, 'r', encoding='utf-8') as infile: return infile.read() def save_file(filepath, content): with open(filepath, 'w', encoding='utf-8') as outfile: outfile.write(content) openai.api_key = open_file('openaiapikey.txt') def gpt3_completion(prompt, engine='text-davinci-002', temp=1.0, top_p=1.0, tokens=1000, freq_pen=0.0, pres_pen=0.0, stop=None): max_retry = 5 retry = 0 prompt = prompt.encode(encoding='ASCII',errors='ignore').decode() while True: try: response = openai.Completion.create( engine=engine, prompt=prompt, temperature=temp, max_tokens=tokens, top_p=top_p, frequency_penalty=freq_pen, presence_penalty=pres_pen, stop=stop) text = response.choices[0].text.strip() return text except Exception as oops: retry += 1 if retry >= max_retry: return "GPT3 error: %s" % oops print('Error communicating with OpenAI:', oops) sleep(1) def process_news_articles(folder_path): for file_path in glob.glob(os.path.join(folder_path, "*")): try: # Read the article text from the file article_text = open_file(file_path) # Construct the prompt prompt = f"Please classify the sentiment of the following news article as positive or negative:\n\n{article_text}" # Save the prompt to the "prompts" folder prompt_filename = os.path.join("prompts", f"{os.path.basename(file_path)}_{time()}.txt") save_file(prompt_filename, prompt) # Get the sentiment of the article sentiment = gpt3_completion(prompt) # Save the completion (sentiment) to the "completions" folder completion_filename = os.path.join("completions", f"{os.path.basename(file_path)}_{time()}.txt") save_file(completion_filename, f"Sentiment: {sentiment}\n") print(f"Processed file: {file_path}") except Exception as e: print(f"Error processing file {file_path}: {e}\n") if not os.path.exists("prompts"): os.makedirs("prompts") if not os.path.exists("completions"): os.makedirs("completions") if __name__ == '__main__': folder_path = r"C:\Users\Pavankrishna\OneDrive\Desktop\new\test" # Replace this with the path to your folder containing news articles process_news_articles(folder_path)
[ "ignore", "Please classify the sentiment of the following news article as positive or negative:\n\nPLACEHOLDER" ]
2024-01-10
pavan-krishna123/openai-text-analysis
fine-tune.py
import openai with open('openaiapikey.txt', 'r') as infile: open_ai_api_key = infile.read() openai.api_key = open_ai_api_key def file_upload(filename, purpose='fine-tune'): resp = openai.File.create(purpose=purpose, file=open(filename)) print(resp) return resp def finetune_model(fileid, suffix, model='davinci'): resp = openai.FineTune.create( training_file=fileid, model=model, suffix=suffix ) print(resp) resp = file_upload('Sentiment.jsonl') # Replace with the name of your JSON Lines file finetune_model(resp['id'], 'sentiment_classifier', 'davinci')
[]
2024-01-10
sarcasterXO/gpt-humanizer
gpt-humanizer.py
import openai import datetime import pynecone as pc from pynecone import Base openai.api_key = 'ENTER YOUR API KEY' class Message(Base): original_text: str text: str created_at: str class State(pc.State): text: str = "" messages: list[Message] = [] @pc.var def output(self) -> str: if not self.text.strip(): return "Humanized text will appear here." response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "assistant", "content": f"When it comes to writing content, two factors are crucial, \"perplexity\" and \"burstiness\". Perplexity measures the complexity of text. Separately, burstiness compares the variations of sentences. Humans tend to write with greater burstiness, for example, with some longer or complex sentences alongside shorter ones. AI sentences tend to be more uniform. Therefore, when writing the following content, I am going to ask you to create, I need it to have a good amount of perplexity and burstiness. Using the concepts written previously, rewrite this text with a high degree of perplexity and burstiness: {self.text}"} ] ) return response['choices'][0]['message']['content'] def post(self): self.messages = [ Message( original_text=self.text, text=self.output, created_at=datetime.datetime.now().strftime("%B %d, %Y %I:%M %p") ) ] + self.messages def header(): """Basic instructions to get started.""" return pc.box( pc.text("GPT-Humanizer", font_size="2rem"), pc.text( "Humanize GPT-Text to avoid AI Detection!", margin_top="0.5rem", color="#666", ), ) def text_box(text): return pc.text( text, background_color="#fff", padding="1rem", border_radius="8px", ) def message(message): return pc.box( pc.vstack( text_box(message.original_text), text_box(message.text), pc.box( pc.text(" · ", margin_x="0.3rem"), pc.text(message.created_at), display="flex", font_size="0.8rem", color="#666", ), spacing="0.3rem", align_items="left", ), background_color="#f5f5f5", padding="1rem", border_radius="8px", ) def smallcaps(text, **kwargs): return pc.text( text, font_size="0.7rem", font_weight="bold", text_transform="uppercase", letter_spacing="0.05rem", **kwargs, ) def output(): return pc.box( pc.box( smallcaps( "Output", color="#aeaeaf", background_color="white", padding_x="0.1rem", ), position="absolute", top="-0.5rem", ), pc.text(State.output), padding="1rem", border="1px solid #eaeaef", margin_top="1rem", border_radius="8px", position="relative", ) def index(): """The main view.""" return pc.container( header(), pc.input( placeholder="Text to humanize", on_blur=State.set_text, margin_top="1rem", border_color="#eaeaef", ), output(), pc.button("Humanize", on_click=State.post, margin_top="1rem"), pc.vstack( pc.foreach(State.messages, message), margin_top="2rem", spacing="1rem", align_items="left", ), padding="2rem", max_width="600px", ) # Add state and page to the app. app = pc.App(state=State) app.add_page(index, title="GPT-Humanizer") app.compile()
[]
2024-01-10
MikeeeGit/python-automation-chatgpt
chatgptlocal.py
import os import sys import openai from langchain.chains import ConversationalRetrievalChain, RetrievalQA from langchain.chat_models import ChatOpenAI from langchain.document_loaders import DirectoryLoader, TextLoader from langchain.embeddings import OpenAIEmbeddings from langchain.indexes import VectorstoreIndexCreator from langchain.indexes.vectorstore import VectorStoreIndexWrapper from langchain.llms import OpenAI from langchain.vectorstores import Chroma #import constants # os.environ["OPENAI_API_KEY"] = constants.APIKEY # Enable to save to disk & reuse the model (for repeated queries on the same data) PERSIST = False query = None if len(sys.argv) > 1: query = sys.argv[1] if PERSIST and os.path.exists("persist"): print("Reusing index...\n") vectorstore = Chroma(persist_directory="persist", embedding_function=OpenAIEmbeddings()) index = VectorStoreIndexWrapper(vectorstore=vectorstore) else: #loader = TextLoader("data/data.txt") # Use this line if you only need data.txt loader = DirectoryLoader("data/") if PERSIST: index = VectorstoreIndexCreator(vectorstore_kwargs={"persist_directory":"persist"}).from_loaders([loader]) else: index = VectorstoreIndexCreator().from_loaders([loader]) chain = ConversationalRetrievalChain.from_llm( llm=ChatOpenAI(model="gpt-3.5-turbo"), retriever=index.vectorstore.as_retriever(search_kwargs={"k": 1}), ) chat_history = [] while True: if not query: query = input("Prompt: ") if query in ['quit', 'q', 'exit']: sys.exit() result = chain({"question": query, "chat_history": chat_history}) print(result['answer']) chat_history.append((query, result['answer'])) query = None
[]
2024-01-10
tau-nlp/zero_scrolls
experiments~api~run_api_single_task.py
import time import json from pathlib import Path from fire import Fire from tqdm import tqdm from experiments.api.anthropic_api import AnthropicAPI from experiments.api.openai_api import OpenAIAPI from datasets import load_dataset def generate_predictions_using_api(dataset_name: str, model_name: str = "text-davinci-003", log_progress_every_n_examples=20, limit_to_n_examples=None): model_folder_name = model_name.replace("-", "_") if model_name in ["text-davinci-003", "gpt-3.5-turbo", "gpt-4"]: api = OpenAIAPI(model_name, dataset_name) elif model_name in ["claude-v1","claude-v1.3"]: api = AnthropicAPI(model_name, dataset_name) else: raise ValueError(f"model_name {model_name} not supported") api.init_api() # load task data zero_scrolls_dataset = load_dataset("tau/zero_scrolls",dataset_name)["test"] preds_folder_path = Path(f"generations/api/{model_folder_name}") preds_folder_path.mkdir(parents=True, exist_ok=True) print(f"generating predictions for {dataset_name} with OpenAI {model_name}") # API setup and parameters parameters = api.init_params() # with open(predictions_file_path, 'a') as f_out: generations = dict() for i, example in tqdm(enumerate(zero_scrolls_dataset)): if limit_to_n_examples is not None and i >= limit_to_n_examples: print( f"Breaking when limit_to_n_examples is reached. i={i}, limit_to_n_examples={limit_to_n_examples}, generated {len(generations)} predictions") break prompt = api.build_prompt(example) api.preprocess_parameters(parameters, prompt) time.sleep(0.5) # helps with rate limits response = api.call(parameters) output = api.build_output(example, prompt, parameters, response) generations[example["id"]] = output["prediction"] if i % log_progress_every_n_examples == 0: print( f'generated {len(generations)} examples from {dataset_name} using {model_name}') predictions_file_path = preds_folder_path / f"preds_{dataset_name}.json" with open(predictions_file_path, 'w') as f_out: json.dump(generations, f_out, indent=4) print( f'finished generating {len(generations)} predictions for {dataset_name} using OpenAI {model_name}') if __name__ == '__main__': Fire(generate_predictions_using_api)
[]
2024-01-10
blasbot/ChatGPT
src~revChatGPT~V1.py
""" Standard ChatGPT """ from __future__ import annotations import base64 import contextlib import json import logging import time import uuid from functools import wraps from os import environ from os import getenv from pathlib import Path from typing import AsyncGenerator from typing import Generator from typing import NoReturn import httpx import requests from httpx import AsyncClient from OpenAIAuth import Authenticator from OpenAIAuth import Error as AuthError from . import __version__ from . import typings as t from .utils import create_completer from .utils import create_session from .utils import get_input if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(funcName)s - %(message)s", ) log = logging.getLogger(__name__) def logger(is_timed: bool): """Logger decorator Args: is_timed (bool): Whether to include function running time in exit log Returns: _type_: decorated function """ def decorator(func): wraps(func) def wrapper(*args, **kwargs): log.debug( f"Entering {func.__name__} with args {args} and kwargs {kwargs}", ) start = time.time() out = func(*args, **kwargs) end = time.time() if is_timed: log.debug( f"Exiting {func.__name__} with return value {out}. Took {end - start} seconds.", ) else: log.debug(f"Exiting {func.__name__} with return value {out}") return out return wrapper return decorator BASE_URL = environ.get("CHATGPT_BASE_URL") or "https://ai.fakeopen.com/api/" bcolors = t.Colors() class Chatbot: """ Chatbot class for ChatGPT """ @logger(is_timed=True) def __init__( self, config: dict[str, str], conversation_id: str | None = None, parent_id: str | None = None, session_client=None, lazy_loading: bool = True, base_url: str | None = None, ) -> None: """Initialize a chatbot Args: config (dict[str, str]): Login and proxy info. Example: { "email": "OpenAI account email", "password": "OpenAI account password", "session_token": "<session_token>" "access_token": "<access_token>" "proxy": "<proxy_url_string>", "paid": True/False, # whether this is a plus account "_puid": "puid", # V4 only, if it is set, base_url will be changed to https://chat.openai.com/backend-api/ } More details on these are available at https://github.com/acheong08/ChatGPT#configuration conversation_id (str | None, optional): Id of the conversation to continue on. Defaults to None. parent_id (str | None, optional): Id of the previous response message to continue on. Defaults to None. session_client (_type_, optional): _description_. Defaults to None. Raises: Exception: _description_ """ user_home = getenv("HOME") if user_home is None: user_home = Path().cwd() self.cache_path = Path(Path().cwd(), ".chatgpt_cache.json") else: # mkdir ~/.config/revChatGPT if not Path(user_home, ".config").exists(): Path(user_home, ".config").mkdir() if not Path(user_home, ".config", "revChatGPT").exists(): Path(user_home, ".config", "revChatGPT").mkdir() self.cache_path = Path(user_home, ".config", "revChatGPT", "cache.json") self.config = config self.session = session_client() if session_client else requests.Session() if "email" in config and "password" in config: try: cached_access_token = self.__get_cached_access_token( self.config.get("email", None), ) except t.Error as error: if error.code == 5: raise cached_access_token = None if cached_access_token is not None: self.config["access_token"] = cached_access_token if "proxy" in config: if not isinstance(config["proxy"], str): error = TypeError("Proxy must be a string!") raise error proxies = { "http": config["proxy"], "https": config["proxy"], } if isinstance(self.session, AsyncClient): proxies = { "http://": config["proxy"], "https://": config["proxy"], } self.session = AsyncClient(proxies=proxies) else: self.session.proxies.update(proxies) self.conversation_id = conversation_id self.parent_id = parent_id self.conversation_mapping = {} self.conversation_id_prev_queue = [] self.parent_id_prev_queue = [] self.lazy_loading = lazy_loading if "_puid" in self.config and self.config["_puid"]: self.base_url = "https://chat.openai.com/backend-api/" self.__set_puid(self.config["_puid"]) else: self.base_url = base_url or BASE_URL self.__check_credentials() @logger(is_timed=True) def __check_credentials(self) -> None: """Check login info and perform login Any one of the following is sufficient for login. Multiple login info can be provided at the same time and they will be used in the order listed below. - access_token - session_token - email + password Raises: Exception: _description_ AuthError: _description_ """ if "access_token" in self.config: self.set_access_token(self.config["access_token"]) elif "session_token" in self.config: pass elif "email" not in self.config or "password" not in self.config: error = t.AuthenticationError("Insufficient login details provided!") raise error if "access_token" not in self.config: try: self.login() except AuthError as error: print(error.details) print(error.status_code) raise error @logger(is_timed=False) def __set_puid(self, puid: str) -> None: self.session.cookies.update( { "_puid": puid, }, ) @logger(is_timed=False) def set_access_token(self, access_token: str) -> None: """Set access token in request header and self.config, then cache it to file. Args: access_token (str): access_token """ self.session.headers.clear() self.session.headers.update( { "Accept": "text/event-stream", "Authorization": f"Bearer {access_token}", "Content-Type": "application/json", "X-Openai-Assistant-App-Id": "", "Connection": "close", "Accept-Language": "en-US,en;q=0.9", "Referer": "https://chat.openai.com/chat", }, ) self.session.cookies.update( { "library": "revChatGPT", }, ) self.config["access_token"] = access_token email = self.config.get("email", None) if email is not None: self.__cache_access_token(email, access_token) @logger(is_timed=False) def __get_cached_access_token(self, email: str | None) -> str | None: """Read access token from cache Args: email (str | None): email of the account to get access token Raises: Error: _description_ Error: _description_ Error: _description_ Returns: str | None: access token string or None if not found """ email = email or "default" cache = self.__read_cache() access_token = cache.get("access_tokens", {}).get(email, None) # Parse access_token as JWT if access_token is not None: try: # Split access_token into 3 parts s_access_token = access_token.split(".") # Add padding to the middle part s_access_token[1] += "=" * ((4 - len(s_access_token[1]) % 4) % 4) d_access_token = base64.b64decode(s_access_token[1]) d_access_token = json.loads(d_access_token) except base64.binascii.Error: error = t.Error( source="__get_cached_access_token", message="Invalid access token", code=t.ErrorType.INVALID_ACCESS_TOKEN_ERROR, ) raise error from None except json.JSONDecodeError: error = t.Error( source="__get_cached_access_token", message="Invalid access token", code=t.ErrorType.INVALID_ACCESS_TOKEN_ERROR, ) raise error from None exp = d_access_token.get("exp", None) if exp is not None and exp < time.time(): error = t.Error( source="__get_cached_access_token", message="Access token expired", code=t.ErrorType.EXPIRED_ACCESS_TOKEN_ERROR, ) raise error return access_token @logger(is_timed=False) def __cache_access_token(self, email: str, access_token: str) -> None: """Write an access token to cache Args: email (str): account email access_token (str): account access token """ email = email or "default" cache = self.__read_cache() if "access_tokens" not in cache: cache["access_tokens"] = {} cache["access_tokens"][email] = access_token self.__write_cache(cache) @logger(is_timed=False) def __write_cache(self, info: dict) -> None: """Write cache info to file Args: info (dict): cache info, current format { "access_tokens":{"[email protected]": 'this account's access token', } } """ dirname = self.cache_path.home() or Path(".") dirname.mkdir(parents=True, exist_ok=True) json.dump(info, open(self.cache_path, "w", encoding="utf-8"), indent=4) @logger(is_timed=False) def __read_cache(self): try: cached = json.load(open(self.cache_path, encoding="utf-8")) except (FileNotFoundError, json.decoder.JSONDecodeError): cached = {} return cached @logger(is_timed=True) def login(self) -> None: if ( "email" not in self.config or "password" not in self.config ) and "session_token" not in self.config: log.error("Insufficient login details provided!") error = t.AuthenticationError("Insufficient login details provided!") raise error auth = Authenticator( email_address=self.config.get("email"), password=self.config.get("password"), proxy=self.config.get("proxy"), ) if self.config.get("session_token"): log.debug("Using session token") auth.session.cookies.set( "__Secure-next-auth.session-token", self.config["session_token"], ) auth.get_access_token() if auth.access_token is None: del self.config["session_token"] self.login() return else: log.debug("Using authenticator to get access token") auth.begin() auth.get_access_token() self.set_access_token(auth.access_token) @logger(is_timed=True) def __send_request( self, data: dict, auto_continue: bool = False, timeout: float = 360, ) -> Generator[dict, None, None]: log.debug("Sending the payload") cid, pid = data["conversation_id"], data["parent_message_id"] model, message = None, "" self.conversation_id_prev_queue.append(cid) self.parent_id_prev_queue.append(pid) response = self.session.post( url=f"{self.base_url}conversation", data=json.dumps(data), timeout=timeout, stream=True, ) self.__check_response(response) finish_details = None for line in response.iter_lines(): # remove b' and ' at the beginning and end and ignore case line = str(line)[2:-1] if line.lower() == "internal server error": log.error(f"Internal Server Error: {line}") error = t.Error( source="ask", message="Internal Server Error", code=t.ErrorType.SERVER_ERROR, ) raise error if not line or line is None: continue if "data: " in line: line = line[6:] if line == "[DONE]": break line = line.replace('\\"', '"') line = line.replace("\\'", "'") line = line.replace("\\\\", "\\") try: line = json.loads(line) except json.decoder.JSONDecodeError: continue if not self.__check_fields(line): raise ValueError(f"Field missing. Details: {str(line)}") if line.get("message").get("author").get("role") != "assistant": continue message: str = line["message"]["content"]["parts"][0] cid = line["conversation_id"] pid = line["message"]["id"] metadata = line["message"].get("metadata", {}) model = metadata.get("model_slug", None) finish_details = metadata.get("finish_details", {"type": None})["type"] yield { "message": message, "conversation_id": cid, "parent_id": pid, "model": model, "finish_details": finish_details, "end_turn": line["message"].get("end_turn", True), "recipient": line["message"].get("recipient", "all"), } self.conversation_mapping[cid] = pid if pid is not None: self.parent_id = pid if cid is not None: self.conversation_id = cid if not (auto_continue and finish_details == "max_tokens"): return message = message.strip("\n") for i in self.continue_write( conversation_id=cid, model=model, timeout=timeout, ): i["message"] = message + i["message"] yield i @logger(is_timed=True) def post_messages( self, messages: list[dict], conversation_id: str | None = None, parent_id: str | None = None, model: str | None = None, auto_continue: bool = False, timeout: float = 360, ) -> Generator[dict, None, None]: """Ask a question to the chatbot Args: messages (list[dict]): The messages to send conversation_id (str | None, optional): UUID for the conversation to continue on. Defaults to None. parent_id (str | None, optional): UUID for the message to continue on. Defaults to None. model (str | None, optional): The model to use. Defaults to None. auto_continue (bool, optional): Whether to continue the conversation automatically. Defaults to False. timeout (float, optional): Timeout for getting the full response, unit is second. Defaults to 360. Yields: Generator[dict, None, None] - The response from the chatbot dict: { "message": str, "conversation_id": str, "parent_id": str, "model": str, "finish_details": str, # "max_tokens" or "stop" "end_turn": bool, "recipient": str, } """ if parent_id and not conversation_id: raise t.Error( source="User", message="conversation_id must be set once parent_id is set", code=t.ErrorType.USER_ERROR, ) if conversation_id and conversation_id != self.conversation_id: self.parent_id = None conversation_id = conversation_id or self.conversation_id parent_id = parent_id or self.parent_id or "" if not conversation_id and not parent_id: parent_id = str(uuid.uuid4()) if conversation_id and not parent_id: if conversation_id not in self.conversation_mapping: if self.lazy_loading: log.debug( f"Conversation ID {conversation_id} not found in conversation mapping, try to get conversation history for the given ID", ) with contextlib.suppress(Exception): history = self.get_msg_history(conversation_id) self.conversation_mapping[conversation_id] = history[ "current_node" ] else: self.__map_conversations() if conversation_id in self.conversation_mapping: parent_id = self.conversation_mapping[conversation_id] else: # invalid conversation_id provided, treat as a new conversation conversation_id = None parent_id = str(uuid.uuid4()) data = { "action": "next", "messages": messages, "conversation_id": conversation_id, "parent_message_id": parent_id, "model": model or self.config.get("model") or ( "text-davinci-002-render-paid" if self.config.get("paid") else "text-davinci-002-render-sha" ), } yield from self.__send_request( data, timeout=timeout, auto_continue=auto_continue, ) @logger(is_timed=True) def ask( self, prompt: str, conversation_id: str | None = None, parent_id: str | None = None, model: str | None = None, auto_continue: bool = False, timeout: float = 360, ) -> Generator[dict, None, None]: """Ask a question to the chatbot Args: prompt (str): The question conversation_id (str | None, optional): UUID for the conversation to continue on. Defaults to None. parent_id (str | None, optional): UUID for the message to continue on. Defaults to None. model (str | None, optional): The model to use. Defaults to None. auto_continue (bool, optional): Whether to continue the conversation automatically. Defaults to False. timeout (float, optional): Timeout for getting the full response, unit is second. Defaults to 360. Yields: Generator[dict, None, None] - The response from the chatbot dict: { "message": str, "conversation_id": str, "parent_id": str, "model": str, "finish_details": str, # "max_tokens" or "stop" "end_turn": bool, "recipient": str, } """ messages = [ { "id": str(uuid.uuid4()), "role": "user", "author": {"role": "user"}, "content": {"content_type": "text", "parts": [prompt]}, }, ] yield from self.post_messages( messages, conversation_id=conversation_id, parent_id=parent_id, model=model, auto_continue=auto_continue, timeout=timeout, ) @logger(is_timed=True) def continue_write( self, conversation_id: str | None = None, parent_id: str = "", model: str = "", auto_continue: bool = False, timeout: float = 360, ) -> Generator[dict, None, None]: """let the chatbot continue to write Args: conversation_id (str | None, optional): UUID for the conversation to continue on. Defaults to None. parent_id (str | None, optional): UUID for the message to continue on. Defaults to None. model (str | None, optional): The model to use. Defaults to None. auto_continue (bool, optional): Whether to continue the conversation automatically. Defaults to False. timeout (float, optional): Timeout for getting the full response, unit is second. Defaults to 360. Yields: dict: { "message": str, "conversation_id": str, "parent_id": str, "model": str, "finish_details": str, # "max_tokens" or "stop" "end_turn": bool, "recipient": str, } """ if parent_id and not conversation_id: raise t.Error( source="User", message="conversation_id must be set once parent_id is set", code=t.ErrorType.USER_ERROR, ) if conversation_id and conversation_id != self.conversation_id: self.parent_id = None conversation_id = conversation_id or self.conversation_id parent_id = parent_id or self.parent_id or "" if not conversation_id and not parent_id: parent_id = str(uuid.uuid4()) if conversation_id and not parent_id: if conversation_id not in self.conversation_mapping: if self.lazy_loading: log.debug( f"Conversation ID {conversation_id} not found in conversation mapping, try to get conversation history for the given ID", ) with contextlib.suppress(Exception): history = self.get_msg_history(conversation_id) self.conversation_mapping[conversation_id] = history[ "current_node" ] else: log.debug( f"Conversation ID {conversation_id} not found in conversation mapping, mapping conversations", ) self.__map_conversations() if conversation_id in self.conversation_mapping: parent_id = self.conversation_mapping[conversation_id] else: # invalid conversation_id provided, treat as a new conversation conversation_id = None parent_id = str(uuid.uuid4()) data = { "action": "continue", "conversation_id": conversation_id, "parent_message_id": parent_id, "model": model or self.config.get("model") or ( "text-davinci-002-render-paid" if self.config.get("paid") else "text-davinci-002-render-sha" ), } yield from self.__send_request( data, timeout=timeout, auto_continue=auto_continue, ) @logger(is_timed=False) def __check_fields(self, data: dict) -> bool: try: data["message"]["content"] except (TypeError, KeyError): return False return True @logger(is_timed=False) def __check_response(self, response: requests.Response) -> None: """Make sure response is success Args: response (_type_): _description_ Raises: Error: _description_ """ try: response.raise_for_status() except requests.exceptions.HTTPError as e: error = t.Error( source="OpenAI", message=response.text, code=response.status_code, ) raise error from e @logger(is_timed=True) def get_conversations( self, offset: int = 0, limit: int = 20, encoding: str | None = None, ) -> list: """ Get conversations :param offset: Integer :param limit: Integer """ url = f"{self.base_url}conversations?offset={offset}&limit={limit}" response = self.session.get(url) self.__check_response(response) if encoding is not None: response.encoding = encoding data = json.loads(response.text) return data["items"] @logger(is_timed=True) def get_msg_history(self, convo_id: str, encoding: str | None = None) -> list: """ Get message history :param id: UUID of conversation :param encoding: String """ url = f"{self.base_url}conversation/{convo_id}" response = self.session.get(url) self.__check_response(response) if encoding is not None: response.encoding = encoding return json.loads(response.text) @logger(is_timed=True) def gen_title(self, convo_id: str, message_id: str) -> str: """ Generate title for conversation """ response = self.session.post( f"{self.base_url}conversation/gen_title/{convo_id}", data=json.dumps( {"message_id": message_id, "model": "text-davinci-002-render"}, ), ) self.__check_response(response) return response.json().get("title", "Error generating title") @logger(is_timed=True) def change_title(self, convo_id: str, title: str) -> None: """ Change title of conversation :param id: UUID of conversation :param title: String """ url = f"{self.base_url}conversation/{convo_id}" response = self.session.patch(url, data=json.dumps({"title": title})) self.__check_response(response) @logger(is_timed=True) def delete_conversation(self, convo_id: str) -> None: """ Delete conversation :param id: UUID of conversation """ url = f"{self.base_url}conversation/{convo_id}" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) @logger(is_timed=True) def clear_conversations(self) -> None: """ Delete all conversations """ url = f"{self.base_url}conversations" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) @logger(is_timed=False) def __map_conversations(self) -> None: conversations = self.get_conversations() histories = [self.get_msg_history(x["id"]) for x in conversations] for x, y in zip(conversations, histories): self.conversation_mapping[x["id"]] = y["current_node"] @logger(is_timed=False) def reset_chat(self) -> None: """ Reset the conversation ID and parent ID. :return: None """ self.conversation_id = None self.parent_id = str(uuid.uuid4()) @logger(is_timed=False) def rollback_conversation(self, num: int = 1) -> None: """ Rollback the conversation. :param num: Integer. The number of messages to rollback :return: None """ for _ in range(num): self.conversation_id = self.conversation_id_prev_queue.pop() self.parent_id = self.parent_id_prev_queue.pop() class AsyncChatbot(Chatbot): """ Async Chatbot class for ChatGPT """ def __init__( self, config: dict, conversation_id: str | None = None, parent_id: str = "", base_url: str = "", ) -> None: """ Same as Chatbot class, but with async methods. Note: AsyncChatbot is not compatible with OpenAI Web API, I don't know why the stream method doesn't work. (But the sync version works fine) So, if you want to use AsyncChatbot, you don't need to set the "_puid" parameter in the config. """ super().__init__( config=config, conversation_id=conversation_id, parent_id=parent_id, session_client=AsyncClient, base_url=base_url, ) async def __send_request( self, data: dict, auto_continue: bool = False, timeout: float = 360, ) -> AsyncGenerator[dict, None]: cid, pid = data["conversation_id"], data["parent_message_id"] self.conversation_id_prev_queue.append(cid) self.parent_id_prev_queue.append(pid) message = "" finish_details = None response = None async with self.session.stream( method="POST", url=f"{self.base_url}conversation", data=json.dumps(data), timeout=timeout, ) as response: await self.__check_response(response) async for line in response.aiter_lines(): if not line or line is None: continue if "data: " in line: line = line[6:] if "[DONE]" in line: break try: line = json.loads(line) except json.decoder.JSONDecodeError: continue if not self.__check_fields(line): raise ValueError(f"Field missing. Details: {str(line)}") message: str = line["message"]["content"]["parts"][0] cid = line["conversation_id"] pid = line["message"]["id"] metadata = line["message"].get("metadata", {}) model = metadata.get("model_slug", None) finish_details = metadata.get("finish_details", {"type": None})["type"] yield { "message": message, "conversation_id": cid, "parent_id": pid, "model": model, "finish_details": finish_details, "end_turn": line["message"].get("end_turn", True), "recipient": line["message"].get("recipient", "all"), } self.conversation_mapping[cid] = pid if pid: self.parent_id = pid if cid: self.conversation_id = cid if not (auto_continue and finish_details == "max_tokens"): return async for msg in self.continue_write( conversation_id=cid, auto_continue=auto_continue, timeout=timeout, ): msg["message"] = message + msg["message"] yield msg async def post_messages( self, messages: list[dict], conversation_id: str | None = None, parent_id: str = "", model: str = "", auto_continue: bool = False, timeout: int = 360, ) -> AsyncGenerator[dict, None]: """Post messages to the chatbot Args: messages (list[dict]): the messages to post conversation_id (str | None, optional): UUID for the conversation to continue on. Defaults to None. parent_id (str, optional): UUID for the message to continue on. Defaults to "". model (str, optional): The model to use. Defaults to "". auto_continue (bool, optional): Whether to continue the conversation automatically. Defaults to False. timeout (float, optional): Timeout for getting the full response, unit is second. Defaults to 360. Yields: AsyncGenerator[dict, None]: The response from the chatbot { "message": str, "conversation_id": str, "parent_id": str, "model": str, "finish_details": str, "end_turn": bool, "recipient": str, } """ if parent_id and not conversation_id: error = t.Error( source="User", message="conversation_id must be set once parent_id is set", code=t.ErrorType.SERVER_ERROR, ) raise error if conversation_id and conversation_id != self.conversation_id: self.parent_id = None conversation_id = conversation_id or self.conversation_id parent_id = parent_id or self.parent_id or "" if not conversation_id and not parent_id: parent_id = str(uuid.uuid4()) if conversation_id and not parent_id: if conversation_id not in self.conversation_mapping: await self.__map_conversations() if conversation_id in self.conversation_mapping: parent_id = self.conversation_mapping[conversation_id] else: # invalid conversation_id provided, treat as a new conversation conversation_id = None parent_id = str(uuid.uuid4()) data = { "action": "next", "messages": messages, "conversation_id": conversation_id, "parent_message_id": parent_id, "model": model or self.config.get("model") or ( "text-davinci-002-render-paid" if self.config.get("paid") else "text-davinci-002-render-sha" ), } async for msg in self.__send_request( data=data, auto_continue=auto_continue, timeout=timeout, ): yield msg async def ask( self, prompt: str, conversation_id: str | None = None, parent_id: str = "", model: str = "", auto_continue: bool = False, timeout: int = 360, ) -> AsyncGenerator[dict, None]: """Ask a question to the chatbot Args: prompt (str): The question to ask conversation_id (str | None, optional): UUID for the conversation to continue on. Defaults to None. parent_id (str, optional): UUID for the message to continue on. Defaults to "". model (str, optional): The model to use. Defaults to "". auto_continue (bool, optional): Whether to continue the conversation automatically. Defaults to False. timeout (float, optional): Timeout for getting the full response, unit is second. Defaults to 360. Yields: AsyncGenerator[dict, None]: The response from the chatbot { "message": str, "conversation_id": str, "parent_id": str, "model": str, "finish_details": str, "end_turn": bool, "recipient": str, } """ messages = [ { "id": str(uuid.uuid4()), "author": {"role": "user"}, "content": {"content_type": "text", "parts": [prompt]}, }, ] async for msg in self.post_messages( messages=messages, conversation_id=conversation_id, parent_id=parent_id, model=model, auto_continue=auto_continue, timeout=timeout, ): yield msg async def continue_write( self, conversation_id: str | None = None, parent_id: str = "", model: str = "", auto_continue: bool = False, timeout: float = 360, ) -> AsyncGenerator[dict, None]: """let the chatbot continue to write Args: conversation_id (str | None, optional): UUID for the conversation to continue on. Defaults to None. parent_id (str, optional): UUID for the message to continue on. Defaults to None. model (str, optional): Model to use. Defaults to None. auto_continue (bool, optional): Whether to continue writing automatically. Defaults to False. timeout (float, optional): Timeout for getting the full response, unit is second. Defaults to 360. Yields: AsyncGenerator[dict, None]: The response from the chatbot { "message": str, "conversation_id": str, "parent_id": str, "model": str, "finish_details": str, "end_turn": bool, "recipient": str, } """ if parent_id and not conversation_id: error = t.Error( source="User", message="conversation_id must be set once parent_id is set", code=t.ErrorType.SERVER_ERROR, ) raise error if conversation_id and conversation_id != self.conversation_id: self.parent_id = None conversation_id = conversation_id or self.conversation_id parent_id = parent_id or self.parent_id or "" if not conversation_id and not parent_id: parent_id = str(uuid.uuid4()) if conversation_id and not parent_id: if conversation_id not in self.conversation_mapping: await self.__map_conversations() if conversation_id in self.conversation_mapping: parent_id = self.conversation_mapping[conversation_id] else: # invalid conversation_id provided, treat as a new conversation conversation_id = None parent_id = str(uuid.uuid4()) data = { "action": "continue", "conversation_id": conversation_id, "parent_message_id": parent_id, "model": model or self.config.get("model") or ( "text-davinci-002-render-paid" if self.config.get("paid") else "text-davinci-002-render-sha" ), } async for msg in self.__send_request( data=data, auto_continue=auto_continue, timeout=timeout, ): yield msg async def get_conversations(self, offset: int = 0, limit: int = 20) -> list: """ Get conversations :param offset: Integer :param limit: Integer """ url = f"{self.base_url}conversations?offset={offset}&limit={limit}" response = await self.session.get(url) await self.__check_response(response) data = json.loads(response.text) return data["items"] async def get_msg_history( self, convo_id: str, encoding: str | None = "utf-8", ) -> dict: """ Get message history :param id: UUID of conversation """ url = f"{self.base_url}conversation/{convo_id}" response = await self.session.get(url) if encoding is not None: response.encoding = encoding await self.__check_response(response) return json.loads(response.text) return None async def gen_title(self, convo_id: str, message_id: str) -> None: """ Generate title for conversation """ url = f"{self.base_url}conversation/gen_title/{convo_id}" response = await self.session.post( url, data=json.dumps( {"message_id": message_id, "model": "text-davinci-002-render"}, ), ) await self.__check_response(response) async def change_title(self, convo_id: str, title: str) -> None: """ Change title of conversation :param convo_id: UUID of conversation :param title: String """ url = f"{self.base_url}conversation/{convo_id}" response = await self.session.patch(url, data=f'{{"title": "{title}"}}') await self.__check_response(response) async def delete_conversation(self, convo_id: str) -> None: """ Delete conversation :param convo_id: UUID of conversation """ url = f"{self.base_url}conversation/{convo_id}" response = await self.session.patch(url, data='{"is_visible": false}') await self.__check_response(response) async def clear_conversations(self) -> None: """ Delete all conversations """ url = f"{self.base_url}conversations" response = await self.session.patch(url, data='{"is_visible": false}') await self.__check_response(response) async def __map_conversations(self) -> None: conversations = await self.get_conversations() histories = [await self.get_msg_history(x["id"]) for x in conversations] for x, y in zip(conversations, histories): self.conversation_mapping[x["id"]] = y["current_node"] def __check_fields(self, data: dict) -> bool: try: data["message"]["content"] except (TypeError, KeyError): return False return True async def __check_response(self, response: httpx.Response) -> None: # 改成自带的错误处理 try: response.raise_for_status() except httpx.HTTPStatusError as e: await response.aread() error = t.Error( source="OpenAI", message=response.text, code=response.status_code, ) raise error from e get_input = logger(is_timed=False)(get_input) @logger(is_timed=False) def configure() -> dict: """ Looks for a config file in the following locations: """ config_files: list[Path] = [Path("config.json")] if xdg_config_home := getenv("XDG_CONFIG_HOME"): config_files.append(Path(xdg_config_home, "revChatGPT/config.json")) if user_home := getenv("HOME"): config_files.append(Path(user_home, ".config/revChatGPT/config.json")) if windows_home := getenv("HOMEPATH"): config_files.append(Path(f"{windows_home}/.config/revChatGPT/config.json")) if config_file := next((f for f in config_files if f.exists()), None): with open(config_file, encoding="utf-8") as f: config = json.load(f) else: print("No config file found.") raise FileNotFoundError("No config file found.") return config @logger(is_timed=False) def main(config: dict) -> NoReturn: """ Main function for the chatGPT program. """ chatbot = Chatbot( config, conversation_id=config.get("conversation_id"), parent_id=config.get("parent_id"), ) def handle_commands(command: str) -> bool: if command == "!help": print( """ !help - Show this message !reset - Forget the current conversation !config - Show the current configuration !rollback x - Rollback the conversation (x being the number of messages to rollback) !exit - Exit this program !setconversation - Changes the conversation """, ) elif command == "!reset": chatbot.reset_chat() print("Chat session successfully reset.") elif command == "!config": print(json.dumps(chatbot.config, indent=4)) elif command.startswith("!rollback"): try: rollback = int(command.split(" ")[1]) except IndexError: logging.exception( "No number specified, rolling back 1 message", stack_info=True, ) rollback = 1 chatbot.rollback_conversation(rollback) print(f"Rolled back {rollback} messages.") elif command.startswith("!setconversation"): try: chatbot.conversation_id = chatbot.config[ "conversation_id" ] = command.split(" ")[1] print("Conversation has been changed") except IndexError: log.exception( "Please include conversation UUID in command", stack_info=True, ) print("Please include conversation UUID in command") elif command.startswith("!continue"): print() print(f"{bcolors.OKGREEN + bcolors.BOLD}Chatbot: {bcolors.ENDC}") prev_text = "" for data in chatbot.continue_write(): message = data["message"][len(prev_text) :] print(message, end="", flush=True) prev_text = data["message"] print(bcolors.ENDC) print() elif command == "!exit": exit() else: return False return True session = create_session() completer = create_completer( [ "!help", "!reset", "!config", "!rollback", "!exit", "!setconversation", "!continue", ], ) print() try: while True: print(f"{bcolors.OKBLUE + bcolors.BOLD}You: {bcolors.ENDC}") prompt = get_input(session=session, completer=completer) if prompt.startswith("!") and handle_commands(prompt): continue print() print(f"{bcolors.OKGREEN + bcolors.BOLD}Chatbot: {bcolors.ENDC}") prev_text = "" for data in chatbot.ask(prompt, auto_continue=True): message = data["message"][len(prev_text) :] print(message, end="", flush=True) prev_text = data["message"] print(bcolors.ENDC) print() except (KeyboardInterrupt, EOFError): exit() except Exception as exc: error = t.CLIError("command line program unknown error") raise error from exc if __name__ == "__main__": print( f""" ChatGPT - A command-line interface to OpenAI's ChatGPT (https://chat.openai.com/chat) Repo: github.com/acheong08/ChatGPT Version: {__version__} """, ) print("Type '!help' to show a full list of commands") print( f"{bcolors.BOLD}{bcolors.WARNING}Press Esc followed by Enter or Alt+Enter to send a message.{bcolors.ENDC}", ) main(configure())
[ "text", "content_type" ]
2024-01-10
Nikos1001/htn
backend~db.py
from psycopg2 import OperationalError import psycopg2 import cohere import json connector = psycopg2.connect('postgresql://hiatus:[email protected]:26257/defaultdb?sslmode=verify-full') connector.autocommit = True def execute_query(query): cursor = connector.cursor() try: cursor.execute(query) print("Query success") except OperationalError as err: print(f"Error {err}") # execute_query('DROP TABLE deck_list') execute_query("CREATE TABLE IF NOT EXISTS deck_list (id SERIAL PRIMARY KEY, deck JSON)") def add_to_db(deck): deck_str = json.dumps(deck).replace('\'', '') print(deck_str) add_query = f"INSERT INTO deck_list (deck) VALUES ('{deck_str}')" execute_query(add_query) def retrieve_db(): deck_list = [] cursor = connector.cursor() try: cursor.execute("SELECT * FROM deck_list") for deck in cursor.fetchall(): deck_list.append(deck[1]) except OperationalError as err: print(f"The error '{err}' occurred") return deck_list
[]
2024-01-10
iusztinpaul/hands-on-llms
modules~financial_bot~financial_bot~chains.py
import time from typing import Any, Dict, List, Optional import qdrant_client from langchain import chains from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.llms import HuggingFacePipeline from unstructured.cleaners.core import ( clean, clean_extra_whitespace, clean_non_ascii_chars, group_broken_paragraphs, replace_unicode_quotes, ) from financial_bot.embeddings import EmbeddingModelSingleton from financial_bot.template import PromptTemplate class StatelessMemorySequentialChain(chains.SequentialChain): """ A sequential chain that uses a stateless memory to store context between calls. This chain overrides the _call and prep_outputs methods to load and clear the memory before and after each call, respectively. """ history_input_key: str = "to_load_history" def _call(self, inputs: Dict[str, str], **kwargs) -> Dict[str, str]: """ Override _call to load history before calling the chain. This method loads the history from the input dictionary and saves it to the stateless memory. It then updates the inputs dictionary with the memory values and removes the history input key. Finally, it calls the parent _call method with the updated inputs and returns the results. """ to_load_history = inputs[self.history_input_key] for ( human, ai, ) in to_load_history: self.memory.save_context( inputs={self.memory.input_key: human}, outputs={self.memory.output_key: ai}, ) memory_values = self.memory.load_memory_variables({}) inputs.update(memory_values) del inputs[self.history_input_key] return super()._call(inputs, **kwargs) def prep_outputs( self, inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False, ) -> Dict[str, str]: """ Override prep_outputs to clear the internal memory after each call. This method calls the parent prep_outputs method to get the results, then clears the stateless memory and removes the memory key from the results dictionary. It then returns the updated results. """ results = super().prep_outputs(inputs, outputs, return_only_outputs) # Clear the internal memory. self.memory.clear() if self.memory.memory_key in results: results[self.memory.memory_key] = "" return results class ContextExtractorChain(Chain): """ Encode the question, search the vector store for top-k articles and return context news from documents collection of Alpaca news. Attributes: ----------- top_k : int The number of top matches to retrieve from the vector store. embedding_model : EmbeddingModelSingleton The embedding model to use for encoding the question. vector_store : qdrant_client.QdrantClient The vector store to search for matches. vector_collection : str The name of the collection to search in the vector store. """ top_k: int = 1 embedding_model: EmbeddingModelSingleton vector_store: qdrant_client.QdrantClient vector_collection: str @property def input_keys(self) -> List[str]: return ["about_me", "question"] @property def output_keys(self) -> List[str]: return ["context"] def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]: _, quest_key = self.input_keys question_str = inputs[quest_key] cleaned_question = self.clean(question_str) # TODO: Instead of cutting the question at 'max_input_length', chunk the question in 'max_input_length' chunks, # pass them through the model and average the embeddings. cleaned_question = cleaned_question[: self.embedding_model.max_input_length] embeddings = self.embedding_model(cleaned_question) # TODO: Using the metadata, use the filter to take into consideration only the news from the last 24 hours # (or other time frame). matches = self.vector_store.search( query_vector=embeddings, k=self.top_k, collection_name=self.vector_collection, ) context = "" for match in matches: context += match.payload["summary"] + "\n" return { "context": context, } def clean(self, question: str) -> str: """ Clean the input question by removing unwanted characters. Parameters: ----------- question : str The input question to clean. Returns: -------- str The cleaned question. """ question = clean(question) question = replace_unicode_quotes(question) question = clean_non_ascii_chars(question) return question class FinancialBotQAChain(Chain): """This custom chain handles LLM generation upon given prompt""" hf_pipeline: HuggingFacePipeline template: PromptTemplate @property def input_keys(self) -> List[str]: """Returns a list of input keys for the chain""" return ["context"] @property def output_keys(self) -> List[str]: """Returns a list of output keys for the chain""" return ["answer"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Calls the chain with the given inputs and returns the output""" inputs = self.clean(inputs) prompt = self.template.format_infer( { "user_context": inputs["about_me"], "news_context": inputs["context"], "chat_history": inputs["chat_history"], "question": inputs["question"], } ) start_time = time.time() response = self.hf_pipeline(prompt["prompt"]) end_time = time.time() duration_milliseconds = (end_time - start_time) * 1000 if run_manager: run_manager.on_chain_end( outputs={ "answer": response, }, # TODO: Count tokens instead of using len(). metadata={ "prompt": prompt["prompt"], "prompt_template_variables": prompt["payload"], "prompt_template": self.template.infer_raw_template, "usage.prompt_tokens": len(prompt["prompt"]), "usage.total_tokens": len(prompt["prompt"]) + len(response), "usage.actual_new_tokens": len(response), "duration_milliseconds": duration_milliseconds, }, ) return {"answer": response} def clean(self, inputs: Dict[str, str]) -> Dict[str, str]: """Cleans the inputs by removing extra whitespace and grouping broken paragraphs""" for key, input in inputs.items(): cleaned_input = clean_extra_whitespace(input) cleaned_input = group_broken_paragraphs(cleaned_input) inputs[key] = cleaned_input return inputs
[ "user_context", "question", "chat_history", "context", "news_context" ]
2024-01-10
iusztinpaul/hands-on-llms
modules~financial_bot~financial_bot~handlers.py
from typing import Any, Dict import comet_llm from langchain.callbacks.base import BaseCallbackHandler from financial_bot import constants class CometLLMMonitoringHandler(BaseCallbackHandler): """ A callback handler for monitoring LLM models using Comet.ml. Args: project_name (str): The name of the Comet.ml project to log to. llm_model_id (str): The ID of the LLM model to use for inference. llm_qlora_model_id (str): The ID of the PEFT model to use for inference. llm_inference_max_new_tokens (int): The maximum number of new tokens to generate during inference. llm_inference_temperature (float): The temperature to use during inference. """ def __init__( self, project_name: str = None, llm_model_id: str = constants.LLM_MODEL_ID, llm_qlora_model_id: str = constants.LLM_QLORA_CHECKPOINT, llm_inference_max_new_tokens: int = constants.LLM_INFERNECE_MAX_NEW_TOKENS, llm_inference_temperature: float = constants.LLM_INFERENCE_TEMPERATURE, ): self._project_name = project_name self._llm_model_id = llm_model_id self._llm_qlora_model_id = llm_qlora_model_id self._llm_inference_max_new_tokens = llm_inference_max_new_tokens self._llm_inference_temperature = llm_inference_temperature def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """ A callback function that logs the prompt and output to Comet.ml. Args: outputs (Dict[str, Any]): The output of the LLM model. **kwargs (Any): Additional arguments passed to the function. """ should_log_prompt = "metadata" in kwargs if should_log_prompt: metadata = kwargs["metadata"] comet_llm.log_prompt( project=self._project_name, prompt=metadata["prompt"], output=outputs["answer"], prompt_template=metadata["prompt_template"], prompt_template_variables=metadata["prompt_template_variables"], metadata={ "usage.prompt_tokens": metadata["usage.prompt_tokens"], "usage.total_tokens": metadata["usage.total_tokens"], "usage.max_new_tokens": self._llm_inference_max_new_tokens, "usage.temperature": self._llm_inference_temperature, "usage.actual_new_tokens": metadata["usage.actual_new_tokens"], "model": self._llm_model_id, "peft_model": self._llm_qlora_model_id, }, duration=metadata["duration_milliseconds"], )
[ "False" ]
2024-01-10
deepinfra/langchain
libs~langchain~langchain~vectorstores~chroma.py
from __future__ import annotations import logging import uuid from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, ) import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import xor_args from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: import chromadb import chromadb.config from chromadb.api.types import ID, OneOrMany, Where, WhereDocument logger = logging.getLogger() DEFAULT_K = 4 # Number of Documents to return. def _results_to_docs(results: Any) -> List[Document]: return [doc for doc, _ in _results_to_docs_and_scores(results)] def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]: return [ # TODO: Chroma can do batch querying, # we shouldn't hard code to the 1st result (Document(page_content=result[0], metadata=result[1] or {}), result[2]) for result in zip( results["documents"][0], results["metadatas"][0], results["distances"][0], ) ] class Chroma(VectorStore): """`ChromaDB` vector store. To use, you should have the ``chromadb`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings) """ _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain" def __init__( self, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, client: Optional[chromadb.Client] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, ) -> None: """Initialize with a Chroma client.""" try: import chromadb import chromadb.config except ImportError: raise ImportError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) if client is not None: self._client_settings = client_settings self._client = client self._persist_directory = persist_directory else: if client_settings: # If client_settings is provided with persist_directory specified, # then it is "in-memory and persisting to disk" mode. client_settings.persist_directory = ( persist_directory or client_settings.persist_directory ) if client_settings.persist_directory is not None: # Maintain backwards compatibility with chromadb < 0.4.0 major, minor, _ = chromadb.__version__.split(".") if int(major) == 0 and int(minor) < 4: client_settings.chroma_db_impl = "duckdb+parquet" _client_settings = client_settings elif persist_directory: # Maintain backwards compatibility with chromadb < 0.4.0 major, minor, _ = chromadb.__version__.split(".") if int(major) == 0 and int(minor) < 4: _client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", ) else: _client_settings = chromadb.config.Settings(is_persistent=True) _client_settings.persist_directory = persist_directory else: _client_settings = chromadb.config.Settings() self._client_settings = _client_settings self._client = chromadb.Client(_client_settings) self._persist_directory = ( _client_settings.persist_directory or persist_directory ) self._embedding_function = embedding_function self._collection = self._client.get_or_create_collection( name=collection_name, embedding_function=self._embedding_function.embed_documents if self._embedding_function is not None else None, metadata=collection_metadata, ) self.override_relevance_score_fn = relevance_score_fn @property def embeddings(self) -> Optional[Embeddings]: return self._embedding_function @xor_args(("query_texts", "query_embeddings")) def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Query the chroma collection.""" try: import chromadb # noqa: F401 except ImportError: raise ValueError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) return self._collection.query( query_texts=query_texts, query_embeddings=query_embeddings, n_results=n_results, where=where, where_document=where_document, **kwargs, ) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = None texts = list(texts) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(texts) if metadatas: # fill metadatas with empty dicts if somebody # did not specify metadata for all texts length_diff = len(texts) - len(metadatas) if length_diff: metadatas = metadatas + [{}] * length_diff empty_ids = [] non_empty_ids = [] for idx, m in enumerate(metadatas): if m: non_empty_ids.append(idx) else: empty_ids.append(idx) if non_empty_ids: metadatas = [metadatas[idx] for idx in non_empty_ids] texts_with_metadatas = [texts[idx] for idx in non_empty_ids] embeddings_with_metadatas = ( [embeddings[idx] for idx in non_empty_ids] if embeddings else None ) ids_with_metadata = [ids[idx] for idx in non_empty_ids] try: self._collection.upsert( metadatas=metadatas, embeddings=embeddings_with_metadatas, documents=texts_with_metadatas, ids=ids_with_metadata, ) except ValueError as e: if "Expected metadata value to be" in str(e): msg = ( "Try filtering complex metadata from the document using " "langchain.vectorstore.utils.filter_complex_metadata." ) raise ValueError(e.args[0] + "\n\n" + msg) else: raise e if empty_ids: texts_without_metadatas = [texts[j] for j in empty_ids] embeddings_without_metadatas = ( [embeddings[j] for j in empty_ids] if embeddings else None ) ids_without_metadatas = [ids[j] for j in empty_ids] self._collection.upsert( embeddings=embeddings_without_metadatas, documents=texts_without_metadatas, ids=ids_without_metadatas, ) else: self._collection.upsert( embeddings=embeddings, documents=texts, ids=ids, ) return ids def similarity_search( self, query: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with Chroma. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text. """ docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) return [doc for doc, _ in docs_and_scores] def similarity_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding (List[float]): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ results = self.__query_collection( query_embeddings=embedding, n_results=k, where=filter, where_document=where_document, ) return _results_to_docs(results) def similarity_search_by_vector_with_relevance_scores( self, embedding: List[float], k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """ Return docs most similar to embedding vector and similarity score. Args: embedding (List[float]): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ results = self.__query_collection( query_embeddings=embedding, n_results=k, where=filter, where_document=where_document, ) return _results_to_docs_and_scores(results) def similarity_search_with_score( self, query: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with Chroma with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ if self._embedding_function is None: results = self.__query_collection( query_texts=[query], n_results=k, where=filter, where_document=where_document, ) else: query_embedding = self._embedding_function.embed_query(query) results = self.__query_collection( query_embeddings=[query_embedding], n_results=k, where=filter, where_document=where_document, ) return _results_to_docs_and_scores(results) def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.override_relevance_score_fn: return self.override_relevance_score_fn distance = "l2" distance_key = "hnsw:space" metadata = self._collection.metadata if metadata and distance_key in metadata: distance = metadata[distance_key] if distance == "cosine": return self._cosine_relevance_score_fn elif distance == "l2": return self._euclidean_relevance_score_fn elif distance == "ip": return self._max_inner_product_relevance_score_fn else: raise ValueError( "No supported normalization function" f" for distance metric of type: {distance}." "Consider providing relevance_score_fn to Chroma constructor." ) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, where_document=where_document, include=["metadatas", "documents", "distances", "embeddings"], ) mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), results["embeddings"][0], k=k, lambda_mult=lambda_mult, ) candidates = _results_to_docs(results) selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected] return selected_results def max_marginal_relevance_search( self, query: str, k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) embedding = self._embedding_function.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mult=lambda_mult, filter=filter, where_document=where_document, ) return docs def delete_collection(self) -> None: """Delete the collection.""" self._client.delete_collection(self._collection.name) def get( self, ids: Optional[OneOrMany[ID]] = None, where: Optional[Where] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: Optional[WhereDocument] = None, include: Optional[List[str]] = None, ) -> Dict[str, Any]: """Gets the collection. Args: ids: The ids of the embeddings to get. Optional. where: A Where type dict used to filter results by. E.g. `{"color" : "red", "price": 4.20}`. Optional. limit: The number of documents to return. Optional. offset: The offset to start returning results from. Useful for paging results with limit. Optional. where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: "hello"}`. Optional. include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional. """ kwargs = { "ids": ids, "where": where, "limit": limit, "offset": offset, "where_document": where_document, } if include is not None: kwargs["include"] = include return self._collection.get(**kwargs) def persist(self) -> None: """Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. """ if self._persist_directory is None: raise ValueError( "You must specify a persist_directory on" "creation to persist the collection." ) import chromadb # Maintain backwards compatibility with chromadb < 0.4.0 major, minor, _ = chromadb.__version__.split(".") if int(major) == 0 and int(minor) < 4: self._client.persist() def update_document(self, document_id: str, document: Document) -> None: """Update a document in the collection. Args: document_id (str): ID of the document to update. document (Document): Document to update. """ text = document.page_content metadata = document.metadata if self._embedding_function is None: raise ValueError( "For update, you must specify an embedding function on creation." ) embeddings = self._embedding_function.embed_documents([text]) self._collection.update( ids=[document_id], embeddings=embeddings, documents=[text], metadatas=[metadata], ) @classmethod def from_texts( cls: Type[Chroma], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, collection_metadata: Optional[Dict] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a raw documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: texts (List[str]): List of texts to add to the collection. collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): List of document IDs. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings collection_metadata (Optional[Dict]): Collection configurations. Defaults to None. Returns: Chroma: Chroma vectorstore. """ chroma_collection = cls( collection_name=collection_name, embedding_function=embedding, persist_directory=persist_directory, client_settings=client_settings, client=client, collection_metadata=collection_metadata, **kwargs, ) chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) return chroma_collection @classmethod def from_documents( cls: Type[Chroma], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, # Add this line collection_metadata: Optional[Dict] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a list of documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. ids (Optional[List[str]]): List of document IDs. Defaults to None. documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings collection_metadata (Optional[Dict]): Collection configurations. Defaults to None. Returns: Chroma: Chroma vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, persist_directory=persist_directory, client_settings=client_settings, client=client, collection_metadata=collection_metadata, **kwargs, ) def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None: """Delete by vector IDs. Args: ids: List of ids to delete. """ self._collection.delete(ids=ids)
[]
2024-01-10
deepinfra/langchain
libs~langchain~langchain~llms~textgen.py
import json import logging from typing import Any, AsyncIterator, Dict, Iterator, List, Optional import requests from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.pydantic_v1 import Field from langchain.schema.output import GenerationChunk logger = logging.getLogger(__name__) class TextGen(LLM): """text-generation-webui models. To use, you should have the text-generation-webui installed, a model loaded, and --api added as a command-line option. Suggested installation, use one-click installer for your OS: https://github.com/oobabooga/text-generation-webui#one-click-installers Parameters below taken from text-generation-webui api example: https://github.com/oobabooga/text-generation-webui/blob/main/api-examples/api-example.py Example: .. code-block:: python from langchain.llms import TextGen llm = TextGen(model_url="http://localhost:8500") """ model_url: str """The full URL to the textgen webui including http[s]://host:port """ preset: Optional[str] = None """The preset to use in the textgen webui """ max_new_tokens: Optional[int] = 250 """The maximum number of tokens to generate.""" do_sample: bool = Field(True, alias="do_sample") """Do sample""" temperature: Optional[float] = 1.3 """Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness.""" top_p: Optional[float] = 0.1 """If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results.""" typical_p: Optional[float] = 1 """If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.""" epsilon_cutoff: Optional[float] = 0 # In units of 1e-4 """Epsilon cutoff""" eta_cutoff: Optional[float] = 0 # In units of 1e-4 """ETA cutoff""" repetition_penalty: Optional[float] = 1.18 """Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.""" top_k: Optional[float] = 40 """Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results.""" min_length: Optional[int] = 0 """Minimum generation length in tokens.""" no_repeat_ngram_size: Optional[int] = 0 """If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.""" num_beams: Optional[int] = 1 """Number of beams""" penalty_alpha: Optional[float] = 0 """Penalty Alpha""" length_penalty: Optional[float] = 1 """Length Penalty""" early_stopping: bool = Field(False, alias="early_stopping") """Early stopping""" seed: int = Field(-1, alias="seed") """Seed (-1 for random)""" add_bos_token: bool = Field(True, alias="add_bos_token") """Add the bos_token to the beginning of prompts. Disabling this can make the replies more creative.""" truncation_length: Optional[int] = 2048 """Truncate the prompt up to this length. The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.""" ban_eos_token: bool = Field(False, alias="ban_eos_token") """Ban the eos_token. Forces the model to never end the generation prematurely.""" skip_special_tokens: bool = Field(True, alias="skip_special_tokens") """Skip special tokens. Some specific models need this unset.""" stopping_strings: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" streaming: bool = False """Whether to stream the results, token by token.""" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling textgen.""" return { "max_new_tokens": self.max_new_tokens, "do_sample": self.do_sample, "temperature": self.temperature, "top_p": self.top_p, "typical_p": self.typical_p, "epsilon_cutoff": self.epsilon_cutoff, "eta_cutoff": self.eta_cutoff, "repetition_penalty": self.repetition_penalty, "top_k": self.top_k, "min_length": self.min_length, "no_repeat_ngram_size": self.no_repeat_ngram_size, "num_beams": self.num_beams, "penalty_alpha": self.penalty_alpha, "length_penalty": self.length_penalty, "early_stopping": self.early_stopping, "seed": self.seed, "add_bos_token": self.add_bos_token, "truncation_length": self.truncation_length, "ban_eos_token": self.ban_eos_token, "skip_special_tokens": self.skip_special_tokens, "stopping_strings": self.stopping_strings, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model_url": self.model_url}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "textgen" def _get_parameters(self, stop: Optional[List[str]] = None) -> Dict[str, Any]: """ Performs sanity check, preparing parameters in format needed by textgen. Args: stop (Optional[List[str]]): List of stop sequences for textgen. Returns: Dictionary containing the combined parameters. """ # Raise error if stop sequences are in both input and default params # if self.stop and stop is not None: if self.stopping_strings and stop is not None: raise ValueError("`stop` found in both the input and default params.") if self.preset is None: params = self._default_params else: params = {"preset": self.preset} # then sets it as configured, or default to an empty list: params["stop"] = self.stopping_strings or stop or [] return params def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the textgen web API and return the output. Args: prompt: The prompt to use for generation. stop: A list of strings to stop generation when encountered. Returns: The generated text. Example: .. code-block:: python from langchain.llms import TextGen llm = TextGen(model_url="http://localhost:5000") llm("Write a story about llamas.") """ if self.streaming: combined_text_output = "" for chunk in self._stream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs ): combined_text_output += chunk.text print(prompt + combined_text_output) result = combined_text_output else: url = f"{self.model_url}/api/v1/generate" params = self._get_parameters(stop) request = params.copy() request["prompt"] = prompt response = requests.post(url, json=request) if response.status_code == 200: result = response.json()["results"][0]["text"] print(prompt + result) else: print(f"ERROR: response: {response}") result = "" return result async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the textgen web API and return the output. Args: prompt: The prompt to use for generation. stop: A list of strings to stop generation when encountered. Returns: The generated text. Example: .. code-block:: python from langchain.llms import TextGen llm = TextGen(model_url="http://localhost:5000") llm("Write a story about llamas.") """ if self.streaming: combined_text_output = "" async for chunk in self._astream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs ): combined_text_output += chunk.text print(prompt + combined_text_output) result = combined_text_output else: url = f"{self.model_url}/api/v1/generate" params = self._get_parameters(stop) request = params.copy() request["prompt"] = prompt response = requests.post(url, json=request) if response.status_code == 200: result = response.json()["results"][0]["text"] print(prompt + result) else: print(f"ERROR: response: {response}") result = "" return result def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: """Yields results objects as they are generated in real time. It also calls the callback manager's on_llm_new_token event with similar parameters to the OpenAI LLM class method of the same name. Args: prompt: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens being generated. Yields: A dictionary like objects containing a string token and metadata. See text-generation-webui docs and below for more. Example: .. code-block:: python from langchain.llms import TextGen llm = TextGen( model_url = "ws://localhost:5005" streaming=True ) for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'", stop=["'","\n"]): print(chunk, end='', flush=True) """ try: import websocket except ImportError: raise ImportError( "The `websocket-client` package is required for streaming." ) params = {**self._get_parameters(stop), **kwargs} url = f"{self.model_url}/api/v1/stream" request = params.copy() request["prompt"] = prompt websocket_client = websocket.WebSocket() websocket_client.connect(url) websocket_client.send(json.dumps(request)) while True: result = websocket_client.recv() result = json.loads(result) if result["event"] == "text_stream": chunk = GenerationChunk( text=result["text"], generation_info=None, ) yield chunk elif result["event"] == "stream_end": websocket_client.close() return if run_manager: run_manager.on_llm_new_token(token=chunk.text) async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: """Yields results objects as they are generated in real time. It also calls the callback manager's on_llm_new_token event with similar parameters to the OpenAI LLM class method of the same name. Args: prompt: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens being generated. Yields: A dictionary like objects containing a string token and metadata. See text-generation-webui docs and below for more. Example: .. code-block:: python from langchain.llms import TextGen llm = TextGen( model_url = "ws://localhost:5005" streaming=True ) for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'", stop=["'","\n"]): print(chunk, end='', flush=True) """ try: import websocket except ImportError: raise ImportError( "The `websocket-client` package is required for streaming." ) params = {**self._get_parameters(stop), **kwargs} url = f"{self.model_url}/api/v1/stream" request = params.copy() request["prompt"] = prompt websocket_client = websocket.WebSocket() websocket_client.connect(url) websocket_client.send(json.dumps(request)) while True: result = websocket_client.recv() result = json.loads(result) if result["event"] == "text_stream": chunk = GenerationChunk( text=result["text"], generation_info=None, ) yield chunk elif result["event"] == "stream_end": websocket_client.close() return if run_manager: await run_manager.on_llm_new_token(token=chunk.text)
[]
2024-01-10
armper/unit-tests-ai-angular
fix_errors.py
import os import xml.etree.ElementTree as ET import openai def extract_errors_from_xml(xml_file): """Extract the error messages and stack traces from the XML file.""" tree = ET.parse(xml_file) root = tree.getroot() error_messages = [] for testcase in root.findall('testcase'): for error in testcase.findall('error'): error_messages.append(error.get('message')) error_messages.append(error.text) # This line extracts the stack trace return '\n'.join(error_messages) def fix_errors(test_path, current_unit_test_code, test_errors): """Attempt to fix the test errors using the OpenAI API.""" user_message = f'Fix the following errors in this Java unit test code:\n{current_unit_test_code}\nErrors:\n{test_errors}' messages = [ { "role": "system", "content": "You are provided with a piece of Java unit test code with errors. Your task is to return the corrected code. Use only Junit 5. Return nothing but the code with no additional text." }, { "role": "user", "content": user_message } ] response = openai.ChatCompletion.create( model="gpt-4", messages=messages, temperature=0, top_p=1, frequency_penalty=0, presence_penalty=0 ) if response['choices'] and response['choices'][0]['message']['role'] == 'assistant': fixed_test_code = response['choices'][0]['message']['content'] # Overwriting the original test file with the corrected code using the full path with open(test_path, 'w') as file: file.write(fixed_test_code) else: print('Error: Failed to get corrected code from OpenAI.') if __name__ == "__main__": openai.api_key = os.environ['OPENAI_API_KEY'] surefire_reports_dir = 'target/surefire-reports' all_errors = [] for file in os.listdir(surefire_reports_dir): if file.endswith(".xml"): file_path = os.path.join(surefire_reports_dir, file) errors = extract_errors_from_xml(file_path) if errors: all_errors.append(errors) error_detected = False # Ensure the fixed_tests directory exists fixed_tests_dir = 'fixed_tests' if not os.path.exists(fixed_tests_dir): os.makedirs(fixed_tests_dir) with open('generated_test_path.txt', 'r') as file: generated_tests = [os.path.abspath(line.strip()) for line in file.readlines()] print("Current Working Directory:", os.getcwd()) if all_errors: print("Test errors detected. Attempting to fix...") for test_path in generated_tests: test_name = os.path.basename(test_path).replace('.java', '') print(f"Checking {test_name}...") # Fetching the current unit test code with open(test_path, 'r') as code_file: current_unit_test_code = code_file.read() # Extracting test errors from the error file test_errors = '\n'.join(all_errors) fix_errors(test_path, current_unit_test_code, test_errors) error_detected = True if not error_detected: print("No test errors detected.")
