date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
elias-jhsph/jarvis-conversationalist
src~jarvis_conversationalist~openai_functions~internet_helper.py
import json import multiprocessing import threading import requests from bs4 import BeautifulSoup from openai import OpenAI, _utils from googlesearch import search as google_search from tiktoken import encoding_for_model client = OpenAI() _utils._logs.logger.setLevel("CRITICAL") basic_model = "gpt-3.5-turbo-16k" advanced_model = "gpt-4" enc = encoding_for_model(advanced_model) temperature = 0.6 def search(search_term: str, num_results: int = 10, advanced: bool = False) -> dict: """ Searches for a term using either Google Custom Search API or a free alternative. :param search_term: The term to search for. :type search_term: str :param num_results: The number of results to return, defaults to 10. :type num_results: int, optional :param advanced: Whether to use advanced info, defaults to False. :type advanced: bool, optional :return: A dictionary containing the search results. :rtype: dict """ search_results = [] for url in google_search(search_term, num_results=num_results, advanced=advanced): if advanced: search_results.append({"link": url.url, "title": url.title, "description": url.description}) else: search_results.append({"link": url}) return {"items": search_results} def refine_query(query: str) -> str: """ Refines a query using the OpenAI API. This function is used to refine a query to get better search results. It uses the OpenAI API to ask the user for context and keywords to add to the query. The user's response is then sent directly to google. :param query: The query to refine. :type query: str :return: The refined query. :rtype: str """ response = client.chat.completions.create(model=advanced_model, messages=[{"role": "user", "content": f"Please help me improve this search query for better results: '{query}'. Add context and keywords " "you think help better capture the idea behind the query. The response you send will go directly " "into google. Here is a helpful reminder of google tools you can use but consider not using them " "if you don't think you need them. Make sure some keywords aren't in quotes or you risk " "only getting results with those exact words in that order:\n\n" 'Quotes (""): Use quotes to search for an exact phrase or word order.\n' "Minus (-): Exclude a specific word from your search.\n" "Asterisk (*): Use as a placeholder for unknown words.\n" "OR: Search for multiple terms or phrases.\n" "intitle: (intitle:): Search for words specifically in the title of webpages.\n" "intext: (intext:): Search for words specifically in the body of webpages.\n" "Note: Do not be so specific in your search that you miss the general point of the query. Also " "DO NOT SURROUND THE ENTIRE QUERY BY QUOTES.\n Query:"}], max_tokens=100, n=1, temperature=temperature) refined_query = response.choices[0].message.content return refined_query def extract_content(url: str) -> str: """ Extracts the content from a webpage using BeautifulSoup. :param url: The URL of the webpage. :type url: str :return: The content of the webpage. :rtype: str """ try: response = requests.get(url) soup = BeautifulSoup(response.text, "html.parser") paragraphs = soup.find_all("p") content = " ".join([p.get_text() for p in paragraphs]) return content except Exception as e: print(f"Error extracting content from {url}: {e}") return "" def summarize(content: str, refined_query: str) -> str: """ Summarizes a piece of text using the OpenAI API. :param content: The text to summarize. :type content: str :param refined_query: The refined query. :type refined_query: str :return: The summary. :rtype: str """ response = client.chat.completions.create(model=basic_model, messages=[{'role': 'system', 'content': f'There was a search for the following query:\n"{refined_query}"\nPlease ' f'provide a concise summary of the following content while keeping mind ' f'what will best respond to the search query:\n{content}\n'}], max_tokens=400, n=1, stop=None, temperature=temperature) summary = response.choices[0].message.content return summary def rank_relevance(url: str, summary: str, query: str) -> int: """ Ranks the relevance of a summary using the OpenAI API. :param url: The URL of the webpage. :type url: str :param summary: The summary. :type summary: str :param query: The query. :type query: str :return: The relevance of the summary. """ prompt = f"Given the query '{query}', rate the relevance of this summary from 1 (not relevant) to 10 (highly " \ f"relevant):\nURL: {url}\nSummary: {summary}" schema = {"type": "function", "function": { "name": "store_rank_relevance", "description": "Stores the relevance of a summary.", "parameters": { "type": "object", "properties": { "relevance": { "type": "number", "description": "The relevance of the summary. relevance is a number from 1 to 10.", }, }, "required": ["relevance"], }, } } response = client.chat.completions.create(model=advanced_model, messages=[{'role': 'system', 'content': prompt}], max_tokens=100, n=1, stop=None, temperature=temperature, tools=[schema], tool_choice={"type": "function", "function": {"name": "store_rank_relevance"}}) relevance_raw = response.choices[0].message.tool_calls[0].function.arguments relevance = int(json.loads(relevance_raw)['relevance']) return relevance def synthesize_information(summaries: list, query: str) -> str: """ Synthesizes information from a list of summaries using the OpenAI API. :param summaries: The list of summaries. :type summaries: list :param query: The query. :type query: str """ summaries_text = "\n".join([f"Summary {i + 1}: {summary}" for i, (url, summary) in enumerate(summaries)]) response = client.chat.completions.create(model=advanced_model, messages=[{"role": "system", "content": f"Given the following summaries about '{query}', please synthesize " f"a coherent and comprehensive response:\n{summaries_text}\n"}], max_tokens=500, n=1, temperature=temperature) synthesized_info = response.choices[0].message.content return synthesized_info def truncate_content(content: str, max_tokens: int = 3500) -> str: """ Truncates a piece of text to a maximum number of tokens. :param content: The text to truncate. :type content: str :param max_tokens: The maximum number of tokens. :type max_tokens: int :return: The truncated text. :rtype: str """ tokens = enc.encode(content) if len(tokens) > max_tokens: tokens = tokens[:max_tokens] truncated_content = enc.decode(tokens) return truncated_content + "(TRUNCATED)" else: return content def search_helper(query: str, result_number: int = 6, skip: threading.Event = None) -> dict: """ Helper function for search. This function is used to run the search for a given query by first refining the query, then searching for the query, then summarizing the results, then ranking the relevance of the summaries, and finally synthesizing the information :param query: The query. :type query: str :param result_number: The number of results to return. :type result_number: int :param skip: A threading.Event object that can be used to stop the search. :type skip: threading.Event :return: A dictionary containing the search results. :rtype: dict """ search_data = {"initial_query": query, "refined_query": refine_query(query), "search_results": [], "ranked_summaries": [], "synthesized_information": None} temp = search(query, num_results=result_number) if "items" not in temp: search_data["refined_query"] = query temp = search(search_data["refined_query"], num_results=result_number) search_data["search_results"] = temp['items'] for result in search_data["search_results"]: if skip is not None: if skip.is_set(): return {} content = extract_content(result['link']) summary = summarize(truncate_content(content), search_data["refined_query"]) snippet = result.get('snippet', '') # Use an empty string if snippet is not available search_data["ranked_summaries"].append({"url": result['link'], "content": content, "summary": summary, "snippet": snippet}) for summary_data in search_data["ranked_summaries"]: if skip is not None: if skip.is_set(): return {} relevance = rank_relevance(summary_data["url"], summary_data["summary"], search_data["refined_query"]) summary_data["relevance"] = relevance search_data["ranked_summaries"].sort(key=lambda x: x["relevance"], reverse=True) if skip is not None: if skip.is_set(): return {} search_data["synthesized_information"] = synthesize_information( [(data["url"], data["summary"]) for data in search_data["ranked_summaries"]], search_data["refined_query"] ) return search_data def simplify_output(search_data: dict) -> dict: """ Simplifies the output of the search function. :param search_data: The output of the search function. :type search_data: dict :return: A simplified version of the output of the search function. :rtype: dict """ simplified_output = {k: v for k, v in search_data.items() if k != "summaries"} for summary_data in simplified_output["ranked_summaries"]: summary_data.pop("content", None) return simplified_output def generate_final_prompt(simplified_output: dict, max_tokens: int = 1800) -> str: """ Generates the final prompt for the chatbot. This function is used to generate the final prompt for the chatbot by combining the information from the search function. :param simplified_output: The simplified output of the search function. :type simplified_output: dict :param max_tokens: The maximum number of tokens. :type max_tokens: int :return: The final prompt for the chatbot. :rtype: str """ synthesized_information = simplified_output["synthesized_information"] ranked_summaries = simplified_output["ranked_summaries"] refined_query = simplified_output["refined_query"] user_query = simplified_output["initial_query"] ranked_summaries_text = "\n".join( [f"{i + 1}. {summary['url']} (Relevance: {summary['relevance']}):\n{summary['summary']}" for i, summary in enumerate(ranked_summaries)] ) pre_prompt = ( f"The user has requested a response to the following query '{user_query}'.\n" f"An AI language model working with you has conducted an internet search for '{refined_query}', " f"which was based on the provided user query. " f"It has synthesized the following information from the search results: '{synthesized_information}'. " f"Here are the ranked summaries of the top search results:\n\n" ) post_prompt = ( f"\n\n" f"Please analyze these results and provide the most appropriate response to the User.\n" f"Consider the following options:\n" f"1. Pass along the final summary\n" f"2. Provide a very short final answer\n" f"3. Suggest specific websites for further reading\n" f"4. Recommend a deeper search or further inquiry\n" f"5. Offer color commentary on the findings\n" f"6. Combine any of the above options.\n" f"NOTE: Provide the exact response that you would have me give the user. DO NOT mention which approach you " f"have chosen. Give your response exactly as you would give it to the end user.\n\n" f"Remember the user doesn't have access to the results above, so any text you want to refer to from above " f"you must reiterate that information to the user in your own words! " f"And don't forget your first system message (NO FULL URLS)! Good luck!" ) prompt = pre_prompt + ranked_summaries_text + post_prompt tokens = enc.encode(prompt) if len(tokens) > max_tokens: diff = len(tokens) - max_tokens new = enc.encode(ranked_summaries_text) if len(new) < diff+10: raise Exception("Could not shrink internet final prompt within limit!") prompt = pre_prompt + truncate_content(ranked_summaries_text, len(new) - (diff+10)) + post_prompt return prompt def create_internet_context(query: str, result_number: int = 10, max_tokens: int = 1800, skip: threading.Event = None) -> tuple: """ Creates the internet context for the chatbot. This function is used to create the internet context for the chatbot by combining the information from the search function. Then it generates the final prompt for the chatbot. Then it returns the final prompt and the simplified output of the search function. :param query: The query to search for. :type query: str :param result_number: The number of results to return. :type result_number: int :param max_tokens: The maximum number of tokens. :type max_tokens: int :param skip: The skip object. :type skip: Skip :return: The final prompt for the chatbot and the simplified output of the search function. :rtype: tuple """ if skip is None: skip = multiprocessing.Event() if skip.is_set(): return "Sorry." if skip is not None: if skip.is_set(): return "", {} search_data = search_helper(query, result_number=result_number, skip=skip) if skip is not None: if skip.is_set(): return "", {} simplified_output = simplify_output(search_data) if skip is not None: if skip.is_set(): return "", {} result = generate_final_prompt(simplified_output, max_tokens=max_tokens) return result, simplified_output