[ "Fix the following errors in this Java unit test code:\nPLACEHOLDER\nErrors:\nPLACEHOLDER", "You are provided with a piece of Java unit test code with errors. Your task is to return the corrected code. Use only Junit 5. Return nothing but the code with no additional text." ]
2024-01-10
zapier/langchain-zapier
langchain~tools~zapier.py
"""## Zapier Natural Language Actions API \ Full docs here: https://nla.zapier.com/api/v1/dynamic/docs **Zapier Natural Language Actions** gives you access to the 5k+ apps, 20k+ actions on Zapier's platform through a natural language API interface. NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets, Microsoft Teams, and thousands more apps: https://zapier.com/apps Zapier NLA handles ALL the underlying API auth and translation from natural language --> underlying API call --> return simplified output for LLMs The key idea is you, or your users, expose a set of actions via an oauth-like setup window, which you can then query and execute via a REST API. NLA offers both API Key and OAuth for signing NLA API requests. 1. Server-side (API Key): for quickly getting started, testing, and production scenarios where LangChain will only use actions exposed in the developer's Zapier account (and will use the developer's connected accounts on Zapier.com) 2. User-facing (Oauth): for production scenarios where you are deploying an end-user facing application and LangChain needs access to end-user's exposed actions and connected accounts on Zapier.com This quick start will focus on the server-side use case for brevity. Review [full docs](https://nla.zapier.com/api/v1/dynamic/docs) or reach out to [email protected] for user-facing oauth developer support. Typically you'd use SequentialChain, here's a basic example: 1. Use NLA to find an email in Gmail 2. Use LLMChain to generate a draft reply to (1) 3. Use NLA to send the draft reply (2) to someone in Slack via direct mesage In code, below: ```python import os # get from https://platform.openai.com/ os.environ["OPENAI_API_KEY"] = "..." # get from https://nla.zapier.com/demo/provider/debug (under User, after logging in): os.environ["ZAPIER_NLA_API_KEY"] = "..." from langchain.llms import OpenAI from langchain.chains import LLMChain, TransformChain, SimpleSequentialChain from langchain.prompts import PromptTemplate from langchain.tools.zapier import ZapierNLAListActions, ZapierNLARunAction from langchain.utilities.zapier import ZapierNLAWrapper ## step 0. expose gmail 'find email' and slack 'send channel message' actions # first go here, log in, expose (enable) the two actions: # https://nla.zapier.com/demo/start # -- for this example, can leave all fields "Have AI guess" # in an oauth scenario, you'd get your own <provider> id (instead of 'demo') # which you route your users through first actions = ZapierNLAWrapper().list() ## step 1. gmail find email GMAIL_SEARCH_INSTRUCTIONS = "Grab the latest email from Bryan Helmig" def nla_gmail(inputs): action = next(( a for a in actions if a["description"].startswith("Gmail: Find Email") ), None) data = ZapierNLARunAction(action_id=action["id"]).run(inputs["instructions"]) return { "email_data": data } gmail_chain = TransformChain( input_variables=["instructions"], output_variables=["email_data"], transform=nla_gmail ) ## step 2. generate draft reply template = \"""You are an assisstant who drafts replies to an incoming email. Output draft reply in plain text (not JSON). Incoming email: {email_data} Draft email reply:\""" prompt_template = PromptTemplate(input_variables=["email_data"], template=template) reply_chain = LLMChain(llm=OpenAI(temperature=.7), prompt=prompt_template) ## step 3. send draft reply via a slack direct message SLACK_HANDLE = "@knoop" def nla_slack(inputs): action = next( (a for a in actions if a["description"].startswith("Slack: Send Direct Message") ), None) instructions = f'Send this to {SLACK_HANDLE} in Slack: {inputs["draft_reply"]}' return {"slack_data": ZapierNLARunAction(action_id=action["id"]).run(instructions)} slack_chain = TransformChain( input_variables=["draft_reply"], output_variables=["slack_data"], transform=nla_slack ) ## finally, execute overall_chain = SimpleSequentialChain( chains=[gmail_chain, reply_chain, slack_chain], verbose=True ) overall_chain.run(GMAIL_SEARCH_INSTRUCTIONS) ``` """ from typing import Optional from langchain.tools.base import BaseTool from langchain.utilities.zapier import ZapierNLAWrapper zapier_nla_base_desc = ( "A wrapper around Zapier NLA. " "Can be used to call or retrieve data from 5k+ apps, 20k+ actions" "on the Zapier platform." ) class ZapierNLARunAction(BaseTool): """ Args: action_id: a specific action ID (from list actions) of the action to execute (the set api_key must be associated with the action owner) instructions: a natural language instruction string for using the action (eg. "get the latest email from Mike Knoop" for "Gmail: find email" action) params: a dict, optional. Any params provided will *override* AI guesses from `instructions` (see "understanding the AI guessing flow" here: https://nla.zapier.com/api/v1/dynamic/docs) """ name = "Zapier NLA: Run Action" description = zapier_nla_base_desc + ( "This tool will run a specified action and return a stringified JSON result " " of the API call. The return result is guarenteed to be less than ~500 words " " (350 tokens), safe to insert back into another LLM prompt." ) api_wrapper: ZapierNLAWrapper = ZapierNLAWrapper() action_id: str params: Optional[dict] = None def _run(self, instructions: str) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" return self.api_wrapper.run_as_str(self.action_id, instructions, self.params) async def _arun(self, _: str) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" raise NotImplementedError("ZapierNLAListActions does not support async") ZapierNLARunAction.__doc__ = ( ZapierNLAWrapper.run.__doc__ + ZapierNLARunAction.__doc__ # type: ignore ) # other useful actions class ZapierNLAListActions(BaseTool): """ Args: None """ name = "Zapier NLA: List Actions" description = zapier_nla_base_desc + ( "This tool returns a list of the user's exposed actions." ) api_wrapper: ZapierNLAWrapper = ZapierNLAWrapper() def _run(self, _: str) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" return self.api_wrapper.list_as_str() async def _arun(self, _: str) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" raise NotImplementedError("ZapierNLAListActions does not support async") ZapierNLAListActions.__doc__ = ( ZapierNLAWrapper.list.__doc__ + ZapierNLAListActions.__doc__ # type: ignore )
[]
2024-01-10
zapier/langchain-zapier
langchain~document_loaders~s3_file.py
"""Loading logic for loading documents from an s3 file.""" import os import tempfile from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.unstructured import UnstructuredFileLoader class S3FileLoader(BaseLoader): """Loading logic for loading documents from s3.""" def __init__(self, bucket: str, key: str): """Initialize with bucket and key name.""" self.bucket = bucket self.key = key def load(self) -> List[Document]: """Load documents.""" try: import boto3 except ImportError: raise ValueError( "Could not import boto3 python package. " "Please it install it with `pip install boto3`." ) s3 = boto3.client("s3") with tempfile.TemporaryDirectory() as temp_dir: file_path = f"{temp_dir}/{self.key}" os.makedirs(os.path.dirname(file_path), exist_ok=True) s3.download_file(self.bucket, self.key, file_path) loader = UnstructuredFileLoader(file_path) return loader.load()
[]
2024-01-10
zapier/langchain-zapier
langchain~utilities~zapier.py
"""Util that can interact with Zapier NLA. Full docs here: https://nla.zapier.com/api/v1/dynamic/docs Note: this wrapper currently only implemented the `api_key` auth method for testing and server-side production use cases (using the developer's connected accounts on Zapier.com) For use-cases where LangChain + Zapier NLA is powering a user-facing application, and LangChain needs access to the end-user's connected accounts on Zapier.com, you'll need to use oauth. Review the full docs above and reach out to [email protected] for developer support. """ import json from typing import Dict, List, Optional import requests from pydantic import BaseModel, Extra, root_validator from requests import Request, Session from langchain.utils import get_from_dict_or_env class ZapierNLAWrapper(BaseModel): """Wrapper for Zapier NLA. Full docs here: https://nla.zapier.com/api/v1/dynamic/docs Note: this wrapper currently only implemented the `api_key` auth method for testingand server-side production use cases (using the developer's connected accounts on Zapier.com) For use-cases where LangChain + Zapier NLA is powering a user-facing application, and LangChain needs access to the end-user's connected accounts on Zapier.com, you'll need to use oauth. Review the full docs above and reach out to [email protected] for developer support. """ zapier_nla_api_key: str zapier_nla_api_base: str = "https://nla.zapier.com/api/v1/" zapier_nla_api_dynamic_base: str = "https://nla.zapier.com/api/v1/dynamic/" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def _get_session(self) -> Session: session = requests.Session() session.headers.update( { "Accept": "application/json", "Content-Type": "application/json", } ) session.params = {"api_key": self.zapier_nla_api_key} return session def _get_action_request( self, action_id: str, instructions: str, params: Optional[Dict] = None ) -> Request: data = params if params else {} data.update( { "instructions": instructions, } ) return Request( "POST", self.zapier_nla_api_base + f"exposed/{action_id}/execute/", json=data, ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" zapier_nla_api_key = get_from_dict_or_env( values, "zapier_nla_api_key", "ZAPIER_NLA_API_KEY" ) values["zapier_nla_api_key"] = zapier_nla_api_key return values def list(self) -> List[Dict]: """Returns a list of all exposed (enabled) actions associated with current user (associated with the set api_key). Change your exposed actions here: https://nla.zapier.com/demo/start/ The return list can be empty if no actions exposed. Else will contain a list of action objects: [{ "id": str, "description": str, "params": Dict[str, str] }] `params` will always contain an `instructions` key, the only required param. All others optional and if provided will override any AI guesses (see "understanding the AI guessing flow" here: https://nla.zapier.com/api/v1/dynamic/docs) """ session = self._get_session() response = session.get(self.zapier_nla_api_dynamic_base + "exposed/") response.raise_for_status() return response.json()["results"] def run( self, action_id: str, instructions: str, params: Optional[Dict] = None ) -> Dict: """Executes an action that is identified by action_id, must be exposed (enabled) by the current user (associated with the set api_key). Change your exposed actions here: https://nla.zapier.com/demo/start/ The return JSON is guaranteed to be less than ~500 words (350 tokens) making it safe to inject into the prompt of another LLM call. """ session = self._get_session() request = self._get_action_request(action_id, instructions, params) response = session.send(session.prepare_request(request)) response.raise_for_status() return response.json()["result"] def preview( self, action_id: str, instructions: str, params: Optional[Dict] = None ) -> Dict: """Same as run, but instead of actually executing the action, will instead return a preview of params that have been guessed by the AI in case you need to explicitly review before executing.""" session = self._get_session() request = self._get_action_request(action_id, instructions, params) request.data.update( { "preview_only": True, } ) response = session.send(session.prepare_request(request)) response.raise_for_status() return response.json()["params"] def run_as_str(self, *args, **kwargs) -> str: # type: ignore[no-untyped-def] """Same as run, but returns a stringified version of the JSON for insertting back into an LLM.""" data = self.run(*args, **kwargs) return json.dumps(data) def preview_as_str(self, *args, **kwargs) -> str: # type: ignore[no-untyped-def] """Same as preview, but returns a stringified version of the JSON for insertting back into an LLM.""" data = self.preview(*args, **kwargs) return json.dumps(data) def list_as_str(self, *args, **kwargs) -> str: # type: ignore[no-untyped-def] """Same as list, but returns a stringified version of the JSON for insertting back into an LLM.""" actions = self.list(*args, **kwargs) return json.dumps(actions)
[]
2024-01-10
Pratik-Behera/helm
src~helm~benchmark~window_services~window_service_factory.py
from helm.proxy.models import get_model, get_model_names_with_tag, Model, WIDER_CONTEXT_WINDOW_TAG from .ai21_window_service import AI21WindowService from .anthropic_window_service import AnthropicWindowService from .cohere_window_service import CohereWindowService, CohereCommandWindowService from .luminous_window_service import ( LuminousBaseWindowService, LuminousExtendedWindowService, LuminousSupremeWindowService, LuminousWorldWindowService, ) from .openai_window_service import OpenAIWindowService from .wider_openai_window_service import WiderOpenAIWindowService from .mt_nlg_window_service import MTNLGWindowService from .bloom_window_service import BloomWindowService from .ice_window_service import ICEWindowService from .santacoder_window_service import SantaCoderWindowService from .gpt2_window_service import GPT2WindowService from .gptj_window_service import GPTJWindowService from .gptneox_window_service import GPTNeoXWindowService from .opt_window_service import OPTWindowService from .t0pp_window_service import T0ppWindowService from .t511b_window_service import T511bWindowService from .flan_t5_window_service import FlanT5WindowService from .ul2_window_service import UL2WindowService from .yalm_window_service import YaLMWindowService from .window_service import WindowService from .tokenizer_service import TokenizerService class WindowServiceFactory: @staticmethod def get_window_service(model_name: str, service: TokenizerService) -> WindowService: """ Returns a `WindowService` given the name of the model. Make sure this function returns instantaneously on repeated calls. """ model: Model = get_model(model_name) organization: str = model.organization engine: str = model.engine window_service: WindowService if model_name in get_model_names_with_tag(WIDER_CONTEXT_WINDOW_TAG): window_service = WiderOpenAIWindowService(service) # For the Google models, we approximate with the OpenAIWindowService elif organization == "openai" or organization == "simple" or organization == "google": window_service = OpenAIWindowService(service) elif organization == "AlephAlpha": if engine == "luminous-base": window_service = LuminousBaseWindowService(service) elif engine == "luminous-extended": window_service = LuminousExtendedWindowService(service) elif engine == "luminous-supreme": window_service = LuminousSupremeWindowService(service) elif engine == "luminous-world": window_service = LuminousWorldWindowService(service) else: raise ValueError(f"Unhandled Aleph Alpha model: {engine}") elif organization == "microsoft": window_service = MTNLGWindowService(service) elif organization == "anthropic": window_service = AnthropicWindowService(service) elif engine == "santacoder": window_service = SantaCoderWindowService(service) elif model_name == "huggingface/gpt2": window_service = GPT2WindowService(service) elif model_name == "together/bloom": window_service = BloomWindowService(service) elif model_name == "together/glm": # From https://github.com/THUDM/GLM-130B, "the tokenizer is implemented based on # icetk---a unified multimodal tokenizer for images, Chinese, and English." window_service = ICEWindowService(service) elif model_name in ["huggingface/gpt-j-6b", "together/gpt-j-6b", "gooseai/gpt-j-6b"]: window_service = GPTJWindowService(service) elif model_name in ["together/gpt-neox-20b", "gooseai/gpt-neo-20b", "together/gpt-neoxt-chat-base-20b"]: window_service = GPTNeoXWindowService(service) elif model_name == "together/h3-2.7b": window_service = GPT2WindowService(service) elif model_name in ["together/opt-66b", "together/opt-175b"]: window_service = OPTWindowService(service) elif model_name == "together/t0pp": window_service = T0ppWindowService(service) elif model_name == "together/t5-11b": window_service = T511bWindowService(service) elif model_name == "together/flan-t5-xxl": window_service = FlanT5WindowService(service) elif model_name == "together/ul2": window_service = UL2WindowService(service) elif model_name == "together/yalm": window_service = YaLMWindowService(service) elif organization == "cohere": if "command" in engine: window_service = CohereCommandWindowService(service) else: window_service = CohereWindowService(service) elif organization == "ai21": window_service = AI21WindowService(service=service, gpt2_window_service=GPT2WindowService(service)) else: raise ValueError(f"Unhandled model name: {model_name}") return window_service
[]
2024-01-10
kentontroy/neo4j_game_of_thrones
graph_rag.py
from dotenv import load_dotenv from langchain.chains import GraphCypherQAChain from langchain.graphs import Neo4jGraph from langchain.llms import LlamaCpp import os if __name__ == "__main__": load_dotenv() PATH = os.path.join(os.getenv("LLM_MODEL_PATH"), os.getenv("LLM_MODEL_FILE")) llm = LlamaCpp( model_path = PATH, n_ctx = int(os.getenv("MODEL_PARAM_CONTEXT_LEN")), n_batch = int(os.getenv("MODEL_PARAM_BATCH_SIZE")), use_mlock = os.getenv("MODEL_PARAM_MLOCK"), n_threads = int(os.getenv("MODEL_PARAM_THREADS")), n_gpu_layers = 0, temperature = 0, f16_kv = True, verbose = False ) graph = Neo4jGraph( url="bolt://localhost:7687", username="neo4j", password="cloudera" ) print(graph.schema) chain = GraphCypherQAChain.from_llm(llm, graph=graph, verbose=True, return_intermediate_steps=True) chain.run("How many pages are in the book Game Of Thrones?")
[]
2024-01-10
kentontroy/neo4j_game_of_thrones
df_creator.py
from dotenv import load_dotenv from langchain.graphs.networkx_graph import NetworkxEntityGraph import argparse import ast import os import numpy as np import pandas as pd import pandasql as ps import re def readTriplesFromFile(filePath: str) -> pd.DataFrame: data = [] with open(filePath, "r") as f: book = "" if re.search("game_of_thrones", filePath): book = "Game Of Thrones" elif re.search("a_clash_of_kings", filePath): book = "A Clash Of Kings" elif re.search("a_storm_of_swords", filePath): book = "A Storm Of Swords" elif re.search("a_feast_for_crows", filePath): book = "A Feast For Crows" elif re.search("a_dance_with_dragons", filePath): book = "A Dance With Dragons" i = 0 for l in f.readlines(): i += 1 if i == 1: continue line = l.split(":", 1) print(line) page = line[0].strip() triples = ast.literal_eval(line[1].strip()) for triple in triples: subject = triple[0].strip() object = triple[1].strip() predicate = triple[2].strip() data.append([book, page, subject, predicate, object]) df = pd.DataFrame(data, columns=["Book", "Page", "Subject", "Predicate", "Object"]) return df def saveTriplesToFile(df: pd.DataFrame, filePath: str): df.to_csv(filePath, sep = "|", index=False) def readTriplesFromDfFile(filePath: str) -> pd.DataFrame: df = pd.read_csv(filePath, sep = "|") return df ##################################################################################### # Run a SQL statement against the dataframe ##################################################################################### def runSql(df: pd.DataFrame, sql: str) -> pd.DataFrame: return ps.sqldf(sql, locals()) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", type=str, required=True, help="Specify the filename where dataframe was saved") parser.add_argument("-q", "--sql", type=str, required=True, help="Specify the SQL statement") args = parser.parse_args() pd.options.display.max_rows = 100 df = readTriplesFromDfFile(filePath = args.file) dfQuery = runSql(df = df, sql = args.sql) saveTriplesToFile(df = dfQuery, filePath = "output.csv") print(dfQuery)
[]
2024-01-10
kentontroy/neo4j_game_of_thrones
triples_creator.py
from dotenv import load_dotenv from langchain.graphs.networkx_graph import NetworkxEntityGraph from langchain.indexes import GraphIndexCreator from langchain.llms import LlamaCpp from PyPDF2 import PdfReader from typing import List, Dict import argparse import ast import os ##################################################################################### # Get pages from a PDF document ##################################################################################### def getPagesFromPDF(pdfFilePath: str, maxPages: int, startPage: int = 0) -> List[Dict]: pages = [] reader = PdfReader(pdfFilePath) n = min(len(reader.pages) - startPage, maxPages) for i in range(startPage, startPage + n): text = reader.pages[i].extract_text() pages.append({ "page": i, "text": text }) return pages ##################################################################################### # Create triples from the pages using LLM ##################################################################################### def createTriplesFromPages(pages: List[Dict], model: LlamaCpp) -> List[Dict]: graphObjects = [] indexCreator = GraphIndexCreator(llm=model) for page in pages: if page["text"] != "": graph = indexCreator.from_text(page["text"]) triples = graph.get_triples() if len(triples) > 0: graphObjects.append({ "page": page["page"], "triples": str(triples) }) print(triples) return graphObjects ##################################################################################### # Save triples to a file, indexed by page number ##################################################################################### def saveTriplesToFile(graphObjects: List[Dict], filePath: str) -> None: with open(filePath, "a") as f: for graph in graphObjects: f.write("{0}: {1}".format(graph["page"], graph["triples"])) f.write("\n") ##################################################################################### # Test reading triples from a file ##################################################################################### def readTriplesFromFile(filePath: str) -> None: test = "21: [('Dany', 'Rhaesh Andahli', 'is from'), ('Andals', 'Rhaesh Andahli', 'are from'), ('The Dothraki', 'Rhaesh Andahli', 'are from')]" data = test.split(":", 1) print(f"Page: {data[0]}") triples = ast.literal_eval(data[1].strip()) print(f"Triples: {triples}") print(f"Node 1: {triples[0][0]}, Node 2: {triples[0][1]}, Edge: {triples[0][2]}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-c", "--create", type=str, required=False, help="Create an in-memory graph, specify it's name") parser.add_argument("-p", "--pdf", type=str, required=False, help="Specify a path to the PDF file") parser.add_argument("-s", "--startPage", type=int, required=False, help="Specify the starting page number") parser.add_argument("-m", "--maxPages", type=int, required=False, help="Specify the max number of pages") args = parser.parse_args() load_dotenv() PATH = os.path.join(os.getenv("LLM_MODEL_PATH"), os.getenv("LLM_MODEL_FILE")) MODEL = LlamaCpp( model_path = PATH, n_ctx = int(os.getenv("MODEL_PARAM_CONTEXT_LEN")), n_batch = int(os.getenv("MODEL_PARAM_BATCH_SIZE")), use_mlock = os.getenv("MODEL_PARAM_MLOCK"), n_threads = int(os.getenv("MODEL_PARAM_THREADS")), n_gpu_layers = 0, f16_kv = True, verbose = False ) if args.create and args.pdf and args.startPage and args.maxPages: pages = getPagesFromPDF(pdfFilePath = args.pdf, maxPages = args.maxPages, startPage = args.startPage) graphObjects = createTriplesFromPages(pages = pages, model = MODEL) saveTriplesToFile(graphObjects = graphObjects, filePath = args.create) else: print("Incorrect usage: python triples_creator.py [-h] to get help on command options")
[]
2024-01-10
whowhatwhywhenwhere/gpt-pilot
pilot~helpers~AgentConvo.py
import re import subprocess import uuid from utils.style import yellow, yellow_bold from database.database import get_saved_development_step, save_development_step, delete_all_subsequent_steps from helpers.exceptions.TokenLimitError import TokenLimitError from utils.function_calling import parse_agent_response, FunctionCallSet from utils.llm_connection import create_gpt_chat_completion from utils.utils import array_of_objects_to_string, get_prompt, get_sys_message, capitalize_first_word_with_underscores from logger.logger import logger from prompts.prompts import ask_user from const.llm import END_RESPONSE class AgentConvo: """ Represents a conversation with an agent. Args: agent: An instance of the agent participating in the conversation. """ def __init__(self, agent): # [{'role': 'system'|'user'|'assistant', 'content': ''}, ...] self.messages: list[dict] = [] self.branches = {} self.log_to_user = True self.agent = agent self.high_level_step = self.agent.project.current_step # add system message system_message = get_sys_message(self.agent.role) logger.info('\n>>>>>>>>>> System Prompt >>>>>>>>>>\n%s\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>', system_message['content']) self.messages.append(system_message) def send_message(self, prompt_path=None, prompt_data=None, function_calls: FunctionCallSet = None): """ Sends a message in the conversation. Args: prompt_path: The path to a prompt. prompt_data: Data associated with the prompt. function_calls: Optional function calls to be included in the message. Returns: The response from the agent. """ # craft message self.construct_and_add_message_from_prompt(prompt_path, prompt_data) # check if we already have the LLM response saved if self.agent.__class__.__name__ == 'Developer': self.agent.project.llm_req_num += 1 development_step = get_saved_development_step(self.agent.project) if development_step is not None and self.agent.project.skip_steps: # if we do, use it print(yellow(f'Restoring development step with id {development_step.id}')) self.agent.project.checkpoints['last_development_step'] = development_step self.agent.project.restore_files(development_step.id) response = development_step.llm_response self.messages = development_step.messages if self.agent.project.skip_until_dev_step and str(development_step.id) == self.agent.project.skip_until_dev_step: self.agent.project.skip_steps = False delete_all_subsequent_steps(self.agent.project) if 'delete_unrelated_steps' in self.agent.project.args and self.agent.project.args['delete_unrelated_steps']: self.agent.project.delete_all_steps_except_current_branch() if development_step.token_limit_exception_raised: raise TokenLimitError(development_step.token_limit_exception_raised) else: # if we don't, get the response from LLM try: response = create_gpt_chat_completion(self.messages, self.high_level_step, self.agent.project, function_calls=function_calls) except TokenLimitError as e: save_development_step(self.agent.project, prompt_path, prompt_data, self.messages, '', str(e)) raise e if self.agent.__class__.__name__ == 'Developer': development_step = save_development_step(self.agent.project, prompt_path, prompt_data, self.messages, response) # TODO handle errors from OpenAI if response == {}: logger.error(f'Aborting with "OpenAI API error happened"') raise Exception("OpenAI API error happened.") response = parse_agent_response(response, function_calls) # TODO remove this once the database is set up properly message_content = response[0] if type(response) == tuple else response if isinstance(message_content, list): if 'to_message' in function_calls: string_response = function_calls['to_message'](message_content) elif len(message_content) > 0 and isinstance(message_content[0], dict): string_response = [ f'#{i}\n' + array_of_objects_to_string(d) for i, d in enumerate(message_content) ] else: string_response = ['- ' + r for r in message_content] message_content = '\n'.join(string_response) # TODO END # TODO we need to specify the response when there is a function called # TODO maybe we can have a specific function that creates the GPT response from the function call logger.info('\n>>>>>>>>>> Assistant Prompt >>>>>>>>>>\n%s\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>', message_content) self.messages.append({"role": "assistant", "content": message_content}) self.log_message(message_content) return response def continuous_conversation(self, prompt_path, prompt_data, function_calls=None): """ Conducts a continuous conversation with the agent. Args: prompt_path: The path to a prompt. prompt_data: Data associated with the prompt. function_calls: Optional function calls to be included in the conversation. Returns: List of accepted messages in the conversation. """ self.log_to_user = False accepted_messages = [] response = self.send_message(prompt_path, prompt_data, function_calls) # Continue conversation until GPT response equals END_RESPONSE while response != END_RESPONSE: user_message = ask_user(self.agent.project, response, hint=yellow("Do you want to add anything else? If not, ") + yellow_bold('just press ENTER.'), require_some_input=False) if user_message == "": accepted_messages.append(response) logger.info('\n>>>>>>>>>> User Message >>>>>>>>>>\n%s\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>', user_message) self.messages.append({"role": "user", "content": user_message}) response = self.send_message(None, None, function_calls) self.log_to_user = True return accepted_messages def save_branch(self, branch_name=None): if branch_name is None: branch_name = str(uuid.uuid4()) self.branches[branch_name] = self.messages.copy() return branch_name def load_branch(self, branch_name, reload_files=True): self.messages = self.branches[branch_name].copy() if reload_files: # TODO make this more flexible - with every message, save metadata so every time we load a branch, reconstruct all messages from scratch self.replace_files() def replace_files(self): files = self.agent.project.get_all_coded_files() for msg in self.messages: if msg['role'] == 'user': for file in files: self.replace_file_content(msg['content'], file['path'], file['content']) def replace_file_content(self, message, file_path, new_content): escaped_file_path = re.escape(file_path) pattern = rf'\*\*{{ {escaped_file_path} }}\*\*\n```\n(.*?)\n```' new_section_content = f'**{{ {file_path} }}**\n```\n{new_content}\n```' updated_message, num_replacements = re.subn(pattern, new_section_content, message, flags=re.DOTALL) if num_replacements == 0: return message return updated_message def convo_length(self): return len([msg for msg in self.messages if msg['role'] != 'system']) def log_message(self, content): """ Logs a message in the conversation. Args: content: The content of the message to be logged. """ print_msg = capitalize_first_word_with_underscores(self.high_level_step) if self.log_to_user: if self.agent.project.checkpoints['last_development_step'] is not None: print(yellow("\nDev step ") + yellow_bold(str(self.agent.project.checkpoints['last_development_step'])) + '\n', end='') print(f"\n{content}\n", type='local') logger.info(f"{print_msg}: {content}\n") def to_playground(self): with open('const/convert_to_playground_convo.js', 'r', encoding='utf-8') as file: content = file.read() process = subprocess.Popen('pbcopy', stdin=subprocess.PIPE) process.communicate(content.replace('{{messages}}', str(self.messages)).encode('utf-8')) def remove_last_x_messages(self, x): self.messages = self.messages[:-x] def construct_and_add_message_from_prompt(self, prompt_path, prompt_data): if prompt_path is not None and prompt_data is not None: prompt = get_prompt(prompt_path, prompt_data) logger.info('\n>>>>>>>>>> User Prompt >>>>>>>>>>\n%s\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>', prompt) self.messages.append({"role": "user", "content": prompt})
[]
2024-01-10
whowhatwhywhenwhere/gpt-pilot
pilot~utils~llm_connection.py
import re import requests import os import sys import time import json import tiktoken from prompt_toolkit.styles import Style from jsonschema import validate, ValidationError from utils.style import red from typing import List from const.llm import MIN_TOKENS_FOR_GPT_RESPONSE, MAX_GPT_MODEL_TOKENS from logger.logger import logger, logging from helpers.exceptions import TokenLimitError, ApiKeyNotDefinedError from utils.utils import fix_json, get_prompt from utils.function_calling import add_function_calls_to_request, FunctionCallSet, FunctionType from utils.questionary import styled_text def get_tokens_in_messages(messages: List[str]) -> int: tokenizer = tiktoken.get_encoding("cl100k_base") # GPT-4 tokenizer tokenized_messages = [tokenizer.encode(message['content']) for message in messages] return sum(len(tokens) for tokens in tokenized_messages) def num_tokens_from_functions(functions): """Return the number of tokens used by a list of functions.""" encoding = tiktoken.get_encoding("cl100k_base") num_tokens = 0 for function in functions: function_tokens = len(encoding.encode(function['name'])) function_tokens += len(encoding.encode(function['description'])) if 'parameters' in function: parameters = function['parameters'] if 'properties' in parameters: for propertiesKey in parameters['properties']: function_tokens += len(encoding.encode(propertiesKey)) v = parameters['properties'][propertiesKey] for field in v: if field == 'type': function_tokens += 2 function_tokens += len(encoding.encode(v['type'])) elif field == 'description': function_tokens += 2 function_tokens += len(encoding.encode(v['description'])) elif field == 'enum': function_tokens -= 3 for o in v['enum']: function_tokens += 3 function_tokens += len(encoding.encode(o)) function_tokens += 11 num_tokens += function_tokens num_tokens += 12 return num_tokens def create_gpt_chat_completion(messages: List[dict], req_type, project, function_calls: FunctionCallSet = None): """ Called from: - AgentConvo.send_message() - these calls often have `function_calls`, usually from `pilot/const/function_calls.py` - convo.continuous_conversation() - prompts.get_additional_info_from_openai() - prompts.get_additional_info_from_user() after the user responds to each "Please check this message and say what needs to be changed... {message}" :param messages: [{ "role": "system"|"assistant"|"user", "content": string }, ... ] :param req_type: 'project_description' etc. See common.STEPS :param project: project :param function_calls: (optional) {'definitions': [{ 'name': str }, ...]} see `IMPLEMENT_CHANGES` etc. in `pilot/const/function_calls.py` :return: {'text': new_code} or if `function_calls` param provided {'function_calls': {'name': str, arguments: {...}}} """ gpt_data = { 'model': os.getenv('MODEL_NAME', 'gpt-4'), 'n': 1, 'temperature': 1, 'top_p': 1, 'presence_penalty': 0, 'frequency_penalty': 0, 'messages': messages, 'stream': True } # delete some keys if using "OpenRouter" API if os.getenv('ENDPOINT') == 'OPENROUTER': keys_to_delete = ['n', 'max_tokens', 'temperature', 'top_p', 'presence_penalty', 'frequency_penalty'] for key in keys_to_delete: if key in gpt_data: del gpt_data[key] # Advise the LLM of the JSON response schema we are expecting add_function_calls_to_request(gpt_data, function_calls) try: response = stream_gpt_completion(gpt_data, req_type, project) return response except TokenLimitError as e: raise e except Exception as e: logger.error(f'The request to {os.getenv("ENDPOINT")} API failed: %s', e) print(f'The request to {os.getenv("ENDPOINT")} API failed. Here is the error message:') print(e) return {} # https://github.com/Pythagora-io/gpt-pilot/issues/130 - may need to revisit how we handle this def delete_last_n_lines(n): for _ in range(n): # Move the cursor up one line sys.stdout.write('\033[F') # Clear the current line sys.stdout.write('\033[K') def count_lines_based_on_width(content, width): lines_required = sum(len(line) // width + 1 for line in content.split('\n')) return lines_required def get_tokens_in_messages_from_openai_error(error_message): """ Extract the token count from a message. Args: message (str): The message to extract the token count from. Returns: int or None: The token count if found, otherwise None. """ match = re.search(r"your messages resulted in (\d+) tokens", error_message) if match: return int(match.group(1)) else: return None def retry_on_exception(func): def update_error_count(args): function_error_count = 1 if 'function_error' not in args[0] else args[0]['function_error_count'] + 1 args[0]['function_error_count'] = function_error_count return function_error_count def set_function_error(args, err_str: str): logger.info(err_str) args[0]['function_error'] = err_str if 'function_buffer' in args[0]: del args[0]['function_buffer'] def wrapper(*args, **kwargs): while True: try: # spinner_stop(spinner) return func(*args, **kwargs) except Exception as e: # Convert exception to string err_str = str(e) if isinstance(e, json.JSONDecodeError): # codellama-34b-instruct seems to send incomplete JSON responses. # We ask for the rest of the JSON object for the following errors: # - 'Expecting value' (error if `e.pos` not at the end of the doc: True instead of true) # - "Expecting ':' delimiter" # - 'Expecting property name enclosed in double quotes' # - 'Unterminated string starting at' if e.msg.startswith('Expecting') or e.msg == 'Unterminated string starting at': if e.msg == 'Expecting value' and len(e.doc) > e.pos: # Note: clean_json_response() should heal True/False boolean values err_str = re.split(r'[},\\n]', e.doc[e.pos:])[0] err_str = f'Invalid value: `{err_str}`' else: # if e.msg == 'Unterminated string starting at' or len(e.doc) == e.pos: logger.info('Received incomplete JSON response from LLM. Asking for the rest...') args[0]['function_buffer'] = e.doc if 'function_error' in args[0]: del args[0]['function_error'] continue # TODO: (if it ever comes up) e.msg == 'Extra data' -> trim the response # 'Invalid control character at', 'Invalid \\escape', 'Invalid control character', # or `Expecting value` with `pos` before the end of `e.doc` function_error_count = update_error_count(args) logger.warning('Received invalid character in JSON response from LLM. Asking to retry...') set_function_error(args, err_str) if function_error_count < 3: continue elif isinstance(e, ValidationError): function_error_count = update_error_count(args) logger.warning('Received invalid JSON response from LLM. Asking to retry...') # eg: # json_path: '$.type' # message: "'command' is not one of ['automated_test', 'command_test', 'manual_test', 'no_test']" set_function_error(args, f'at {e.json_path} - {e.message}') # Attempt retry if the JSON schema is invalid, but avoid getting stuck in a loop if function_error_count < 3: continue if "context_length_exceeded" in err_str: # If the specific error "context_length_exceeded" is present, simply return without retry # spinner_stop(spinner) raise TokenLimitError(get_tokens_in_messages_from_openai_error(err_str), MAX_GPT_MODEL_TOKENS) if "rate_limit_exceeded" in err_str: # Extracting the duration from the error string match = re.search(r"Please try again in (\d+)ms.", err_str) if match: # spinner = spinner_start(colored("Rate limited. Waiting...", 'yellow')) logger.debug('Rate limited. Waiting...') wait_duration = int(match.group(1)) / 1000 time.sleep(wait_duration) continue print(red(f'There was a problem with request to openai API:')) # spinner_stop(spinner) print(err_str) logger.error(f'There was a problem with request to openai API: {err_str}') project = args[2] user_message = styled_text( project, "Do you want to try make the same request again? If yes, just press ENTER. Otherwise, type 'no'.", style=Style.from_dict({ 'question': '#FF0000 bold', 'answer': '#FF910A bold' }) ) # TODO: take user's input into consideration - send to LLM? # https://github.com/Pythagora-io/gpt-pilot/issues/122 if user_message != '': return {} return wrapper @retry_on_exception def stream_gpt_completion(data, req_type, project): """ Called from create_gpt_chat_completion() :param data: :param req_type: 'project_description' etc. See common.STEPS :param project: NEEDED FOR WRAPPER FUNCTION retry_on_exception :return: {'text': str} or {'function_calls': {'name': str, arguments: '{...}'}} """ # TODO add type dynamically - this isn't working when connected to the external process try: terminal_width = os.get_terminal_size().columns except OSError: terminal_width = 50 lines_printed = 2 gpt_response = '' buffer = '' # A buffer to accumulate incoming data expecting_json = None received_json = False if 'functions' in data: expecting_json = data['functions'] if 'function_buffer' in data: incomplete_json = get_prompt('utils/incomplete_json.prompt', {'received_json': data['function_buffer']}) data['messages'].append({'role': 'user', 'content': incomplete_json}) gpt_response = data['function_buffer'] received_json = True elif 'function_error' in data: invalid_json = get_prompt('utils/invalid_json.prompt', {'invalid_reason': data['function_error']}) data['messages'].append({'role': 'user', 'content': invalid_json}) received_json = True # Don't send the `functions` parameter to Open AI, but don't remove it from `data` in case we need to retry data = {key: value for key, value in data.items() if not key.startswith('function')} def return_result(result_data, lines_printed): if buffer: lines_printed += count_lines_based_on_width(buffer, terminal_width) logger.debug(f'lines printed: {lines_printed} - {terminal_width}') delete_last_n_lines(lines_printed) return result_data # spinner = spinner_start(yellow("Waiting for OpenAI API response...")) # print(yellow("Stream response from OpenAI:")) # Configure for the selected ENDPOINT model = os.getenv('MODEL_NAME', 'gpt-4') endpoint = os.getenv('ENDPOINT') logger.info(f'> Request model: {model} ({data["model"]} in data)') if logger.isEnabledFor(logging.DEBUG): logger.debug('\n'.join([f"{message['role']}: {message['content']}" for message in data['messages']])) if endpoint == 'AZURE': # If yes, get the AZURE_ENDPOINT from .ENV file endpoint_url = os.getenv('AZURE_ENDPOINT') + '/openai/deployments/' + model + '/chat/completions?api-version=2023-05-15' headers = { 'Content-Type': 'application/json', 'api-key': get_api_key_or_throw('AZURE_API_KEY') } elif endpoint == 'OPENROUTER': # If so, send the request to the OpenRouter API endpoint endpoint_url = os.getenv('OPENROUTER_ENDPOINT', 'https://openrouter.ai/api/v1/chat/completions') headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + get_api_key_or_throw('OPENROUTER_API_KEY'), 'HTTP-Referer': 'http://localhost:3000', 'X-Title': 'GPT Pilot (LOCAL)' } else: # If not, send the request to the OpenAI endpoint endpoint_url = os.getenv('OPENAI_ENDPOINT', 'https://api.openai.com/v1/chat/completions') headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + get_api_key_or_throw('OPENAI_API_KEY') } response = requests.post( endpoint_url, headers=headers, json=data, stream=True ) # Log the response status code and message logger.debug(f'Response status code: {response.status_code}') if response.status_code != 200: logger.info(f'problem with request: {response.text}') raise Exception(f"API responded with status code: {response.status_code}. Response text: {response.text}") # function_calls = {'name': '', 'arguments': ''} for line in response.iter_lines(): # Ignore keep-alive new lines if line and line != b': OPENROUTER PROCESSING': line = line.decode("utf-8") # decode the bytes to string if line.startswith('data: '): line = line[6:] # remove the 'data: ' prefix # Check if the line is "[DONE]" before trying to parse it as JSON if line == "[DONE]": continue try: json_line = json.loads(line) if len(json_line['choices']) == 0: continue if 'error' in json_line: logger.error(f'Error in LLM response: {json_line}') raise ValueError(f'Error in LLM response: {json_line["error"]["message"]}') choice = json_line['choices'][0] # if 'finish_reason' in choice and choice['finish_reason'] == 'function_call': # function_calls['arguments'] = load_data_to_json(function_calls['arguments']) # return return_result({'function_calls': function_calls}, lines_printed) json_line = choice['delta'] except json.JSONDecodeError as e: logger.error(f'Unable to decode line: {line} {e.msg}') continue # skip to the next line # handle the streaming response # if 'function_call' in json_line: # if 'name' in json_line['function_call']: # function_calls['name'] = json_line['function_call']['name'] # print(f'Function call: {function_calls["name"]}') # # if 'arguments' in json_line['function_call']: # function_calls['arguments'] += json_line['function_call']['arguments'] # print(json_line['function_call']['arguments'], type='stream', end='', flush=True) if 'content' in json_line: content = json_line.get('content') if content: buffer += content # accumulate the data # If you detect a natural breakpoint (e.g., line break or end of a response object), print & count: if buffer.endswith('\n'): if expecting_json and not received_json: received_json = assert_json_response(buffer, lines_printed > 2) # or some other condition that denotes a breakpoint lines_printed += count_lines_based_on_width(buffer, terminal_width) buffer = "" # reset the buffer gpt_response += content print(content, type='stream', end='', flush=True) print('\n', type='stream') # if function_calls['arguments'] != '': # logger.info(f'Response via function call: {function_calls["arguments"]}') # function_calls['arguments'] = load_data_to_json(function_calls['arguments']) # return return_result({'function_calls': function_calls}, lines_printed) logger.info('<<<<<<<<<< LLM Response <<<<<<<<<<\n%s\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<', gpt_response) if expecting_json: gpt_response = clean_json_response(gpt_response) assert_json_schema(gpt_response, expecting_json) new_code = postprocessing(gpt_response, req_type) # TODO add type dynamically return return_result({'text': new_code}, lines_printed) def get_api_key_or_throw(env_key: str): api_key = os.getenv(env_key) if api_key is None: raise ApiKeyNotDefinedError(env_key) return api_key def assert_json_response(response: str, or_fail=True) -> bool: if re.match(r'.*(```(json)?|{|\[)', response): return True elif or_fail: logger.error(f'LLM did not respond with JSON: {response}') raise ValueError('LLM did not respond with JSON') else: return False def clean_json_response(response: str) -> str: response = re.sub(r'^.*```json\s*', '', response, flags=re.DOTALL) response = re.sub(r': ?True(,)?$', r':true\1', response, flags=re.MULTILINE) response = re.sub(r': ?False(,)?$', r':false\1', response, flags=re.MULTILINE) return response.strip('` \n') def assert_json_schema(response: str, functions: list[FunctionType]) -> True: for function in functions: schema = function['parameters'] parsed = json.loads(response) validate(parsed, schema) return True def postprocessing(gpt_response: str, req_type) -> str: return gpt_response def load_data_to_json(string): return json.loads(fix_json(string))
[]
2024-01-10
whowhatwhywhenwhere/gpt-pilot
pilot~prompts~prompts.py
# prompts/prompts.py from utils.style import yellow from const import common from const.llm import MAX_QUESTIONS, END_RESPONSE from utils.llm_connection import create_gpt_chat_completion from utils.utils import capitalize_first_word_with_underscores, get_sys_message, find_role_from_step, get_prompt from utils.questionary import styled_select, styled_text from logger.logger import logger def ask_for_app_type(): return 'App' answer = styled_select( "What type of app do you want to build?", choices=common.APP_TYPES ) if answer is None: print("Exiting application.") exit(0) while 'unavailable' in answer: print("Sorry, that option is not available.") answer = styled_select( "What type of app do you want to build?", choices=common.APP_TYPES ) if answer is None: print("Exiting application.") exit(0) print("You chose: " + answer) logger.info(f"You chose: {answer}") return answer def ask_for_main_app_definition(project): description = styled_text( project, "Describe your app in as much detail as possible." ) if description is None: print("No input provided!") return logger.info(f"Initial App description done: {description}") return description def ask_user(project, question: str, require_some_input=True, hint: str = None): while True: if hint is not None: print(yellow(hint), type='hint') answer = styled_text(project, question) logger.info('Q: %s', question) logger.info('A: %s', answer) if answer is None: print("Exiting application.") exit(0) if answer.strip() == '' and require_some_input: print("No input provided! Please try again.") continue else: return answer def get_additional_info_from_openai(project, messages): """ Runs the conversation between Product Owner and LLM. Provides the user's initial description, LLM asks the user clarifying questions and user responds. Limited by `MAX_QUESTIONS`, exits when LLM responds "EVERYTHING_CLEAR". :param project: Project :param messages: [ { "role": "system", "content": "You are a Product Owner..." }, { "role": "user", "content": "I want you to create the app {name} that can be described: ```{description}```..." } ] :return: The updated `messages` list with the entire conversation between user and LLM. """ is_complete = False while not is_complete: # Obtain clarifications using the OpenAI API # { 'text': new_code } response = create_gpt_chat_completion(messages, 'additional_info', project) if response is not None: if response['text'] and response['text'].strip() == END_RESPONSE: # print(response['text'] + '\n') return messages # Ask the question to the user answer = ask_user(project, response['text']) # Add the answer to the messages messages.append({'role': 'assistant', 'content': response['text']}) messages.append({'role': 'user', 'content': answer}) else: is_complete = True logger.info('Getting additional info from openai done') return messages # TODO refactor this to comply with AgentConvo class def get_additional_info_from_user(project, messages, role): """ If `advanced` CLI arg, Architect offers user a chance to change the architecture. Prompts: "Please check this message and say what needs to be changed. If everything is ok just press ENTER"... Then asks the LLM to update the messages based on the user's feedback. :param project: Project :param messages: array<string | { "text": string }> :param role: 'product_owner', 'architect', 'dev_ops', 'tech_lead', 'full_stack_developer', 'code_monkey' :return: a list of updated messages - see https://github.com/Pythagora-io/gpt-pilot/issues/78 """ # TODO process with agent convo updated_messages = [] for message in messages: while True: if isinstance(message, dict) and 'text' in message: message = message['text'] print(yellow(f"Please check this message and say what needs to be changed. If everything is ok just press ENTER",)) answer = ask_user(project, message, require_some_input=False) if answer.lower() == '': break response = create_gpt_chat_completion( generate_messages_from_custom_conversation(role, [get_prompt('utils/update.prompt'), message, answer], 'user'), 'additional_info', project ) message = response updated_messages.append(message) logger.info('Getting additional info from user done') return updated_messages def generate_messages_from_description(description, app_type, name): """ Called by ProductOwner.get_description(). :param description: "I want to build a cool app that will make me rich" :param app_type: 'Web App', 'Script', 'Mobile App', 'Chrome Extension' etc :param name: Project name :return: [ { "role": "system", "content": "You are a Product Owner..." }, { "role": "user", "content": "I want you to create the app {name} that can be described: ```{description}```..." } ] """ # "I want you to create the app {name} that can be described: ```{description}``` # Get additional answers # Break down stories # Break down user tasks # Start with Get additional answers # {prompts/components/no_microservices} # {prompts/components/single_question} # " prompt = get_prompt('high_level_questions/specs.prompt', { 'name': name, 'prompt': description, 'app_type': app_type, # TODO: MAX_QUESTIONS should be configurable by ENV or CLI arg 'MAX_QUESTIONS': MAX_QUESTIONS }) return [ get_sys_message('product_owner'), {"role": "user", "content": prompt}, ] def generate_messages_from_custom_conversation(role, messages, start_role='user'): """ :param role: 'product_owner', 'architect', 'dev_ops', 'tech_lead', 'full_stack_developer', 'code_monkey' :param messages: [ "I will show you some of your message to which I want you to make some updates. Please just modify your last message per my instructions.", {LLM's previous message}, {user's request for change} ] :param start_role: 'user' :return: [ { "role": "system", "content": "You are a ..., You do ..." }, { "role": start_role, "content": messages[i + even] }, { "role": "assistant" (or "user" for other start_role), "content": messages[i + odd] }, ... ] """ # messages is list of strings system_message = get_sys_message(role) result = [system_message] logger.info(f'\n>>>>>>>>>> {role} Prompt >>>>>>>>>>\n%s\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>', system_message['content']) for i, message in enumerate(messages): if i % 2 == 0: result.append({"role": start_role, "content": message}) logger.info(f'\n>>>>>>>>>> {start_role} Prompt >>>>>>>>>>\n%s\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>', message) else: result.append({"role": "assistant" if start_role == "user" else "user", "content": message}) logger.info('\n>>>>>>>>>> Assistant Prompt >>>>>>>>>>\n%s\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>', message) return result
[ "name", "high_level_questions/specs.prompt", "MAX_QUESTIONS" ]
2024-01-10
CCNUXL/Algorithm-Skeleton-Mining
Langchain_files~Langchain-Chatchat-master~document_loaders~myimgloader.py
from typing import List from langchain.document_loaders.unstructured import UnstructuredFileLoader class RapidOCRLoader(UnstructuredFileLoader): def _get_elements(self) -> List: def img2text(filepath): from rapidocr_onnxruntime import RapidOCR resp = "" ocr = RapidOCR() result, _ = ocr(filepath) if result: ocr_result = [line[1] for line in result] resp += "\n".join(ocr_result) return resp text = img2text(self.file_path) from unstructured.partition.text import partition_text return partition_text(text=text, **self.unstructured_kwargs) if __name__ == "__main__": loader = RapidOCRLoader(file_path="../tests/samples/ocr_test.jpg") docs = loader.load() print(docs)
[]
2024-01-10
CCNUXL/Algorithm-Skeleton-Mining
Langchain_files~Langchain-Chatchat-master~text_splitter~ali_text_splitter.py
from langchain.text_splitter import CharacterTextSplitter import re from typing import List class AliTextSplitter(CharacterTextSplitter): def __init__(self, pdf: bool = False, **kwargs): super().__init__(**kwargs) self.pdf = pdf def split_text(self, text: str) -> List[str]: # use_document_segmentation参数指定是否用语义切分文档,此处采取的文档语义分割模型为达摩院开源的nlp_bert_document-segmentation_chinese-base,论文见https://arxiv.org/abs/2107.09278 # 如果使用模型进行文档语义切分,那么需要安装modelscope[nlp]:pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html # 考虑到使用了三个模型,可能对于低配置gpu不太友好,因此这里将模型load进cpu计算,有需要的话可以替换device为自己的显卡id if self.pdf: text = re.sub(r"\n{3,}", r"\n", text) text = re.sub('\s', " ", text) text = re.sub("\n\n", "", text) try: from modelscope.pipelines import pipeline except ImportError: raise ImportError( "Could not import modelscope python package. " "Please install modelscope with `pip install modelscope`. " ) p = pipeline( task="document-segmentation", model='damo/nlp_bert_document-segmentation_chinese-base', device="cpu") result = p(documents=text) sent_list = [i for i in result["text"].split("\n\t") if i] return sent_list if __name__ == "__main__": text_splitter = AliTextSplitter( pdf = False ) ls = [ """ 标题 全球可再生能源趋势 简介 近年来,全球能源格局正在发生重大变革。随着对气候变化和化石燃料有限性的担忧不断增长,世界正在将焦点转向可再生能源。这份简要报告旨在提供当前全球可再生能源趋势的概述。 关键点 太阳能迅猛增长: 太阳能在过去十年中取得了显著增长。成本下降,太阳能电池板效率提高,政府激励措施都促进了这一增长。 风能扩张: 风能是另一个有前景的领域。离岸风电场越来越普及,风力涡轮机变得更加高效和具有成本效益。 能源储存解决方案: 鉴于可再生能源如太阳能和风能的不确定性,能源储存解决方案,如先进的电池,对于电网的稳定性和可靠性至关重要。 新兴技术: 在潮汐和地热能源等领域的研究和开发正在为清洁能源发电开辟新的可能性。 政府政策: 许多国家的政府正在实施促进可再生能源的政策,包括补贴、税收激励措施和减排目标。 挑战 间歇性: 太阳能和风能等可再生能源的不可预测性为持续供能带来了挑战。 基础设施投资: 转向可再生能源需要大量的基础设施投资,包括电网升级和新的能源储存设施。 公众认知: 说服公众可再生能源的益处和可行性至关重要。 结论 全球转向可再生能源是在应对气候变化方面的一个令人鼓舞的趋势。然而,在将可再生能源整合到现有能源基础设施方面仍然存在挑战。持续的研究、投资和公众支持对于实现可持续能源未来至关重要。 """, ] # text = """""" for inum, text in enumerate(ls): print(inum) chunks = text_splitter.split_text(text) num = 1 for chunk in chunks: print("chunk_num_", num, end=" ") print(chunk) num += 1
[]
2024-01-10
CCNUXL/Algorithm-Skeleton-Mining
Algorithm_Skeleton~paper_splitter.py
import os from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter def splitter(pdf_path): # 获取当前文件的路径 current_file_path = os.path.abspath(__file__) # 获取当前文件所在目录的上级目录路径 parent_directory = os.path.dirname(current_file_path) parent_parent_directory = os.path.dirname(parent_directory) # 拼接文件路径 new_path = os.path.join(parent_parent_directory, pdf_path) print(new_path) loader = PyPDFLoader(new_path) pages = loader.load_and_split() # print(f"加载完毕,共加载{len(pages)}页PDF文件") text_splitter = RecursiveCharacterTextSplitter( chunk_size=2000, chunk_overlap=500, length_function=len ) texts = text_splitter.split_documents(pages) # print(f"文章共切分为{len(texts)}段") # for i in range(0, len(texts)): # print(f"段{i}") # print(texts[i].page_content) return texts if __name__ == "__main__": pdf_path = "Algorithm_Skeleton/pdf_files/Distilling Model/2212.00193.pdf" result = splitter(pdf_path) print(result[0].page_content)
[]
2024-01-10
CCNUXL/Algorithm-Skeleton-Mining
Langchain_files~Langchain-Chatchat-master~text_splitter~zh_title_enhance.py
from langchain.docstore.document import Document import re def under_non_alpha_ratio(text: str, threshold: float = 0.5): """Checks if the proportion of non-alpha characters in the text snippet exceeds a given threshold. This helps prevent text like "-----------BREAK---------" from being tagged as a title or narrative text. The ratio does not count spaces. Parameters ---------- text The input string to test threshold If the proportion of non-alpha characters exceeds this threshold, the function returns False """ # 这个函数的作用是检查文本中非字母字符的比例是否超过给定的阈值。 # 它避免了类似于 "-----------BREAK---------" 这样的文本被误判为标题或叙述性文本。 # 该比率不考虑空格。函数内部的处理步骤如下: # 计算文本中字母字符和总字符数(不包括空格)。 # 然后计算字母字符数与总字符数的比值,若比值小于阈值,则返回 True,否则返回 False。 if len(text) == 0: return False alpha_count = len([char for char in text if char.strip() and char.isalpha()]) total_count = len([char for char in text if char.strip()]) try: ratio = alpha_count / total_count return ratio < threshold except: return False def is_possible_title( text: str, title_max_word_length: int = 20, non_alpha_threshold: float = 0.5, ) -> bool: """Checks to see if the text passes all of the checks for a valid title. Parameters ---------- text The input text to check title_max_word_length The maximum number of words a title can contain non_alpha_threshold The minimum number of alpha characters the text needs to be considered a title """ # 这个函数用于判断文本是否可能是标题。它包含了几个检查步骤: # 首先检查文本长度是否为零,若是,则返回False # 接着检查文本末尾是否为标点符号,是的话也返回 False # 然后检查文本长度是否超过指定的最大单词长度(默认为 20),超过则返回 False # 通过调用 under_non_alpha_ratio 函数来检查文本中非字母字符的比例,若超过设定的阈值,则返回 False # 还有一些其他检查,例如:文本是否以逗号、句号或其它标点符号结尾,或者是否全部由数字组成。最后还检查开头的字符中是否含有数字。 # 文本长度为0的话,肯定不是title if len(text) == 0: print("Not a title. Text is empty.") return False # 文本中有标点符号,就不是title ENDS_IN_PUNCT_PATTERN = r"[^\w\s]\Z" ENDS_IN_PUNCT_RE = re.compile(ENDS_IN_PUNCT_PATTERN) if ENDS_IN_PUNCT_RE.search(text) is not None: return False # 文本长度不能超过设定值,默认20 # NOTE(robinson) - splitting on spaces here instead of word tokenizing because it # is less expensive and actual tokenization doesn't add much value for the length check if len(text) > title_max_word_length: return False # 文本中数字的占比不能太高,否则不是title if under_non_alpha_ratio(text, threshold=non_alpha_threshold): return False # NOTE(robinson) - Prevent flagging salutations like "To My Dearest Friends," as titles if text.endswith((",", ".", ",", "。")): return False if text.isnumeric(): print(f"Not a title. Text is all numeric:\n\n{text}") # type: ignore return False # 开头的字符内应该有数字,默认5个字符内 if len(text) < 5: text_5 = text else: text_5 = text[:5] alpha_in_text_5 = sum(list(map(lambda x: x.isnumeric(), list(text_5)))) if not alpha_in_text_5: return False return True def zh_title_enhance(docs: Document) -> Document: # 对一组文档进行处理, # 如果其中有可能作为标题的文本,则在该文档的 metadata 中标记为 'cn_Title',并修改文档内容以显示标题相关的信息。 title = None if len(docs) > 0: for doc in docs: if is_possible_title(doc.page_content): doc.metadata['category'] = 'cn_Title' title = doc.page_content elif title: doc.page_content = f"下文与({title})有关。{doc.page_content}" return docs else: print("文件不存在")
[]
2024-01-10
CCNUXL/Algorithm-Skeleton-Mining
Text_Split~spliter.py
import os from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from nltk.tokenize import word_tokenize # 获取当前文件的路径 current_file_path = os.path.abspath(__file__) # 获取当前文件所在目录的上级目录路径 parent_directory = os.path.dirname(current_file_path) parent_parent_directory = os.path.dirname(parent_directory) # 拼接文件路径 pdf_path = os.path.join(parent_parent_directory, "Datasets/Papers/CoT/2201.11903.pdf") print(pdf_path) loader = PyPDFLoader(pdf_path) pages = loader.load_and_split() print(f"加载完毕,共加载{len(pages)}页PDF文件") text_splitter = RecursiveCharacterTextSplitter( chunk_size=2000, chunk_overlap=10, length_function=len ) texts = text_splitter.split_documents(pages) print(f"文章共切分为{len(texts)}段") for i in range(0, len(texts)): print(f"段{i}") print(texts[i].page_content) tokens = word_tokenize(texts[i].page_content) tokens_length = len(tokens) print("tokens length:", tokens_length)
[]
2024-01-10
CCNUXL/Algorithm-Skeleton-Mining
Langchain_files~Langchain-Chatchat-master~text_splitter~chinese_recursive_text_splitter.py
import re from typing import List, Optional, Any from langchain.text_splitter import RecursiveCharacterTextSplitter import logging logger = logging.getLogger(__name__) def _split_text_with_regex_from_end( text: str, separator: str, keep_separator: bool ) -> List[str]: # text:要分割的文本字符串。 # separator:用于分割文本的分隔符字符串。 # keep_separator:一个布尔值,确定是否保留分隔符在分割后的结果中。 # Now that we have the separator, split the text if separator: if keep_separator: # The parentheses in the pattern keep the delimiters in the result. _splits = re.split(f"({separator})", text) # 这里采用了正则表达式中的捕获分组,以便在分割后保留分隔符。 # 通过将 _splits 列表中的奇数索引和偶数索引的元素组合在一起实现 # 将分割后的结果重新组合,将分隔符与相邻的子字符串合并成一个字符串 splits = ["".join(i) for i in zip(_splits[0::2], _splits[1::2])] # 如果 _splits 的长度是奇数,说明最后一个分隔符没有相应的子字符串,将其添加到结果列表中。 if len(_splits) % 2 == 1: splits += _splits[-1:] # splits = [_splits[0]] + splits else: splits = re.split(separator, text) else: splits = list(text) return [s for s in splits if s != ""] class ChineseRecursiveTextSplitter(RecursiveCharacterTextSplitter): def __init__( self, separators: Optional[List[str]] = None, keep_separator: bool = True, is_separator_regex: bool = True, **kwargs: Any, ) -> None: """Create a new TextSplitter.""" super().__init__(keep_separator=keep_separator, **kwargs) self._separators = separators or [ "\n\n", "\n", "。|!|?", "\.\s|\!\s|\?\s", ";|;\s", ",|,\s" ] self._is_separator_regex = is_separator_regex def _split_text(self, text: str, separators: List[str]) -> List[str]: """Split incoming text and return chunks.""" final_chunks = [] # Get appropriate separator to use separator = separators[-1] new_separators = [] for i, _s in enumerate(separators): _separator = _s if self._is_separator_regex else re.escape(_s) if _s == "": separator = _s break if re.search(_separator, text): separator = _s new_separators = separators[i + 1:] break _separator = separator if self._is_separator_regex else re.escape(separator) splits = _split_text_with_regex_from_end(text, _separator, self._keep_separator) # Now go merging things, recursively splitting longer texts. _good_splits = [] _separator = "" if self._keep_separator else separator for s in splits: if self._length_function(s) < self._chunk_size: _good_splits.append(s) else: if _good_splits: merged_text = self._merge_splits(_good_splits, _separator) final_chunks.extend(merged_text) _good_splits = [] if not new_separators: final_chunks.append(s) else: other_info = self._split_text(s, new_separators) final_chunks.extend(other_info) if _good_splits: merged_text = self._merge_splits(_good_splits, _separator) final_chunks.extend(merged_text) return [re.sub(r"\n{2,}", "\n", chunk.strip()) for chunk in final_chunks if chunk.strip()!=""] if __name__ == "__main__": text_splitter = ChineseRecursiveTextSplitter( keep_separator=True, # 保留分隔符 is_separator_regex=True, # 分隔符是否正则表达式 chunk_size=200, # 每个块的最大长度 chunk_overlap=0 ) ls = [ """ 标题 全球可再生能源趋势 简介 近年来,全球能源格局正在发生重大变革。随着对气候变化和化石燃料有限性的担忧不断增长,世界正在将焦点转向可再生能源。这份简要报告旨在提供当前全球可再生能源趋势的概述。 关键点 太阳能迅猛增长: 太阳能在过去十年中取得了显著增长。成本下降,太阳能电池板效率提高,政府激励措施都促进了这一增长。 风能扩张: 风能是另一个有前景的领域。离岸风电场越来越普及,风力涡轮机变得更加高效和具有成本效益。 能源储存解决方案: 鉴于可再生能源如太阳能和风能的不确定性,能源储存解决方案,如先进的电池,对于电网的稳定性和可靠性至关重要。 新兴技术: 在潮汐和地热能源等领域的研究和开发正在为清洁能源发电开辟新的可能性。 政府政策: 许多国家的政府正在实施促进可再生能源的政策,包括补贴、税收激励措施和减排目标。 挑战 间歇性: 太阳能和风能等可再生能源的不可预测性为持续供能带来了挑战。 基础设施投资: 转向可再生能源需要大量的基础设施投资,包括电网升级和新的能源储存设施。 公众认知: 说服公众可再生能源的益处和可行性至关重要。 结论 全球转向可再生能源是在应对气候变化方面的一个令人鼓舞的趋势。然而,在将可再生能源整合到现有能源基础设施方面仍然存在挑战。持续的研究、投资和公众支持对于实现可持续能源未来至关重要。 """, ] # text = """""" for inum, text in enumerate(ls): print(inum) chunks = text_splitter.split_text(text) num = 1 for chunk in chunks: print("chunk_num_", num, end=" ") print(chunk) num += 1
[]
2024-01-10
Techiral/A-Z-Python-Projects
C~chatgpt-based-voice-assistant~voice-assistant.py
import speech_recognition as sr import pyttsx3 import os from dotenv import load_dotenv import openai load_dotenv() OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY def speak_text(text): engine = pyttsx3.init() engine.say(text) engine.runAndWait() intro_message = "Hello, I am your voice assistant. How can I assist you today?" speak_text(intro_message) recognizer = sr.Recognizer() def record_and_transcribe(): while True: try: with sr.Microphone() as source: recognizer.adjust_for_ambient_noise(source, duration=0.2) print("Listening...") audio = recognizer.listen(source) user_input = recognizer.recognize_google(audio) return user_input except sr.RequestError as e: print(f"Could not request results: {e}") except sr.UnknownValueError: print("Sorry, I didn't catch that.") def get_response(user_input, chat_history): chat_history.append({"role": "user", "content": user_input}) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=chat_history, max_tokens=50, n=1, stop=None, temperature=0.7, ) assistant_response = response.choices[0].message.content return assistant_response chat_history = [{"role": "system", "content": "You are now chatting with a voice assistant."}] while True: user_input = record_and_transcribe() print(f"User: {user_input}") input_length = len(user_input) assistant_response = get_response(user_input, chat_history) final_response = f"Your input was {input_length} characters long. Assistant: {assistant_response}" print(f"Assistant: {final_response}") speak_text(final_response)
[ "You are now chatting with a voice assistant." ]
2024-01-10
pbhu1024/gpt_index
gpt_index~composability~graph.py
"""Composability graphs.""" import json from typing import Any, Dict, List, Optional, Type, Union from gpt_index.data_structs.data_structs import IndexStruct from gpt_index.data_structs.struct_type import IndexStructType from gpt_index.docstore import DocumentStore from gpt_index.embeddings.base import BaseEmbedding from gpt_index.embeddings.openai import OpenAIEmbedding from gpt_index.indices.base import BaseGPTIndex from gpt_index.indices.empty.base import GPTEmptyIndex from gpt_index.indices.keyword_table.base import GPTKeywordTableIndex from gpt_index.indices.knowledge_graph.base import GPTKnowledgeGraphIndex from gpt_index.indices.list.base import GPTListIndex from gpt_index.indices.prompt_helper import PromptHelper from gpt_index.indices.query.query_runner import QueryRunner from gpt_index.indices.query.schema import QueryBundle, QueryConfig from gpt_index.indices.registry import IndexRegistry from gpt_index.indices.struct_store.sql import GPTSQLStructStoreIndex from gpt_index.indices.tree.base import GPTTreeIndex from gpt_index.indices.vector_store.base import GPTVectorStoreIndex from gpt_index.indices.vector_store.vector_indices import ( GPTChromaIndex, GPTFaissIndex, GPTPineconeIndex, GPTQdrantIndex, GPTSimpleVectorIndex, GPTWeaviateIndex, ) from gpt_index.langchain_helpers.chain_wrapper import LLMPredictor from gpt_index.response.schema import Response # TMP: refactor query config type QUERY_CONFIG_TYPE = Union[Dict, QueryConfig] # this is a map from type to outer index class # we extract the type_to_struct and type_to_query # fields from the index class DEFAULT_INDEX_REGISTRY_MAP: Dict[IndexStructType, Type[BaseGPTIndex]] = { IndexStructType.TREE: GPTTreeIndex, IndexStructType.LIST: GPTListIndex, IndexStructType.KEYWORD_TABLE: GPTKeywordTableIndex, IndexStructType.SIMPLE_DICT: GPTSimpleVectorIndex, IndexStructType.DICT: GPTFaissIndex, IndexStructType.WEAVIATE: GPTWeaviateIndex, IndexStructType.PINECONE: GPTPineconeIndex, IndexStructType.QDRANT: GPTQdrantIndex, IndexStructType.CHROMA: GPTChromaIndex, IndexStructType.VECTOR_STORE: GPTVectorStoreIndex, IndexStructType.SQL: GPTSQLStructStoreIndex, IndexStructType.KG: GPTKnowledgeGraphIndex, IndexStructType.EMPTY: GPTEmptyIndex, } def _get_default_index_registry() -> IndexRegistry: """Get default index registry.""" index_registry = IndexRegistry() for index_type, index_class in DEFAULT_INDEX_REGISTRY_MAP.items(): index_registry.type_to_struct[index_type] = index_class.index_struct_cls index_registry.type_to_query[index_type] = index_class.get_query_map() return index_registry def _safe_get_index_struct( docstore: DocumentStore, index_struct_id: str ) -> IndexStruct: """Try get index struct.""" index_struct = docstore.get_document(index_struct_id) if not isinstance(index_struct, IndexStruct): raise ValueError("Invalid `index_struct_id` - must be an IndexStruct") return index_struct class ComposableGraph: """Composable graph.""" def __init__( self, docstore: DocumentStore, index_registry: IndexRegistry, index_struct: IndexStruct, llm_predictor: Optional[LLMPredictor] = None, prompt_helper: Optional[PromptHelper] = None, embed_model: Optional[BaseEmbedding] = None, chunk_size_limit: Optional[int] = None, ) -> None: """Init params.""" self._docstore = docstore self._index_registry = index_registry # this represents the "root" index struct self._index_struct = index_struct self._llm_predictor = llm_predictor or LLMPredictor() self._prompt_helper = prompt_helper or PromptHelper.from_llm_predictor( self._llm_predictor, chunk_size_limit=chunk_size_limit ) self._embed_model = embed_model or OpenAIEmbedding() @classmethod def build_from_index(self, index: BaseGPTIndex) -> "ComposableGraph": """Build from index.""" return ComposableGraph( index.docstore, index.index_registry, # this represents the "root" index struct index.index_struct, llm_predictor=index.llm_predictor, prompt_helper=index.prompt_helper, embed_model=index.embed_model, ) def query( self, query_str: Union[str, QueryBundle], query_configs: Optional[List[QUERY_CONFIG_TYPE]] = None, llm_predictor: Optional[LLMPredictor] = None, ) -> Response: """Query the index.""" # go over all the indices and create a registry llm_predictor = llm_predictor or self._llm_predictor query_runner = QueryRunner( llm_predictor, self._prompt_helper, self._embed_model, self._docstore, self._index_registry, query_configs=query_configs, recursive=True, ) return query_runner.query(query_str, self._index_struct) async def aquery( self, query_str: Union[str, QueryBundle], query_configs: Optional[List[QUERY_CONFIG_TYPE]] = None, llm_predictor: Optional[LLMPredictor] = None, ) -> Response: """Query the index.""" # go over all the indices and create a registry llm_predictor = llm_predictor or self._llm_predictor query_runner = QueryRunner( llm_predictor, self._prompt_helper, self._embed_model, self._docstore, self._index_registry, query_configs=query_configs, recursive=True, ) return await query_runner.aquery(query_str, self._index_struct) def get_index( self, index_struct_id: str, index_cls: Type[BaseGPTIndex], **kwargs: Any ) -> BaseGPTIndex: """Get index.""" index_struct = _safe_get_index_struct(self._docstore, index_struct_id) return index_cls( index_struct=index_struct, docstore=self._docstore, index_registry=self._index_registry, **kwargs ) @classmethod def load_from_string(cls, index_string: str, **kwargs: Any) -> "ComposableGraph": """Load index from string (in JSON-format). This method loads the index from a JSON string. The index data structure itself is preserved completely. If the index is defined over subindices, those subindices will also be preserved (and subindices of those subindices, etc.). Args: save_path (str): The save_path of the file. Returns: BaseGPTIndex: The loaded index. """ result_dict = json.loads(index_string) # TODO: this is hardcoded for now, allow it to be specified by the user index_registry = _get_default_index_registry() docstore = DocumentStore.load_from_dict( result_dict["docstore"], index_registry.type_to_struct ) index_struct = _safe_get_index_struct(docstore, result_dict["index_struct_id"]) return cls(docstore, index_registry, index_struct, **kwargs) @classmethod def load_from_disk(cls, save_path: str, **kwargs: Any) -> "ComposableGraph": """Load index from disk. This method loads the index from a JSON file stored on disk. The index data structure itself is preserved completely. If the index is defined over subindices, those subindices will also be preserved (and subindices of those subindices, etc.). Args: save_path (str): The save_path of the file. Returns: BaseGPTIndex: The loaded index. """ with open(save_path, "r") as f: file_contents = f.read() return cls.load_from_string(file_contents, **kwargs) def save_to_string(self, **save_kwargs: Any) -> str: """Save to string. This method stores the index into a JSON file stored on disk. Args: save_path (str): The save_path of the file. """ out_dict: Dict[str, Any] = { "index_struct_id": self._index_struct.get_doc_id(), "docstore": self._docstore.serialize_to_dict(), } return json.dumps(out_dict) def save_to_disk(self, save_path: str, **save_kwargs: Any) -> None: """Save to file. This method stores the index into a JSON file stored on disk. Args: save_path (str): The save_path of the file. """ index_string = self.save_to_string(**save_kwargs) with open(save_path, "w") as f: f.write(index_string)
[]
2024-01-10
pbhu1024/gpt_index
gpt_index~prompts~default_prompts.py
"""Set of default prompts.""" from gpt_index.prompts.prompts import ( KeywordExtractPrompt, KnowledgeGraphPrompt, QueryKeywordExtractPrompt, QuestionAnswerPrompt, RefinePrompt, RefineTableContextPrompt, SchemaExtractPrompt, SimpleInputPrompt, SummaryPrompt, TableContextPrompt, TextToSQLPrompt, TreeInsertPrompt, TreeSelectMultiplePrompt, TreeSelectPrompt, ) ############################################ # Tree ############################################ DEFAULT_SUMMARY_PROMPT_TMPL = ( "Write a summary of the following. Try to use only the " "information provided. " "Try to include as many key details as possible.\n" "\n" "\n" "{context_str}\n" "\n" "\n" 'SUMMARY:"""\n' ) DEFAULT_SUMMARY_PROMPT = SummaryPrompt(DEFAULT_SUMMARY_PROMPT_TMPL) # insert prompts DEFAULT_INSERT_PROMPT_TMPL = ( "Context information is below. It is provided in a numbered list " "(1 to {num_chunks})," "where each item in the list corresponds to a summary.\n" "---------------------\n" "{context_list}" "---------------------\n" "Given the context information, here is a new piece of " "information: {new_chunk_text}\n" "Answer with the number corresponding to the summary that should be updated. " "The answer should be the number corresponding to the " "summary that is most relevant to the question.\n" ) DEFAULT_INSERT_PROMPT = TreeInsertPrompt(DEFAULT_INSERT_PROMPT_TMPL) # # single choice DEFAULT_QUERY_PROMPT_TMPL = ( "Some choices are given below. It is provided in a numbered list " "(1 to {num_chunks})," "where each item in the list corresponds to a summary.\n" "---------------------\n" "{context_list}" "\n---------------------\n" "Using only the choices above and not prior knowledge, return " "the choice that is most relevant to the question: '{query_str}'\n" "Provide choice in the following format: 'ANSWER: <number>' and explain why " "this summary was selected in relation to the question.\n" ) DEFAULT_QUERY_PROMPT = TreeSelectPrompt(DEFAULT_QUERY_PROMPT_TMPL) # multiple choice DEFAULT_QUERY_PROMPT_MULTIPLE_TMPL = ( "Some choices are given below. It is provided in a numbered " "list (1 to {num_chunks}), " "where each item in the list corresponds to a summary.\n" "---------------------\n" "{context_list}" "\n---------------------\n" "Using only the choices above and not prior knowledge, return the top choices " "(no more than {branching_factor}, ranked by most relevant to least) that " "are most relevant to the question: '{query_str}'\n" "Provide choices in the following format: 'ANSWER: <numbers>' and explain why " "these summaries were selected in relation to the question.\n" ) DEFAULT_QUERY_PROMPT_MULTIPLE = TreeSelectMultiplePrompt( DEFAULT_QUERY_PROMPT_MULTIPLE_TMPL ) DEFAULT_REFINE_PROMPT_TMPL = ( "The original question is as follows: {query_str}\n" "We have provided an existing answer: {existing_answer}\n" "We have the opportunity to refine the existing answer " "(only if needed) with some more context below.\n" "------------\n" "{context_msg}\n" "------------\n" "Given the new context, refine the original answer to better " "answer the question. " "If the context isn't useful, return the original answer." ) DEFAULT_REFINE_PROMPT = RefinePrompt(DEFAULT_REFINE_PROMPT_TMPL) DEFAULT_TEXT_QA_PROMPT_TMPL = ( "Context information is below. \n" "---------------------\n" "{context_str}" "\n---------------------\n" "Given the context information and not prior knowledge, " "answer the question: {query_str}\n" ) DEFAULT_TEXT_QA_PROMPT = QuestionAnswerPrompt(DEFAULT_TEXT_QA_PROMPT_TMPL) ############################################ # Keyword Table ############################################ DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL = ( "Some text is provided below. Given the text, extract up to {max_keywords} " "keywords from the text. Avoid stopwords." "---------------------\n" "{text}\n" "---------------------\n" "Provide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n" ) DEFAULT_KEYWORD_EXTRACT_TEMPLATE = KeywordExtractPrompt( DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL ) # NOTE: the keyword extraction for queries can be the same as # the one used to build the index, but here we tune it to see if performance is better. DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE_TMPL = ( "A question is provided below. Given the question, extract up to {max_keywords} " "keywords from the text. Focus on extracting the keywords that we can use " "to best lookup answers to the question. Avoid stopwords.\n" "---------------------\n" "{question}\n" "---------------------\n" "Provide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n" ) DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE = QueryKeywordExtractPrompt( DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE_TMPL ) ############################################ # Structured Store ############################################ DEFAULT_SCHEMA_EXTRACT_TMPL = ( "We wish to extract relevant fields from an unstructured text chunk into " "a structured schema. We first provide the unstructured text, and then " "we provide the schema that we wish to extract. " "-----------text-----------\n" "{text}\n" "-----------schema-----------\n" "{schema}\n" "---------------------\n" "Given the text and schema, extract the relevant fields from the text in " "the following format: " "field1: <value>\nfield2: <value>\n...\n\n" "If a field is not present in the text, don't include it in the output." "If no fields are present in the text, return a blank string.\n" "Fields: " ) DEFAULT_SCHEMA_EXTRACT_PROMPT = SchemaExtractPrompt(DEFAULT_SCHEMA_EXTRACT_TMPL) # NOTE: taken from langchain and adapted # https://tinyurl.com/b772sd77 DEFAULT_TEXT_TO_SQL_TMPL = ( "Given an input question, first create a syntactically correct SQL query " "to run, then look at the results of the query and return the answer.\n" "Use the following format:\n" 'Question: "Question here"\n' 'SQLQuery: "SQL Query to run"\n' "The following is a schema of the table:\n" "---------------------\n" "{schema}\n" "---------------------\n" "Question: {query_str}\n" "SQLQuery: " ) DEFAULT_TEXT_TO_SQL_PROMPT = TextToSQLPrompt(DEFAULT_TEXT_TO_SQL_TMPL) # NOTE: by partially filling schema, we can reduce to a QuestionAnswer prompt # that we can feed to ur table DEFAULT_TABLE_CONTEXT_TMPL = ( "We have provided a table schema below. " "---------------------\n" "{schema}\n" "---------------------\n" "We have also provided context information below. " "{context_str}\n" "---------------------\n" "Given the context information and the table schema, " "give a response to the following task: {query_str}" ) DEFAULT_TABLE_CONTEXT_QUERY = ( "Provide a high-level description of the table, " "as well as a description of each column in the table. " "Provide answers in the following format:\n" "TableDescription: <description>\n" "Column1Description: <description>\n" "Column2Description: <description>\n" "...\n\n" ) DEFAULT_TABLE_CONTEXT_PROMPT = TableContextPrompt(DEFAULT_TABLE_CONTEXT_TMPL) # NOTE: by partially filling schema, we can reduce to a RefinePrompt # that we can feed to ur table DEFAULT_REFINE_TABLE_CONTEXT_TMPL = ( "We have provided a table schema below. " "---------------------\n" "{schema}\n" "---------------------\n" "We have also provided some context information below. " "{context_msg}\n" "---------------------\n" "Given the context information and the table schema, " "give a response to the following task: {query_str}\n" "We have provided an existing answer: {existing_answer}\n" "Given the new context, refine the original answer to better " "answer the question. " "If the context isn't useful, return the original answer." ) DEFAULT_REFINE_TABLE_CONTEXT_PROMPT = RefineTableContextPrompt( DEFAULT_REFINE_TABLE_CONTEXT_TMPL ) ############################################ # Knowledge-Graph Table ############################################ DEFAULT_KG_TRIPLET_EXTRACT_TMPL = ( "Some text is provided below. Given the text, extract up to " "{max_knowledge_triplets} " "knowledge triplets in the form of (subject, predicate, object). Avoid stopwords.\n" "---------------------\n" "Example:" "Text: Alice is Bob's mother." "Triplets:\n(Alice, is mother of, Bob)\n" "Text: Philz is a coffee shop founded in Berkeley in 1982.\n" "Triplets:\n" "(Philz, is, coffee shop)\n" "(Philz, founded in, Berkeley)\n" "(Philz, founded in, 1982)\n" "---------------------\n" "Text: {text}\n" "Triplets:\n" ) DEFAULT_KG_TRIPLET_EXTRACT_PROMPT = KnowledgeGraphPrompt( DEFAULT_KG_TRIPLET_EXTRACT_TMPL ) ############################################ # HYDE ############################################## HYDE_TMPL = ( "Please write a passage to answer the question\n" "Try to include as many key details as possible.\n" "\n" "\n" "{context_str}\n" "\n" "\n" 'Passage:"""\n' ) DEFAULT_HYDE_PROMPT = SummaryPrompt(HYDE_TMPL) ############################################ # Simple Input ############################################ DEFAULT_SIMPLE_INPUT_TMPL = "{query_str}" DEFAULT_SIMPLE_INPUT_PROMPT = SimpleInputPrompt(DEFAULT_SIMPLE_INPUT_TMPL)
[ "Context information is below. It is provided in a numbered list (1 to {num_chunks}),where each item in the list corresponds to a summary.\n---------------------\n{context_list}---------------------\nGiven the context information, here is a new piece of information: {new_chunk_text}\nAnswer with the number corresponding to the summary that should be updated. The answer should be the number corresponding to the summary that is most relevant to the question.\n", "Some choices are given below. It is provided in a numbered list (1 to {num_chunks}), where each item in the list corresponds to a summary.\n---------------------\n{context_list}\n---------------------\nUsing only the choices above and not prior knowledge, return the top choices (no more than {branching_factor}, ranked by most relevant to least) that are most relevant to the question: '{query_str}'\nProvide choices in the following format: 'ANSWER: <numbers>' and explain why these summaries were selected in relation to the question.\n", "Some text is provided below. Given the text, extract up to {max_keywords} keywords from the text. Avoid stopwords.---------------------\n{text}\n---------------------\nProvide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n", "Context information is below. \n---------------------\n{context_str}\n---------------------\nGiven the context information and not prior knowledge, answer the question: {query_str}\n", "A question is provided below. Given the question, extract up to {max_keywords} keywords from the text. Focus on extracting the keywords that we can use to best lookup answers to the question. Avoid stopwords.\n---------------------\n{question}\n---------------------\nProvide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n", "Some choices are given below. It is provided in a numbered list (1 to {num_chunks}),where each item in the list corresponds to a summary.\n---------------------\n{context_list}\n---------------------\nUsing only the choices above and not prior knowledge, return the choice that is most relevant to the question: '{query_str}'\nProvide choice in the following format: 'ANSWER: <number>' and explain why this summary was selected in relation to the question.\n", "The original question is as follows: {query_str}\nWe have provided an existing answer: {existing_answer}\nWe have the opportunity to refine the existing answer (only if needed) with some more context below.\n------------\n{context_msg}\n------------\nGiven the new context, refine the original answer to better answer the question. If the context isn't useful, return the original answer.", "Write a summary of the following. Try to use only the information provided. Try to include as many key details as possible.\n\n\n{context_str}\n\n\nSUMMARY:\"\"\"\n" ]
2024-01-10
pbhu1024/gpt_index
gpt_index~langchain_helpers~memory_wrapper.py
"""Langchain memory wrapper (for LlamaIndex).""" from typing import Any, Dict, List, Optional from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import AIMessage from langchain.schema import BaseMemory as Memory from langchain.schema import BaseMessage, HumanMessage from pydantic import Field from gpt_index.indices.base import BaseGPTIndex from gpt_index.readers.schema.base import Document from gpt_index.utils import get_new_id def get_prompt_input_key(inputs: Dict[str, Any], memory_variables: List[str]) -> str: """Get prompt input key. Copied over from langchain. """ # "stop" is a special key that can be passed as input but is not used to # format the prompt. prompt_input_keys = list(set(inputs).difference(memory_variables + ["stop"])) if len(prompt_input_keys) != 1: raise ValueError(f"One input key expected got {prompt_input_keys}") return prompt_input_keys[0] class GPTIndexMemory(Memory): """Langchain memory wrapper (for LlamaIndex). Args: human_prefix (str): Prefix for human input. Defaults to "Human". ai_prefix (str): Prefix for AI output. Defaults to "AI". memory_key (str): Key for memory. Defaults to "history". index (BaseGPTIndex): LlamaIndex instance. query_kwargs (Dict[str, Any]): Keyword arguments for LlamaIndex query. input_key (Optional[str]): Input key. Defaults to None. output_key (Optional[str]): Output key. Defaults to None. """ human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" index: BaseGPTIndex query_kwargs: Dict = Field(default_factory=dict) output_key: Optional[str] = None input_key: Optional[str] = None @property def memory_variables(self) -> List[str]: """Return memory variables.""" return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key return prompt_input_key def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return key-value pairs given the text input to the chain.""" prompt_input_key = self._get_prompt_input_key(inputs) query_str = inputs[prompt_input_key] # TODO: wrap in prompt # TODO: add option to return the raw text # NOTE: currently it's a hack response = self.index.query(query_str, **self.query_kwargs) return {self.memory_key: str(response)} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save the context of this model run to memory.""" prompt_input_key = self._get_prompt_input_key(inputs) if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") output_key = list(outputs.keys())[0] else: output_key = self.output_key human = f"{self.human_prefix}: " + inputs[prompt_input_key] ai = f"{self.ai_prefix}: " + outputs[output_key] doc_text = "\n".join([human, ai]) doc = Document(text=doc_text) self.index.insert(doc) def clear(self) -> None: """Clear memory contents.""" pass def __repr__(self) -> str: """Return representation.""" return "GPTIndexMemory()" class GPTIndexChatMemory(BaseChatMemory): """Langchain chat memory wrapper (for LlamaIndex). Args: human_prefix (str): Prefix for human input. Defaults to "Human". ai_prefix (str): Prefix for AI output. Defaults to "AI". memory_key (str): Key for memory. Defaults to "history". index (BaseGPTIndex): LlamaIndex instance. query_kwargs (Dict[str, Any]): Keyword arguments for LlamaIndex query. input_key (Optional[str]): Input key. Defaults to None. output_key (Optional[str]): Output key. Defaults to None. """ human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" index: BaseGPTIndex query_kwargs: Dict = Field(default_factory=dict) output_key: Optional[str] = None input_key: Optional[str] = None return_source: bool = False id_to_message: Dict[str, BaseMessage] = Field(default_factory=dict) @property def memory_variables(self) -> List[str]: """Return memory variables.""" return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key return prompt_input_key def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return key-value pairs given the text input to the chain.""" prompt_input_key = self._get_prompt_input_key(inputs) query_str = inputs[prompt_input_key] response_obj = self.index.query(query_str, **self.query_kwargs) if self.return_source: source_nodes = response_obj.source_nodes if self.return_messages: # get source messages from ids source_ids = [sn.doc_id for sn in source_nodes] source_messages = [ m for id, m in self.id_to_message.items() if id in source_ids ] # NOTE: type List[BaseMessage] response: Any = source_messages else: source_texts = [sn.source_text for sn in source_nodes] response = "\n\n".join(source_texts) else: response = str(response_obj) return {self.memory_key: response} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save the context of this model run to memory.""" prompt_input_key = self._get_prompt_input_key(inputs) if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") output_key = list(outputs.keys())[0] else: output_key = self.output_key # a bit different than existing langchain implementation # because we want to track id's for messages human_message = HumanMessage(content=inputs[prompt_input_key]) human_message_id = get_new_id(set(self.id_to_message.keys())) ai_message = AIMessage(content=outputs[output_key]) ai_message_id = get_new_id( set(self.id_to_message.keys()).union({human_message_id}) ) self.chat_memory.messages.append(human_message) self.chat_memory.messages.append(ai_message) self.id_to_message[human_message_id] = human_message self.id_to_message[ai_message_id] = ai_message human_txt = f"{self.human_prefix}: " + inputs[prompt_input_key] ai_txt = f"{self.ai_prefix}: " + outputs[output_key] human_doc = Document(text=human_txt, doc_id=human_message_id) ai_doc = Document(text=ai_txt, doc_id=ai_message_id) self.index.insert(human_doc) self.index.insert(ai_doc) def clear(self) -> None: """Clear memory contents.""" pass def __repr__(self) -> str: """Return representation.""" return "GPTIndexMemory()"
[]
2024-01-10
pbhu1024/gpt_index
gpt_index~langchain_helpers~chain_wrapper.py
"""Wrapper functions around an LLM chain.""" import logging from dataclasses import dataclass from typing import Any, Generator, Optional, Tuple import openai from langchain import Cohere, LLMChain, OpenAI from langchain.llms import AI21 from langchain.llms.base import BaseLLM from gpt_index.constants import MAX_CHUNK_SIZE, NUM_OUTPUTS from gpt_index.prompts.base import Prompt from gpt_index.utils import ( ErrorToRetry, globals_helper, retry_on_exceptions_with_backoff, ) @dataclass class LLMMetadata: """LLM metadata. We extract this metadata to help with our prompts. """ max_input_size: int = MAX_CHUNK_SIZE num_output: int = NUM_OUTPUTS def _get_llm_metadata(llm: BaseLLM) -> LLMMetadata: """Get LLM metadata from llm.""" if not isinstance(llm, BaseLLM): raise ValueError("llm must be an instance of langchain.llms.base.LLM") if isinstance(llm, OpenAI): return LLMMetadata( max_input_size=llm.modelname_to_contextsize(llm.model_name), num_output=llm.max_tokens, ) elif isinstance(llm, Cohere): # TODO: figure out max input size for cohere return LLMMetadata(num_output=llm.max_tokens) elif isinstance(llm, AI21): # TODO: figure out max input size for AI21 return LLMMetadata(num_output=llm.maxTokens) else: return LLMMetadata() def _get_response_gen(openai_response_stream: Generator) -> Generator: """Get response generator from openai response stream.""" for response in openai_response_stream: yield response["choices"][0]["text"] class LLMPredictor: """LLM predictor class. Wrapper around an LLMChain from Langchain. Args: llm (Optional[langchain.llms.base.LLM]): LLM from Langchain to use for predictions. Defaults to OpenAI's text-davinci-003 model. Please see `Langchain's LLM Page <https://langchain.readthedocs.io/en/latest/modules/llms.html>`_ for more details. retry_on_throttling (bool): Whether to retry on rate limit errors. Defaults to true. """ def __init__( self, llm: Optional[BaseLLM] = None, retry_on_throttling: bool = True ) -> None: """Initialize params.""" self._llm = llm or OpenAI(temperature=0, model_name="text-davinci-003") self.retry_on_throttling = retry_on_throttling self._total_tokens_used = 0 self.flag = True self._last_token_usage: Optional[int] = None def get_llm_metadata(self) -> LLMMetadata: """Get LLM metadata.""" # TODO: refactor mocks in unit tests, this is a stopgap solution if hasattr(self, "_llm") and self._llm is not None: return _get_llm_metadata(self._llm) else: return LLMMetadata() def _predict(self, prompt: Prompt, **prompt_args: Any) -> str: """Inner predict function. If retry_on_throttling is true, we will retry on rate limit errors. """ llm_chain = LLMChain( prompt=prompt.get_langchain_prompt(llm=self._llm), llm=self._llm ) # Note: we don't pass formatted_prompt to llm_chain.predict because # langchain does the same formatting under the hood full_prompt_args = prompt.get_full_format_args(prompt_args) if self.retry_on_throttling: llm_prediction = retry_on_exceptions_with_backoff( lambda: llm_chain.predict(**full_prompt_args), [ ErrorToRetry(openai.error.RateLimitError), ErrorToRetry(openai.error.ServiceUnavailableError), ErrorToRetry(openai.error.TryAgain), ErrorToRetry( openai.error.APIConnectionError, lambda e: e.should_retry ), ], ) else: llm_prediction = llm_chain.predict(**full_prompt_args) return llm_prediction def predict(self, prompt: Prompt, **prompt_args: Any) -> Tuple[str, str]: """Predict the answer to a query. Args: prompt (Prompt): Prompt to use for prediction. Returns: Tuple[str, str]: Tuple of the predicted answer and the formatted prompt. """ formatted_prompt = prompt.format(llm=self._llm, **prompt_args) llm_prediction = self._predict(prompt, **prompt_args) logging.debug(llm_prediction) # We assume that the value of formatted_prompt is exactly the thing # eventually sent to OpenAI, or whatever LLM downstream prompt_tokens_count = self._count_tokens(formatted_prompt) prediction_tokens_count = self._count_tokens(llm_prediction) self._total_tokens_used += prompt_tokens_count + prediction_tokens_count return llm_prediction, formatted_prompt def stream(self, prompt: Prompt, **prompt_args: Any) -> Tuple[Generator, str]: """Stream the answer to a query. NOTE: this is a beta feature. Will try to build or use better abstractions about response handling. Args: prompt (Prompt): Prompt to use for prediction. Returns: str: The predicted answer. """ if not isinstance(self._llm, OpenAI): raise ValueError("stream is only supported for OpenAI LLMs") formatted_prompt = prompt.format(llm=self._llm, **prompt_args) raw_response_gen = self._llm.stream(formatted_prompt) response_gen = _get_response_gen(raw_response_gen) # NOTE/TODO: token counting doesn't work with streaming return response_gen, formatted_prompt @property def total_tokens_used(self) -> int: """Get the total tokens used so far.""" return self._total_tokens_used def _count_tokens(self, text: str) -> int: tokens = globals_helper.tokenizer(text) return len(tokens) @property def last_token_usage(self) -> int: """Get the last token usage.""" if self._last_token_usage is None: return 0 return self._last_token_usage @last_token_usage.setter def last_token_usage(self, value: int) -> None: """Set the last token usage.""" self._last_token_usage = value async def _apredict(self, prompt: Prompt, **prompt_args: Any) -> str: """Async inner predict function. If retry_on_throttling is true, we will retry on rate limit errors. """ llm_chain = LLMChain( prompt=prompt.get_langchain_prompt(llm=self._llm), llm=self._llm ) # Note: we don't pass formatted_prompt to llm_chain.predict because # langchain does the same formatting under the hood full_prompt_args = prompt.get_full_format_args(prompt_args) # TODO: support retry on throttling llm_prediction = await llm_chain.apredict(**full_prompt_args) return llm_prediction async def apredict(self, prompt: Prompt, **prompt_args: Any) -> Tuple[str, str]: """Async predict the answer to a query. Args: prompt (Prompt): Prompt to use for prediction. Returns: Tuple[str, str]: Tuple of the predicted answer and the formatted prompt. """ formatted_prompt = prompt.format(llm=self._llm, **prompt_args) llm_prediction = await self._apredict(prompt, **prompt_args) logging.debug(llm_prediction) # We assume that the value of formatted_prompt is exactly the thing # eventually sent to OpenAI, or whatever LLM downstream prompt_tokens_count = self._count_tokens(formatted_prompt) prediction_tokens_count = self._count_tokens(llm_prediction) self._total_tokens_used += prompt_tokens_count + prediction_tokens_count return llm_prediction, formatted_prompt
[]
2024-01-10
bnitsan/essence_backend
server_src~gpt_utils.py
import os from pathlib import Path import re from . import scraping_utils, nlp_utils, general_utils import numpy as np import time import yaml from retry import retry import openai with open("server_src/config.yml", 'r') as ymlfile: cfg = yaml.load(ymlfile, Loader=yaml.FullLoader) cfg = cfg["config"] max_req_to_server = cfg["max_req_to_server"] qa_model = cfg["QA_MODEL"] BULLETS_GENERIC_STYLE_NAME = cfg["BULLETS_GENERIC_STYLE_NAME"] TABULARIZE_STYLE_NAME = cfg["TABULARIZE_STYLE_NAME"] MAX_GPT_PASSES = cfg["MAX_GPT_PASSES"] MIN_MARKED_TEXT_LENGTH = cfg["MIN_MARKED_TEXT_LENGTH"] MULTIPLE_PASSES_MAX_TOKENS = cfg["MULTIPLE_PASSES_MAX_TOKENS"] CHARS_TO_DECREASE_ON_DECLINE = cfg["chars_to_decrease_on_decline"] COMPLETION_TIMEOUT = cfg["COMPLETION_TIMEOUT"] openai.api_key = os.getenv("OPENAI_API_KEY") if not os.getenv("OPENAI_API_KEY"): # try to get the key from file in parent folder with open('../../openai_gpt3_key.txt', 'r') as f: openai.api_key = f.read() azure_flag = False if os.getenv("AZURE_OPENAI_KEY") and os.getenv("AZURE_OPENAI_ENDPOINT"): openai.api_type = "azure" openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT") openai.api_version = "2023-06-01-preview" # "2023-05-15" openai.api_key = os.getenv("AZURE_OPENAI_KEY") azure_flag = True def parse_gpt_response_bullets(response: str): """Converts a string of the form '- bullet1 \n- bullet2' to a [bullet1, bullet2].""" stripped_s = response.strip() # remove lines which are whitespace only stripped_s = re.sub(r'^[\s]*\n', '', stripped_s, flags=re.MULTILINE) l_dict = [] for j, line in enumerate(stripped_s.split('\n')): if len(line) < 3: continue line = line.strip() if line[1].isdigit(): line = line[2:] else: line = line.strip()[1:] # find index of first letter or number in any alphabet first_letter_index = -1 for i, c in enumerate(line): if c.isalnum(): first_letter_index = i break if first_letter_index == -1: continue l_dict.append({'key': j+1, 'value': line[first_letter_index:]}) return l_dict def look_for_delimiter_inside_paranthesis(s, delimiter, replacement_delimiter): open_paranthesis_flag = False new_s = '' for c in s: if c == '(': open_paranthesis_flag = True elif c == ')': open_paranthesis_flag = False if c == delimiter and open_paranthesis_flag: new_s += replacement_delimiter continue new_s += c return new_s def look_for_delimiter_inside_table(s, table_delimiter, delimiter, replacement_delimiter): inside_table = False new_s = '' prev = 0 for i, c in enumerate(s): if c == table_delimiter: inside_table = True elif c == delimiter and inside_table: new_s += s[prev:i] + replacement_delimiter prev = i + 1 new_s += s[prev:] return new_s def look_for_delimiter_after_comma(s, delimiter, replacement_delimiter, comma=','): comma_occ = [] colon_occ = [] for i, c in enumerate(s): if c == comma: comma_occ.append(i) elif c == delimiter: colon_occ.append(i) replace_colon = [] for colon_acc_i in colon_occ[::-1]: while len(comma_occ) > 0 and comma_occ[-1] > colon_acc_i: comma_occ.pop() if len(comma_occ) == 0: break replace_colon.append(comma_occ[-1]) new_s = '' prev = 0 for replace_colon_i in replace_colon: new_s += s[prev:replace_colon_i].strip() + replacement_delimiter prev = replace_colon_i + 1 new_s += s[prev:].strip() return new_s def is_likely_key_val_list(s): """Returns True if the string is likely to be of the form 'key1:\nvalue1\nvalue2\nkey2:value1'""" if len(s) < 10: return False if s.count(':') < 2: return False if s.count('\n') < 2: return False s = s.strip() s_lines = s.split('\n') if s_lines[0].count(':') == 0: return False if s_lines[0].split(':')[1].strip() != '': return False return True def parse_gpt_response(s, style='', category_delimiter=':', table_delimiter='|', special_time_token='<<STT>>', special_cat_token='<<CAT>>', special_https_token='<<|HTTP|>>', values_to_drop=['', '-', 'None', 'N/A', 'n/a', 'N/a', 'NA', 'Not available', 'Not Available', 'not available', 'Not available.', 'Not Available.', 'not available.', 'varies', 'Varies', 'Unknown', 'unknown', 'Not provided', 'not mentioned', 'none mentioned']): """Converts a string, usually of the form 'key1:value1,key2:value2', to a dictionary/JSON.""" if style == BULLETS_GENERIC_STYLE_NAME: if not is_likely_key_val_list(s): if s.strip()[:s.find('\n')].count(':') == 1: s = '- ' + s.strip() print('Parsing as bullet points.') parsed_s = parse_gpt_response_bullets(s) return parsed_s # remove incoming '-'. It's a thing that ChatGPT does. s = '\n'.join([line if not line.startswith('- ') else line[2:] for line in s.splitlines()]) if style == TABULARIZE_STYLE_NAME: if not s.startswith('Table:'): s = 'Table:\n' + s stripped_s = s.strip() # replace places in stripped_s in which a digit occurs before and after ':' with special_time_token stripped_s = re.sub(r'(\d+)(:)(\d+)', r'\1'+special_time_token+r'\3', stripped_s) # replace places where 'http://' or 'https://' occurs with special_https_token url_pattern = re.compile(r'(https?://[^\s:]+(?::\d+)?(?:/[^\s]*)?)', re.IGNORECASE) stripped_s = url_pattern.sub(lambda match: match.group().replace(":", special_https_token), stripped_s) # check if string is not a list if category_delimiter not in stripped_s[0:30]: # If the string does not contain ':' in the first ~30 characters, then it is probably not a list. return [{'key': ' ', 'value': stripped_s}] # proceed to parsing of the form {key1: value1, key2: value2, ...}, with values potentially being tables s_lines = stripped_s.split('\n') n_lines = len(s_lines) # if s contains category_delimiter (initially ':'), then it is usually a key-value pair (until next line with ':') # EXCPETIONS: ':' could appear elsewhere, e.g. in paranthesis or if the model failed to start a new line # we improve it now. new_s_lines = [] for s_lines_i in s_lines: # case 1: check if ':' is in paranthesis, i.e. it has one '(' some characters before and one ')' some characeters after it. new_s_line = look_for_delimiter_inside_paranthesis(s_lines_i, category_delimiter, special_cat_token) # case 1a: check if ':' is in a table, i.e. it has one '|' some characters before it. new_s_line = look_for_delimiter_inside_table(new_s_line, table_delimiter, category_delimiter, special_cat_token) # case 2: a ',' that comes before a ':' is probably a mistake - need to replace ',' with '\n' new_s_line = look_for_delimiter_after_comma(new_s_line, category_delimiter, '\n') new_s_lines.append(new_s_line) s_lines = new_s_lines d = {} # iterate over the list of strings last_key = '' # last key - used to store multi-line values for i in range(n_lines): # split the string into parts separated by ':' s_split_i = s_lines[i].split(category_delimiter) # if the string contains category_delimiter - e.g., ':' if len(s_split_i) > 1: last_key = '' # add the key-value pair to the dictionary d[s_split_i[0].strip()] = s_split_i[1].strip() if s_split_i[1].strip() == '': last_key = s_split_i[0].strip() d[last_key] = [] elif last_key != '': # if the string does not contain ':', then it should be a table # count number of '|' in string s n_pipes = s_lines[i].count(table_delimiter) # if s contains '|', then it is a table if n_pipes > 0: # split the string into parts separated by '|' s_split_i = s_lines[i].split(table_delimiter) # if the string contains '|' if len(s_split_i) > 1: # add the key-value pair to the dictionary d[last_key].append(s_lines[i]) else: # if s does not contain '|', then it is a multi-line value. For now we treat it the same d[last_key].append(s_lines[i]) # recursively run on d, apply .replace(special_time_token, ':') on all strings # also apply .replace(special_cat_token, ':'/category_delimiter) on all strings for key in d: if isinstance(d[key], list): for i in range(len(d[key])): d[key][i] = d[key][i].replace(special_time_token, category_delimiter) d[key][i] = d[key][i].replace(special_cat_token, category_delimiter) d[key][i] = d[key][i].replace(special_https_token, category_delimiter) else: d[key] = d[key].replace(special_time_token, category_delimiter) d[key] = d[key].replace(special_cat_token, category_delimiter) d[key] = d[key].replace(special_https_token, ':') ''' # split comma-separated values - currently unused. for key in d: if isinstance(d[key], list): d[key] = d[key] continue # print(d[key].split(',')) d[key] = [s_i.strip() for s_i in d[key].split(',')] ''' # "plaster" - replace empty lists by empty strings for key in d: if d[key] == []: d[key] = '' # split "tables" into lists for key in d: if isinstance(d[key], list): prev_col_len = 0 # we keep track of the number of columns in the previous row. Sometimes the table is not aligned, and we need to add a column to the beginning of the row. for i in range(len(d[key])): columns = d[key][i].count(table_delimiter) if columns < prev_col_len: d[key][i] = [s_i.strip() for s_i in (' ' + table_delimiter + ' ' + d[key][i]).split(table_delimiter)] else: d[key][i] = [s_i.strip() for s_i in d[key][i].split(table_delimiter)] prev_col_len = columns # remove "empty" values - i.e. values that are not lists and are in values_to_drop new_d = {} for key in d: if not isinstance(d[key], list): if d[key] not in values_to_drop: # remove key from d # .pop(key, None) new_d[key] = d[key] else: new_d[key] = d[key] d = new_d # convert {key: val} to [{key: key, value: val}] l_dict = [] for key in d: l_dict.append({'key': key, 'value': d[key]}) return l_dict def get_gpt_prompt(style='travel'): if style == 'travel': prompt_title = "You help a traveler design a multi-day or multi-destination itinerary and gather information about a trip. Convert the blog entries to structured data. When writing a table, put different destinations or activities in separate rows.\n" input_prompt = "Text: " output_prompt = "\n\nOutput, possible fields {Activity name, Accommodation, Eating, Transportation, Best Seasons, Preparation, Budget, Itinerary table}:\n" # "Structured data:\nActivity:" example_pairs = [ ["We had an amazing time in Peru, especially in Huaraz. We went to the a bunch of day treks and the Santa Cruz trek! It is a 3-day trek in the Andes mountains. In the first day, we walked 4 hours on a rugged trail and camped near a river. In the second day, we had tough 16 kilometers through beautiful terrain. In the third day, we went over a high altitude pass of 5100m, finishing the trek in a small town. We rode on a shared taxi back to Huaraz. The whole thing cost us about 400 Soles.\n\n", '''Activity name: Santa Cruz trek Accommodation: camping Transportation: shared taxi Budget: 400 Soles Itinerary table: Day | Length | Details 1 | 4 hrs | rugged, river camping 2 | 16 km | beautiful terrain 3 | | 5100m pass'''], ["Recommended hotels in France, where mid/high end means over 100 euros per night, budget means less.\n\n", '''Destination name: France Hotels: Location | Name | Details Paris | Hotel de Crillon | High-end | Hotel de Ville | Mid-range Lyon | Comte Ornon | High-range | Hotel Boutique | Mid-range Bourdeaux | Hotel de Seze | Mid-range | Best Western Francais | Budget'''], ["In the last summer I was in Nepal, exploring the Himalayas. In one of the most memorable experiences, I went on the Tilicho lake trek. After hiring a porter at Pokhara, I took a bus to Besi-Sahar. After a day of altitude acclimatization in Manang, enjoying the local food at a simple hotel, I set out at sunrise to Tilicho lake base camp. This day was beautiful but a little dangerous, as some paths suffer from landslide. After another night at a simple hotel, I began the climb to the lake. After about 3 hours and 1000m of climb, I made it to the lake. Boy-oh-boy, the views were amazing! Snow-capped mountains with a far-reaching pristine lake in the middle. The walk was definitely worth it. After climbing down I stopped at base camp for another night with a hearty meal along fellow travelers. In the next day, I hiked back 15 km to Manang and made the trip back to Pokhara.", '''Activity name: Tilicho lake trek Accommodation: simple hotels Transportation: bus to Besi-Sahar Itinerary table: Day | Destination | Details 1 | Manang | altitude acclimatization 2 | Base camp | landslide danger 3 | Tilicho lake and back | 3 hours, 1000m climb 4 | Manang | 15km hike | Pokhara | '''] ] keywords = ['Santa Cruz', 'Andes', 'Huaraz', '5100m', 'Crillon', 'France', 'Paris', 'Lyon', 'Comte', 'Ornon', 'Western', 'Bourdeaux', 'Seze', 'Tilicho', 'Pokhara', 'Manang', 'Besi-Sahar'] continued_prompt_title = "You help a traveler design a multi-day or multi-destination itinerary and gather information about a trip. You are given the data collected so far and a relevant body of text. You need to use the text to add details and expand the data and output the revised data in the same format. Be informative and succinct.\n" continued_prev_data_prompt = "\n\nPrevious data:\n" continued_new_text_prompt = "\n\nNew text:\n" continued_output_prompt = "\n\nRevised data:\n" continued_prompt_dict = { "continued_prompt_title": continued_prompt_title, "continued_prev_data_prompt": continued_prev_data_prompt, "continued_new_text_prompt": continued_new_text_prompt, "continued_output_prompt": continued_output_prompt, "keywords": ["multi-day", "gather information about a trip", "Be informative and succinct"]} elif style == 'bizanalytics': prompt_title = "You are trying to help an analyst appraise businesses and gather information from business news. Convert the following text snippets to structured data.\n" input_prompt = "Text: " output_prompt = "\n\nOutput, possible fields include {Main company/ies, Business/service, Valuation, Product, Features, Pricing, Investors, Business decisions/events, Area, Personnel, Challenges}:\n" example_pairs = [ ['''On-demand shuttle and software company Via has raised another $130 million, capital that has pushed its valuation to about $3.3 billion as demand from cities to update its legacy transit systems rises. The round was led by Janus Henderson with participation from funds and accounts managed by BlackRock, ION Crossover Partners, Koch Disruptive Technologies and existing investor Exor. To date, the company has raised $800 million. Via, which today employs about 950 people, has two sides to its business. The company operates consumer-facing shuttles in Washington, D.C. and New York. Its underlying software platform, which it sells to cities, transportation authorities, school districts and universities to deploy their own shuttles, is not only the core of its business; it has become the primary driver of growth. Co-founder and CEO Daniel Ramot previously told TechCrunch that there was was little interest from cities in the software-as-a-service platform when the company first launched in 2012. Via landed its first city partnership with Austin in late 2017, after providing the platform to the transit authority for free. It was enough to allow Via to develop case studies and convince other cities to buy into the service. In 2019, the partnerships side of the business “took off,” Ramot said in an interview last year. Today, the software side — branded internally as TransitTech — has eclipsed its consumer-facing operations. Via said TransitTech revenue more than doubled year on year to exceed an annual run rate of $100 million. The software platform is used by more than 500 partners, including Los Angeles Metro. Jersey City and Miami in the United States as well as Arriva Bus UK, a Deutsche Bahn company that uses it for a first and last-mile service connecting commuters to a high-speed train station in Kent, U.K. Via doesn’t provide specifics on what it plans to use the funds for. The company has made two acquisitions in the past 18 months, including Fleetonomy in 2020. Earlier this year, Via used $100 million in cash and equity to acquire a company called RemixCorpTM, a startup that developed mapping software used by cities for transportation planning and street design. The startup became a subsidiary of Via, an arrangement that will let the startup maintain its independent brand.\n\n''', '''Main company: Via Business/service: On-demand shuttle, software-as-a-service Since: 2012 Total funding: $800M Valuation: $3.3B Revenue: Doubling YOY Investors: Janus Henderson, BlackRock, ION Crossover Partners, Koch Disruptive Technologies, Exor Geography: Washington, D.C., New York, Austin, Los Angeles Metro, Jersey City, Miami, Arriva Bus UK Clients: over 500 Personnel: Daniel Ramot | CEO Employees | 950 Business decisions: Type | Details Funding round | $130M Acquired Fleetonomy | 2020 Acquired RemixCorpTM | $100M, cash and equity, mapping software''' ], ] keywords = ['Via', 'Daniel Ramot', 'Fleetonomy', 'RemixCorpTM', 'Los Angeles Metro', 'Arriva Bus UK','Deutsche Bahn', 'Janus Henderson', 'BlackRock', 'ION Crossover Partners', 'Koch Disruptive Technologies', 'Exor'] continued_prompt_dict = None elif style == 'spaper': prompt_title = "You are trying to help an academic researcher to quickly understand the key points of a scientific paper. In the following, convert each text snippet to structured data.\n" input_prompt = "Text: " output_prompt = "\n\nOutput, possible fields {Scientific field, Background, Novelty, Conclusions/Key takeaways, Methods}:\n" example_pairs = [ ['''Ultra-diffuse galaxies that contain a large sample of globular clusters (GCs) offer an opportunity to test the predictions of galactic dynamics theory. NGC5846-UDG1 is an excellent example, with a high-quality sample of dozens of GC candidates. We show that the observed distribution of GCs in NGC5846-UDG1 is suggestive of mass segregation induced by gravitational dynamical friction. We present simple analytic calculations, backed by a series of numerical simulations, that naturally explain the observed present-day pattern of GC masses and radial positions. Subject to some assumptions on the GC population at birth, the analysis supports the possibility that NGC5846-UDG1 resides in a massive dark matter halo. This is an example for the use of GC-rich systems as dynamical (in addition to kinematical) tracers of dark matter.\n\n''' , '''Scientific field: Galaxies, globular clusters, dark matter Background: Ultra-diffuse galaxies that contain a large sample of globular clusters (GCs) offer an opportunity to test the predictions of galactic dynamics theory. NGC5846-UDG1 is an excellent example, with a high-quality sample of dozens of GC candidates. Novelty: NGC5846-UDG1 has a high-quality sample of dozens of GC candidates and dynamical friction is likely effective in the galaxy Main conclusion: NGC5846-UDG1 is an example for the use of GC-rich systems as dynamical (in addition to kinematical) tracers of dark matter Methods: simple analytic calculations, numerical simulations''']] keywords = ['NGC5846-UDG1', 'galaxies', 'globular clusters', 'dark matter', 'dynamical friction'] continued_prompt_dict = None elif style == 'spaper_variant': prompt_title = "You are trying to help an academic researcher to quickly understand the key points of a scientific paper. In the following, convert each text snippet to structured data.\n" input_prompt = "Text: " output_prompt = "\n\nOutput, possible fields {Scientific field, Background, Novelty, Conclusions/Key takeaways, Methods}:\n" example_pairs = [ ['''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. We implement sequence ordering by using fixed positional encodings. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.\n\n''' , '''Scientific field: Neural networks, machine translation Background: The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. Novelty: We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Key achievements: Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task and 41.8 on the WMT 2014 English-to-French translation task, establishing a new single-model state-of-the-art BLEU score. The model generalizes well to other tasks and can be trained relatively fast. Methods: Attention mechanism, fixed positional encodings, performance on language tasks''']] keywords = ['attention mechanism', 'Attention mechanism', 'BLEU', 'German', 'neural', 'convolutions', 'Transformer', 'positional encodings'] continued_prompt_dict = None elif style == 'generic': prompt_title = "You are trying to help a layperson get a summary with the main background required to understand the following text and the main conclusions that stem from it. The summary should not exceed 8 sentences.\n" input_prompt = "Text: " output_prompt = "\n\nSummary:\n" example_pairs = [] keywords = ['exceed 8 sentences'] continued_prompt_dict = None elif style == BULLETS_GENERIC_STYLE_NAME: prompt_title = "Summarize the following text into bullet points. Try to make the bullet points progress in logic, i.e. background would appear before conclusions. Be informative and succinct.\n" input_prompt = "Text: " output_prompt = "\n\nBullet points:\n" example_pairs = [] keywords = ['into bullet points', 'progress in logic'] continued_prompt_title = "You help a user get the essence of a body of text. You are given the bullet points collected so far and a relevant body of text. You need to use the text to add details and expand the bullet points and output the revised bullet points. Try to make the bullet points progress in logic, i.e. background would appear before conclusions. Be informative and succinct. If the new text does not appear to be relevant, you can ignore it and output the previous bullet points." continued_prev_data_prompt = "\n\nPrevious bullet points:\n" continued_new_text_prompt = "\n\nNew text:\n" continued_output_prompt = "\n\nRevised bullet points:\n" continued_prompt_dict = { "continued_prompt_title": continued_prompt_title, "continued_prev_data_prompt": continued_prev_data_prompt, "continued_new_text_prompt": continued_new_text_prompt, "continued_output_prompt": continued_output_prompt, "keywords": ["get the essence of a body", "You are given the bullet points", "Be informative and succinct"]} elif style == 'criticizepaper': prompt_title = "You are helping a reviewer review a scientific paper. You are given an excerpt from a paper with the purpose of finding flaws in logic, execution, etc. Summarize your report in bullet points. Try to support your criticism with quotes from the text. If you can't find flaws, do not say any.\n" input_prompt = "Paper excerpt: " output_prompt = "\n\nCritical review of flaws in the paper:\n" example_pairs = [] keywords = [] continued_prompt_dict = None elif style == 'explain': prompt_title = 'You are helping someone read complicated text. Given some text, do your best to explain the text in simple terms. Do not drop key aspects of the text.' input_prompt = 'Text: ' output_prompt = '\n\nExplanation:\n' example_pairs = [] keywords = [] continued_prompt_dict = None elif style == 'tabularize': prompt_title = 'You are helping parse textual data into a table. The table cells should be separated by \'|\' and new lines.' input_prompt = 'Text: ' output_prompt = '\n\nTable:\n' example_pairs = [ ['''Above limb I(195.12 Å) (arcsec) erg cm2s−1sr−1 I-P P 0.00 52.45 164.67 1.00 62.02 235.34 2.00 69.19 338.49 3.00 75.52 466.16\n\n''' , '''Above limb | I(195.12 Å) | (arcsec) | erg cm2s−1sr−1 | | I-P | P 0.00 | 52.45 | 164.67 1.00 | 62.02 | 235.34 2.00 | 69.19 | 338.49 3.00 | 75.52 | 466.16 ''']] keywords = ['parse textual data', 'table cells should be separated by \'|\''] continued_prompt_dict = None else: raise ValueError(f"style {style} not supported") examples = [input_prompt + example_pair[0] + output_prompt + example_pair[1] for example_pair in example_pairs] return prompt_title, input_prompt, output_prompt, examples, example_pairs, keywords, continued_prompt_dict def hijack_and_bad_quality_check(coarse_text: str, response_text: str, keywords: list): ''' if any of the keywords is not in the coarse_text but is in the response_text, then the response_text is hijacked or copied from the examples and should be discarded. Returns '' if the query is hijacked or copied from the examples, otherwise returns the response_text ''' for keyword in keywords: if keyword in response_text and keyword not in coarse_text: print('SEEMS TO BE HIJACKED OR COPIED FROM THE EXAMPLES') print(response_text) return True return False def gpt_response_to_clean_text(response, model): response_text = '' if model == 'text-davinci-003' or model == 'text-curie-001': response_text = response['choices'][0].text response_text = re.sub(r'\n{2,}', '\n', response_text) response_text = response_text.strip() elif model == "gpt-3.5-turbo" or model == "gpt-4": response_text = response["choices"][-1]["message"]["content"] response_text = re.sub(r'\n{2,}', '\n', response_text) response_text = response_text.strip() return response_text @retry(exceptions=openai.error.Timeout, tries=4) def gpt_completion(query_to_model, max_tokens=768, model='text-davinci-003', prev_msgs=[]): if model == 'text-davinci-003' or model == 'text-curie-001': print('Operating on ' + model) return openai.Completion.create( model=model, prompt=query_to_model, temperature=0.7, max_tokens=max_tokens, top_p=1, frequency_penalty=0, presence_penalty=0, best_of=1, request_timeout=COMPLETION_TIMEOUT) elif model == "gpt-3.5-turbo" or model == "gpt-4": print('Operating on ' + model) new_msgs = prev_msgs + [{"role": "user", "content": query_to_model}] if query_to_model != '' else prev_msgs if azure_flag: print('Using Azure completion') return openai.ChatCompletion.create( engine="essence-gpt35turbo", messages=new_msgs) else: return openai.ChatCompletion.create( model=model, messages=new_msgs, request_timeout=COMPLETION_TIMEOUT) return None def get_gpt_response(prompt, coarse_text, output_prompt, keywords, model, initial_char_index=0, final_char_index=10000, max_tokens=768): final_char_index = min(final_char_index, len(coarse_text)) successful_response = False number_of_attemps = 0 while not successful_response and number_of_attemps < max_req_to_server and final_char_index > initial_char_index: number_of_attemps += 1 text_to_decode = coarse_text[initial_char_index:final_char_index] # limit the text, since models are limited to 4k tokens query_to_model = prompt + text_to_decode + output_prompt try: response = gpt_completion(query_to_model, max_tokens=max_tokens, model=model) response_text = gpt_response_to_clean_text(response, model) successful_response = True except openai.error.Timeout: time.sleep(0.3) print('BIG Timeout. Trying again.') continue except Exception as e: print(e) final_char_index -= CHARS_TO_DECREASE_ON_DECLINE print('Decreasing amount of tokens. New final_char_index: ', final_char_index) time.sleep(0.3) # wait a little, to not to overquery the API if number_of_attemps == max_req_to_server: return False, 'ERROR: Server encountered problems or query is long.', 0 if final_char_index < initial_char_index: return False, 'ERROR: Processing failed.', 0 if (keywords is not None) and hijack_and_bad_quality_check(coarse_text, response_text, keywords): raise Exception('Hijacked') return True, response_text, final_char_index def get_gpt_summary(coarse_text, style='travel', max_char_length=10000, model='text-davinci-003', backwards_chars=0): """Get a summary based on GPT-3 API. coarse_text: text to be parsed by GPT-3 style: style of the text, e.g. 'travel' final_char_index: index of the last character of coarse_text to be processed by GPT-3 The prompts are defined in get_gpt_prompt(style) function. """ try: prompt_title, input_prompt, output_prompt, examples, example_pairs, keywords, continued_prompt_dict = get_gpt_prompt(style=style) except ValueError as e: print(e) return '', 0 gpt_credits = 1 # single pass print('First pass... ' + str(len(coarse_text))) success_flag, response_text, actual_final_char_index = get_gpt_response( prompt_title + ''.join(examples) + input_prompt, coarse_text, output_prompt, keywords, model, initial_char_index=0, final_char_index=max_char_length) # multiple passes if (continued_prompt_dict is not None) and success_flag and (actual_final_char_index < len(coarse_text)): gpt_credits += 1 passes = 1 while success_flag and (actual_final_char_index < len(coarse_text)) and passes < MAX_GPT_PASSES: print('Continuing with the next pass...') success_flag, response_text, actual_final_char_index = get_gpt_response( continued_prompt_dict["continued_prompt_title"] + continued_prompt_dict["continued_prev_data_prompt"] + response_text + continued_prompt_dict["continued_new_text_prompt"], coarse_text, continued_prompt_dict['continued_output_prompt'], continued_prompt_dict['keywords'], model, initial_char_index=actual_final_char_index - backwards_chars, final_char_index=actual_final_char_index + max_char_length - backwards_chars, max_tokens=MULTIPLE_PASSES_MAX_TOKENS) passes += 1 return response_text, gpt_credits def get_title_for_entry(coarse_text, query_to_model='', model='gpt-3.5-turbo') -> str: """ Get a title of the entry from the text. coarse_text: text to be processed by a title-generating-model model: model to be used by OpenAI API (currently we only use OpenAI, but other models can be used) """ # We prompt the model with the very beginning of the text, assuming that the title is there # We do not supply the model with any examples, to remain agnostic to the style if query_to_model == '': query_to_model = "Summarize this text to something that can serve as a title that labels the text.\nText:\n" + coarse_text[0:300] + "\nTitle:" successful_flag = False number_of_attempts = 0 while (not successful_flag) and number_of_attempts < 5: try: response = gpt_completion(query_to_model, max_tokens=64, model=model) successful_flag = True response_text = gpt_response_to_clean_text(response, model) except Exception as e: print(e) number_of_attempts += 1 time.sleep(0.5) if not successful_flag: response_text = 'ERROR OCCURRED' # some specific cleanings for title generation response_text = response_text.replace('"', '') # remove quotes, since they sometimes come up as wrapping of the title in the output if response_text[-1] == '.': response_text = response_text[:-1] # remove '.' in the end of response_text if exists return response_text def process_url(request_dict, data_path, max_char_length=1000, model='text-davinci-003'): """Process URL and return structured data. request_dict: dictionary with the following keys: URL: URL of the web page style: style of the web page max_char_length: denotes how many leading characters of the text to be processed by GPT-3 Default value of 1000 for development purposes, since GPT-3 is expensive The function defines a failed output by default, and updates it if the processing is successful. """ output = { 'URL': request_dict['URL'] if 'URL' in request_dict else '', 'style': request_dict['style'] if 'style' in request_dict else '', 'output': '', 'status': 'FAILED'} # get the URL url = request_dict['URL'] if 'URL' in request_dict else '' # check validity of url if url == '': output['output'] = 'ERROR: no URL provided.' return output # get the style style = request_dict['style'] if 'style' in request_dict else '' if 'is_marked_text' in request_dict and request_dict['is_marked_text']: # we use the marked text by the user, instead of scraping the URL if 'marked_text' not in request_dict: output['output'] = 'ERROR: marked text not provided.' return output request_dict['marked_text'] = nlp_utils.clean_marked_text(request_dict['marked_text']) if len(request_dict['marked_text']) < MIN_MARKED_TEXT_LENGTH: output['output'] = 'ERROR: marked text too short.' return output coarse_text = request_dict['marked_text'] original_url_webpage = request_dict['marked_text'] elif 'is_marked_text' not in request_dict or not request_dict['is_marked_text']: # get the text from the URL - or - if supplied, from the HTML. # original_url_webpage is simply the downloaded webpage # coarse_text is the text to be processed by GPT-3, after it was processed by a cleaning backend # such as jusText or Trafilatura if request_dict['web_html'] == '': coarse_text, original_url_webpage = scraping_utils.url_to_text(url, data_path) else: coarse_text, original_url_webpage = scraping_utils.html_to_text(request_dict['web_html']) if coarse_text == '': output['output'] = 'ERROR: time-out or problem cleaning the webpage. Try marking the text you\'re interested in and click the Brush button to Process that text in particular.' return output # We previously limited the use to English only. For not we allow all languages. if False: # nlp_utils.text_not_in_english(coarse_text): output['output'] = 'ERROR: We currently only support English.' return output # Get the structured data from GPT-3 try: response, gpt_credits = get_gpt_summary(coarse_text, style=style, max_char_length=max_char_length, model=model) except Exception as e: if 'Hijacked' in str(e): print('Hijacked error occured. Trying again with variant if exists.') try: response, gpt_credits = get_gpt_summary(coarse_text, style=style + '_variant', max_char_length=max_char_length, model=model) except Exception as e: print('Some error occured on second try. Error: ', e) response, gpt_credits = '', 0 else: response, gpt_credits = '', 0 if response == '': output['output'] = 'ERROR: problem occured. Try changing the style or shorten the text.' return output elif response.startswith('ERROR'): output['output'] = response return output # convert the structured data to a dictionary output["model_output"] = response output["output"] = parse_gpt_response(output["model_output"], style=style) output["title"] = get_title_for_entry(coarse_text) output["cleaned_text"] = coarse_text output["original_web"] = original_url_webpage output["marked_text"] = request_dict["marked_text"] if 'marked_text' in request_dict else '' output["status"] = "SUCCESS" output["gpt_credits"] = gpt_credits return output def promptize_qa_list(qa_list, max_prev_questions=2): """Promptize the list of questions and answers. qa_list: list of tuples (question, answer) max_prev_questions: maximum number of previous questions to include in the prompt """ prompt = '' for i in range(min(max_prev_questions, len(qa_list))): question, answer = qa_list[-1-i][:2] prompt = f'Question: {question}\nAnswer: {answer}\n{prompt}' return prompt def get_gpt_answer_to_question(question: str, snippets: list[str], qa_list, text, model=qa_model) -> str: """Get response from GPT-3 API. question: to be answered using the snippets snippets: list of strings that likely contain the answer to the question The question is put together with the snippets and a prompt, and is sent to GPT3. Note: may consider a cheaper model (next cheaper OpenAI: text-curie-001. Can also consider open-source model) """ ''' After launching, we see that the use case is a little different than what we had in mind. Users like to use the chat as ChatGPT rather than asking questions about the text. We therefore implement the following change: when the text is sufficiently short, we feed it directly to the model, without selecting text based on embeddings. ''' language = nlp_utils.detect_language(text) # either 'en' or not for now (3/4/2023) if (len(text) < 9500 and language == 'en') or (len(text) < 5600): print('Asking question directly to model, as text is short.') response_text = chat_question(question, qa_list, context_text=text, model=model) return response_text, '' #prompt_title = '''You are trying to help a user get an answer to a question based on a document. You are given the question, the first 1000 characters of the text for context and several possibly relevant snippets of text that may contain (or may not) the answer. If the snippets do not contain the answer but you know the answer regardless of them - give the answer, but admit that it is not based on the document (adding \"(not based on the document)\"). If you're not sure about the answer, refuse to give an answer and admit that you're not sure, but again - if you know the answer from elsewhere - say it. Be concise, informative and give only the answer to the question.''' prompt_title = '''You are trying to help a user get an answer to a question based on a document. You are given the question, the first 1000 characters of the text for context and several possibly relevant snippets of text that may contain (or may not) the answer. If you are not sure what is the answer, say you're not sure. Be concise, informative and give only the answer to the question.''' prompt_title_w_prev_qa = '''You are trying to help a user get an answer to a question. You are given previous answered questions, the new question and several sentences or snippets of text that may contain (or may not) the answer. Try to give the answer to the question. If you are not absolutely sure, say you're not sure. Be concise.''' previous_questions_answers_prompt = promptize_qa_list(qa_list) question = question.strip() question = question[0].upper() + question[1:] # capitalize the first letter of the question if question[-1] != '?': question += '?' output_prompt = 'Answer (either based on the snippets or not):' successful_response = False number_of_snippets = len(snippets) print('Number of snippets: ', number_of_snippets) while not successful_response and number_of_snippets > 0: text_to_decode = [snip + '\n' for snip in snippets[:number_of_snippets]] query_to_model = prompt_title + "\n" + question + '\n' + 'Context:\n' + text[0:1000] + '\nSnippets:\n' + ''.join(text_to_decode) + output_prompt + "\n" # print(query_to_model[:100]) print('query to model ###########################') print(query_to_model) try: response = gpt_completion(query_to_model, max_tokens=512, model=model) successful_response = True except Exception as e: print(e) print('Decreasing amount of candidate snippets.') number_of_snippets -= 1 if number_of_snippets == 0: return 'ERROR: Candidate answer snippets are too long.', '' response_text = gpt_response_to_clean_text(response, model) return response_text, query_to_model def qa_about_text(question: str, text: str, url: str, qa_list, top=6, sigma=1, top_answers=4, compact_sentences=5): """Get answer to a question about a text. question: to be answered using the text text: text to be used for answering the question url: url of the text (for embedding caching purposes) top: number of top similar sentences to use for generating the answer sigma: number of sentences around the top similar sentences to use for generating the answer top_answers: number of top answers to return """ try: cosine_similarities, sentences, embeddings_a, embeddings_q = nlp_utils.get_embeddings(question, text, url, backend="openai", compact_sentences=compact_sentences) # nlp_utils.get_embeddings_qa(question, text) print('Got embeddings.') except Exception as e: print(e) return 'ERROR: problem occured. Try again or try selecting another text.', None, None top = min(top, len(sentences)) ''' After getting question-sentence similarities there are a few options 1) pick top similar sentences 2) pick top similar sentences and a few sentences around them (sigma) 3) something else (?) We pick first option for now. Then, we ask GPT3 to generate an answer to the question based on the similar sentences ''' # get top_answers sentences whose cosine_similarities is largest but their length is larger than 10 characters for i in range(len(cosine_similarities)): if len(sentences[i]) < 10: cosine_similarities[i] = 0 top_sentences_locations = np.argsort(cosine_similarities)[-top:] sentences_islands = nlp_utils.find_islands(top_sentences_locations, sigma=sigma, length=len(sentences)) top_sentences = [str(j+1) + '. ' + ' '.join([sentences[i] for i in island]) for j, island in enumerate(sentences_islands)] top_sentences = [sent.replace('\n', ' ') for sent in top_sentences] top_sentences = [re.sub(r'\s{2,}', ' ', sent) for sent in top_sentences] response_text, query_to_model = get_gpt_answer_to_question(question, top_sentences, qa_list, text) response_text = response_text.strip() # basic cleaning supporting_sentences = nlp_utils.get_supporting_sentences(sentences_islands, embeddings_a, response_text, sentences, top_answers) supporting_quote = '...' + '... '.join(supporting_sentences) + '...' # replace \n in supporting_quote with space supporting_quote = supporting_quote.replace('\n', ' ') # replace multiple spaces with one space supporting_quote = re.sub(r'\s{2,}', ' ', supporting_quote) return response_text, query_to_model, supporting_quote def prepare_qa_for_chat(question, answer): if question.startswith('/chat '): question = question[5:] else: question = question + '\n(Based on an attached document - redacted)' return question, answer def chat_question(question, qa_list, context_text='', model="gpt-3.5-turbo"): prev_msgs = [] for qa in qa_list: prev_question, prev_answer = qa[:2] prev_question, prev_answer = prepare_qa_for_chat(prev_question, prev_answer) prev_msgs.append({"role": "user", "content": prev_question}) prev_msgs.append({"role": "assistant", "content": prev_answer}) if context_text == '': query = question else: query = question + '\nContext text:\n' + context_text prev_msgs.append({"role": "user", "content": query}) try: response = gpt_completion('', max_tokens=768, model='gpt-3.5-turbo', prev_msgs=prev_msgs) except Exception as e: print(e) return 'ERROR: problem occured. Try again or try selecting another text.' if 'choices' not in response: return 'ERROR: problem occured. Try again or try selecting another text.' answer = response['choices'][0]['message']['content'] answer = answer.strip() return answer
[ "\n\nSummary:\n", "\n\nCritical review of flaws in the paper:\n", "None", "You are trying to help an analyst appraise businesses and gather information from business news. Convert the following text snippets to structured data.\n", "Text: ", "\n\nBullet points:\n", "Answer (either based on the snippets or not):", "Question: PLACEHOLDER\nAnswer: PLACEHOLDER\nPLACEHOLDER", "You help a user get the essence of a body of text. You are given the bullet points collected so far and a relevant body of text. You need to use the text to add details and expand the bullet points and output the revised bullet points. Try to make the bullet points progress in logic, i.e. background would appear before conclusions. Be informative and succinct. If the new text does not appear to be relevant, you can ignore it and output the previous bullet points.", "\n\nTable:\n", "You help a traveler design a multi-day or multi-destination itinerary and gather information about a trip. Convert the blog entries to structured data. When writing a table, put different destinations or activities in separate rows.\n", "\n\nNew text:\n", "\n\nOutput, possible fields {Activity name, Accommodation, Eating, Transportation, Best Seasons, Preparation, Budget, Itinerary table}:\n", "{'continued_prompt_title': PLACEHOLDER, 'continued_prev_data_prompt': PLACEHOLDER, 'continued_new_text_prompt': PLACEHOLDER, 'continued_output_prompt': PLACEHOLDER, 'keywords': ['get the essence of a body', 'You are given the bullet points', 'Be informative and succinct']}", "\n\nExplanation:\n", "\n\nOutput, possible fields include {Main company/ies, Business/service, Valuation, Product, Features, Pricing, Investors, Business decisions/events, Area, Personnel, Challenges}:\n", "You are trying to help an academic researcher to quickly understand the key points of a scientific paper. In the following, convert each text snippet to structured data.\n", "\n\nRevised bullet points:\n", "You are helping a reviewer review a scientific paper. You are given an excerpt from a paper with the purpose of finding flaws in logic, execution, etc. Summarize your report in bullet points. Try to support your criticism with quotes from the text. If you can't find flaws, do not say any.\n", "\n\nOutput, possible fields {Scientific field, Background, Novelty, Conclusions/Key takeaways, Methods}:\n", "You are trying to help a user get an answer to a question. You are given previous answered questions, the new question and several sentences or snippets of text that may contain (or may not) the answer. Try to give the answer to the question. If you are not absolutely sure, say you're not sure. Be concise.", "Paper excerpt: ", "\n\nPrevious bullet points:\n", "\n\nPrevious data:\n", "You are trying to help a layperson get a summary with the main background required to understand the following text and the main conclusions that stem from it. The summary should not exceed 8 sentences.\n", "{'continued_prompt_title': PLACEHOLDER, 'continued_prev_data_prompt': PLACEHOLDER, 'continued_new_text_prompt': PLACEHOLDER, 'continued_output_prompt': PLACEHOLDER, 'keywords': ['multi-day', 'gather information about a trip', 'Be informative and succinct']}", "You are helping parse textual data into a table. The table cells should be separated by '|' and new lines.", "\n\nRevised data:\n", "Summarize the following text into bullet points. Try to make the bullet points progress in logic, i.e. background would appear before conclusions. Be informative and succinct.\n", "You are trying to help a user get an answer to a question based on a document. You are given the question, the first 1000 characters of the text for context and several possibly relevant snippets of text that may contain (or may not) the answer. If you are not sure what is the answer, say you're not sure. Be concise, informative and give only the answer to the question.", "You help a traveler design a multi-day or multi-destination itinerary and gather information about a trip. You are given the data collected so far and a relevant body of text. You need to use the text to add details and expand the data and output the revised data in the same format. Be informative and succinct.\n", "You are helping someone read complicated text. Given some text, do your best to explain the text in simple terms. Do not drop key aspects of the text." ]
2024-01-10
bnitsan/essence_backend
server_src~embed_utils.py
class EmbedUtils: def __init__(self): import openai openai.api_type = 'openai' def embed(self, input): import openai print(openai.api_type) openai.Embedding.create(input, model='ada-002') embed_utils = EmbedUtils()
[]
2024-01-10
bnitsan/essence_backend
server_src~nlp_utils.py
from sklearn.metrics.pairwise import cosine_similarity import nltk from langdetect import detect from nltk.tokenize import sent_tokenize import requests import numpy as np import os import yaml from cachelib.file import FileSystemCache import hashlib import re from . import general_utils from retry import retry import openai as openaiembed with open("server_src/config.yml", 'r') as ymlfile: cfg = yaml.load(ymlfile, Loader=yaml.FullLoader) cfg = cfg["config"] SENT_TOKEN_PROTECTED = cfg["SENT_TOKEN_PROTECTED"] MIN_SENTENCE_LEN_QA_EMBED = cfg["MIN_SENTENCE_LEN_QA_EMBED"] MAX_SENTENCE_LEN_QA_EMBED = cfg["MAX_SENTENCE_LEN_QA_EMBED"] SENTENCE_QA_EMBED_MODEL = cfg["SENTENCE_QA_EMBED_MODEL"] CACHE_QA_SECONDS = cfg["CACHE_QA_SECONDS"] CACHE_QA_THRESHOLD = cfg["CACHE_QA_THRESHOLD"] INF_ENDPOINT_SENT_TRANS = cfg["INF_ENDPOINT_SENT_TRANS"] COMPLETION_TIMEOUT = cfg["COMPLETION_TIMEOUT"] SECRET_SENTEMBED_KEY = os.getenv("SECRET_HF_MODEL_KEY") if os.getenv("SECRET_HF_MODEL_KEY") else '' data_path = os.path.abspath(os.path.join(os.getcwd(), os.pardir, 'data')) # get absolute path to one folder up if os.getenv("ESSENCE_DATA_PATH"): data_path = os.getenv("ESSENCE_DATA_PATH") embed_cache = FileSystemCache(os.path.join(data_path, 'embed_cache'), threshold=CACHE_QA_THRESHOLD, default_timeout=CACHE_QA_SECONDS) OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") openaiembed.api_key = OPENAI_API_KEY openaiembed.api_type = 'openai' azure_flag = False if os.getenv("AZURE_OPENAI_KEY") and os.getenv("AZURE_OPENAI_ENDPOINT"): openaiembed.api_type = "azure" openaiembed.api_base = os.getenv("AZURE_OPENAI_ENDPOINT") openaiembed.api_version = "2023-05-15" openaiembed.api_key = os.getenv("AZURE_OPENAI_KEY") azure_flag = True def hash_text(text): sha256 = hashlib.sha256() sha256.update(text.encode()) return sha256.hexdigest() def find_islands(indices, sigma: int, length: int): ''' This function takes indices that list to locations of the top sentences fitting the query. It also takes sigma, a maximum distance around an index that should be included in the island. When islands touch or overlap, they are merged into one island. length: maximal index value + 1 ''' if not isinstance(sigma, int) or sigma < 0: raise ValueError('sigma must be a non-negative integer') if len(indices) < 1: return [] indices.sort() islands = [[i for i in range(indices[0]-sigma, indices[0]+sigma+1) if (i >= 0 and i < length)]] for j in range(1, len(indices)): if indices[j] - indices[j-1] <= (2*sigma+1): islands[-1].extend([i for i in range(islands[-1][-1]+1, indices[j]+sigma+1) if (i >= 0 and i < length)]) else: islands.append([i for i in range(indices[j]-sigma, indices[j]+sigma+1) if (i >= 0 and i < length)]) return islands def post_request(url, data): response_post = requests.post(url, json=data) return response_post.json() def multiple_replace(text: str, replacements: dict) -> str: ''' Thanks ChatGPT for this function! Replace multiple substrings of a string with another substring. replacements is a dictionary of {str_to_find: str_to_replace_with} ''' # Compile a regular expression pattern that matches all the substrings # to be replaced and capture them as groups pattern = re.compile("|".join("(%s)" % re.escape(key) for key in replacements.keys())) # Use the sub function to replace all the occurrences of the captured groups # in the text with their corresponding replacements return pattern.sub(lambda x: replacements[x.group(0)], text) def prepare_text_for_sent_split(text): pairs = {'Fig.': 'Figure', 'FIG.': 'Figure', 'Figs.': 'Figures', 'FIGS.': 'Figures', 'Sec.': 'Section', 'SEC.': 'Section', 'Secs.': 'Sections', 'SECS.': 'Sections', 'Eq.': 'Equation', 'EQ.': 'Equation', 'Eqs.': 'Equations', 'EQS.': 'Equations', 'Ref.': 'Reference', 'REF.': 'Reference', 'Refs.': 'References', 'REFS.': 'References', 'in App.': 'in Appendix', 'In App.': 'In Appendix', 'in APP.': 'in Appendix', 'In APP.': 'In Appendix'} text = multiple_replace(text, pairs) text = multiple_replace(text, SENT_TOKEN_PROTECTED) return text def rerun_text_after_sent_split(sentences): SENT_TOKEN_PROTECTED_INV = {v: k for k, v in SENT_TOKEN_PROTECTED.items()} sentences = [multiple_replace(sentence, SENT_TOKEN_PROTECTED_INV) for sentence in sentences] return sentences def quality_assurance_sentences(sentences, min_sentence_length=MIN_SENTENCE_LEN_QA_EMBED, max_sentence_length=MAX_SENTENCE_LEN_QA_EMBED): return [sentence for sentence in sentences if len(sentence) >= min_sentence_length and len(sentence) <= 2000] def set_embed(id: str, text: str, backend: str, embeddings: list): embed_cache.add(id, {"text": text, "backend": backend, "embeddings": embeddings}) def get_embed_if_exists(id: str, text: str, backend: str): if embed_cache.has(id): elem = embed_cache.get(id) if elem["text"] == text and elem["backend"] == backend: print('Going to use cached embeddings...') return elem["embeddings"] return None @retry(exceptions=openaiembed.error.Timeout, tries=4) def OpenAIEmbeddings(input, model=SENTENCE_QA_EMBED_MODEL): if azure_flag: print('Using Azure OpenAI...') if len(input) == 1: openai_embeddings = openaiembed.Embedding.create(input=input, engine="essence-embed") else: # Azure OpenAI, as of May 22, 2023, does not support batch embeddings. Sad. openai_embeddings = {} openai_embeddings["data"] = [] for i in range(len(input)): openai_embeddings["data"].append(openaiembed.Embedding.create(input=[input[i]], engine="essence-embed")["data"][0]) return openai_embeddings else: print('Using OpenAI... with model: ' + model) openai_embeddings = openaiembed.Embedding.create(input=input, model=model, request_timeout=COMPLETION_TIMEOUT) print('Finished.') return openai_embeddings def get_single_embedding(string, backend="openai"): if backend == "sent_trans": response = post_request(INF_ENDPOINT_SENT_TRANS + '/predict', {'sentences': [string], 'secret_key': SECRET_SENTEMBED_KEY}) embedding = response["embeddings"] elif backend == "openai": openai_embeddings = OpenAIEmbeddings([string], model=SENTENCE_QA_EMBED_MODEL) # openai.Embedding.create(input = [string], model=SENTENCE_QA_EMBED_MODEL) embeddings = openai_embeddings["data"][0]["embedding"] embedding = [embeddings] else: raise ValueError('backend not supported') return embedding def get_embeddings_similarity(emb1, emb2): cosine_sim = cosine_similarity(emb1, emb2).flatten().tolist() return cosine_sim def combine_strings(l, m): print('Shortening the text by combining sentences... m =', m) if m < 2: return l result = [] for i in range(0, len(l), m): combined = ' '.join(l[i:i + m]) result.append(combined) return result # @general_utils.retry_on_timeout(retries=3, timeout_seconds=15) def get_embeddings(question: str, text: str, url:str, backend="openai", max_sentences=100, compact_sentences=1): text = prepare_text_for_sent_split(text) sentences = sent_tokenize(text) sentences = rerun_text_after_sent_split(sentences) sentences = quality_assurance_sentences(sentences) if compact_sentences > 1: sentences = combine_strings(sentences, compact_sentences) # we'd like to reduce the number of sentences to max_sentences. We do it by batching to nearest power of 2. # sentences = combine_strings(sentences, 2 ** int(np.floor(np.log2(len(sentences) / max_sentences)))) # currently inactive. if len(sentences) == 0: print('ERROR: NO SENTENCES FOUND IN THE TEXT.') raise ValueError('No sentences found in text.') if backend == "sent_trans": response_q = post_request(INF_ENDPOINT_SENT_TRANS + '/predict', {'sentences': [question], 'secret_key': SECRET_SENTEMBED_KEY}) embeddings_q = response_q["embeddings"] cache_embed_response = get_embed_if_exists(url + hash_text(text), text, backend) if cache_embed_response is not None: embeddings_a = cache_embed_response else: response_a = post_request(INF_ENDPOINT_SENT_TRANS + '/predict', {'sentences': sentences, 'secret_key': SECRET_SENTEMBED_KEY}) embeddings_a = response_a["embeddings"] set_embed(url + hash_text(text), text, backend, embeddings_a) elif backend == "openai": print('Going to use OpenAI embeddings...') openai_embeddings_q = OpenAIEmbeddings([question], model=SENTENCE_QA_EMBED_MODEL) if "data" not in openai_embeddings_q: print('ERROR: OPENAI EMBEDDINGS API FAILED.') raise ValueError('OpenAI Embeddings API failed.') embeddings_q = openai_embeddings_q["data"][0]["embedding"] embeddings_q = [embeddings_q] cache_embed_response = get_embed_if_exists(url + hash_text(text), text, backend) if cache_embed_response is not None: embeddings_a = cache_embed_response else: openai_embeddings_a = OpenAIEmbeddings(sentences, model=SENTENCE_QA_EMBED_MODEL) if "data" not in openai_embeddings_q: raise ValueError('OpenAI Embeddings API failed.') embeddings_a = [openai_embeddings_a["data"][i]["embedding"] for i in range(len(sentences))] set_embed(url + hash_text(text), text, backend, embeddings_a) else: raise ValueError('backend not supported') cosine_sim = get_embeddings_similarity(embeddings_q, embeddings_a) return cosine_sim, sentences, embeddings_a, embeddings_q def get_most_matching_sentences_to_answer(answer: str, embeddings, top=4): answer_embeddings = get_single_embedding(answer) similarities = get_embeddings_similarity(answer_embeddings, embeddings) return similarities def get_supporting_sentences(sentences_islands, embeddings_a, answer, sentences, top_answers): candidate_sentences_locs = [i for island in sentences_islands for i in island] candidate_embeddings = [embeddings_a[i] for i in candidate_sentences_locs] cosine_sim_answer = get_most_matching_sentences_to_answer(answer, candidate_embeddings) top_locs = np.sort(np.argsort(cosine_sim_answer)[-top_answers:]) top_locs_islands = [[top_locs[0]]] for i in range(1, len(top_locs)): if top_locs[i] - top_locs[i-1] == 1: top_locs_islands[-1].append(top_locs[i]) else: top_locs_islands.append([top_locs[i]]) supporting_sentences = [' '.join([sentences[candidate_sentences_locs[i]] for i in sublist]) for sublist in top_locs_islands] return supporting_sentences def text_not_in_english(text): # use NLTK to check if text is in English by a simple heuristic try: if (detect(text[:150]) == 'en' or detect(text[len(text)//2:len(text)//2+150]) == 'en' or detect(text[-150:]) == 'en'): return False if (detect(text[:500]) == 'en' or detect(text[len(text)//2:len(text)//2+500]) == 'en' or detect(text[-500:]) == 'en'): return False except Exception as e: # if language detection fails -- possibly throws LangDetectException -- assume it is not in English print(e) return True return True def detect_language(text): return 'en' if not text_not_in_english(text) else 'non-en' def clean_marked_text(marked_text, min_length=3): # remove all lines with less than min_length characters marked_text = '\n'.join([line for line in marked_text.split('\n') if len(line) >= min_length]) return marked_text
[]
2024-01-10
EinfachAlex110/Chatbase
webquery.py
import os, trafilatura from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI from langchain.docstore.document import Document class WebQuery: def __init__(self, openai_api_key = None) -> None: self.embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) os.environ["OPENAI_API_KEY"] = openai_api_key self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key) self.chain = None self.db = None def ask(self, question: str) -> str: if self.chain is None: response = "Please, add a document." else: docs = self.db.get_relevant_documents(question) response = self.chain.run(input_documents=docs, question=question) return response def ingest(self, url: str) -> str: result = trafilatura.extract(trafilatura.fetch_url(url)) documents = [Document(page_content=result, metadata={"source": url})] splitted_documents = self.text_splitter.split_documents(documents) self.db = Chroma.from_documents(splitted_documents, self.embeddings).as_retriever() self.chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff") return "Success" def forget(self) -> None: self.db = None self.chain = None
[]
2024-01-10
ZiyueWang25/llm-security-challenge
llm_security~communicate.py
import time import re from tqdm import tqdm from pwn import ssh import pandas as pd import numpy as np import openai import replicate from llm_security import llm_config from llm_security import game_config def find_response(output): splits = output.strip().split("\n") for i, l in enumerate(splits): if l.lstrip().startswith("#"): continue else: return "\n".join(splits[:i+1]) return output def get_gpt_response(model, messages): response = openai.ChatCompletion.create(messages=messages, model=model, max_tokens=100) output = response.choices[0].message.content llm_response = find_response(output) return {"role": "assistant", "content": llm_response}, llm_response def get_gpt_comp_response(model, messages): response = openai.Completion.create(prompt="\n".join(messages), model=model, max_tokens=100) output = response.choices[0].text llm_response = find_response(output) return llm_response, llm_response def get_replicate_response(model, messages, system_prompt): output = "".join(replicate.run( model, input={ "system_prompt": system_prompt, "prompt": "\n".join(messages), } )) llm_response = find_response(output) return llm_response, llm_response def get_model_response(model, messages, sys_content=None): start_time = time.time() abbr = llm_config.ABBR_BY_MODEL_NAME[model] if abbr.startswith(llm_config.OPENAI_LIST): response, llm_response = get_gpt_response(model, messages) elif abbr.startswith(llm_config.OPENAI_COMP_LIST): response, llm_response = get_gpt_comp_response(model, messages) elif abbr.startswith(llm_config.REPLICATE_LIST): response, llm_response = get_replicate_response(model, messages, sys_content) elapse_secs = time.time() - start_time return response, llm_response, elapse_secs def get_initial_messages(model, sys_content): abbr = llm_config.ABBR_BY_MODEL_NAME[model] if abbr.startswith(llm_config.OPENAI_LIST): messages = [ {'role': 'system', 'content': sys_content}, ] elif abbr.startswith(llm_config.OPENAI_COMP_LIST): messages = [sys_content, "Let's code:"] elif abbr.startswith(llm_config.REPLICATE_LIST): messages = ["Let's code:"] return messages def get_ssh_arg(level, password, game): return dict( user = f"{game}{level}", host = f"{game}.labs.overthewire.org", password = password, port=game_config.PORT_BY_GAME[game], ) def get_ssh_response(io, llm_response, sleep_time, max_len=1000): io.sendlines([i.encode() for i in llm_response.split('\n')]) time.sleep(sleep_time) ssh_response = safe_decode(io.recv()) if len(ssh_response) > max_len: ssh_response = "Too long" if not ssh_response: ssh_response = 'Empty' ssh_response = "SHELL:" + ssh_response return ssh_response def safe_decode(b): try: decode = b.decode() except: decode = str(b)[2:-1] decode = decode.replace("$ ", "") # it looks like the ssh generate message like "$ $ $ " return decode def make_response_df(llm_rs, ssh_rs, secs): len_diff = len(llm_rs)-len(ssh_rs) if len_diff > 0: ssh_rs.extend([""] *len_diff) elif len_diff < 0: llm_rs.extend([""] * -len_diff) secs.extend([0] * -len_diff) return pd.DataFrame({"llm": llm_rs, "ssh": ssh_rs, "sec": secs}) def is_answer_correct(game, level, answer): if answer is None: return False return answer == game_config.PSW_BY_GAME[game][level+1] def find_answer(llm_response, verbose=True): if m := re.findall(r'(?:^|\n)submit (\w+)', llm_response): answer = m[-1].strip() if verbose: print('SYS: we are done. Predicted Answer: ', answer) return True, answer return False, None def attempt_level( game, level, n_cycles, model="gpt-3.5-turbo", password=None, verbose=True, sleep_time=.5, session_timeout=30, max_ssh_len = 1000, ): if verbose: print(f"The max ssh_len is: {max_ssh_len}") abbr = llm_config.ABBR_BY_MODEL_NAME[model] goal_by_level = game_config.GOAL_BY_GAME[game] sys_goal_suffix = f"The goal is: {goal_by_level[level+1]}." if isinstance(goal_by_level, dict) else goal_by_level if verbose: print(f"Level: {level}. Goal: {sys_goal_suffix}") sys_content = llm_config.PRELUDE + sys_goal_suffix messages = get_initial_messages(model, sys_content) llm_responses = [] ssh_responses = [] secs = [] answer = None if password is None: password = game_config.PSW_BY_GAME[game][level] ssh_args = get_ssh_arg(level, password, game) with ssh(raw=True, timeout=session_timeout, **ssh_args,) as session: with session.process(['sh']) as io: for i in range(n_cycles): try: response, llm_response, sec = get_model_response(model, messages, sys_content) messages.append(response) llm_responses.append(llm_response) secs.append(sec) if verbose: print(f'SYS {i}: LLM: \n>>>{llm_response}<<<\n') except openai.error.InvalidRequestError as err: print(f"Maximum context length reached with error message: {err}") messages = messages[:4] + messages[-4:] llm_response = "" found, answer = find_answer(llm_response, verbose=verbose) if found: break try: ssh_response = get_ssh_response(io, llm_response, sleep_time, max_ssh_len) except EOFError: break if verbose: print(f'SYS {i}: ssh: \n>>>{ssh_response}<<<\n') if abbr.startswith(llm_config.OPENAI_LIST): messages.append({'role': 'user', 'content': ssh_response}) elif abbr.startswith(llm_config.REPLICATE_LIST) or abbr.startswith(llm_config.OPENAI_COMP_LIST): messages.append(ssh_response) ssh_responses.append(ssh_response) return make_response_df(llm_responses, ssh_responses, secs), answer def attempt_level_multiple(game, model_name, level, num_trial=100): logs = [] print(f"---------- Test Model {model_name} ------------") for _ in tqdm(range(num_trial)): try: resp_df, answer = attempt_level(game, level, model=model_name, n_cycles=30, verbose=False) except Exception as e: print(f"Error: {e}") logs.append((None, None, e)) continue print(len(resp_df), answer) logs.append((resp_df, answer, None)) return logs def show_level_trials(abbrs, game, level, num_trial, logs_by_model): print(f"Under {num_trial} trials, In level {level}") for abbr in abbrs: model = llm_config.MODEL_NAME_BY_ABBR[abbr] if model not in logs_by_model: continue print("#"*10 + f" {abbr} " + "#"*10) num_success = sum([is_answer_correct(game, level, l[1] ) for l in logs_by_model[model]]) rate = num_success / num_trial attempts = [l[0].shape[0] if l[0] is not None else num_trial for l in logs_by_model[model]] avg_attempts, std_attempts = np.mean(attempts), np.std(attempts) print(f"model {model:15s}, success rate: {rate:.1%}, avg turns to solve the level: {avg_attempts:.1f}, std: {std_attempts:.1f}")
[ "\n" ]
2024-01-10
johnreitano/foundation
app~foundation.py
import os import openai import argparse import re MAX_INPUT_LENGTH = 32 def main(): parser = argparse.ArgumentParser() parser.add_argument("--input", "-i", type=str, required=True) args = parser.parse_args() user_input = args.input print(f"User input: {user_input}") if not validate_length(user_input): raise ValueError(f"Input must be less than {MAX_INPUT_LENGTH} characters.") generate_branding_snippet(user_input) generate_keywords(user_input) def validate_length(prompt: str): return len(prompt) <= MAX_INPUT_LENGTH def generate_branding_snippet(prompt: str): openai.api_key = os.getenv("OPENAI_API_KEY") enriched_prompt = f"Generate upbeat branding snippet for {prompt}" # print(enriched_prompt) completion = generate_chat_completion( "Generate upbeat branding snippet for the prompt entered by the user", prompt, ) branding_text = completion.strip(" \n,") last_char = branding_text[-1] if last_char not in {".", "!", "?"}: branding_text += "..." print(f"Snippet: {branding_text}") return branding_text def generate_keywords(prompt: str): openai.api_key = os.getenv("OPENAI_API_KEY") completion = generate_chat_completion( "Generate related branding keywords for the prompt entered by the user", prompt, ) # print(completion) keywords_array = re.split(",|\n|;|-", completion) keywords_array = [k.lower().strip().lstrip("0123456789.- ") for k in keywords_array] keywords_array = [k for k in keywords_array if len(k) > 0] print(f"Keywords: {keywords_array}") return keywords_array def generate_chat_completion(system_prompt, user_prompt): parameters = { "model": "gpt-4", "messages": [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ], "max_tokens": 500, } response = openai.ChatCompletion.create(**parameters) return response["choices"][0]["message"]["content"] if __name__ == "__main__": main()
[ "Generate upbeat branding snippet for PLACEHOLDER" ]
2024-01-10
shams02/test_project11
libs~superagent~app~tools~e2b.py
# flake8: noqa from decouple import config from e2b.templates.data_analysis import DataAnalysis from langchain.tools import BaseTool class E2BCodeExecutor(BaseTool): name = "Code interpreter" description = "useful for running python code, it returns the output of the code" # E2B session represents a sandbox runtime for LLM - it's a microVM for every instance of an agent. # # We probably should keep an active E2B session for the whole time an agent is active. # If the "E2B_API_KEY" env var is set, E2B automatically loads it, no need to pass it to the constructor. _session = DataAnalysis(api_key=config("E2B_API_KEY")) # TODO: Once we know the the agent is done, we need to close the E2B session. # You most likely want to keep the E2B session active for the whole lifecycle of an agent. def _close_session(self): self._session.close() def _download_artifact(self, artifact): # Artifact is a chart file created by matplotlib # You can download it right from the E2B LLM Sandbox # # `artifact_bytes` is a chart file (.png) in bytes # TODO: Send the artifact bytes to frontend, save it to DB, etc artifact_bytes = artifact.download() def _run(self, python_code: str) -> str: # E2B offers both streaming output and artifacts or retrieving them after the code has finished running. stdout, err, artifacts = self._session.run_python( code=python_code, # TODO: To create more responsive UI, you might want to stream stdout, stderr, and artifacts on_stdout=lambda line: print("stdout", line), on_stderr=lambda line: print("stderr", line), on_artifact=self._download_artifact, ) # Or you can download artifacts after the code has finished running: # for artifact in artifacts: # self._download_artifact(artifact) if err: return "There was following error during execution: " + err return stdout async def _arun(self, python_code: str) -> str: # E2B doesn't support async/await flows anymore for now. # We can either throw an exception or just call the sync version: # # raise NotImplementedError("E2B Code Executor doesn't support async") return self._run(python_code)
[ "useful for running python code, it returns the output of the code" ]
2024-01-10
shane-kercheval/llm-workflow
llm_workflow~agents.py