[ "Please help me improve this search query for better results: 'PLACEHOLDER'. Add context and keywords you think help better capture the idea behind the query. The response you send will go directly into google. Here is a helpful reminder of google tools you can use but consider not using them if you don't think you need them. Make sure some keywords aren't in quotes or you risk only getting results with those exact words in that order:\n\nQuotes (\"\"): Use quotes to search for an exact phrase or word order.\nMinus (-): Exclude a specific word from your search.\nAsterisk (*): Use as a placeholder for unknown words.\nOR: Search for multiple terms or phrases.\nintitle: (intitle:): Search for words specifically in the title of webpages.\nintext: (intext:): Search for words specifically in the body of webpages.\nNote: Do not be so specific in your search that you miss the general point of the query. Also DO NOT SURROUND THE ENTIRE QUERY BY QUOTES.\n Query:", "Given the query 'PLACEHOLDER', rate the relevance of this summary from 1 (not relevant) to 10 (highly relevant):\nURL: PLACEHOLDER\nSummary: PLACEHOLDER", "PLACEHOLDERPLACEHOLDERPLACEHOLDER", "The user has requested a response to the following query 'PLACEHOLDER'.\nAn AI language model working with you has conducted an internet search for 'PLACEHOLDER', which was based on the provided user query. It has synthesized the following information from the search results: 'PLACEHOLDER'. Here are the ranked summaries of the top search results:\n\n", "Given the following summaries about 'PLACEHOLDER', please synthesize a coherent and comprehensive response:\nPLACEHOLDER\n", "\n\nPlease analyze these results and provide the most appropriate response to the User.\nConsider the following options:\n1. Pass along the final summary\n2. Provide a very short final answer\n3. Suggest specific websites for further reading\n4. Recommend a deeper search or further inquiry\n5. Offer color commentary on the findings\n6. Combine any of the above options.\nNOTE: Provide the exact response that you would have me give the user. DO NOT mention which approach you have chosen. Give your response exactly as you would give it to the end user.\n\nRemember the user doesn't have access to the results above, so any text you want to refer to from above you must reiterate that information to the user in your own words! And don't forget your first system message (NO FULL URLS)! Good luck!", "There was a search for the following query:\n\"PLACEHOLDER\"\nPlease provide a concise summary of the following content while keeping mind what will best respond to the search query:\nPLACEHOLDER\n" ]
2024-01-10
elias-jhsph/jarvis-conversationalist
src~jarvis_conversationalist~openai_functions~weather_functions.py
import requests import geocoder from openai import OpenAI client = OpenAI() temperature = 0.6 basic_model = "gpt-3.5-turbo-16k" def geocoder_api(query): g = geocoder.geonames(query, key='eliaswf', maxRows=1) return g.lat, g.lng def summarize(query:str, content: str) -> str: """ Summarizes a piece of text using the OpenAI API. :param query: The query to summarize. :type query: str :param content: The text to summarize. :type content: str :return: The summary. :rtype: str """ response = client.chat.completions.create(model=basic_model, messages=[{'role': 'system', 'content': f'There was a search for the following weather:\n"{query}"\nPlease ' f'provide a concise summary of the following content while keeping ' f'mind what will best respond to the query:\n{content}\n'}], max_tokens=400, n=1, stop=None, temperature=temperature) summary = response.choices[0].message.content return summary def get_weather(city_name): api_key = '916a78d6305cef8f326831938dfe03f7' lat, lng = geocoder_api(city_name) url = f"https://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lng}&appid={api_key}&units=imperial" response = requests.get(url) if response.status_code == 200: weather_data = response.json() formatted_response = "" # Extract the city information city = weather_data['city']['name'] country = weather_data['city']['country'] formatted_response += f"Weather Forecast for {city}, {country}\n\n" # Go through each weather entry in the list for entry in weather_data['list']: # Convert temperature from Kelvin to Celsius temp_farenheit = entry['main']['temp'] feels_like_farenheit = entry['main']['feels_like'] temp_min_farenheit = entry['main']['temp_min'] temp_max_farenheit = entry['main']['temp_max'] # Format the date and time formatted_date = entry['dt_txt'] # Add the details to the response formatted_response += f"{formatted_date}\n" formatted_response += f" - Temperature: {temp_farenheit:.2f}°F (Feels like: {feels_like_farenheit:.0f}°F)\n" formatted_response += f" - Min Temperature: {temp_min_farenheit:.0f}°F\n" formatted_response += f" - Max Temperature: {temp_max_farenheit:.0f}°F\n" formatted_response += f" - Pressure: {entry['main']['pressure']} hPa\n" formatted_response += f" - Humidity: {entry['main']['humidity']}%\n" formatted_response += f" - Weather: {entry['weather'][0]['description'].capitalize()}\n" formatted_response += f" - Cloudiness: {entry['clouds']['all']}%\n" formatted_response += f" - Wind: {entry['wind']['speed']} m/s, {entry['wind']['deg']} degrees\n" if 'rain' in entry: formatted_response += f" - Rain Volume: {entry['rain']['3h']} mm/3h\n" formatted_response += f" - Probability of Precipitation: {entry['pop'] * 100}%\n\n" #return summarize(city_name, formatted_response) return formatted_response else: return "City not found or request failed"
[ "There was a search for the following weather:\n\"PLACEHOLDER\"\nPlease provide a concise summary of the following content while keeping mind what will best respond to the query:\nPLACEHOLDER\n" ]
2024-01-10
andifunke/topic-labeling
src~topic_reranking.py
# coding: utf-8 import argparse import json from collections import defaultdict from os import makedirs from os.path import join, exists from time import time import numpy as np import pandas as pd from gensim.models import CoherenceModel from pandas.core.common import SettingWithCopyWarning from constants import DATASETS, METRICS, PARAMS, NBTOPICS, LDA_PATH, PLACEHOLDER import warnings from utils import TopicsLoader, load, init_logging, log_args warnings.simplefilter(action="ignore", category=SettingWithCopyWarning) warnings.simplefilter(action="ignore", category=FutureWarning) pd.options.display.precision = 3 pd.options.display.max_columns = 15 pd.options.display.width = 2000 np.set_printoptions( precision=3, threshold=None, edgeitems=None, linewidth=800, suppress=None ) # -------------------------------------------------------------------------------------------------- # --- Reranker Class --- class Reranker(object): def __init__( self, dataset, version="noun", corpus_type="bow", params="e42", nbtopics=100, nb_candidate_terms=20, nb_top_terms=10, processes=-1, logg=print, ): """ :param nb_candidate_terms: number of topic terms to evaluate the model over. nb_candidate_terms must be > nb_top_terms. The value is usually infered from the given topics. :param nb_top_terms: number of remaining topic terms. The size of the final topic representation set. nb_top_terms ust be < nb_candidate_terms. :param processes: number of processes used for the calculations. """ self.logg = logg self.dataset = dataset self.version = version self.corpus_type = corpus_type self.nb_top_terms = nb_top_terms self.nb_candidate_terms = nb_candidate_terms self.processes = processes tl = TopicsLoader( dataset=dataset, version=version, corpus_type=corpus_type, param_ids=params, nbs_topics=nbtopics, topn=nb_candidate_terms, include_corpus=True, include_texts=True, include_weights=True, logg=logg, ) self.dict_from_corpus = tl.dictionary self.placeholder_id = tl.dictionary.token2id[PLACEHOLDER] self.corpus = tl.corpus self.texts = tl.texts self.nb_topics = tl.nb_topics self.topic_terms = tl.topics[tl.column_names_terms].copy() self.topic_weights = tl.topics[tl.column_names_weights].copy() self.topic_ids = tl.topic_ids() self.shifted_topics = None self.kvs = None self.topic_candidates = None self.scores = None self.eval_scores = None # generate some statistics self._statistics_ = dict() self._statistics_["dataset"] = dataset self._statistics_["version"] = version def _shift_topics(self): """ from the top n terms construct all topic set that omit one term, resulting in n topics with n-1 topic terms for each topic """ shifted_frames = [] for i in range(self.nb_candidate_terms): df = pd.DataFrame(np.roll(self.topic_ids.values, shift=-i, axis=1)) shifted_frames.append(df) shifted_ids = pd.concat(shifted_frames) # omit the first topic term, then the second and append the first etc... shifted_topics = shifted_ids.iloc[:, 1:].values.tolist() return shifted_topics def _init_vectors(self): d2v = load("d2v", logg=self.logg).docvecs w2v = load("w2v", logg=self.logg).wv ftx = load("ftx", logg=self.logg).wv # Dry run to make sure both indices are fully in RAM d2v.init_sims() vector = d2v.vectors_docs_norm[0] _ = d2v.index2entity[0] d2v.most_similar([vector], topn=5) w2v.init_sims() vector = w2v.vectors_norm[0] _ = w2v.index2entity[0] w2v.most_similar([vector], topn=5) ftx.init_sims() vector = ftx.vectors_norm[0] _ = ftx.index2entity[0] ftx.most_similar([vector], topn=5) self.kvs = {"d2v": d2v, "w2v": w2v, "ftx": ftx} def _id2term(self, id_): return self.dict_from_corpus[id_] def _append_candidates(self, topic_candidates): if self.topic_candidates is None: self.topic_candidates = topic_candidates.sort_index() self.logg(f"topic candidates {self.topic_candidates.shape}") else: self.logg(f"topic candidates old {self.topic_candidates.shape}") self.logg(f"topic candidates add {topic_candidates.shape}") self.topic_candidates = self.topic_candidates.append( topic_candidates.drop("ref", level="metric") ).sort_index() self.logg(f"topic candidates concatenated {self.topic_candidates.shape}") def _add_scores(self, scores): if self.scores is None: self.scores = scores else: self.scores = self.scores.join(scores) def _vote(self, df, reference, name="vote"): return ( df.loc[:, "term0":f"term{self.nb_top_terms - 1}"] .apply(pd.value_counts) .sum(axis=1)[reference] .dropna() .astype(np.int16) .reset_index() .rename(columns={"index": "term", 0: "count"}) .sort_values("count", ascending=False, kind="mergesort")[ : self.nb_top_terms ] .set_index("term") .squeeze()[reference] .dropna() .reset_index() .rename(lambda x: f"term{x}") .drop("count", axis=1) .squeeze() .rename(name) ) def _get_reference(self): metric = "ref" ref_topics_terms = ( self.topic_ids.iloc[:, : self.nb_top_terms] .copy() .assign(metric=metric) .set_index("metric", append=True) ) self._statistics_[metric] = dict() self._statistics_[metric]["runtime"] = 0 return ref_topics_terms def _rerank_coherence_per_metric(self, metric, coherence_model=None): """ Object method to trigger the reranking for a given metric. It uses the fast heuristic for the reranking in O(n) with n being the number of candidate terms. A coherence metric is applied on each set of topic terms, when we leave exactly one term out. The resulting coherence score indicates, if a term strengthens or weakens the coherence of a topic. We remove those terms from the set whose absence resulted in higher scores. :param metric: :param coherence_model: :return: """ if self.shifted_topics is None: self.shifted_topics = self._shift_topics() t0 = time() self.logg( f"Calculating topic candidates using {metric} coherence measure " f"on {self.nb_candidate_terms} candidate terms " f"for {self.nb_topics} topics" ) # calculate the scores for all shifted topics kwargs = dict( topics=self.shifted_topics, dictionary=self.dict_from_corpus, coherence=metric, topn=self.nb_candidate_terms - 1, processes=self.processes, ) if metric == "u_mass": kwargs["corpus"] = self.corpus else: kwargs["texts"] = self.texts if coherence_model is None: cm = CoherenceModel(**kwargs) else: cm = coherence_model cm.coherence = metric scores1d = cm.get_coherence_per_topic() scores2d = np.reshape(scores1d, (self.nb_candidate_terms, -1)).T # the highest values indicate the terms whose absence improves the topic coherence most sorted_scores = np.argsort(scores2d, axis=1) # thus we will keep the first nbtopterms (default 10) indices top_scores = sorted_scores[:, : self.nb_top_terms] # and sort them back for convenience top_scores = np.sort(top_scores, axis=1) # replacing indices with token-ids tpx_ids = [ self.topic_ids.values[i, top_scores[i]] for i in range(self.nb_topics) ] tpx_ids = ( pd.DataFrame.from_records( tpx_ids, columns=self.topic_terms.columns[: self.nb_top_terms], index=self.topic_ids.index, ) .assign(metric=metric) .set_index("metric", append=True) ) t1 = int(time() - t0) self._statistics_[metric] = dict() self._statistics_[metric]["runtime"] = t1 self.logg( " done in {:02d}:{:02d}:{:02d}".format( t1 // 3600, (t1 // 60) % 60, t1 % 60 ) ) return tpx_ids def _rerank_w2v_values(self, topic_param): def _rank(_df, _name): _df[f"{_name}_drank"] = _df[f"{_name}_dscore"].rank().map(lambda x: x - 1) _df[f"{_name}_rrank"] = _df[f"{_name}_rscore"].rank().map(lambda x: x - 1) return _df def _fillna_max(_df): _mask = _df.isnull().any(axis=1) _df[_mask] = _df[_mask].apply(lambda x: x.fillna(x.max()), axis=1) return _df reference = pd.Series( np.arange(self.nb_candidate_terms), index=topic_param, name="ref" ) scores = [reference] for name, kv in self.kvs.items(): in_kv = np.vectorize(lambda x: x in kv) mask = in_kv(topic_param) topic = topic_param[mask] nb_terms_in_vocab = len(topic) rank_scores = defaultdict(int) dist_scores = defaultdict(float) for i in range(nb_terms_in_vocab): entity = topic[i] others = np.delete(topic, i) distances = kv.distances(entity, tuple(others)) argsort = distances.argsort() nearest = others[argsort] for j, term in zip(distances, others): dist_scores[term] += j for j, term in enumerate(nearest): rank_scores[term] += j d_score = pd.Series(dist_scores, name=f"{name}_dscore") r_score = pd.Series(rank_scores, name=f"{name}_rscore") dr = pd.concat([d_score, r_score], axis=1) dr = _rank(dr, name) scores.append(dr) df = pd.concat(scores, axis=1, sort=False) if df.isnull().any().any(): for s in ["dscore", "rscore", "drank", "rrank"]: scols = df.columns.str.contains(s) df.loc[:, scols] = _fillna_max(df.loc[:, scols]) # getting scores and ranks for all combinations -> calculating c = a+b for both distance and # rank scores and getting a rank for the sum for c, a, b in [ ("dw", "d2v", "w2v"), ("df", "d2v", "ftx"), ("wf", "w2v", "ftx"), ("dwf", "dw", "ftx"), ]: df[f"{c}_dscore"] = df[f"{a}_dscore"] + df[f"{b}_dscore"] df[f"{c}_rscore"] = df[f"{a}_rscore"] + df[f"{b}_rscore"] df = _rank(df, c) return df def _remove_not_matching_terms(self, kv_name, topic): kv = self.kvs[kv_name] in_kv = np.vectorize(lambda x: x in kv) mask = in_kv(topic) reduced_tpx = topic[mask] nb_terms_in_kv = len(reduced_tpx) if nb_terms_in_kv > self.nb_top_terms: for i in range(nb_terms_in_kv - self.nb_top_terms): remove = kv.doesnt_match(reduced_tpx) reduced_tpx = reduced_tpx[reduced_tpx != remove] elif nb_terms_in_kv == 0: reduced_tpx = topic[: self.nb_top_terms] elif nb_terms_in_kv < self.nb_top_terms: nb_missing = self.nb_top_terms - nb_terms_in_kv for i, m in enumerate(mask): if not m: mask[i] = True nb_missing -= 1 if nb_missing == 0: break reduced_tpx = topic[mask] ser = pd.Series(reduced_tpx, name=kv_name + "_matches") return ser def _rerank_w2v_by_group(self, topic): def _sort_terms(col): top_terms = col.sort_values().index.values[: self.nb_top_terms] col = col[col.index.isin(top_terms)] return col.index.values topic = topic.values[0] df = self._rerank_w2v_values(topic) rank_columns = [col for col in df.columns if ("rank" in col) or (col == "ref")] df_ranks = df[rank_columns] reranks = ( df_ranks.apply(_sort_terms, axis=0) .reset_index(drop=True) .T.rename(columns=lambda x: f"term{x}") ) dred = self._remove_not_matching_terms("d2v", topic) wred = self._remove_not_matching_terms("w2v", topic) fred = self._remove_not_matching_terms("ftx", topic) reds = pd.concat([dred, wred, fred], axis=1).T.rename( columns=lambda x: f"term{x}" ) reranks = pd.concat([reranks, reds]) votes = [] for name in ["rrank", "drank", "matches", ""]: subset = reranks[reranks.index.str.contains(name)] v = self._vote(subset, topic, f"{name}_vote_vec".strip("_")) votes.append(v) reranks = reranks.append(votes) return reranks def rerank_coherence(self, metrics=None): """ Main method of a Reranker instance. It generates topic candidates for the given coherence metrics. A topic candidate is a reranking of the representational terms of a topic. For each topic each metric generates one topic candidate. This results in |topics| * (|metrics|+1) topic candidates, or in other words |metrics|+1 candidates for each topic. The +1 offest is due to the original topic ranking added to the candidate set. The reranking is based on the top m topic terms and then reduced to the top n topic terms where m > n. Typical values are m=20 and n=10. The original order of the terms is kept while filtering out the terms outside the n best scores. :param metrics -> list of str. str must be in {'u_mass', 'c_v', 'c_uci', 'c_npmi', 'vote'}. :return DataFrame containing all topic candidates """ available_metrics = METRICS if metrics is None: metrics = available_metrics self.logg(f"Creating reranked top candidates for metrics {metrics}") candidates = [] # adding original (reference) topics ref_topics_terms = self._get_reference() candidates.append(ref_topics_terms) # adding several rerankings according to different metrics if "u_mass" in metrics: umass_topics_terms = self._rerank_coherence_per_metric("u_mass") candidates.append(umass_topics_terms) if "c_v" in metrics: cv_topics_terms = self._rerank_coherence_per_metric("c_v") candidates.append(cv_topics_terms) if "c_uci" in metrics: cuci_topics_terms = self._rerank_coherence_per_metric("c_uci") candidates.append(cuci_topics_terms) if "c_npmi" in metrics: cnpmi_topics_terms = self._rerank_coherence_per_metric("c_npmi") candidates.append(cnpmi_topics_terms) topic_candidates = pd.concat(candidates, axis=0) # adding candidates by majority votes from prior reference and rerankings if "vote" in metrics: vote_topics_terms = ( topic_candidates.groupby(level=[0, 1, 2, 3], sort=False) .apply( lambda x: self._vote( x, self.topic_ids.loc[x.name, :].values, name=x.name ) ) .assign(metric="vote_coh") .set_index("metric", append=True) ) topic_candidates = topic_candidates.append(vote_topics_terms) # replacing token-ids with tokens -> resulting in the final topic candidates top_cols = list(self.topic_terms.columns)[: self.nb_top_terms] topic_candidates.loc[:, top_cols] = topic_candidates.loc[:, top_cols].applymap( self._id2term ) self._append_candidates(topic_candidates) return topic_candidates def rerank_w2v(self, topics=None): t0 = time() self.logg(f"Creating reranked top candidates based on vector space similarity") if topics is None: topics = self.topic_terms if self.kvs is None: self._init_vectors() topic_candidates = topics.groupby(level=[0, 1, 2, 3], sort=False).apply( self._rerank_w2v_by_group ) topic_candidates.index = topic_candidates.index.rename(names="metric", level=-1) self._append_candidates(topic_candidates) t1 = int(time() - t0) metric = "vec_sim" self._statistics_[metric] = dict() self._statistics_[metric]["runtime"] = t1 self.logg( " done in {:02d}:{:02d}:{:02d}".format( t1 // 3600, (t1 // 60) % 60, t1 % 60 ) ) return topic_candidates def oop_score(self, topic_candidates=None): """measure the distance of a reranked topic to the reference via out-of-place score""" def _oop_score_by_row(row): columns = [col for col in row.index if col.startswith("term")] terms = row[columns].values ref_terms = self.topic_terms.loc[row.name[:4], :] ref_range = np.arange(self.nb_candidate_terms) ref_ranks_full = pd.Series(ref_range, index=ref_terms, name="ref") row_ranks = ref_ranks_full[terms] oop = (row_ranks - ref_range[: len(row_ranks)]).abs().sum() return oop if topic_candidates is None: topic_candidates = self.topic_candidates oop_scores = ( topic_candidates.apply(_oop_score_by_row, axis=1) .to_frame() .rename(columns={0: "oop_score"}) ) self._add_scores(oop_scores) return oop_scores def weight_score(self, topic_candidates=None): """ measure the distance of a reranked topic to the reference by calculating the remaining weight of its terms. """ def _weight_score_by_row(row): columns = [col for col in row.index if col.startswith("term")] terms = row[columns].values row_terms_full = self.topic_terms.loc[row.name[:4], :] row_weights_full = self.topic_weights.loc[row.name[:4], :] row_weights_full.index = row_terms_full.values row_weights = row_weights_full[terms] row_weight = row_weights.sum() ref_weight = row_weights_full[: len(row_weights)].sum() row_diff = ref_weight - row_weight return row_weight, row_diff if topic_candidates is None: topic_candidates = self.topic_candidates weight_scores = ( topic_candidates.apply(_weight_score_by_row, axis=1) .apply(pd.Series) .rename(columns={0: "weight_score", 1: "weight_diff"}) ) self._add_scores(weight_scores) return weight_scores def reranking_statistics(self): self._statistics_["nb_topics"] = self.nb_topics self._statistics_["nb_candidate_terms"] = self.nb_candidate_terms self._statistics_["nb_top_terms"] = self.nb_top_terms self._statistics_["size_vocabulary"] = len(self.dict_from_corpus) self._statistics_["size_corpus"] = len(self.corpus) return self._statistics_ def evaluate(self, topic_candidates=None, nbtopterms=None): """ evaluate topic coherence. This method is for convenience and actually redundant. The coherence scores should optimally be calculated in evaluate_topics.py which provides more features and metrics. """ self.logg("evaluating topic candidates") # reference scores per topic for top topic terms if nbtopterms is None: nbtopterms = self.nb_top_terms if topic_candidates is None: topic_candidates = self.topic_candidates topic_candidates = topic_candidates.loc[:, "term0":f"term{nbtopterms - 1}"] topics_list = topic_candidates.values.tolist() self.logg("> u_mass") t0 = time() cm_umass = CoherenceModel( topics=topics_list, corpus=self.corpus, dictionary=self.dict_from_corpus, coherence="u_mass", topn=nbtopterms, processes=self.processes, ) umass_scores = cm_umass.get_coherence_per_topic( with_std=False, with_support=False ) t1 = int(time() - t0) self.logg( " done in {:02d}:{:02d}:{:02d}".format( t1 // 3600, (t1 // 60) % 60, t1 % 60 ) ) self.logg("> c_v") t0 = time() cm_cv = CoherenceModel( topics=topics_list, texts=self.texts, dictionary=self.dict_from_corpus, coherence="c_v", topn=nbtopterms, processes=self.processes, ) cv_scores = cm_cv.get_coherence_per_topic() t1 = int(time() - t0) self.logg( " done in {:02d}:{:02d}:{:02d}".format( t1 // 3600, (t1 // 60) % 60, t1 % 60 ) ) # changed segmentation for c_uci and c_npmi from s_one_set to s_one_one (default) self.logg("> c_uci") t0 = time() cm_cuci = CoherenceModel( topics=topics_list, texts=self.texts, dictionary=self.dict_from_corpus, coherence="c_uci", topn=nbtopterms, processes=self.processes, ) cuci_scores = cm_cuci.get_coherence_per_topic() t1 = int(time() - t0) self.logg( " done in {:02d}:{:02d}:{:02d}".format( t1 // 3600, (t1 // 60) % 60, t1 % 60 ) ) self.logg("> c_npmi") t0 = time() cm_cuci.coherence = "c_npmi" # reusing precalculated probability estimates cnpmi_scores1 = cm_cuci.get_coherence_per_topic() t1 = int(time() - t0) self.logg( " done in {:02d}:{:02d}:{:02d}".format( t1 // 3600, (t1 // 60) % 60, t1 % 60 ) ) scores = { "u_mass_eval": umass_scores, "c_v_eval": cv_scores, "c_uci_eval": cuci_scores, "c_npmi_eval": cnpmi_scores1, } scores = pd.DataFrame(scores) scores.index = topic_candidates.index.copy() self.eval_scores = scores return scores def save_scores(self, scores, dataset, suffix="topic-scores", directory=None): if directory is None: directory = join(LDA_PATH, "topics") filename = join(directory, dataset) fcsv = f"{filename}_{suffix}.csv" self.logg(f"Writing scores to {fcsv}") scores.to_csv(fcsv) def save_results(self, directory=None, topics=True, scores=True, stats=True): if directory is None: directory = join(LDA_PATH, self.version, self.corpus_type, "topics") if not exists(directory): makedirs(directory) model_name = self.dataset file_path = join(directory, model_name) if topics and self.topic_candidates is not None: fcsv = f"{file_path}_reranker-candidates.csv" self.logg(f"Writing topic candidates to {fcsv}") self.topic_candidates.to_csv(fcsv) if stats: fjson = f"{file_path}_reranker-statistics.json" with open(fjson, "w") as fp: self.logg(f"Writing Reranker statistics to {fjson}") json.dump(self.reranking_statistics(), fp, ensure_ascii=False, indent=2) if scores and self.scores is not None: self.save_scores( self.scores, model_name, suffix="reranker-scores", directory=directory ) if scores and self.eval_scores is not None: self.save_scores( self.eval_scores, model_name, suffix="reranker-eval", directory=directory, ) def plot(self): self.plot_scores(self.eval_scores) def plot_scores(self, scores): scores = scores.unstack("metric") for column in scores.columns.levels[0]: scores[column].reset_index(drop=True).plot(title=column, grid=True) descr = scores[column].describe() mean = descr.loc["mean"] bestidx = mean.idxmax() bestval = mean[bestidx] self.logg(f"reranking metric with highest score: {bestidx} [{bestval:.3f}]") self.logg(descr.T[["mean", "std"]].sort_values("mean", ascending=False)) self.logg("-" * 50) # -------------------------------------------------------------------------------------------------- # --- App --- def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--dataset", type=str, required=True) parser.add_argument("--version", type=str, required=False, default="noun") parser.add_argument("--tfidf", dest="tfidf", action="store_true", required=False) parser.add_argument( "--no-tfidf", dest="tfidf", action="store_false", required=False ) parser.set_defaults(tfidf=False) parser.add_argument("--topn", type=int, required=False, default=20) parser.add_argument("--cores", type=int, required=False, default=4) parser.add_argument("--coh", dest="coh", action="store_true", required=False) parser.add_argument("--no-coh", dest="coh", action="store_false", required=False) parser.set_defaults(coh=True) parser.add_argument("--vec", dest="vec", action="store_true", required=False) parser.add_argument("--no-vec", dest="vec", action="store_false", required=False) parser.set_defaults(vec=True) parser.add_argument("--weight", dest="weight", action="store_true", required=False) parser.add_argument( "--no-weight", dest="weight", action="store_false", required=False ) parser.set_defaults(weight=True) parser.add_argument("--oop", dest="oop", action="store_true", required=False) parser.add_argument("--no-oop", dest="oop", action="store_false", required=False) parser.set_defaults(oop=True) parser.add_argument("--eval", dest="eval", action="store_true", required=False) parser.add_argument("--no-eval", dest="eval", action="store_false", required=False) parser.set_defaults(eval=False) parser.add_argument("--save", dest="save", action="store_true", required=False) parser.add_argument("--no-save", dest="save", action="store_false", required=False) parser.set_defaults(save=True) parser.add_argument("--plot", dest="save", action="store_true", required=False) parser.add_argument("--no-plot", dest="save", action="store_false", required=False) parser.set_defaults(plot=False) parser.add_argument( "--metrics", nargs="*", type=str, required=False, default=METRICS ) parser.add_argument("--params", nargs="*", type=str, required=False, default=PARAMS) parser.add_argument( "--nbtopics", nargs="*", type=int, required=False, default=NBTOPICS ) args = parser.parse_args() args.dataset = DATASETS.get(args.dataset, args.dataset) corpus_type = "tfidf" if args.tfidf else "bow" return ( args.dataset, args.version, corpus_type, args.metrics, args.params, args.nbtopics, args.topn, args.cores, args.coh, args.vec, args.weight, args.oop, args.eval, args.save, args.plot, args, ) def main(): ( dataset, version, corpus_type, metrics, params, nbtopics, topn, cores, coh, vec, weight, oop, evaluate, save, plot, args, ) = parse_args() # --- logging --- logger = init_logging( name=f"Reranking_{dataset}", basic=False, to_stdout=True, to_file=True ) logg = logger.info log_args(logger, args) t0 = time() reranker = Reranker( dataset=dataset, version=version, corpus_type=corpus_type, params=params, nbtopics=nbtopics, nb_candidate_terms=topn, nb_top_terms=10, processes=cores, logg=logg, ) if coh: reranker.rerank_coherence(metrics) if vec: reranker.rerank_w2v() if weight: reranker.weight_score() if oop: reranker.oop_score() if evaluate: reranker.evaluate() if save: reranker.save_results() if plot: reranker.plot() logg(f"final shape {reranker.topic_candidates.shape}") assert len(reranker.topic_candidates) == 24975 t1 = int(time() - t0) logg(f">>> done in {t1//3600:02d}:{(t1//60)%60:02d}:{t1%60:02d} <<<") return reranker if __name__ == "__main__": main()
[]
2024-01-10
andifunke/topic-labeling
src~evaluate_topics.py
import argparse import gc from os.path import join, exists from time import time import numpy as np import pandas as pd from gensim.models import CoherenceModel from constants import PARAMS, NBTOPICS, DATASETS, LDA_PATH, DSETS from utils import init_logging, load, log_args import warnings warnings.simplefilter(action="ignore", category=FutureWarning) def cosine_similarities(vector_1, vectors_all): norm = np.linalg.norm(vector_1) all_norms = np.linalg.norm(vectors_all, axis=1) dot_products = np.dot(vectors_all, vector_1) similarities = dot_products / (norm * all_norms) return similarities def pairwise_similarity(topic, kvs, ignore_oov=True): similarities = dict() for name, kv in kvs.items(): vector = lambda x: kv[x] if x in kv else np.nan vectors = topic.map(vector).dropna() if len(vectors) < 2: similarities[name] = np.nan continue vectors = vectors.apply(pd.Series).values sims = np.asarray([cosine_similarities(vec, vectors) for vec in vectors]).mean( axis=0 ) if not ignore_oov: missing = len(topic) - len(sims) if missing > 0: sims = np.append(sims, np.zeros(missing)) similarity = sims.mean() similarities[name] = similarity return pd.Series(similarities) def mean_similarity(topic, kvs): similarities = dict() for name, kv in kvs.items(): vector = lambda x: kv[x] if x in kv else np.nan vectors = topic.map(vector).dropna() if len(vectors) < 2: similarities[name] = np.nan continue vectors = vectors.apply(pd.Series).values mean_vec = np.mean(vectors, axis=0) similarity = cosine_similarities(mean_vec, vectors).mean() similarities[name] = similarity return pd.Series(similarities) def eval_coherence( topics, dictionary, corpus=None, texts=None, keyed_vectors=None, metrics=None, window_size=None, suffix="", cores=1, logg=print, topn=10, ): if not (corpus or texts or keyed_vectors): logg("provide corpus, texts and/or keyed_vectors") return if metrics is None: if corpus is not None: metrics = ["u_mass"] if texts is not None: if metrics is None: metrics = ["c_v", "c_npmi", "c_uci"] else: metrics += ["c_v", "c_npmi", "c_uci"] if keyed_vectors is not None: if metrics is None: metrics = ["c_w2v"] else: metrics += ["c_w2v"] # add out of vocabulariy terms dictionary and documents in_dict = topics.applymap(lambda x: x in dictionary.token2id) oov = topics[~in_dict] oov = oov.apply(set) oov = set().union(*oov) isstr = lambda x: isinstance(x, str) tolist = lambda x: [x] oov = sorted(map(tolist, filter(isstr, oov))) logg(f"OOV: {oov}") if oov: dictionary.add_documents(oov, prune_at=None) _ = dictionary[0] scores = dict() topics_values = topics.values for metric in metrics: t0 = time() gc.collect() logg(metric) txt = texts + oov if texts else None cm = CoherenceModel( topics=topics_values, dictionary=dictionary, corpus=corpus, texts=txt, coherence=metric, topn=topn, window_size=window_size, processes=cores, keyed_vectors=keyed_vectors, ) coherence_scores = cm.get_coherence_per_topic(with_std=True, with_support=True) scores[metric + suffix] = coherence_scores gc.collect() t1 = int(time() - t0) logg( " done in {:02d}:{:02d}:{:02d}".format( t1 // 3600, (t1 // 60) % 60, t1 % 60 ) ) df = pd.DataFrame(scores) df.index = topics.index gc.collect() return df def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--dataset", type=str, required=True) parser.add_argument("--version", type=str, required=False, default="noun") parser.add_argument("--tfidf", dest="tfidf", action="store_true", required=False) parser.add_argument( "--no-tfidf", dest="tfidf", action="store_false", required=False ) parser.set_defaults(tfidf=False) parser.add_argument("--rerank", dest="rerank", action="store_true", required=False) parser.add_argument( "--no-rerank", dest="rerank", action="store_false", required=False ) parser.set_defaults(rerank=False) parser.add_argument("--lsi", dest="lsi", action="store_true", required=False) parser.add_argument("--no-lsi", dest="lsi", action="store_false", required=False) parser.set_defaults(lsi=False) parser.add_argument("--params", nargs="*", type=str, required=False, default=PARAMS) parser.add_argument( "--nbtopics", nargs="*", type=int, required=False, default=NBTOPICS ) parser.add_argument("--topn", type=int, required=False, default=-1) parser.add_argument("--cores", type=int, required=False, default=4) parser.add_argument( "--method", type=str, required=False, default="both", choices=["coherence", "w2v", "both"], ) args = parser.parse_args() args.dataset = DSETS.get(args.dataset, args.dataset) corpus_type = "tfidf" if args.tfidf else "bow" lsi = "lsi" if args.lsi else "" use_coherence = args.method in ["coherence", "both"] use_w2v = args.method in ["w2v", "both"] return ( args.dataset, args.version, args.params, args.nbtopics, args.topn, args.cores, corpus_type, use_coherence, use_w2v, args.rerank, lsi, args, ) def main(): ( dataset, version, params, nbtopics, topn, cores, corpus_type, use_coherence, use_w2v, rerank, lsi, args, ) = parse_args() logger = init_logging( name=f"Eval_topics_{dataset}", basic=False, to_stdout=True, to_file=True ) log_args(logger, args) logg = logger.info purpose = "rerank" if rerank else "topics" topics = load( purpose, dataset, version, corpus_type, lsi, *params, *nbtopics, logg=logg ) if topn > 0: topics = topics[:topn] else: topn = topics.shape[1] logg(f"number of topics: {topics.shape}") unique_topics = topics.drop_duplicates() logg(f"number of unique topics: {unique_topics.shape}") wiki_dict = load("dict", "dewiki", "unfiltered", logg=logg) dfs = [] if use_coherence: dictionary = load("dict", dataset, version, corpus_type, logg=logg) corpus = load("corpus", dataset, version, corpus_type, logg=logg) texts = load("texts", dataset, version, logg=logg) df = eval_coherence( topics=unique_topics, dictionary=dictionary, corpus=corpus, texts=texts, keyed_vectors=None, metrics=None, window_size=None, suffix="", cores=cores, logg=logg, topn=topn, ) del dictionary, corpus, texts gc.collect() dfs.append(df) wiki_texts = load("texts", "dewiki", logg=logg) df = eval_coherence( topics=unique_topics, dictionary=wiki_dict, corpus=None, texts=wiki_texts, keyed_vectors=None, metrics=None, window_size=None, suffix="_wikt", cores=cores, logg=logg, topn=topn, ) gc.collect() dfs.append(df) df = eval_coherence( unique_topics, wiki_dict, corpus=None, texts=wiki_texts, keyed_vectors=None, metrics=["c_uci"], window_size=20, suffix="_wikt_w20", cores=cores, logg=logg, topn=topn, ) del wiki_texts gc.collect() dfs.append(df) df_sims = None if use_w2v: d2v = load("d2v", logg=logg).docvecs w2v = load("w2v", logg=logg).wv ftx = load("ftx", logg=logg).wv # Dry run to make sure both indices are fully in RAM d2v.init_sims() _ = d2v.vectors_docs_norm[0] w2v.init_sims() _ = w2v.vectors_norm[0] ftx.init_sims() _ = ftx.vectors_norm[0] df = eval_coherence( topics=unique_topics, dictionary=wiki_dict, corpus=None, texts=None, keyed_vectors=w2v, metrics=None, window_size=None, suffix="_w2v", cores=cores, logg=logger.info, topn=topn, ) gc.collect() dfs.append(df) df = eval_coherence( topics=unique_topics, dictionary=wiki_dict, corpus=None, texts=None, keyed_vectors=ftx, metrics=None, window_size=None, suffix="_ftx", cores=cores, logg=logger.info, topn=topn, ) gc.collect() dfs.append(df) # apply custom similarity metrics kvs = {"d2v": d2v, "w2v": w2v, "ftx": ftx} ms = unique_topics.apply(lambda x: mean_similarity(x, kvs), axis=1) ps = unique_topics.apply( lambda x: pairwise_similarity(x, kvs, ignore_oov=True), axis=1 ) ps2 = unique_topics.apply( lambda x: pairwise_similarity(x, kvs, ignore_oov=False), axis=1 ) df_sims = pd.concat( { "mean_similarity": ms, "pairwise_similarity_ignore_oov": ps, "pairwise_similarity": ps2, }, axis=1, ) del d2v, w2v, ftx gc.collect() dfs = pd.concat(dfs, axis=1) dfs = ( dfs.stack() .apply(pd.Series) .rename(columns={0: "score", 1: "stdev", 2: "support"}) .unstack() ) if df_sims is not None: dfs = pd.concat([dfs, df_sims], axis=1) # restore scores for all topics from results of unique topics topics.columns = pd.MultiIndex.from_tuples( [("terms", t) for t in list(topics.columns)] ) topic_columns = list(topics.columns) fillna = lambda grp: grp.fillna(method="ffill") if len(grp) > 1 else grp dfs = ( topics.join(dfs) .groupby(topic_columns) .apply(fillna) .drop(topic_columns, axis=1) ) tpx_path = join(LDA_PATH, version, "bow", "topics") if rerank: file = join(tpx_path, f"{dataset}_reranker-eval.csv") else: file = join( tpx_path, f'{dataset}{"_"+lsi if lsi else ""}_{version}_{corpus_type}_topic-scores.csv', ) if exists(file): file = file.replace(".csv", f'_{str(time()).split(".")[0]}.csv') logg(f"Writing {file}") dfs.to_csv(file) logg("done") return dfs if __name__ == "__main__": main()
[]
2024-01-10
opencui/dug
opencui~inference~schema_parser.py
#!/usr/bin/env python3 import json from opencui.core.annotation import (CamelToSnake, EntityMetas, ExemplarStore, FrameSchema, Schema, SlotSchema, get_value) # # This is used to create the DatasetCreator from OpenAI function descriptions. # # We assume that in each domain, the slot name are unique, and skill name are unique. # def from_openai(functions) -> Schema: skill_infos = {} slot_infos = {} to_snake = CamelToSnake() for func in functions: o_name = func["name"] f_name = to_snake.encode(o_name) f_description = func["description"] f_slots = [] parameters = func["parameters"] if parameters["type"] != "object": raise RuntimeError("Need to handle this case.") for key, slot in parameters["properties"].items(): f_slots.append(key) if key in slot_infos: continue else: slot_name = key slot_description = slot["description"] slot_infos[slot_name] = SlotSchema( slot_name, slot_description ).to_dict() skill_infos[f_name] = FrameSchema(f_name, f_description, f_slots).to_dict() return Schema(skill_infos, slot_infos, to_snake.backward) def from_openapi(specs) -> Schema: skills = {} slots = {} to_snake = CamelToSnake() print(specs) for path, v in specs["paths"].items(): for op, _v in v.items(): orig_name = _v["operationId"] name = to_snake.encode(orig_name) description = get_value(_v, "description") if description is None: description = get_value(_v, "summary") assert name is not None and description is not None parameters = [] for _p in get_value(_v, "parameters", []): slot_name = get_value(_p, "name") slot_description = get_value(_p, "description") if slot_name not in slots: slots[slot_name] = SlotSchema(slot_name, slot_description).to_dict() parameters.append(slot_name) skills[name] = FrameSchema(name, description, parameters).to_dict() return Schema(skills, slots, to_snake.backward) # This assumes that in a directory we have schemas.json in openai/openapi format, and then exemplars # recognizers. def load_schema_from_directory(path): schema_object = json.load(open(path)) return ( from_openai(schema_object) if isinstance(schema_object, list) else from_openapi(schema_object) ) def load_all_from_directory(input_path): module_schema = load_schema_from_directory(f"{input_path}/schemas.json") examplers = ExemplarStore(**json.load(open(f"{input_path}/exemplars.json"))) recognizers = EntityMetas(**json.load(open(f"{input_path}/recognizers.json"))) return module_schema, examplers, recognizers def load_specs_and_recognizers_from_directory(input_path): module_schema = load_schema_from_directory(f"{input_path}/schemas.json") recognizers = EntityMetas(**json.load(open(f"{input_path}/recognizers.json"))) return module_schema, recognizers if __name__ == "__main__": schema = from_openai(json.load(open("./examples/schemas.json"))) print(schema) print("\n") schema = from_openapi(json.load(open("./examples/openapi_petstore_v3.1.json"))) print(schema) print("\n") exemplars = ExemplarStore(**json.load(open("./examples/exemplars.json"))) print(exemplars) print("\n") recognizer = EntityMetas(**json.load(open("./examples/recognizers.json"))) print(recognizer) print("\n")