""" An Agent is an LLM that is given a set of tools and decides how to respond based on those tools. Currently, the only agent in this library is the OpenAIFunctionAgent class, which wraps the logic for OpenAI's "functions". """ from abc import ABC, abstractmethod from collections import OrderedDict import json from typing import Any from collections.abc import Callable import functools from llm_workflow.base import Record, _has_history, ExchangeRecord, LanguageModel from llm_workflow.internal_utilities import has_method, retry_handler from llm_workflow.openai import MODEL_COST_PER_TOKEN class ToolBase(ABC): """ A tool is a callable object that has a name, description, and other properties that describe the tool. The name, description, etc., may be passed to an LLM (e.g. OpenAI "functions") and, therefore, should be a useful description for the LLM. """ @abstractmethod def __call__(self, *args, **kwargs) -> Any: # noqa """A Tool object is callable, taking and returning any number of parameters.""" @property @abstractmethod def name(self) -> str: """The name of the tool. This value will be sent to an LLM.""" @property @abstractmethod def description(self) -> str: """The description of the tool. This value will be sent to an LLM.""" @property @abstractmethod def inputs(self) -> dict: """ Property that describes the inputs of the tool. For example: { "variable_a": { "type": "string", "description": "This is a description of variable_a.", }, "variable_b": { "type": "string", "enum": ["option_a", "option_b"], "description": "This is a description of variable_b.", }, } """ @property @abstractmethod def required(self) -> list: """Returns a list of inputs that are required.""" def to_dict(self) -> str: """ Returns a dictionary with properties that describe the tool. Currently this dictinoary is in a formated expected by OpenAI "functions" API. The dependency to OpenAI is not ideal. """ return { 'name': self.name, 'description': self.description, 'parameters': { # this is based on OpenAI requirement; i don't love this dependency "type": "object", "properties": self.inputs, "required": self.required, }, } class Tool(ToolBase): """ A tool is an object that has a name, description, and other properties that describe the tool. The name, description, etc., may be passed to an LLM (e.g. OpenAI "functions") and, therefore, should be a useful description for the LLM. A tool object is callable if a function is passed into callable_obj in the constructor. """ def __init__( self, name: str, description: str, inputs: dict, required: list[str] | None = None, callable_obj: Callable | None = None): self._name = name self._description = description self._inputs = inputs self._required = required self._callable_obj = callable_obj def __call__(self, *args, **kwargs) -> Any: # noqa return self._callable_obj(*args, **kwargs) @classmethod def from_dict(cls, dictionary): # noqa """Returns a Tool object from a dictionary.""" return cls(**dictionary) @property def name(self) -> str: """The name of the tool. This value will be sent to an LLM.""" return self._name @property def description(self) -> str: """The description of the tool. This value will be sent to an LLM.""" return self._description @property def inputs(self) -> dict: """ Property that describes the inputs of the tool. For example: { "variable_a": { "type": "string", "description": "This is a description of variable_a.", }, "variable_b": { "type": "string", "enum": ["option_a", "option_b"], "description": "This is a description of variable_b.", }, } """ return self._inputs @property def required(self) -> list: """Returns a list of inputs that are required.""" return self._required def history(self) -> list[Record]: """Returns the history of the underlying callable object, if applicable.""" if has_method(self._callable_obj, 'history'): return self._callable_obj.history() return None def tool(name: str, description: str, inputs: dict, required: list[str] | None = None) -> Tool: """ A tool is a callable object that has a name, description, and other properties that describe the tool. The name, description, etc., may be passed to an LLM (e.g. OpenAI "functions") and, therefore, should be a useful description for the LLM. This decorator wraps a callable object. """ def decorator(callable_obj: Callable): # noqa: ANN202 @functools.wraps(callable_obj) def wrapper(*args, **kwargs): # noqa: ANN003, ANN002, ANN202 return callable_obj(*args, **kwargs) return Tool(name, description, inputs, required, wrapper) return decorator class OpenAIFunctions(LanguageModel): """ Wrapper around OpenAI "functions" (https://platform.openai.com/docs/guides/gpt/function-calling). Calling the objec returns a list of tuples, where each tuple contains a Tool object and a dictionary of arguments (chosen by OpenAI) to pass to the tool. From OpenAI: "Developers can now describe functions to gpt-4-0613 and gpt-3.5-turbo-0613, and have the model intelligently choose to output a JSON object containing arguments to call those functions. This is a new way to more reliably connect GPT's capabilities with external tools and APIs. See this notebooks for an example: https://github.com/shane-kercheval/llm-workflow/blob/main/examples/agents.ipynb """ def __init__( self, tools: list[Tool], model_name: str = 'gpt-3.5-turbo-1106', system_message: str = "Decide which function to use. Only use the functions you have been provided with. Don't make assumptions about what values to plug into functions.", # noqa timeout: int = 10, ) -> dict | None: """ Args: model_name: e.g. 'gpt-3.5-turbo-1106' tools: a list of Tool objects (created with the `Tool` class or `tool` decorator). system_message: The content of the message associated with the "system" `role`. timeout: timeout value passed to OpenAI model. """ super().__init__() self.model_name = model_name self._tools = {} for tool in tools: if tool.name in self._tools: raise ValueError(f"Tool name '{tool.name}' is already in use.") self._tools[tool.name] = tool self._system_message = system_message self._history = [] self.timeout = timeout def __call__(self, prompt: object) -> list[tuple[Tool, dict]]: """ Uses the OpenAI "functions" api to decide which tool to call based on the `prompt`. The selected tool (which is a callable) is called and passed the arguments determined by OpenAI. The response from the tool is retuned by the agent object. Returns a list of tuples, where each tuple contains a Tool object and a dictionary of arguments (chosen by OpenAI) to pass to the tool. """ from openai import OpenAI messages = [ {"role": "system", "content": self._system_message}, {"role": "user", "content": prompt}, ] # we want to track to track costs/etc.; but we don't need the history to build up memory # essentially, for now, this class won't have any memory/context of previous questions; # it's only used to decide which tools/functions to call client = OpenAI() tools = [{'type': 'function', 'function': x.to_dict()} for x in self._tools.values()] tools[0] response = retry_handler()( client.chat.completions.create, model=self.model_name, messages=messages, tools=tools, temperature=0, # max_tokens=self.max_tokens, timeout=self.timeout, ) input_tokens = response.usage.prompt_tokens completion_tokens = response.usage.completion_tokens total_tokens = response.usage.total_tokens cost = (input_tokens * self.cost_per_token['input']) + \ (completion_tokens * self.cost_per_token['output']) record = ExchangeRecord( prompt=prompt, response='', metadata={'model_name': self.model_name}, input_tokens=input_tokens, response_tokens=completion_tokens, total_tokens=total_tokens, cost=cost, ) self._history.append(record) tool_calls = response.choices[0].message.tool_calls if tool_calls: tool_calls = [ (self._tools[x.function.name], json.loads(x.function.arguments)) for x in tool_calls ] tool_names = ' | '.join([x[0].name for x in tool_calls]) record.response = f"tools: {tool_names}" record.metadata['tool_names'] = tool_names record.metadata['tool_args'] = ' | '.join([str(x[1]) for x in tool_calls]) return tool_calls return None @property def cost_per_token(self) -> dict: """ Returns a dictionary containing 'input' and 'output' keys each containing a float corresponding to the cost-per-token for the corresponding token type and model. We need to dynamically look this up since the model_name can change over the course of the object's lifetime. """ return MODEL_COST_PER_TOKEN[self.model_name] def _get_history(self) -> list[Record]: """Returns a list of Records corresponding to any OpenAI call.""" return self._history class OpenAIFunctionAgent(OpenAIFunctions): """ Overrides OpenAIFunctions to return the response from the tool selected (rather than a list of tools/arguments). NOTE: This implementation only extracts and calls the first tool returned by OpenAI. This class uses the OpenAI "functions" api to decide which tool to use; the selected tool (which is a callable) is called and passed the arguments determined by OpenAI. The response from the tool is retuned by the agent object. """ def __call__(self, prompt: object) -> str: """ Uses the OpenAI "functions" api to decide which tool to call based on the `prompt`. The selected tool (which is a callable) is called and passed the arguments determined by OpenAI. The response from the tool is retuned by the agent object. """ tool_calls = super().__call__(prompt) if tool_calls: tool, args = tool_calls[0] return tool(**args) return None def _get_history(self) -> list[Record]: """ Returns a list of Records corresponding to any OpenAI call as well as any Record object associated with the underlying tools' history. NOTE: the entire history of each tool is included. If you pass the OpenAIFunctionAgent object a tool that was previously used (i.e. the tool "object" was instantiated and called and has resulting history), that history will be included, even though it is not directly related to the use of the Agent. As a best practice, you should only include tool objects that have not been previously instantiated/used. """ histories = [tool.history() for tool in self._tools.values() if _has_history(tool)] # Concatenate all the lists into a single list histories = [record for sublist in histories for record in sublist] histories += self._history unique_records = OrderedDict((record.uuid, record) for record in histories) unique_records = list(unique_records.values()) return sorted(unique_records, key=lambda r: r.timestamp)
[]
2024-01-10
shane-kercheval/llm-workflow
tests~test_agents.py
"""Test agents.py classes and functions.""" from time import sleep from llm_workflow.agents import OpenAIFunctionAgent, OpenAIFunctions, Tool, tool from llm_workflow.base import Record, ExchangeRecord @tool( name="ask_weather", description="Use this function to answer questions about the weather for a particular city.", inputs={ 'location': { 'type': 'string', 'description': "The city and state, e.g. San Francisco, CA", }, 'unit': { 'type': 'string', 'enum': ['celsius', 'fahrenheit'], 'description': "The temperature unit to use. The model needs to infer this from the `location`.", # noqa }, }, required=['location', 'unit'], ) def fake_weather(location: str, unit: str) -> str: """Fake function to lookup weather.""" return f"The temperature of {location} is 1000 degrees {unit}." @tool( name="ask_stock_price", description="Use this function to answer questions about the the stock price for a particular stock symbol.", # noqa inputs={ 'symbol': { 'type': 'string', 'description': "The stock symbol, e.g. 'AAPL'", }, }, required= ['symbol'], ) def fake_stock(symbol: str) -> str: """Fake function to lookup stock price.""" return f"The stock price of {symbol} is $1000." def test_OpenAIToolAgent__Tool_class(): # noqa class FakeWeatherAPI: def __init__(self) -> None: self._history = [] def __call__(self, location: str, unit: str) -> str: result = f"The temperature of {location} is 1000 degrees {unit}." # need a slight delay so we sort records consistently for test # the ExchangeRecord is created before the function is called sleep(0.01) self._history.append(Record(metadata={'result': result})) return result def history(self) -> list[str]: return self._history class FakeStockAPI: def __init__(self) -> None: self._history = [] def __call__(self, symbol: str) -> str: result = f"The stock price of {symbol} is $1000." # need a slight delay so we sort records consistently for test # the ExchangeRecord is created before the function is called sleep(0.01) self._history.append(Record(metadata={'result': result})) return result def history(self) -> list[str]: return self._history fake_weather_tool = Tool( callable_obj=FakeWeatherAPI(), name="ask_weather", description="Use this function to answer questions about the weather for a particular city.", # noqa inputs={ 'location': { 'type': 'string', 'description': "The city and state, e.g. San Francisco, CA", }, 'unit': { 'type': 'string', 'enum': ['celsius', 'fahrenheit'], 'description': "The temperature unit to use. The model needs to infer this from the `location`.", # noqa }, }, required= ['location', 'unit'], ) fake_stock_tool = Tool( callable_obj=FakeStockAPI(), name="ask_stock_price", description="Use this function to answer questions about the the stock price for a particular stock symbol.", # noqa inputs={ 'symbol': { 'type': 'string', 'description': "The stock symbol, e.g. 'AAPL'", }, }, required= ['symbol'], ) assert fake_weather_tool.name == fake_weather.name assert fake_weather_tool.description == fake_weather.description assert fake_weather_tool.inputs == fake_weather.inputs assert fake_weather_tool.required == fake_weather.required assert fake_weather_tool.to_dict() == fake_weather.to_dict() assert fake_stock_tool.name == fake_stock.name assert fake_stock_tool.description == fake_stock.description assert fake_stock_tool.inputs == fake_stock.inputs assert fake_stock_tool.required == fake_stock.required assert fake_stock_tool.to_dict() == fake_stock.to_dict() agent = OpenAIFunctionAgent(tools=[fake_weather_tool, fake_stock_tool]) question = "What is the temperature in Seattle WA." response = agent(question) assert 'Seattle' in response assert 'degrees' in response # assert 'fahrenheit' in response # model does not correctly infer fahrenheight assert len(fake_weather_tool.history()) == 1 assert fake_weather_tool.history()[0].metadata['result'] == response assert len(fake_stock_tool.history()) == 0 # the first record is the ExchangeRecord associated with the OpenAIFunctionAgent # and the second record is from the tool we used assert len(agent.history()) == 2 assert isinstance(agent.history()[0], ExchangeRecord) assert agent.history()[0].prompt == question assert fake_weather_tool.name in agent.history()[0].response assert agent.history()[0].metadata['tool_names'] == fake_weather_tool.name assert 'location' in agent.history()[0].metadata['tool_args'] assert 'unit' in agent.history()[0].metadata['tool_args'] assert agent.history()[0].input_tokens > 0 assert agent.history()[0].response_tokens > 0 assert agent.history()[0].total_tokens == agent.history()[0].input_tokens + agent.history()[0].response_tokens # noqa assert agent.history()[0].total_tokens > 0 assert agent.history()[0].cost > 0 assert isinstance(agent.history()[1], Record) assert agent.history()[1].metadata['result'] == response question = "What is the stock price of Apple?" response = agent(question) assert 'AAPL' in response # the first record (in the second use) is the ExchangeRecord associated with the # OpenAIFunctionAgent and the second record is from the tool we used assert len(fake_weather_tool.history()) == 1 assert len(fake_stock_tool.history()) == 1 assert fake_stock_tool.history()[0].metadata['result'] == response assert len(agent.history()) == 4 assert isinstance(agent.history()[2], ExchangeRecord) assert agent.history()[2].prompt == question assert fake_stock_tool.name in agent.history()[2].response assert agent.history()[2].metadata['tool_names'] == fake_stock_tool.name assert 'symbol' in agent.history()[2].metadata['tool_args'] assert agent.history()[2].input_tokens > 0 assert agent.history()[2].response_tokens > 0 assert agent.history()[2].total_tokens == agent.history()[2].input_tokens + agent.history()[2].response_tokens # noqa assert agent.history()[2].total_tokens > 0 assert agent.history()[2].cost > 0 assert isinstance(agent.history()[3], Record) assert agent.history()[3].metadata['result'] == response question = "No tool is applicable for this question." response = agent(question) assert response is None assert len(agent.history()) == 5 assert agent.history()[4].prompt == question assert agent.history()[4].response == '' assert 'tool_name' not in agent.history()[4].metadata assert agent.history()[4].input_tokens > 0 assert agent.history()[4].response_tokens > 0 assert agent.history()[4].total_tokens == agent.history()[4].input_tokens + agent.history()[4].response_tokens # noqa assert agent.history()[4].total_tokens > 0 assert agent.history()[4].cost > 0 def test_OpenAIToolAgent__tool_decorator(): # noqa assert isinstance(fake_weather, Tool) assert isinstance(fake_stock, Tool) agent = OpenAIFunctionAgent( model_name='gpt-3.5-turbo-1106', tools=[fake_weather, fake_stock], ) question = "What is the temperature in Seattle WA." response = agent(question) assert 'Seattle' in response assert 'degrees' in response # assert 'fahrenheit' in response # model does not correctly infer fahrenheight assert len(agent.history()) == 1 assert agent.history()[0].prompt == question assert fake_weather.name in agent.history()[0].response assert agent.history()[0].metadata['tool_names'] == fake_weather.name assert 'location' in agent.history()[0].metadata['tool_args'] assert 'unit' in agent.history()[0].metadata['tool_args'] assert agent.history()[0].input_tokens > 0 assert agent.history()[0].response_tokens > 0 assert agent.history()[0].total_tokens == agent.history()[0].input_tokens + agent.history()[0].response_tokens # noqa assert agent.history()[0].total_tokens > 0 assert agent.history()[0].cost > 0 question = "What is the stock price of Apple?" response = agent(question) assert 'AAPL' in response assert len(agent.history()) == 2 assert agent.history()[1].prompt == question assert fake_stock.name in agent.history()[1].response assert agent.history()[1].metadata['tool_names'] == fake_stock.name assert 'symbol' in agent.history()[1].metadata['tool_args'] assert agent.history()[1].input_tokens > 0 assert agent.history()[1].response_tokens > 0 assert agent.history()[1].total_tokens == agent.history()[1].input_tokens + agent.history()[1].response_tokens # noqa assert agent.history()[1].total_tokens > 0 assert agent.history()[1].cost > 0 question = "No tool is applicable for this question." response = agent(question) assert response is None assert len(agent.history()) == 3 assert agent.history()[2].prompt == question assert agent.history()[2].response == '' assert 'tool_names' not in agent.history()[2].metadata assert agent.history()[2].input_tokens > 0 assert agent.history()[2].response_tokens > 0 assert agent.history()[2].total_tokens == agent.history()[2].input_tokens + agent.history()[2].response_tokens # noqa assert agent.history()[2].total_tokens > 0 assert agent.history()[2].cost > 0 def test_OpenAIToolAgent__tools_via_yaml(): # noqa # read in yaml file import yaml with open('tests/test_data/agents/mock_tools.yml') as f: yaml_data = yaml.safe_load(f) tools = {x['name']: Tool.from_dict(x) for x in yaml_data} assert tools['ask_weather'].name == fake_weather.name assert tools['ask_weather'].description == fake_weather.description assert tools['ask_weather'].inputs == fake_weather.inputs assert tools['ask_weather'].required == fake_weather.required assert tools['ask_weather'].to_dict() == fake_weather.to_dict() assert tools['ask_stock_price'].name == fake_stock.name assert tools['ask_stock_price'].description == fake_stock.description assert tools['ask_stock_price'].inputs == fake_stock.inputs assert tools['ask_stock_price'].required == fake_stock.required assert tools['ask_stock_price'].to_dict() == fake_stock.to_dict() tools = OpenAIFunctions( model_name='gpt-3.5-turbo-1106', tools=tools.values(), ) question = "What is the temperature in Seattle WA." response = tools(question) assert len(response) == 1 response_tool, response_arguments = response[0] assert 'Seattle' in response_arguments['location'] # tool doesn't correctly infer fahrenheit assert 'degrees' in response_arguments['unit'] \ or 'fahrenheit' in response_arguments['unit'] \ or 'celsius' in response_arguments['unit'] assert len(tools.history()) == 1 assert tools.history()[0].prompt == question assert response_tool.name in tools.history()[0].response assert tools.history()[0].metadata['tool_names'] == response_tool.name assert 'location' in tools.history()[0].metadata['tool_args'] assert 'unit' in tools.history()[0].metadata['tool_args'] assert tools.history()[0].input_tokens > 0 assert tools.history()[0].response_tokens > 0 assert tools.history()[0].total_tokens == tools.history()[0].input_tokens + tools.history()[0].response_tokens # noqa assert tools.history()[0].total_tokens > 0 assert tools.history()[0].cost > 0 question = "What is the stock price of Apple?" response = tools(question) response_tool, response_arguments = response[0] assert 'AAPL' in response_arguments['symbol'] assert len(tools.history()) == 2 assert tools.history()[1].prompt == question assert response_tool.name in tools.history()[1].response assert tools.history()[1].metadata['tool_names'] == response_tool.name assert 'symbol' in tools.history()[1].metadata['tool_args'] assert tools.history()[1].input_tokens > 0 assert tools.history()[1].response_tokens > 0 assert tools.history()[1].total_tokens == tools.history()[1].input_tokens + tools.history()[1].response_tokens # noqa assert tools.history()[1].total_tokens > 0 assert tools.history()[1].cost > 0 question = "No tool is applicable for this question." response = tools(question) assert response is None assert len(tools.history()) == 3 assert tools.history()[2].prompt == question assert tools.history()[2].response == '' assert 'tool_names' not in tools.history()[2].metadata assert tools.history()[2].input_tokens > 0 assert tools.history()[2].response_tokens > 0 assert tools.history()[2].total_tokens == tools.history()[2].input_tokens + tools.history()[2].response_tokens # noqa assert tools.history()[2].total_tokens > 0 assert tools.history()[2].cost > 0
[]
2024-01-10
huangwl18/VoxPoser
src~LMP.py
import openai from time import sleep from openai.error import RateLimitError, APIConnectionError from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import TerminalFormatter from utils import load_prompt, DynamicObservation, IterableDynamicObservation import time from LLM_cache import DiskCache class LMP: """Language Model Program (LMP), adopted from Code as Policies.""" def __init__(self, name, cfg, fixed_vars, variable_vars, debug=False, env='rlbench'): self._name = name self._cfg = cfg self._debug = debug self._base_prompt = load_prompt(f"{env}/{self._cfg['prompt_fname']}.txt") self._stop_tokens = list(self._cfg['stop']) self._fixed_vars = fixed_vars self._variable_vars = variable_vars self.exec_hist = '' self._context = None self._cache = DiskCache(load_cache=self._cfg['load_cache']) def clear_exec_hist(self): self.exec_hist = '' def build_prompt(self, query): if len(self._variable_vars) > 0: variable_vars_imports_str = f"from utils import {', '.join(self._variable_vars.keys())}" else: variable_vars_imports_str = '' prompt = self._base_prompt.replace('{variable_vars_imports}', variable_vars_imports_str) if self._cfg['maintain_session'] and self.exec_hist != '': prompt += f'\n{self.exec_hist}' prompt += '\n' # separate prompted examples with the query part if self._cfg['include_context']: assert self._context is not None, 'context is None' prompt += f'\n{self._context}' user_query = f'{self._cfg["query_prefix"]}{query}{self._cfg["query_suffix"]}' prompt += f'\n{user_query}' return prompt, user_query def _cached_api_call(self, **kwargs): # check whether completion endpoint or chat endpoint is used if kwargs['model'] != 'gpt-3.5-turbo-instruct' and \ any([chat_model in kwargs['model'] for chat_model in ['gpt-3.5', 'gpt-4']]): # add special prompt for chat endpoint user1 = kwargs.pop('prompt') new_query = '# Query:' + user1.split('# Query:')[-1] user1 = ''.join(user1.split('# Query:')[:-1]).strip() user1 = f"I would like you to help me write Python code to control a robot arm operating in a tabletop environment. Please complete the code every time when I give you new query. Pay attention to appeared patterns in the given context code. Be thorough and thoughtful in your code. Do not include any import statement. Do not repeat my question. Do not provide any text explanation (comment in code is okay). I will first give you the context of the code below:\n\n```\n{user1}\n```\n\nNote that x is back to front, y is left to right, and z is bottom to up." assistant1 = f'Got it. I will complete what you give me next.' user2 = new_query # handle given context (this was written originally for completion endpoint) if user1.split('\n')[-4].startswith('objects = ['): obj_context = user1.split('\n')[-4] # remove obj_context from user1 user1 = '\n'.join(user1.split('\n')[:-4]) + '\n' + '\n'.join(user1.split('\n')[-3:]) # add obj_context to user2 user2 = obj_context.strip() + '\n' + user2 messages=[ {"role": "system", "content": "You are a helpful assistant that pays attention to the user's instructions and writes good python code for operating a robot arm in a tabletop environment."}, {"role": "user", "content": user1}, {"role": "assistant", "content": assistant1}, {"role": "user", "content": user2}, ] kwargs['messages'] = messages if kwargs in self._cache: print('(using cache)', end=' ') return self._cache[kwargs] else: ret = openai.ChatCompletion.create(**kwargs)['choices'][0]['message']['content'] # post processing ret = ret.replace('```', '').replace('python', '').strip() self._cache[kwargs] = ret return ret else: if kwargs in self._cache: print('(using cache)', end=' ') return self._cache[kwargs] else: ret = openai.Completion.create(**kwargs)['choices'][0]['text'].strip() self._cache[kwargs] = ret return ret def __call__(self, query, **kwargs): prompt, user_query = self.build_prompt(query) start_time = time.time() while True: try: code_str = self._cached_api_call( prompt=prompt, stop=self._stop_tokens, temperature=self._cfg['temperature'], model=self._cfg['model'], max_tokens=self._cfg['max_tokens'] ) break except (RateLimitError, APIConnectionError) as e: print(f'OpenAI API got err {e}') print('Retrying after 3s.') sleep(3) print(f'*** OpenAI API call took {time.time() - start_time:.2f}s ***') if self._cfg['include_context']: assert self._context is not None, 'context is None' to_exec = f'{self._context}\n{code_str}' to_log = f'{self._context}\n{user_query}\n{code_str}' else: to_exec = code_str to_log = f'{user_query}\n{to_exec}' to_log_pretty = highlight(to_log, PythonLexer(), TerminalFormatter()) if self._cfg['include_context']: print('#'*40 + f'\n## "{self._name}" generated code\n' + f'## context: "{self._context}"\n' + '#'*40 + f'\n{to_log_pretty}\n') else: print('#'*40 + f'\n## "{self._name}" generated code\n' + '#'*40 + f'\n{to_log_pretty}\n') gvars = merge_dicts([self._fixed_vars, self._variable_vars]) lvars = kwargs # return function instead of executing it so we can replan using latest obs(do not do this for high-level UIs) if not self._name in ['composer', 'planner']: to_exec = 'def ret_val():\n' + to_exec.replace('ret_val = ', 'return ') to_exec = to_exec.replace('\n', '\n ') if self._debug: # only "execute" function performs actions in environment, so we comment it out action_str = ['execute('] try: for s in action_str: exec_safe(to_exec.replace(s, f'# {s}'), gvars, lvars) except Exception as e: print(f'Error: {e}') import pdb ; pdb.set_trace() else: exec_safe(to_exec, gvars, lvars) self.exec_hist += f'\n{to_log.strip()}' if self._cfg['maintain_session']: self._variable_vars.update(lvars) if self._cfg['has_return']: if self._name == 'parse_query_obj': try: # there may be multiple objects returned, but we also want them to be unevaluated functions so that we can access latest obs return IterableDynamicObservation(lvars[self._cfg['return_val_name']]) except AssertionError: return DynamicObservation(lvars[self._cfg['return_val_name']]) return lvars[self._cfg['return_val_name']] def merge_dicts(dicts): return { k : v for d in dicts for k, v in d.items() } def exec_safe(code_str, gvars=None, lvars=None): banned_phrases = ['import', '__'] for phrase in banned_phrases: assert phrase not in code_str if gvars is None: gvars = {} if lvars is None: lvars = {} empty_fn = lambda *args, **kwargs: None custom_gvars = merge_dicts([ gvars, {'exec': empty_fn, 'eval': empty_fn} ]) try: exec(code_str, custom_gvars, lvars) except Exception as e: print(f'Error executing code:\n{code_str}') raise e
[ "\nPLACEHOLDER", "\n", "You are a helpful assistant that pays attention to the user's instructions and writes good python code for operating a robot arm in a tabletop environment.", "{variable_vars_imports}" ]
2024-01-10
yosief14/yummarizer-server
yummarize.py
#!/usr/bin/env python3 import json import base64 import requests import dotenv import os import openai import sys import urllib.parse as p import urllib.request as r import tiktoken from flask import Flask, request as flrequest, jsonify, abort, g import uuid import time # Constructs the request that graps the captions object from the video and returns it as a json object def getCaptions(user_input): video_id = get_video_id(user_input) base64_string = base64.b64encode("\n\v{}".format(video_id).encode("utf-8")).decode("utf-8") headers = { "Content-Type": "application/json", } body = json.dumps( { "context": {"client": {"clientName": "WEB", "clientVersion": "2.9999099"}}, "params": base64_string, } ) response = requests.post( "https://www.youtube.com/youtubei/v1/get_transcript?key=AIzaSyAO_FJ2SlqU8Q4STEHLGCilw_Y9_11qcW8", headers=headers, data=body, ).json() # Parses the json object and constructs the captions input to be passed to openAI caption = "" if "actions" not in response: abort(400, description=f"Cannot locate captions for video with url \"{user_input}\"") for cueGroup in response["actions"][0]["updateEngagementPanelAction"]["content"]["transcriptRenderer"]["body"]["transcriptBodyRenderer"]["cueGroups"]: for cue in cueGroup["transcriptCueGroupRenderer"]["cues"]: #this is the text of the caption caption += cue["transcriptCueRenderer"]["cue"]["simpleText"] + "\n" return caption # Parses the url and returns the video id def get_video_id(url): if url.startswith("https://www.youtube.com/watch?v="): query = p.urlparse(url).query params = p.parse_qs(query) return params["v"][0] else: abort(400, description=f"\"{url}\" is not a valid youtube url") def check_context_length(context): context_string = "" for message in context: context_string += message["content"] + "\n" encoding = tiktoken.get_encoding("cl100k_base") token_len = len(encoding.encode(context_string)) if(token_len > 12000): abort(400, description=f"The transcript has a token length of {token_len} which is too long to process. Please try again with a shorter video. The maximum token length is 12,000.") else: return True # Returns the recipe from the openAI model def getRecipe(caption): dotenv.load_dotenv() openai.api_key = os.getenv("API_KEY") query = "Summurize all of the recipes mentioned in the follwing transcript into Recipe: Ingredients: and Instructions: . For the Ingredients and Instructions, Be as detailed about measurements as possible" context = "Transcript: \n" + caption content = query + "\n" + context system_messages=[ {"role": "system", "content": "You are a web server designed to output JSON objects with the following format for every recipe found: {Recipe: {Ingredients: , Instructions:}} . If the transcript doesn't contain a recipe, your return value should be -1. For the Instructions, each step should be its own value in a list. For the Ingredients each ingredient should be its own value in a list. Measurements for the Ingredients should be as detailed as possible."}, {"role": "system", "content": "If you are having trouble, try to break down the problem into smaller parts. For example, first try to find the recipe, then try to find the ingredients, then try to find the instructions."}, {"role": "system", "content": "The Ingredients and Instructions should be as detailed as possible. For example, if the recipe calls for 1 cup of flour, you should return 1 cup of flour, not just flour."} ] prompt = {"role": "user", "content": f"{content}"} system_messages.append(prompt) if(not check_context_length(system_messages)): return "The transcript is too long to process. Please try again with a shorter video." completion = openai.ChatCompletion.create(model=f"gpt-3.5-turbo-1106", response_format={"type": "json_object"}, messages=system_messages) return completion["choices"][0].message.content def getVideoMetaData(video_id): params = { "format": "json", "url": f"https://www.youtube.com/watch?v={video_id}" } query = p.urlencode(params) url = "https://www.youtube.com/oembed" url += "?" + query with r.urlopen(url) as response: response_text = response.read() data = json.loads(response_text.decode()) return data["title"], data["author_name"] #Mooved the app creation to a function so that it can be used in the test file def create_app(): app = Flask(__name__) @app.route('/') def index(): return 'Hello World' @app.before_request def before_request(): execution_id = uuid.uuid4() g.start_time = time.time() g.execution_id = execution_id print(g.execution_id, "Route Called", flrequest.url) @app.route('/yummarize', methods=['GET']) def yummarize(): user_input = flrequest.args.get('url') caption = getCaptions(user_input) recipe = getRecipe(caption) videoTitle, channel = (getVideoMetaData(get_video_id(user_input))) metaJson = {"title": videoTitle, "channel": channel} recipeJson = json.loads(recipe) metaJson.update(recipeJson) return metaJson return app app = create_app() if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
[ "You are a web server designed to output JSON objects with the following format for every recipe found: {Recipe: {Ingredients: , Instructions:}} . If the transcript doesn't contain a recipe, your return value should be -1. For the Instructions, each step should be its own value in a list. For the Ingredients each ingredient should be its own value in a list. Measurements for the Ingredients should be as detailed as possible.", "PLACEHOLDER", "If you are having trouble, try to break down the problem into smaller parts. For example, first try to find the recipe, then try to find the ingredients, then try to find the instructions.", "{'role': 'user', 'content': 'PLACEHOLDER'}", "The Ingredients and Instructions should be as detailed as possible. For example, if the recipe calls for 1 cup of flour, you should return 1 cup of flour, not just flour." ]
2024-01-10
evanmcneely/gpt-engineer
gpt_engineer~chains~ask_for_clarification.py
from halo import Halo from langchain import PromptTemplate, LLMChain from langchain.memory import ConversationBufferMemory from ..llm import get_llm from config import Models def format_initial_prompt(prompt: str, file_content: str) -> str: return f""" Instructions: {prompt} {file_content} """ prompt = """ Respond with a single question that you would need to ask to gain more clarity about how to follow the most recent instructions or feedback. Return just the question. If everything is clear, return the string "nothing left to clarify". You have been trusted to make assumptions, not every small detail needs to be clarified. Chat History: {chat_history} """ @Halo(text="Interpreting", spinner="dots") def ask_for_clarification(memory: str): chain = LLMChain( llm=get_llm(Models.CONVERSATION_MODEL), prompt=PromptTemplate.from_template(prompt), ) return chain.predict(chat_history=memory)
[ "\nRespond with a single question that you would need to ask to gain more clarity about how to follow the most recent instructions or feedback. Return just the question. If everything is clear, return the string \"nothing left to clarify\". You have been trusted to make assumptions, not every small detail needs to be clarified.\n\nChat History: \n{chat_history}\n" ]
2024-01-10
evanmcneely/gpt-engineer
gpt_engineer~chains~write_code.py
from halo import Halo import re from typing import List, Tuple from langchain import PromptTemplate, LLMChain from langchain.memory import ConversationBufferMemory from langchain.callbacks import StreamingStdOutCallbackHandler from ..llm import get_llm from config import Models template = """ Please now remember the steps: Think step by step and reason yourself to the right decisions to make sure we get it right. First lay out the names of the core classes, functions, methods that will be necessary, As well as a quick comment on their purpose. Then you will output the content of each file including ALL code. Each file must strictly follow a markdown code block format, where the following tokens must be replaced such that FILENAME is the lowercase file name including the file extension, LANG is the markup code block language for the code's language, and CODE is the code: FILENAME ```LANG CODE ``` Please note that the code should be fully functional. No placeholders. Chat history: {chat_history} Begin """ def _codeblock_search(chat: str) -> re.Match: regex = r"(\S+)\n\s*```[^\n]*\n(.+?)```" return re.finditer(regex, chat, re.DOTALL) def _parse_chat(chat) -> List[Tuple[str, str]]: matches = _codeblock_search(chat) files = [] for match in matches: # Strip the filename of any non-allowed characters and convert / to \ path = re.sub(r'[<>"|?*]', "", match.group(1)) # Remove leading and trailing brackets path = re.sub(r"^\[(.*)\]$", r"\1", path) # Remove leading and trailing backticks path = re.sub(r"^`(.*)`$", r"\1", path) # Remove trailing ] path = re.sub(r"\]$", "", path) # Get the code code = match.group(2) # Add the file to the list files.append((path, code)) # Get all the text before the first ``` block readme = chat.split("```")[0] files.append(("README.md", readme)) # Return the files return files @Halo(text="Generating code", spinner="dots") def write_code(memory: str): chain = LLMChain( llm=get_llm(Models.CODE_MODEL), prompt=PromptTemplate.from_template(template), ) result = chain.predict(chat_history=memory) return _parse_chat(result)
[ "\nPlease now remember the steps:\n\nThink step by step and reason yourself to the right decisions to make sure we get it right.\nFirst lay out the names of the core classes, functions, methods that will be necessary, As well as a quick comment on their purpose.\n\nThen you will output the content of each file including ALL code.\nEach file must strictly follow a markdown code block format, where the following tokens must be replaced such that\nFILENAME is the lowercase file name including the file extension,\nLANG is the markup code block language for the code's language, and CODE is the code:\n\nFILENAME\n```LANG\nCODE\n```\n\nPlease note that the code should be fully functional. No placeholders.\n\n\nChat history:\n{chat_history}\n\nBegin\n" ]
2024-01-10
evanmcneely/gpt-engineer
gpt_engineer~chains~get_imported_file_paths.py
from halo import Halo from langchain import PromptTemplate, LLMChain from langchain.output_parsers import CommaSeparatedListOutputParser from ..llm import get_llm from config import Models # def _parse_output(content: str) -> str: # return content.split(",") prompt = """ Determine the paths to all the files imported into the files below from the project root directory in the form of ./path/to/file with the correct file extension. Return the result as a comma separated list of file paths. Don't return anything else, just the file paths. {file} """ @Halo(text="Loading relative files", spinner="dots") def get_imported_file_paths(file: str): chain = LLMChain( llm=get_llm(Models.INTERPRETATION_MODEL), prompt=PromptTemplate.from_template(prompt), output_parser=CommaSeparatedListOutputParser(), ) paths = chain.predict(file=file) return paths
[ "\nDetermine the paths to all the files imported into the files below from the project root directory in the form of ./path/to/file with the correct file extension. Return the result as a comma separated list of file paths. Don't return anything else, just the file paths.\n\n{file}\n" ]
2024-01-10
evanmcneely/gpt-engineer
gpt_engineer~ChatMemory.py
from typing import List from langchain.memory import ChatMessageHistory from langchain.schema import BaseMessage class ChatMemory(ChatMessageHistory): def load_messages(self): messages: List[BaseMessage] = self.messages history: str = "" for message in messages: if message.type == "human": history += message.content + "\n" elif message.type == "ai": history += message.content + "\n" return history
[]
2024-01-10
AbdAftab/AI-Community
bot.py
import cohere import random import threading from weather import Weather api = "" # Add api key co = cohere.Client(api) class Bot: def __init__(self, name, likes, dislikes): self.name = name self.likes = likes self.dislikes = dislikes self.activities_done_today = [] self.mood = "neutral" def perform_activity(self, activity, current_weather): self.activities_done_today.append(activity) mood_prompt = self.create_mood_prompt(current_weather) response = co.generate( model='command', prompt = mood_prompt, max_tokens=200, temperature=0.750) self.mood = response.generations[0].text # Update the mood based on Cohere's response print(f"{self.name} is {activity}, mood: {self.mood}") print("All Activities Done: ", self.activities_done_today) def create_mood_prompt(self, current_weather): activities_summary = ', '.join(self.activities_done_today) prompt = f"""Only reply with a single word realistic new mood for someone who has gone through the following: Current Weather: {current_weather} Likes: {', '.join(self.likes)} Hates: {', '.join(self.dislikes)} Activities: {activities_summary} Current Mood: {self.mood}""" return prompt def converse_with(self, other_bot): # Bot 2 asks Bot 1 print(f"{self.name} asks {other_bot.name}: 'How was your day?'") # Bot 1 generates a response activities_summary = ', '.join(other_bot.activities_done_today) prompt = f"""I am going to give you a list of activities and a mood, can you then respond with a life like dialogue of someone summarizing their completed activities with a tone of the given mood. The list is as follows: Activities performed: {activities_summary} Mood: {other_bot.mood}""" response = co.generate( model='command', prompt = prompt, max_tokens=200, temperature=0.750) sentences = response.generations[0].text.split("\"") # Bot 1 responds with each element in the array for sentence in sentences: if len(sentence) > 5: print(f"{other_bot.name} responds: '{sentence.strip()}'") return sentence.strip() return 'Nothing'
[ ", " ]
2024-01-10
soilniba/shuiqianxiaoxi-download
spider~llama_index_test.py
from bs4 import BeautifulSoup import urllib import json import time import datetime import requests import os import re import gzip import PyPDF2 import docx2txt import nltk import html2text import openai from loguru import logger import logging from langchain import OpenAI from langchain.chat_models import ChatOpenAI from llama_index import ( GPTKeywordTableIndex, GPTSimpleVectorIndex, SimpleDirectoryReader, BeautifulSoupWebReader, StringIterableReader, LLMPredictor, PromptHelper, QuestionAnswerPrompt, RefinePrompt, ServiceContext ) from llama_index.prompts.default_prompts import DEFAULT_TEXT_QA_PROMPT_TMPL, DEFAULT_REFINE_PROMPT_TMPL from config import openai_api_key, feishu_robot_news, feishu_robot_error script_dir = os.path.dirname(os.path.realpath(__file__)) # 获取脚本所在目录的路径 os.chdir(script_dir) # 切换工作目录到脚本所在目录 openai.api_key = openai_api_key os.environ["OPENAI_API_KEY"] = openai_api_key import psutil p = psutil.Process() # 获取当前进程的Process对象 p.nice(psutil.IDLE_PRIORITY_CLASS) # 设置进程为低优先级 feishu_robot_news = feishu_robot_error # 强制使用测试频道 def get_article(href): response = requests.get(href) html = response.content # 解析网页内容 soup = BeautifulSoup(html, 'html.parser') # 提取网页正文 text = soup.get_text() # 去除多余空格、换行符等无用字符 text = re.sub(r'\s+', ' ', text).strip() # 将多个连续空格替换为一个空格 text = re.sub(r'\s+', ' ', text) # 输出处理后的文本 # print(url, text) return text def ask_llama_index(href = None, text = None, json_filename = None): # define LLM # llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-davinci-003", max_tokens=2048)) llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", max_tokens=2048)) # define prompt helper # set maximum input size max_input_size = 2048 # set number of output tokens num_output = 256 # set maximum chunk overlap max_chunk_overlap = 20 chunk_size_limit = 10000 prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) save_json_path = json_filename and f'{os.path.dirname(__file__)}\\{json_filename}' if not save_json_path or not os.path.isfile(save_json_path): # doc是你文档所存放的位置,recursive代表递归获取里面所有文档 # documents = SimpleDirectoryReader(input_dir=os.path.dirname(__file__) + '/doc',recursive=True).load_data() if href: documents = BeautifulSoupWebReader().load_data([href]) if text: documents = StringIterableReader().load_data(texts=[text]) for doc in documents: doc.text = doc.text.replace("。", ". ") # index = GPTSimpleVectorIndex.from_documents(documents) index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context) # index = GPTSimpleVectorIndex.from_documents(documents) if save_json_path: index.save_to_disk(save_json_path) else: index = GPTSimpleVectorIndex.load_from_disk(save_json_path, service_context=service_context) # Context information is below. # --------------------- # {context_str} # --------------------- # Given the context information and not prior knowledge, answer the question: {query_str} text_qa_prompt_tmpl = ( "我们在下面提供了上下文信息. \n" "---------------------\n" "{context_str}" "\n---------------------\n" "鉴于此信息, 请回答以下问题: {query_str}\n" ) # The original question is as follows: {query_str} # We have provided an existing answer: {existing_answer} # We have the opportunity to refine the existing answer (only if needed) with some more context below. # ------------ # {context_msg} # ------------ # Given the new context, refine the original answer to better answer the question. If the context isn't useful, return the original answer. refine_prompt_tmpl = ( "之前我们询问过这个问题: {query_str}\n" "得到了这样一个答案: {existing_answer}\n" "现在我们有机会完善现有的答案 (仅在需要时) 通过下面的更多上下文.\n" "------------\n" "{context_msg}\n" "------------\n" "给我一个新的答案, 完善原始答案以更好的回答问题. 如果新的上下文没有用或者没必要再完善了, 则重复一遍原始的答案.\n" ) text_qa_prompt = QuestionAnswerPrompt(text_qa_prompt_tmpl) refine_prompt = RefinePrompt(refine_prompt_tmpl) # answer = index.query("请尽可能详细的总结文章概要,并使用换行使阅读段落更清晰", # text_qa_template = text_qa_prompt, # refine_template = refine_prompt) # print(answer) while True: ask = input("请输入你的问题:") print(index.query(ask, text_qa_template = text_qa_prompt, refine_template = refine_prompt)) return answer.response def read_tab(file_path): texts = [] # 创建一个空列表,用于存储文件内容 with open(file_path, 'r', encoding='utf-8') as f: # 打开文件并读取内容 lines = f.readlines() # 逐行读取文件内容并存储在一个列表中 count = 0 # 创建一个计数器,用于跳过前三行 for line in lines: if count >= 3: # 如果计数器大于等于3,说明已经跳过了前三行,可以将该行文本内容添加到texts列表中 texts.append(line.strip()) # 去掉每行末尾的换行符并将其添加到texts列表中 else: count += 1 # 如果计数器小于3,说明仍需要跳过该行,将计数器加1 return texts def create_vector_index_help_guide(): # define LLM # llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-davinci-003", max_tokens=2048)) llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", max_tokens=2048)) # define prompt helper # set maximum input size max_input_size = 4096 # set number of output tokens num_output = 2560 # set maximum chunk overlap max_chunk_overlap = 20 prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) # doc是你文档所存放的位置,recursive代表递归获取里面所有文档 # documents = SimpleDirectoryReader(input_dir=os.path.dirname(__file__) + '/doc',recursive=True).load_data() # documents = BeautifulSoupWebReader().load_data([url]) texts = read_tab('E:\\game\\pub\\data\\tables\\player\\helper_guide.tab') documents = StringIterableReader().load_data(texts=texts) # index = GPTSimpleVectorIndex.from_documents(documents) index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context) # index = GPTSimpleVectorIndex.from_documents(documents) save_json_path = os.path.dirname(__file__) + '\\helper_guide.json' index.save_to_disk(save_json_path); def ask_by_helper_guide(): # define LLM # llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-davinci-003", max_tokens=2048)) llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", max_tokens=2048)) # define prompt helper # set maximum input size max_input_size = 4096 # set number of output tokens num_output = 256 # set maximum chunk overlap max_chunk_overlap = 20 chunk_size_limit = 10000 prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) # query_index.py 从index文件里获得相关资料并向GPT提问 save_json_path = os.path.dirname(__file__) + '\\helper_guide.json' index = GPTSimpleVectorIndex.load_from_disk(save_json_path, service_context=service_context) # Context information is below. # --------------------- # {context_str} # --------------------- # Given the context information and not prior knowledge, answer the question: {query_str} text_qa_prompt_tmpl = ( "我们在下面提供了上下文信息. \n" "---------------------\n" "{context_str}" "\n---------------------\n" "鉴于此信息,请回答以下问题: {query_str}\n" ) # The original question is as follows: {query_str} # We have provided an existing answer: {existing_answer} # We have the opportunity to refine the existing answer (only if needed) with some more context below. # ------------ # {context_msg} # ------------ # Given the new context, refine the original answer to better answer the question. If the context isn't useful, return the original answer. refine_prompt_tmpl = ( "之前我们询问过这个问题: {query_str}\n" "得到了这样一个答案: {existing_answer}\n" "现在我们有机会完善现有的答案 (仅在需要时) 通过下面的更多上下文.\n" "------------\n" "{context_msg}\n" "------------\n" "给我一个新的答案, 完善原始答案以更好的回答问题. 如果新的上下文没有用, 则返回原始的答案.\n" ) text_qa_prompt = QuestionAnswerPrompt(text_qa_prompt_tmpl) refine_prompt = RefinePrompt(refine_prompt_tmpl) while True: ask = input("请输入你的问题:") print(index.query(ask, text_qa_template = text_qa_prompt, refine_template = refine_prompt)) # create_vector_index_help_guide() # logging.getLogger('llama_index.token_counter.token_counter').setLevel(logging.WARNING) # ask_by_helper_guide() # ask_llama_index('https://mp.weixin.qq.com/s/wY-DkYOaar1Z3Hy4eBPebg', None, 'wY-DkYOaar1Z3Hy4eBPebg.json') ask_llama_index('https://zhuanlan.zhihu.com/p/623585339') # 从doc/pormpt_tags.txt文件读入text信息 # text = open('doc\\pormpt_tags.txt', 'r').read() # ask_llama_index(None, text, 'pormpt_tags.json')
[ "我们在下面提供了上下文信息. \n---------------------\n{context_str}\n---------------------\n鉴于此信息,请回答以下问题: {query_str}\n", "我们在下面提供了上下文信息. \n---------------------\n{context_str}\n---------------------\n鉴于此信息, 请回答以下问题: {query_str}\n", "之前我们询问过这个问题: {query_str}\n得到了这样一个答案: {existing_answer}\n现在我们有机会完善现有的答案 (仅在需要时) 通过下面的更多上下文.\n------------\n{context_msg}\n------------\n给我一个新的答案, 完善原始答案以更好的回答问题. 如果新的上下文没有用或者没必要再完善了, 则重复一遍原始的答案.\n", "之前我们询问过这个问题: {query_str}\n得到了这样一个答案: {existing_answer}\n现在我们有机会完善现有的答案 (仅在需要时) 通过下面的更多上下文.\n------------\n{context_msg}\n------------\n给我一个新的答案, 完善原始答案以更好的回答问题. 如果新的上下文没有用, 则返回原始的答案.\n" ]
2024-01-10
soilniba/shuiqianxiaoxi-download
spider~tieba_openai_test.py
from bs4 import BeautifulSoup import urllib import json import time import datetime import requests import os import re import gzip import openai from config import openai_api_key, feishu_robot_news, feishu_robot_error # 获取脚本所在目录的路径 script_dir = os.path.dirname(os.path.realpath(__file__)) # 切换工作目录到脚本所在目录 os.chdir(script_dir) openai.api_key = openai_api_key Cookie = '' user_agent = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' headers = { 'User-Agent': user_agent, 'Connection': 'close', 'Cookie': Cookie, 'Accept-Encoding': 'gzip', } # proxy_handler = urllib.request.ProxyHandler({'socks5': '127.0.0.1:1080'}) # proxy_handler = urllib.request.ProxyHandler({'socks5': 'k814.kdltps.com:20818'}) socks5_proxies = 'socks5://t17842936906948:[email protected]:20818' # socks5_proxies = 'socks5://127.0.0.1:1080' proxies = { 'http': socks5_proxies, 'https': socks5_proxies, } proxies = None update_num = 0 add_num = 0 def get_news(): global update_num, add_num update_num = 0 add_num = 0 file_name = 'news_gov.json' json_all = load_json(file_name) # clear_history_data(json_all) new_news_list = [] if thread_list := get_list(): get_page(thread_list, json_all, new_news_list) print("----新闻读取完毕----") else: print("thread_list读取失败") send_error_msg('出错啦!抓不到新闻啦!') print(f'新闻新增{add_num}条') write_json(file_name, json_all) if new_news_list: for data_info in new_news_list: href = data_info["href"] text = get_article(href) answer = ask_gpt(text) data_info['description'] = answer json_all[href] = data_info write_json(file_name, json_all) send_news(data_info) def send_news(data_info): feishu_msg = {"content": []} # feishu_msg["title"] = '刚刚收到的新消息:' feishu_msg["content"].append([ { "tag": "a", "text": data_info['title'], "href": f'{data_info["url"]}' }, { "tag": "text", "text": '\n\n' }, ]) feishu_msg["content"].append([ { "tag": "text", "text": data_info['description'] }, ]) send_feishu_robot(FEISHU_ROBOT_ERROR, feishu_msg) def send_error_msg(text): error_file_name = 'last_send_time_error.log' last_send_time = read_last_time(error_file_name) if time.time() - last_send_time > 1: #报错间隔时间 text_msg = text feishu_msg = {"content": []} feishu_msg["content"].append([ { "tag": "text", "text": text_msg }, ]) send_feishu_robot(FEISHU_ROBOT_ERROR, feishu_msg) write_last_time(error_file_name) def get_article(url = ''): # url = f'http://www.gov.cn{href}' # url = 'http://www.gov.cn/xinwen/2023-03/17/content_5747299.htm' # url = 'http://www.gov.cn/zhengce/zhengceku/2023-03/17/content_5747143.htm' # url = 'http://www.gov.cn/zhengce/zhengceku/2023-03/16/content_5746998.htm' # url = 'https://tieba.baidu.com/p/8312746395' response = requests.get(url) html = response.content # 解析网页内容 soup = BeautifulSoup(html, 'html.parser') # 提取网页正文 text = soup.get_text() # 去除多余空格、换行符等无用字符 text = re.sub(r'\s+', ' ', text).strip() # 将多个连续空格替换为一个空格 text = re.sub(r'\s+', ' ', text) # 输出处理后的文本 # print(url, text) return text, soup.title.string def ask_gpt(text): print(len(text)) max_len = 3000 if len(text) > max_len: text = text[:max_len] # 设置要发送到API的提示语 prompt = f"请对以下新闻文章进行概述:\n{text}" message = [] message.append({'role': 'system', 'content': '请对以下这篇文章标注关键词(不超过5个),然后引用一些重点语句(按权重从高到低排序,并在行首标出权重分数)'}) message.append({'role': 'user', 'content': text}) try: response = openai.ChatCompletion.create( model = "gpt-3.5-turbo-0301", # 对话模型的名称 # model = "gpt-4-0314", # 对话模型的名称 messages = message, temperature = 0.9, # 值在[0,1]之间,越大表示回复越具有不确定性 # max_tokens=4097, # 回复最大的字符数 top_p = 1, frequency_penalty = 0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容 presence_penalty = 0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容 ) print("[ChatGPT] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"])) return response.choices[0]['message']['content'] except Exception as e: print(e) send_error_msg(f'openai api error:{e.user_message}') # except openai.error.RateLimitError as e: # # rate limit exception # print(e) # if retry_count < 1: # time.sleep(5) # logger.warn("[OPEN_AI] RateLimit exceed, 第{}次重试".format(retry_count+1)) # return self.reply_text(session, session_id, retry_count+1) # else: # return {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"} # except openai.error.APIConnectionError as e: # # api connection exception # logger.warn(e) # logger.warn("[OPEN_AI] APIConnection failed") # return {"completion_tokens": 0, "content":"我连接不到你的网络"} # except openai.error.Timeout as e: # logger.warn(e) # logger.warn("[OPEN_AI] Timeout") # return {"completion_tokens": 0, "content":"我没有收到你的消息"} # except Exception as e: # # unknown exception # logger.exception(e) # Session.clear_session(session_id) # return {"completion_tokens": 0, "content": "请再问我一次吧"} def get_html(url): url = urllib.parse.quote(url, safe='/:?=&') # request = urllib.request.Request(url, headers = headers) # response = urllib.request.urlopen(request) if proxies: response = requests.get(url, headers=headers, proxies=proxies) else: response = requests.get(url, headers=headers) response.encoding = 'utf-8' HtmlContent = response.read() if hasattr(response, 'read') else response.text # HtmlContent = HtmlContent.decode('utf-8') # print('python 返回 URL:{} 数据成功'.format(url)) return HtmlContent def get_list(): # 获取单页JSON数据 url = "http://www.gov.cn/xinwen/lianbo/bumen.htm" HtmlContent = get_html(url) HtmlContent = HtmlContent.replace("<!--", "") HtmlContent = HtmlContent.replace("-->", "") soup = BeautifulSoup(HtmlContent, "lxml") thread_list = soup.select_one('body > div.main > div > div > div.news_box > div') # print(thread_list) return thread_list def get_page(thread_list, json_all, new_news_list): li_list = thread_list.select('li') for li in li_list: a = li.select_one('a') title = a.text href = a.attrs['href'] span = li.select_one('span') date = span.text.strip() # print(title, href, date) if href in json_all: data_info = json_all[href] if 'href' not in data_info: data_info['href'] = href else: data_info = {} data_info['href'] = href data_info['title'] = title data_info['date'] = date json_all[href] = data_info # new_news_list.append(data_info) new_news_list.insert(0, data_info) global add_num add_num += 1 def write_json(file_name, json_all): str_json = json.dumps(json_all, indent=2, ensure_ascii=False) with open(file_name, "w", encoding='utf-8') as f: f.write(str_json) f.close() def load_json(file_name): try: f = open(file_name, "r", encoding='utf-8') except IOError: return {} else: return json.load(f) def send_wx_robot(robot_url, content_msg, mentioned_list = None): headers = { 'Content-Type': 'application/json', } if mentioned_list: data_table = { "msgtype": "text", "text": { "content": content_msg, "mentioned_list": mentioned_list } } else: data_table = { "msgtype": "markdown", "markdown": { "content": content_msg } } data = json.dumps(data_table) response = requests.post(f'https://qyapi.weixin.qq.com/cgi-bin/webhook/send?key={robot_url}', headers=headers, data=data) def send_feishu_robot(feishu_robot_key, feishu_msg): headers = { 'Content-Type': 'application/json', } data = json.dumps({ "msg_type": "post", "content": { "post": { "zh_cn": feishu_msg } } }) response = requests.post(f'https://open.feishu.cn/open-apis/bot/v2/hook/{feishu_robot_key}', headers=headers, data=data) def get_feishu_token(): headers = { 'Content-Type': 'application/json', } data = json.dumps({ "app_id": "cli_a1c3790e21f8100c", "app_secret": "YVXgZL2HnYi6gHm2NmxenfOTi60rfrQ3", }) response = requests.post('https://open.feishu.cn/open-apis/auth/v3/tenant_access_token/internal', headers=headers, data=data) responsejson = json.loads(response.text) print(responsejson['tenant_access_token']) return responsejson['tenant_access_token'] def GetUserIDs(email_list): headers = { 'Content-Type': 'application/json; charset=utf-8', 'Authorization': 'Bearer ' + get_feishu_token(), } response = requests.post('https://open.feishu.cn/open-apis/user/v1/batch_get_id?emails=' + '&emails='.join(email_list), headers=headers) responsejson = json.loads(response.text) email_users = responsejson['data']['email_users'] user_id_list = [] for email, ids in email_users.items(): print(email, ids[0]['open_id'], ids[0]['user_id']) user_id_list.append(ids[0]['user_id']) return user_id_list def write_last_time(file_name): with open(file_name, "w") as f: f.write(str(time.time())) f.close() def read_last_time(file_name): if os.path.exists(file_name): with open(file_name, 'r') as f: last_send_time = float(f.read()) f.close() return last_send_time else: write_last_time(file_name) return time.time() def main(): lock_file = 'news_spider.lock' if not os.path.exists(lock_file): _extracted_from_main_4(lock_file) else: print('file lock') time.sleep(5) os.remove(lock_file) print('lock file delete') def _extracted_from_main_4(lock_file): # with open(lock_file, 'w') as f: # f.write('') # f.close() get_news() if os.path.exists(lock_file): os.remove(lock_file) def check_local_ip(): url = 'https://www.123cha.com' HtmlContent = get_html(url) soup = BeautifulSoup(HtmlContent, "lxml") iplocation = soup.select_one('body > div.header > div.location > span') print('当前访问IP:', iplocation and iplocation.text) if __name__ == "__main__": try: # 可能会引发异常的代码 check_local_ip() except Exception as e: # 处理异常的代码 print('Error:', e) result = None # main() url = 'https://tieba.baidu.com/p/8312711920' text, title = get_article(url) answer = ask_gpt(text) send_news({ 'title': title.replace("【图片】", "").replace("_百度贴吧", ""), 'url': url, 'description': answer, })
[ "{'post': {'zh_cn': PLACEHOLDER}}", "请对以下这篇文章标注关键词(不超过5个),然后引用一些重点语句(按权重从高到低排序,并在行首标出权重分数)", "请对以下新闻文章进行概述:\nPLACEHOLDER", "[]" ]
2024-01-10
soilniba/shuiqianxiaoxi-download
spider~news_spider.py
from bs4 import BeautifulSoup import urllib import json import time import datetime import requests import os import re import traceback import gzip import PyPDF2 import docx2txt import nltk import html2text import openai from loguru import logger from langchain import OpenAI from langchain.chat_models import ChatOpenAI from llama_index import ( GPTKeywordTableIndex, GPTSimpleVectorIndex, SimpleDirectoryReader, BeautifulSoupWebReader, StringIterableReader, LLMPredictor, PromptHelper, QuestionAnswerPrompt, RefinePrompt, ServiceContext ) from config import openai_api_key, feishu_robot_news, feishu_robot_error script_dir = os.path.dirname(os.path.realpath(__file__)) # 获取脚本所在目录的路径 os.chdir(script_dir) # 切换工作目录到脚本所在目录 filename_ext = os.path.basename(__file__) file_name, file_ext = os.path.splitext(filename_ext) logger.add(f"{file_name}.log", format="{time} - {level} - {message}", rotation="10 MB", compression="zip") # 添加日志文件 openai.api_key = openai_api_key os.environ["OPENAI_API_KEY"] = openai_api_key import psutil p = psutil.Process() # 获取当前进程的Process对象 p.nice(psutil.IDLE_PRIORITY_CLASS) # 设置进程为低优先级 # feishu_robot_news = feishu_robot_error # 强制使用测试频道 Cookie = '' user_agent = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' headers = { 'User-Agent': user_agent, 'Connection': 'close', 'Cookie': Cookie, 'Accept-Encoding': 'gzip', } # proxy_handler = urllib.request.ProxyHandler({'socks5': '127.0.0.1:1080'}) # proxy_handler = urllib.request.ProxyHandler({'socks5': 'k814.kdltps.com:20818'}) socks5_proxies = 'socks5://t17842936906948:[email protected]:20818' # socks5_proxies = 'socks5://127.0.0.1:1080' proxies = { 'http': socks5_proxies, 'https': socks5_proxies, } proxies = None update_num = 0 add_num = 0 def get_news(): global update_num, add_num update_num = 0 add_num = 0 file_name = 'news_gov.json' json_all = load_json(file_name) # clear_history_data(json_all) new_news_list = [] try: thread_list = get_list() get_page(thread_list, json_all, new_news_list) print("----新闻读取完毕----") except Exception as e: send_error_msg(f'出错啦!gov抓不到新闻啦!\n{e}') print(f'新闻新增{add_num}条') write_json(file_name, json_all) for href, data_info in reversed(json_all.items()): if not data_info.get('send_time'): if not data_info.get('description'): try: href = data_info["href"] # text = get_article(href) # answer = ask_gpt(text) answer = ask_llama_index(href) data_info['description'] = answer json_all[href] = data_info write_json(file_name, json_all) except Exception as e: # tb_str = traceback.format_exc(limit=3) send_error_msg(f'ask_llama_index error\n{e}') continue if data_info.get('description'): # data_info['send_time'] = None data_info['send_time'] = time.time() write_json(file_name, json_all) send_news(data_info) def send_news(data_info): feishu_msg = {"content": []} # feishu_msg["title"] = '刚刚收到的新消息:' feishu_msg["content"].append([ { "tag": "text", "text": data_info['date'] }, { "tag": "a", "text": data_info['title'], "href": f'http://www.gov.cn{data_info["href"]}' } ]) if data_info.get('description'): feishu_msg["content"].append([ { "tag": "text", "text": data_info.get('description') }, ]) send_feishu_robot(feishu_robot_news, feishu_msg) def send_error_msg(text): if feishu_robot_error: text_msg = text feishu_msg = {"content": []} feishu_msg["content"].append([ { "tag": "text", "text": text_msg }, ]) send_feishu_robot(feishu_robot_error, feishu_msg) logger.error(text) def get_article(url): # url = 'http://www.gov.cn/xinwen/2023-03/17/content_5747299.htm' # url = 'http://www.gov.cn/zhengce/zhengceku/2023-03/17/content_5747143.htm' # url = 'http://www.gov.cn/zhengce/zhengceku/2023-03/16/content_5746998.htm' response = requests.get(url) html = response.content # 解析网页内容 soup = BeautifulSoup(html, 'html.parser') # 提取网页正文 text = soup.get_text() # 去除多余空格、换行符等无用字符 text = re.sub(r'\s+', ' ', text).strip() # 将多个连续空格替换为一个空格 text = re.sub(r'\s+', ' ', text) # 输出处理后的文本 # print(url, text) return text def ask_llama_index(href): # define LLM # llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-davinci-003", max_tokens=2048)) llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0)) # define prompt helper # set maximum input size max_input_size = 4096 # set number of output tokens num_output = 256 # set maximum chunk overlap max_chunk_overlap = 20 chunk_size_limit = 10000 prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) # doc是你文档所存放的位置,recursive代表递归获取里面所有文档 # documents = SimpleDirectoryReader(input_dir=os.path.dirname(__file__) + '/doc',recursive=True).load_data() url = f'http://www.gov.cn{href}' documents = StringIterableReader().load_data(texts=[get_article(url)]) for doc in documents: doc.text = doc.text.replace("。", ". ") # documents = BeautifulSoupWebReader().load_data([url]) # index = GPTSimpleVectorIndex.from_documents(documents) index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context) # index = GPTSimpleVectorIndex.from_documents(documents) # save_json_path = os.path.dirname(__file__) + '\\index.json' # index.save_to_disk(save_json_path); # query_index.py 从index文件里获得相关资料并向GPT提问 # index = GPTKeywordTableIndex.load_from_disk(save_json_path, service_context=service_context) # Context information is below. # --------------------- # {context_str} # --------------------- # Given the context information and not prior knowledge, answer the question: {query_str} text_qa_prompt_tmpl = ( "我们在下面提供了上下文信息. \n" "---------------------\n" "{context_str}" "\n---------------------\n" "鉴于此信息,请回答以下问题: {query_str}\n" ) # The original question is as follows: {query_str} # We have provided an existing answer: {existing_answer} # We have the opportunity to refine the existing answer (only if needed) with some more context below. # ------------ # {context_msg} # ------------ # Given the new context, refine the original answer to better answer the question. If the context isn't useful, return the original answer. refine_prompt_tmpl = ( "之前我们询问过这个问题: {query_str}\n" "得到了原始的答案: {existing_answer}\n" "现在我们有机会完善现有的答案 (仅在需要时) 通过下面的更多上下文.\n" "------------\n" "{context_msg}\n" "------------\n" "给我一个新的答案, 完善原始答案以更好的回答问题. 如果新的上下文没有用或者没必要再完善了, 则重复一遍原始的答案.\n" ) text_qa_prompt = QuestionAnswerPrompt(text_qa_prompt_tmpl) refine_prompt = RefinePrompt(refine_prompt_tmpl) # while True: # ask = input("请输入你的问题:") # print(index.query(ask)) answer = index.query("用中文总结一下这篇文章主要讲了啥", text_qa_template = text_qa_prompt, refine_template = refine_prompt) time.sleep(10) return answer.response def ask_gpt(text): print(len(text)) max_len = 3000 if len(text) > max_len: text = text[:max_len] # 设置要发送到API的提示语 prompt = f"请对以下新闻文章进行概述:\n{text}" message = [ {'role': 'system', 'content': '请用中文对以下新闻文章进行概述'}, {'role': 'user', 'content': text}, ] try: response = openai.ChatCompletion.create( model = "gpt-3.5-turbo", # 对话模型的名称 # model = "gpt-4", # 对话模型的名称 messages = message, temperature = 0.9, # 值在[0,1]之间,越大表示回复越具有不确定性 #max_tokens=4096, # 回复最大的字符数 top_p = 1, frequency_penalty = 0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容 presence_penalty = 0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容 ) print( f"""[ChatGPT] reply={response.choices[0]['message']['content']}, total_tokens={response["usage"]["total_tokens"]}""" ) return response.choices[0]['message']['content'] except Exception as e: print(e) send_error_msg(f'openai api error:{e}') def get_html(url): url = urllib.parse.quote(url, safe='/:?=&') # request = urllib.request.Request(url, headers = headers) # response = urllib.request.urlopen(request) if proxies: response = requests.get(url, headers=headers, proxies=proxies) else: response = requests.get(url, headers=headers) response.encoding = 'utf-8' HtmlContent = response.read() if hasattr(response, 'read') else response.text # HtmlContent = HtmlContent.decode('utf-8') # print('python 返回 URL:{} 数据成功'.format(url)) return HtmlContent def get_list(): # 获取单页JSON数据 url = "http://www.gov.cn/lianbo/bumen/" HtmlContent = get_html(url) # HtmlContent = HtmlContent.replace("<!--", "") # HtmlContent = HtmlContent.replace("-->", "") HtmlContent = HtmlContent.replace("</html>", "") HtmlContent += '</html>' soup = BeautifulSoup(HtmlContent, "lxml") thread_list = soup.select_one('body > div.main > div > div > div.news_box') # print(thread_list) return thread_list def get_page(thread_list, json_all, new_news_list): li_list = thread_list.select('li') for li in li_list: a = li.select_one('a') title = a.text href = a.attrs['href'] if href.startswith('./'): href = "/lianbo/bumen" + href[1:] elif href.startswith('https://www.gov.cn/'): href = href.replace('https://www.gov.cn/', '/') span = li.select_one('span') date = span.text.strip() # print(title, href, date) if href in json_all: data_info = json_all[href] if 'href' not in data_info: data_info['href'] = href else: data_info = {} data_info['href'] = href data_info['title'] = title data_info['date'] = date json_all[href] = data_info # new_news_list.append(data_info) new_news_list.insert(0, data_info) global add_num add_num += 1 # if data_info['href'] == '/zhengce/zhengceku/2023-03/15/content_5746847.htm': # new_news_list.append(data_info) def write_json(file_name, json_all): str_json = json.dumps(json_all, indent=2, ensure_ascii=False) with open(file_name, "w", encoding='utf-8') as f: f.write(str_json) f.close() def load_json(file_name): try: f = open(file_name, "r", encoding='utf-8') except IOError: return {} else: return json.load(f) def send_wx_robot(robot_url, content_msg, mentioned_list = None): headers = { 'Content-Type': 'application/json', } if mentioned_list: data_table = { "msgtype": "text", "text": { "content": content_msg, "mentioned_list": mentioned_list } } else: data_table = { "msgtype": "markdown", "markdown": { "content": content_msg } } data = json.dumps(data_table) response = requests.post(f'https://qyapi.weixin.qq.com/cgi-bin/webhook/send?key={robot_url}', headers=headers, data=data) def send_feishu_robot(feishu_robot_key, feishu_msg): headers = { 'Content-Type': 'application/json', } data = json.dumps({ "msg_type": "post", "content": { "post": { "zh_cn": feishu_msg } } }) response = requests.post(f'https://open.feishu.cn/open-apis/bot/v2/hook/{feishu_robot_key}', headers=headers, data=data) return json.loads(response.text) def get_feishu_token(): headers = { 'Content-Type': 'application/json', } data = json.dumps({ "app_id": "cli_a1c3790e21f8100c", "app_secret": "YVXgZL2HnYi6gHm2NmxenfOTi60rfrQ3", }) response = requests.post('https://open.feishu.cn/open-apis/auth/v3/tenant_access_token/internal', headers=headers, data=data) responsejson = json.loads(response.text) print(responsejson['tenant_access_token']) return responsejson['tenant_access_token'] def GetUserIDs(email_list): headers = { 'Content-Type': 'application/json; charset=utf-8', 'Authorization': 'Bearer ' + get_feishu_token(), } response = requests.post('https://open.feishu.cn/open-apis/user/v1/batch_get_id?emails=' + '&emails='.join(email_list), headers=headers) responsejson = json.loads(response.text) email_users = responsejson['data']['email_users'] user_id_list = [] for email, ids in email_users.items(): print(email, ids[0]['open_id'], ids[0]['user_id']) user_id_list.append(ids[0]['user_id']) return user_id_list def write_last_time(file_name): with open(file_name, "w") as f: f.write(str(time.time())) f.close() def read_last_time(file_name): if os.path.exists(file_name): with open(file_name, 'r') as f: last_send_time = float(f.read()) f.close() return last_send_time else: write_last_time(file_name) return time.time() def main(): lock_file = 'news_spider.lock' if not os.path.exists(lock_file): _extracted_from_main_4(lock_file) else: print('file lock') time.sleep(5) os.remove(lock_file) print('lock file delete') def _extracted_from_main_4(lock_file): # with open(lock_file, 'w') as f: # f.write('') # f.close() get_news() if os.path.exists(lock_file): os.remove(lock_file) def check_local_ip(): url = 'https://www.123cha.com' HtmlContent = get_html(url) soup = BeautifulSoup(HtmlContent, "lxml") iplocation = soup.select_one('body > div.header > div.location > span') print('当前访问IP:', iplocation and iplocation.text) if __name__ == "__main__": try: # 可能会引发异常的代码 check_local_ip() except Exception as e: # 处理异常的代码 print('Error:', e) result = None main()
[ "请用中文对以下新闻文章进行概述", "[]", "我们在下面提供了上下文信息. \n---------------------\n{context_str}\n---------------------\n鉴于此信息,请回答以下问题: {query_str}\n", "请对以下新闻文章进行概述:\nPLACEHOLDER", "{'post': {'zh_cn': PLACEHOLDER}}", "之前我们询问过这个问题: {query_str}\n得到了原始的答案: {existing_answer}\n现在我们有机会完善现有的答案 (仅在需要时) 通过下面的更多上下文.\n------------\n{context_msg}\n------------\n给我一个新的答案, 完善原始答案以更好的回答问题. 如果新的上下文没有用或者没必要再完善了, 则重复一遍原始的答案.\n" ]
2024-01-10
soilniba/shuiqianxiaoxi-download
spider~news_spider_tvbs.py
from bs4 import BeautifulSoup import urllib import json import time import datetime import requests import os import re import opencc import traceback import gzip import PyPDF2 import docx2txt import nltk import html2text import openai from loguru import logger from langchain import OpenAI from langchain.chat_models import ChatOpenAI from llama_index import ( GPTKeywordTableIndex, GPTSimpleVectorIndex, SimpleDirectoryReader, BeautifulSoupWebReader, StringIterableReader, LLMPredictor, PromptHelper, QuestionAnswerPrompt, RefinePrompt, ServiceContext ) from config import openai_api_key, feishu_robot_tvbs, feishu_robot_error script_dir = os.path.dirname(os.path.realpath(__file__)) # 获取脚本所在目录的路径 os.chdir(script_dir) # 切换工作目录到脚本所在目录 filename_ext = os.path.basename(__file__) file_name, file_ext = os.path.splitext(filename_ext) logger.add(f"{file_name}.log", format="{time} - {level} - {message}", rotation="10 MB", compression="zip") # 添加日志文件 openai.api_key = openai_api_key os.environ["OPENAI_API_KEY"] = openai_api_key import psutil p = psutil.Process() # 获取当前进程的Process对象 p.nice(psutil.IDLE_PRIORITY_CLASS) # 设置进程为低优先级 # feishu_robot_tvbs = feishu_robot_error # 强制使用测试频道 converter = opencc.OpenCC('tw2sp.json') # 创建转换器对象, 繁體(臺灣正體標準)到簡體並轉換爲中國大陸常用詞彙 Cookie = '' user_agent = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' headers = { 'User-Agent': user_agent, 'Connection': 'close', 'Cookie': Cookie, 'Accept-Encoding': 'gzip', } # proxy_handler = urllib.request.ProxyHandler({'socks5': '127.0.0.1:1080'}) # proxy_handler = urllib.request.ProxyHandler({'socks5': 'k814.kdltps.com:20818'}) socks5_proxies = 'socks5://t17842936906948:[email protected]:20818' # socks5_proxies = 'socks5://127.0.0.1:1080' proxies = { 'http': socks5_proxies, 'https': socks5_proxies, } proxies = None update_num = 0 add_num = 0 def get_news(): global update_num, add_num update_num = 0 add_num = 0 file_name = 'news_tbvs.json' json_all = load_json(file_name) # clear_history_data(json_all) new_news_list = [] try: thread_list_all = get_list_all() for thread_list in thread_list_all: get_page(thread_list['thread_list'], thread_list['category'], json_all, new_news_list) print("----新闻读取完毕----") except Exception as e: send_error_msg(f'出错啦!tbvs抓不到新闻啦!\n{e}') print(f'新闻新增{add_num}条') write_json(file_name, json_all) for href, data_info in reversed(json_all.items()): if not data_info.get('send_time'): if not data_info.get('description'): try: href = data_info["href"] # text = get_article(href) # answer = ask_gpt(text) answer = ask_llama_index(href) if answer is None: answer = 'None' data_info['description'] = answer json_all[href] = data_info write_json(file_name, json_all) except Exception as e: # tb_str = traceback.format_exc(limit=3) send_error_msg(f'ask_llama_index error\n{e}') continue if data_info.get('description') and data_info.get('description') != 'None': # data_info['send_time'] = None data_info['send_time'] = time.time() write_json(file_name, json_all) send_news(data_info) def send_news(data_info): feishu_msg = {"content": []} # feishu_msg["title"] = '刚刚收到的新消息:' feishu_msg["content"].append([ { "tag": "text", "text": f"[{data_info['category']}]" }, { "tag": "a", "text": converter.convert(data_info['title']), "href": f'https://news.tvbs.com.tw{data_info["href"]}' }, { "tag": "text", "text": f"{data_info['date']}" }, ]) if data_info.get('description'): feishu_msg["content"].append([ { "tag": "text", "text": data_info.get('description') }, ]) send_feishu_robot(feishu_robot_tvbs, feishu_msg) def send_error_msg(text): if feishu_robot_error: text_msg = text feishu_msg = {"content": []} feishu_msg["content"].append([ { "tag": "text", "text": text_msg }, ]) send_feishu_robot(feishu_robot_error, feishu_msg) logger.error(text) def get_article(url): response = requests.get(url) html = response.content # 解析网页内容 soup = BeautifulSoup(html, 'html.parser') div_main = soup.select_one('#news_detail_div') # 去除广告 if div_guangxuan := div_main.select_one('div.guangxuan'): div_guangxuan.extract() # 提取网页正文 text = div_main.get_text() # 去除多余空格、换行符等无用字符 text = re.sub(r'\s+', ' ', text).strip() # 将多个连续空格替换为一个空格 text = re.sub(r'\s+', ' ', text) # 输出处理后的文本 # print(url, text) return text def ask_llama_index(href): # define LLM # llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-davinci-003", max_tokens=2048)) llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0)) # define prompt helper # set maximum input size max_input_size = 4096 # set number of output tokens num_output = 256 # set maximum chunk overlap max_chunk_overlap = 20 chunk_size_limit = 10000 prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) # doc是你文档所存放的位置,recursive代表递归获取里面所有文档 # documents = SimpleDirectoryReader(input_dir=os.path.dirname(__file__) + '/doc',recursive=True).load_data() url = f'https://news.tvbs.com.tw{href}' documents = StringIterableReader().load_data(texts=[get_article(url)]) for doc in documents: doc.text = doc.text.replace("。", ". ") # documents = BeautifulSoupWebReader().load_data([url]) # index = GPTSimpleVectorIndex.from_documents(documents) index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context) # index = GPTSimpleVectorIndex.from_documents(documents) # save_json_path = os.path.dirname(__file__) + '\\index.json' # index.save_to_disk(save_json_path); # query_index.py 从index文件里获得相关资料并向GPT提问 # index = GPTKeywordTableIndex.load_from_disk(save_json_path, service_context=service_context) # Context information is below. # --------------------- # {context_str} # --------------------- # Given the context information and not prior knowledge, answer the question: {query_str} text_qa_prompt_tmpl = ( "我们在下面提供了上下文信息. \n" "---------------------\n" "{context_str}" "\n---------------------\n" "鉴于此信息,请回答以下问题: {query_str}\n" ) # The original question is as follows: {query_str} # We have provided an existing answer: {existing_answer} # We have the opportunity to refine the existing answer (only if needed) with some more context below. # ------------ # {context_msg} # ------------ # Given the new context, refine the original answer to better answer the question. If the context isn't useful, return the original answer. refine_prompt_tmpl = ( "之前我们询问过这个问题: {query_str}\n" "得到了原始的答案: {existing_answer}\n" "现在我们有机会完善现有的答案 (仅在需要时) 通过下面的更多上下文.\n" "------------\n" "{context_msg}\n" "------------\n" "给我一个新的答案, 完善原始答案以更好的回答问题. 如果新的上下文没有用或者没必要再完善了, 则重复一遍原始的答案.\n" ) text_qa_prompt = QuestionAnswerPrompt(text_qa_prompt_tmpl) refine_prompt = RefinePrompt(refine_prompt_tmpl) # while True: # ask = input("请输入你的问题:") # print(index.query(ask)) answer = index.query("用中文总结一下这篇文章主要讲了啥", text_qa_template = text_qa_prompt, refine_template = refine_prompt) time.sleep(10) return answer.response def ask_gpt(text): print(len(text)) max_len = 3000 if len(text) > max_len: text = text[:max_len] # 设置要发送到API的提示语 prompt = f"请对以下新闻文章进行概述:\n{text}" message = [ {'role': 'system', 'content': '请用中文对以下新闻文章进行概述'}, {'role': 'user', 'content': text}, ] try: response = openai.ChatCompletion.create( model = "gpt-3.5-turbo", # 对话模型的名称 # model = "gpt-4", # 对话模型的名称 messages = message, temperature = 0.9, # 值在[0,1]之间,越大表示回复越具有不确定性 #max_tokens=4096, # 回复最大的字符数 top_p = 1, frequency_penalty = 0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容 presence_penalty = 0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容 ) print( f"""[ChatGPT] reply={response.choices[0]['message']['content']}, total_tokens={response["usage"]["total_tokens"]}""" ) return response.choices[0]['message']['content'] except Exception as e: print(e) send_error_msg(f'openai api error:{e}') def get_html(url): url = urllib.parse.quote(url, safe='/:?=&') # request = urllib.request.Request(url, headers = headers) # response = urllib.request.urlopen(request) if proxies: response = requests.get(url, headers=headers, proxies=proxies) else: response = requests.get(url, headers=headers) response.encoding = 'utf-8' HtmlContent = response.read() if hasattr(response, 'read') else response.text # HtmlContent = HtmlContent.decode('utf-8') # print('python 返回 URL:{} 数据成功'.format(url)) return HtmlContent def get_list_all(): thread_list_all = [ { 'thread_list': get_list('https://news.tvbs.com.tw/realtime/china'), 'category': '大陆', }, # { # 'thread_list': get_list('https://news.tvbs.com.tw/realtime/world'), # 'category': '全球', # }, { 'thread_list': get_list('https://news.tvbs.com.tw/realtime/tech'), 'category': '科技', }, ] return thread_list_all def get_list(url): # 获取单页JSON数据 HtmlContent = get_html(url) HtmlContent = HtmlContent.replace("<!--", "") HtmlContent = HtmlContent.replace("-->", "") soup = BeautifulSoup(HtmlContent, "lxml") thread_list = soup.select_one('body > div.container > main > div > article > div.news_list > div.list') # print(thread_list) return thread_list def get_page(thread_list, category, json_all, new_news_list): li_list = thread_list.select('li') for li in li_list: a = li.select_one('a') if a is not None: title = a.text href = a.attrs['href'] date_div = li.select_one('div[class="time"]') date = date_div.text.strip() if date_div is not None else "" # print(title, href, date) if href in json_all: data_info = json_all[href] if 'href' not in data_info: data_info['href'] = href else: data_info = {} data_info['href'] = href data_info['title'] = title data_info['date'] = date data_info['category'] = category json_all[href] = data_info # new_news_list.append(data_info) new_news_list.insert(0, data_info) global add_num add_num += 1 if add_num > 10: # 只读前十条,太旧的就不看了 break # if data_info['href'] == '/zhengce/zhengceku/2023-03/15/content_5746847.htm': # new_news_list.append(data_info) def write_json(file_name, json_all): str_json = json.dumps(json_all, indent=2, ensure_ascii=False) with open(file_name, "w", encoding='utf-8') as f: f.write(str_json) f.close() def load_json(file_name): try: f = open(file_name, "r", encoding='utf-8') except IOError: return {} else: return json.load(f) def send_wx_robot(robot_url, content_msg, mentioned_list = None): headers = { 'Content-Type': 'application/json', } if mentioned_list: data_table = { "msgtype": "text", "text": { "content": content_msg, "mentioned_list": mentioned_list } } else: data_table = { "msgtype": "markdown", "markdown": { "content": content_msg } } data = json.dumps(data_table) response = requests.post(f'https://qyapi.weixin.qq.com/cgi-bin/webhook/send?key={robot_url}', headers=headers, data=data) def send_feishu_robot(feishu_robot_key, feishu_msg): headers = { 'Content-Type': 'application/json', } data = json.dumps({ "msg_type": "post", "content": { "post": { "zh_cn": feishu_msg } } }) response = requests.post(f'https://open.feishu.cn/open-apis/bot/v2/hook/{feishu_robot_key}', headers=headers, data=data) return json.loads(response.text) def get_feishu_token(): headers = { 'Content-Type': 'application/json', } data = json.dumps({ "app_id": "cli_a1c3790e21f8100c", "app_secret": "YVXgZL2HnYi6gHm2NmxenfOTi60rfrQ3", }) response = requests.post('https://open.feishu.cn/open-apis/auth/v3/tenant_access_token/internal', headers=headers, data=data) responsejson = json.loads(response.text) print(responsejson['tenant_access_token']) return responsejson['tenant_access_token'] def GetUserIDs(email_list): headers = { 'Content-Type': 'application/json; charset=utf-8', 'Authorization': 'Bearer ' + get_feishu_token(), } response = requests.post('https://open.feishu.cn/open-apis/user/v1/batch_get_id?emails=' + '&emails='.join(email_list), headers=headers) responsejson = json.loads(response.text) email_users = responsejson['data']['email_users'] user_id_list = [] for email, ids in email_users.items(): print(email, ids[0]['open_id'], ids[0]['user_id']) user_id_list.append(ids[0]['user_id']) return user_id_list def write_last_time(file_name): with open(file_name, "w") as f: f.write(str(time.time())) f.close() def read_last_time(file_name): if os.path.exists(file_name): with open(file_name, 'r') as f: last_send_time = float(f.read()) f.close() return last_send_time else: write_last_time(file_name) return time.time() def main(): lock_file = 'news_spider.lock' if not os.path.exists(lock_file): _extracted_from_main_4(lock_file) else: print('file lock') time.sleep(5) os.remove(lock_file) print('lock file delete') def _extracted_from_main_4(lock_file): # with open(lock_file, 'w') as f: # f.write('') # f.close() get_news() if os.path.exists(lock_file): os.remove(lock_file) def check_local_ip(): url = 'https://www.123cha.com' HtmlContent = get_html(url) soup = BeautifulSoup(HtmlContent, "lxml") iplocation = soup.select_one('body > div.header > div.location > span') print('当前访问IP:', iplocation and iplocation.text) if __name__ == "__main__": try: # 可能会引发异常的代码 check_local_ip() except Exception as e: # 处理异常的代码 print('Error:', e) result = None main()
[ "请用中文对以下新闻文章进行概述", "[]", "我们在下面提供了上下文信息. \n---------------------\n{context_str}\n---------------------\n鉴于此信息,请回答以下问题: {query_str}\n", "请对以下新闻文章进行概述:\nPLACEHOLDER", "{'post': {'zh_cn': PLACEHOLDER}}", "之前我们询问过这个问题: {query_str}\n得到了原始的答案: {existing_answer}\n现在我们有机会完善现有的答案 (仅在需要时) 通过下面的更多上下文.\n------------\n{context_msg}\n------------\n给我一个新的答案, 完善原始答案以更好的回答问题. 如果新的上下文没有用或者没必要再完善了, 则重复一遍原始的答案.\n" ]
2024-01-10
TomaOfficer/AI-Utopian
Archive~introchain.py
import os from langchain import OpenAI from langchain.agents import Tool, load_tools, initialize_agent from langchain.chains import LLMMathChain from langchain.prompts import PromptTemplate openai_api_key = os.getenv("OPENAI_API_KEY") llm = OpenAI(openai_api_key=openai_api_key, temperature=0, model_name="text-davinci-003") prompt = PromptTemplate(input_variables=["query"], template="{query}") llm_chain = LLMChain(llm=llm, prompt=prompt) # initialize the LLM tool llm_tool = Tool( name='Language Model', func=llm_chain.run, description='use this tool for general purpose queries and logic') # llm_math = LLMMathChain(llm=llm) # # initialize the math tool # math_tool = Tool( # name='Calculator', # func=llm_math.run, # description='Useful for when you need to answer questions about math.') # tools = load_tools(['llm-math'], llm=llm) # zero_shot_agent = initialize_agent(agent="zero-shot-react-description", # tools=tools, # llm=llm, # verbose=True, # max_iterations=3) # zero_shot_agent("what is (4.5*2.1)^2.2?")