[]
2024-01-10
fperez/nitime
doc~examples~fmri3.py
#!/usr/bin/python #Imports as before: import numpy as np from matplotlib.pyplot import figure,legend from matplotlib.mlab import csv2rec from nitime.timeseries import TimeSeries from nitime.utils import percent_change import nitime.viz reload(nitime.viz) from nitime.viz import drawmatrix_channels #This time Import the coherence analyzer from nitime.analysis import CoherenceAnalyzer #This part is the same as before TR=1.89 data_rec = csv2rec('data/fmri_timeseries.csv') roi_names= np.array(data_rec.dtype.names) n_samples = data_rec.shape[0] data = np.zeros((len(roi_names),n_samples)) for n_idx, roi in enumerate(roi_names): data[n_idx] = data_rec[roi] data = percent_change(data) T = TimeSeries(data,sampling_interval=TR) T.metadata['roi'] = roi_names C = CoherenceAnalyzer(T) #We look only at frequencies between 0.02 and 0.15 (the physiologically #relevant band, see http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency: freq_idx = np.where((C.frequencies>0.02) * (C.frequencies<0.15))[0] #Extract the coherence and average across these frequency bands: coh = np.mean(C.coherence[:,:,freq_idx],-1) #Averaging on the last dimension drawmatrix_channels(coh,roi_names,size=[10.,10.],color_anchor=0)
[]
2024-01-10
fperez/nitime
doc~examples~multi_taper_coh.py
#!/usr/bin/python #Imports as before: import numpy as np import matplotlib.pyplot as pp from matplotlib.mlab import csv2rec from nitime.timeseries import TimeSeries from nitime import utils import nitime.algorithms as alg import nitime.viz reload(nitime.viz) from nitime.viz import drawmatrix_channels import scipy.stats.distributions as dist #This time Import the coherence analyzer from nitime.analysis import CoherenceAnalyzer #This part is the same as before TR=1.89 data_rec = csv2rec('data/fmri_timeseries.csv') roi_names= np.array(data_rec.dtype.names) nseq = len(roi_names) n_samples = data_rec.shape[0] data = np.zeros((nseq, n_samples)) for n_idx, roi in enumerate(roi_names): data[n_idx] = data_rec[roi] pdata = utils.percent_change(data) T = TimeSeries(pdata,sampling_interval=TR) T.metadata['roi'] = roi_names NW = 5 K = 2*NW-1 tapers, eigs = alg.DPSS_windows(n_samples, NW, 2*NW-1) tdata = tapers[None,:,:] * pdata[:,None,:] tspectra = np.fft.fft(tdata) mag_sqr_spectra = np.abs(tspectra) np.power(mag_sqr_spectra, 2, mag_sqr_spectra) # Only compute half the spectrum.. coherence for real sequences is symmetric L = n_samples/2 + 1 #L = n_samples w = np.empty( (nseq, K, L) ) for i in xrange(nseq): w[i], _ = utils.adaptive_weights_cython(mag_sqr_spectra[i], eigs, L) # calculate the coherence csd_mat = np.zeros((nseq, nseq, L), 'D') psd_mat = np.zeros((2, nseq, nseq, L), 'd') coh_mat = np.zeros((nseq, nseq, L), 'd') coh_var = np.zeros_like(coh_mat) for i in xrange(nseq): for j in xrange(i): sxy = alg.mtm_cross_spectrum( tspectra[i], tspectra[j], (w[i], w[j]), sides='onesided' ) sxx = alg.mtm_cross_spectrum( tspectra[i], tspectra[i], (w[i], w[i]), sides='onesided' ).real syy = alg.mtm_cross_spectrum( tspectra[j], tspectra[j], (w[i], w[j]), sides='onesided' ).real psd_mat[0,i,j] = sxx psd_mat[1,i,j] = syy coh_mat[i,j] = np.abs(sxy)**2 coh_mat[i,j] /= (sxx * syy) csd_mat[i,j] = sxy if i != j: coh_var[i,j] = utils.jackknifed_coh_variance( tspectra[i], tspectra[j], weights=(w[i], w[j]), last_freq=L ) upper_idc = utils.triu_indices(nseq, k=1) lower_idc = utils.tril_indices(nseq, k=-1) coh_mat[upper_idc] = coh_mat[lower_idc] coh_var[upper_idc] = coh_var[lower_idc] # convert this measure with the normalizing function coh_mat_xform = utils.normalize_coherence(coh_mat, 2*K-2) t025_limit = coh_mat_xform + dist.t.ppf(.025, K-1)*np.sqrt(coh_var) t975_limit = coh_mat_xform + dist.t.ppf(.975, K-1)*np.sqrt(coh_var) utils.normal_coherence_to_unit(t025_limit, 2*K-2, t025_limit) utils.normal_coherence_to_unit(t975_limit, 2*K-2, t975_limit) if L < n_samples: freqs = np.linspace(0, 1/(2*TR), L) else: freqs = np.linspace(0, 1/TR, L, endpoint=False) #We look only at frequencies between 0.02 and 0.15 (the physiologically #relevant band, see http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency: freq_idx = np.where((freqs>0.02) * (freqs<0.15))[0] #Extract the coherence and average across these frequency bands: coh = np.mean(coh_mat[:,:,freq_idx],-1) #Averaging on the last dimension drawmatrix_channels(coh,roi_names,size=[10.,10.],color_anchor=0, title='MTM Coherence') C = CoherenceAnalyzer(T) #We look only at frequencies between 0.02 and 0.15 (the physiologically #relevant band, see http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency: freq_idx = np.where((C.frequencies>0.02) * (C.frequencies<0.15))[0] #Extract the coherence and average across these frequency bands: coh = np.mean(C.coherence[:,:,freq_idx],-1) #Averaging on the last dimension drawmatrix_channels(coh,roi_names,size=[10.,10.],color_anchor=0, title='CoherenceAnalyzer') pp.show()
[]
2024-01-10
fperez/nitime
doc~examples~fmri6.py
#!/usr/bin/python #Imports as before: import numpy as np from matplotlib.pyplot import figure,legend from matplotlib.mlab import csv2rec from nitime.timeseries import TimeSeries from nitime.utils import percent_change import nitime.viz reload(nitime.viz) from nitime.viz import drawgraph_channels,drawmatrix_channels import nitime.analysis reload(nitime.analysis) from nitime.analysis import CoherenceAnalyzer #This part is the same as before TR=1.89 data_rec = csv2rec('data/fmri_timeseries.csv') roi_names= np.array(data_rec.dtype.names) n_samples = data_rec.shape[0] data = np.zeros((len(roi_names),n_samples)) for n_idx, roi in enumerate(roi_names): data[n_idx] = data_rec[roi] data = percent_change(data) T = TimeSeries(data,sampling_interval=TR) T.metadata['roi'] = roi_names C = CoherenceAnalyzer(T) freq_idx = np.where((C.frequencies>0.02) * (C.frequencies<0.15))[0] idx_lcau = np.where(roi_names=='lcau')[0] idx_rcau = np.where(roi_names=='rcau')[0] idx_lput = np.where(roi_names=='lput')[0] idx_rput = np.where(roi_names=='rput')[0] idx = np.hstack([idx_lcau,idx_rcau,idx_lput,idx_rput]) idx1 = np.vstack([[idx[i]]*4 for i in range(4)]).ravel() idx2 = np.hstack(4*[idx]) #For the third dimension, take always the index of the left caudate: idx3 = np.hstack(16*[idx_lcau]) #Extract the partial coherence and average across the frequency bands: phase = C.phase[idx1,idx2].reshape(4,4,C.frequencies.shape[0]) phase_m = np.mean(phase[:,:,freq_idx],-1) #Averaging on the last dimension
[]
2024-01-10
fperez/nitime
doc~examples~fmri5.py
#!/usr/bin/python #Imports as before: import numpy as np from matplotlib.pyplot import figure,legend from matplotlib.mlab import csv2rec from nitime.timeseries import TimeSeries from nitime.utils import percent_change import nitime.viz reload(nitime.viz) from nitime.viz import drawgraph_channels,drawmatrix_channels import nitime.analysis reload(nitime.analysis) from nitime.analysis import CoherenceAnalyzer #This part is the same as before TR=1.89 data_rec = csv2rec('data/fmri_timeseries.csv') roi_names= np.array(data_rec.dtype.names) n_samples = data_rec.shape[0] data = np.zeros((len(roi_names),n_samples)) for n_idx, roi in enumerate(roi_names): data[n_idx] = data_rec[roi] data = percent_change(data) T = TimeSeries(data,sampling_interval=TR) T.metadata['roi'] = roi_names C = CoherenceAnalyzer(T) freq_idx = np.where((C.frequencies>0.02) * (C.frequencies<0.15))[0] idx_lcau = np.where(roi_names=='lcau')[0] idx_rcau = np.where(roi_names=='rcau')[0] idx_lput = np.where(roi_names=='lput')[0] idx_rput = np.where(roi_names=='rput')[0] idx = np.hstack([idx_lcau,idx_rcau,idx_lput,idx_rput]) idx1 = np.vstack([[idx[i]]*4 for i in range(4)]).ravel() idx2 = np.hstack(4*[idx]) #For the third dimension, take always the index of the left caudate: idx3 = np.hstack(16*[idx_lcau]) #Extract the partial coherence and average across the frequency bands: coh = C.coherence_partial[idx1,idx2,idx3].reshape(4,4,C.frequencies.shape[0]) coh = np.mean(coh[:,:,freq_idx],-1) #Averaging on the last dimension drawgraph_channels(coh,roi_names[idx]) drawmatrix_channels(coh,roi_names[idx],color_anchor=0)
[]
2024-01-10
fperez/nitime
doc~examples~fmri4.py
#!/usr/bin/python #Imports as before: import numpy as np from matplotlib.pyplot import figure,legend from matplotlib.mlab import csv2rec from nitime.timeseries import TimeSeries from nitime.utils import percent_change import nitime.viz reload(nitime.viz) from nitime.viz import drawgraph_channels,drawmatrix_channels #This time Import the coherence analyzer from nitime.analysis import CoherenceAnalyzer #This part is the same as before TR=1.89 data_rec = csv2rec('data/fmri_timeseries.csv') roi_names= np.array(data_rec.dtype.names) n_samples = data_rec.shape[0] data = np.zeros((len(roi_names),n_samples)) for n_idx, roi in enumerate(roi_names): data[n_idx] = data_rec[roi] data = percent_change(data) T = TimeSeries(data,sampling_interval=TR) T.metadata['roi'] = roi_names C = CoherenceAnalyzer(T) freq_idx = np.where((C.frequencies>0.02) * (C.frequencies<0.15))[0] idx_lcau = np.where(roi_names=='lcau')[0] idx_rcau = np.where(roi_names=='rcau')[0] idx_lput = np.where(roi_names=='lput')[0] idx_rput = np.where(roi_names=='rput')[0] idx = np.hstack([idx_lcau,idx_rcau,idx_lput,idx_rput]) idx1 = np.vstack([[idx[i]]*4 for i in range(4)]).ravel() idx2 = np.hstack(4*[idx]) #Extract the coherence and average across these frequency bands: coh = C.coherence[idx1,idx2].reshape(4,4,C.frequencies.shape[0]) coh = np.mean(coh[:,:,freq_idx],2) #Averaging on the last dimension drawgraph_channels(coh,roi_names[idx])
[]
2024-01-10
BenJamesbabala/rl_algorithms
es~es.py
""" This is Natural Evolution Strategies, designed to run on one computer and not a cluster. (c) May 2017 by Daniel Seita, though obviously based on OpenAI's work/idea. """ import gym import logz import numpy as np import os import pickle import sys import tensorflow as tf import tensorflow.contrib.layers as layers import time import utils from collections import defaultdict from gym import wrappers np.set_printoptions(edgeitems=100, linewidth=100, suppress=True, precision=5) class ESAgent: def __init__(self, session, args, log_dir=None, continuous=True): """ An Evolution Strategies agent. It uses the same network architecture from OpenAI's paper, and I think OpenAI didn't sample the actions from a Gaussian afterwards. The agent has functionality for obtaining and updating weights in vector form to make ES addition easier. Args: session: A Tensorflow session. args: The argparse from the user. log_dir: The log directory for the logging, if any. continuous: Whether the agent acts in a continuous or discrete action space. (Right now only continuous is supported.) """ assert continuous == True, "Error: only continuous==True is supported." tf.set_random_seed(args.seed) self.sess = session self.args = args self.log_dir = log_dir self.env = gym.make(args.envname) ob_dim = self.env.observation_space.shape[0] ac_dim = self.env.action_space.shape[0] self.ob_no = tf.placeholder(shape=[None, ob_dim], dtype=tf.float32) # Build the final network layer, which is our action (no sampling!). self.sampled_ac = self._make_network(data_in=self.ob_no, out_dim=ac_dim)[0] # To *extract* weight values, run a session on `self.weights_v`. self.weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='ESAgent') self.weights_v = tf.concat([tf.reshape(w, [-1]) for w in self.weights], axis=0) self.shapes = [w.get_shape().as_list() for w in self.weights] self.num_ws = np.sum([np.prod(sh) for sh in self.shapes]) # To *update* weights, run `self.set_params_op` w/feed `self.new_weights_v`. self.new_weights_v = tf.placeholder(tf.float32, shape=[self.num_ws]) updates = [] start = 0 for (i,w) in enumerate(self.weights): shape = self.shapes[i] size = np.prod(shape) updates.append( tf.assign(w, tf.reshape(self.new_weights_v[start:start+size], shape)) ) start += size self.set_params_op = tf.group(*updates) if args.verbose: self._print_summary() self.sess.run(tf.global_variables_initializer()) def _make_network(self, data_in, out_dim): """ Build the network with the same architecture following OpenAI's paper. Returns the final *layer* of the network, which corresponds to our chosen action. There is no non-linearity for the last layer