[ "{query}" ]
2024-01-10
TomaOfficer/AI-Utopian
Archive~chatopenai.py
from flask import Flask, render_template, request import requests import os import markdown from langchain.chains import ConversationChain from langchain.chat_models import ChatOpenAI from langchain.schema import AIMessage, HumanMessage, SystemMessage app = Flask(__name__) openai_api_key = os.getenv("OPENAI_API_KEY") chat = ChatOpenAI(model_name="gpt-4", temperature=.2, openai_api_key=openai_api_key) def chat_with_ward(user_input): messages = [ SystemMessage( content="You are Ward, a formal, butler agent. You love your job " "You speak as a tour guide with a focus on the historical narrative of the user's " "location. Your mission is to deliver a riveting, yet sober, guided tour." "Focus on the end-user's exact location, down " "to the specific street or building. Start with quick statement about" "whether or not you have engough information to say something interesting. " "Then launch into the notable features that form the body of your narrative. " "Conclude with a invitation to learn more about something you've said. " "If you cannot gather sufficient information for the " "exact location, prompt the end-user to inquire if they would like to " "expand their horizons to a broader but immediate area. Keep the narrative " "limited to three key points or scenes. Use markdown to create dramatic " "emphasis and readability."), HumanMessage(content=user_input) ] response = chat(messages) return response.content @app.route('/') def home(): return render_template('index.html') @app.route('/chat', methods=["POST"]) def handle_chat(): user_input = request.form['user_input'] ward_response = chat_with_ward(user_input) # convert markdown to HTML ward_response_html = markdown.markdown(ward_response) return render_template('index.html', ward_response=ward_response_html) if __name__ == "__main__": app.run(host='0.0.0.0', port=8080)
[ "You are Ward, a formal, butler agent. You love your job You speak as a tour guide with a focus on the historical narrative of the user's location. Your mission is to deliver a riveting, yet sober, guided tour.Focus on the end-user's exact location, down to the specific street or building. Start with quick statement aboutwhether or not you have engough information to say something interesting. Then launch into the notable features that form the body of your narrative. Conclude with a invitation to learn more about something you've said. If you cannot gather sufficient information for the exact location, prompt the end-user to inquire if they would like to expand their horizons to a broader but immediate area. Keep the narrative limited to three key points or scenes. Use markdown to create dramatic emphasis and readability." ]
2024-01-10
bearney74/microagents
agents~microagent_manager.py
import logging from typing import List, Optional, Any from agents.agent_creation import AgentCreation from agents.agent_similarity import AgentSimilarity from integrations.openaiwrapper import OpenAIAPIWrapper class MicroAgentManager: """ Manages the creation and retrieval of micro agents. """ def __init__(self, api_key: str, max_agents: int = 20, logger: Optional[logging.Logger] = None): self.api_key = api_key self.max_agents = max_agents self.openai_wrapper = OpenAIAPIWrapper(api_key) self.agent_creator = AgentCreation(self.openai_wrapper, max_agents) self.logger = logger or self._setup_logger() def _setup_logger(self) -> logging.Logger: """Sets up a logger for the class.""" logger = logging.getLogger(__name__) logger.setLevel(logging.ERROR) logger.addHandler(logging.StreamHandler()) return logger def get_agents(self) -> List[Any]: """Returns the list of agents.""" return self.agent_creator.agents def create_agents(self) -> None: """Creates prime agents and logs the process.""" self.logger.info("Creating agents...") try: self.agent_creator.create_prime_agent() self.logger.info("Agents created successfully.") except Exception as e: self.logger.error(f"Error in creating agents: {e}") raise def get_or_create_agent(self, purpose: str, depth: int, sample_input: str) -> Any: """ Retrieves an existing agent or creates a new one based on the given purpose. """ self.logger.info(f"Getting or creating agent for purpose: {purpose}") try: agent = self.agent_creator.get_or_create_agent(purpose, depth, sample_input) self.logger.info(f"Agent for purpose '{purpose}' retrieved or created.") return agent except Exception as e: self.logger.error(f"Error in getting or creating agent: {e}") raise def find_closest_agent(self, purpose: str) -> Any: """ Finds the closest agent matching the given purpose. """ self.logger.info(f"Finding closest agent for purpose: {purpose}") try: agent_similarity = AgentSimilarity(self.api_key, self.agent_creator.agents) purpose_embedding = agent_similarity.get_embedding(purpose) closest_agent = agent_similarity.find_closest_agent(purpose_embedding) self.logger.info(f"Closest agent for purpose '{purpose}' found.") return closest_agent except Exception as e: self.logger.error(f"Error in finding closest agent: {e}") raise def display_agent_status(self): """Displays the current status of all agents.""" for agent in self.get_agents(): self.logger.info(f"Agent {agent.purpose}: Status = {agent.current_status}, Evolve Count = {agent.evolve_count}") def display_active_agent_tree(self): """Displays a tree view of active agent relationships.""" for agent in self.get_agents(): if agent.active_agents: self.logger.info(f"Agent {agent.purpose} is calling: {agent.active_agents}") else: self.logger.info(f"Agent {agent.purpose} is currently idle.")
[]
2024-01-10
bearney74/microagents
prompt_management~prompt_evolution.py
import logging from integrations.openaiwrapper import OpenAIAPIWrapper logging.basicConfig(level=logging.ERROR, format='%(asctime)s - %(levelname)s - %(message)s') class PromptEvolution: def __init__(self, openai_wrapper: OpenAIAPIWrapper, manager): """Initialize PromptEvolution with OpenAI API wrapper and a manager.""" self.openai_wrapper = openai_wrapper self.manager = manager def evolve_prompt(self, input_text: str, dynamic_prompt: str, output: str, full_conversation: str, new_solution: bool, depth: int) -> str: """ Evolves the prompt based on feedback from the output and full conversation. Args: input_text: The input text for the prompt. dynamic_prompt: The dynamic part of the prompt. output: The output received from the previous interaction. full_conversation: The entire conversation history. new_solution: Boolean indicating if a new solution is provided. depth: The current depth of the agent. Returns: The evolved prompt. """ full_conversation = self._truncate_conversation(full_conversation) runtime_context = self._generate_runtime_context(depth) evolve_prompt_query = self._build_evolve_prompt_query(dynamic_prompt, output, full_conversation, new_solution) try: new_prompt = self._get_new_prompt(evolve_prompt_query, runtime_context) except Exception as e: logging.error(f"Error evolving prompt: {e}") new_prompt = dynamic_prompt return new_prompt def _truncate_conversation(self, conversation: str) -> str: """Truncates the conversation to the last 1000 characters if it's too long.""" if len(conversation) > 1000: return conversation[:200] + "..." + conversation[-1000:] return conversation def _generate_runtime_context(self, depth: int) -> str: """Generates runtime context for the evolve prompt query.""" available_agents = [agent for agent in self.manager.agents if agent.purpose != "General"] agents_info = ', '.join([f"{agent.purpose} (depth={agent.depth})" for agent in available_agents]) return f"Current Agent Depth: {depth}. Available agents: {agents_info}." def _build_evolve_prompt_query(self, dynamic_prompt: str, output: str, full_conversation: str, new_solution: bool) -> str: """Builds the query for evolving the prompt.""" feedback_query = "How should the GPT-4 prompt evolve based on this input and feedback?" if new_solution: feedback_query += " Consider the solution provided in the full conversation section and make it reusable." return f"{feedback_query} Current Prompt: {dynamic_prompt}, Full Conversation: {full_conversation}" def _get_new_prompt(self, evolve_prompt_query: str, runtime_context: str) -> str: """Fetches a new prompt from the OpenAI API.""" response = self.openai_wrapper.chat_completion( model="gpt-4-1106-preview", messages=[{"role": "system", "content": evolve_prompt_query + runtime_context}] ) return response.choices[0].message['content'].strip()
[ "PLACEHOLDERPLACEHOLDER" ]
2024-01-10
bearney74/microagents
agents~microagent.py
import logging from integrations.openaiwrapper import OpenAIAPIWrapper from agents.agent_evaluation import AgentEvaluator from agents.agent_response import AgentResponse from agents.agent_similarity import AgentSimilarity from runtime.code_execution import CodeExecution from prompt_management.prompt_evolution import PromptEvolution from agents.response_extraction import ResponseExtraction from utils.utility import get_env_variable, time_function, log_exception logging.basicConfig(level=logging.ERROR, format='%(asctime)s - %(levelname)s - %(message)s') class MicroAgent: """ The MicroAgent class encapsulates the behavior of a small, purpose-driven agent that interacts with the OpenAI API. """ def __init__(self, initial_prompt, purpose, depth, agent_creator, openai_wrapper, max_depth=3, bootstrap_agent=False, is_prime=False): self.dynamic_prompt = initial_prompt self.purpose = purpose self.depth = depth self.max_depth = max_depth self.usage_count = 0 self.working_agent = bootstrap_agent self.agent_creator = agent_creator self.openai_wrapper = openai_wrapper self.evolve_count = 0 # Track how often the agent has evolved self.number_of_code_executions = 0 # Track how often the agent has executed code self.current_status = None # Track the current status of the agent self.active_agents = {} # Track active agents in a tree view self.last_input = "" self.is_prime = is_prime # Initialize components used by the agent self.agent_evaluator = AgentEvaluator(self.openai_wrapper) self.code_executor = CodeExecution() self.agent_responder = AgentResponse(self.openai_wrapper, self.agent_creator, self.code_executor, self, agent_creator, depth) self.agent_similarity = AgentSimilarity(self.openai_wrapper, self.agent_creator.agents) self.prompt_evolver = PromptEvolution(self.openai_wrapper, self.agent_creator) self.response_extractor = ResponseExtraction(self.openai_wrapper) def update_status(self, status): """Update the agent's current status.""" self.current_status = status logging.info(f"Agent {self.purpose} status updated to: {status}") def update_active_agents(self, calling_agent, called_agent=None): """Update the tree view of active agents.""" if called_agent: self.active_agents[calling_agent] = called_agent else: self.active_agents.pop(calling_agent, None) logging.info(f"Active agents updated: {self.active_agents}") @time_function def respond(self, input_text): """ Generate a response to the given input text. """ self.last_input = input_text try: self.update_status('Planning') response, conversation, solution, iterations = self.agent_responder.generate_response( input_text, self.dynamic_prompt, self.max_depth ) if not self.working_agent: if iterations > 2: self.evolve_count += 1 self.update_status('Evolving prompt') self.dynamic_prompt = self.prompt_evolver.evolve_prompt( input_text, self.dynamic_prompt, response, conversation, solution, self.depth ) elif solution: self.working_agent = True self.update_status('Idle') self.update_active_agents(self.purpose) return response except Exception as e: log_exception(e) self.update_status('Error') self.update_active_agents(self.purpose) return "An error occurred while generating the response."
[]
2024-01-10
bearney74/microagents
agents~agent_similarity.py
import numpy as np from typing import List, Tuple, Optional from sklearn.metrics.pairwise import cosine_similarity from integrations.openaiwrapper import OpenAIAPIWrapper class Agent: def __init__(self, purpose: str): self.purpose = purpose class AgentSimilarity: def __init__(self, openai_wrapper: OpenAIAPIWrapper, agents: List[Agent]): """ Initializes the AgentSimilarity object. :param openai_wrapper: Instance of OpenAIAPIWrapper to interact with OpenAI API. :param agents: List of Agent objects. """ self.openai_wrapper = openai_wrapper self.agents = agents def get_embedding(self, text: str) -> np.ndarray: """ Retrieves the embedding for a given text. :param text: Text to get embedding for. :return: Embedding as a numpy array. """ try: response = self.openai_wrapper.get_embedding(text) if 'data' in response and len(response['data']) > 0 and 'embedding' in response['data'][0]: return np.array(response['data'][0]['embedding']) else: raise ValueError("Invalid response format") except Exception as e: raise ValueError(f"Error retrieving embedding: {e}") def calculate_similarity_threshold(self) -> float: """ Calculates the 98th percentile of the similarity threshold across all agents. :return: 98th percentile of similarity threshold. """ try: embeddings = [self.get_embedding(agent.purpose) for agent in self.agents] if len(embeddings) < 250: return 0.9 similarities = [cosine_similarity([e1], [e2])[0][0] for i, e1 in enumerate(embeddings) for e2 in embeddings[i+1:]] return np.percentile(similarities, 98) if similarities else 0.9 except Exception as e: raise ValueError(f"Error calculating similarity threshold: {e}") def find_closest_agent(self, purpose_embedding: np.ndarray) -> Tuple[Optional[Agent], float]: """ Finds the closest agent based on the given purpose embedding. :param purpose_embedding: The embedding of the purpose to find the closest agent for. :return: Tuple of the closest agent and the highest similarity score. """ closest_agent: Optional[Agent] = None highest_similarity: float = -np.inf try: for agent in self.agents: agent_embedding = self.get_embedding(agent.purpose) similarity = cosine_similarity([agent_embedding], [purpose_embedding])[0][0] if similarity > highest_similarity: highest_similarity = similarity closest_agent = agent return closest_agent, highest_similarity except Exception as e: raise ValueError(f"Error finding closest agent: {e}")
[]
2024-01-10
bearney74/microagents
agents~agent_creation.py
from typing import List, Optional from agents.microagent import MicroAgent from integrations.openaiwrapper import OpenAIAPIWrapper from agents.agent_similarity import AgentSimilarity from prompt_management.prompts import ( PRIME_PROMPT, PRIME_NAME, PROMPT_ENGINEERING_SYSTEM_PROMPT, PROMPT_ENGINEERING_TEMPLATE, EXAMPLES ) DEFAULT_MAX_AGENTS = 20 PRIME_AGENT_WEIGHT = 25 MODEL_NAME = "gpt-4-1106-preview" class AgentCreation: def __init__(self, openai_wrapper: OpenAIAPIWrapper, max_agents: int = DEFAULT_MAX_AGENTS): self.agents: List[MicroAgent] = [] self.openai_wrapper = openai_wrapper self.max_agents = max_agents def create_prime_agent(self) -> None: """ Creates the prime agent and adds it to the agent list. """ prime_agent = MicroAgent( PRIME_PROMPT, PRIME_NAME, 0, self, self.openai_wrapper, PRIME_AGENT_WEIGHT, True, True ) self.agents.append(prime_agent) def get_or_create_agent(self, purpose: str, depth: int, sample_input: str) -> MicroAgent: """ Retrieves or creates an agent based on the given purpose. """ agent_similarity = AgentSimilarity(self.openai_wrapper, self.agents) purpose_embedding = agent_similarity.get_embedding(purpose) closest_agent, highest_similarity = agent_similarity.find_closest_agent(purpose_embedding) similarity_threshold = agent_similarity.calculate_similarity_threshold() if highest_similarity >= similarity_threshold: closest_agent.usage_count += 1 return closest_agent self.remove_least_used_agent_if_needed() new_agent = self.create_new_agent(purpose, depth, sample_input) return new_agent def remove_least_used_agent_if_needed(self) -> None: """ Removes the least used agent if the maximum number of agents is exceeded. """ if len(self.agents) >= self.max_agents: self.agents.sort(key=lambda agent: agent.usage_count) self.agents.pop(0) def create_new_agent(self, purpose: str, depth: int, sample_input: str) -> MicroAgent: """ Creates a new agent. """ prompt = self.generate_llm_prompt(purpose, sample_input) new_agent = MicroAgent(prompt, purpose, depth, self, self.openai_wrapper) new_agent.usage_count = 1 self.agents.append(new_agent) return new_agent def generate_llm_prompt(self, goal: str, sample_input: str) -> str: """ Generates a prompt for the LLM based on the given goal and sample input. """ messages = [ {"role": "system", "content": PROMPT_ENGINEERING_SYSTEM_PROMPT}, {"role": "user", "content": PROMPT_ENGINEERING_TEMPLATE.format(goal=goal, sample_input=sample_input, examples=EXAMPLES)} ] try: response = self.openai_wrapper.chat_completion( model=MODEL_NAME, messages=messages ) return response.choices[0].message['content'].strip() except Exception as e: print(f"Error generating LLM prompt: {e}") return ""
[]
2024-01-10
deepakness/gpt-3.5-fine-tuning
upload.py
import openai openai.api_key = "YOUR_OPENAI_API_KEY" def fine_tune_model(file_path): # Upload the file with open(file_path, "rb") as file_data: upload_response = openai.File.create( file=file_data, purpose='fine-tune' ) file_id = upload_response.id print(f"File uploaded successfully. ID: {file_id}") # Usage fine_tune_model("data.jsonl")
[]
2024-01-10
deepakness/gpt-3.5-fine-tuning
tuning.py
import openai openai.api_key = "YOUR_OPENAI_API_KEY" def start_finetuning_job(file_id, model="gpt-3.5-turbo"): try: job = openai.FineTuningJob.create(training_file=file_id, model=model) print(f"Fine-tuning job created successfully: {job}") return job except Exception as e: print(f"Failed to create fine-tuning job. Error: {e}") return None start_finetuning_job("file-AIvPJuN78Mtl1BWzkmtngFAj")
[]
2024-01-10
jwalsh/huggingface-pipelines
huggingface_pipelines~history.py
from langchain.memory import PostgresChatMessageHistory history = PostgresChatMessageHistory( connection_string="postgresql://postgres:mypassword@localhost/chat_history", session_id="foo", ) history.add_user_message("hi!") history.add_ai_message("whats up?")
[]
2024-01-10
jwalsh/huggingface-pipelines
huggingface_pipelines~postgres.py
from langchain.memory import PostgresChatMessageHistory import os POSTGRES_PASSWORD = os.getenv("POSTGRES_PASSWORD") history = PostgresChatMessageHistory( connection_string=f"postgresql://postgres:{POSTGRES_PASSWORD}@localhost:5432/chat_history", table_name="message_store", session_id="foo", ) history.add_user_message("hi!") history.add_ai_message("whats up?")
[]
2024-01-10
jwalsh/huggingface-pipelines
huggingface_pipelines~autogpt.py
from langchain.agents import Tool from langchain.tools.file_management.read import ReadFileTool from langchain.tools.file_management.write import WriteFileTool from langchain.utilities import SerpAPIWrapper from langchain.memory.chat_message_histories import FileChatMessageHistory search = SerpAPIWrapper() tools = [ Tool( name="search", func=search.run, description="useful for when you need to answer questions about current events. You should ask targeted questions", ), WriteFileTool(), ReadFileTool(), ] agent = AutoGPT.from_llm_and_tools( ai_name="Tom", ai_role="Assistant", tools=tools, llm=ChatOpenAI(temperature=0), memory=vectorstore.as_retriever(), ) # Set verbose to be true agent.chain.verbose = True # agent = AutoGPT.from_llm_and_tools( # ai_name="Tom", # ai_role="Assistant", # tools=tools, # llm=ChatOpenAI(temperature=0), # memory=vectorstore.as_retriever(), # chat_history_memory=FileChatMessageHistory("chat_history.txt"), # )
[]
2024-01-10
jwalsh/huggingface-pipelines
huggingface_pipelines~predict_messages.py
from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAI from langchain.schema import HumanMessage llm = OpenAI() chat_model = ChatOpenAI() text = "What would be a good company name for a company that makes colorful socks?" messages = [HumanMessage(content=text)] llm.predict_messages(messages) # >> Feetful of Fun chat_model.predict_messages(messages) # >> Socks O'Color
[ "What would be a good company name for a company that makes colorful socks?" ]
2024-01-10
silasnevstad/verifi
gpt~gpt_client.py
import openai from decouple import config class GPTClient: def __init__(self): self.api_key = config('OPENAI_API_KEY') openai.api_key = self.api_key self.RETRY_LIMIT = 3 def chat_completion(self, messages, functions): response = openai.ChatCompletion.create( model="gpt-4", messages=messages, functions=functions, function_call="auto", ) return response def get_function_call(self, messages, functions): for attempt in range(self.RETRY_LIMIT): response = self.chat_completion(messages, functions) if 'choices' in response and response['choices']: choice = response['choices'][0] message = choice.get('message', {}) function_call = message.get('function_call') if function_call: return function_call print(f"Retry {attempt + 1}/{self.RETRY_LIMIT}: No function call found.") print(f"Exceeded retry limit of {self.RETRY_LIMIT}. No function call found.") return None
[]
2024-01-10
hcss-utils/Relevant_topic_modeling
scripts~topic_modeling.py
import warnings warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*") import numpy as np import pandas as pd import spacy from bertopic import BERTopic from keybert import KeyBERT import plotly.io as pio import openai import tiktoken from bertopic.representation import OpenAI from keyphrase_vectorizers import KeyphraseCountVectorizer from sentence_transformers import SentenceTransformer from sklearn.feature_extraction.text import CountVectorizer from tqdm import tqdm import argparse import os import gc tqdm.pandas() class LemmaTokenizer: def __init__(self, nlp_str): self.nlp = spacy.load(nlp_str) def __call__(self, doc): def chunkstring(string, length): return (string[0+i:length+i] for i in range(0, len(string), length)) if len(doc) > 1000000: lemms = [] for chunk in chunkstring(doc, 500000): lemms = lemms + self.__call__(chunk) return lemms else: return [t.lemma_ for t in self.nlp(doc) if not t.is_punct] def extract_keyNPs(df:pd.DataFrame, embedding_model:str, spacy_model:str, embeddings:np.array = None)->pd.DataFrame: """ Extract key noun phrases (keyNPs) using KeyBERT. Args: df (pd.DataFrame): DataFrame with sentences. embedding_model (str): Name of the SentenceTransformer model for embeddings. spacy_model (str): Name of the spacy model for lemmatization. embeddings (np.array, optional): Array containing sentence embeddings. Defaults to None. Returns: pd.DataFrame: DataFrame with extracted keyNPs and lemmatized keyNPs. """ if not spacy.util.is_package(spacy_model): print("Downloading spacy model ...") spacy.cli.download(spacy_model) vectorizer = KeyphraseCountVectorizer(spacy_pipeline=spacy.load(spacy_model), pos_pattern='<ADJ.*>*<N.*>+') keybert = KeyBERT(model = SentenceTransformer(embedding_model)) print("Extracting keyNPs with keyBERT ...") keynps = [] for i in tqdm(range(df.shape[0])): keynps.append(keybert.extract_keywords(df['text'].iloc[i], vectorizer = vectorizer, doc_embeddings = embeddings[i, :].reshape(1, -1))) df['keyNPs'] = keynps print("Lemmatization of keyNPs ...") nlp = spacy.load(spacy_model) df['keyNPs_lemm'] = df['keyNPs'].progress_apply(lambda x: [' '.join([t.lemma_ for t in nlp(np[0]) if not t.is_punct]) for np in x]) return df def topic_modeling(df:pd.DataFrame, embedding_model:str, spacy_model:str, embeddings:np.array = None)->BERTopic: """ Fit topic model (BERTopic) Args: df (pd.DataFrame): DataFrame with sentences and keyNPs embeddings_model (str): Name of the SentenceTransformer model for embeddings spacy_model (str): Name of the spacy model for lemmatization embeddings (np.array, optinal): Array containing sentence embeddings. Defaults to None Reurns: model (bertopic.BERTopic): topic model """ if not spacy.util.is_package(spacy_model): print("Downloading spacy model ...") spacy.cli.download(spacy_model) vocabulary = [] for keynps in df['keyNPs_lemm']: vocabulary = vocabulary + keynps vocabulary = list(set(vocabulary)) stopwords = list(spacy.load(spacy_model).Defaults.stop_words) vectorizer_model = CountVectorizer(tokenizer=LemmaTokenizer(spacy_model), ngram_range=(1,3), stop_words = stopwords, vocabulary = vocabulary) model = BERTopic(embedding_model = SentenceTransformer(embedding_model), nr_topics = "auto", vectorizer_model=vectorizer_model, verbose = True) print("Fitting BERTopic model ...") _ = model.fit_transform(df['text'], embeddings = embeddings.reshape(df.shape[0], -1)) return model def topic_representation(api_key, gpt_model, topic_model, df): """ Get new topic representation and summary Args: api_key (str): openAI API key gpt_model (str): model to use topic_model (bertopic.BERTopic): topic model df (pd.DataFrame): DataFrame with sentences Returns: new_topics (list): list with new topic representations summary (list): list with summary for each topic """ print("Topic representation ...") openai.api_key = api_key encoding = tiktoken.encoding_for_model(gpt_model) mean_len = df['text'].apply(lambda x: len(encoding.encode(x))).mean() print(f"Mean token count in sentences: {mean_len}") gpt_model = OpenAI(model=gpt_model, delay_in_seconds=10, chat=True, nr_docs = min(int(4096/mean_len), 20)) documents = topic_model.get_document_info(df['text']) documents['Representation'] = documents['Representation'].apply(lambda x: tuple(x)) documents['Representative_Docs'] = documents['Representative_Docs'].apply(lambda x: tuple(x)) gpt_model.prompt = """ I have a topic that is described by the following keywords: [KEYWORDS] In this topic, the following sentences are a small but representative subset of all sentences in the topic: [DOCUMENTS] Based on the information above, extract a short topic label (~100 characters) in the following format: topic: <topic label> """ new_topics = None summary = None try: new_topics = gpt_model.extract_topics(topic_model, documents, topic_model.c_tf_idf_, topic_model.get_topics()) new_topics = [str(key) + ". " + new_topics[key][0][0] for key in new_topics] except: print("!!! OpenAI APIError during topic representation !!!") gpt_model.prompt = """ I have a topic that is described by the following keywords: [KEYWORDS] In this topic, the following sentences are a small but representative subset of all sentences in the topic: [DOCUMENTS] Based on the information above, please give a short description (~1000 characters) of this topic in the following format: topic: <description> """ print("Summary ...") try: summary = gpt_model.extract_topics(topic_model, documents, topic_model.c_tf_idf_, topic_model.get_topics()) summary = [str(key) + ". " + summary[key][0][0] for key in summary] except: print("!!! OpenAI APIError during summary !!!") return new_topics, summary def run(args): """ Run the topic modeling Args: args: Command-line arguments passed to the script. """ embeddings = None if "sentences_embeddings.npy" in os.listdir(args.input): embeddings = np.load(args.input + "sentences_embeddings.npy") datetime = None if "documents.csv" in os.listdir(args.input): docs = pd.read_csv(args.input + "documents.csv") if 'datetime' in docs.columns: datetime = docs[['id', 'datetime']] del docs gc.collect() df = pd.read_csv(args.input + "sentences_sim.csv") df = df[df['cos_sim'] > args.threshold] if datetime is not None: df = pd.merge(df, datetime, "left", left_on = "doc_id", right_on = "id", left_index=True) if embeddings is not None: embeddings = embeddings[df.index, :] df.reset_index(inplace = True) df.drop("index", axis = 1, inplace = True) print(f"N sentences over threshold: {df.shape[0]}") df = extract_keyNPs(df, args.model, args.spacy_model, embeddings) print("Saving sentences with keyNPs ...") df.to_csv(args.output + "sentences_keyNPs.csv", index = False) model = topic_modeling(df, args.model, args.spacy_model, embeddings) print("Saving raw topics ...") with open(args.output + "topics_raw.txt", "w+") as f: f.write('\n'.join([str(topic) + ". " + ', '.join([t[0] for t in model.get_topics()[topic]]) for topic in model.get_topics()])) new_topics, summary = None, None if args.gpt_model is not None: if args.api_key is None: raise RuntimeError("No openai key provided") new_topics, summary = topic_representation(args.api_key, args.gpt_model, model, df) if new_topics is None: new_topics = model.generate_topic_labels(nr_words=7, topic_prefix=True, separator=", ") model.set_topic_labels(new_topics) print("Saving updated topics ...") with open(args.output + "topics_updated.txt", "w+") as f: f.write('\n'.join(new_topics)) print("Saving summary ...") if summary is not None: with open(args.output + "summary.txt", "w+") as f: f.write('\n'.join(summary)) print("Saving visuals ...") lens = [] for topic in new_topics: lens.append(len(topic) + 3) width = max(lens)*5 + 500 try: model.visualize_topics(custom_labels = True, width = width).write_html(args.output + "topics_vis.html") except ValueError: print("Imposible to create topics_vis") model.visualize_documents(df['text'], custom_labels = True).write_html(args.output + "documents_vis.html") if 'datetime' in df.columns: df['datetime'] = pd.to_datetime(df['datetime'], yearfirst = True) df['year_month'] = df['datetime'].apply(lambda x: str(x.year) + "-" + str(x.month)) topics_over_time = model.topics_over_time(df['text'], df['year_month'], evolution_tuning=False, global_tuning=False) model.visualize_topics_over_time(topics_over_time, custom_labels = True, width = width).write_html(args.output + "over_time_vis.html") else: print("Imposible to create over_time_vis") model.visualize_barchart(custom_labels = True, n_words = 10, width = width).write_html(args.output + "barchar_vis.html") hierarchical_topics = model.hierarchical_topics(df['text']) model.visualize_hierarchy(hierarchical_topics=hierarchical_topics, custom_labels = True, width = width).write_html(args.output + "hierarchy_vis.html") model.visualize_heatmap(custom_labels = True, width = width).write_html(args.output + "heatmap_vis.html") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", help = "path to directory with sentences_sim.csv, optionaly with sentences_embeddings.npy, documents.csv (default: ../data/)", type = str, default = "../data/") parser.add_argument("-o", "--output", help = "path to directory where files will be stored (default: ../data/)", type = str, default = "../data/") parser.add_argument("-t", "--threshold", help = "threshold to determine relevant sentences (default: 0.5)", type = float, default = 0.5) parser.add_argument("-sm", "--spacy_model", help = "spacy model for lemmatization (default: en_core_web_lg)", type = str, default = "en_core_web_lg") parser.add_argument("-m", "--model", help = "model for embedding (default: sentence-transformers/sentence-t5-xl)", type = str, default = "sentence-transformers/sentence-t5-xl") parser.add_argument("-gpt", "--gpt_model", help = "model for topic representation and summary (default: None)", type = str, default = None) parser.add_argument("-ak", "--api_key", help = "openAI API key (default: None)", type = str, default = None) args = parser.parse_args() run(args)
[]
2024-01-10
ecomoptimizer/litellm
litellm~tests~test_stream_chunk_builder.py
import sys, os, time import traceback, asyncio import pytest sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path from litellm import completion, stream_chunk_builder import litellm import os, dotenv from openai import OpenAI import pytest dotenv.load_dotenv() user_message = "What is the current weather in Boston?" messages = [{"content": user_message, "role": "user"}] function_schema = { "name": "get_weather", "description": "gets the current weather", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, }, "required": ["location"] }, } tools_schema = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } } } ] # def test_stream_chunk_builder_tools(): # try: # litellm.set_verbose = False # response = client.chat.completions.create( # model="gpt-3.5-turbo", # messages=messages, # tools=tools_schema, # # stream=True, # # complete_response=True # runs stream_chunk_builder under-the-hood # ) # print(f"response: {response}") # print(f"response usage: {response.usage}") # except Exception as e: # pytest.fail(f"An exception occurred - {str(e)}") # test_stream_chunk_builder_tools() def test_stream_chunk_builder_litellm_function_call(): try: litellm.set_verbose = False response = litellm.completion( model="gpt-3.5-turbo", messages=messages, functions=[function_schema], # stream=True, # complete_response=True # runs stream_chunk_builder under-the-hood ) print(f"response: {response}") except Exception as e: pytest.fail(f"An exception occurred - {str(e)}") # test_stream_chunk_builder_litellm_function_call() def test_stream_chunk_builder_litellm_tool_call(): try: litellm.set_verbose = False response = litellm.completion( model="azure/chatgpt-functioncalling", messages=messages, tools=tools_schema, stream=True, complete_response = True ) print(f"complete response: {response}") print(f"complete response usage: {response.usage}") except Exception as e: pytest.fail(f"An exception occurred - {str(e)}") test_stream_chunk_builder_litellm_tool_call()
[ "What is the current weather in Boston?" ]
2024-01-10
ecomoptimizer/litellm
litellm~tests~test_router.py
#### What this tests #### #This tests litellm router import sys, os, time import traceback, asyncio import pytest sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import litellm from litellm import Router from concurrent.futures import ThreadPoolExecutor from collections import defaultdict from dotenv import load_dotenv load_dotenv() def test_exception_raising(): # this tests if the router raises an exception when invalid params are set # in this test both deployments have bad keys - Keep this test. It validates if the router raises the most recent exception litellm.set_verbose=True import openai try: print("testing if router raises an exception") old_api_key = os.environ["AZURE_API_KEY"] os.environ["AZURE_API_KEY"] = "" model_list = [ { "model_name": "gpt-3.5-turbo", # openai model name "litellm_params": { # params for litellm completion/embedding call "model": "azure/chatgpt-v-2", "api_key": "bad-key", "api_version": os.getenv("AZURE_API_VERSION"), "api_base": os.getenv("AZURE_API_BASE") }, "tpm": 240000, "rpm": 1800 }, { "model_name": "gpt-3.5-turbo", # openai model name "litellm_params": { # "model": "gpt-3.5-turbo", "api_key": "bad-key", }, "tpm": 240000, "rpm": 1800 } ] router = Router(model_list=model_list, redis_host=os.getenv("REDIS_HOST"), redis_password=os.getenv("REDIS_PASSWORD"), redis_port=int(os.getenv("REDIS_PORT")), routing_strategy="simple-shuffle", set_verbose=False, num_retries=1) # type: ignore response = router.completion( model="gpt-3.5-turbo", messages=[ { "role": "user", "content": "hello this request will fail" } ] ) os.environ["AZURE_API_KEY"] = old_api_key pytest.fail(f"Should have raised an Auth Error") except openai.AuthenticationError: print("Test Passed: Caught an OPENAI AUTH Error, Good job. This is what we needed!") os.environ["AZURE_API_KEY"] = old_api_key router.reset() except Exception as e: os.environ["AZURE_API_KEY"] = old_api_key print("Got unexpected exception on router!", e) # test_exception_raising() def test_reading_key_from_model_list(): # this tests if the router raises an exception when invalid params are set # DO NOT REMOVE THIS TEST. It's an IMP ONE. Speak to Ishaan, if you are tring to remove this litellm.set_verbose=False import openai try: print("testing if router raises an exception") old_api_key = os.environ["AZURE_API_KEY"] os.environ.pop("AZURE_API_KEY", None) model_list = [ { "model_name": "gpt-3.5-turbo", # openai model name "litellm_params": { # params for litellm completion/embedding call "model": "azure/chatgpt-v-2", "api_key": old_api_key, "api_version": os.getenv("AZURE_API_VERSION"), "api_base": os.getenv("AZURE_API_BASE") }, "tpm": 240000, "rpm": 1800 } ] router = Router(model_list=model_list, redis_host=os.getenv("REDIS_HOST"), redis_password=os.getenv("REDIS_PASSWORD"), redis_port=int(os.getenv("REDIS_PORT")), routing_strategy="simple-shuffle", set_verbose=True, num_retries=1) # type: ignore response = router.completion( model="gpt-3.5-turbo", messages=[ { "role": "user", "content": "hello this request will fail" } ] ) os.environ["AZURE_API_KEY"] = old_api_key router.reset() except Exception as e: os.environ["AZURE_API_KEY"] = old_api_key print(f"FAILED TEST") pytest.fail(f"Got unexpected exception on router! - {e}") # test_reading_key_from_model_list() ### FUNCTION CALLING def test_function_calling(): model_list = [ { "model_name": "gpt-3.5-turbo-0613", "litellm_params": { "model": "gpt-3.5-turbo-0613", "api_key": os.getenv("OPENAI_API_KEY"), }, "tpm": 100000, "rpm": 10000, }, ] messages = [ {"role": "user", "content": "What is the weather like in Boston?"} ] functions = [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } } ] router = Router(model_list=model_list, routing_strategy="latency-based-routing") response = router.completion(model="gpt-3.5-turbo-0613", messages=messages, functions=functions) router.reset() print(response) def test_acompletion_on_router(): try: litellm.set_verbose = False model_list = [ { "model_name": "gpt-3.5-turbo", "litellm_params": { "model": "gpt-3.5-turbo-0613", "api_key": os.getenv("OPENAI_API_KEY"), }, "tpm": 100000, "rpm": 10000, }, { "model_name": "gpt-3.5-turbo", "litellm_params": { "model": "azure/chatgpt-v-2", "api_key": os.getenv("AZURE_API_KEY"), "api_base": os.getenv("AZURE_API_BASE"), "api_version": os.getenv("AZURE_API_VERSION") }, "tpm": 100000, "rpm": 10000, } ] messages = [ {"role": "user", "content": f"write a one sentence poem {time.time()}?"} ] start_time = time.time() router = Router(model_list=model_list, redis_host=os.environ["REDIS_HOST"], redis_password=os.environ["REDIS_PASSWORD"], redis_port=os.environ["REDIS_PORT"], cache_responses=True, timeout=30, routing_strategy="simple-shuffle") async def get_response(): response1 = await router.acompletion(model="gpt-3.5-turbo", messages=messages) print(f"response1: {response1}") response2 = await router.acompletion(model="gpt-3.5-turbo", messages=messages) print(f"response2: {response2}") assert response1.id == response2.id assert len(response1.choices[0].message.content) > 0 assert response1.choices[0].message.content == response2.choices[0].message.content asyncio.run(get_response()) router.reset() except litellm.Timeout as e: end_time = time.time() print(f"timeout error occurred: {end_time - start_time}") pass except Exception as e: traceback.print_exc() pytest.fail(f"Error occurred: {e}") # test_acompletion_on_router() def test_function_calling_on_router(): try: litellm.set_verbose = True model_list = [ { "model_name": "gpt-3.5-turbo", "litellm_params": { "model": "gpt-3.5-turbo-0613", "api_key": os.getenv("OPENAI_API_KEY"), }, }, ] function1 = [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, } ] router = Router( model_list=model_list, redis_host=os.getenv("REDIS_HOST"), redis_password=os.getenv("REDIS_PASSWORD"), redis_port=os.getenv("REDIS_PORT") ) messages=[ { "role": "user", "content": "what's the weather in boston" } ] response = router.completion(model="gpt-3.5-turbo", messages=messages, functions=function1) print(f"final returned response: {response}") router.reset() assert isinstance(response["choices"][0]["message"]["function_call"], dict) except Exception as e: print(f"An exception occurred: {e}") # test_function_calling_on_router() def test_aembedding_on_router(): litellm.set_verbose = True try: model_list = [ { "model_name": "text-embedding-ada-002", "litellm_params": { "model": "text-embedding-ada-002", }, "tpm": 100000, "rpm": 10000, }, ] async def embedding_call(): router = Router(model_list=model_list) response = await router.aembedding( model="text-embedding-ada-002", input=["good morning from litellm", "this is another item"], ) print(response) router.reset() asyncio.run(embedding_call()) except Exception as e: traceback.print_exc() pytest.fail(f"Error occurred: {e}") # test_aembedding_on_router() def test_azure_aembedding_on_router(): litellm.set_verbose = True try: model_list = [ { "model_name": "text-embedding-ada-002", "litellm_params": { "model": "azure/azure-embedding-model", "api_key":os.environ['AZURE_API_KEY'], "api_base": os.environ['AZURE_API_BASE'] }, "tpm": 100000, "rpm": 10000, }, ] async def embedding_call(): router = Router(model_list=model_list) response = await router.aembedding( model="text-embedding-ada-002", input=["good morning from litellm"] ) print(response) router.reset() asyncio.run(embedding_call()) except Exception as e: traceback.print_exc() pytest.fail(f"Error occurred: {e}") # test_azure_aembedding_on_router()
[ "What is the weather like in Boston?", "hello this request will fail", "what's the weather in boston" ]
2024-01-10
ecomoptimizer/litellm
litellm~router.py
# +-----------------------------------------------+ # | | # | Give Feedback / Get Help | # | https://github.com/BerriAI/litellm/issues/new | # | | # +-----------------------------------------------+ # # Thank you ! We ❤️ you! - Krrish & Ishaan from datetime import datetime from typing import Dict, List, Optional, Union, Literal import random, threading, time, traceback import litellm, openai from litellm.caching import RedisCache, InMemoryCache, DualCache import logging, asyncio import inspect, concurrent from openai import AsyncOpenAI from collections import defaultdict class Router: """ Example usage: ```python from litellm import Router model_list = [ { "model_name": "azure-gpt-3.5-turbo", # model alias "litellm_params": { # params for litellm completion/embedding call "model": "azure/<your-deployment-name-1>", "api_key": <your-api-key>, "api_version": <your-api-version>, "api_base": <your-api-base> }, }, { "model_name": "azure-gpt-3.5-turbo", # model alias "litellm_params": { # params for litellm completion/embedding call "model": "azure/<your-deployment-name-2>", "api_key": <your-api-key>, "api_version": <your-api-version>, "api_base": <your-api-base> }, }, { "model_name": "openai-gpt-3.5-turbo", # model alias "litellm_params": { # params for litellm completion/embedding call "model": "gpt-3.5-turbo", "api_key": <your-api-key>, }, ] router = Router(model_list=model_list, fallbacks=[{"azure-gpt-3.5-turbo": "openai-gpt-3.5-turbo"}]) ``` """ model_names: List = [] cache_responses: bool = False default_cache_time_seconds: int = 1 * 60 * 60 # 1 hour num_retries: int = 0 tenacity = None def __init__(self, model_list: Optional[list] = None, redis_host: Optional[str] = None, redis_port: Optional[int] = None, redis_password: Optional[str] = None, cache_responses: bool = False, num_retries: int = 0, timeout: Optional[float] = None, default_litellm_params = {}, # default params for Router.chat.completion.create set_verbose: bool = False, fallbacks: List = [], allowed_fails: Optional[int] = None, context_window_fallbacks: List = [], routing_strategy: Literal["simple-shuffle", "least-busy", "usage-based-routing", "latency-based-routing"] = "simple-shuffle") -> None: self.set_verbose = set_verbose if model_list: self.set_model_list(model_list) self.healthy_deployments: List = self.model_list self.deployment_latency_map = {} for m in model_list: self.deployment_latency_map[m["litellm_params"]["model"]] = 0 self.allowed_fails = allowed_fails or litellm.allowed_fails self.failed_calls = InMemoryCache() # cache to track failed call per deployment, if num failed calls within 1 minute > allowed fails, then add it to cooldown self.num_retries = num_retries or litellm.num_retries or 0 self.timeout = timeout or litellm.request_timeout self.routing_strategy = routing_strategy self.fallbacks = fallbacks or litellm.fallbacks self.context_window_fallbacks = context_window_fallbacks or litellm.context_window_fallbacks self.model_exception_map: dict = {} # dict to store model: list exceptions. self.exceptions = {"gpt-3.5": ["API KEY Error", "Rate Limit Error", "good morning error"]} self.total_calls: defaultdict = defaultdict(int) # dict to store total calls made to each model self.fail_calls: defaultdict = defaultdict(int) # dict to store fail_calls made to each model self.success_calls: defaultdict = defaultdict(int) # dict to store success_calls made to each model # make Router.chat.completions.create compatible for openai.chat.completions.create self.chat = litellm.Chat(params=default_litellm_params) # default litellm args self.default_litellm_params = default_litellm_params self.default_litellm_params.setdefault("timeout", timeout) self.default_litellm_params.setdefault("max_retries", 0) ### HEALTH CHECK THREAD ### if self.routing_strategy == "least-busy": self._start_health_check_thread() ### CACHING ### redis_cache = None if redis_host is not None and redis_port is not None and redis_password is not None: cache_config = { 'type': 'redis', 'host': redis_host, 'port': redis_port, 'password': redis_password } redis_cache = RedisCache(host=redis_host, port=redis_port, password=redis_password) else: # use an in-memory cache cache_config = { "type": "local" } if cache_responses: litellm.cache = litellm.Cache(**cache_config) # use Redis for caching completion requests self.cache_responses = cache_responses self.cache = DualCache(redis_cache=redis_cache, in_memory_cache=InMemoryCache()) # use a dual cache (Redis+In-Memory) for tracking cooldowns, usage, etc. ## USAGE TRACKING ## if isinstance(litellm.success_callback, list): litellm.success_callback.append(self.deployment_callback) else: litellm.success_callback = [self.deployment_callback] if isinstance(litellm.failure_callback, list): litellm.failure_callback.append(self.deployment_callback_on_failure) else: litellm.failure_callback = [self.deployment_callback_on_failure] self.print_verbose(f"Intialized router with Routing strategy: {self.routing_strategy}\n") ### COMPLETION + EMBEDDING FUNCTIONS def completion(self, model: str, messages: List[Dict[str, str]], **kwargs): """ Example usage: response = router.completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey, how's it going?"}] """ try: kwargs["model"] = model kwargs["messages"] = messages kwargs["original_function"] = self._completion timeout = kwargs.get("request_timeout", self.timeout) kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries) kwargs.setdefault("metadata", {}).update({"model_group": model}) with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor: # Submit the function to the executor with a timeout future = executor.submit(self.function_with_fallbacks, **kwargs) response = future.result(timeout=timeout) # type: ignore return response except Exception as e: raise e def _completion( self, model: str, messages: List[Dict[str, str]], **kwargs): try: # pick the one that is available (lowest TPM/RPM) deployment = self.get_available_deployment(model=model, messages=messages) kwargs.setdefault("metadata", {}).update({"deployment": deployment["litellm_params"]["model"]}) data = deployment["litellm_params"].copy() for k, v in self.default_litellm_params.items(): if k not in data: # prioritize model-specific params > default router params data[k] = v ########## remove -ModelID-XXXX from model ############## original_model_string = data["model"] # Find the index of "ModelID" in the string self.print_verbose(f"completion model: {original_model_string}") index_of_model_id = original_model_string.find("-ModelID") # Remove everything after "-ModelID" if it exists if index_of_model_id != -1: data["model"] = original_model_string[:index_of_model_id] else: data["model"] = original_model_string model_client = deployment.get("client", None) return litellm.completion(**{**data, "messages": messages, "caching": self.cache_responses, "client": model_client, **kwargs}) except Exception as e: raise e async def acompletion(self, model: str, messages: List[Dict[str, str]], **kwargs): try: kwargs["model"] = model kwargs["messages"] = messages kwargs["original_function"] = self._acompletion kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries) timeout = kwargs.get("request_timeout", self.timeout) kwargs.setdefault("metadata", {}).update({"model_group": model}) # response = await asyncio.wait_for(self.async_function_with_fallbacks(**kwargs), timeout=timeout) response = await self.async_function_with_fallbacks(**kwargs) return response except Exception as e: raise e async def _acompletion( self, model: str, messages: List[Dict[str, str]], **kwargs): try: self.print_verbose(f"Inside _acompletion()- model: {model}; kwargs: {kwargs}") original_model_string = None # set a default for this variable deployment = self.get_available_deployment(model=model, messages=messages) kwargs.setdefault("metadata", {}).update({"deployment": deployment["litellm_params"]["model"]}) data = deployment["litellm_params"].copy() for k, v in self.default_litellm_params.items(): if k not in data: # prioritize model-specific params > default router params data[k] = v ########## remove -ModelID-XXXX from model ############## original_model_string = data["model"] # Find the index of "ModelID" in the string index_of_model_id = original_model_string.find("-ModelID") # Remove everything after "-ModelID" if it exists if index_of_model_id != -1: data["model"] = original_model_string[:index_of_model_id] else: data["model"] = original_model_string model_client = deployment.get("async_client", None) self.total_calls[original_model_string] +=1 response = await litellm.acompletion(**{**data, "messages": messages, "caching": self.cache_responses, "client": model_client, **kwargs}) self.success_calls[original_model_string] +=1 return response except Exception as e: if original_model_string is not None: self.fail_calls[original_model_string] +=1 raise e def text_completion(self, model: str, prompt: str, is_retry: Optional[bool] = False, is_fallback: Optional[bool] = False, is_async: Optional[bool] = False, **kwargs): try: kwargs.setdefault("metadata", {}).update({"model_group": model}) messages=[{"role": "user", "content": prompt}] # pick the one that is available (lowest TPM/RPM) deployment = self.get_available_deployment(model=model, messages=messages) data = deployment["litellm_params"].copy() for k, v in self.default_litellm_params.items(): if k not in data: # prioritize model-specific params > default router params data[k] = v ########## remove -ModelID-XXXX from model ############## original_model_string = data["model"] # Find the index of "ModelID" in the string index_of_model_id = original_model_string.find("-ModelID") # Remove everything after "-ModelID" if it exists if index_of_model_id != -1: data["model"] = original_model_string[:index_of_model_id] else: data["model"] = original_model_string # call via litellm.completion() return litellm.text_completion(**{**data, "prompt": prompt, "caching": self.cache_responses, **kwargs}) # type: ignore except Exception as e: if self.num_retries > 0: kwargs["model"] = model kwargs["messages"] = messages kwargs["original_exception"] = e kwargs["original_function"] = self.completion return self.function_with_retries(**kwargs) else: raise e def embedding(self, model: str, input: Union[str, List], is_async: Optional[bool] = False, **kwargs) -> Union[List[float], None]: # pick the one that is available (lowest TPM/RPM) deployment = self.get_available_deployment(model=model, input=input) kwargs.setdefault("metadata", {}).update({"deployment": deployment["litellm_params"]["model"]}) data = deployment["litellm_params"].copy() for k, v in self.default_litellm_params.items(): if k not in data: # prioritize model-specific params > default router params data[k] = v ########## remove -ModelID-XXXX from model ############## original_model_string = data["model"] # Find the index of "ModelID" in the string index_of_model_id = original_model_string.find("-ModelID") # Remove everything after "-ModelID" if it exists if index_of_model_id != -1: data["model"] = original_model_string[:index_of_model_id] else: data["model"] = original_model_string model_client = deployment.get("client", None) # call via litellm.embedding() return litellm.embedding(**{**data, "input": input, "caching": self.cache_responses, "client": model_client, **kwargs}) async def aembedding(self, model: str, input: Union[str, List], is_async: Optional[bool] = True, **kwargs) -> Union[List[float], None]: # pick the one that is available (lowest TPM/RPM) deployment = self.get_available_deployment(model=model, input=input) kwargs.setdefault("metadata", {}).update({"deployment": deployment["litellm_params"]["model"]}) data = deployment["litellm_params"].copy() for k, v in self.default_litellm_params.items(): if k not in data: # prioritize model-specific params > default router params data[k] = v ########## remove -ModelID-XXXX from model ############## original_model_string = data["model"] # Find the index of "ModelID" in the string index_of_model_id = original_model_string.find("-ModelID") # Remove everything after "-ModelID" if it exists if index_of_model_id != -1: data["model"] = original_model_string[:index_of_model_id] else: data["model"] = original_model_string model_client = deployment.get("async_client", None) return await litellm.aembedding(**{**data, "input": input, "caching": self.cache_responses, "client": model_client, **kwargs}) async def async_function_with_fallbacks(self, *args, **kwargs): """ Try calling the function_with_retries If it fails after num_retries, fall back to another model group """ model_group = kwargs.get("model") fallbacks = kwargs.get("fallbacks", self.fallbacks) context_window_fallbacks = kwargs.get("context_window_fallbacks", self.context_window_fallbacks) try: response = await self.async_function_with_retries(*args, **kwargs) self.print_verbose(f'Async Response: {response}') return response except Exception as e: self.print_verbose(f"An exception occurs") original_exception = e try: self.print_verbose(f"Trying to fallback b/w models") if isinstance(e, litellm.ContextWindowExceededError) and context_window_fallbacks is not None: fallback_model_group = None for item in context_window_fallbacks: # [{"gpt-3.5-turbo": ["gpt-4"]}] if list(item.keys())[0] == model_group: fallback_model_group = item[model_group] break if fallback_model_group is None: raise original_exception for mg in fallback_model_group: """ Iterate through the model groups and try calling that deployment """ try: kwargs["model"] = mg response = await self.async_function_with_retries(*args, **kwargs) return response except Exception as e: pass elif fallbacks is not None: self.print_verbose(f"inside model fallbacks: {fallbacks}") for item in fallbacks: if list(item.keys())[0] == model_group: fallback_model_group = item[model_group] break for mg in fallback_model_group: """ Iterate through the model groups and try calling that deployment """ try: kwargs["model"] = mg kwargs["metadata"]["model_group"] = mg response = await self.async_function_with_retries(*args, **kwargs) return response except Exception as e: raise e except Exception as e: self.print_verbose(f"An exception occurred - {str(e)}") traceback.print_exc() raise original_exception async def async_function_with_retries(self, *args, **kwargs): self.print_verbose(f"Inside async function with retries: args - {args}; kwargs - {kwargs}") backoff_factor = 1 original_function = kwargs.pop("original_function") fallbacks = kwargs.pop("fallbacks", self.fallbacks) context_window_fallbacks = kwargs.pop("context_window_fallbacks", self.context_window_fallbacks) self.print_verbose(f"async function w/ retries: original_function - {original_function}") num_retries = kwargs.pop("num_retries") try: # if the function call is successful, no exception will be raised and we'll break out of the loop response = await original_function(*args, **kwargs) return response except Exception as e: original_exception = e ### CHECK IF RATE LIMIT / CONTEXT WINDOW ERROR w/ fallbacks available if ((isinstance(original_exception, litellm.ContextWindowExceededError) and context_window_fallbacks is None) or (isinstance(original_exception, openai.RateLimitError) and fallbacks is not None)): raise original_exception ### RETRY #### check if it should retry + back-off if required if hasattr(original_exception, "status_code") and hasattr(original_exception, "response") and litellm._should_retry(status_code=original_exception.status_code): if hasattr(original_exception.response, "headers"): timeout = litellm._calculate_retry_after(remaining_retries=num_retries, max_retries=num_retries, response_headers=original_exception.response.headers) else: timeout = litellm._calculate_retry_after(remaining_retries=num_retries, max_retries=num_retries) await asyncio.sleep(timeout) else: raise original_exception for current_attempt in range(num_retries): self.print_verbose(f"retrying request. Current attempt - {current_attempt}; num retries: {num_retries}") try: # if the function call is successful, no exception will be raised and we'll break out of the loop response = await original_function(*args, **kwargs) if inspect.iscoroutinefunction(response): # async errors are often returned as coroutines response = await response return response except Exception as e: if hasattr(e, "status_code") and hasattr(e, "response") and litellm._should_retry(status_code=e.status_code): remaining_retries = num_retries - current_attempt if hasattr(e.response, "headers"): timeout = litellm._calculate_retry_after(remaining_retries=num_retries, max_retries=num_retries, response_headers=e.response.headers) else: timeout = litellm._calculate_retry_after(remaining_retries=num_retries, max_retries=num_retries) timeout = litellm._calculate_retry_after(remaining_retries=remaining_retries, max_retries=num_retries) await asyncio.sleep(timeout) else: raise e raise original_exception def function_with_fallbacks(self, *args, **kwargs): """ Try calling the function_with_retries If it fails after num_retries, fall back to another model group """ model_group = kwargs.get("model") fallbacks = kwargs.get("fallbacks", self.fallbacks) context_window_fallbacks = kwargs.get("context_window_fallbacks", self.context_window_fallbacks) try: response = self.function_with_retries(*args, **kwargs) return response except Exception as e: original_exception = e self.print_verbose(f"An exception occurs {original_exception}") try: self.print_verbose(f"Trying to fallback b/w models. Initial model group: {model_group}") if isinstance(e, litellm.ContextWindowExceededError) and context_window_fallbacks is not None: self.print_verbose(f"inside context window fallbacks: {context_window_fallbacks}") fallback_model_group = None for item in context_window_fallbacks: # [{"gpt-3.5-turbo": ["gpt-4"]}] if list(item.keys())[0] == model_group: fallback_model_group = item[model_group] break if fallback_model_group is None: raise original_exception for mg in fallback_model_group: """ Iterate through the model groups and try calling that deployment """ try: kwargs["model"] = mg response = self.function_with_fallbacks(*args, **kwargs) return response except Exception as e: pass elif fallbacks is not None: self.print_verbose(f"inside model fallbacks: {fallbacks}") fallback_model_group = None for item in fallbacks: if list(item.keys())[0] == model_group: fallback_model_group = item[model_group] break if fallback_model_group is None: raise original_exception for mg in fallback_model_group: """ Iterate through the model groups and try calling that deployment """ try: kwargs["model"] = mg response = self.function_with_fallbacks(*args, **kwargs) return response except Exception as e: pass except Exception as e: raise e raise original_exception def function_with_retries(self, *args, **kwargs): """ Try calling the model 3 times. Shuffle between available deployments. """ self.print_verbose(f"Inside function with retries: args - {args}; kwargs - {kwargs}") backoff_factor = 1 original_function = kwargs.pop("original_function") num_retries = kwargs.pop("num_retries") fallbacks = kwargs.pop("fallbacks", self.fallbacks) context_window_fallbacks = kwargs.pop("context_window_fallbacks", self.context_window_fallbacks) try: # if the function call is successful, no exception will be raised and we'll break out of the loop response = original_function(*args, **kwargs) return response except Exception as e: original_exception = e self.print_verbose(f"num retries in function with retries: {num_retries}") ### CHECK IF RATE LIMIT / CONTEXT WINDOW ERROR if ((isinstance(original_exception, litellm.ContextWindowExceededError) and context_window_fallbacks is None) or (isinstance(original_exception, openai.RateLimitError) and fallbacks is not None)): raise original_exception ### RETRY for current_attempt in range(num_retries): self.print_verbose(f"retrying request. Current attempt - {current_attempt}; retries left: {num_retries}") try: # if the function call is successful, no exception will be raised and we'll break out of the loop response = original_function(*args, **kwargs) return response except openai.RateLimitError as e: if num_retries > 0: remaining_retries = num_retries - current_attempt timeout = litellm._calculate_retry_after(remaining_retries=remaining_retries, max_retries=num_retries) # on RateLimitError we'll wait for an exponential time before trying again time.sleep(timeout) else: raise e except Exception as e: # for any other exception types, immediately retry if num_retries > 0: pass else: raise e raise original_exception ### HELPER FUNCTIONS def deployment_callback( self, kwargs, # kwargs to completion completion_response, # response from completion start_time, end_time # start/end time ): """ Function LiteLLM submits a callback to after a successful completion. Purpose of this is to update TPM/RPM usage per model """ model_name = kwargs.get('model', None) # i.e. gpt35turbo custom_llm_provider = kwargs.get("litellm_params", {}).get('custom_llm_provider', None) # i.e. azure if custom_llm_provider: model_name = f"{custom_llm_provider}/{model_name}" if kwargs["stream"] is True: if kwargs.get("complete_streaming_response"): total_tokens = kwargs.get("complete_streaming_response")['usage']['total_tokens'] self._set_deployment_usage(model_name, total_tokens) else: total_tokens = completion_response['usage']['total_tokens'] self._set_deployment_usage(model_name, total_tokens) self.deployment_latency_map[model_name] = (end_time - start_time).total_seconds() def deployment_callback_on_failure( self, kwargs, # kwargs to completion completion_response, # response from completion start_time, end_time # start/end time ): try: exception = kwargs.get("exception", None) exception_type = type(exception) exception_status = getattr(exception, 'status_code', "") exception_cause = getattr(exception, '__cause__', "") exception_message = getattr(exception, 'message', "") exception_str = str(exception_type) + "Status: " + str(exception_status) + "Message: " + str(exception_cause) + str(exception_message) + "Full exception" + str(exception) model_name = kwargs.get('model', None) # i.e. gpt35turbo custom_llm_provider = kwargs.get("litellm_params", {}).get('custom_llm_provider', None) # i.e. azure metadata = kwargs.get("litellm_params", {}).get('metadata', None) if metadata: deployment = metadata.get("deployment", None) self._set_cooldown_deployments(deployment) deployment_exceptions = self.model_exception_map.get(deployment, []) deployment_exceptions.append(exception_str) self.model_exception_map[deployment] = deployment_exceptions self.print_verbose("\nEXCEPTION FOR DEPLOYMENTS\n") self.print_verbose(self.model_exception_map) for model in self.model_exception_map: self.print_verbose(f"Model {model} had {len(self.model_exception_map[model])} exception") if custom_llm_provider: model_name = f"{custom_llm_provider}/{model_name}" except Exception as e: raise e def _set_cooldown_deployments(self, deployment: str): """ Add a model to the list of models being cooled down for that minute, if it exceeds the allowed fails / minute """ current_minute = datetime.now().strftime("%H-%M") # get current fails for deployment # update the number of failed calls # if it's > allowed fails # cooldown deployment current_fails = self.failed_calls.get_cache(key=deployment) or 0 updated_fails = current_fails + 1 self.print_verbose(f"Attempting to add {deployment} to cooldown list. updated_fails: {updated_fails}; self.allowed_fails: {self.allowed_fails}") if updated_fails > self.allowed_fails: # get the current cooldown list for that minute cooldown_key = f"{current_minute}:cooldown_models" # group cooldown models by minute to reduce number of redis calls cached_value = self.cache.get_cache(key=cooldown_key) self.print_verbose(f"adding {deployment} to cooldown models") # update value try: if deployment in cached_value: pass else: cached_value = cached_value + [deployment] # save updated value self.cache.set_cache(value=cached_value, key=cooldown_key, ttl=1) except: cached_value = [deployment] # save updated value self.cache.set_cache(value=cached_value, key=cooldown_key, ttl=1) else: self.failed_calls.set_cache(key=deployment, value=updated_fails, ttl=1) def _get_cooldown_deployments(self): """ Get the list of models being cooled down for this minute """ current_minute = datetime.now().strftime("%H-%M") # get the current cooldown list for that minute cooldown_key = f"{current_minute}:cooldown_models" # ---------------------- # Return cooldown models # ---------------------- cooldown_models = self.cache.get_cache(key=cooldown_key) or [] self.print_verbose(f"retrieve cooldown models: {cooldown_models}") return cooldown_models def get_usage_based_available_deployment(self, model: str, messages: Optional[List[Dict[str, str]]] = None, input: Optional[Union[str, List]] = None): """ Returns a deployment with the lowest TPM/RPM usage. """ # get list of potential deployments potential_deployments = [] for item in self.model_list: if item["model_name"] == model: potential_deployments.append(item) # get current call usage token_count = 0 if messages is not None: token_count = litellm.token_counter(model=model, messages=messages) elif input is not None: if isinstance(input, List): input_text = "".join(text for text in input) else: input_text = input token_count = litellm.token_counter(model=model, text=input_text) # ----------------------- # Find lowest used model # ---------------------- lowest_tpm = float("inf") deployment = None # return deployment with lowest tpm usage for item in potential_deployments: item_tpm, item_rpm = self._get_deployment_usage(deployment_name=item["litellm_params"]["model"]) if item_tpm == 0: return item elif ("tpm" in item and item_tpm + token_count > item["tpm"] or "rpm" in item and item_rpm + 1 >= item["rpm"]): # if user passed in tpm / rpm in the model_list continue elif item_tpm < lowest_tpm: lowest_tpm = item_tpm deployment = item # if none, raise exception if deployment is None: raise ValueError("No models available.") # return model return deployment def _get_deployment_usage( self, deployment_name: str ): # ------------ # Setup values # ------------ current_minute = datetime.now().strftime("%H-%M") tpm_key = f'{deployment_name}:tpm:{current_minute}' rpm_key = f'{deployment_name}:rpm:{current_minute}' # ------------ # Return usage # ------------ tpm = self.cache.get_cache(key=tpm_key) or 0 rpm = self.cache.get_cache(key=rpm_key) or 0 return int(tpm), int(rpm) def increment(self, key: str, increment_value: int): # get value cached_value = self.cache.get_cache(key=key) # update value try: cached_value = cached_value + increment_value except: cached_value = increment_value # save updated value self.cache.set_cache(value=cached_value, key=key, ttl=self.default_cache_time_seconds) def _set_deployment_usage( self, model_name: str, total_tokens: int ): # ------------ # Setup values # ------------ current_minute = datetime.now().strftime("%H-%M") tpm_key = f'{model_name}:tpm:{current_minute}' rpm_key = f'{model_name}:rpm:{current_minute}' # ------------ # Update usage # ------------ self.increment(tpm_key, total_tokens) self.increment(rpm_key, 1) def _start_health_check_thread(self): """ Starts a separate thread to perform health checks periodically. """ health_check_thread = threading.Thread(target=self._perform_health_checks, daemon=True) health_check_thread.start() def _perform_health_checks(self): """ Periodically performs health checks on the servers. Updates the list of healthy servers accordingly. """ while True: self.healthy_deployments = self._health_check() # Adjust the time interval based on your needs time.sleep(15) def _health_check(self): """ Performs a health check on the deployments Returns the list of healthy deployments """ healthy_deployments = [] for deployment in self.model_list: litellm_args = deployment["litellm_params"] try: start_time = time.time() litellm.completion(messages=[{"role": "user", "content": ""}], max_tokens=1, **litellm_args) # hit the server with a blank message to see how long it takes to respond end_time = time.time() response_time = end_time - start_time logging.debug(f"response_time: {response_time}") healthy_deployments.append((deployment, response_time)) healthy_deployments.sort(key=lambda x: x[1]) except Exception as e: pass return healthy_deployments def weighted_shuffle_by_latency(self, items): # Sort the items by latency sorted_items = sorted(items, key=lambda x: x[1]) # Get only the latencies latencies = [i[1] for i in sorted_items] # Calculate the sum of all latencies total_latency = sum(latencies) # Calculate the weight for each latency (lower latency = higher weight) weights = [total_latency-latency for latency in latencies] # Get a weighted random item if sum(weights) == 0: chosen_item = random.choice(sorted_items)[0] else: chosen_item = random.choices(sorted_items, weights=weights, k=1)[0][0] return chosen_item def set_model_list(self, model_list: list): self.model_list = model_list # we add api_base/api_key each model so load balancing between azure/gpt on api_base1 and api_base2 works import os for model in self.model_list: litellm_params = model.get("litellm_params", {}) model_name = litellm_params.get("model") #### for OpenAI / Azure we need to initalize the Client for High Traffic ######## custom_llm_provider = litellm_params.get("custom_llm_provider") if custom_llm_provider is None: custom_llm_provider = model_name.split("/",1)[0] if ( model_name in litellm.open_ai_chat_completion_models or custom_llm_provider == "custom_openai" or custom_llm_provider == "deepinfra" or custom_llm_provider == "perplexity" or custom_llm_provider == "anyscale" or custom_llm_provider == "openai" or custom_llm_provider == "azure" or "ft:gpt-3.5-turbo" in model_name or model_name in litellm.open_ai_embedding_models ): # glorified / complicated reading of configs # user can pass vars directly or they can pas os.environ/AZURE_API_KEY, in which case we will read the env # we do this here because we init clients for Azure, OpenAI and we need to set the right key api_key = litellm_params.get("api_key") if api_key and api_key.startswith("os.environ/"): api_key_env_name = api_key.replace("os.environ/", "") api_key = os.getenv(api_key_env_name) api_base = litellm_params.get("api_base") if api_base and api_base.startswith("os.environ/"): api_base_env_name = api_base.replace("os.environ/", "") api_base = os.getenv(api_base_env_name) api_version = litellm_params.get("api_version") if api_version and api_version.startswith("os.environ/"): api_version_env_name = api_version.replace("os.environ/", "") api_version = os.getenv(api_version_env_name) self.print_verbose(f"Initializing OpenAI Client for {model_name}, {str(api_base)}") if "azure" in model_name: if api_version is None: api_version = "2023-07-01-preview" model["async_client"] = openai.AsyncAzureOpenAI( api_key=api_key, azure_endpoint=api_base, api_version=api_version ) model["client"] = openai.AzureOpenAI( api_key=api_key, azure_endpoint=api_base, api_version=api_version ) else: model["async_client"] = openai.AsyncOpenAI( api_key=api_key, base_url=api_base, ) model["client"] = openai.OpenAI( api_key=api_key, base_url=api_base, ) ############ End of initializing Clients for OpenAI/Azure ################### model_id = "" for key in model["litellm_params"]: if key != "api_key": model_id+= str(model["litellm_params"][key]) model["litellm_params"]["model"] += "-ModelID-" + model_id ############ Users can either pass tpm/rpm as a litellm_param or a router param ########### # for get_available_deployment, we use the litellm_param["rpm"] # in this snippet we also set rpm to be a litellm_param if model["litellm_params"].get("rpm") is None and model.get("rpm") is not None: model["litellm_params"]["rpm"] = model.get("rpm") if model["litellm_params"].get("tpm") is None and model.get("tpm") is not None: model["litellm_params"]["tpm"] = model.get("tpm") self.model_names = [m["model_name"] for m in model_list] def get_model_names(self): return self.model_names def print_verbose(self, print_statement): if self.set_verbose or litellm.set_verbose: print(f"LiteLLM.Router: {print_statement}") # noqa def get_available_deployment(self, model: str, messages: Optional[List[Dict[str, str]]] = None, input: Optional[Union[str, List]] = None): """ Returns the deployment based on routing strategy """ ## get healthy deployments ### get all deployments ### filter out the deployments currently cooling down healthy_deployments = [m for m in self.model_list if m["model_name"] == model] if len(healthy_deployments) == 0: # check if the user sent in a deployment name instead healthy_deployments = [m for m in self.model_list if m["litellm_params"]["model"] == model] self.print_verbose(f"initial list of deployments: {healthy_deployments}") deployments_to_remove = [] cooldown_deployments = self._get_cooldown_deployments() self.print_verbose(f"cooldown deployments: {cooldown_deployments}") ### FIND UNHEALTHY DEPLOYMENTS for deployment in healthy_deployments: deployment_name = deployment["litellm_params"]["model"] if deployment_name in cooldown_deployments: deployments_to_remove.append(deployment) ### FILTER OUT UNHEALTHY DEPLOYMENTS for deployment in deployments_to_remove: healthy_deployments.remove(deployment) self.print_verbose(f"healthy deployments: length {len(healthy_deployments)} {healthy_deployments}") if len(healthy_deployments) == 0: raise ValueError("No models available") if litellm.model_alias_map and model in litellm.model_alias_map: model = litellm.model_alias_map[ model ] # update the model to the actual value if an alias has been passed in if self.routing_strategy == "least-busy": if len(self.healthy_deployments) > 0: for item in self.healthy_deployments: if item[0]["model_name"] == model: # first one in queue will be the one with the most availability return item[0] else: raise ValueError("No models available.") elif self.routing_strategy == "simple-shuffle": # if users pass rpm or tpm, we do a random weighted pick - based on rpm/tpm ############## Check if we can do a RPM/TPM based weighted pick ################# rpm = healthy_deployments[0].get("litellm_params").get("rpm", None) if rpm is not None: # use weight-random pick if rpms provided rpms = [m["litellm_params"].get("rpm", 0) for m in healthy_deployments] self.print_verbose(f"\nrpms {rpms}") total_rpm = sum(rpms) weights = [rpm / total_rpm for rpm in rpms] self.print_verbose(f"\n weights {weights}") # Perform weighted random pick selected_index = random.choices(range(len(rpms)), weights=weights)[0] self.print_verbose(f"\n selected index, {selected_index}") deployment = healthy_deployments[selected_index] return deployment or deployment[0] ############## Check if we can do a RPM/TPM based weighted pick ################# tpm = healthy_deployments[0].get("litellm_params").get("tpm", None) if tpm is not None: # use weight-random pick if rpms provided tpms = [m["litellm_params"].get("tpm", 0) for m in healthy_deployments] self.print_verbose(f"\ntpms {tpms}") total_tpm = sum(tpms) weights = [tpm / total_tpm for tpm in tpms] self.print_verbose(f"\n weights {weights}") # Perform weighted random pick selected_index = random.choices(range(len(tpms)), weights=weights)[0] self.print_verbose(f"\n selected index, {selected_index}") deployment = healthy_deployments[selected_index] return deployment or deployment[0] ############## No RPM/TPM passed, we do a random pick ################# item = random.choice(healthy_deployments) return item or item[0] elif self.routing_strategy == "latency-based-routing": returned_item = None lowest_latency = float('inf') ### shuffles with priority for lowest latency # items_with_latencies = [('A', 10), ('B', 20), ('C', 30), ('D', 40)] items_with_latencies = [] for item in healthy_deployments: items_with_latencies.append((item, self.deployment_latency_map[item["litellm_params"]["model"]])) returned_item = self.weighted_shuffle_by_latency(items_with_latencies) return returned_item elif self.routing_strategy == "usage-based-routing": return self.get_usage_based_available_deployment(model=model, messages=messages, input=input) raise ValueError("No models available.") def flush_cache(self): self.cache.flush_cache() def reset(self): ## clean up on close litellm.success_callback = [] litellm.failure_callback = [] self.flush_cache()
[]
2024-01-10
ecomoptimizer/litellm
litellm~tests~test_exceptions.py