because different envs have different action ranges. """ with tf.variable_scope("ESAgent", reuse=False): out = data_in out = layers.fully_connected(out, num_outputs=64, weights_initializer = layers.xavier_initializer(uniform=True), #weights_initializer = utils.normc_initializer(0.5), activation_fn = tf.nn.tanh) out = layers.fully_connected(out, num_outputs=64, weights_initializer = layers.xavier_initializer(uniform=True), #weights_initializer = utils.normc_initializer(0.5), activation_fn = tf.nn.tanh) out = layers.fully_connected(out, num_outputs=out_dim, weights_initializer = layers.xavier_initializer(uniform=True), #weights_initializer = utils.normc_initializer(0.5), activation_fn = None) return out def _compute_return(self, test=False, store_info=False): """ Runs the current neural network policy. For now, we assume we run **one** episode. Also, we expand the observations to get a dummy dimension, in case we figure out how to make use of minibatches later. Args: test True if testing, False if part of training. The testing could be either the tests done after each weight update, or the tests done as a result fo the `test` method. store_info: True if storing info is desired, meaning that we return observations and actions. Returns: The scalar return to be evaluated by the ES agent. """ max_steps = self.env.spec.timestep_limit obs = self.env.reset() done = False steps = 0 total_rew = 0 observations = [] actions = [] while not done: exp_obs = np.expand_dims(obs, axis=0) action = self.sess.run(self.sampled_ac, {self.ob_no:exp_obs}) observations.append(obs) actions.append(action) # Apply the action *after* storing the current obs/action pair. obs, r, done, _ = self.env.step(action) total_rew += r steps += 1 if self.args.render and test: self.env.render() if steps >= max_steps or done: break if store_info: return total_rew, observations, actions else: return total_rew def _print_summary(self): """ Just for debugging assistance. """ print("\nES Agent NN weight shapes:\n{}".format(self.shapes)) print("\nES Agent NN weights:") for w in self.weights: print(w) print("\nNumber of weights: {}".format(self.num_ws)) print("\naction space: {}".format(self.env.action_space)) print("lower bound: {}".format(self.env.action_space.low)) print("upper bound: {}".format(self.env.action_space.high)) print("self.sampled_ac: {}\n".format(self.sampled_ac)) def run_es(self): """ Runs Evolution Strategies. Tricks used: - Antithetic (i.e. mirrored) sampling. - Rank transformation, using OpenAI's code. Tricks avoided: - Fixed Gaussian block. I like to just regenerate here. - Virtual batch normalization, seems to be only for Atari games. - Weight decay. Not sure how to do this. - Action discretization. For now, it adds extra complexity. Final weights are saved and can be pre-loaded elsewhere. """ args = self.args t_start = time.time() for i in range(args.es_iters): if (i % args.log_every_t_iter == 0): print("\n************ Iteration %i ************"%i) stats = defaultdict(list) # Set stuff up for perturbing weights and determining fitness. weights_old = self.sess.run(self.weights_v) # Shape (numw,) eps_nw = np.random.randn(args.npop/2, self.num_ws) scores_n2 = [] for j in range(args.npop/2): # Mirrored sampling, positive case, +eps_j. weights_new_pos = weights_old + args.sigma * eps_nw[j] self.sess.run(self.set_params_op, feed_dict={self.new_weights_v: weights_new_pos}) rews_pos = self._compute_return() # Mirrored sampling, negative case, -eps_j. weights_new_neg = weights_old - args.sigma * eps_nw[j] self.sess.run(self.set_params_op, feed_dict={self.new_weights_v: weights_new_neg}) rews_neg = self._compute_return() scores_n2.append([rews_pos,rews_neg]) # Determine the new weights based on OpenAI's rank updating. proc_returns_n2 = utils.compute_centered_ranks(np.array(scores_n2)) F_n = proc_returns_n2[:,0] - proc_returns_n2[:,1] grad = np.dot(eps_nw.T, F_n) # Apply the gradient update. TODO: Change this to ADAM. alpha = (args.lrate_es / (args.sigma*args.npop)) next_weights = weights_old + alpha * grad self.sess.run(self.set_params_op, feed_dict={self.new_weights_v: next_weights}) # Report relevant logs. if (i % args.log_every_t_iter == 0): hours = (time.time()-t_start) / (60*60.) # Test roll-outs with these new weights. returns = [] for _ in range(args.test_trajs): returns.append(self._compute_return(test=True)) logz.log_tabular("FinalAvgReturns", np.mean(returns)) logz.log_tabular("FinalStdReturns", np.std(returns)) logz.log_tabular("FinalMaxReturns", np.max(returns)) logz.log_tabular("FinalMinReturns", np.min(returns)) logz.log_tabular("ScoresAvg", np.mean(scores_n2)) logz.log_tabular("ScoresStd", np.std(scores_n2)) logz.log_tabular("ScoresMax", np.max(scores_n2)) logz.log_tabular("ScoresMin", np.min(scores_n2)) logz.log_tabular("TotalTimeHours", hours) logz.log_tabular("TotalIterations", i) logz.dump_tabular() # Save the weights so I can test them later. if (i % args.snapshot_every_t_iter == 0): itr = str(i).zfill(len(str(abs(args.es_iters)))) with open(self.log_dir+'/snapshots/weights_'+itr+'.pkl', 'wb') as f: pickle.dump(next_weights, f) # Save the *final* weights. itr = str(i).zfill(len(str(abs(args.es_iters)))) with open(self.log_dir+'/snapshots/weights_'+itr+'.pkl', 'wb') as f: pickle.dump(next_weights, f) def test(self, just_one=True): """ This is for test-time evaluation. No training is done here. By default, iterate through every snapshot. If `just_one` is true, this only runs one set of weights, to ensure that we record right away since OpenAI will only record subsets and less frequently. Changing the loop over snapshots is also needed. """ os.makedirs(self.args.directory+'/videos') self.env = wrappers.Monitor(self.env, self.args.directory+'/videos', force=True) headdir = self.args.directory+'/snapshots/' snapshots = os.listdir(headdir) snapshots.sort() num_rollouts = 10 if just_one: num_rollouts = 1 for sn in snapshots: print("\n***** Currently on snapshot {} *****".format(sn)) ### Add your own criteria here. # if "800" not in sn: # continue ### with open(headdir+sn, 'rb') as f: weights = pickle.load(f) self.sess.run(self.set_params_op, feed_dict={self.new_weights_v: weights}) returns = [] for i in range(num_rollouts): returns.append( self._compute_return(test=True) ) print("mean: \t{}".format(np.mean(returns))) print("std: \t{}".format(np.std(returns))) print("max: \t{}".format(np.max(returns))) print("min: \t{}".format(np.min(returns))) print("returns:\n{}".format(returns)) def generate_rollout_data(self, weights, num_rollouts): """ Roll out the expert data and save the observations and actions for imitation learning later. The observations and actions are stored in two separate lists of lists. For instance, with InvertedPendulum and 100 rollouts, the shapes will be be (100,1000,4) and (100,1000,1), with the 1000 representing 1000 time steps. The actual expert roll-outs may not last the same time length. Use the `ENV_TO_OBS_SHAPE` to guard against this scenario. We **zero-pad** if needed (maybe randomizing is better? but MuJoCo is continuous and actions are centered at zero...). TL;DR: leading dimension is the minibatch, second leading dimension is the timestep, third is the obs/act shape. If the obs/acts have two dimensions, let's linearize to avoid worrying about it. By the way, to experiment later with the *transits* only, just use the same data here except shuffle the code. This happens elsewhere. Args: weights: The desired weight vector. num_rollouts: The number of expert rollouts to save. """ # These are the shapes we need **for each trajectory**. ENV_TO_OBS_SHAPE = {"InvertedPendulum-v1": (1000,4)} ENV_TO_ACT_SHAPE = {"InvertedPendulum-v1": (1000,1)} if self.args.envname not in ENV_TO_OBS_SHAPE: print("Error, this environment is not supported.") sys.exit() headdir = self.args.directory+ '/expert_data' if not os.path.exists(headdir): os.makedirs(headdir) self.sess.run(self.set_params_op, feed_dict={self.new_weights_v: weights}) returns = [] observations = [] actions = [] for i in range(num_rollouts): if i % 10 == 0: print("rollout {}".format(i)) rew, obs_l, acts_l = self._compute_return(test=False, store_info=True) returns.append(rew) observations.append(obs_l) actions.append(acts_l) print("returns", returns) print("mean return", np.mean(returns)) print("std of return", np.std(returns)) # Fix padding issue to make lists have the same shape; we later make an # array. Check each (ol,al), tuple of lists, to ensure shapes match. If # the obs-list doesn't match, neither will the act-list, so test one. for (i,(ol,al)) in enumerate(zip(observations,actions)): obs_l = np.array(ol) act_l = np.array(al) print("{} {} {}".format(i, obs_l.shape, act_l.shape)) if obs_l.shape != ENV_TO_OBS_SHAPE[self.args.envname]: result_o = np.zeros(ENV_TO_OBS_SHAPE[self.args.envname]) result_a = np.zeros(ENV_TO_ACT_SHAPE[self.args.envname]) result_o[:obs_l.shape[0],:obs_l.shape[1]] = obs_l result_a[:act_l.shape[0],:act_l.shape[1]] = act_l print("revised shapes: {} {}".format(result_o.shape, result_a.shape)) obs_l = result_o act_l = result_a observations[i] = obs_l actions[i] = act_l expert_data = {'observations': np.array(observations), 'actions': np.array(actions)} # Save the data print("obs-shape = {}".format(expert_data['observations'].shape)) print("act-shape = {}".format(expert_data['actions'].shape)) str_roll = str(num_rollouts).zfill(4) name = headdir+ "/" +self.args.envname+ "_" +str_roll+ "rollouts_trajs" np.save(name, expert_data) print("Expert data has been saved in: {}.npy".format(name))
[]
2024-01-10
RylanGotto/omni_search_backend
test2.py
from dotenv import load_dotenv from langchain.utilities import GoogleSerperAPIWrapper import asyncio load_dotenv() google = GoogleSerperAPIWrapper() async def two_plus_one(a, b): return a + b num_list = [(1, 2), (2, 3), (4, 5)] tasks = [] for i in num_list: tasks.append(two_plus_one(i[0], i[1])) async def main(): results = await asyncio.gather(*tasks) print(results) loop = asyncio.get_event_loop() loop.run_until_complete(main())
[]
2024-01-10
RylanGotto/omni_search_backend
test3.py
from dotenv import load_dotenv from langchain.utilities import GoogleSerperAPIWrapper from generate_structured_data import GenerateStructuredData as GSD import asyncio import aiohttp from unstructured.partition.html import partition_html from generate_document import GenerateDocument as gd import time load_dotenv() google = GoogleSerperAPIWrapper() urls = [ "https://www.newser.com/story/341661/china-preps-for-assault-with-tips-learned-from-russia.html", "https://www.newser.com/story/341701/aid-reaches-gaza-as-us-issues-a-warning.html", "https://www.reddit.com/r/Python/comments/17dkshe/when_have_you_reach_a_python_limit/", "https://www.msn.com/en-ca/news/canada/india-says-relations-with-canada-passing-through-difficult-phase/ar-AA1iEsvJ?ocid=winp2fptaskbar&cvid=4f3be7e3697a4beba7f62d1f931de72a&ei=4", ] tasks = [] from multiprocessing.dummy import Pool as ThreadPool def get_doc(url): gsd = GSD() content = gd.generate(url) formatted_input = gsd.generate_input(content) return formatted_input def main(): start = time.time() # for i in urls: # tasks.append(asyncio.create_task(get_doc(i))) # r = await asyncio.gather(*tasks) # print(r) pool = ThreadPool(20) # open the urls in their own threads # and return the results r = pool.map(get_doc, urls) print(r) # close the pool and wait for the work to finish pool.close() pool.join() end = time.time() print("Runtime: " + str(end - start)) main() # loop = asyncio.get_event_loop() # loop.run_until_complete(main())
[]
2024-01-10
RylanGotto/omni_search_backend
generate_document.py
import re from langchain.document_loaders import UnstructuredURLLoader from langchain.docstore.document import Document from unstructured.cleaners.core import clean, clean_extra_whitespace import pprint from unstructured.documents.html import HTMLDocument class GenerateDocument: @staticmethod def generate(url): document = [] loader = UnstructuredURLLoader( urls=[url], mode="elements", post_processors=[clean, clean_extra_whitespace], ) elements = loader.load() # print(elements) # exit() selected_elements = [ e for e in elements if e.metadata["category"] == "ListItem" or e.metadata["category"] == "NarrativeText" ] full_clean = re.sub( " +", " ", " ".join([e.page_content for e in selected_elements]) ) return full_clean
[]
2024-01-10
linhht/test
myLangchainChatbot.py
# Install required modules/libraries # pip install --upgrade pip # pip install --upgrade langchain # pip install openai # Run `openai migrate` to automatically upgrade your codebase to use the 1.0.0 interface # Or pin your installation to the old version, e.g. `pip install openai==0.28` # pip install --upgrade flask python-dotenv-vault # pip install chromadb # pip install tiktoken # pip install panel # pip install pypdf # pip3 install pydantic==1.10.9 # pip install "langchain[docarray]" # pip install docarray # Create requirement.txt # pip freeze > requirements.txt # pip install -r requirements.txt import os from openai import OpenAI # To support sqlite3 __import__('pysqlite3') import sys sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') sys.path.append('../..') # Load remote env - new way with cloud-based (dotenv.org) .env file from dotenv_vault import load_dotenv load_dotenv() client = OpenAI(api_key=os.getenv('OPENAI_API_KEY')) #print(os.getenv('OPENAI_API_KEY')) # Set llm model llm_name = "gpt-3.5-turbo" """ from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings persist_directory = 'docs/chroma/' embedding = OpenAIEmbeddings() vectordb = Chroma( persist_directory=persist_directory, embedding_function=embedding) # Run some sample similarity search question = "What are major topics for this class?" docs = vectordb.similarity_search(question,k=3) #print(len(docs)) # Initialize the LLM & say hello to get response from langchain.chat_models import ChatOpenAI llm = ChatOpenAI(model_name=llm_name, temperature=0) #print(llm.predict("Hello world!")) # Build prompt from langchain.prompts import PromptTemplate template = "Use the following pieces of context to answer the question at the end. \ If you don't know the answer, just say that you don't know, don't try to make up an answer. \ Use three sentences maximum. Keep the answer as concise as possible. Always say 'thanks for asking!' at the end of the answer. \ {context}\ Question: {question}\ Helpful Answer:" QA_CHAIN_PROMPT = PromptTemplate( input_variables=["context", "question"], template=template,) # Run chain from langchain.chains import RetrievalQA #question = "Is probability a class topic?" #question = "What is my name" qa_chain = RetrievalQA.from_chain_type(llm, retriever=vectordb.as_retriever(), return_source_documents=True, chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}) result = qa_chain({"query": question}) print(result["result"]) # Memory from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True ) # ConversationalRetrievalChain from langchain.chains import ConversationalRetrievalChain retriever=vectordb.as_retriever() qa = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, memory=memory ) question = "Is probability a class topic?" result = qa({"question": question}) print(result['answer']) question = "why are those prerequesites needed?" result = qa({"question": question}) print(result['answer']) """ # Create a chatbot that works on your documents from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter from langchain.vectorstores import DocArrayInMemorySearch from langchain.document_loaders import TextLoader from langchain.chains import RetrievalQA, ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.chat_models import ChatOpenAI from langchain.document_loaders import TextLoader from langchain.document_loaders import PyPDFLoader #import docarray # This will initialize your database and retriever chain def load_db(file, chain_type, k): # load documents loader = PyPDFLoader(file) documents = loader.load() # split documents text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) docs = text_splitter.split_documents(documents) # define embedding embeddings = OpenAIEmbeddings() # create vector database from data db = DocArrayInMemorySearch.from_documents(docs, embeddings) # define retriever retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k}) # create a chatbot chain. Memory is managed externally. qa = ConversationalRetrievalChain.from_llm( llm=ChatOpenAI(model_name=llm_name, temperature=0), chain_type=chain_type, retriever=retriever, return_source_documents=True, return_generated_question=True, ) return qa import panel as pn pn.extension() import param class cbfs(param.Parameterized): chat_history = param.List([]) answer = param.String("") db_query = param.String("") db_response = param.List([]) def __init__(self, **params): super(cbfs, self).__init__( **params) self.panels = [] self.loaded_file = "docs/chroma/MachineLearning-Lecture01.pdf" self.qa = load_db(self.loaded_file,"stuff", 4) def call_load_db(self, count): if count == 0 or file_input.value is None: # init or no file specified : return pn.pane.Markdown(f"Loaded File: {self.loaded_file}") else: file_input.save("temp.pdf") # local copy self.loaded_file = file_input.filename button_load.button_style="outline" self.qa = load_db("temp.pdf", "stuff", 4) button_load.button_style="solid" self.clr_history() return pn.pane.Markdown(f"Loaded File: {self.loaded_file}") def convchain(self, query): if not query: return pn.WidgetBox(pn.Row('User:', pn.pane.Markdown("", width=600)), scroll=True) result = self.qa({"question": query, "chat_history": self.chat_history}) self.chat_history.extend([(query, result["answer"])]) self.db_query = result["generated_question"] self.db_response = result["source_documents"] self.answer = result['answer'] self.panels.extend([ pn.Row('User:', pn.pane.Markdown(query, width=600)), pn.Row('ChatBot:', pn.pane.Markdown(self.answer, width=600, style={'background-color': '#F6F6F6'})) ]) inp.value = '' #clears loading indicator when cleared return pn.WidgetBox(*self.panels,scroll=True) @param.depends('db_query ', ) def get_lquest(self): if not self.db_query : return pn.Column( pn.Row(pn.pane.Markdown(f"Last question to DB:", styles={'background-color': '#F6F6F6'})), pn.Row(pn.pane.Str("no DB accesses so far")) ) return pn.Column( pn.Row(pn.pane.Markdown(f"DB query:", styles={'background-color': '#F6F6F6'})), pn.pane.Str(self.db_query ) ) @param.depends('db_response', ) def get_sources(self): if not self.db_response: return rlist=[pn.Row(pn.pane.Markdown(f"Result of DB lookup:", styles={'background-color': '#F6F6F6'}))] for doc in self.db_response: rlist.append(pn.Row(pn.pane.Str(doc))) return pn.WidgetBox(*rlist, width=600, scroll=True) @param.depends('convchain', 'clr_history') def get_chats(self): if not self.chat_history: return pn.WidgetBox(pn.Row(pn.pane.Str("No History Yet")), width=600, scroll=True) rlist=[pn.Row(pn.pane.Markdown(f"Current Chat History variable", styles={'background-color': '#F6F6F6'}))] for exchange in self.chat_history: rlist.append(pn.Row(pn.pane.Str(exchange))) return pn.WidgetBox(*rlist, width=600, scroll=True) def clr_history(self,count=0): self.chat_history = [] return # Create a chatbot cb = cbfs() file_input = pn.widgets.FileInput(accept='.pdf') button_load = pn.widgets.Button(name="Load DB", button_type='primary') button_clearhistory = pn.widgets.Button(name="Clear History", button_type='warning') button_clearhistory.on_click(cb.clr_history) inp = pn.widgets.TextInput( placeholder='Enter text here…') bound_button_load = pn.bind(cb.call_load_db, button_load.param.clicks) conversation = pn.bind(cb.convchain, inp) jpg_pane = pn.pane.Image( './img/convchain.jpg') tab1 = pn.Column( pn.Row(inp), pn.layout.Divider(), pn.panel(conversation, loading_indicator=True, height=300), pn.layout.Divider(), ) tab2= pn.Column( pn.panel(cb.get_lquest), pn.layout.Divider(), pn.panel(cb.get_sources ), ) tab3= pn.Column( pn.panel(cb.get_chats), pn.layout.Divider(), ) tab4=pn.Column( pn.Row( file_input, button_load, bound_button_load), pn.Row( button_clearhistory, pn.pane.Markdown("Clears chat history. Can use to start a new topic" )), pn.layout.Divider(), pn.Row(jpg_pane.clone(width=400)) ) dashboard = pn.Column( pn.Row(pn.pane.Markdown('# ChatWithYourData_Bot')), pn.Tabs(('Conversation', tab1), ('Database', tab2), ('Chat History', tab3),('Configure', tab4)) ) # For deployment on a web server wrap it in a nice template. dashboard.servable()
[]
2024-01-10
DaMagus26/consultant_website
query~apps.py
from django.apps import AppConfig from legal_answer_extraction.answer_extractor import AnswerExtractor from legal_answer_extraction.qa_model.openai_qa import OpenAIModel from legal_answer_extraction.vector_db import weaviate_db model = None class QueryConfig(AppConfig): default_auto_field = "django.db.models.BigAutoField" name = "query" def ready(self): global model finder = OpenAIModel(base_url='https://api.proxyapi.ru/openai/v1', api_key='sk-uJPlEJyqRg8jeYD1rSRxzV0DyXHzQtNb') model = AnswerExtractor(finder)
[]
2024-01-10
jpbianchi/GPT4V
GPT4V_demo.py
#%% import streamlit as st # import graphviz from dotenv import load_dotenv from os import environ, getcwd import toml import pickle from pathlib import Path import time import hashlib import json import base64 import requests from openai import AsyncOpenAI from dotenv import load_dotenv from os import environ import configparser from py2neo import Relationship from NEO4J import Neo4jGraph, Now, createNode, createRelation def check_keys(): """ Retrieves the keys either from the local file .streamlit/secrets.toml for local tests, or from the streamlit sharing secrets manager In the latter case, it's still useful because we test the keys, to make sure we're using the ones we think we're using. """ # whether running locally or not, the keys are retrieved the same way try: # let's test is the huggingface token exists # ab=st.secrets["secrets"]["HUGGINGFACEHUB_API_TOKEN"] # del ab # assert sum(st.secrets["secrets"]["HUGGINGFACEHUB_API_TOKEN"].encode('ascii')) == 3505, "HuggingFace key is invalid" assert sum(st.secrets["secrets"]["OPENAI_API_KEY"].encode('ascii')) == 4241, "OpenAI key is invalid" st.write("OpenAI key is valid") st.write("Keys verified!") except: st.write('key retrieval issue') st.stop() # token_id = st.secrets["secrets"]["MODAL_TOKEN_ID"] # token_secret = st.secrets["secrets"]["MODAL_TOKEN_SECRET"] # openai_api_key = st.secrets["secrets"]["OPENAI_API_KEY"] # assert sum(hf_api_token.encode('ascii')) == 3505, "HuggingFace key is invalid" # st.write("HuggingFace key is valid") # assert sum(st.secrets["secrets"]["HUGGINGFACEHUB_API_TOKEN"].encode('ascii')) == 3505, "HuggingFace key is invalid" # st.write("HuggingFace key is valid") # assert sum(token_id.encode('ascii')) == 2207, "Modal token ID is invalid" # assert sum(token_secret.encode('ascii')) == 2134, "Modal token secret is invalid" # st.write("Modal keys are valid") # assert sum(openai_api_key.encode('ascii')) == 4241, "OpenAI key is invalid" # st.write("OpenAI key is valid") return def examples(): st.write("Here are some examples of knowledge graphs that we created") st.image("images/node_sunglasses.png", use_column_width=True) st.image("images/node_convertible.png", use_column_width=True) st.image("images/node_road.png", use_column_width=True) st.image("images/node_view.png", use_column_width=True) st.image("images/node_sunglasses2.png", use_column_width=True) st.image("images/node_scarf.png", use_column_width=True) st.image("images/node_colorful.png", use_column_width=True) st.image("images/node_green.png", use_column_width=True) st.image("images/node_tinted.png", use_column_width=True) st.image("images/node_convertible2.png", use_column_width=True) st.image("images/node_old.png", use_column_width=True) st.image("images/node_rolling.png", use_column_width=True) st.write("Notice the fields 'objective' and 'condition' under 'Node Properties' on the right") def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') # async because of await client.chat.completions.create async def create_graph( g, image_path="data/Enjoying-convertible-car.jpg", plot_image=False, delete_graph=False, DEBUG=False): if plot_image: st.image(image_path, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto") #%% # to upload a local image to OpenAI # Getting the base64 string base64_image = encode_image(image_path) headers = { "Content-Type": "application/json", "Authorization": f"""Bearer {st.secrets["secrets"]["OPENAI_API_KEY"]}""" } prompt = "What’s in this image?" def prompt_image(prompt, image_path): base64_image = encode_image(image_path) payload = { "model": "gpt-4-vision-preview", "messages": [ { "role": "user", "content": [ { "type": "text", "text": prompt }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } } ] } ], "max_tokens": 300 } response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) return response #%% prompt4 = """ Find all objects or people you can find this image and put them in a python list. Be exhaustive, do not miss any object or person, including in the background, the sky if there is one, through a window, behind people, even partially visible etc. Just list one object at a time, do not include what they are doing or where they are, just the object / person name only. For instance, "women wearing hats" is two objects "women" and "hats" """ ans4 = prompt_image(prompt4, image_path) objects_in_image = ans4.json()["choices"][0]["message"]["content"] # st.write(objects_in_image) # if DEBUG: # st.write("Objects in image:") # st.write(ans4.json()["choices"][0]["message"]["content"]) objectPrompt=""" Find all the words between quotes in the following string and put them in a python string. Just output the string without any comment, start with ' and end with ], nothing else. Do not put quotes or double quotes around the words. """ client = AsyncOpenAI(api_key=st.secrets["secrets"]["OPENAI_API_KEY"]) requestMessage = objectPrompt + '\n' + ans4.json()["choices"][0]["message"]["content"] objects = await client.chat.completions.create( model="gpt-4", # previous models, even GPT3.5 didn't work that well messages=[{"role": "system", "content": "You are an expert in linguistics, semantic"}, {"role": "user", "content": requestMessage}] ) objects_in_image = objects.choices[0].message.content[1:-1].split(", ") if DEBUG: st.write("WARNING: results are not deterministic!") st.write("Objects