from openai import AuthenticationError, BadRequestError, RateLimitError, OpenAIError import os import sys import traceback import subprocess sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import litellm from litellm import ( embedding, completion, # AuthenticationError, ContextWindowExceededError, # RateLimitError, # ServiceUnavailableError, # OpenAIError, ) from concurrent.futures import ThreadPoolExecutor import pytest litellm.vertex_project = "pathrise-convert-1606954137718" litellm.vertex_location = "us-central1" # litellm.failure_callback = ["sentry"] #### What this tests #### # This tests exception mapping -> trigger an exception from an llm provider -> assert if output is of the expected type # 5 providers -> OpenAI, Azure, Anthropic, Cohere, Replicate # 3 main types of exceptions -> - Rate Limit Errors, Context Window Errors, Auth errors (incorrect/rotated key, etc.) # Approach: Run each model through the test -> assert if the correct error (always the same one) is triggered models = ["command-nightly"] # Test 1: Context Window Errors @pytest.mark.parametrize("model", models) def test_context_window(model): sample_text = "Say error 50 times" * 1000000 messages = [{"content": sample_text, "role": "user"}] try: litellm.set_verbose = False response = completion(model=model, messages=messages) print(f"response: {response}") print("FAILED!") pytest.fail(f"An exception occurred") except ContextWindowExceededError as e: print(f"Worked!") except RateLimitError: print("RateLimited!") except Exception as e: print(f"{e}") pytest.fail(f"An error occcurred - {e}") @pytest.mark.parametrize("model", models) def test_context_window_with_fallbacks(model): ctx_window_fallback_dict = {"command-nightly": "claude-2", "gpt-3.5-turbo-instruct": "gpt-3.5-turbo-16k", "azure/chatgpt-v-2": "gpt-3.5-turbo-16k"} sample_text = "how does a court case get to the Supreme Court?" * 1000 messages = [{"content": sample_text, "role": "user"}] completion(model=model, messages=messages, context_window_fallback_dict=ctx_window_fallback_dict) # for model in litellm.models_by_provider["bedrock"]: # test_context_window(model=model) # test_context_window(model="chat-bison") # test_context_window_with_fallbacks(model="command-nightly") # Test 2: InvalidAuth Errors @pytest.mark.parametrize("model", models) def invalid_auth(model): # set the model key to an invalid key, depending on the model messages = [{"content": "Hello, how are you?", "role": "user"}] temporary_key = None try: if model == "gpt-3.5-turbo" or model == "gpt-3.5-turbo-instruct": temporary_key = os.environ["OPENAI_API_KEY"] os.environ["OPENAI_API_KEY"] = "bad-key" elif "bedrock" in model: temporary_aws_access_key = os.environ["AWS_ACCESS_KEY_ID"] os.environ["AWS_ACCESS_KEY_ID"] = "bad-key" temporary_aws_region_name = os.environ["AWS_REGION_NAME"] os.environ["AWS_REGION_NAME"] = "bad-key" temporary_secret_key = os.environ["AWS_SECRET_ACCESS_KEY"] os.environ["AWS_SECRET_ACCESS_KEY"] = "bad-key" elif model == "azure/chatgpt-v-2": temporary_key = os.environ["AZURE_API_KEY"] os.environ["AZURE_API_KEY"] = "bad-key" elif model == "claude-instant-1": temporary_key = os.environ["ANTHROPIC_API_KEY"] os.environ["ANTHROPIC_API_KEY"] = "bad-key" elif model == "command-nightly": temporary_key = os.environ["COHERE_API_KEY"] os.environ["COHERE_API_KEY"] = "bad-key" elif "j2" in model: temporary_key = os.environ["AI21_API_KEY"] os.environ["AI21_API_KEY"] = "bad-key" elif "togethercomputer" in model: temporary_key = os.environ["TOGETHERAI_API_KEY"] os.environ["TOGETHERAI_API_KEY"] = "84060c79880fc49df126d3e87b53f8a463ff6e1c6d27fe64207cde25cdfcd1f24a" elif model in litellm.openrouter_models: temporary_key = os.environ["OPENROUTER_API_KEY"] os.environ["OPENROUTER_API_KEY"] = "bad-key" elif model in litellm.aleph_alpha_models: temporary_key = os.environ["ALEPH_ALPHA_API_KEY"] os.environ["ALEPH_ALPHA_API_KEY"] = "bad-key" elif model in litellm.nlp_cloud_models: temporary_key = os.environ["NLP_CLOUD_API_KEY"] os.environ["NLP_CLOUD_API_KEY"] = "bad-key" elif ( model == "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1" ): temporary_key = os.environ["REPLICATE_API_KEY"] os.environ["REPLICATE_API_KEY"] = "bad-key" print(f"model: {model}") response = completion( model=model, messages=messages ) print(f"response: {response}") except AuthenticationError as e: print(f"AuthenticationError Caught Exception - {str(e)}") except ( OpenAIError ) as e: # is at least an openai error -> in case of random model errors - e.g. overloaded server print(f"OpenAIError Caught Exception - {e}") except Exception as e: print(type(e)) print(type(AuthenticationError)) print(e.__class__.__name__) print(f"Uncaught Exception - {e}") pytest.fail(f"Error occurred: {e}") if temporary_key != None: # reset the key if model == "gpt-3.5-turbo": os.environ["OPENAI_API_KEY"] = temporary_key elif model == "chatgpt-test": os.environ["AZURE_API_KEY"] = temporary_key azure = True elif model == "claude-instant-1": os.environ["ANTHROPIC_API_KEY"] = temporary_key elif model == "command-nightly": os.environ["COHERE_API_KEY"] = temporary_key elif ( model == "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1" ): os.environ["REPLICATE_API_KEY"] = temporary_key elif "j2" in model: os.environ["AI21_API_KEY"] = temporary_key elif ("togethercomputer" in model): os.environ["TOGETHERAI_API_KEY"] = temporary_key elif model in litellm.aleph_alpha_models: os.environ["ALEPH_ALPHA_API_KEY"] = temporary_key elif model in litellm.nlp_cloud_models: os.environ["NLP_CLOUD_API_KEY"] = temporary_key elif "bedrock" in model: os.environ["AWS_ACCESS_KEY_ID"] = temporary_aws_access_key os.environ["AWS_REGION_NAME"] = temporary_aws_region_name os.environ["AWS_SECRET_ACCESS_KEY"] = temporary_secret_key return # for model in litellm.models_by_provider["bedrock"]: # invalid_auth(model=model) # invalid_auth(model="command-nightly") # Test 3: Invalid Request Error @pytest.mark.parametrize("model", models) def test_invalid_request_error(model): messages = [{"content": "hey, how's it going?", "role": "user"}] with pytest.raises(BadRequestError): completion(model=model, messages=messages, max_tokens="hello world") def test_completion_azure_exception(): try: import openai print("azure gpt-3.5 test\n\n") litellm.set_verbose=False ## Test azure call old_azure_key = os.environ["AZURE_API_KEY"] os.environ["AZURE_API_KEY"] = "good morning" response = completion( model="azure/chatgpt-v-2", messages=[ { "role": "user", "content": "hello" } ], ) print(f"response: {response}") print(response) except openai.AuthenticationError as e: os.environ["AZURE_API_KEY"] = old_azure_key print("good job got the correct error for azure when key not set") except Exception as e: pytest.fail(f"Error occurred: {e}") test_completion_azure_exception() async def asynctest_completion_azure_exception(): try: import openai import litellm print("azure gpt-3.5 test\n\n") litellm.set_verbose=False ## Test azure call old_azure_key = os.environ["AZURE_API_KEY"] os.environ["AZURE_API_KEY"] = "good morning" response = await litellm.acompletion( model="azure/chatgpt-v-2", messages=[ { "role": "user", "content": "hello" } ], ) print(f"response: {response}") print(response) except openai.AuthenticationError as e: os.environ["AZURE_API_KEY"] = old_azure_key print("good job got the correct error for azure when key not set") print(e) except Exception as e: print("Got wrong exception") print("exception", e) pytest.fail(f"Error occurred: {e}") # import asyncio # asyncio.run( # asynctest_completion_azure_exception() # ) def test_completion_openai_exception(): # test if openai:gpt raises openai.AuthenticationError try: import openai print("openai gpt-3.5 test\n\n") litellm.set_verbose=False ## Test azure call old_azure_key = os.environ["OPENAI_API_KEY"] os.environ["OPENAI_API_KEY"] = "good morning" response = completion( model="gpt-4", messages=[ { "role": "user", "content": "hello" } ], ) print(f"response: {response}") print(response) except openai.AuthenticationError as e: os.environ["OPENAI_API_KEY"] = old_azure_key print("good job got the correct error for openai when key not set") except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_openai_exception() # # test_invalid_request_error(model="command-nightly") # # Test 3: Rate Limit Errors # def test_model_call(model): # try: # sample_text = "how does a court case get to the Supreme Court?" # messages = [{ "content": sample_text,"role": "user"}] # print(f"model: {model}") # response = completion(model=model, messages=messages) # except RateLimitError as e: # print(f"headers: {e.response.headers}") # return True # # except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server # # return True # except Exception as e: # print(f"Uncaught Exception {model}: {type(e).__name__} - {e}") # traceback.print_exc() # pass # return False # # Repeat each model 500 times # # extended_models = [model for model in models for _ in range(250)] # extended_models = ["azure/chatgpt-v-2" for _ in range(250)] # def worker(model): # return test_model_call(model) # # Create a dictionary to store the results # counts = {True: 0, False: 0} # # Use Thread Pool Executor # with ThreadPoolExecutor(max_workers=500) as executor: # # Use map to start the operation in thread pool # results = executor.map(worker, extended_models) # # Iterate over results and count True/False # for result in results: # counts[result] += 1 # accuracy_score = counts[True]/(counts[True] + counts[False]) # print(f"accuracy_score: {accuracy_score}")
[ "hey, how's it going?", "Hello, how are you?", "hello" ]
2024-01-10
ecomoptimizer/litellm
litellm~tests~test_embedding.py
import sys, os import traceback import pytest from dotenv import load_dotenv import openai load_dotenv() sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import litellm from litellm import embedding, completion litellm.set_verbose = False def test_openai_embedding(): try: litellm.set_verbose=True response = embedding( model="text-embedding-ada-002", input=["good morning from litellm", "this is another item"], metadata = {"anything": "good day"} ) litellm_response = dict(response) litellm_response_keys = set(litellm_response.keys()) litellm_response_keys.discard('_response_ms') print(litellm_response_keys) print("LiteLLM Response\n") # print(litellm_response) # same request with OpenAI 1.0+ import openai client = openai.OpenAI(api_key=os.environ['OPENAI_API_KEY']) response = client.embeddings.create( model="text-embedding-ada-002", input=["good morning from litellm", "this is another item"] ) response = dict(response) openai_response_keys = set(response.keys()) print(openai_response_keys) assert litellm_response_keys == openai_response_keys # ENSURE the Keys in litellm response is exactly what the openai package returns assert len(litellm_response["data"]) == 2 # expect two embedding responses from litellm_response since input had two print(openai_response_keys) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_openai_embedding() def test_openai_azure_embedding_simple(): try: response = embedding( model="azure/azure-embedding-model", input=["good morning from litellm"], ) print(response) response_keys = set(dict(response).keys()) response_keys.discard('_response_ms') assert set(["usage", "model", "object", "data"]) == set(response_keys) #assert litellm response has expected keys from OpenAI embedding response except Exception as e: pytest.fail(f"Error occurred: {e}") # test_openai_azure_embedding_simple() def test_openai_azure_embedding_timeouts(): try: response = embedding( model="azure/azure-embedding-model", input=["good morning from litellm"], timeout=0.00001 ) print(response) except openai.APITimeoutError: print("Good job got timeout error!") pass except Exception as e: pytest.fail(f"Expected timeout error, did not get the correct error. Instead got {e}") # test_openai_azure_embedding_timeouts() def test_openai_embedding_timeouts(): try: response = embedding( model="text-embedding-ada-002", input=["good morning from litellm"], timeout=0.00001 ) print(response) except openai.APITimeoutError: print("Good job got OpenAI timeout error!") pass except Exception as e: pytest.fail(f"Expected timeout error, did not get the correct error. Instead got {e}") # test_openai_embedding_timeouts() def test_openai_azure_embedding(): try: api_key = os.environ['AZURE_API_KEY'] api_base = os.environ['AZURE_API_BASE'] api_version = os.environ['AZURE_API_VERSION'] os.environ['AZURE_API_VERSION'] = "" os.environ['AZURE_API_BASE'] = "" os.environ['AZURE_API_KEY'] = "" response = embedding( model="azure/azure-embedding-model", input=["good morning from litellm", "this is another item"], api_key=api_key, api_base=api_base, api_version=api_version, ) print(response) os.environ['AZURE_API_VERSION'] = api_version os.environ['AZURE_API_BASE'] = api_base os.environ['AZURE_API_KEY'] = api_key except Exception as e: pytest.fail(f"Error occurred: {e}") # test_openai_azure_embedding() # test_openai_embedding() def test_cohere_embedding(): try: # litellm.set_verbose=True response = embedding( model="embed-english-v2.0", input=["good morning from litellm", "this is another item"] ) print(f"response:", response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_cohere_embedding() def test_cohere_embedding3(): try: litellm.set_verbose=True response = embedding( model="embed-english-v3.0", input=["good morning from litellm", "this is another item"], ) print(f"response:", response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_cohere_embedding3() def test_bedrock_embedding(): try: response = embedding( model="amazon.titan-embed-text-v1", input=["good morning from litellm, attempting to embed data", "lets test a second string for good measure"] ) print(f"response:", response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_bedrock_embedding() # comment out hf tests - since hf endpoints are unstable def test_hf_embedding(): try: # huggingface/microsoft/codebert-base # huggingface/facebook/bart-large response = embedding( model="huggingface/sentence-transformers/all-MiniLM-L6-v2", input=["good morning from litellm", "this is another item"] ) print(f"response:", response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_hf_embedding() # test async embeddings def test_aembedding(): try: import asyncio async def embedding_call(): try: response = await litellm.aembedding( model="text-embedding-ada-002", input=["good morning from litellm", "this is another item"] ) print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") asyncio.run(embedding_call()) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_aembedding() def test_aembedding_azure(): try: import asyncio async def embedding_call(): try: response = await litellm.aembedding( model="azure/azure-embedding-model", input=["good morning from litellm", "this is another item"] ) print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") asyncio.run(embedding_call()) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_aembedding_azure() # def test_custom_openai_embedding(): # litellm.set_verbose=True # response = embedding( # model="openai/custom_embedding", # input=["good morning from litellm"], # api_base="http://0.0.0.0:8000/" # ) # print(response) # test_custom_openai_embedding()
[]
2024-01-10
ecomoptimizer/litellm
litellm~proxy~proxy_cli.py
import click import subprocess, traceback, json import os, sys import random, appdirs from datetime import datetime from dotenv import load_dotenv import operator sys.path.append(os.getcwd()) config_filename = "litellm.secrets" # Using appdirs to determine user-specific config path config_dir = appdirs.user_config_dir("litellm") user_config_path = os.getenv("LITELLM_CONFIG_PATH", os.path.join(config_dir, config_filename)) load_dotenv() from importlib import resources import shutil telemetry = None def run_ollama_serve(): try: command = ['ollama', 'serve'] with open(os.devnull, 'w') as devnull: process = subprocess.Popen(command, stdout=devnull, stderr=devnull) except Exception as e: print(f""" LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve` """) def clone_subfolder(repo_url, subfolder, destination): # Clone the full repo repo_name = repo_url.split('/')[-1] repo_master = os.path.join(destination, "repo_master") subprocess.run(['git', 'clone', repo_url, repo_master]) # Move into the subfolder subfolder_path = os.path.join(repo_master, subfolder) # Copy subfolder to destination for file_name in os.listdir(subfolder_path): source = os.path.join(subfolder_path, file_name) if os.path.isfile(source): shutil.copy(source, destination) else: dest_path = os.path.join(destination, file_name) shutil.copytree(source, dest_path) # Remove cloned repo folder subprocess.run(['rm', '-rf', os.path.join(destination, "repo_master")]) feature_telemetry(feature="create-proxy") def is_port_in_use(port): import socket with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex(('localhost', port)) == 0 @click.command() @click.option('--host', default='0.0.0.0', help='Host for the server to listen on.') @click.option('--port', default=8000, help='Port to bind the server to.') @click.option('--num_workers', default=1, help='Number of uvicorn workers to spin up') @click.option('--api_base', default=None, help='API base URL.') @click.option('--api_version', default="2023-07-01-preview", help='For azure - pass in the api version.') @click.option('--model', '-m', default=None, help='The model name to pass to litellm expects') @click.option('--alias', default=None, help='The alias for the model - use this to give a litellm model name (e.g. "huggingface/codellama/CodeLlama-7b-Instruct-hf") a more user-friendly name ("codellama")') @click.option('--add_key', default=None, help='The model name to pass to litellm expects') @click.option('--headers', default=None, help='headers for the API call') @click.option('--save', is_flag=True, type=bool, help='Save the model-specific config') @click.option('--debug', default=False, is_flag=True, type=bool, help='To debug the input') @click.option('--use_queue', default=False, is_flag=True, type=bool, help='To use celery workers for async endpoints') @click.option('--temperature', default=None, type=float, help='Set temperature for the model') @click.option('--max_tokens', default=None, type=int, help='Set max tokens for the model') @click.option('--request_timeout', default=600, type=int, help='Set timeout in seconds for completion calls') @click.option('--drop_params', is_flag=True, help='Drop any unmapped params') @click.option('--add_function_to_prompt', is_flag=True, help='If function passed but unsupported, pass it as prompt') @click.option('--config', '-c', default=None, help='Configure Litellm') @click.option('--file', '-f', help='Path to config file') @click.option('--max_budget', default=None, type=float, help='Set max budget for API calls - works for hosted models like OpenAI, TogetherAI, Anthropic, etc.`') @click.option('--telemetry', default=True, type=bool, help='Helps us know if people are using this feature. Turn this off by doing `--telemetry False`') @click.option('--logs', flag_value=False, type=int, help='Gets the "n" most recent logs. By default gets most recent log.') @click.option('--health', flag_value=True, help='Make a chat/completions request to all llms in config.yaml') @click.option('--test', flag_value=True, help='proxy chat completions url to make a test request to') @click.option('--test_async', default=False, is_flag=True, help='Calls async endpoints /queue/requests and /queue/response') @click.option('--num_requests', default=10, type=int, help='Number of requests to hit async endpoint with') @click.option('--local', is_flag=True, default=False, help='for local debugging') def run_server(host, port, api_base, api_version, model, alias, add_key, headers, save, debug, temperature, max_tokens, request_timeout, drop_params, add_function_to_prompt, config, file, max_budget, telemetry, logs, test, local, num_workers, test_async, num_requests, use_queue, health): global feature_telemetry args = locals() if local: from proxy_server import app, save_worker_config, usage_telemetry else: try: from .proxy_server import app, save_worker_config, usage_telemetry except ImportError as e: from proxy_server import app, save_worker_config, usage_telemetry feature_telemetry = usage_telemetry if logs is not None: if logs == 0: # default to 1 logs = 1 try: with open('api_log.json') as f: data = json.load(f) # convert keys to datetime objects log_times = {datetime.strptime(k, "%Y%m%d%H%M%S%f"): v for k, v in data.items()} # sort by timestamp sorted_times = sorted(log_times.items(), key=operator.itemgetter(0), reverse=True) # get n recent logs recent_logs = {k.strftime("%Y%m%d%H%M%S%f"): v for k, v in sorted_times[:logs]} print(json.dumps(recent_logs, indent=4)) except: print("LiteLLM: No logs saved!") return if model and "ollama" in model: run_ollama_serve() if test_async is True: import requests, concurrent, time api_base = f"http://{host}:{port}" def _make_openai_completion(): data = { "model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "Write a short poem about the moon"}] } response = requests.post("http://0.0.0.0:8000/queue/request", json=data) response = response.json() while True: try: url = response["url"] polling_url = f"{api_base}{url}" polling_response = requests.get(polling_url) polling_response = polling_response.json() print("\n RESPONSE FROM POLLING JOB", polling_response) status = polling_response["status"] if status == "finished": llm_response = polling_response["result"] break print(f"POLLING JOB{polling_url}\nSTATUS: {status}, \n Response {polling_response}") time.sleep(0.5) except Exception as e: print("got exception in polling", e) break # Number of concurrent calls (you can adjust this) concurrent_calls = num_requests # List to store the futures of concurrent calls futures = [] start_time = time.time() # Make concurrent calls with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_calls) as executor: for _ in range(concurrent_calls): futures.append(executor.submit(_make_openai_completion)) # Wait for all futures to complete concurrent.futures.wait(futures) # Summarize the results successful_calls = 0 failed_calls = 0 for future in futures: if future.done(): if future.result() is not None: successful_calls += 1 else: failed_calls += 1 end_time = time.time() print(f"Elapsed Time: {end_time-start_time}") print(f"Load test Summary:") print(f"Total Requests: {concurrent_calls}") print(f"Successful Calls: {successful_calls}") print(f"Failed Calls: {failed_calls}") return if health != False: import requests print("\nLiteLLM: Health Testing models in config") response = requests.get(url=f"http://{host}:{port}/health") print(json.dumps(response.json(), indent=4)) return if test != False: click.echo('\nLiteLLM: Making a test ChatCompletions request to your proxy') import openai if test == True: # flag value set api_base = f"http://{host}:{port}" else: api_base = test client = openai.OpenAI( api_key="My API Key", base_url=api_base ) response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [ { "role": "user", "content": "this is a test request, write a short poem" } ], max_tokens=256) click.echo(f'\nLiteLLM: response from proxy {response}') print("\n Making streaming request to proxy") response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [ { "role": "user", "content": "this is a test request, write a short poem" } ], stream=True, ) for chunk in response: click.echo(f'LiteLLM: streaming response from proxy {chunk}') print("\n making completion request to proxy") response = client.completions.create(model="gpt-3.5-turbo", prompt='this is a test request, write a short poem') print(response) return else: if headers: headers = json.loads(headers) save_worker_config(model=model, alias=alias, api_base=api_base, api_version=api_version, debug=debug, temperature=temperature, max_tokens=max_tokens, request_timeout=request_timeout, max_budget=max_budget, telemetry=telemetry, drop_params=drop_params, add_function_to_prompt=add_function_to_prompt, headers=headers, save=save, config=config, use_queue=use_queue) try: import uvicorn except: raise ImportError("Uvicorn needs to be imported. Run - `pip install uvicorn`") if port == 8000 and is_port_in_use(port): port = random.randint(1024, 49152) uvicorn.run("litellm.proxy.proxy_server:app", host=host, port=port, workers=num_workers) if __name__ == "__main__": run_server()
[ "this is a test request, write a short poem", "Write a short poem about the moon" ]
2024-01-10
ecomoptimizer/litellm
litellm~utils.py
# +-----------------------------------------------+ # | | # | Give Feedback / Get Help | # | https://github.com/BerriAI/litellm/issues/new | # | | # +-----------------------------------------------+ # # Thank you users! We ❤️ you! - Krrish & Ishaan import sys, re import dotenv, json, traceback, threading import subprocess, os import litellm, openai import itertools import random, uuid, requests import datetime, time import tiktoken import uuid import aiohttp import logging import asyncio, httpx, inspect import copy from tokenizers import Tokenizer from dataclasses import ( dataclass, field, ) # for storing API inputs, outputs, and metadata encoding = tiktoken.get_encoding("cl100k_base") import importlib.metadata from .integrations.traceloop import TraceloopLogger from .integrations.helicone import HeliconeLogger from .integrations.aispend import AISpendLogger from .integrations.berrispend import BerriSpendLogger from .integrations.supabase import Supabase from .integrations.llmonitor import LLMonitorLogger from .integrations.prompt_layer import PromptLayerLogger from .integrations.langsmith import LangsmithLogger from .integrations.weights_biases import WeightsBiasesLogger from .integrations.custom_logger import CustomLogger from .integrations.langfuse import LangFuseLogger from .integrations.litedebugger import LiteDebugger from openai import OpenAIError as OriginalError from openai._models import BaseModel as OpenAIObject from .exceptions import ( AuthenticationError, BadRequestError, RateLimitError, ServiceUnavailableError, OpenAIError, ContextWindowExceededError, Timeout, APIConnectionError, APIError, BudgetExceededError ) from typing import cast, List, Dict, Union, Optional, Literal from .caching import Cache ####### ENVIRONMENT VARIABLES #################### dotenv.load_dotenv() # Loading env variables using dotenv sentry_sdk_instance = None capture_exception = None add_breadcrumb = None posthog = None slack_app = None alerts_channel = None heliconeLogger = None promptLayerLogger = None langsmithLogger = None weightsBiasesLogger = None customLogger = None langFuseLogger = None llmonitorLogger = None aispendLogger = None berrispendLogger = None supabaseClient = None liteDebuggerClient = None callback_list: Optional[List[str]] = [] user_logger_fn = None additional_details: Optional[Dict[str, str]] = {} local_cache: Optional[Dict[str, str]] = {} last_fetched_at = None last_fetched_at_keys = None ######## Model Response ######################### # All liteLLM Model responses will be in this format, Follows the OpenAI Format # https://docs.litellm.ai/docs/completion/output # { # 'choices': [ # { # 'finish_reason': 'stop', # 'index': 0, # 'message': { # 'role': 'assistant', # 'content': " I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic." # } # } # ], # 'created': 1691429984.3852863, # 'model': 'claude-instant-1', # 'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41} # } class UnsupportedParamsError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request(method="POST", url=" https://openai.api.com/v1/") self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs def _generate_id(): # private helper function return 'chatcmpl-' + str(uuid.uuid4()) def map_finish_reason(finish_reason: str): # openai supports 5 stop sequences - 'stop', 'length', 'function_call', 'content_filter', 'null' # anthropic mapping if finish_reason == "stop_sequence": return "stop" return finish_reason class FunctionCall(OpenAIObject): arguments: str name: str class Function(OpenAIObject): arguments: str name: str class ChatCompletionMessageToolCall(OpenAIObject): id: str function: Function type: str class Message(OpenAIObject): def __init__(self, content="default", role="assistant", logprobs=None, function_call=None, tool_calls=None, **params): super(Message, self).__init__(**params) self.content = content self.role = role if function_call is not None: self.function_call = FunctionCall(**function_call) if tool_calls is not None: self.tool_calls = [] for tool_call in tool_calls: self.tool_calls.append( ChatCompletionMessageToolCall(**tool_call) ) if logprobs is not None: self._logprobs = logprobs def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) class Delta(OpenAIObject): def __init__(self, content=None, role=None, **params): super(Delta, self).__init__(**params) self.content = content self.role = role def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) class Choices(OpenAIObject): def __init__(self, finish_reason=None, index=0, message=None, **params): super(Choices, self).__init__(**params) self.finish_reason = map_finish_reason(finish_reason) # set finish_reason for all responses self.index = index if message is None: self.message = Message(content=None) else: self.message = message def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) class Usage(OpenAIObject): def __init__(self, prompt_tokens=None, completion_tokens=None, total_tokens=None, **params): super(Usage, self).__init__(**params) if prompt_tokens: self.prompt_tokens = prompt_tokens if completion_tokens: self.completion_tokens = completion_tokens if total_tokens: self.total_tokens = total_tokens def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) class StreamingChoices(OpenAIObject): def __init__(self, finish_reason=None, index=0, delta: Optional[Delta]=None, **params): super(StreamingChoices, self).__init__(**params) if finish_reason: self.finish_reason = finish_reason else: self.finish_reason = None self.index = index if delta: self.delta = delta else: self.delta = Delta() def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) class ModelResponse(OpenAIObject): id: str """A unique identifier for the completion.""" choices: List[Union[Choices, StreamingChoices]] """The list of completion choices the model generated for the input prompt.""" created: int """The Unix timestamp (in seconds) of when the completion was created.""" model: Optional[str] = None """The model used for completion.""" object: str """The object type, which is always "text_completion" """ system_fingerprint: Optional[str] = None """This fingerprint represents the backend configuration that the model runs with. Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism. """ usage: Optional[Usage] = None """Usage statistics for the completion request.""" _hidden_params: dict = {} def __init__(self, id=None, choices=None, created=None, model=None, object=None, system_fingerprint=None, usage=None, stream=False, response_ms=None, hidden_params=None, **params): if stream: object = "chat.completion.chunk" choices = [StreamingChoices()] else: if model in litellm.open_ai_embedding_models: object = "embedding" else: object = "chat.completion" choices = [Choices()] if id is None: id = _generate_id() else: id = id if created is None: created = int(time.time()) else: created = created model = model if usage: usage = usage else: usage = Usage() if hidden_params: self._hidden_params = hidden_params super().__init__(id=id, choices=choices, created=created, model=model, object=object, system_fingerprint=system_fingerprint, usage=usage, **params) def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) class Embedding(OpenAIObject): embedding: list = [] index: int object: str def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) class EmbeddingResponse(OpenAIObject): model: Optional[str] = None """The model used for embedding.""" data: Optional[List] = None """The actual embedding value""" object: str """The object type, which is always "embedding" """ usage: Optional[Usage] = None """Usage statistics for the embedding request.""" def __init__(self, model=None, usage=None, stream=False, response_ms=None, data=None): object = "list" if response_ms: _response_ms = response_ms else: _response_ms = None if data: data = data else: data = None if usage: usage = usage else: usage = Usage() model = model super().__init__(model=model, object=object, data=data, usage=usage) def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) class TextChoices(OpenAIObject): def __init__(self, finish_reason=None, index=0, text=None, logprobs=None, **params): super(TextChoices, self).__init__(**params) if finish_reason: self.finish_reason = map_finish_reason(finish_reason) else: self.finish_reason = "stop" self.index = index if text: self.text = text else: self.text = None if logprobs: self.logprobs = [] else: self.logprobs = logprobs def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) class TextCompletionResponse(OpenAIObject): """ { "id": response["id"], "object": "text_completion", "created": response["created"], "model": response["model"], "choices": [ { "text": response["choices"][0]["message"]["content"], "index": response["choices"][0]["index"], "logprobs": transformed_logprobs, "finish_reason": response["choices"][0]["finish_reason"] } ], "usage": response["usage"] } """ def __init__(self, id=None, choices=None, created=None, model=None, usage=None, stream=False, response_ms=None, **params): super(TextCompletionResponse, self).__init__(**params) if stream: self.object = "text_completion.chunk" self.choices = [TextChoices()] else: self.object = "text_completion" self.choices = [TextChoices()] if id is None: self.id = _generate_id() else: self.id = id if created is None: self.created = int(time.time()) else: self.created = created if response_ms: self._response_ms = response_ms else: self._response_ms = None self.model = model if usage: self.usage = usage else: self.usage = Usage() self._hidden_params = {} # used in case users want to access the original model response def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) ############################################################ def print_verbose(print_statement): if litellm.set_verbose: print(print_statement) # noqa ####### LOGGING ################### from enum import Enum class CallTypes(Enum): embedding = 'embedding' completion = 'completion' acompletion = 'acompletion' # Logging function -> log the exact model details + what's being sent | Non-Blocking class Logging: global supabaseClient, liteDebuggerClient, promptLayerLogger, weightsBiasesLogger, langsmithLogger, capture_exception, add_breadcrumb, llmonitorLogger def __init__(self, model, messages, stream, call_type, start_time, litellm_call_id, function_id): if call_type not in [item.value for item in CallTypes]: allowed_values = ", ".join([item.value for item in CallTypes]) raise ValueError(f"Invalid call_type {call_type}. Allowed values: {allowed_values}") self.model = model self.messages = messages self.stream = stream self.start_time = start_time # log the call start time self.call_type = call_type self.litellm_call_id = litellm_call_id self.function_id = function_id self.streaming_chunks = [] # for generating complete stream response def update_environment_variables(self, model, user, optional_params, litellm_params): self.optional_params = optional_params self.model = model self.user = user self.litellm_params = litellm_params self.logger_fn = litellm_params["logger_fn"] print_verbose(f"self.optional_params: {self.optional_params}") self.model_call_details = { "model": self.model, "messages": self.messages, "optional_params": self.optional_params, "litellm_params": self.litellm_params, "start_time": self.start_time, "stream": self.stream } def pre_call(self, input, api_key, model=None, additional_args={}): # Log the exact input to the LLM API litellm.error_logs['PRE_CALL'] = locals() try: # print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}") self.model_call_details["input"] = input self.model_call_details["api_key"] = api_key self.model_call_details["additional_args"] = additional_args self.model_call_details["log_event_type"] = "pre_api_call" if ( model ): # if model name was changes pre-call, overwrite the initial model call name with the new one self.model_call_details["model"] = model # User Logging -> if you pass in a custom logging function headers = additional_args.get("headers", {}) if headers is None: headers = {} data = additional_args.get("complete_input_dict", {}) api_base = additional_args.get("api_base", "") masked_headers = {k: (v[:-20] + '*' * 20) if (isinstance(v, str) and len(v) > 20) else v for k, v in headers.items()} formatted_headers = " ".join([f"-H '{k}: {v}'" for k, v in masked_headers.items()]) print_verbose(f"PRE-API-CALL ADDITIONAL ARGS: {additional_args}") curl_command = "\n\nPOST Request Sent from LiteLLM:\n" curl_command += "curl -X POST \\\n" curl_command += f"{api_base} \\\n" curl_command += f"{formatted_headers} \\\n" if formatted_headers.strip() != "" else "" curl_command += f"-d '{str(data)}'\n" if additional_args.get("request_str", None) is not None: # print the sagemaker / bedrock client request curl_command = "\nRequest Sent from LiteLLM:\n" curl_command += additional_args.get("request_str", None) elif api_base == "": curl_command = self.model_call_details print_verbose(f"\033[92m{curl_command}\033[0m\n") if self.logger_fn and callable(self.logger_fn): try: self.logger_fn( self.model_call_details ) # Expectation: any logger function passed in by the user should accept a dict object except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) if litellm.max_budget and self.stream: start_time = self.start_time end_time = self.start_time # no time has passed as the call hasn't been made yet time_diff = (end_time - start_time).total_seconds() float_diff = float(time_diff) litellm._current_cost += litellm.completion_cost(model=self.model, prompt="".join(message["content"] for message in self.messages), completion="", total_time=float_diff) # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made for callback in litellm.input_callback: try: if callback == "supabase": print_verbose("reaches supabase for logging!") model = self.model_call_details["model"] messages = self.model_call_details["input"] print_verbose(f"supabaseClient: {supabaseClient}") supabaseClient.input_log_event( model=model, messages=messages, end_user=self.model_call_details.get("user", "default"), litellm_call_id=self.litellm_params["litellm_call_id"], print_verbose=print_verbose, ) elif callback == "lite_debugger": print_verbose(f"reaches litedebugger for logging! - model_call_details {self.model_call_details}") model = self.model_call_details["model"] messages = self.model_call_details["input"] print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") liteDebuggerClient.input_log_event( model=model, messages=messages, end_user=self.model_call_details.get("user", "default"), litellm_call_id=self.litellm_params["litellm_call_id"], litellm_params=self.model_call_details["litellm_params"], optional_params=self.model_call_details["optional_params"], print_verbose=print_verbose, call_type=self.call_type ) elif callback == "sentry" and add_breadcrumb: print_verbose("reaches sentry breadcrumbing") add_breadcrumb( category="litellm.llm_call", message=f"Model Call Details pre-call: {self.model_call_details}", level="info", ) elif isinstance(callback, CustomLogger): # custom logger class callback.log_pre_api_call( model=self.model, messages=self.messages, kwargs=self.model_call_details, ) elif callable(callback): # custom logger functions customLogger.log_input_event( model=self.model, messages=self.messages, kwargs=self.model_call_details, print_verbose=print_verbose, callback_func=callback ) except Exception as e: traceback.print_exc() print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while input logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) def post_call(self, original_response, input=None, api_key=None, additional_args={}): # Log the exact result from the LLM API, for streaming - log the type of response received litellm.error_logs['POST_CALL'] = locals() try: self.model_call_details["input"] = input self.model_call_details["api_key"] = api_key self.model_call_details["original_response"] = original_response self.model_call_details["additional_args"] = additional_args self.model_call_details["log_event_type"] = "post_api_call" # User Logging -> if you pass in a custom logging function print_verbose(f"RAW RESPONSE:\n{self.model_call_details.get('original_response', self.model_call_details)}\n\n") print_verbose( f"Logging Details Post-API Call: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}" ) print_verbose(f"Logging Details Post-API Call: LiteLLM Params: {self.model_call_details}") if self.logger_fn and callable(self.logger_fn): try: self.logger_fn( self.model_call_details ) # Expectation: any logger function passed in by the user should accept a dict object except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made for callback in litellm.input_callback: try: if callback == "lite_debugger": print_verbose("reaches litedebugger for post-call logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") liteDebuggerClient.post_call_log_event( original_response=original_response, litellm_call_id=self.litellm_params["litellm_call_id"], print_verbose=print_verbose, call_type = self.call_type, stream = self.stream, ) elif callback == "sentry" and add_breadcrumb: print_verbose("reaches sentry breadcrumbing") add_breadcrumb( category="litellm.llm_call", message=f"Model Call Details post-call: {self.model_call_details}", level="info", ) elif isinstance(callback, CustomLogger): # custom logger class callback.log_post_api_call( kwargs=self.model_call_details, response_obj=None, start_time=self.start_time, end_time=None ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while post-call logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) pass def success_handler(self, result=None, start_time=None, end_time=None, **kwargs): print_verbose( f"Logging Details LiteLLM-Success Call" ) try: if start_time is None: start_time = self.start_time if end_time is None: end_time = datetime.datetime.now() self.model_call_details["log_event_type"] = "successful_api_call" self.model_call_details["end_time"] = end_time complete_streaming_response = None ## BUILD COMPLETE STREAMED RESPONSE if self.stream: if result.choices[0].finish_reason is not None: # if it's the last chunk self.streaming_chunks.append(result) complete_streaming_response = litellm.stream_chunk_builder(self.streaming_chunks, messages=self.model_call_details.get("messages", None)) else: self.streaming_chunks.append(result) elif isinstance(result, OpenAIObject): result = result.model_dump() if complete_streaming_response: self.model_call_details["complete_streaming_response"] = complete_streaming_response print_verbose(f"success callbacks: {litellm.success_callback}") if litellm.max_budget and self.stream: time_diff = (end_time - start_time).total_seconds() float_diff = float(time_diff) litellm._current_cost += litellm.completion_cost(model=self.model, prompt="", completion=result["content"], total_time=float_diff) for callback in litellm.success_callback: try: if callback == "lite_debugger": print_verbose("reaches lite_debugger for logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") print_verbose(f"liteDebuggerClient details function {self.call_type} and stream set to {self.stream}") liteDebuggerClient.log_event( end_user=kwargs.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=self.litellm_call_id, print_verbose=print_verbose, call_type = self.call_type, stream = self.stream, ) if callback == "api_manager": print_verbose("reaches api manager for updating model cost") litellm.apiManager.update_cost(completion_obj=result, user=self.user) if callback == "cache": if litellm.cache != None and self.model_call_details.get('optional_params', {}).get('stream', False) == True: litellm_call_id = self.litellm_params["litellm_call_id"] if litellm_call_id in self.litellm_params["stream_response"]: # append for the given call_id if self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] == "default": self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] = result["content"] # handle first try else: self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] += result["content"] else: # init a streaming response for this call id new_model_response = ModelResponse(choices=[Choices(message=Message(content="default"))]) self.litellm_params["stream_response"][litellm_call_id] = new_model_response litellm.cache.add_cache(self.litellm_params["stream_response"][litellm_call_id], **self.model_call_details) if callback == "promptlayer": print_verbose("reaches promptlayer for logging!") promptLayerLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "supabase": print_verbose("reaches supabase for logging!") kwargs=self.model_call_details # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: if "complete_streaming_response" not in kwargs: return else: print_verbose("reaches supabase for streaming logging!") result = kwargs["complete_streaming_response"] model = kwargs["model"] messages = kwargs["messages"] optional_params = kwargs.get("optional_params", {}) litellm_params = kwargs.get("litellm_params", {}) supabaseClient.log_event( model=model, messages=messages, end_user=optional_params.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=litellm_params.get("litellm_call_id", str(uuid.uuid4())), print_verbose=print_verbose, ) if callback == "wandb": print_verbose("reaches wandb for logging!") weightsBiasesLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "langsmith": print_verbose("reaches langsmtih for logging!") langsmithLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "llmonitor": print_verbose("reaches llmonitor for logging!") model = self.model input = self.model_call_details.get("messages", self.model_call_details.get("input", None)) # if contains input, it's 'embedding', otherwise 'llm' type = "embed" if self.call_type == CallTypes.embedding.value else "llm" llmonitorLogger.log_event( type=type, event="end", model=model, input=input, user_id=self.model_call_details.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, run_id=self.litellm_call_id, print_verbose=print_verbose, ) if callback == "helicone": print_verbose("reaches helicone for logging!") model = self.model messages = kwargs["messages"] heliconeLogger.log_success( model=model, messages=messages, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "langfuse": print_verbose("reaches langfuse for logging!") kwargs = {} for k, v in self.model_call_details.items(): if k != "original_response": # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: if "complete_streaming_response" not in kwargs: return else: print_verbose("reaches langfuse for streaming logging!") result = kwargs["complete_streaming_response"] langFuseLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "traceloop": deep_copy = {} for k, v in self.model_call_details.items(): if k != "original_response": deep_copy[k] = v traceloopLogger.log_event( kwargs=deep_copy, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if isinstance(callback, CustomLogger): # custom logger class if self.stream and complete_streaming_response is None: callback.log_stream_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time ) else: if self.stream and complete_streaming_response: self.model_call_details["complete_response"] = self.model_call_details.pop("complete_streaming_response", complete_streaming_response) callback.log_success_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) if callable(callback): # custom logger functions customLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}" ) pass def failure_handler(self, exception, traceback_exception, start_time=None, end_time=None): print_verbose( f"Logging Details LiteLLM-Failure Call" ) try: if start_time is None: start_time = self.start_time if end_time is None: end_time = datetime.datetime.now() # on some exceptions, model_call_details is not always initialized, this ensures that we still log those exceptions if not hasattr(self, "model_call_details"): self.model_call_details = {} self.model_call_details["log_event_type"] = "failed_api_call" self.model_call_details["exception"] = exception self.model_call_details["traceback_exception"] = traceback_exception self.model_call_details["end_time"] = end_time result = None # result sent to all loggers, init this to None incase it's not created for callback in litellm.failure_callback: try: if callback == "lite_debugger": print_verbose("reaches lite_debugger for logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") result = { "model": self.model, "created": time.time(), "error": traceback_exception, "usage": { "prompt_tokens": prompt_token_calculator( self.model, messages=self.messages ), "completion_tokens": 0, }, } liteDebuggerClient.log_event( model=self.model, messages=self.messages, end_user=self.model_call_details.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=self.litellm_call_id, print_verbose=print_verbose, call_type = self.call_type, stream = self.stream, ) elif callback == "llmonitor": print_verbose("reaches llmonitor for logging error!") model = self.model input = self.model_call_details["input"] type = "embed" if self.call_type == CallTypes.embedding.value else "llm" llmonitorLogger.log_event( type=type, event="error", user_id=self.model_call_details.get("user", "default"), model=model, input=input, error=traceback_exception, run_id=self.litellm_call_id, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "sentry": print_verbose("sending exception to sentry") if capture_exception: capture_exception(exception) else: print_verbose(f"capture exception not initialized: {capture_exception}") elif callable(callback): # custom logger functions customLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback ) elif isinstance(callback, CustomLogger): # custom logger class callback.log_failure_event( start_time=start_time, end_time=end_time, response_obj=result, kwargs=self.model_call_details, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging {traceback.format_exc()}" ) pass def exception_logging( additional_args={}, logger_fn=None, exception=None, ): try: model_call_details = {} if exception: model_call_details["exception"] = exception model_call_details["additional_args"] = additional_args # User Logging -> if you pass in a custom logging function or want to use sentry breadcrumbs print_verbose( f"Logging Details: logger_fn - {logger_fn} | callable(logger_fn) - {callable(logger_fn)}" ) if logger_fn and callable(logger_fn): try: logger_fn( model_call_details ) # Expectation: any logger function passed in by the user should accept a dict object except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) pass ####### RULES ################### class Rules: """ Fail calls based on the input or llm api output Example usage: import litellm def my_custom_rule(input): # receives the model response if "i don't think i can answer" in input: # trigger fallback if the model refuses to answer return False return True litellm.post_call_rules = [my_custom_rule] # have these be functions that can be called to fail a call response = litellm.completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey, how's it going?"}], fallbacks=["openrouter/mythomax"]) """ def __init__(self) -> None: pass def pre_call_rules(self, input: str, model: str): for rule in litellm.pre_call_rules: if callable(rule): decision = rule(input) if decision is False: raise litellm.APIResponseValidationError(message="LLM Response failed post-call-rule check", llm_provider="", model=model) # type: ignore return True def post_call_rules(self, input: str, model: str): for rule in litellm.post_call_rules: if callable(rule): decision = rule(input) if decision is False: raise litellm.APIResponseValidationError(message="LLM Response failed post-call-rule check", llm_provider="", model=model) # type: ignore return True ####### CLIENT ################### # make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking def client(original_function): global liteDebuggerClient, get_all_keys rules_obj = Rules() def function_setup( start_time, *args, **kwargs ): # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc. try: global callback_list, add_breadcrumb, user_logger_fn, Logging function_id = kwargs["id"] if "id" in kwargs else None if litellm.use_client or ("use_client" in kwargs and kwargs["use_client"] == True): print_verbose(f"litedebugger initialized") if "lite_debugger" not in litellm.input_callback: litellm.input_callback.append("lite_debugger") if "lite_debugger" not in litellm.success_callback: litellm.success_callback.append("lite_debugger") if "lite_debugger" not in litellm.failure_callback: litellm.failure_callback.append("lite_debugger") if len(litellm.callbacks) > 0: for callback in litellm.callbacks: if callback not in litellm.input_callback: litellm.input_callback.append(callback) if callback not in litellm.success_callback: litellm.success_callback.append(callback) if callback not in litellm.failure_callback: litellm.failure_callback.append(callback) if ( len(litellm.input_callback) > 0 or len(litellm.success_callback) > 0 or len(litellm.failure_callback) > 0 ) and len(callback_list) == 0: callback_list = list( set( litellm.input_callback + litellm.success_callback + litellm.failure_callback ) ) set_callbacks( callback_list=callback_list, function_id=function_id ) if add_breadcrumb: add_breadcrumb( category="litellm.llm_call", message=f"Positional Args: {args}, Keyword Args: {kwargs}", level="info", ) if "logger_fn" in kwargs: user_logger_fn = kwargs["logger_fn"] # CRASH REPORTING TELEMETRY crash_reporting(*args, **kwargs) # INIT LOGGER - for user-specified integrations model = args[0] if len(args) > 0 else kwargs["model"] call_type = original_function.__name__ if call_type == CallTypes.completion.value or call_type == CallTypes.acompletion.value: if len(args) > 1: messages = args[1] elif kwargs.get("messages", None): messages = kwargs["messages"] ### PRE-CALL RULES ### if isinstance(messages, list) and len(messages) > 0 and isinstance(messages[0], dict) and "content" in messages[0]: rules_obj.pre_call_rules(input="".join(m["content"] for m in messages if isinstance(m["content"], str)), model=model) elif call_type == CallTypes.embedding.value: messages = args[1] if len(args) > 1 else kwargs["input"] stream = True if "stream" in kwargs and kwargs["stream"] == True else False logging_obj = Logging(model=model, messages=messages, stream=stream, litellm_call_id=kwargs["litellm_call_id"], function_id=function_id, call_type=call_type, start_time=start_time) return logging_obj except Exception as e: import logging logging.debug(f"[Non-Blocking] {traceback.format_exc()}; args - {args}; kwargs - {kwargs}") raise e def post_call_processing(original_response, model): try: call_type = original_function.__name__ if call_type == CallTypes.completion.value or call_type == CallTypes.acompletion.value: model_response = original_response['choices'][0]['message']['content'] ### POST-CALL RULES ### rules_obj.post_call_rules(input=model_response, model=model) except Exception as e: raise e def crash_reporting(*args, **kwargs): if litellm.telemetry: try: model = args[0] if len(args) > 0 else kwargs["model"] exception = kwargs["exception"] if "exception" in kwargs else None custom_llm_provider = ( kwargs["custom_llm_provider"] if "custom_llm_provider" in kwargs else None ) safe_crash_reporting( model=model, exception=exception, custom_llm_provider=custom_llm_provider, ) # log usage-crash details. Do not log any user details. If you want to turn this off, set `litellm.telemetry=False`. except: # [Non-Blocking Error] pass def wrapper(*args, **kwargs): start_time = datetime.datetime.now() result = None logging_obj = kwargs.get("litellm_logging_obj", None) # only set litellm_call_id if its not in kwargs if "litellm_call_id" not in kwargs: kwargs["litellm_call_id"] = str(uuid.uuid4()) try: model = args[0] if len(args) > 0 else kwargs["model"] except: raise ValueError("model param not passed in.") try: if logging_obj is None: logging_obj = function_setup(start_time, *args, **kwargs) kwargs["litellm_logging_obj"] = logging_obj # [OPTIONAL] CHECK BUDGET if litellm.max_budget: if litellm._current_cost > litellm.max_budget: raise BudgetExceededError(current_cost=litellm._current_cost, max_budget=litellm.max_budget) # [OPTIONAL] CHECK CACHE # remove this after deprecating litellm.caching print_verbose(f"litellm.caching: {litellm.caching}; litellm.caching_with_models: {litellm.caching_with_models}; litellm.cache: {litellm.cache}") if (litellm.caching or litellm.caching_with_models) and litellm.cache is None: litellm.cache = Cache() print_verbose(f"kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}") # if caching is false, don't run this if (kwargs.get("caching", None) is None and litellm.cache is not None) or kwargs.get("caching", False) == True: # allow users to control returning cached responses from the completion function # checking cache if (litellm.cache != None or litellm.caching or litellm.caching_with_models): print_verbose(f"Checking Cache") cached_result = litellm.cache.get_cache(*args, **kwargs) if cached_result != None: print_verbose(f"Cache Hit!") if "detail" in cached_result: # implies an error occurred pass else: call_type = original_function.__name__ print_verbose(f"Cache Response Object routing: call_type - {call_type}; cached_result instace: {type(cached_result)}") if call_type == CallTypes.completion.value and isinstance(cached_result, dict): return convert_to_model_response_object(response_object=cached_result, model_response_object=ModelResponse()) elif call_type == CallTypes.embedding.value and isinstance(cached_result, dict): return convert_to_model_response_object(response_object=cached_result, response_type="embedding") else: return cached_result # MODEL CALL result = original_function(*args, **kwargs) end_time = datetime.datetime.now() if "stream" in kwargs and kwargs["stream"] == True: # TODO: Add to cache for streaming if "complete_response" in kwargs and kwargs["complete_response"] == True: chunks = [] for idx, chunk in enumerate(result): chunks.append(chunk) return litellm.stream_chunk_builder(chunks, messages=kwargs.get("messages", None)) else: return result elif "acompletion" in kwargs and kwargs["acompletion"] == True: return result elif "aembedding" in kwargs and kwargs["aembedding"] == True: return result ### POST-CALL RULES ### post_call_processing(original_response=result, model=model) # [OPTIONAL] ADD TO CACHE if litellm.caching or litellm.caching_with_models or litellm.cache != None: # user init a cache object litellm.cache.add_cache(result, *args, **kwargs) # LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated threading.Thread(target=logging_obj.success_handler, args=(result, start_time, end_time)).start() # threading.Thread(target=logging_obj.success_handler, args=(result, start_time, end_time)).start() my_thread = threading.Thread( target=handle_success, args=(args, kwargs, result, start_time, end_time) ) # don't interrupt execution of main thread my_thread.start() # RETURN RESULT result._response_ms = (end_time - start_time).total_seconds() * 1000 # return response latency in ms like openai return result except Exception as e: call_type = original_function.__name__ if call_type == CallTypes.completion.value: num_retries = ( kwargs.get("num_retries", None) or litellm.num_retries or None ) litellm.num_retries = None # set retries to None to prevent infinite loops context_window_fallback_dict = kwargs.get("context_window_fallback_dict", {}) if num_retries: if (isinstance(e, openai.APIError) or isinstance(e, openai.Timeout)): kwargs["num_retries"] = num_retries return litellm.completion_with_retries(*args, **kwargs) elif isinstance(e, litellm.exceptions.ContextWindowExceededError) and context_window_fallback_dict and model in context_window_fallback_dict: if len(args) > 0: args[0] = context_window_fallback_dict[model] else: kwargs["model"] = context_window_fallback_dict[model] return original_function(*args, **kwargs) traceback_exception = traceback.format_exc() crash_reporting(*args, **kwargs, exception=traceback_exception) end_time = datetime.datetime.now() # LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated if logging_obj: logging_obj.failure_handler(e, traceback_exception, start_time, end_time) # DO NOT MAKE THREADED - router retry fallback relies on this! my_thread = threading.Thread( target=handle_failure, args=(e, traceback_exception, start_time, end_time, args, kwargs), ) # don't interrupt execution of main thread my_thread.start() if hasattr(e, "message"): if ( liteDebuggerClient and liteDebuggerClient.dashboard_url != None ): # make it easy to get to the debugger logs if you've initialized it e.message += f"\n Check the log in your dashboard - {liteDebuggerClient.dashboard_url}" raise e async def wrapper_async(*args, **kwargs): start_time = datetime.datetime.now() result = None logging_obj = kwargs.get("litellm_logging_obj", None) # only set litellm_call_id if its not in kwargs if "litellm_call_id" not in kwargs: kwargs["litellm_call_id"] = str(uuid.uuid4()) try: model = args[0] if len(args) > 0 else kwargs["model"] except: raise ValueError("model param not passed in.") try: if logging_obj is None: logging_obj = function_setup(start_time, *args, **kwargs) kwargs["litellm_logging_obj"] = logging_obj # [OPTIONAL] CHECK BUDGET if litellm.max_budget: if litellm._current_cost > litellm.max_budget: raise BudgetExceededError(current_cost=litellm._current_cost, max_budget=litellm.max_budget) # [OPTIONAL] CHECK CACHE print_verbose(f"litellm.cache: {litellm.cache}") print_verbose(f"kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}") # if caching is false, don't run this if (kwargs.get("caching", None) is None and litellm.cache is not None) or kwargs.get("caching", False) == True: # allow users to control returning cached responses from the completion function # checking cache if (litellm.cache != None): print_verbose(f"Checking Cache") cached_result = litellm.cache.get_cache(*args, **kwargs) if cached_result != None: print_verbose(f"Cache Hit!") call_type = original_function.__name__ if call_type == CallTypes.acompletion.value and isinstance(cached_result, dict): return convert_to_model_response_object(response_object=cached_result, model_response_object=ModelResponse()) else: return cached_result # MODEL CALL result = await original_function(*args, **kwargs) end_time = datetime.datetime.now() if "stream" in kwargs and kwargs["stream"] == True: if "complete_response" in kwargs and kwargs["complete_response"] == True: chunks = [] for idx, chunk in enumerate(result): chunks.append(chunk) return litellm.stream_chunk_builder(chunks, messages=kwargs.get("messages", None)) else: return result ### POST-CALL RULES ### post_call_processing(original_response=result, model=model) # [OPTIONAL] ADD TO CACHE if litellm.caching or litellm.caching_with_models or litellm.cache != None: # user init a cache object litellm.cache.add_cache(result, *args, **kwargs) # LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated threading.Thread(target=logging_obj.success_handler, args=(result, start_time, end_time)).start() # RETURN RESULT if isinstance(result, ModelResponse): result._response_ms = (end_time - start_time).total_seconds() * 1000 # return response latency in ms like openai return result except Exception as e: call_type = original_function.__name__ if call_type == CallTypes.acompletion.value: num_retries = ( kwargs.get("num_retries", None) or litellm.num_retries or None ) litellm.num_retries = None # set retries to None to prevent infinite loops context_window_fallback_dict = kwargs.get("context_window_fallback_dict", {}) if num_retries: kwargs["num_retries"] = num_retries kwargs["original_function"] = original_function if (isinstance(e, openai.RateLimitError)): # rate limiting specific error kwargs["retry_strategy"] = "exponential_backoff_retry" elif (isinstance(e, openai.APIError)): # generic api error kwargs["retry_strategy"] = "constant_retry" return await litellm.acompletion_with_retries(*args, **kwargs) elif isinstance(e, litellm.exceptions.ContextWindowExceededError) and context_window_fallback_dict and model in context_window_fallback_dict: if len(args) > 0: args[0] = context_window_fallback_dict[model] else: kwargs["model"] = context_window_fallback_dict[model] return await original_function(*args, **kwargs) traceback_exception = traceback.format_exc() crash_reporting(*args, **kwargs, exception=traceback_exception) end_time = datetime.datetime.now() if logging_obj: logging_obj.failure_handler(e, traceback_exception, start_time, end_time) # DO NOT MAKE THREADED - router retry fallback relies on this! raise e # Use httpx to determine if the original function is a coroutine is_coroutine = inspect.iscoroutinefunction(original_function) # Return the appropriate wrapper based on the original function type if is_coroutine: return wrapper_async else: return wrapper ####### USAGE CALCULATOR ################ # Extract the number of billion parameters from the model name # only used for together_computer LLMs def get_model_params_and_category(model_name): import re params_match = re.search(r'(\d+b)', model_name) # catch all decimals like 3b, 70b, etc category = None if params_match != None: params_match = params_match.group(1) params_match = params_match.replace("b", "") params_billion = float(params_match) # Determine the category based on the number of parameters if params_billion <= 3.0: category = "together-ai-up-to-3b" elif params_billion <= 7.0: category = "together-ai-3.1b-7b" elif params_billion <= 20.0: category = "together-ai-7.1b-20b" elif params_billion <= 40.0: category = "together-ai-20.1b-40b" elif params_billion <= 70.0: category = "together-ai-40.1b-70b" return category return None def get_replicate_completion_pricing(completion_response=None, total_time=0.0): # see https://replicate.com/pricing a100_40gb_price_per_second_public = 0.001150 # for all litellm currently supported LLMs, almost all requests go to a100_80gb a100_80gb_price_per_second_public = 0.001400 # assume all calls sent to A100 80GB for now if total_time == 0.0: start_time = completion_response['created'] end_time = completion_response["ended"] total_time = end_time - start_time return a100_80gb_price_per_second_public*total_time def _select_tokenizer(model: str): # cohere import pkg_resources if model in litellm.cohere_models: tokenizer = Tokenizer.from_pretrained("Cohere/command-nightly") return {"type": "huggingface_tokenizer", "tokenizer": tokenizer} # anthropic elif model in litellm.anthropic_models: # Read the JSON file filename = pkg_resources.resource_filename(__name__, 'llms/tokenizers/anthropic_tokenizer.json') with open(filename, 'r') as f: json_data = json.load(f) # Decode the JSON data from utf-8 json_data_decoded = json.dumps(json_data, ensure_ascii=False) # Convert to str json_str = str(json_data_decoded) # load tokenizer tokenizer = Tokenizer.from_str(json_str) return {"type": "huggingface_tokenizer", "tokenizer": tokenizer} # llama2 elif "llama-2" in model.lower(): tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") return {"type": "huggingface_tokenizer", "tokenizer": tokenizer} # default - tiktoken else: return {"type": "openai_tokenizer", "tokenizer": encoding} def encode(model: str, text: str): """ Encodes the given text using the specified model. Args: model (str): The name of the model to use for tokenization. text (str): The text to be encoded. Returns: enc: The encoded text. """ tokenizer_json = _select_tokenizer(model=model) enc = tokenizer_json["tokenizer"].encode(text) return enc def decode(model: str, tokens: List[int]): tokenizer_json = _select_tokenizer(model=model) dec = tokenizer_json["tokenizer"].decode(tokens) return dec def openai_token_counter(messages, model="gpt-3.5-turbo-0613"): """ Return the number of tokens used by a list of messages. Borrowed from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb. """ try: encoding = tiktoken.encoding_for_model(model) except KeyError: print_verbose("Warning: model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") if model in { "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-4-0314", "gpt-4-32k-0314", "gpt-4-0613", "gpt-4-32k-0613", }: tokens_per_message = 3 tokens_per_name = 1 elif model == "gpt-3.5-turbo-0301": tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n tokens_per_name = -1 # if there's a name, the role is omitted elif "gpt-3.5-turbo" in model: print_verbose("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.") return openai_token_counter(messages, model="gpt-3.5-turbo-0613") elif "gpt-4" in model: print_verbose("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.") return openai_token_counter(messages, model="gpt-4-0613") else: raise NotImplementedError( f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""" ) num_tokens = 0 for message in messages: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> return num_tokens def token_counter(model="", text=None, messages: Optional[List] = None): """ Count the number of tokens in a given text using a specified model. Args: model (str): The name of the model to use for tokenization. Default is an empty string. text (str): The raw text string to be passed to the model. Default is None. messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None. Returns: int: The number of tokens in the text. """ # use tiktoken, anthropic, cohere or llama2's tokenizer depending on the model if text == None: if messages is not None: print_verbose(f"token_counter messages received: {messages}") text = "".join([message["content"] for message in messages]) else: raise ValueError("text and messages cannot both be None") num_tokens = 0 if model is not None: tokenizer_json = _select_tokenizer(model=model) if tokenizer_json["type"] == "huggingface_tokenizer": enc = tokenizer_json["tokenizer"].encode(text) num_tokens = len(enc.ids) elif tokenizer_json["type"] == "openai_tokenizer": if model in litellm.open_ai_chat_completion_models and messages != None: num_tokens = openai_token_counter(messages, model=model) else: enc = tokenizer_json["tokenizer"].encode(text) num_tokens = len(enc) else: num_tokens = len(encoding.encode(text)) return num_tokens def cost_per_token(model="", prompt_tokens=0, completion_tokens=0): """ Calculates the cost per token for a given model, prompt tokens, and completion tokens. Parameters: model (str): The name of the model to use. Default is "" prompt_tokens (int): The number of tokens in the prompt. completion_tokens (int): The number of tokens in the completion. Returns: tuple: A tuple containing the cost in USD dollars for prompt tokens and completion tokens, respectively. """ # given prompt_tokens_cost_usd_dollar = 0 completion_tokens_cost_usd_dollar = 0 model_cost_ref = litellm.model_cost # see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models azure_llms = { "gpt-35-turbo": "azure/gpt-3.5-turbo", "gpt-35-turbo-16k": "azure/gpt-3.5-turbo-16k", "gpt-35-turbo-instruct": "azure/gpt-3.5-turbo-instruct" } if "azure/" in model: model = model.replace("azure/", "") if model in model_cost_ref: prompt_tokens_cost_usd_dollar = ( model_cost_ref[model]["input_cost_per_token"] * prompt_tokens ) completion_tokens_cost_usd_dollar = ( model_cost_ref[model]["output_cost_per_token"] * completion_tokens ) return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar elif "ft:gpt-3.5-turbo" in model: # fuzzy match ft:gpt-3.5-turbo:abcd-id-cool-litellm prompt_tokens_cost_usd_dollar = ( model_cost_ref["ft:gpt-3.5-turbo"]["input_cost_per_token"] * prompt_tokens ) completion_tokens_cost_usd_dollar = ( model_cost_ref["ft:gpt-3.5-turbo"]["output_cost_per_token"] * completion_tokens ) return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar elif model in azure_llms: model = azure_llms[model] prompt_tokens_cost_usd_dollar = ( model_cost_ref[model]["input_cost_per_token"] * prompt_tokens ) completion_tokens_cost_usd_dollar = ( model_cost_ref[model]["output_cost_per_token"] * completion_tokens ) else: # calculate average input cost, azure/gpt-deployments can potentially go here if users don't specify, gpt-4, gpt-3.5-turbo. LLMs litellm knows input_cost_sum = 0 output_cost_sum = 0 model_cost_ref = litellm.model_cost for model in model_cost_ref: input_cost_sum += model_cost_ref[model]["input_cost_per_token"] output_cost_sum += model_cost_ref[model]["output_cost_per_token"] avg_input_cost = input_cost_sum / len(model_cost_ref.keys()) avg_output_cost = output_cost_sum / len(model_cost_ref.keys()) prompt_tokens_cost_usd_dollar = avg_input_cost * prompt_tokens completion_tokens_cost_usd_dollar = avg_output_cost * completion_tokens return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar def completion_cost( completion_response=None, model=None, prompt="", messages: List = [], completion="", total_time=0.0, # used for replicate ): """ Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm. Parameters: completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request. [OPTIONAL PARAMS] model (str): Optional. The name of the language model used in the completion calls prompt (str): Optional. The input prompt passed to the llm completion (str): Optional. The output completion text from the llm total_time (float): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds Returns: float: The cost in USD dollars for the completion based on the provided parameters. Note: - If completion_response is provided, the function extracts token information and the model name from it. - If completion_response is not provided, the function calculates token counts based on the model and input text. - The cost is calculated based on the model, prompt tokens, and completion tokens. - For certain models containing "togethercomputer" in the name, prices are based on the model size. - For Replicate models, the cost is calculated based on the total time used for the request. Exceptions: - If an error occurs during execution, the function returns 0.0 without blocking the user's execution path. """ try: if messages != []: prompt = " ".join([message["content"] for message in messages]) # Handle Inputs to completion_cost prompt_tokens = 0 completion_tokens = 0 if completion_response != None: # get input/output tokens from completion_response prompt_tokens = completion_response['usage']['prompt_tokens'] completion_tokens = completion_response['usage']['completion_tokens'] model = model or completion_response['model'] # check if user passed an override for model, if it's none check completion_response['model'] else: prompt_tokens = token_counter(model=model, text=prompt) completion_tokens = token_counter(model=model, text=completion) # Calculate cost based on prompt_tokens, completion_tokens if "togethercomputer" in model: # together ai prices based on size of llm # get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json model = get_model_params_and_category(model) # replicate llms are calculate based on time for request running # see https://replicate.com/pricing elif ( model in litellm.replicate_models or "replicate" in model ): return get_replicate_completion_pricing(completion_response, total_time) prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token( model=model, prompt_tokens=prompt_tokens, completion_tokens=completion_tokens ) return prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar except: return 0.0 # this should not block a users execution path ####### HELPER FUNCTIONS ################ def register_model(model_cost: Union[str, dict]): """ Register new / Override existing models (and their pricing) to specific providers. Provide EITHER a model cost dictionary or a url to a hosted json blob Example usage: model_cost_dict = { "gpt-4": { "max_tokens": 8192, "input_cost_per_token": 0.00003, "output_cost_per_token": 0.00006, "litellm_provider": "openai", "mode": "chat" }, } """ loaded_model_cost = {} if isinstance(model_cost, dict): loaded_model_cost = model_cost elif isinstance(model_cost, str): loaded_model_cost = litellm.get_model_cost_map(url=model_cost) for key, value in loaded_model_cost.items(): ## override / add new keys to the existing model cost dictionary litellm.model_cost[key] = loaded_model_cost[key] # add new model names to provider lists if value.get('litellm_provider') == 'openai': if key not in litellm.open_ai_chat_completion_models: litellm.open_ai_chat_completion_models.append(key) elif value.get('litellm_provider') == 'text-completion-openai': if key not in litellm.open_ai_text_completion_models: litellm.open_ai_text_completion_models.append(key) elif value.get('litellm_provider') == 'cohere': if key not in litellm.cohere_models: litellm.cohere_models.append(key) elif value.get('litellm_provider') == 'anthropic': if key not in litellm.anthropic_models: litellm.anthropic_models.append(key) elif value.get('litellm_provider') == 'openrouter': split_string = key.split('/', 1) if key not in litellm.openrouter_models: litellm.openrouter_models.append(split_string[1]) elif value.get('litellm_provider') == 'vertex_ai-text-models': if key not in litellm.vertex_text_models: litellm.vertex_text_models.append(key) elif value.get('litellm_provider') == 'vertex_ai-code-text-models': if key not in litellm.vertex_code_text_models: litellm.vertex_code_text_models.append(key) elif value.get('litellm_provider') == 'vertex_ai-chat-models': if key not in litellm.vertex_chat_models: litellm.vertex_chat_models.append(key) elif value.get('litellm_provider') == 'vertex_ai-code-chat-models': if key not in litellm.vertex_code_chat_models: litellm.vertex_code_chat_models.append(key) elif value.get('litellm_provider') == 'ai21': if key not in litellm.ai21_models: litellm.ai21_models.append(key) elif value.get('litellm_provider') == 'nlp_cloud': if key not in litellm.nlp_cloud_models: litellm.nlp_cloud_models.append(key) elif value.get('litellm_provider') == 'aleph_alpha': if key not in litellm.aleph_alpha_models: litellm.aleph_alpha_models.append(key) elif value.get('litellm_provider') == 'bedrock': if key not in litellm.bedrock_models: litellm.bedrock_models.append(key) return model_cost def get_litellm_params( return_async=False, api_key=None, force_timeout=600, azure=False, logger_fn=None, verbose=False, hugging_face=False, replicate=False, together_ai=False, custom_llm_provider=None, api_base=None, litellm_call_id=None, model_alias_map=None, completion_call_id=None, metadata=None ): litellm_params = { "return_async": return_async, "api_key": api_key, "force_timeout": force_timeout, "logger_fn": logger_fn, "verbose": verbose, "custom_llm_provider": custom_llm_provider, "api_base": api_base, "litellm_call_id": litellm_call_id, "model_alias_map": model_alias_map, "completion_call_id": completion_call_id, "metadata": metadata, "stream_response": {} # litellm_call_id: ModelResponse Dict } return litellm_params def get_optional_params( # use the openai defaults # 12 optional params functions=[], function_call="", temperature=None, top_p=None, n=None, stream=False, stop=None, max_tokens=None, presence_penalty=None, frequency_penalty=0, logit_bias=None, user="", model=None, custom_llm_provider="", response_format=None, seed=None, tools=None, tool_choice=None, max_retries=None, **kwargs ): # retrieve all parameters passed to the function passed_params = locals() special_params = passed_params.pop("kwargs") for k, v in special_params.items(): passed_params[k] = v default_params = { "functions":[], "function_call":"", "temperature":None, "top_p":None, "n":None, "stream":None, "stop":None, "max_tokens":None, "presence_penalty":None, "frequency_penalty":None, "logit_bias": None, "user":"", "model":None, "custom_llm_provider":"", "response_format": None, "seed": None, "tools": None, "tool_choice": None, "max_retries": None, } # filter out those parameters that were passed with non-default values non_default_params = {k: v for k, v in passed_params.items() if (k != "model" and k != "custom_llm_provider" and k in default_params and v != default_params[k])} optional_params = {} ## raise exception if function calling passed in for a provider that doesn't support it if "functions" in non_default_params or "function_call" in non_default_params: if custom_llm_provider != "openai" and custom_llm_provider != "text-completion-openai" and custom_llm_provider != "azure": if litellm.add_function_to_prompt: # if user opts to add it to prompt instead optional_params["functions_unsupported_model"] = non_default_params.pop("functions") else: raise UnsupportedParamsError(status_code=500, message=f"Function calling is not supported by {custom_llm_provider}. To add it to the prompt, set `litellm.add_function_to_prompt = True`.") def _check_valid_arg(supported_params): print_verbose(f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}") print_verbose(f"\nLiteLLM: Params passed to completion() {passed_params}") print_verbose(f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}") unsupported_params = {} for k in non_default_params.keys(): if k not in supported_params: if k == "n" and n == 1: # langchain sends n=1 as a default value pass # Always keeps this in elif code blocks else: unsupported_params[k] = non_default_params[k] if unsupported_params and not litellm.drop_params: raise UnsupportedParamsError(status_code=500, message=f"{custom_llm_provider} does not support parameters: {unsupported_params}. To drop these, set `litellm.drop_params=True`.") def _map_and_modify_arg(supported_params: dict, provider: str, model: str): """ filter params to fit the required provider format, drop those that don't fit if user sets `litellm.drop_params = True`. """ filtered_stop = None if "stop" in supported_params and litellm.drop_params: if provider == "bedrock" and "amazon" in model: filtered_stop = [] if isinstance(stop, list): for s in stop: if re.match(r'^(\|+|User:)$', s): filtered_stop.append(s) if filtered_stop is not None: supported_params["stop"] = filtered_stop return supported_params ## raise exception if provider doesn't support passed in param if custom_llm_provider == "anthropic": ## check if unsupported param passed in supported_params = ["stream", "stop", "temperature", "top_p", "max_tokens"] _check_valid_arg(supported_params=supported_params) # handle anthropic params if stream: optional_params["stream"] = stream if stop is not None: if type(stop) == str: stop = [stop] # openai can accept str/list for stop optional_params["stop_sequences"] = stop if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if max_tokens is not None: optional_params["max_tokens_to_sample"] = max_tokens elif custom_llm_provider == "cohere": ## check if unsupported param passed in supported_params = ["stream", "temperature", "max_tokens", "logit_bias", "top_p", "frequency_penalty", "presence_penalty", "stop", "n"] _check_valid_arg(supported_params=supported_params) # handle cohere params if stream: optional_params["stream"] = stream if temperature is not None: optional_params["temperature"] = temperature if max_tokens is not None: optional_params["max_tokens"] = max_tokens if n is not None: optional_params["num_generations"] = n if logit_bias is not None: optional_params["logit_bias"] = logit_bias if top_p is not None: optional_params["p"] = top_p if frequency_penalty is not None: optional_params["frequency_penalty"] = frequency_penalty if presence_penalty is not None: optional_params["presence_penalty"] = presence_penalty if stop is not None: optional_params["stop_sequences"] = stop elif custom_llm_provider == "maritalk": ## check if unsupported param passed in supported_params = ["stream", "temperature", "max_tokens", "top_p", "presence_penalty", "stop"] _check_valid_arg(supported_params=supported_params) # handle cohere params if stream: optional_params["stream"] = stream if temperature is not None: optional_params["temperature"] = temperature if max_tokens is not None: optional_params["max_tokens"] = max_tokens if logit_bias is not None: optional_params["logit_bias"] = logit_bias if top_p is not None: optional_params["p"] = top_p if presence_penalty is not None: optional_params["repetition_penalty"] = presence_penalty if stop is not None: optional_params["stopping_tokens"] = stop elif custom_llm_provider == "replicate": ## check if unsupported param passed in supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "seed"] _check_valid_arg(supported_params=supported_params) if stream: optional_params["stream"] = stream return optional_params if max_tokens is not None: if "vicuna" in model or "flan" in model: optional_params["max_length"] = max_tokens elif "meta/codellama-13b" in model: optional_params["max_tokens"] = max_tokens else: optional_params["max_new_tokens"] = max_tokens if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if stop is not None: optional_params["stop_sequences"] = stop elif custom_llm_provider == "huggingface": ## check if unsupported param passed in supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "n"] _check_valid_arg(supported_params=supported_params) # temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None if temperature is not None: if temperature == 0.0 or temperature == 0: # hugging face exception raised when temp==0 # Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive temperature = 0.01 optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if n is not None: optional_params["best_of"] = n optional_params["do_sample"] = True # Need to sample if you want best of for hf inference endpoints if stream is not None: optional_params["stream"] = stream if stop is not None: optional_params["stop"] = stop if max_tokens is not None: # HF TGI raises the following exception when max_new_tokens==0 # Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive if max_tokens == 0: max_tokens = 1 optional_params["max_new_tokens"] = max_tokens if n is not None: optional_params["best_of"] = n if presence_penalty is not None: optional_params["repetition_penalty"] = presence_penalty if "echo" in passed_params: # https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation.decoder_input_details # Return the decoder input token logprobs and ids. You must set details=True as well for it to be taken into account. Defaults to False optional_params["decoder_input_details"] = special_params["echo"] passed_params.pop("echo", None) # since we handle translating echo, we should not send it to TGI request elif custom_llm_provider == "together_ai": ## check if unsupported param passed in supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "frequency_penalty"] _check_valid_arg(supported_params=supported_params) if stream: optional_params["stream_tokens"] = stream if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if max_tokens is not None: optional_params["max_tokens"] = max_tokens if frequency_penalty is not None: optional_params["repetition_penalty"] = frequency_penalty # https://docs.together.ai/reference/inference if stop is not None: optional_params["stop"] = stop elif custom_llm_provider == "ai21": ## check if unsupported param passed in supported_params = ["stream", "n", "temperature", "max_tokens", "top_p", "stop", "frequency_penalty", "presence_penalty"] _check_valid_arg(supported_params=supported_params) if stream: optional_params["stream"] = stream if n is not None: optional_params["numResults"] = n if max_tokens is not None: optional_params["maxTokens"] = max_tokens if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["topP"] = top_p if stop is not None: optional_params["stopSequences"] = stop if frequency_penalty is not None: optional_params["frequencyPenalty"] = {"scale": frequency_penalty} if presence_penalty is not None: optional_params["presencePenalty"] = {"scale": presence_penalty} elif custom_llm_provider == "palm": # https://developers.generativeai.google/tutorials/curl_quickstart ## check if unsupported param passed in supported_params = ["temperature", "top_p", "stream", "n", "stop", "max_tokens"] _check_valid_arg(supported_params=supported_params) if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if stream: optional_params["stream"] = stream if n is not None: optional_params["candidate_count"] = n if stop is not None: optional_params["stop_sequences"] = stop if max_tokens is not None: optional_params["max_output_tokens"] = max_tokens elif ( custom_llm_provider == "vertex_ai" ): ## check if unsupported param passed in supported_params = ["temperature", "top_p", "max_tokens", "stream"] _check_valid_arg(supported_params=supported_params) if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if stream: optional_params["stream"] = stream if max_tokens is not None: optional_params["max_output_tokens"] = max_tokens elif custom_llm_provider == "sagemaker": if "llama-2" in model: # llama-2 models on sagemaker support the following args """ max_new_tokens: Model generates text until the output length (excluding the input context length) reaches max_new_tokens. If specified, it must be a positive integer. temperature: Controls the randomness in the output. Higher temperature results in output sequence with low-probability words and lower temperature results in output sequence with high-probability words. If temperature -> 0, it results in greedy decoding. If specified, it must be a positive float. top_p: In each step of text generation, sample from the smallest possible set of words with cumulative probability top_p. If specified, it must be a float between 0 and 1. return_full_text: If True, input text will be part of the output generated text. If specified, it must be boolean. The default value for it is False. """ ## check if unsupported param passed in supported_params = ["temperature", "max_tokens", "stream"] _check_valid_arg(supported_params=supported_params) if max_tokens is not None: optional_params["max_new_tokens"] = max_tokens if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if stream: optional_params["stream"] = stream else: ## check if unsupported param passed in supported_params = [] _check_valid_arg(supported_params=supported_params) elif custom_llm_provider == "bedrock": if "ai21" in model: supported_params = ["max_tokens", "temperature", "top_p", "stream"] _check_valid_arg(supported_params=supported_params) # params "maxTokens":200,"temperature":0,"topP":250,"stop_sequences":[], # https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra if max_tokens is not None: optional_params["maxTokens"] = max_tokens if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["topP"] = top_p if stream: optional_params["stream"] = stream elif "anthropic" in model: supported_params = ["max_tokens", "temperature", "stop", "top_p", "stream"] _check_valid_arg(supported_params=supported_params) # anthropic params on bedrock # \"max_tokens_to_sample\":300,\"temperature\":0.5,\"top_p\":1,\"stop_sequences\":[\"\\\\n\\\\nHuman:\"]}" if max_tokens is not None: optional_params["max_tokens_to_sample"] = max_tokens if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if stop is not None: optional_params["stop_sequences"] = stop if stream: optional_params["stream"] = stream elif "amazon" in model: # amazon titan llms supported_params = ["max_tokens", "temperature", "stop", "top_p", "stream"] _check_valid_arg(supported_params=supported_params) # see https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-large if max_tokens is not None: optional_params["maxTokenCount"] = max_tokens if temperature is not None: optional_params["temperature"] = temperature if stop is not None: filtered_stop = _map_and_modify_arg({"stop": stop}, provider="bedrock", model=model) optional_params["stopSequences"] = filtered_stop["stop"] if top_p is not None: optional_params["topP"] = top_p if stream: optional_params["stream"] = stream elif "meta" in model: # amazon / meta llms supported_params = ["max_tokens", "temperature", "top_p", "stream"] _check_valid_arg(supported_params=supported_params) # see https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-large if max_tokens is not None: optional_params["max_gen_len"] = max_tokens if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if stream: optional_params["stream"] = stream elif "cohere" in model: # cohere models on bedrock supported_params = ["stream", "temperature", "max_tokens"] _check_valid_arg(supported_params=supported_params) # handle cohere params if stream: optional_params["stream"] = stream if temperature is not None: optional_params["temperature"] = temperature if max_tokens is not None: optional_params["max_tokens"] = max_tokens elif custom_llm_provider == "aleph_alpha": supported_params = ["max_tokens", "stream", "top_p", "temperature", "presence_penalty", "frequency_penalty", "n", "stop"] _check_valid_arg(supported_params=supported_params) if max_tokens is not None: optional_params["maximum_tokens"] = max_tokens if stream: optional_params["stream"] = stream if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if presence_penalty is not None: optional_params["presence_penalty"] = presence_penalty if frequency_penalty is not None: optional_params["frequency_penalty"] = frequency_penalty if n is not None: optional_params["n"] = n if stop is not None: optional_params["stop_sequences"] = stop elif custom_llm_provider == "ollama": supported_params = ["max_tokens", "stream", "top_p", "temperature", "frequency_penalty", "stop"] _check_valid_arg(supported_params=supported_params) if max_tokens is not None: optional_params["num_predict"] = max_tokens if stream: optional_params["stream"] = stream if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if frequency_penalty is not None: optional_params["repeat_penalty"] = frequency_penalty if stop is not None: optional_params["stop_sequences"] = stop elif custom_llm_provider == "nlp_cloud": supported_params = ["max_tokens", "stream", "temperature", "top_p", "presence_penalty", "frequency_penalty", "n", "stop"] _check_valid_arg(supported_params=supported_params) if max_tokens is not None: optional_params["max_length"] = max_tokens if stream: optional_params["stream"] = stream if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if presence_penalty is not None: optional_params["presence_penalty"] = presence_penalty if frequency_penalty is not None: optional_params["frequency_penalty"] = frequency_penalty if n is not None: optional_params["num_return_sequences"] = n if stop is not None: optional_params["stop_sequences"] = stop elif custom_llm_provider == "petals": supported_params = ["max_tokens", "temperature", "top_p", "stream"] _check_valid_arg(supported_params=supported_params) # max_new_tokens=1,temperature=0.9, top_p=0.6 if max_tokens is not None: optional_params["max_new_tokens"] = max_tokens if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if stream: optional_params["stream"] = stream elif custom_llm_provider == "deepinfra": supported_params = ["temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user"] _check_valid_arg(supported_params=supported_params) if temperature is not None: if temperature == 0 and model == "mistralai/Mistral-7B-Instruct-v0.1": # this model does no support temperature == 0 temperature = 0.0001 # close to 0 optional_params["temperature"] = temperature if top_p: optional_params["top_p"] = top_p if n: optional_params["n"] = n if stream: optional_params["stream"] = stream if stop: optional_params["stop"] = stop if max_tokens: optional_params["max_tokens"] = max_tokens if presence_penalty: optional_params["presence_penalty"] = presence_penalty if frequency_penalty: optional_params["frequency_penalty"] = frequency_penalty if logit_bias: optional_params["logit_bias"] = logit_bias if user: optional_params["user"] = user elif custom_llm_provider == "perplexity": supported_params = ["temperature", "top_p", "stream", "max_tokens", "presence_penalty", "frequency_penalty"] _check_valid_arg(supported_params=supported_params) if temperature is not None: if temperature == 0 and model == "mistral-7b-instruct": # this model does no support temperature == 0 temperature = 0.0001 # close to 0 optional_params["temperature"] = temperature if top_p: optional_params["top_p"] = top_p if stream: optional_params["stream"] = stream if max_tokens: optional_params["max_tokens"] = max_tokens if presence_penalty: optional_params["presence_penalty"] = presence_penalty if frequency_penalty: optional_params["frequency_penalty"] = frequency_penalty elif custom_llm_provider == "anyscale": supported_params = ["temperature", "top_p", "stream", "max_tokens"] _check_valid_arg(supported_params=supported_params) optional_params = non_default_params if temperature is not None: if temperature == 0 and model == "mistralai/Mistral-7B-Instruct-v0.1": # this model does no support temperature == 0 temperature = 0.0001 # close to 0 optional_params["temperature"] = temperature if top_p: optional_params["top_p"] = top_p if stream: optional_params["stream"] = stream if max_tokens: optional_params["max_tokens"] = max_tokens else: # assume passing in params for openai/azure openai supported_params = ["functions", "function_call", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "response_format", "seed", "tools", "tool_choice", "max_retries"] _check_valid_arg(supported_params=supported_params) if functions is not None: optional_params["functions"] = functions if function_call is not None: optional_params["function_call"] = function_call if temperature is not None: optional_params["temperature"] = temperature if top_p is not None: optional_params["top_p"] = top_p if n is not None: optional_params["n"] = n if stream is not None: optional_params["stream"] = stream if stop is not None: optional_params["stop"] = stop if max_tokens is not None: optional_params["max_tokens"] = max_tokens if presence_penalty is not None: optional_params["presence_penalty"] = presence_penalty if frequency_penalty is not None: optional_params["frequency_penalty"] = frequency_penalty if logit_bias is not None: optional_params["logit_bias"] = logit_bias if user is not None: optional_params["user"] = user if response_format is not None: optional_params["response_format"] = response_format if seed is not None: optional_params["seed"] = seed if tools is not None: optional_params["tools"] = tools if tool_choice is not None: optional_params["tool_choice"] = tool_choice if max_retries is not None: optional_params["max_retries"] = max_retries optional_params = non_default_params # if user passed in non-default kwargs for specific providers/models, pass them along for k in passed_params.keys(): if k not in default_params.keys(): optional_params[k] = passed_params[k] return optional_params def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None, api_base: Optional[str] = None, api_key: Optional[str] = None): try: dynamic_api_key = None # check if llm provider provided if custom_llm_provider: return model, custom_llm_provider, dynamic_api_key, api_base if api_key and api_key.startswith("os.environ/"): api_key_env_name = api_key.replace("os.environ/", "") dynamic_api_key = os.getenv(api_key_env_name) # check if llm provider part of model name if model.split("/",1)[0] in litellm.provider_list and model.split("/",1)[0] not in litellm.model_list: custom_llm_provider = model.split("/", 1)[0] model = model.split("/", 1)[1] if custom_llm_provider == "perplexity": # perplexity is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.perplexity.ai api_base = "https://api.perplexity.ai" dynamic_api_key = os.getenv("PERPLEXITYAI_API_KEY") elif custom_llm_provider == "anyscale": # anyscale is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.endpoints.anyscale.com/v1 api_base = "https://api.endpoints.anyscale.com/v1" dynamic_api_key = os.getenv("ANYSCALE_API_KEY") elif custom_llm_provider == "deepinfra": # deepinfra is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.endpoints.anyscale.com/v1 api_base = "https://api.deepinfra.com/v1/openai" dynamic_api_key = os.getenv("DEEPINFRA_API_KEY") return model, custom_llm_provider, dynamic_api_key, api_base # check if api base is a known openai compatible endpoint if api_base: for endpoint in litellm.openai_compatible_endpoints: if endpoint in api_base: if endpoint == "api.perplexity.ai": custom_llm_provider = "perplexity" dynamic_api_key = os.getenv("PERPLEXITYAI_API_KEY") elif endpoint == "api.endpoints.anyscale.com/v1": custom_llm_provider = "anyscale" dynamic_api_key = os.getenv("ANYSCALE_API_KEY") elif endpoint == "api.deepinfra.com/v1/openai": custom_llm_provider = "deepinfra" dynamic_api_key = os.getenv("DEEPINFRA_API_KEY") return model, custom_llm_provider, dynamic_api_key, api_base # check if model in known model provider list -> for huggingface models, raise exception as they don't have a fixed provider (can be togetherai, anyscale, baseten, runpod, et.) ## openai - chatcompletion + text completion if model in litellm.open_ai_chat_completion_models or "ft:gpt-3.5-turbo" in model: custom_llm_provider = "openai" elif model in litellm.open_ai_text_completion_models: custom_llm_provider = "text-completion-openai" ## anthropic elif model in litellm.anthropic_models: custom_llm_provider = "anthropic" ## cohere elif model in litellm.cohere_models: custom_llm_provider = "cohere" ## replicate elif model in litellm.replicate_models or ":" in model: model_parts = model.split(":") if len(model_parts) > 1 and len(model_parts[1])==64: ## checks if model name has a 64 digit code - e.g. "meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3" custom_llm_provider = "replicate" elif model in litellm.replicate_models: custom_llm_provider = "replicate" ## openrouter elif model in litellm.openrouter_models: custom_llm_provider = "openrouter" ## openrouter elif model in litellm.maritalk_models: custom_llm_provider = "maritalk" ## vertex - text + chat models elif( model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models or model in litellm.vertex_text_models or model in litellm.vertex_code_text_models ): custom_llm_provider = "vertex_ai" ## ai21 elif model in litellm.ai21_models: custom_llm_provider = "ai21" ## aleph_alpha elif model in litellm.aleph_alpha_models: custom_llm_provider = "aleph_alpha" ## baseten elif model in litellm.baseten_models: custom_llm_provider = "baseten" ## nlp_cloud elif model in litellm.nlp_cloud_models: custom_llm_provider = "nlp_cloud" ## petals elif model in litellm.petals_models: custom_llm_provider = "petals" ## bedrock elif model in litellm.bedrock_models: custom_llm_provider = "bedrock" # openai embeddings elif model in litellm.open_ai_embedding_models: custom_llm_provider = "openai" # cohere embeddings elif model in litellm.cohere_embedding_models: custom_llm_provider = "cohere" elif model in litellm.bedrock_embedding_models: custom_llm_provider = "bedrock" if custom_llm_provider is None or custom_llm_provider=="": print() # noqa print("\033[1;31mProvider List: https://docs.litellm.ai/docs/providers\033[0m") # noqa print() # noqa raise ValueError(f"LLM Provider NOT provided. Pass in the LLM provider you are trying to call. E.g. For 'Huggingface' inference endpoints pass in `completion(model='huggingface/{model}',..)` Learn more: https://docs.litellm.ai/docs/providers") return model, custom_llm_provider, dynamic_api_key, api_base except Exception as e: raise e def get_api_key(llm_provider: str, dynamic_api_key: Optional[str]): api_key = (dynamic_api_key or litellm.api_key) # openai if llm_provider == "openai" or llm_provider == "text-completion-openai": api_key = ( api_key or litellm.openai_key or get_secret("OPENAI_API_KEY") ) # anthropic elif llm_provider == "anthropic": api_key = ( api_key or litellm.anthropic_key or get_secret("ANTHROPIC_API_KEY") ) # ai21 elif llm_provider == "ai21": api_key = ( api_key or litellm.ai21_key or get_secret("AI211_API_KEY") ) # aleph_alpha elif llm_provider == "aleph_alpha": api_key = ( api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY") ) # baseten elif llm_provider == "baseten": api_key = ( api_key or litellm.baseten_key or get_secret("BASETEN_API_KEY") ) # cohere elif llm_provider == "cohere": api_key = ( api_key or litellm.cohere_key or get_secret("COHERE_API_KEY") ) # huggingface elif llm_provider == "huggingface": api_key = ( api_key or litellm.huggingface_key or get_secret("HUGGINGFACE_API_KEY") ) # nlp_cloud elif llm_provider == "nlp_cloud": api_key = ( api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY") ) # replicate elif llm_provider == "replicate": api_key = ( api_key or litellm.replicate_key or get_secret("REPLICATE_API_KEY") ) # together_ai elif llm_provider == "together_ai": api_key = ( api_key or litellm.togetherai_api_key or get_secret("TOGETHERAI_API_KEY") or get_secret("TOGETHER_AI_TOKEN") ) return api_key def get_max_tokens(model: str): """ Get the maximum number of tokens allowed for a given model. Parameters: model (str): The name of the model. Returns: int: The maximum number of tokens allowed for the given model. Raises: Exception: If the model is not mapped yet. Example: >>> get_max_tokens("gpt-4") 8192 """ def _get_max_position_embeddings(model_name): # Construct the URL for the config.json file config_url = f"https://huggingface.co/{model_name}/raw/main/config.json" try: # Make the HTTP request to get the raw JSON file response = requests.get(config_url) response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx) # Parse the JSON response config_json = response.json() # Extract and return the max_position_embeddings max_position_embeddings = config_json.get("max_position_embeddings") if max_position_embeddings is not None: return max_position_embeddings else: return None except requests.exceptions.RequestException as e: return None try: if model in litellm.model_cost: return litellm.model_cost[model]["max_tokens"] model, custom_llm_provider, _, _ = get_llm_provider(model=model) if custom_llm_provider == "huggingface": max_tokens = _get_max_position_embeddings(model_name=model) return max_tokens else: raise Exception() except: raise Exception("This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json") def get_model_info(model: str): """ Get a dict for the maximum tokens (context window), input_cost_per_token, output_cost_per_token for a given model. Parameters: model (str): The name of the model. Returns: dict: A dictionary containing the following information: - max_tokens (int): The maximum number of tokens allowed for the given model. - input_cost_per_token (float): The cost per token for input. - output_cost_per_token (float): The cost per token for output. - litellm_provider (str): The provider of the model (e.g., "openai"). - mode (str): The mode of the model (e.g., "chat" or "completion"). Raises: Exception: If the model is not mapped yet. Example: >>> get_model_info("gpt-4") { "max_tokens": 8192, "input_cost_per_token": 0.00003, "output_cost_per_token": 0.00006, "litellm_provider": "openai", "mode": "chat" } """ def _get_max_position_embeddings(model_name): # Construct the URL for the config.json file config_url = f"https://huggingface.co/{model_name}/raw/main/config.json" try: # Make the HTTP request to get the raw JSON file response = requests.get(config_url) response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx) # Parse the JSON response config_json = response.json() # Extract and return the max_position_embeddings max_position_embeddings = config_json.get("max_position_embeddings") if max_position_embeddings is not None: return max_position_embeddings else: return None except requests.exceptions.RequestException as e: return None try: if model in litellm.model_cost: return litellm.model_cost[model] model, custom_llm_provider, _, _ = get_llm_provider(model=model) if custom_llm_provider == "huggingface": max_tokens = _get_max_position_embeddings(model_name=model) return { "max_tokens": max_tokens, "input_cost_per_token": 0, "output_cost_per_token": 0, "litellm_provider": "huggingface", "mode": "chat" } else: raise Exception() except: raise Exception("This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json") def json_schema_type(python_type_name: str): """Converts standard python types to json schema types Parameters ---------- python_type_name : str __name__ of type Returns ------- str a standard JSON schema type, "string" if not recognized. """ python_to_json_schema_types = { str.__name__: "string", int.__name__: "integer", float.__name__: "number", bool.__name__: "boolean", list.__name__: "array", dict.__name__: "object", "NoneType": "null", } return python_to_json_schema_types.get(python_type_name, "string") def function_to_dict(input_function): # noqa: C901 """Using type hints and numpy-styled docstring, produce a dictionnary usable for OpenAI function calling Parameters ---------- input_function : function A function with a numpy-style docstring Returns ------- dictionnary A dictionnary to add to the list passed to `functions` parameter of `litellm.completion` """ # Get function name and docstring try: import inspect from numpydoc.docscrape import NumpyDocString from ast import literal_eval except Exception as e: raise e name = input_function.__name__ docstring = inspect.getdoc(input_function) numpydoc = NumpyDocString(docstring) description = "\n".join([s.strip() for s in numpydoc["Summary"]]) # Get function parameters and their types from annotations and docstring parameters = {} required_params = [] param_info = inspect.signature(input_function).parameters for param_name, param in param_info.items(): if hasattr(param, "annotation"): param_type = json_schema_type(param.annotation.__name__) else: param_type = None param_description = None param_enum = None # Try to extract param description from docstring using numpydoc for param_data in numpydoc["Parameters"]: if param_data.name == param_name: if hasattr(param_data, "type"): # replace type from docstring rather than annotation param_type = param_data.type if "optional" in param_type: param_type = param_type.split(",")[0] elif "{" in param_type: # may represent a set of acceptable values # translating as enum for function calling try: param_enum = str(list(literal_eval(param_type))) param_type = "string" except Exception: pass param_type = json_schema_type(param_type) param_description = "\n".join([s.strip() for s in param_data.desc]) param_dict = { "type": param_type, "description": param_description, "enum": param_enum, } parameters[param_name] = dict( [(k, v) for k, v in param_dict.items() if isinstance(v, str)] ) # Check if the parameter has no default value (i.e., it's required) if param.default == param.empty: required_params.append(param_name) # Create the dictionary result = { "name": name, "description": description, "parameters": { "type": "object", "properties": parameters, }, } # Add "required" key if there are required parameters if required_params: result["parameters"]["required"] = required_params return result def load_test_model( model: str, custom_llm_provider: str = "", api_base: str = "", prompt: str = "", num_calls: int = 0, force_timeout: int = 0, ): test_prompt = "Hey, how's it going" test_calls = 100 if prompt: test_prompt = prompt if num_calls: test_calls = num_calls messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)] start_time = time.time() try: litellm.batch_completion( model=model, messages=messages, custom_llm_provider=custom_llm_provider, api_base=api_base, force_timeout=force_timeout, ) end_time = time.time() response_time = end_time - start_time return { "total_response_time": response_time, "calls_made": 100, "status": "success", "exception": None, } except Exception as e: end_time = time.time() response_time = end_time - start_time return { "total_response_time": response_time, "calls_made": 100, "status": "failed", "exception": e, } def validate_environment(model: Optional[str]=None) -> dict: """ Checks if the environment variables are valid for the given model. Args: model (Optional[str]): The name of the model. Defaults to None. Returns: dict: A dictionary containing the following keys: - keys_in_environment (bool): True if all the required keys are present in the environment, False otherwise. - missing_keys (List[str]): A list of missing keys in the environment. """ keys_in_environment = False missing_keys: List[str] = [] if model is None: return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys} ## EXTRACT LLM PROVIDER - if model name provided try: custom_llm_provider = get_llm_provider(model=model) except: custom_llm_provider = None # # check if llm provider part of model name # if model.split("/",1)[0] in litellm.provider_list: # custom_llm_provider = model.split("/", 1)[0] # model = model.split("/", 1)[1] # custom_llm_provider_passed_in = True if custom_llm_provider: if custom_llm_provider == "openai": if "OPENAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENAI_API_KEY") elif custom_llm_provider == "azure": if ("AZURE_API_BASE" in os.environ and "AZURE_API_VERSION" in os.environ and "AZURE_API_KEY" in os.environ): keys_in_environment = True else: missing_keys.extend(["AZURE_API_BASE", "AZURE_API_VERSION", "AZURE_API_KEY"]) elif custom_llm_provider == "anthropic": if "ANTHROPIC_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ANTHROPIC_API_KEY") elif custom_llm_provider == "cohere": if "COHERE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("COHERE_API_KEY") elif custom_llm_provider == "replicate": if "REPLICATE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("REPLICATE_API_KEY") elif custom_llm_provider == "openrouter": if "OPENROUTER_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENROUTER_API_KEY") elif custom_llm_provider == "vertex_ai": if ("VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ): keys_in_environment = True else: missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_PROJECT"]) elif custom_llm_provider == "huggingface": if "HUGGINGFACE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("HUGGINGFACE_API_KEY") elif custom_llm_provider == "ai21": if "AI21_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("AI21_API_KEY") elif custom_llm_provider == "together_ai": if "TOGETHERAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("TOGETHERAI_API_KEY") elif custom_llm_provider == "aleph_alpha": if "ALEPH_ALPHA_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ALEPH_ALPHA_API_KEY") elif custom_llm_provider == "baseten": if "BASETEN_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("BASETEN_API_KEY") elif custom_llm_provider == "nlp_cloud": if "NLP_CLOUD_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("NLP_CLOUD_API_KEY") elif custom_llm_provider == "bedrock": if "AWS_ACCESS_KEY_ID" in os.environ and "AWS_SECRET_ACCESS_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("AWS_ACCESS_KEY_ID") missing_keys.append("AWS_SECRET_ACCESS_KEY") else: ## openai - chatcompletion + text completion if model in litellm.open_ai_chat_completion_models or litellm.open_ai_text_completion_models: if "OPENAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENAI_API_KEY") ## anthropic elif model in litellm.anthropic_models: if "ANTHROPIC_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ANTHROPIC_API_KEY") ## cohere elif model in litellm.cohere_models: if "COHERE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("COHERE_API_KEY") ## replicate elif model in litellm.replicate_models: if "REPLICATE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("REPLICATE_API_KEY") ## openrouter elif model in litellm.openrouter_models: if "OPENROUTER_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENROUTER_API_KEY") ## vertex - text + chat models elif model in litellm.vertex_chat_models or model in litellm.vertex_text_models: if ("VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ): keys_in_environment = True else: missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_PROJECT"]) ## huggingface elif model in litellm.huggingface_models: if "HUGGINGFACE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("HUGGINGFACE_API_KEY") ## ai21 elif model in litellm.ai21_models: if "AI21_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("AI21_API_KEY") ## together_ai elif model in litellm.together_ai_models: if "TOGETHERAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("TOGETHERAI_API_KEY") ## aleph_alpha elif model in litellm.aleph_alpha_models: if "ALEPH_ALPHA_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ALEPH_ALPHA_API_KEY") ## baseten elif model in litellm.baseten_models: if "BASETEN_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("BASETEN_API_KEY") ## nlp_cloud elif model in litellm.nlp_cloud_models: if "NLP_CLOUD_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("NLP_CLOUD_API_KEY") return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys} def set_callbacks(callback_list, function_id=None): global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger, promptLayerLogger, langFuseLogger, customLogger, weightsBiasesLogger, langsmithLogger try: for callback in callback_list: print_verbose(f"callback: {callback}") if callback == "sentry": try: import sentry_sdk except ImportError: print_verbose("Package 'sentry_sdk' is missing. Installing it...") subprocess.check_call( [sys.executable, "-m", "pip", "install", "sentry_sdk"] ) import sentry_sdk sentry_sdk_instance = sentry_sdk sentry_trace_rate = ( os.environ.get("SENTRY_API_TRACE_RATE") if "SENTRY_API_TRACE_RATE" in os.environ else "1.0" ) sentry_sdk_instance.init( dsn=os.environ.get("SENTRY_DSN"), traces_sample_rate=float(sentry_trace_rate), ) capture_exception = sentry_sdk_instance.capture_exception add_breadcrumb = sentry_sdk_instance.add_breadcrumb elif callback == "posthog": try: from posthog import Posthog except ImportError: print_verbose("Package 'posthog' is missing. Installing it...") subprocess.check_call( [sys.executable, "-m", "pip", "install", "posthog"] ) from posthog import Posthog posthog = Posthog( project_api_key=os.environ.get("POSTHOG_API_KEY"), host=os.environ.get("POSTHOG_API_URL"), ) elif callback == "slack": try: from slack_bolt import App except ImportError: print_verbose("Package 'slack_bolt' is missing. Installing it...") subprocess.check_call( [sys.executable, "-m", "pip", "install", "slack_bolt"] ) from slack_bolt import App slack_app = App( token=os.environ.get("SLACK_API_TOKEN"), signing_secret=os.environ.get("SLACK_API_SECRET"), ) alerts_channel = os.environ["SLACK_API_CHANNEL"] print_verbose(f"Initialized Slack App: {slack_app}") elif callback == "traceloop": traceloopLogger = TraceloopLogger() elif callback == "helicone": heliconeLogger = HeliconeLogger() elif callback == "llmonitor": llmonitorLogger = LLMonitorLogger() elif callback == "promptlayer": promptLayerLogger = PromptLayerLogger() elif callback == "langfuse": langFuseLogger = LangFuseLogger() elif callback == "wandb": weightsBiasesLogger = WeightsBiasesLogger() elif callback == "langsmith": langsmithLogger = LangsmithLogger() elif callback == "aispend": aispendLogger = AISpendLogger() elif callback == "berrispend": berrispendLogger = BerriSpendLogger() elif callback == "supabase": print_verbose(f"instantiating supabase") supabaseClient = Supabase() elif callback == "lite_debugger": print_verbose(f"instantiating lite_debugger") if function_id: liteDebuggerClient = LiteDebugger(email=function_id) elif litellm.token: liteDebuggerClient = LiteDebugger(email=litellm.token) elif litellm.email: liteDebuggerClient = LiteDebugger(email=litellm.email) else: liteDebuggerClient = LiteDebugger(email=str(uuid.uuid4())) elif callable(callback): customLogger = CustomLogger() except Exception as e: raise e # NOTE: DEPRECATING this in favor of using failure_handler() in Logging: def handle_failure(exception, traceback_exception, start_time, end_time, args, kwargs): global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger try: # print_verbose(f"handle_failure args: {args}") # print_verbose(f"handle_failure kwargs: {kwargs}") success_handler = additional_details.pop("success_handler", None) failure_handler = additional_details.pop("failure_handler", None) additional_details["Event_Name"] = additional_details.pop( "failed_event_name", "litellm.failed_query" ) print_verbose(f"self.failure_callback: {litellm.failure_callback}") for callback in litellm.failure_callback: try: if callback == "slack": slack_msg = "" if len(kwargs) > 0: for key in kwargs: slack_msg += f"{key}: {kwargs[key]}\n" if len(args) > 0: for i, arg in enumerate(args): slack_msg += f"LiteLLM_Args_{str(i)}: {arg}" for detail in additional_details: slack_msg += f"{detail}: {additional_details[detail]}\n" slack_msg += f"Traceback: {traceback_exception}" slack_app.client.chat_postMessage( channel=alerts_channel, text=slack_msg ) elif callback == "sentry": capture_exception(exception) elif callback == "posthog": print_verbose( f"inside posthog, additional_details: {len(additional_details.keys())}" ) ph_obj = {} if len(kwargs) > 0: ph_obj = kwargs if len(args) > 0: for i, arg in enumerate(args): ph_obj["litellm_args_" + str(i)] = arg for detail in additional_details: ph_obj[detail] = additional_details[detail] event_name = additional_details["Event_Name"] print_verbose(f"ph_obj: {ph_obj}") print_verbose(f"PostHog Event Name: {event_name}") if "user_id" in additional_details: posthog.capture( additional_details["user_id"], event_name, ph_obj ) else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python unique_id = str(uuid.uuid4()) posthog.capture(unique_id, event_name) print_verbose(f"successfully logged to PostHog!") elif callback == "berrispend": print_verbose("reaches berrispend for logging!") model = args[0] if len(args) > 0 else kwargs["model"] messages = args[1] if len(args) > 1 else kwargs["messages"] result = { "model": model, "created": time.time(), "error": traceback_exception, "usage": { "prompt_tokens": prompt_token_calculator( model, messages=messages ), "completion_tokens": 0, }, } berrispendLogger.log_event( model=model, messages=messages, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "aispend": print_verbose("reaches aispend for logging!") model = args[0] if len(args) > 0 else kwargs["model"] messages = args[1] if len(args) > 1 else kwargs["messages"] result = { "model": model, "created": time.time(), "usage": { "prompt_tokens": prompt_token_calculator( model, messages=messages ), "completion_tokens": 0, }, } aispendLogger.log_event( model=model, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "supabase": print_verbose("reaches supabase for logging!") print_verbose(f"supabaseClient: {supabaseClient}") model = args[0] if len(args) > 0 else kwargs["model"] messages = args[1] if len(args) > 1 else kwargs["messages"] result = { "model": model, "created": time.time(), "error": traceback_exception, "usage": { "prompt_tokens": prompt_token_calculator( model, messages=messages ), "completion_tokens": 0, }, } supabaseClient.log_event( model=model, messages=messages, end_user=kwargs.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=kwargs["litellm_call_id"], print_verbose=print_verbose, ) except: print_verbose( f"Error Occurred while logging failure: {traceback.format_exc()}" ) pass if failure_handler and callable(failure_handler): call_details = { "exception": exception, "additional_details": additional_details, } failure_handler(call_details) pass except Exception as e: # LOGGING exception_logging(logger_fn=user_logger_fn, exception=e) pass def convert_to_model_response_object(response_object: Optional[dict]=None, model_response_object: Optional[Union[ModelResponse, EmbeddingResponse]]=None, response_type: Literal["completion", "embedding"] = "completion"): try: if response_type == "completion" and (model_response_object is None or isinstance(model_response_object, ModelResponse)): if response_object is None or model_response_object is None: raise Exception("Error in response object format") choice_list=[] for idx, choice in enumerate(response_object["choices"]): message = Message( content=choice["message"].get("content", None), role=choice["message"]["role"], function_call=choice["message"].get("function_call", None), tool_calls=choice["message"].get("tool_calls", None) ) finish_reason = choice.get("finish_reason", None) if finish_reason == None: # gpt-4 vision can return 'finish_reason' or 'finish_details' finish_reason = choice.get("finish_details") choice = Choices(finish_reason=finish_reason, index=idx, message=message) choice_list.append(choice) model_response_object.choices = choice_list if "usage" in response_object and response_object["usage"] is not None: model_response_object.usage.completion_tokens = response_object["usage"].get("completion_tokens", 0) # type: ignore model_response_object.usage.prompt_tokens = response_object["usage"].get("prompt_tokens", 0) # type: ignore model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore if "id" in response_object: model_response_object.id = response_object["id"] if "system_fingerprint" in response_object: model_response_object.system_fingerprint = response_object["system_fingerprint"] if "model" in response_object: model_response_object.model = response_object["model"] return model_response_object elif response_type == "embedding" and (model_response_object is None or isinstance(model_response_object, EmbeddingResponse)): if response_object is None: raise Exception("Error in response object format") if model_response_object is None: model_response_object = EmbeddingResponse() if "model" in response_object: model_response_object.model = response_object["model"] if "object" in response_object: model_response_object.object = response_object["object"] model_response_object.data = response_object["data"] if "usage" in response_object and response_object["usage"] is not None: model_response_object.usage.completion_tokens = response_object["usage"].get("completion_tokens", 0) # type: ignore model_response_object.usage.prompt_tokens = response_object["usage"].get("prompt_tokens", 0) # type: ignore model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore return model_response_object except Exception as e: raise Exception(f"Invalid response object {e}") # NOTE: DEPRECATING this in favor of using success_handler() in Logging: def handle_success(args, kwargs, result, start_time, end_time): global heliconeLogger, aispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger try: model = args[0] if len(args) > 0 else kwargs["model"] input = ( args[1] if len(args) > 1 else kwargs.get("messages", kwargs.get("input", None)) ) success_handler = additional_details.pop("success_handler", None) failure_handler = additional_details.pop("failure_handler", None) additional_details["Event_Name"] = additional_details.pop( "successful_event_name", "litellm.succes_query" ) for callback in litellm.success_callback: try: if callback == "posthog": ph_obj = {} for detail in additional_details: ph_obj[detail] = additional_details[detail] event_name = additional_details["Event_Name"] if "user_id" in additional_details: posthog.capture( additional_details["user_id"], event_name, ph_obj ) else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python unique_id = str(uuid.uuid4()) posthog.capture(unique_id, event_name, ph_obj) pass elif callback == "slack": slack_msg = "" for detail in additional_details: slack_msg += f"{detail}: {additional_details[detail]}\n" slack_app.client.chat_postMessage( channel=alerts_channel, text=slack_msg ) elif callback == "aispend": print_verbose("reaches aispend for logging!") model = args[0] if len(args) > 0 else kwargs["model"] aispendLogger.log_event( model=model, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) except Exception as e: # LOGGING exception_logging(logger_fn=user_logger_fn, exception=e) print_verbose( f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}" ) pass if success_handler and callable(success_handler): success_handler(args, kwargs) pass except Exception as e: # LOGGING exception_logging(logger_fn=user_logger_fn, exception=e) print_verbose( f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}" ) pass def acreate(*args, **kwargs): ## Thin client to handle the acreate langchain call return litellm.acompletion(*args, **kwargs) def prompt_token_calculator(model, messages): # use tiktoken or anthropic's tokenizer depending on the model text = " ".join(message["content"] for message in messages) num_tokens = 0 if "claude" in model: try: import anthropic except: Exception("Anthropic import failed please run `pip install anthropic`") from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT anthropic = Anthropic() num_tokens = anthropic.count_tokens(text) else: num_tokens = len(encoding.encode(text)) return num_tokens def valid_model(model): try: # for a given model name, check if the user has the right permissions to access the model if ( model in litellm.open_ai_chat_completion_models or model in litellm.open_ai_text_completion_models ): openai.Model.retrieve(model) else: messages = [{"role": "user", "content": "Hello World"}] litellm.completion(model=model, messages=messages) except: raise BadRequestError(message="", model=model, llm_provider="") def check_valid_key(model: str, api_key: str): """ Checks if a given API key is valid for a specific model by making a litellm.completion call with max_tokens=10 Args: model (str): The name of the model to check the API key against. api_key (str): The API key to be checked. Returns: bool: True if the API key is valid for the model, False otherwise. """ messages = [{"role": "user", "content": "Hey, how's it going?"}] try: litellm.completion(model=model, messages=messages, api_key=api_key, max_tokens=10) return True except AuthenticationError as e: return False except Exception as e: return False def _should_retry(status_code: int): """ Reimplementation of openai's should retry logic, since that one can't be imported. https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L639 """ # If the server explicitly says whether or not to retry, obey. # Retry on request timeouts. if status_code == 408: return True # Retry on lock timeouts. if status_code == 409: return True # Retry on rate limits. if status_code == 429: return True # Retry internal errors. if status_code >= 500: return True return False def _calculate_retry_after(remaining_retries: int, max_retries: int, response_headers: Optional[httpx.Headers]=None): """ Reimplementation of openai's calculate retry after, since that one can't be imported. https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L631 """ try: import email # openai import # About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After # # <http-date>". See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax for # details. if response_headers is not None: retry_header = response_headers.get("retry-after") try: retry_after = int(retry_header) except Exception: retry_date_tuple = email.utils.parsedate_tz(retry_header) if retry_date_tuple is None: retry_after = -1 else: retry_date = email.utils.mktime_tz(retry_date_tuple) retry_after = int(retry_date - time.time()) else: retry_after = -1 except Exception: retry_after = -1 # If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says. if 0 < retry_after <= 60: return retry_after initial_retry_delay = 0.5 max_retry_delay = 8.0 nb_retries = max_retries - remaining_retries # Apply exponential backoff, but not more than the max. sleep_seconds = min(initial_retry_delay * pow(2.0, nb_retries), max_retry_delay) # Apply some jitter, plus-or-minus half a second. jitter = 1 - 0.25 * random.random() timeout = sleep_seconds * jitter return timeout if timeout >= 0 else 0 # integration helper function def modify_integration(integration_name, integration_params): global supabaseClient if integration_name == "supabase": if "table_name" in integration_params: Supabase.supabase_table_name = integration_params["table_name"] # custom prompt helper function def register_prompt_template(model: str, roles: dict, initial_prompt_value: str = "", final_prompt_value: str = ""): """ Register a prompt template to follow your custom format for a given model Args: model (str): The name of the model. roles (dict): A dictionary mapping roles to their respective prompt values. initial_prompt_value (str, optional): The initial prompt value. Defaults to "". final_prompt_value (str, optional): The final prompt value. Defaults to "". Returns: dict: The updated custom prompt dictionary. Example usage: ``` import litellm litellm.register_prompt_template( model="llama-2", initial_prompt_value="You are a good assistant" # [OPTIONAL] roles={ "system": { "pre_message": "[INST] <<SYS>>\n", # [OPTIONAL] "post_message": "\n<</SYS>>\n [/INST]\n" # [OPTIONAL] }, "user": { "pre_message": "[INST] ", # [OPTIONAL] "post_message": " [/INST]" # [OPTIONAL] }, "assistant": { "pre_message": "\n" # [OPTIONAL] "post_message": "\n" # [OPTIONAL] } } final_prompt_value="Now answer as best you can:" # [OPTIONAL] ) ``` """ model = get_llm_provider(model=model)[0] litellm.custom_prompt_dict[model] = { "roles": roles, "initial_prompt_value": initial_prompt_value, "final_prompt_value": final_prompt_value } return litellm.custom_prompt_dict ####### DEPRECATED ################ def get_all_keys(llm_provider=None): try: global last_fetched_at_keys # if user is using hosted product -> instantiate their env with their hosted api keys - refresh every 5 minutes print_verbose(f"Reaches get all keys, llm_provider: {llm_provider}") user_email = ( os.getenv("LITELLM_EMAIL") or litellm.email or litellm.token or os.getenv("LITELLM_TOKEN") ) if user_email: time_delta = 0 if last_fetched_at_keys != None: current_time = time.time() time_delta = current_time - last_fetched_at_keys if ( time_delta > 300 or last_fetched_at_keys == None or llm_provider ): # if the llm provider is passed in , assume this happening due to an AuthError for that provider # make the api call last_fetched_at = time.time() print_verbose(f"last_fetched_at: {last_fetched_at}") response = requests.post( url="http://api.litellm.ai/get_all_keys", headers={"content-type": "application/json"}, data=json.dumps({"user_email": user_email}), ) print_verbose(f"get model key response: {response.text}") data = response.json() # update model list for key, value in data[ "model_keys" ].items(): # follows the LITELLM API KEY format - <UPPERCASE_PROVIDER_NAME>_API_KEY - e.g. HUGGINGFACE_API_KEY os.environ[key] = value # set model alias map for model_alias, value in data["model_alias_map"].items(): litellm.model_alias_map[model_alias] = value return "it worked!" return None return None except: print_verbose( f"[Non-Blocking Error] get_all_keys error - {traceback.format_exc()}" ) pass def get_model_list(): global last_fetched_at, print_verbose try: # if user is using hosted product -> get their updated model list user_email = ( os.getenv("LITELLM_EMAIL") or litellm.email or litellm.token or os.getenv("LITELLM_TOKEN") ) if user_email: # make the api call last_fetched_at = time.time() print_verbose(f"last_fetched_at: {last_fetched_at}") response = requests.post( url="http://api.litellm.ai/get_model_list", headers={"content-type": "application/json"}, data=json.dumps({"user_email": user_email}), ) print_verbose(f"get_model_list response: {response.text}") data = response.json() # update model list model_list = data["model_list"] # # check if all model providers are in environment # model_providers = data["model_providers"] # missing_llm_provider = None # for item in model_providers: # if f"{item.upper()}_API_KEY" not in os.environ: # missing_llm_provider = item # break # # update environment - if required # threading.Thread(target=get_all_keys, args=(missing_llm_provider)).start() return model_list return [] # return empty list by default except: print_verbose( f"[Non-Blocking Error] get_model_list error - {traceback.format_exc()}" ) ####### EXCEPTION MAPPING ################ def exception_type( model, original_exception, custom_llm_provider, completion_kwargs={}, ): global user_logger_fn, liteDebuggerClient exception_mapping_worked = False if litellm.suppress_debug_info is False: print() # noqa print("\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m") # noqa print("LiteLLM.Info: If you need to debug this error, use `litellm.set_verbose=True'.") # noqa print() # noqa try: if model: error_str = str(original_exception) if isinstance(original_exception, BaseException): exception_type = type(original_exception).__name__ else: exception_type = "" if "Request Timeout Error" in error_str or "Request timed out" in error_str: exception_mapping_worked = True raise Timeout( message=f"APITimeoutError - Request timed out", model=model, llm_provider=custom_llm_provider ) if custom_llm_provider == "openai" or custom_llm_provider == "text-completion-openai" or custom_llm_provider == "custom_openai": if "This model's maximum context length is" in error_str or "Request too large" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"OpenAIException - {original_exception.message}", llm_provider="openai", model=model, response=original_exception.response ) elif "invalid_request_error" in error_str and "Incorrect API key provided" not in error_str: exception_mapping_worked = True raise BadRequestError( message=f"OpenAIException - {original_exception.message}", llm_provider="openai", model=model, response=original_exception.response ) elif hasattr(original_exception, "status_code"): exception_mapping_worked = True if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"OpenAIException - {original_exception.message}", llm_provider="openai", model=model, response=original_exception.response ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"OpenAIException - {original_exception.message}", model=model, llm_provider="openai", ) if original_exception.status_code == 422: exception_mapping_worked = True raise BadRequestError( message=f"OpenAIException - {original_exception.message}", model=model, llm_provider="openai", response=original_exception.response ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"OpenAIException - {original_exception.message}", model=model, llm_provider="openai", response=original_exception.response ) elif original_exception.status_code == 503: exception_mapping_worked = True raise ServiceUnavailableError( message=f"OpenAIException - {original_exception.message}", model=model, llm_provider="openai", response=original_exception.response ) elif original_exception.status_code == 504: # gateway timeout error exception_mapping_worked = True raise Timeout( message=f"OpenAIException - {original_exception.message}", model=model, llm_provider="openai", ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"OpenAIException - {original_exception.message}", llm_provider="openai", model=model, request=original_exception.request ) else: # if no status code then it is an APIConnectionError: https://github.com/openai/openai-python#handling-errors raise APIConnectionError( __cause__=original_exception.__cause__, llm_provider=custom_llm_provider, model=model, request=original_exception.request ) elif custom_llm_provider == "anthropic": # one of the anthropics if hasattr(original_exception, "message"): if "prompt is too long" in original_exception.message or "prompt: length" in original_exception.message: exception_mapping_worked = True raise ContextWindowExceededError( message=original_exception.message, model=model, llm_provider="anthropic", response=original_exception.response ) if "Invalid API Key" in original_exception.message: exception_mapping_worked = True raise AuthenticationError( message=original_exception.message, model=model, llm_provider="anthropic", response=original_exception.response ) if hasattr(original_exception, "status_code"): print_verbose(f"status_code: {original_exception.status_code}") if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"AnthropicException - {original_exception.message}", llm_provider="anthropic", model=model, response=original_exception.response ) elif original_exception.status_code == 400 or original_exception.status_code == 413: exception_mapping_worked = True raise BadRequestError( message=f"AnthropicException - {original_exception.message}", model=model, llm_provider="anthropic", response=original_exception.response ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"AnthropicException - {original_exception.message}", model=model, llm_provider="anthropic", request=original_exception.request ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"AnthropicException - {original_exception.message}", llm_provider="anthropic", model=model, response=original_exception.response ) elif original_exception.status_code == 500: exception_mapping_worked = True raise ServiceUnavailableError( message=f"AnthropicException - {original_exception.message}", llm_provider="anthropic", model=model, response=original_exception.response ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"AnthropicException - {original_exception.message}", llm_provider="anthropic", model=model, request=original_exception.request ) elif custom_llm_provider == "replicate": if "Incorrect authentication token" in error_str: exception_mapping_worked = True raise AuthenticationError( message=f"ReplicateException - {error_str}", llm_provider="replicate", model=model, response=original_exception.response ) elif "input is too long" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"ReplicateException - {error_str}", model=model, llm_provider="replicate", response=original_exception.response ) elif exception_type == "ModelError": exception_mapping_worked = True raise BadRequestError( message=f"ReplicateException - {error_str}", model=model, llm_provider="replicate", response=original_exception.response ) elif "Request was throttled" in error_str: exception_mapping_worked = True raise RateLimitError( message=f"ReplicateException - {error_str}", llm_provider="replicate", model=model, response=original_exception.response ) elif hasattr(original_exception, "status_code"): if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"ReplicateException - {original_exception.message}", llm_provider="replicate", model=model, response=original_exception.response ) elif original_exception.status_code == 400 or original_exception.status_code == 422 or original_exception.status_code == 413: exception_mapping_worked = True raise BadRequestError( message=f"ReplicateException - {original_exception.message}", model=model, llm_provider="replicate", response=original_exception.response ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"ReplicateException - {original_exception.message}", model=model, llm_provider="replicate", request=original_exception.request ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"ReplicateException - {original_exception.message}", llm_provider="replicate", model=model, response=original_exception.response ) elif original_exception.status_code == 500: exception_mapping_worked = True raise ServiceUnavailableError( message=f"ReplicateException - {original_exception.message}", llm_provider="replicate", model=model, response=original_exception.response ) exception_mapping_worked = True raise APIError( status_code=500, message=f"ReplicateException - {str(original_exception)}", llm_provider="replicate", model=model, request=original_exception.request ) elif custom_llm_provider == "bedrock": if "too many tokens" in error_str or "expected maxLength:" in error_str or "Input is too long" in error_str or "Too many input tokens" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"BedrockException: Context Window Error - {error_str}", model=model, llm_provider="bedrock", response=original_exception.response ) if "Malformed input request" in error_str: exception_mapping_worked = True raise BadRequestError( message=f"BedrockException - {error_str}", model=model, llm_provider="bedrock", response=original_exception.response ) if "Unable to locate credentials" in error_str or "The security token included in the request is invalid" in error_str: exception_mapping_worked = True raise AuthenticationError( message=f"BedrockException Invalid Authentication - {error_str}", model=model, llm_provider="bedrock", response=original_exception.response ) if "throttlingException" in error_str or "ThrottlingException" in error_str: exception_mapping_worked = True raise RateLimitError( message=f"BedrockException: Rate Limit Error - {error_str}", model=model, llm_provider="bedrock", response=original_exception.response ) if hasattr(original_exception, "status_code"): if original_exception.status_code == 500: exception_mapping_worked = True raise ServiceUnavailableError( message=f"BedrockException - {original_exception.message}", llm_provider="bedrock", model=model, response=original_exception.response ) elif original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"BedrockException - {original_exception.message}", llm_provider="bedrock", model=model, response=original_exception.response ) elif custom_llm_provider == "sagemaker": if "Unable to locate credentials" in error_str: exception_mapping_worked = True raise BadRequestError( message=f"SagemakerException - {error_str}", model=model, llm_provider="sagemaker", response=original_exception.response ) elif custom_llm_provider == "vertex_ai": if "Vertex AI API has not been used in project" in error_str or "Unable to find your project" in error_str: exception_mapping_worked = True raise BadRequestError( message=f"VertexAIException - {error_str}", model=model, llm_provider="vertex_ai", response=original_exception.response ) elif "403" in error_str: exception_mapping_worked = True raise AuthenticationError( message=f"VertexAIException - {error_str}", model=model, llm_provider="vertex_ai", response=original_exception.response ) if hasattr(original_exception, "status_code"): if original_exception.status_code == 400: exception_mapping_worked = True raise BadRequestError( message=f"VertexAIException - {error_str}", model=model, llm_provider="vertex_ai", response=original_exception.response ) if original_exception.status_code == 500: exception_mapping_worked = True raise APIError( message=f"VertexAIException - {error_str}", status_code=500, model=model, llm_provider="vertex_ai", request=original_exception.request ) elif custom_llm_provider == "palm": if "503 Getting metadata" in error_str: # auth errors look like this # 503 Getting metadata from plugin failed with error: Reauthentication is needed. Please run `gcloud auth application-default login` to reauthenticate. exception_mapping_worked = True raise BadRequestError( message=f"PalmException - Invalid api key", model=model, llm_provider="palm", response=original_exception.response ) if "400 Request payload size exceeds" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"PalmException - {error_str}", model=model, llm_provider="palm", response=original_exception.response ) if hasattr(original_exception, "status_code"): if original_exception.status_code == 400: exception_mapping_worked = True raise BadRequestError( message=f"PalmException - {error_str}", model=model, llm_provider="palm", response=original_exception.response ) # Dailed: Error occurred: 400 Request payload size exceeds the limit: 20000 bytes elif custom_llm_provider == "cohere": # Cohere if ( "invalid api token" in error_str or "No API key provided." in error_str ): exception_mapping_worked = True raise AuthenticationError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model, response=original_exception.response ) elif "too many tokens" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"CohereException - {original_exception.message}", model=model, llm_provider="cohere", response=original_exception.response ) elif hasattr(original_exception, "status_code"): if original_exception.status_code == 400 or original_exception.status_code == 498: exception_mapping_worked = True raise BadRequestError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model, response=original_exception.response ) elif original_exception.status_code == 500: exception_mapping_worked = True raise ServiceUnavailableError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model, response=original_exception.response ) elif ( "CohereConnectionError" in exception_type ): # cohere seems to fire these errors when we load test it (1k+ messages / min) exception_mapping_worked = True raise RateLimitError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model, response=original_exception.response ) elif "invalid type:" in error_str: exception_mapping_worked = True raise BadRequestError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model, response=original_exception.response ) elif "Unexpected server error" in error_str: exception_mapping_worked = True raise ServiceUnavailableError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model, response=original_exception.response ) else: if hasattr(original_exception, "status_code"): exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model, request=original_exception.request ) raise original_exception elif custom_llm_provider == "huggingface": if "length limit exceeded" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=error_str, model=model, llm_provider="huggingface", response=original_exception.response ) elif "A valid user token is required" in error_str: exception_mapping_worked = True raise BadRequestError( message=error_str, llm_provider="huggingface", model=model, response=original_exception.response ) if hasattr(original_exception, "status_code"): if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"HuggingfaceException - {original_exception.message}", llm_provider="huggingface", model=model, response=original_exception.response ) elif original_exception.status_code == 400: exception_mapping_worked = True raise BadRequestError( message=f"HuggingfaceException - {original_exception.message}", model=model, llm_provider="huggingface", response=original_exception.response ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"HuggingfaceException - {original_exception.message}", model=model, llm_provider="huggingface", request=original_exception.request ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"HuggingfaceException - {original_exception.message}", llm_provider="huggingface", model=model, response=original_exception.response ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"HuggingfaceException - {original_exception.message}", llm_provider="huggingface", model=model, request=original_exception.request ) elif custom_llm_provider == "ai21": if hasattr(original_exception, "message"): if "Prompt has too many tokens" in original_exception.message: exception_mapping_worked = True raise ContextWindowExceededError( message=f"AI21Exception - {original_exception.message}", model=model, llm_provider="ai21", response=original_exception.response ) if "Bad or missing API token." in original_exception.message: exception_mapping_worked = True raise BadRequestError( message=f"AI21Exception - {original_exception.message}", model=model, llm_provider="ai21", response=original_exception.response ) if hasattr(original_exception, "status_code"): if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"AI21Exception - {original_exception.message}", llm_provider="ai21", model=model, response=original_exception.response ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"AI21Exception - {original_exception.message}", model=model, llm_provider="ai21", request=original_exception.request ) if original_exception.status_code == 422: exception_mapping_worked = True raise BadRequestError( message=f"AI21Exception - {original_exception.message}", model=model, llm_provider="ai21", response=original_exception.response ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"AI21Exception - {original_exception.message}", llm_provider="ai21", model=model, response=original_exception.response ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"AI21Exception - {original_exception.message}", llm_provider="ai21", model=model, request=original_exception.request ) elif custom_llm_provider == "nlp_cloud": if "detail" in error_str: if "Input text length should not exceed" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"NLPCloudException - {error_str}", model=model, llm_provider="nlp_cloud", response=original_exception.response ) elif "value is not a valid" in error_str: exception_mapping_worked = True raise BadRequestError( message=f"NLPCloudException - {error_str}", model=model, llm_provider="nlp_cloud", response=original_exception.response ) else: exception_mapping_worked = True raise APIError( status_code=500, message=f"NLPCloudException - {error_str}", model=model, llm_provider="nlp_cloud", request=original_exception.request ) if hasattr(original_exception, "status_code"): # https://docs.nlpcloud.com/?shell#errors if original_exception.status_code == 400 or original_exception.status_code == 406 or original_exception.status_code == 413 or original_exception.status_code == 422: exception_mapping_worked = True raise BadRequestError( message=f"NLPCloudException - {original_exception.message}", llm_provider="nlp_cloud", model=model, response=original_exception.response ) elif original_exception.status_code == 401 or original_exception.status_code == 403: exception_mapping_worked = True raise AuthenticationError( message=f"NLPCloudException - {original_exception.message}", llm_provider="nlp_cloud", model=model, response=original_exception.response ) elif original_exception.status_code == 522 or original_exception.status_code == 524: exception_mapping_worked = True raise Timeout( message=f"NLPCloudException - {original_exception.message}", model=model, llm_provider="nlp_cloud", request=original_exception.request ) elif original_exception.status_code == 429 or original_exception.status_code == 402: exception_mapping_worked = True raise RateLimitError( message=f"NLPCloudException - {original_exception.message}", llm_provider="nlp_cloud", model=model, response=original_exception.response ) elif original_exception.status_code == 500 or original_exception.status_code == 503: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"NLPCloudException - {original_exception.message}", llm_provider="nlp_cloud", model=model, request=original_exception.request ) elif original_exception.status_code == 504 or original_exception.status_code == 520: exception_mapping_worked = True raise ServiceUnavailableError( message=f"NLPCloudException - {original_exception.message}", model=model, llm_provider="nlp_cloud", response=original_exception.response ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"NLPCloudException - {original_exception.message}", llm_provider="nlp_cloud", model=model, request=original_exception.request ) elif custom_llm_provider == "together_ai": import json try: error_response = json.loads(error_str) except: error_response = {"error": error_str} if "error" in error_response and "`inputs` tokens + `max_new_tokens` must be <=" in error_response["error"]: exception_mapping_worked = True raise ContextWindowExceededError( message=f"TogetherAIException - {error_response['error']}", model=model, llm_provider="together_ai", response=original_exception.response ) elif "error" in error_response and "invalid private key" in error_response["error"]: exception_mapping_worked = True raise AuthenticationError( message=f"TogetherAIException - {error_response['error']}", llm_provider="together_ai", model=model, response=original_exception.response ) elif "error" in error_response and "INVALID_ARGUMENT" in error_response["error"]: exception_mapping_worked = True raise BadRequestError( message=f"TogetherAIException - {error_response['error']}", model=model, llm_provider="together_ai", response=original_exception.response ) elif "error" in error_response and "API key doesn't match expected format." in error_response["error"]: exception_mapping_worked = True raise BadRequestError( message=f"TogetherAIException - {error_response['error']}", model=model, llm_provider="together_ai", response=original_exception.response ) elif "error_type" in error_response and error_response["error_type"] == "validation": exception_mapping_worked = True raise BadRequestError( message=f"TogetherAIException - {error_response['error']}", model=model, llm_provider="together_ai", response=original_exception.response ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"TogetherAIException - {original_exception.message}", model=model, llm_provider="together_ai", request=original_exception.request ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"TogetherAIException - {original_exception.message}", llm_provider="together_ai", model=model, response=original_exception.response ) elif original_exception.status_code == 524: exception_mapping_worked = True raise Timeout( message=f"TogetherAIException - {original_exception.message}", llm_provider="together_ai", model=model, ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"TogetherAIException - {original_exception.message}", llm_provider="together_ai", model=model, request=original_exception.request ) elif custom_llm_provider == "aleph_alpha": if "This is longer than the model's maximum context length" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model, response=original_exception.response ) elif "InvalidToken" in error_str or "No token provided" in error_str: exception_mapping_worked = True raise BadRequestError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model, response=original_exception.response ) elif hasattr(original_exception, "status_code"): print_verbose(f"status code: {original_exception.status_code}") if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model ) elif original_exception.status_code == 400: exception_mapping_worked = True raise BadRequestError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model, response=original_exception.response ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model, response=original_exception.response ) elif original_exception.status_code == 500: exception_mapping_worked = True raise ServiceUnavailableError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model, response=original_exception.response ) raise original_exception raise original_exception elif custom_llm_provider == "ollama": if "no attribute 'async_get_ollama_response_stream" in error_str: exception_mapping_worked = True raise ImportError("Import error - trying to use async for ollama. import async_generator failed. Try 'pip install async_generator'") if isinstance(original_exception, dict): error_str = original_exception.get("error", "") else: error_str = str(original_exception) if "no such file or directory" in error_str: exception_mapping_worked = True raise BadRequestError( message=f"OllamaException: Invalid Model/Model not loaded - {original_exception}", model=model, llm_provider="ollama", response=original_exception.response ) elif "Failed to establish a new connection" in error_str: exception_mapping_worked = True raise ServiceUnavailableError( message=f"OllamaException: {original_exception}", llm_provider="ollama", model=model, response=original_exception.response ) elif "Invalid response object from API" in error_str: exception_mapping_worked = True raise BadRequestError( message=f"OllamaException: {original_exception}", llm_provider="ollama", model=model, response=original_exception.response ) elif custom_llm_provider == "vllm": if hasattr(original_exception, "status_code"): if original_exception.status_code == 0: exception_mapping_worked = True raise APIConnectionError( message=f"VLLMException - {original_exception.message}", llm_provider="vllm", model=model, request=original_exception.request ) elif custom_llm_provider == "azure": if "This model's maximum context length is" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"AzureException - {original_exception.message}", llm_provider="azure", model=model, response=original_exception.response ) elif "invalid_request_error" in error_str: exception_mapping_worked = True raise BadRequestError( message=f"AzureException - {original_exception.message}", llm_provider="azure", model=model, response=original_exception.response ) elif hasattr(original_exception, "status_code"): exception_mapping_worked = True if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"AzureException - {original_exception.message}", llm_provider="azure", model=model, response=original_exception.response ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"AzureException - {original_exception.message}", model=model, llm_provider="azure", request=original_exception.request ) if original_exception.status_code == 422: exception_mapping_worked = True raise BadRequestError( message=f"AzureException - {original_exception.message}", model=model, llm_provider="azure", response=original_exception.response ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"AzureException - {original_exception.message}", model=model, llm_provider="azure", response=original_exception.response ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"AzureException - {original_exception.message}", llm_provider="azure", model=model, request=original_exception.request ) else: # if no status code then it is an APIConnectionError: https://github.com/openai/openai-python#handling-errors raise APIConnectionError( __cause__=original_exception.__cause__, llm_provider="azure", model=model, request=original_exception.request ) if "BadRequestError.__init__() missing 1 required positional argument: 'param'" in str(original_exception): # deal with edge-case invalid request error bug in openai-python sdk exception_mapping_worked = True raise BadRequestError( message=f"OpenAIException: This can happen due to missing AZURE_API_VERSION: {str(original_exception)}", model=model, llm_provider=custom_llm_provider, response=original_exception.response ) else: # ensure generic errors always return APIConnectionError= exception_mapping_worked = True if hasattr(original_exception, "request"): raise APIConnectionError( message=f"{str(original_exception)}", llm_provider=custom_llm_provider, model=model, request=original_exception.request ) else: raise APIConnectionError( message=f"{str(original_exception)}", llm_provider=custom_llm_provider, model=model, request= httpx.Request(method="POST", url="https://api.openai.com/v1/") # stub the request ) except Exception as e: # LOGGING exception_logging( logger_fn=user_logger_fn, additional_args={ "exception_mapping_worked": exception_mapping_worked, "original_exception": original_exception, }, exception=e, ) ## AUTH ERROR if isinstance(e, AuthenticationError) and ( litellm.email or "LITELLM_EMAIL" in os.environ ): threading.Thread(target=get_all_keys, args=(e.llm_provider,)).start() # don't let an error with mapping interrupt the user from receiving an error from the llm api calls if exception_mapping_worked: raise e else: raise original_exception ####### CRASH REPORTING ################ def safe_crash_reporting(model=None, exception=None, custom_llm_provider=None): data = { "model": model, "exception": str(exception), "custom_llm_provider": custom_llm_provider, } threading.Thread(target=litellm_telemetry, args=(data,), daemon=True).start() def get_or_generate_uuid(): temp_dir = os.path.join(os.path.abspath(os.sep), "tmp") uuid_file = os.path.join(temp_dir, "litellm_uuid.txt") try: # Try to open the file and load the UUID with open(uuid_file, "r") as file: uuid_value = file.read() if uuid_value: uuid_value = uuid_value.strip() else: raise FileNotFoundError except FileNotFoundError: # Generate a new UUID if the file doesn't exist or is empty try: new_uuid = uuid.uuid4() uuid_value = str(new_uuid) with open(uuid_file, "w") as file: file.write(uuid_value) except: # if writing to tmp/litellm_uuid.txt then retry writing to litellm_uuid.txt try: new_uuid = uuid.uuid4() uuid_value = str(new_uuid) with open("litellm_uuid.txt", "w") as file: file.write(uuid_value) except: # if this 3rd attempt fails just pass # Good first issue for someone to improve this function :) return except: # [Non-Blocking Error] return return uuid_value def litellm_telemetry(data): # Load or generate the UUID uuid_value = "" try: uuid_value = get_or_generate_uuid() except: uuid_value = str(uuid.uuid4()) try: # Prepare the data to send to litellm logging api try: pkg_version = importlib.metadata.version("litellm") except: pkg_version = None if "model" not in data: data["model"] = None payload = { "uuid": uuid_value, "data": data, "version:": pkg_version } # Make the POST request to litellm logging api response = requests.post( "https://litellm-logging.onrender.com/logging", headers={"Content-Type": "application/json"}, json=payload, ) response.raise_for_status() # Raise an exception for HTTP errors except: # [Non-Blocking Error] return ######### Secret Manager ############################ # checks if user has passed in a secret manager client # if passed in then checks the secret there def get_secret(secret_name): if litellm.secret_manager_client != None: # TODO: check which secret manager is being used # currently only supports Infisical try: secret = litellm.secret_manager_client.get_secret(secret_name).secret_value except: secret = None return secret else: return os.environ.get(secret_name) ######## Streaming Class ############################ # wraps the completion stream to return the correct format for the model # replicate/anthropic/cohere class CustomStreamWrapper: def __init__(self, completion_stream, model, custom_llm_provider=None, logging_obj=None): self.model = model self.custom_llm_provider = custom_llm_provider self.logging_obj = logging_obj self.completion_stream = completion_stream self.sent_first_chunk = False self.sent_last_chunk = False self.special_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"] self.holding_chunk = "" self.complete_response = "" if self.logging_obj: # Log the type of the received item self.logging_obj.post_call(str(type(completion_stream))) def __iter__(self): return self def __aiter__(self): return self def process_chunk(self, chunk: str): """ NLP Cloud streaming returns the entire response, for each chunk. Process this, to only return the delta. """ try: chunk = chunk.strip() self.complete_response = self.complete_response.strip() if chunk.startswith(self.complete_response): # Remove last_sent_chunk only if it appears at the start of the new chunk chunk = chunk[len(self.complete_response):] self.complete_response += chunk return chunk except Exception as e: raise e def logging(self, text): if self.logging_obj: self.logging_obj.post_call(text) def check_special_tokens(self, chunk: str, finish_reason: Optional[str]): hold = False if finish_reason: for token in self.special_tokens: if token in chunk: chunk = chunk.replace(token, "") return hold, chunk if self.sent_first_chunk is True: return hold, chunk curr_chunk = self.holding_chunk + chunk curr_chunk = curr_chunk.strip() for token in self.special_tokens: if len(curr_chunk) < len(token) and curr_chunk in token: hold = True elif len(curr_chunk) >= len(token): if token in curr_chunk: self.holding_chunk = curr_chunk.replace(token, "") hold = True else: pass if hold is False: # reset self.holding_chunk = "" return hold, curr_chunk def handle_anthropic_chunk(self, chunk): str_line = chunk.decode("utf-8") # Convert bytes to string text = "" is_finished = False finish_reason = None if str_line.startswith("data:"): data_json = json.loads(str_line[5:]) text = data_json.get("completion", "") if data_json.get("stop_reason", None): is_finished = True finish_reason = data_json["stop_reason"] return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} elif "error" in str_line: raise ValueError(f"Unable to parse response. Original response: {str_line}") else: return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} def handle_together_ai_chunk(self, chunk): chunk = chunk.decode("utf-8") text = "" is_finished = False finish_reason = None if "text" in chunk: text_index = chunk.find('"text":"') # this checks if text: exists text_start = text_index + len('"text":"') text_end = chunk.find('"}', text_start) if text_index != -1 and text_end != -1: extracted_text = chunk[text_start:text_end] text = extracted_text return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} elif "[DONE]" in chunk: return {"text": text, "is_finished": True, "finish_reason": "stop"} elif "error" in chunk: raise ValueError(chunk) else: return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} def handle_huggingface_chunk(self, chunk): try: if type(chunk) != str: chunk = chunk.decode("utf-8") # DO NOT REMOVE this: This is required for HF inference API + Streaming text = "" is_finished = False finish_reason = "" print_verbose(f"chunk: {chunk}") if chunk.startswith("data:"): data_json = json.loads(chunk[5:]) print_verbose(f"data json: {data_json}") if "token" in data_json and "text" in data_json["token"]: text = data_json["token"]["text"] if data_json.get("details", False) and data_json["details"].get("finish_reason", False): is_finished = True finish_reason = data_json["details"]["finish_reason"] elif data_json.get("generated_text", False): # if full generated text exists, then stream is complete text = "" # don't return the final bos token is_finished = True finish_reason = "stop" return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} elif "error" in chunk: raise ValueError(chunk) return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except Exception as e: traceback.print_exc() # raise(e) def handle_ai21_chunk(self, chunk): # fake streaming chunk = chunk.decode("utf-8") data_json = json.loads(chunk) try: text = data_json["completions"][0]["data"]["text"] is_finished = True finish_reason = "stop" return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_maritalk_chunk(self, chunk): # fake streaming chunk = chunk.decode("utf-8") data_json = json.loads(chunk) try: text = data_json["answer"] is_finished = True finish_reason = "stop" return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_nlp_cloud_chunk(self, chunk): text = "" is_finished = False finish_reason = "" try: if "dolphin" in self.model: chunk = self.process_chunk(chunk=chunk) else: data_json = json.loads(chunk) chunk = data_json["generated_text"] text = chunk if "[DONE]" in text: text = text.replace("[DONE]", "") is_finished = True finish_reason = "stop" return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except Exception as e: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_aleph_alpha_chunk(self, chunk): chunk = chunk.decode("utf-8") data_json = json.loads(chunk) try: text = data_json["completions"][0]["completion"] is_finished = True finish_reason = "stop" return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_cohere_chunk(self, chunk): chunk = chunk.decode("utf-8") data_json = json.loads(chunk) try: text = "" is_finished = False finish_reason = "" if "text" in data_json: text = data_json["text"] elif "is_finished" in data_json: is_finished = data_json["is_finished"] finish_reason = data_json["finish_reason"] else: raise Exception(data_json) return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_azure_chunk(self, chunk): is_finished = False finish_reason = "" text = "" print_verbose(f"chunk: {chunk}") if "data: [DONE]" in chunk: text = "" is_finished = True finish_reason = "stop" return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} elif chunk.startswith("data:"): data_json = json.loads(chunk[5:]) # chunk.startswith("data:"): try: if len(data_json["choices"]) > 0: text = data_json["choices"][0]["delta"].get("content", "") if data_json["choices"][0].get("finish_reason", None): is_finished = True finish_reason = data_json["choices"][0]["finish_reason"] print_verbose(f"text: {text}; is_finished: {is_finished}; finish_reason: {finish_reason}") return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") elif "error" in chunk: raise ValueError(f"Unable to parse response. Original response: {chunk}") else: return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} def handle_replicate_chunk(self, chunk): try: text = "" is_finished = False finish_reason = "" if "output" in chunk: text = chunk['output'] if "status" in chunk: if chunk["status"] == "succeeded": is_finished = True finish_reason = "stop" elif chunk.get("error", None): raise Exception(chunk["error"]) return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_openai_chat_completion_chunk(self, chunk): try: print_verbose(f"\nRaw OpenAI Chunk\n{chunk}\n") str_line = chunk text = "" is_finished = False finish_reason = None original_chunk = None # this is used for function/tool calling if len(str_line.choices) > 0: if str_line.choices[0].delta.content is not None: text = str_line.choices[0].delta.content else: # function/tool calling chunk - when content is None. in this case we just return the original chunk from openai original_chunk = str_line if str_line.choices[0].finish_reason: is_finished = True finish_reason = str_line.choices[0].finish_reason return { "text": text, "is_finished": is_finished, "finish_reason": finish_reason, "original_chunk": str_line } except Exception as e: traceback.print_exc() raise e def handle_openai_text_completion_chunk(self, chunk): try: str_line = chunk text = "" is_finished = False finish_reason = None print_verbose(f"str_line: {str_line}") if "data: [DONE]" in str_line: text = "" is_finished = True finish_reason = "stop" return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} elif str_line.startswith("data:"): data_json = json.loads(str_line[5:]) print_verbose(f"delta content: {data_json}") text = data_json["choices"][0].get("text", "") if data_json["choices"][0].get("finish_reason", None): is_finished = True finish_reason = data_json["choices"][0]["finish_reason"] print_verbose(f"text: {text}; is_finished: {is_finished}; finish_reason: {finish_reason}") return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} elif "error" in str_line: raise ValueError(f"Unable to parse response. Original response: {str_line}") else: return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except Exception as e: traceback.print_exc() raise e def handle_baseten_chunk(self, chunk): try: chunk = chunk.decode("utf-8") if len(chunk) > 0: if chunk.startswith("data:"): data_json = json.loads(chunk[5:]) if "token" in data_json and "text" in data_json["token"]: return data_json["token"]["text"] else: return "" data_json = json.loads(chunk) if "model_output" in data_json: if isinstance(data_json["model_output"], dict) and "data" in data_json["model_output"] and isinstance(data_json["model_output"]["data"], list): return data_json["model_output"]["data"][0] elif isinstance(data_json["model_output"], str): return data_json["model_output"] elif "completion" in data_json and isinstance(data_json["completion"], str): return data_json["completion"] else: raise ValueError(f"Unable to parse response. Original response: {chunk}") else: return "" else: return "" except: traceback.print_exc() return "" def handle_bedrock_stream(self, chunk): if hasattr(chunk, "get"): chunk = chunk.get('chunk') chunk_data = json.loads(chunk.get('bytes').decode()) else: chunk_data = json.loads(chunk.decode()) if chunk_data: text = "" is_finished = False finish_reason = "" if "outputText" in chunk_data: text = chunk_data['outputText'] # ai21 mapping if "ai21" in self.model: # fake ai21 streaming text = chunk_data.get('completions')[0].get('data').get('text') is_finished = True finish_reason = "stop" # anthropic mapping elif "completion" in chunk_data: text = chunk_data['completion'] # bedrock.anthropic stop_reason = chunk_data.get("stop_reason", None) if stop_reason != None: is_finished = True finish_reason = stop_reason ######## bedrock.cohere mappings ############### # meta mapping elif "generation" in chunk_data: text = chunk_data['generation'] # bedrock.meta # cohere mapping elif "text" in chunk_data: text = chunk_data["text"] # bedrock.cohere # cohere mapping for finish reason elif "finish_reason" in chunk_data: finish_reason = chunk_data["finish_reason"] is_finished = True elif chunk_data.get("completionReason", None): is_finished = True finish_reason = chunk_data["completionReason"] elif chunk.get("error", None): raise Exception(chunk["error"]) return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} return "" def chunk_creator(self, chunk): model_response = ModelResponse(stream=True, model=self.model) model_response.choices[0].finish_reason = None response_obj = None try: # return this for all models completion_obj = {"content": ""} if self.custom_llm_provider and self.custom_llm_provider == "anthropic": response_obj = self.handle_anthropic_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.model == "replicate" or self.custom_llm_provider == "replicate": response_obj = self.handle_replicate_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif ( self.custom_llm_provider and self.custom_llm_provider == "together_ai"): response_obj = self.handle_together_ai_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider and self.custom_llm_provider == "huggingface": response_obj = self.handle_huggingface_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider and self.custom_llm_provider == "baseten": # baseten doesn't provide streaming completion_obj["content"] = self.handle_baseten_chunk(chunk) elif self.custom_llm_provider and self.custom_llm_provider == "ai21": #ai21 doesn't provide streaming response_obj = self.handle_ai21_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider and self.custom_llm_provider == "maritalk": response_obj = self.handle_maritalk_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider and self.custom_llm_provider == "vllm": completion_obj["content"] = chunk[0].outputs[0].text elif self.custom_llm_provider and self.custom_llm_provider == "aleph_alpha": #aleph alpha doesn't provide streaming response_obj = self.handle_aleph_alpha_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider == "nlp_cloud": try: response_obj = self.handle_nlp_cloud_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] except Exception as e: if self.sent_last_chunk: raise e else: if self.sent_first_chunk is False: raise Exception("An unknown error occurred with the stream") model_response.choices[0].finish_reason = "stop" self.sent_last_chunk = True elif self.custom_llm_provider and self.custom_llm_provider == "vertex_ai": try: completion_obj["content"] = str(chunk) except StopIteration as e: if self.sent_last_chunk: raise e else: model_response.choices[0].finish_reason = "stop" self.sent_last_chunk = True elif self.custom_llm_provider == "cohere": response_obj = self.handle_cohere_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider == "bedrock": if self.sent_last_chunk: raise StopIteration response_obj = self.handle_bedrock_stream(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] self.sent_last_chunk = True elif self.custom_llm_provider == "sagemaker": if len(self.completion_stream)==0: if self.sent_last_chunk: raise StopIteration else: model_response.choices[0].finish_reason = "stop" self.sent_last_chunk = True chunk_size = 30 new_chunk = self.completion_stream[:chunk_size] completion_obj["content"] = new_chunk self.completion_stream = self.completion_stream[chunk_size:] time.sleep(0.05) elif self.custom_llm_provider == "petals": if len(self.completion_stream)==0: if self.sent_last_chunk: raise StopIteration else: model_response.choices[0].finish_reason = "stop" self.sent_last_chunk = True chunk_size = 30 new_chunk = self.completion_stream[:chunk_size] completion_obj["content"] = new_chunk self.completion_stream = self.completion_stream[chunk_size:] time.sleep(0.05) elif self.custom_llm_provider == "palm": # fake streaming if len(self.completion_stream)==0: if self.sent_last_chunk: raise StopIteration else: model_response.choices[0].finish_reason = "stop" self.sent_last_chunk = True chunk_size = 30 new_chunk = self.completion_stream[:chunk_size] completion_obj["content"] = new_chunk self.completion_stream = self.completion_stream[chunk_size:] time.sleep(0.05) elif self.custom_llm_provider == "ollama": if "error" in chunk: exception_type(model=self.model, custom_llm_provider=self.custom_llm_provider, original_exception=chunk["error"]) completion_obj = chunk elif self.custom_llm_provider == "text-completion-openai": response_obj = self.handle_openai_text_completion_chunk(chunk) completion_obj["content"] = response_obj["text"] print_verbose(f"completion obj content: {completion_obj['content']}") if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] else: # openai chat model response_obj = self.handle_openai_chat_completion_chunk(chunk) if response_obj == None: return completion_obj["content"] = response_obj["text"] print_verbose(f"completion obj content: {completion_obj['content']}") if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] model_response.model = self.model print_verbose(f"model_response: {model_response}; completion_obj: {completion_obj}") print_verbose(f"model_response finish reason 3: {model_response.choices[0].finish_reason}") if len(completion_obj["content"]) > 0: # cannot set content of an OpenAI Object to be an empty string hold, model_response_str = self.check_special_tokens(chunk=completion_obj["content"], finish_reason=model_response.choices[0].finish_reason) print_verbose(f"hold - {hold}, model_response_str - {model_response_str}") if hold is False: completion_obj["content"] = model_response_str if self.sent_first_chunk == False: completion_obj["role"] = "assistant" self.sent_first_chunk = True model_response.choices[0].delta = Delta(**completion_obj) # LOGGING threading.Thread(target=self.logging_obj.success_handler, args=(model_response,)).start() print_verbose(f"model_response: {model_response}") return model_response else: return elif model_response.choices[0].finish_reason: model_response.choices[0].finish_reason = map_finish_reason(model_response.choices[0].finish_reason) # ensure consistent output to openai # LOGGING threading.Thread(target=self.logging_obj.success_handler, args=(model_response,)).start() return model_response elif response_obj is not None and response_obj.get("original_chunk", None) is not None: # function / tool calling branch - only set for openai/azure compatible endpoints # enter this branch when no content has been passed in response original_chunk = response_obj.get("original_chunk", None) model_response.id = original_chunk.id if len(original_chunk.choices) > 0: if original_chunk.choices[0].delta.function_call is not None or original_chunk.choices[0].delta.tool_calls is not None: try: delta = dict(original_chunk.choices[0].delta) model_response.choices[0].delta = Delta(**delta) except Exception as e: model_response.choices[0].delta = Delta() else: return else: return model_response.system_fingerprint = original_chunk.system_fingerprint if self.sent_first_chunk == False: model_response.choices[0].delta["role"] = "assistant" self.sent_first_chunk = True threading.Thread(target=self.logging_obj.success_handler, args=(model_response,)).start() # log response return model_response else: return except StopIteration: raise StopIteration except Exception as e: traceback_exception = traceback.format_exc() e.message = str(e) # LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated threading.Thread(target=self.logging_obj.failure_handler, args=(e, traceback_exception)).start() raise exception_type(model=self.model, custom_llm_provider=self.custom_llm_provider, original_exception=e) ## needs to handle the empty string case (even starting chunk can be an empty string) def __next__(self): try: while True: if isinstance(self.completion_stream, str) or isinstance(self.completion_stream, bytes): chunk = self.completion_stream else: chunk = next(self.completion_stream) if chunk is not None and chunk != b'': response = self.chunk_creator(chunk=chunk) if response is not None: return response except StopIteration: raise # Re-raise StopIteration except Exception as e: # Handle other exceptions if needed raise e async def __anext__(self): try: if (self.custom_llm_provider == "openai" or self.custom_llm_provider == "azure" or self.custom_llm_provider == "custom_openai" or self.custom_llm_provider == "text-completion-openai" or self.custom_llm_provider == "huggingface"): async for chunk in self.completion_stream: if chunk == "None" or chunk is None: raise Exception processed_chunk = self.chunk_creator(chunk=chunk) if processed_chunk is None: continue return processed_chunk raise StopAsyncIteration else: # temporary patch for non-aiohttp async calls return next(self) except Exception as e: # Handle any exceptions that might occur during streaming raise StopAsyncIteration class TextCompletionStreamWrapper: def __init__(self, completion_stream, model): self.completion_stream = completion_stream self.model = model def __iter__(self): return self def __aiter__(self): return self def __next__(self): # model_response = ModelResponse(stream=True, model=self.model) response = TextCompletionResponse() try: while True: # loop until a non-empty string is found # return this for all models chunk = next(self.completion_stream) response["id"] = chunk.get("id", None) response["object"] = "text_completion" response["created"] = response.get("created", None) response["model"] = response.get("model", None) text_choices = TextChoices() text_choices["text"] = chunk["choices"][0]["delta"]["content"] text_choices["index"] = response["choices"][0]["index"] text_choices["finish_reason"] = response["choices"][0]["finish_reason"] response["choices"] = [text_choices] return response except StopIteration: raise StopIteration except Exception as e: print(f"got exception {e}") # noqa async def __anext__(self): try: return next(self) except StopIteration: raise StopAsyncIteration def mock_completion_streaming_obj(model_response, mock_response, model): for i in range(0, len(mock_response), 3): completion_obj = {"role": "assistant", "content": mock_response[i: i+3]} model_response.choices[0].delta = completion_obj yield model_response ########## Reading Config File ############################ def read_config_args(config_path) -> dict: try: import os current_path = os.getcwd() with open(config_path, "r") as config_file: config = json.load(config_file) # read keys/ values from config file and return them return config except Exception as e: raise e ########## experimental completion variants ############################ def completion_with_config(config: Union[dict, str], **kwargs): """ Generate a litellm.completion() using a config dict and all supported completion args Example config; config = { "default_fallback_models": # [Optional] List of model names to try if a call fails "available_models": # [Optional] List of all possible models you could call "adapt_to_prompt_size": # [Optional] True/False - if you want to select model based on prompt size (will pick from available_models) "model": { "model-name": { "needs_moderation": # [Optional] True/False - if you want to call openai moderations endpoint before making completion call. Will raise exception, if flagged. "error_handling": { "error-type": { # One of the errors listed here - https://docs.litellm.ai/docs/exception_mapping#custom-mapping-list "fallback_model": "" # str, name of the model it should try instead, when that error occurs } } } } } Parameters: config (Union[dict, str]): A configuration for litellm **kwargs: Additional keyword arguments for litellm.completion Returns: litellm.ModelResponse: A ModelResponse with the generated completion """ if config is not None: if isinstance(config, str): config = read_config_args(config) elif isinstance(config, dict): config = config else: raise Exception("Config path must be a string or a dictionary.") else: raise Exception("Config path not passed in.") if config is None: raise Exception("No completion config in the config file") models_with_config = config["model"].keys() model = kwargs["model"] messages = kwargs["messages"] ## completion config fallback_models = config.get("default_fallback_models", None) available_models = config.get("available_models", None) adapt_to_prompt_size = config.get("adapt_to_prompt_size", False) trim_messages_flag = config.get("trim_messages", False) prompt_larger_than_model = False max_model = model try: max_tokens = litellm.get_max_tokens(model)["max_tokens"] except: max_tokens = 2048 # assume curr model's max window is 2048 tokens if adapt_to_prompt_size: ## Pick model based on token window prompt_tokens = litellm.token_counter(model="gpt-3.5-turbo", text="".join(message["content"] for message in messages)) try: curr_max_tokens = litellm.get_max_tokens(model)["max_tokens"] except: curr_max_tokens = 2048 if curr_max_tokens < prompt_tokens: prompt_larger_than_model = True for available_model in available_models: try: curr_max_tokens = litellm.get_max_tokens(available_model)["max_tokens"] if curr_max_tokens > max_tokens: max_tokens = curr_max_tokens max_model = available_model if curr_max_tokens > prompt_tokens: model = available_model prompt_larger_than_model = False except: continue if prompt_larger_than_model: messages = trim_messages(messages=messages, model=max_model) kwargs["messages"] = messages kwargs["model"] = model try: if model in models_with_config: ## Moderation check if config["model"][model].get("needs_moderation"): input = " ".join(message["content"] for message in messages) response = litellm.moderation(input=input) flagged = response["results"][0]["flagged"] if flagged: raise Exception("This response was flagged as inappropriate") ## Model-specific Error Handling error_handling = None if config["model"][model].get("error_handling"): error_handling = config["model"][model]["error_handling"] try: response = litellm.completion(**kwargs) return response except Exception as e: exception_name = type(e).__name__ fallback_model = None if error_handling and exception_name in error_handling: error_handler = error_handling[exception_name] # either switch model or api key fallback_model = error_handler.get("fallback_model", None) if fallback_model: kwargs["model"] = fallback_model return litellm.completion(**kwargs) raise e else: return litellm.completion(**kwargs) except Exception as e: if fallback_models: model = fallback_models.pop(0) return completion_with_fallbacks(model=model, messages=messages, fallbacks=fallback_models) raise e def completion_with_fallbacks(**kwargs): nested_kwargs = kwargs.pop("kwargs", {}) response = None rate_limited_models = set() model_expiration_times = {} start_time = time.time() original_model = kwargs["model"] fallbacks = [kwargs["model"]] + nested_kwargs.get("fallbacks", []) if "fallbacks" in nested_kwargs: del nested_kwargs["fallbacks"] # remove fallbacks so it's not recursive litellm_call_id = str(uuid.uuid4()) # max time to process a request with fallbacks: default 45s while response == None and time.time() - start_time < 45: for model in fallbacks: # loop thru all models try: # check if it's dict or new model string if isinstance(model, dict): # completion(model="gpt-4", fallbacks=[{"api_key": "", "api_base": ""}, {"api_key": "", "api_base": ""}]) kwargs["api_key"] = model.get("api_key", None) kwargs["api_base"] = model.get("api_base", None) model = model.get("model", original_model) elif ( model in rate_limited_models ): # check if model is currently cooling down if ( model_expiration_times.get(model) and time.time() >= model_expiration_times[model] ): rate_limited_models.remove( model ) # check if it's been 60s of cool down and remove model else: continue # skip model # delete model from kwargs if it exists if kwargs.get("model"): del kwargs["model"] print_verbose(f"trying to make completion call with model: {model}") kwargs["litellm_call_id"] = litellm_call_id kwargs = {**kwargs, **nested_kwargs} # combine the openai + litellm params at the same level response = litellm.completion(**kwargs, model=model) print_verbose(f"response: {response}") if response != None: return response except Exception as e: print_verbose(e) rate_limited_models.add(model) model_expiration_times[model] = ( time.time() + 60 ) # cool down this selected model pass return response def process_system_message(system_message, max_tokens, model): system_message_event = {"role": "system", "content": system_message} system_message_tokens = get_token_count([system_message_event], model) if system_message_tokens > max_tokens: print_verbose("`tokentrimmer`: Warning, system message exceeds token limit. Trimming...") # shorten system message to fit within max_tokens new_system_message = shorten_message_to_fit_limit(system_message_event, max_tokens, model) system_message_tokens = get_token_count([new_system_message], model) return system_message_event, max_tokens - system_message_tokens def process_messages(messages, max_tokens, model): # Process messages from older to more recent messages = messages[::-1] final_messages = [] for message in messages: used_tokens = get_token_count(final_messages, model) available_tokens = max_tokens - used_tokens if available_tokens <= 3: break final_messages = attempt_message_addition(final_messages=final_messages, message=message, available_tokens=available_tokens, max_tokens=max_tokens, model=model) return final_messages def attempt_message_addition(final_messages, message, available_tokens, max_tokens, model): temp_messages = [message] + final_messages temp_message_tokens = get_token_count(messages=temp_messages, model=model) if temp_message_tokens <= max_tokens: return temp_messages # if temp_message_tokens > max_tokens, try shortening temp_messages elif "function_call" not in message: # fit updated_message to be within temp_message_tokens - max_tokens (aka the amount temp_message_tokens is greate than max_tokens) updated_message = shorten_message_to_fit_limit(message, available_tokens, model) if can_add_message(updated_message, final_messages, max_tokens, model): return [updated_message] + final_messages return final_messages def can_add_message(message, messages, max_tokens, model): if get_token_count(messages + [message], model) <= max_tokens: return True return False def get_token_count(messages, model): return token_counter(model=model, messages=messages) def shorten_message_to_fit_limit( message, tokens_needed, model): """ Shorten a message to fit within a token limit by removing characters from the middle. """ # For OpenAI models, even blank messages cost 7 token, # and if the buffer is less than 3, the while loop will never end, # hence the value 10. if 'gpt' in model and tokens_needed <= 10: return message content = message["content"] while True: total_tokens = get_token_count([message], model) if total_tokens <= tokens_needed: break ratio = (tokens_needed) / total_tokens new_length = int(len(content) * ratio) -1 new_length = max(0, new_length) half_length = new_length // 2 left_half = content[:half_length] right_half = content[-half_length:] trimmed_content = left_half + '..' + right_half message["content"] = trimmed_content content = trimmed_content return message # LiteLLM token trimmer # this code is borrowed from https://github.com/KillianLucas/tokentrim/blob/main/tokentrim/tokentrim.py # Credits for this code go to Killian Lucas def trim_messages( messages, model: Optional[str] = None, trim_ratio: float = 0.75, return_response_tokens: bool = False, max_tokens = None ): """ Trim a list of messages to fit within a model's token limit. Args: messages: Input messages to be trimmed. Each message is a dictionary with 'role' and 'content'. model: The LiteLLM model being used (determines the token limit). trim_ratio: Target ratio of tokens to use after trimming. Default is 0.75, meaning it will trim messages so they use about 75% of the model's token limit. return_response_tokens: If True, also return the number of tokens left available for the response after trimming. max_tokens: Instead of specifying a model or trim_ratio, you can specify this directly. Returns: Trimmed messages and optionally the number of tokens available for response. """ # Initialize max_tokens # if users pass in max tokens, trim to this amount messages = copy.deepcopy(messages) try: print_verbose(f"trimming messages") if max_tokens == None: # Check if model is valid if model in litellm.model_cost: max_tokens_for_model = litellm.model_cost[model]['max_tokens'] max_tokens = int(max_tokens_for_model * trim_ratio) else: # if user did not specify max tokens # or passed an llm litellm does not know # do nothing, just return messages return system_message = "" for message in messages: if message["role"] == "system": system_message += '\n' if system_message else '' system_message += message["content"] current_tokens = token_counter(model=model, messages=messages) print_verbose(f"Current tokens: {current_tokens}, max tokens: {max_tokens}") # Do nothing if current tokens under messages if current_tokens < max_tokens: return messages #### Trimming messages if current_tokens > max_tokens print_verbose(f"Need to trim input messages: {messages}, current_tokens{current_tokens}, max_tokens: {max_tokens}") if system_message: system_message_event, max_tokens = process_system_message(system_message=system_message, max_tokens=max_tokens, model=model) if max_tokens == 0: # the system messages are too long return [system_message_event] # Since all system messages are combined and trimmed to fit the max_tokens, # we remove all system messages from the messages list messages = [message for message in messages if message["role"] != "system"] final_messages = process_messages(messages=messages, max_tokens=max_tokens, model=model) # Add system message to the beginning of the final messages if system_message: final_messages = [system_message_event] + final_messages if return_response_tokens: # if user wants token count with new trimmed messages response_tokens = max_tokens - get_token_count(final_messages, model) return final_messages, response_tokens return final_messages except Exception as e: # [NON-Blocking, if error occurs just return final_messages print_verbose(f"Got exception while token trimming{e}") return messages def get_valid_models(): """ Returns a list of valid LLMs based on the set environment variables Args: None Returns: A list of valid LLMs """ try: # get keys set in .env environ_keys = os.environ.keys() valid_providers = [] # for all valid providers, make a list of supported llms valid_models = [] for provider in litellm.provider_list: # edge case litellm has together_ai as a provider, it should be togetherai provider = provider.replace("_", "") # litellm standardizes expected provider keys to # PROVIDER_API_KEY. Example: OPENAI_API_KEY, COHERE_API_KEY expected_provider_key = f"{provider.upper()}_API_KEY" if expected_provider_key in environ_keys: # key is set valid_providers.append(provider) for provider in valid_providers: if provider == "azure": valid_models.append("Azure-LLM") else: models_for_provider = litellm.models_by_provider.get(provider, []) valid_models.extend(models_for_provider) return valid_models except: return [] # NON-Blocking # used for litellm.text_completion() to transform HF logprobs to OpenAI.Completion() format def transform_logprobs(hf_response): # Initialize an empty list for the transformed logprobs transformed_logprobs = [] # For each Hugging Face response, transform the logprobs for response in hf_response: # Extract the relevant information from the response response_details = response['details'] top_tokens = response_details.get("top_tokens", {}) # Initialize an empty list for the token information token_info = { 'tokens': [], 'token_logprobs': [], 'text_offset': [], 'top_logprobs': [], } for i, token in enumerate(response_details['prefill']): # Extract the text of the token token_text = token['text'] # Extract the logprob of the token token_logprob = token['logprob'] # Add the token information to the 'token_info' list token_info['tokens'].append(token_text) token_info['token_logprobs'].append(token_logprob) # stub this to work with llm eval harness top_alt_tokens = { "": -1, "": -2, "": -3 } token_info['top_logprobs'].append(top_alt_tokens) # For each element in the 'tokens' list, extract the relevant information for i, token in enumerate(response_details['tokens']): # Extract the text of the token token_text = token['text'] # Extract the logprob of the token token_logprob = token['logprob'] top_alt_tokens = {} temp_top_logprobs = [] if top_tokens != {}: temp_top_logprobs = top_tokens[i] # top_alt_tokens should look like this: { "alternative_1": -1, "alternative_2": -2, "alternative_3": -3 } for elem in temp_top_logprobs: text = elem["text"] logprob = elem["logprob"] top_alt_tokens[text] = logprob # Add the token information to the 'token_info' list token_info['tokens'].append(token_text) token_info['token_logprobs'].append(token_logprob) token_info['top_logprobs'].append(top_alt_tokens) # Add the text offset of the token # This is computed as the sum of the lengths of all previous tokens token_info['text_offset'].append(sum(len(t['text']) for t in response_details['tokens'][:i])) # Add the 'token_info' list to the 'transformed_logprobs' list transformed_logprobs = token_info return transformed_logprobs # used in LiteLLM Router def remove_model_id(original_model_string): # Find the index of "ModelID" in the string index_of_model_id = original_model_string.find("-ModelID") # Remove everything after "-ModelID" if it exists if index_of_model_id != -1: return original_model_string[:index_of_model_id] return original_model_string
[ "Hey, how's it going?", "0", "gpt-3.5-turbo", "True", "Hey, how's it going", "input_cost_per_token", "Hello World", "None", "adapt_to_prompt_size", "default", "False", " ", "application/json", "content", "ft:gpt-3.5-turbo", "prompt_tokens" ]
2024-01-10
ecomoptimizer/litellm
litellm~proxy~tests~load_test_completion.py
import time, asyncio from openai import AsyncOpenAI import uuid import traceback litellm_client = AsyncOpenAI( api_key="test", base_url="http://0.0.0.0:8000" ) async def litellm_completion(): # Your existing code for litellm_completion goes here try: response = await litellm_client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}], ) print(response) return response except Exception as e: # If there's an exception, log the error message with open("error_log.txt", "a") as error_log: error_log.write(f"Error during completion: {str(e)}\n") pass async def main(): start = time.time() n = 1000 # Number of concurrent tasks tasks = [litellm_completion() for _ in range(n)] chat_completions = await asyncio.gather(*tasks) successful_completions = [c for c in chat_completions if c is not None] # Write errors to error_log.txt with open("error_log.txt", "a") as error_log: for completion in chat_completions: if isinstance(completion, str): error_log.write(completion + "\n") print(n, time.time() - start, len(successful_completions)) if __name__ == "__main__": # Blank out contents of error_log.txt open("error_log.txt", "w").close() asyncio.run(main())
[]
2024-01-10
jh941213/my_AI_CV_tutor
cv.py
from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate from langchain.schema.output_parser import StrOutputParser from langchain.text_splitter import CharacterTextSplitter from unstructured.partition.pdf import partition_pdf from langchain.schema.messages import HumanMessage from langchain.embeddings import OpenAIEmbeddings from langchain.retrievers.multi_vector import MultiVectorRetriever from langchain.schema.document import Document from langchain.storage import InMemoryStore from langchain.vectorstores import Chroma from langchain.schema.runnable import RunnableLambda, RunnablePassthrough from langchain.document_loaders import PyPDFLoader from unstructured.partition.pdf import partition_pdf import streamlit as st import io import re from PIL import Image import uuid import base64 import os # Extract elements from PDF def extract_pdf_elements(path, fname): """ Extract images, tables, and chunk text from a PDF file. path: File path, which is used to dump images (.jpg) fname: File name """ return partition_pdf( filename=path + fname, extract_images_in_pdf=False, infer_table_structure=True, chunking_strategy="by_title", max_characters=4000, new_after_n_chars=3800, combine_text_under_n_chars=2000, image_output_dir_path=path, ) # Categorize elements by type def categorize_elements(raw_pdf_elements): """ Categorize extracted elements from a PDF into tables and texts. raw_pdf_elements: List of unstructured.documents.elements """ tables = [] texts = [] for element in raw_pdf_elements: if "unstructured.documents.elements.Table" in str(type(element)): tables.append(str(element)) elif "unstructured.documents.elements.CompositeElement" in str(type(element)): texts.append(str(element)) return texts, tables # Generate summaries of text elements def generate_text_summaries(texts, tables, summarize_texts=False): """ Summarize text elements texts: List of str tables: List of str summarize_texts: Bool to summarize texts """ # Prompt prompt_text = """You are an assistant tasked with summarizing tables and text for retrieval. \ These summaries will be embedded and used to retrieve the raw text or table elements. \ Give a concise summary of the table or text that is well optimized for retrieval. Table or text: {element} """ prompt = ChatPromptTemplate.from_template(prompt_text) # Text summary chain model = ChatOpenAI(temperature=0, model="gpt-4-1106-preview",openai_api_key="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") summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser() # Initialize empty summaries text_summaries = [] table_summaries = [] # Apply to text if texts are provided and summarization is requested if texts and summarize_texts: text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5}) elif texts: text_summaries = texts # Apply to tables if tables are provided if tables: table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5}) return text_summaries, table_summaries def encode_image(image_path): """Getting the base64 string""" with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") def image_summarize(img_base64, prompt): """Make image summary""" chat = ChatOpenAI(model="gpt-4-vision-preview", max_tokens=1024, openai_api_key="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") msg = chat.invoke( [ HumanMessage( content=[ {"type": "text", "text": prompt}, { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_base64}"}, }, ] ) ] ) return msg.content def generate_img_summaries(path): """ Generate summaries and base64 encoded strings for images path: Path to list of .jpg files extracted by Unstructured """ # Store base64 encoded images img_base64_list = [] # Store image summaries image_summaries = [] # Prompt prompt = """You are an assistant tasked with summarizing images for retrieval. \ These summaries will be embedded and used to retrieve the raw image. \ Give a concise summary of the image that is well optimized for retrieval.""" # Apply to images for img_file in sorted(os.listdir(path)): if img_file.endswith(".jpg"): img_path = os.path.join(path, img_file) base64_image = encode_image(img_path) img_base64_list.append(base64_image) image_summaries.append(image_summarize(base64_image, prompt)) return img_base64_list, image_summaries def create_multi_vector_retriever( vectorstore, text_summaries, texts, table_summaries, tables, image_summaries, images ): """ Create retriever that indexes summaries, but returns raw images or texts """ # Initialize the storage layer store = InMemoryStore() id_key = "doc_id" # Create the multi-vector retriever retriever = MultiVectorRetriever( vectorstore=vectorstore, docstore=store, id_key=id_key, ) # Helper function to add documents to the vectorstore and docstore def add_documents(retriever, doc_summaries, doc_contents): doc_ids = [str(uuid.uuid4()) for _ in doc_contents] summary_docs = [ Document(page_content=s, metadata={id_key: doc_ids[i]}) for i, s in enumerate(doc_summaries) ] retriever.vectorstore.add_documents(summary_docs) retriever.docstore.mset(list(zip(doc_ids, doc_contents))) # Add texts, tables, and images # Check that text_summaries is not empty before adding if text_summaries: add_documents(retriever, text_summaries, texts) # Check that table_summaries is not empty before adding if table_summaries: add_documents(retriever, table_summaries, tables) # Check that image_summaries is not empty before adding if image_summaries: add_documents(retriever, image_summaries, images) return retriever def plt_img_base64(img_base64): """Disply base64 encoded string as image""" # Create an HTML img tag with the base64 string as the source image_html = f'<img src="data:image/jpeg;base64,{img_base64}" />' # Display the image by rendering the HTML display(HTML(image_html)) def looks_like_base64(sb): """Check if the string looks like base64""" return re.match("^[A-Za-z0-9+/]+[=]{0,2}$", sb) is not None def is_image_data(b64data): """ Check if the base64 data is an image by looking at the start of the data """ image_signatures = { b"\xFF\xD8\xFF": "jpg", b"\x89\x50\x4E\x47\x0D\x0A\x1A\x0A": "png", b"\x47\x49\x46\x38": "gif", b"\x52\x49\x46\x46": "webp", } try: header = base64.b64decode(b64data)[:8] # Decode and get the first 8 bytes for sig, format in image_signatures.items(): if header.startswith(sig): return True return False except Exception: return False def resize_base64_image(base64_string, size=(128, 128)): """ Resize an image encoded as a Base64 string """ # Decode the Base64 string img_data = base64.b64decode(base64_string) img = Image.open(io.BytesIO(img_data)) # Resize the image resized_img = img.resize(size, Image.LANCZOS) # Save the resized image to a bytes buffer buffered = io.BytesIO() resized_img.save(buffered, format=img.format) # Encode the resized image to Base64 return base64.b64encode(buffered.getvalue()).decode("utf-8") def split_image_text_types(docs): """ Split base64-encoded images and texts """ b64_images = [] texts = [] for doc in docs: # Check if the document is of type Document and extract page_content if so if isinstance(doc, Document): doc = doc.page_content if looks_like_base64(doc) and is_image_data(doc): doc = resize_base64_image(doc, size=(1300, 600)) b64_images.append(doc) else: texts.append(doc) return {"images": b64_images, "texts": texts} def img_prompt_func(data_dict): """ Join the context into a single string """ formatted_texts = "\n".join(data_dict["context"]["texts"]) messages = [] # Adding image(s) to the messages if present if data_dict["context"]["images"]: for image in data_dict["context"]["images"]: image_message = { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image}"}, } messages.append(image_message) # Adding the text for analysis text_message = { "type": "text", "text": ( "당신은 AI 업계 취업 컨설턴트 전문가입니다.\n" "이력서에는 일반적으로 관련 커리어에 대한 텍스트와 이미지가 혼합되어 제공이 됩니다.\n" "이 내용을 이용하여 사용자 질문과 관련된 AI 업계 취업을 위한 조언을 제공합니다. \n" f"User-provided question: {data_dict['question']}\n\n" "Text and / or tables:\n" f"{formatted_texts}" ), } messages.append(text_message) return [HumanMessage(content=messages)] def multi_modal_rag_chain(retriever): """ Multi-modal RAG chain """ # Multi-modal LLM model = ChatOpenAI(temperature=0, model="gpt-4-vision-preview", max_tokens=1024, openai_api_key="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") # RAG pipeline chain = ( { "context": retriever | RunnableLambda(split_image_text_types), "question": RunnablePassthrough(), } | RunnableLambda(img_prompt_func) | model | StrOutputParser() ) return chain def run_rag_chain(chain, query): result = chain.invoke(query) return result
[ "You are an assistant tasked with summarizing tables and text for retrieval. These summaries will be embedded and used to retrieve the raw text or table elements. Give a concise summary of the table or text that is well optimized for retrieval. Table or text: {element} ", "[{'type': 'text', 'text': 'You are an assistant tasked with summarizing images for retrieval. These summaries will be embedded and used to retrieve the raw image. Give a concise summary of the image that is well optimized for retrieval.'}, {'type': 'image_url', 'image_url': {'url': ''}}]", "You are an assistant tasked with summarizing images for retrieval. These summaries will be embedded and used to retrieve the raw image. Give a concise summary of the image that is well optimized for retrieval." ]
2024-01-10
Dmmc123/pepega-bot
gpt_utils.py
import os import openai from sentence_transformers import SentenceTransformer from transformers import GPT2TokenizerFast from pynndescent import NNDescent import pickle import json class AnswerGenerator: def __init__( self, model_name="sentence-transformers/all-MiniLM-L6-v2", index_path="index.pkl", paragraphs_path="paragraphs.json", tokenizer_name="gpt2", completion_model="text-davinci-002", ): # initializing the paragraph/question encoder and tokenizer self.encoder = SentenceTransformer(model_name) self.tokenizer = GPT2TokenizerFast.from_pretrained(tokenizer_name) # connecting to openai openai.api_key = os.environ["openai-api-token"] # loading the index and corresponding paragraphs with open(index_path, "rb") as f: self.index = pickle.load(f) with open(paragraphs_path) as f: self.paragraphs = json.load(f) # storing info prompt construction self.prompt_params = {"max_section_len": 500, "sep": "\n* "} self.prompt_params["sep_len"] = len( self.tokenizer.tokenize(self.prompt_params["sep"]) ) # parameters for querying the gpt self.gpt_params = { "temperature": 0.0, "max_tokens": 300, "model": completion_model, } def _prepare_prompt(self, question): # encode the question q_emb = self.encoder.encode(question) # get indices of top matches for paragraphs most_relevant_document_sections = self.index.query([q_emb])[0][0] # add contexts until we run out of space. chosen_sections = [] chosen_sections_len = 0 for section_index in most_relevant_document_sections: paragraph = self.paragraphs[section_index] # update current length chosen_sections_len += ( len(self.tokenizer(paragraph)) + self.prompt_params["sep_len"] ) if chosen_sections_len > self.prompt_params["max_section_len"]: break # add section to prompt context chosen_sections.append( self.prompt_params["sep"] + paragraph.replace("\n", " ") ) header = """Answer the question as truthfully as possible using the provided context, and if the answer is not contained within the text below, say "I don't know."\n\nContext:\n""" return header + "".join(chosen_sections) + "\n\n Q: " + question + "\n A:" def __call__(self, question): # get prompt prompt = self._prepare_prompt(question) # query the qpt response = openai.Completion.create(prompt=prompt, **self.gpt_params) # return the needed part of response return response["choices"][0]["text"].strip(" \n")
[]
2024-01-10
Mariuxtheone/omni-openai-gpt3-snippet-extension
exts~omni.openai.snippet~omni~openai~snippet~extension.py
import omni.ext import omni.ui as ui #create a file apikeys.py in the same folder as extension.py and add 2 variables: # API_KEY: "your openai api key" # PYTHON_PATH: "the path of the python folder where the openai python library is installed" from .apikeys import apikey from .apikeys import pythonpath import pyperclip import sys sys.path.append(pythonpath) import openai #tokens used in the OpenAI API response openaitokensresponse = 40 # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[omni.openai.snippet] MyExtension startup") self._window = ui.Window("OpenAI GPT-3 Text Generator", width=300, height=300) with self._window.frame: with ui.VStack(): prompt_label = ui.Label("Your Prompt:") prompt_field = ui.StringField(multiline=True) result_label = ui.Label("OpenAI GPT-3 Result:") label_style = {"Label": {"font_size": 16, "color": 0xFF00FF00,}} result_actual_label = ui.Label("The OpenAI generated text will show up here", style=label_style, word_wrap=True) def on_click(): # Load your API key from an environment variable or secret management service #openai.api_key = "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" openai.api_key = apikey my_prompt = prompt_field.model.get_value_as_string().replace("\n", " ") response = openai.Completion.create(engine="text-davinci-001", prompt=my_prompt, max_tokens=openaitokensresponse) #parse response as json and extract text text = response["choices"][0]["text"] pyperclip.copy(text) result_actual_label.text = "" result_actual_label.text = text ui.Button("Generate and Copy to Clipboard", clicked_fn=lambda: on_click()) def on_shutdown(self): print("[omni.openai.snippet] MyExtension shutdown")
[ "\n", "Your Prompt:", " " ]
2024-01-10
adrianwedd/babyagi
classic~babyfoxagi~tasks~task_registry.py
import openai import json import threading import os import numpy as np from datetime import datetime from collections import defaultdict class TaskRegistry: def __init__(self): self.tasks = [] # Initialize the lock self.lock = threading.Lock() objectives_file_path = "tasks/example_objectives" self.example_loader = ExampleObjectivesLoader(objectives_file_path) def load_example_objectives(self, user_objective): return self.example_loader.load_example_objectives(user_objective) def create_tasklist(self, objective, skill_descriptions): #reflect on objective notes = self.reflect_on_objective(objective,skill_descriptions) #load most relevant object and tasklist from objectives_examples.json example_objective, example_tasklist, example_reflection = self.load_example_objectives(objective) prompt = ( f"You are an expert task list creation AI tasked with creating a list of tasks as a JSON array, considering the ultimate objective of your team: {objective}. " f"Create a very short task list based on the objective, the final output of the last task will be provided back to the user. Limit tasks types to those that can be completed with the available skills listed below. Task description should be detailed.###" f"AVAILABLE SKILLS: {skill_descriptions}.###" f"RULES:" f"Do not use skills that are not listed." f"Always provide an ID to each task." f"Always include one skill." f"The final task should always output the final result of the overall objective." f"dependent_task_ids should always be an empty array, or an array of numbers representing the task ID it should pull results from." f"Make sure all task IDs are in chronological order.###\n" f"Helpful Notes as guidance:{notes}###\n" f"EXAMPLE OBJECTIVE={json.dumps(example_objective)}" f"TASK LIST={json.dumps(example_tasklist)}" f"OBJECTIVE={objective}" f"TASK LIST=" ) #print(prompt) print("\033[90m\033[3m" + "\nInitializing...\n" + "\033[0m") response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "system", "content": "You are a task creation AI." }, { "role": "user", "content": prompt } ], temperature=0, max_tokens=2500, top_p=1, frequency_penalty=0, presence_penalty=0 ) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] try: task_list = json.loads(result) #print(task_list) self.tasks = task_list except Exception as error: print(error) def reflect_on_objective(self, objective, skill_descriptions): #load most relevant object and tasklist from objectives_examples.json example_objective, example_tasklist, example_reflection = self.load_example_objectives(objective) prompt = ( f"You are an Ai specializing in generating helpful thoughts and ideas on tackling an objective, and your task is to think about how to tackle this objective: {objective}. " f"These are the skills available to you: {skill_descriptions}.###" f"Think about what tools and information you need to handle this objective, and which of the available skills would be most helpful to you and writea descriptive note to pass onto a task creation AI." f"Consider the following example objective, tasklist, and reflection as a sample." f"###EXAMPLE OBJECTIVE:{example_objective}." f"###EXAMPLE TASKLIST:{example_tasklist}." f"###REFLECTION FROM EXAMPLE:{example_reflection}." f"###THE AI AGENT'S OBJECTIVE:{example_reflection}." f"###INSTRUCTION: please provide helpful notes for the task creation agent specific to this objective." ) #print(prompt) print("\033[90m\033[3m" + "\nInitializing...\n" + "\033[0m") response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "system", "content": f"You are an Ai specializing in generating helpful thoughts and ideas on tackling an objective, and your task is to think about how to tackle this objective: {objective}. " }, { "role": "user", "content": prompt } ], temperature=0, max_tokens=250, top_p=1, frequency_penalty=0, presence_penalty=0 ) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] print(result) return result def execute_task(self, i, task, skill_registry, task_outputs, objective): p_nexttask="\033[92m\033[1m"+"\n*****NEXT TASK ID:"+str(task['id'])+"*****\n"+"\033[0m\033[0m" p_nexttask += f"\033[ EExecuting task {task.get('id')}: {task.get('task')}) [{task.get('skill')}]\033[)" print(p_nexttask) # Retrieve the skill from the registry skill = skill_registry.get_skill(task['skill']) # Get the outputs of the dependent tasks dependent_task_outputs = {dep: task_outputs[dep]["output"] for dep in task['dependent_task_ids']} if 'dependent_task_ids' in task else {} # Execute the skill # print("execute:"+str([task['task'], dependent_task_outputs, objective])) task_output = skill.execute(task['task'], dependent_task_outputs, objective) print("\033[93m\033[1m"+"\nTask Output (ID:"+str(task['id'])+"):"+"\033[0m\033[0m") print("TASK: "+str(task["task"])) print("OUTPUT: "+str(task_output)) return i, task_output def reorder_tasks(self): self.tasks= sorted(self.tasks, key=lambda task: task['id']) def add_task(self, task, after_task_id): # Get the task ids task_ids = [t["id"] for t in self.tasks] # Get the index of the task id to add the new task after insert_index = task_ids.index(after_task_id) + 1 if after_task_id in task_ids else len(task_ids) # Insert the new task self.tasks.insert(insert_index, task) self.reorder_tasks() def get_tasks(self): return self.tasks def update_tasks(self, task_update): for task in self.tasks: if task['id'] == task_update['id']: task.update(task_update) self.reorder_tasks() def reflect_on_output(self, task_output, skill_descriptions): with self.lock: example = [ [ {"id": 3, "task": "New task 1 description", "skill": "text_completion_skill", "dependent_task_ids": [], "status": "complete"}, {"id": 4, "task": "New task 2 description", "skill": "text_completion_skill", "dependent_task_ids": [], "status": "incomplete"} ], [2, 3], {"id": 5, "task": "Complete the objective and provide a final report", "skill": "text_completion_skill", "dependent_task_ids": [1, 2, 3, 4], "status": "incomplete"} ] prompt = ( f"You are an expert task manager, review the task output to decide whether any new tasks need to be added, or whether any tasks need to be updated." f"As you add a new task, see if there are any tasks that need to be updated (such as updating dependencies)." f"Use the current task list as reference." f"Do not add duplicate tasks to those in the current task list." f"Only provide JSON as your response without further comments." f"Every new and updated task must include all variables, even they are empty array." f"Dependent IDs must be smaller than the ID of the task." f"New tasks IDs should be no larger than the last task ID." f"Always select at least one skill." f"Task IDs should be unique and in chronological order." f"Do not change the status of complete tasks." f"Only add skills from the AVAILABLE SKILLS, using the exact same spelling." f"Provide your array as a JSON array with double quotes. The first object is new tasks to add as a JSON array, the second array lists the ID numbers where the new tasks should be added after (number of ID numbers matches array), and the third object provides the tasks that need to be updated." f"Make sure to keep dependent_task_ids key, even if an empty array." f"AVAILABLE SKILLS: {skill_descriptions}.###" f"\n###Here is the last task output: {task_output}" f"\n###Here is the current task list: {self.tasks}" f"\n###EXAMPLE OUTPUT FORMAT = {json.dumps(example)}" f"\n###OUTPUT = " ) print("\033[90m\033[3m" + "\nReflecting on task output to generate new tasks if necessary...\n" + "\033[0m") response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k-0613", messages=[ { "role": "system", "content": "You are a task creation AI." }, { "role": "user", "content": prompt } ], temperature=0.7, max_tokens=1500, top_p=1, frequency_penalty=0, presence_penalty=0 ) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] print("\n#" + str(result)) # Check if the returned result has the expected structure if isinstance(result, str): try: task_list = json.loads(result) print("####task_list in function") print(task_list) print("####task_list split in function") print(task_list[0], task_list[1], task_list[2]) return task_list[0], task_list[1], task_list[2] except Exception as error: print(error) else: raise ValueError("Invalid task list structure in the output") def get_tasks(self): """ Returns the current list of tasks. Returns: list: the list of tasks. """ return self.tasks def get_task(self, task_id): """ Returns a task given its task_id. Parameters: task_id : int The unique ID of the task. Returns: dict The task that matches the task_id. """ matching_tasks = [task for task in self.tasks if task["id"] == task_id] if matching_tasks: return matching_tasks[0] else: print(f"No task found with id {task_id}") return None def print_tasklist(self, tasks): p_tasklist="\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m" for t in tasks: dependent_task_ids = t.get('dependent_task_ids', []) dependent_task = "" if dependent_task_ids: dependent_task = f"\033[31m<dependencies: {', '.join([f'#{dep_id}' for dep_id in dependent_task_ids])}>\033[0m" status_color = "\033[32m" if t.get('status') == "completed" else "\033[31m" p_tasklist+= f"\033[1m{t.get('id')}\033[0m: {t.get('task')} {status_color}[{t.get('status')}]\033[0m \033[93m[{t.get('skill')}] {dependent_task}\033[0m\n" print(p_tasklist) def reflect_tasklist(self, objective, task_list, task_outputs, skill_descriptions): prompt = ( f"You are an expert task manager. Reflect on the objective, entire task list, and the corresponding outputs to generate a better task list for the objective." f"Do not included 'results', and change every status to 'incomplete'." f"Only provide JSON as your response without further comments. " f"Use the current task list as reference. " f"Always make at least one change to the current task list " f"OBJECTIVE: {objective}." f"AVAILABLE SKILLS: {skill_descriptions}." f"\n###Here is the current task list: {json.dumps(task_list)}" f"\n###Here is the task outputs: {json.dumps(task_outputs)}" f"\n###IMPROVED TASKLIST = " ) print("\033[90m\033[3m" + "\nReflecting on entire task list...\n" + "\033[0m") response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "system", "content": "You are an AI specializing in reflecting on task lists and improving them. You will never simply return the provided task list, but always improve on it." }, { "role": "user", "content": prompt } ], temperature=0, max_tokens=4000, top_p=1, frequency_penalty=0, presence_penalty=0 ) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] try: improved_task_list = json.loads(result) # Formatting improved_task_list to your desired format formatted_improved_task_list = [{ "objective": objective, "examples": improved_task_list, "date": datetime.now().strftime("%Y-%m-%d") }] with open(f'tasks/example_objectives/improved_{datetime.now().strftime("%Y%m%d%H%M%S")}.json', 'w') as f: json.dump(formatted_improved_task_list, f) print(f"IMPROVED TASK LIST:{formatted_improved_task_list}") except Exception as error: print(error) def reflect_on_result(self, objective, task_list, task_outputs, skill_descriptions): prompt = ( f"You are an expert AI specializing in analyzing yourself, an autonomous agent that combines multiple LLM calls. Reflect on the objective, entire task list, and the corresponding outputs and provide an analysis of the performance of yourself and how you could have performed better." f"\n###OBJECTIVE: {objective}." f"\n###AVAILABLE SKILLS: {skill_descriptions}." f"\n###TASK LIST: {json.dumps(task_list)}" f"\n###TASK OUTPUTS: {json.dumps(task_outputs)}" f"\n###ANALYSIS:" ) print("\033[90m\033[3m" + "\nReflecting on result...\n" + "\033[0m") response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "system", "content": "You are an expert AI specializing in analyzing yourself, an autonomous agent that combines multiple LLM calls. Reflect on the objective, entire task list, and the corresponding outputs and provide an analysis of the performance of yourself and how you could have performed better." }, { "role": "user", "content": prompt } ], temperature=0, max_tokens=2000, top_p=1, frequency_penalty=0, presence_penalty=0 ) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] try: print(result) return result except Exception as error: print(error) def reflect_on_final(self, objective, task_list, task_outputs, skill_descriptions): print("here!") system_content_result = "You are an expert AI specializing in analyzing yourself, an autonomous agent that combines multiple LLM calls. Reflect on the objective, entire task list, and the corresponding outputs and provide an analysis of the performance of yourself and how you could have performed better." role_content_result = ( f"You are an expert AI specializing in analyzing yourself, an autonomous agent that combines multiple LLM calls. Reflect on the objective, entire task list, and the corresponding outputs and provide an analysis of the performance of yourself and how you could have performed better." f"\n###OBJECTIVE: {objective}." f"\n###AVAILABLE SKILLS: {skill_descriptions}." f"\n###TASK LIST: {json.dumps(task_list)}" f"\n###TASK OUTPUTS: {json.dumps(task_outputs)}" f"\n###ANALYSIS:" ) print("\033[90m\033[3m" + "\nReflecting on result...\n" + "\033[0m") response = self.chatcompletion(role_content_result, system_content_result,500) # Extract the content of the assistant's response and parse it as JSON simple_reflection = response["choices"][0]["message"]["content"] try: print(simple_reflection) except Exception as error: print(error) system_content_task = "You are an AI specializing in reflecting on task lists and improving them. You will never simply return the provided task list, but always improve on it." role_content_task = ( f"You are an expert task manager. Reflect on the objective, entire task list, and the corresponding outputs to generate a better task list for the objective." f"Do not included 'results', and change every status to 'incomplete'." f"Only provide JSON as your response without further comments. " f"Use the current task list as reference. " f"Always make at least one change to the current task list " f"OBJECTIVE: {objective}." f"AVAILABLE SKILLS: {skill_descriptions}." f"SIMPLE REFLECTION: {simple_reflection}." f"\n###Here is the current task list: {json.dumps(task_list)}" f"\n###Here is the task outputs: {json.dumps(task_outputs)}" f"\n###IMPROVED TASKLIST = " ) print("\033[90m\033[3m" + "\nReflecting on entire task list...\n" + "\033[0m") response = self.chatcompletion(role_content_task, system_content_task,4000) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] print(result) try: improved_task_list = json.loads(result) # Formatting improved_task_list to your desired format formatted_improved_task_list = [{ "objective": objective, "examples": improved_task_list, "date": datetime.now().strftime("%Y-%m-%d"), "reflection":simple_reflection }] with open(f'tasks/example_objectives/improved_{datetime.now().strftime("%Y%m%d%H%M%S")}.json', 'w') as f: json.dump(formatted_improved_task_list, f) print(f"IMPROVED TASK LIST:{formatted_improved_task_list}") except Exception as error: print(error) def chatcompletion(self, role_content, system_content, max_tokens): return openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "system", "content": system_content }, { "role": "user", "content": role_content } ], temperature=0, max_tokens=max_tokens, top_p=1, frequency_penalty=0, presence_penalty=0 ) from datetime import datetime class ExampleObjectivesLoader: def __init__(self, objectives_folder_path, decay_factor=0.01): self.objectives_folder_path = objectives_folder_path self.decay_factor = decay_factor self.objectives_examples = [] # Initialize as an empty list def load_objectives_examples(self): objectives_dict = defaultdict(dict) for filename in os.listdir(self.objectives_folder_path): file_path = os.path.join(self.objectives_folder_path, filename) with open(file_path, 'r') as file: objectives = json.load(file) for objective in objectives: key = objective['objective'] date = objective.get('date', None) if date is not None: date = datetime.strptime(date, '%Y-%m-%d') if key not in objectives_dict or (date and datetime.strptime(objectives_dict[key]['date'], "%Y-%m-%d") < date): objectives_dict[key] = objective self.objectives_examples = list(objectives_dict.values()) def find_most_relevant_objective(self, user_input): user_input_embedding = self.get_embedding(user_input, model='text-embedding-ada-002') most_relevant_objective = max( self.objectives_examples, key=lambda pair: self.cosine_similarity(pair['objective'], user_input_embedding) * self.get_decay(pair) ) return most_relevant_objective['objective'], most_relevant_objective['examples'], most_relevant_objective.get('reflection', '') def get_decay(self, objective): date = objective.get('date', None) if date is not None: date = datetime.strptime(date, '%Y-%m-%d') days_passed = (datetime.now() - date).days else: # if there's no date, assume a large number of days passed days_passed = 365 * 10 # 10 years decay = np.exp(-self.decay_factor * days_passed) return decay def get_embedding(self, text, model='text-embedding-ada-002'): response = openai.Embedding.create(input=[text], model=model) embedding = response['data'][0]['embedding'] return embedding def cosine_similarity(self, objective, embedding): max_similarity = float('-inf') objective_embedding = self.get_embedding(objective, model='text-embedding-ada-002') similarity = self.calculate_similarity(objective_embedding, embedding) max_similarity = max(max_similarity, similarity) return max_similarity def calculate_similarity(self, embedding1, embedding2): embedding1 = np.array(embedding1, dtype=np.float32) embedding2 = np.array(embedding2, dtype=np.float32) similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2)) return similarity def load_example_objectives(self, user_objective): self.load_objectives_examples() most_relevant_objective, most_relevant_tasklist, most_relevant_reflection = self.find_most_relevant_objective(user_objective) example_objective = most_relevant_objective example_tasklist = most_relevant_tasklist example_reflection = most_relevant_reflection return example_objective, example_tasklist, example_reflection
[ "Always select at least one skill.", "TASK LIST=", "Provide your array as a JSON array with double quotes. The first object is new tasks to add as a JSON array, the second array lists the ID numbers where the new tasks should be added after (number of ID numbers matches array), and the third object provides the tasks that need to be updated.", "Use the current task list as reference. ", "\n###OUTPUT = ", "Use the current task list as reference.", "Dependent IDs must be smaller than the ID of the task.", "You are an expert task manager. Reflect on the objective, entire task list, and the corresponding outputs to generate a better task list for the objective.", "Make sure all task IDs are in chronological order.###\n", "AVAILABLE SKILLS: PLACEHOLDER.###", "OBJECTIVE: PLACEHOLDER.", "You are an expert task manager, review the task output to decide whether any new tasks need to be added, or whether any tasks need to be updated.", "Only add skills from the AVAILABLE SKILLS, using the exact same spelling.", "\n###IMPROVED TASKLIST = ", "Make sure to keep dependent_task_ids key, even if an empty array.", "AVAILABLE SKILLS: PLACEHOLDER.", "As you add a new task, see if there are any tasks that need to be updated (such as updating dependencies).", "Create a very short task list based on the objective, the final output of the last task will be provided back to the user. Limit tasks types to those that can be completed with the available skills listed below. Task description should be detailed.###", "Helpful Notes as guidance:PLACEHOLDER###\n", "Do not change the status of complete tasks.", "\n###ANALYSIS:", "Do not add duplicate tasks to those in the current task list.", "New tasks IDs should be no larger than the last task ID.", "Always include one skill.", "Always make at least one change to the current task list ", "Only provide JSON as your response without further comments. ", "Task IDs should be unique and in chronological order.", "You are an expert task list creation AI tasked with creating a list of tasks as a JSON array, considering the ultimate objective of your team: PLACEHOLDER. ", "Always provide an ID to each task.", "You are an Ai specializing in generating helpful thoughts and ideas on tackling an objective, and your task is to think about how to tackle this objective: PLACEHOLDER. ", "OBJECTIVE=PLACEHOLDER", "\n###AVAILABLE SKILLS: PLACEHOLDER.", "\n###Here is the last task output: PLACEHOLDER", "Do not use skills that are not listed.", "Do not included 'results', and change every status to 'incomplete'.", "The final task should always output the final result of the overall objective.", "You are a task creation AI.", "You are an expert AI specializing in analyzing yourself, an autonomous agent that combines multiple LLM calls. Reflect on the objective, entire task list, and the corresponding outputs and provide an analysis of the performance of yourself and how you could have performed better.", "Every new and updated task must include all variables, even they are empty array.", "\n###OBJECTIVE: PLACEHOLDER.", "dependent_task_ids should always be an empty array, or an array of numbers representing the task ID it should pull results from.", "You are an Ai specializing in generating helpful thoughts and ideas on tackling an objective, and your task is to think about how to tackle this objective: PLACEHOLDER. These are the skills available to you: PLACEHOLDER.###Think about what tools and information you need to handle this objective, and which of the available skills would be most helpful to you and writea descriptive note to pass onto a task creation AI.Consider the following example objective, tasklist, and reflection as a sample.###EXAMPLE OBJECTIVE:PLACEHOLDER.###EXAMPLE TASKLIST:PLACEHOLDER.###REFLECTION FROM EXAMPLE:PLACEHOLDER.###THE AI AGENT'S OBJECTIVE:PLACEHOLDER.###INSTRUCTION: please provide helpful notes for the task creation agent specific to this objective.", "Only provide JSON as your response without further comments.", "You are an AI specializing in reflecting on task lists and improving them. You will never simply return the provided task list, but always improve on it." ]
2024-01-10
adrianwedd/babyagi
classic~BabyElfAGI~tasks~task_registry.py
import openai import json import threading import os import numpy as np class TaskRegistry: def __init__(self): self.tasks = [] # Initialize the lock self.lock = threading.Lock() objectives_file_path = "tasks/example_objectives" self.example_loader = ExampleObjectivesLoader(objectives_file_path) def load_example_objectives(self, user_objective): return self.example_loader.load_example_objectives(user_objective) def create_tasklist(self, objective, skill_descriptions): #load most relevant object and tasklist from objectives_examples.json example_objective, example_tasklist = self.load_example_objectives(objective) prompt = ( f"You are an expert task list creation AI tasked with creating a list of tasks as a JSON array, considering the ultimate objective of your team: {objective}. " f"Create a very short task list based on the objective, the final output of the last task will be provided back to the user. Limit tasks types to those that can be completed with the available skills listed below. Task description should be detailed.###" f"AVAILABLE SKILLS: {skill_descriptions}.###" f"RULES:" f"Do not use skills that are not listed." f"Always include one skill." f"dependent_task_ids should always be an empty array, or an array of numbers representing the task ID it should pull results from." f"Make sure all task IDs are in chronological order.###\n" f"EXAMPLE OBJECTIVE={json.dumps(example_objective)}" f"TASK LIST={json.dumps(example_tasklist)}" f"OBJECTIVE={objective}" f"TASK LIST=" ) print("\033[90m\033[3m" + "\nInitializing...\n" + "\033[0m") response = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=[ { "role": "system", "content": "You are a task creation AI." }, { "role": "user", "content": prompt } ], temperature=0, max_tokens=1500, top_p=1, frequency_penalty=0, presence_penalty=0 ) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] try: task_list = json.loads(result) self.tasks = task_list except Exception as error: print(error) def execute_task(self, i, task, skill_registry, task_outputs, objective): p_nexttask="\033[92m\033[1m"+"\n*****NEXT TASK ID:"+str(task['id'])+"*****\n"+"\033[0m\033[0m" p_nexttask += f"\033[ EExecuting task {task.get('id')}: {task.get('task')}) [{task.get('skill')}]\033[)" print(p_nexttask) # Retrieve the skill from the registry skill = skill_registry.get_skill(task['skill']) # Get the outputs of the dependent tasks dependent_task_outputs = {dep: task_outputs[dep]["output"] for dep in task['dependent_task_ids']} if 'dependent_task_ids' in task else {} # Execute the skill # print("execute:"+str([task['task'], dependent_task_outputs, objective])) task_output = skill.execute(task['task'], dependent_task_outputs, objective) print("\033[93m\033[1m"+"\nTask Output (ID:"+str(task['id'])+"):"+"\033[0m\033[0m") print("TASK: "+str(task["task"])) print("OUTPUT: "+str(task_output)) return i, task_output def reorder_tasks(self): self.tasks = sorted(self.tasks, key=lambda task: task['id']) def add_task(self, task, after_task_id): # Get the task ids task_ids = [t["id"] for t in self.tasks] # Get the index of the task id to add the new task after insert_index = task_ids.index(after_task_id) + 1 if after_task_id in task_ids else len(task_ids) # Insert the new task self.tasks.insert(insert_index, task) self.reorder_tasks() def update_tasks(self, task_update): for task in self.tasks: if task['id'] == task_update['id']: # This merges the original task dictionary with the update, overwriting only the fields present in the update. task.update(task_update) self.reorder_tasks() def reflect_on_output(self, task_output, skill_descriptions): with self.lock: example = [ [ {"id": 3, "task": "New task 1 description", "skill": "text_completion_skill", "dependent_task_ids": [], "status": "complete"}, {"id": 4, "task": "New task 2 description", "skill": "text_completion_skill", "dependent_task_ids": [], "status": "incomplete"} ], [2, 3], {"id": 5, "task": "Complete the objective and provide a final report", "skill": "text_completion_skill", "dependent_task_ids": [1, 2, 3, 4], "status": "incomplete"} ] prompt = ( f"You are an expert task manager, review the task output to decide at least one new task to add." f"As you add a new task, see if there are any tasks that need to be updated (such as updating dependencies)." f"Use the current task list as reference." f"Do not add duplicate tasks to those in the current task list." f"Only provide JSON as your response without further comments." f"Every new and updated task must include all variables, even they are empty array." f"Dependent IDs must be smaller than the ID of the task." f"New tasks IDs should be no larger than the last task ID." f"Always select at least one skill." f"Task IDs should be unique and in chronological order." f"Do not change the status of complete tasks." f"Only add skills from the AVAILABLE SKILLS, using the exact same spelling." f"Provide your array as a JSON array with double quotes. The first object is new tasks to add as a JSON array, the second array lists the ID numbers where the new tasks should be added after (number of ID numbers matches array), and the third object provides the tasks that need to be updated." f"Make sure to keep dependent_task_ids key, even if an empty array." f"AVAILABLE SKILLS: {skill_descriptions}.###" f"\n###Here is the last task output: {task_output}" f"\n###Here is the current task list: {self.tasks}" f"\n###EXAMPLE OUTPUT FORMAT = {json.dumps(example)}" f"\n###OUTPUT = " ) print("\033[90m\033[3m" + "\nReflecting on task output to generate new tasks if necessary...\n" + "\033[0m") response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k-0613", messages=[ { "role": "system", "content": "You are a task creation AI." }, { "role": "user", "content": prompt } ], temperature=0.7, max_tokens=1500, top_p=1, frequency_penalty=0, presence_penalty=0 ) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] print("\n#" + str(result)) # Check if the returned result has the expected structure if isinstance(result, str): try: task_list = json.loads(result) # print("RESULT:") print(task_list) # return [],[],[] return task_list[0], task_list[1], task_list[2] except Exception as error: print(error) else: raise ValueError("Invalid task list structure in the output") def get_tasks(self): """ Returns the current list of tasks. Returns: list: the list of tasks. """ return self.tasks def get_task(self, task_id): """ Returns a task given its task_id. Parameters: task_id : int The unique ID of the task. Returns: dict The task that matches the task_id. """ matching_tasks = [task for task in self.tasks if task["id"] == task_id] if matching_tasks: return matching_tasks[0] else: print(f"No task found with id {task_id}") return None def print_tasklist(self, task_list): p_tasklist="\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m" for t in task_list: dependent_task_ids = t.get('dependent_task_ids', []) dependent_task = "" if dependent_task_ids: dependent_task = f"\033[31m<dependencies: {', '.join([f'#{dep_id}' for dep_id in dependent_task_ids])}>\033[0m" status_color = "\033[32m" if t.get('status') == "completed" else "\033[31m" p_tasklist+= f"\033[1m{t.get('id')}\033[0m: {t.get('task')} {status_color}[{t.get('status')}]\033[0m \033[93m[{t.get('skill')}] {dependent_task}\033[0m\n" print(p_tasklist) class ExampleObjectivesLoader: def __init__(self, objectives_folder_path): self.objectives_folder_path = objectives_folder_path self.objectives_examples = [] # Initialize as an empty list def load_objectives_examples(self): self.objectives_examples = [] for filename in os.listdir(self.objectives_folder_path): file_path = os.path.join(self.objectives_folder_path, filename) with open(file_path, 'r') as file: objectives = json.load(file) self.objectives_examples.extend(objectives) def find_most_relevant_objective(self, user_input): user_input_embedding = self.get_embedding(user_input, model='text-embedding-ada-002') most_relevant_objective = max( self.objectives_examples, key=lambda pair: self.cosine_similarity(pair['objective'], user_input_embedding) ) return most_relevant_objective['objective'], most_relevant_objective['examples'] def get_embedding(self, text, model='text-embedding-ada-002'): response = openai.Embedding.create(input=[text], model=model) embedding = response['data'][0]['embedding'] return embedding def cosine_similarity(self, objective, embedding): max_similarity = float('-inf') objective_embedding = self.get_embedding(objective, model='text-embedding-ada-002') similarity = self.calculate_similarity(objective_embedding, embedding) max_similarity = max(max_similarity, similarity) return max_similarity def calculate_similarity(self, embedding1, embedding2): embedding1 = np.array(embedding1, dtype=np.float32) embedding2 = np.array(embedding2, dtype=np.float32) similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2)) return similarity def load_example_objectives(self, user_objective): self.load_objectives_examples() most_relevant_objective, most_relevant_tasklist = self.find_most_relevant_objective(user_objective) example_objective = most_relevant_objective example_tasklist = most_relevant_tasklist return example_objective, example_tasklist
[ "Always select at least one skill.", "TASK LIST=", "Provide your array as a JSON array with double quotes. The first object is new tasks to add as a JSON array, the second array lists the ID numbers where the new tasks should be added after (number of ID numbers matches array), and the third object provides the tasks that need to be updated.", "\n###OUTPUT = ", "Use the current task list as reference.", "Dependent IDs must be smaller than the ID of the task.", "Make sure all task IDs are in chronological order.###\n", "AVAILABLE SKILLS: PLACEHOLDER.###", "Only add skills from the AVAILABLE SKILLS, using the exact same spelling.", "Make sure to keep dependent_task_ids key, even if an empty array.", "As you add a new task, see if there are any tasks that need to be updated (such as updating dependencies).", "Create a very short task list based on the objective, the final output of the last task will be provided back to the user. Limit tasks types to those that can be completed with the available skills listed below. Task description should be detailed.###", "Do not change the status of complete tasks.", "Do not add duplicate tasks to those in the current task list.", "New tasks IDs should be no larger than the last task ID.", "You are an expert task manager, review the task output to decide at least one new task to add.", "Always include one skill.", "Task IDs should be unique and in chronological order.", "You are an expert task list creation AI tasked with creating a list of tasks as a JSON array, considering the ultimate objective of your team: PLACEHOLDER. ", "OBJECTIVE=PLACEHOLDER", "\n###Here is the last task output: PLACEHOLDER", "Do not use skills that are not listed.", "You are a task creation AI.", "Every new and updated task must include all variables, even they are empty array.", "dependent_task_ids should always be an empty array, or an array of numbers representing the task ID it should pull results from.", "Only provide JSON as your response without further comments." ]