in image:") st.write(objects_in_image) #%% prompt3 = f""" list all possible beliefs we can extract from this image, and express them in this format <this thing or person> <action> <another thing><for this reason or purpose><in these conditions ><optional>... Please keep the propositions with the <action> to leave <another thing> as an object/person name You can also use another format, when there is no action, using the verb 'to be', such as: <this car><is><a convertible><because the roof can be removed> To generate all possible beliefs, in an exhaustive way, look at all the objects, persons, background etc and try to find a relation between them following the formats above. You must find at least one belief for every object or person in the following list {objects_in_image} Do not output anything before the first '<' and after the last '>'. Do not output the '<' or '>' characters. """ ans3 = prompt_image(prompt3, image_path) # if DEBUG: # st.write(ans3.json()["choices"][0]["message"]["content"]) #%% beliefs = [f"belief {i}: "+ans for i,ans in enumerate(ans3.json()["choices"][0]["message"]["content"].split("\n"), 1)] if DEBUG: msg="Here are all the beliefs that GPT4V extracted from the image:" st.write(msg) # st.write("-"*len(msg)) for b in beliefs: st.write(b) #%% instructPrompt = """ You are an expert in linguistics, semantic and you are trying to format the beliefs passed to you into a format that can be stored in a knowledge graph. The beliefs start with the word 'belief1:', 'belief2:' etc and are separated by a new line. Rewrite every belief and express them as a python dictionary with the following format: { "condition": <conditions observed from the picture such as a sunny day, ie the conditions leading to the rest of the beliefs, such as the objective and action>, "objective": <the objective of the person or thing in the picture, after observing the conditions in the picture>, "subject": <the person or thing in the picture doing the 'action' to meet the 'objective', just one word if possible>, "action": <the action the person or thing in the picture is doing to meet the 'objective', expressed in one word with an optional preposition, such as 'drive to'>, "object": <the object of the action, expressed in one word if possible such as 'beach', NOT 'the beach'> } Use an empty string when a field is not available. Do not return a belief if the subject and actions are not clearly identified. I want general answers, not specific to an image. For instance, I would expect something like: { "condition": "sunny day", "objective": "enjoy the countryside", "subject": "people", "action": "drive", "object": "convertible" } not the following { "condition": "in a sunny day", "objective": "because he enjoys the countryside", "subject": "the person in the driver seat", "action": "drive", "object": "the convertible" } For "subject", "action", "object", be as generic and short as possible. Do not use different words for the same object, e.g. "convertible car" and "convertible". When the belief does not have an action, but instead use a verb such as 'to be' for instance, then put the verb in the <action anyway>, and use the field 'object' to describe what the object or person is or is made of or anything else that the verb describes. Use infinitive verbs, without the 'to', ie 'be' instead of 'is'. """ #%% BUILD INSTRUCT PROMPT AND GO! # NO CHUNKING, THE PROMPT IS SHORT ENOUGH st.write("="*50) st.write("Now, we're going to post-process those beliefs with GPT4 because it does a better job than GPT4V!") st.write("Every belief is split into 5 fields to find the objects, persons, actions, conditions and objectives, so we can insert them in a Neo4J knowledge graph") requestMessages = [instructPrompt + '\n' + belief for belief in beliefs] chatOutputs = [] for i, request in enumerate(requestMessages, 1): # st.write("Doing request", request, i, "of", len(requestMessages) chatOutput = await client.chat.completions.create( model="gpt-4", # previous models, even GPT3.5 didn't work that well messages=[{"role": "system", "content": "You are an expert in linguistics and semantics"}, {"role": "user", "content": request} ] ) chatOutputs.append(chatOutput) #%% formatted_beliefs = {} for belief in chatOutputs: b = json.loads(belief.choices[0].message.content) formatted_beliefs[b["subject"]] = b if DEBUG: st.write(b) #%% if delete_graph: g.deleteAllNodes(DEBUG=True) assert g.nodesNb == 0 if DEBUG: st.write("Graph has been cleaned") for i, b in enumerate(chatOutputs,1): # continue belief = json.loads(b.choices[0].message.content) name=belief.pop("subject") object = belief.pop("object") relation = belief.pop("action") if DEBUG: st.write(f"Now adding nodes to the graph for belief{i}:") st.write('\n'.join([name, relation, object, belief['objective'], belief['condition']])) if name == "": continue try: subject1 = createNode( g, name, user_id='JPB', display_name=name, labels_constraints=name, # we don't create the same object/subject twice # properties_constraints=('user_id',), creation_timestamp = Now(), DEBUG=True) # we can have the same subject appear several times except: if DEBUG: st.write(f"node not created for {name}") if object == "": continue try: object1 = createNode( g, object, user_id='JPB', display_name=object, labels_constraints=object, properties_constraints=('user_id',), creation_timestamp = Now(), DEBUG=True, **belief, ) # we can have the same subject appear several times except: if DEBUG: st.write(f"node not created for {object}") if relation == "": continue try: relat1 = createRelation(g, subject1, object1, relation, DEBUG=True, #synonyms='has imagery', # for demo, relations can have properties as well allow_duplicates=True, # Neo4J allows several identical relations between 2 nodes, but we don't want that counting=True) except: if DEBUG: st.write(f"relation not created for 'to {relation}'") if DEBUG: st.write('-'*10) if DEBUG: st.write("Nb of nodes =", g.nodesNb) st.write("="*50) return objects_in_image, beliefs def main(): _, cent_co,_,_,_ = st.columns(5) # to help center the logo with cent_co: st.image('images/NO LIMITS logo.png', width=400) st.title("Team NoLimits") codebox = st.empty() code = codebox.text_input("Enter your access code here", value="", placeholder="........", key="1") if hashlib.sha256(code.encode()).hexdigest() == hashlib.sha256(environ["REAL_CODE"].encode()).hexdigest(): # let's clear the code time.sleep(0.5) st.write("Access code is validXxXXX") st.stop() # code to clear box from https://discuss.streamlit.io/t/clear-text-input/18884/4 codebox.text_input("Enter your access code here", value="", placeholder="KEY HIDDEN", key="2") check_keys() # I setup a free Neo4J instance on Aura, and I'm using the Python driver to connect to it Neo4j_config = configparser.ConfigParser() Neo4j_config.read('neo4j_config.ini') Neo4j_config['DEFAULT']["pw"] = st.secrets["secrets"]['NEO4J_AURA_PW'] g = Neo4jGraph(showstatus=True, **Neo4j_config['DEFAULT']) # in case of error, check your config.ini file # Instructions to see the graph in Neo4J Browser # go to # https://workspace-preview.neo4j.io/workspace/query?ntid=auth0%7C631bb4216f68981ab949290b # run the cypher query: # MATCH (n) RETURN n to see all nodes g.deleteAllNodes(DEBUG=True) assert g.nodesNb == 0 st.write("Graph has been cleaned") import asyncio # image_path = "data/nice_convertible.jpg" image_path = "data/Enjoying-convertible-car.jpg" objects_in_image, beliefs = asyncio.run(create_graph(g, image_path=image_path, plot_image=True, delete_graph=True, DEBUG=True )) # st.write('\n'.join(beliefs)) st.write("Neo4J graph has been created! See it online!") examples() else: st.write("Access code is invalid") st.write("Please contact the team to get a valid access code.") st.write("In the meantime, here is a recorded demo") time.sleep(2) st.image("images/streamlit_1.png", use_column_width=True) time.sleep(4) st.image("images/streamlit_2.png", use_column_width=True) time.sleep(4) st.image("images/streamlit_3.png", use_column_width=True) examples() st.write("Notice how they are spot on!") st.stop() if __name__ == '__main__': main() # get into venv and run # streamlit run GPT4V_demo.py --server.allowRunOnSave True # we must run it from the root folder, not from the src folder because # that's what streamlit will do
[ "\n You are an expert in linguistics, semantic and you are trying to format the beliefs passed to you into a format that can be stored in a knowledge graph.\n The beliefs start with the word 'belief1:', 'belief2:' etc and are separated by a new line.\n\n Rewrite every belief and express them as a python dictionary with the following format:\n {\n \"condition\": <conditions observed from the picture such as a sunny day, ie the conditions leading to the rest of the beliefs, such as the objective and action>,\n \"objective\": <the objective of the person or thing in the picture, after observing the conditions in the picture>,\n \"subject\": <the person or thing in the picture doing the 'action' to meet the 'objective', just one word if possible>,\n \"action\": <the action the person or thing in the picture is doing to meet the 'objective', expressed in one word with an optional preposition, such as 'drive to'>,\n \"object\": <the object of the action, expressed in one word if possible such as 'beach', NOT 'the beach'>\n }\n Use an empty string when a field is not available.\n Do not return a belief if the subject and actions are not clearly identified.\n\n I want general answers, not specific to an image.\n For instance, I would expect something like:\n {\n \"condition\": \"sunny day\",\n \"objective\": \"enjoy the countryside\",\n \"subject\": \"people\",\n \"action\": \"drive\",\n \"object\": \"convertible\"\n }\n not the following\n {\n \"condition\": \"in a sunny day\",\n \"objective\": \"because he enjoys the countryside\",\n \"subject\": \"the person in the driver seat\",\n \"action\": \"drive\",\n \"object\": \"the convertible\"\n }\n For \"subject\", \"action\", \"object\", be as generic and short as possible.\n Do not use different words for the same object, e.g. \"convertible car\" and \"convertible\".\n When the belief does not have an action, but instead use a verb such as 'to be' for instance, then put the verb in the <action anyway>, \n and use the field 'object' to describe what the object or person is or is made of or anything else that the verb describes.\n\n Use infinitive verbs, without the 'to', ie 'be' instead of 'is'. \n ", "You are an expert in linguistics and semantics", " \n Find all objects or people you can find this image and put them in a python list. \n Be exhaustive, do not miss any object or person, including in the background, the sky if there is one, through a window, behind people, even partially visible etc.\n Just list one object at a time, do not include what they are doing or where they are, just the object / person name only.\n For instance, \"women wearing hats\" is two objects \"women\" and \"hats\"\n ", "objectPrompt + '\\n' + ans4.json()[\"choices\"][0][\"message\"][\"content\"]", "\n Find all the words between quotes in the following string and put them in a python string.\n Just output the string without any comment, start with ' and end with ], nothing else.\n Do not put quotes or double quotes around the words.\n ", "You are an expert in linguistics, semantic", "What’s in this image?", " \n list all possible beliefs we can extract from this image, and express them in this format\n <this thing or person> <action> <another thing><for this reason or purpose><in these conditions ><optional>... \n Please keep the propositions with the <action> to leave <another thing> as an object/person name\n\n You can also use another format, when there is no action, using the verb 'to be', such as:\n <this car><is><a convertible><because the roof can be removed>\n\n To generate all possible beliefs, in an exhaustive way, look at all the objects, persons, background etc and try to find a relation between them following the formats above.\n You must find at least one belief for every object or person in the following list PLACEHOLDER\n Do not output anything before the first '<' and after the last '>'.\n Do not output the '<' or '>' characters.\n ", "[{'type': 'text', 'text': 'What’s in this image?'}, {'type': 'image_url', 'image_url': {'url': ''}}]" ]
2024-01-10
sanyalsunny111/Early_Weight_Avg
nanoGPT2-Experiments~train_small.py
import os import time import math import pickle from contextlib import nullcontext import numpy as np import torch import sys import re from copy import deepcopy from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed import init_process_group, destroy_process_group # import wandb from model import GPTConfig, GPT import copy from torch import nn from tqdm import tqdm def exists(val): return val is not None def clamp(value, min_value=None, max_value=None): assert exists(min_value) or exists(max_value) if exists(min_value): value = max(value, min_value) if exists(max_value): value = min(value, max_value) return value class EMA(nn.Module): """ Implements exponential moving average shadowing for your model. Utilizes an inverse decay schedule to manage longer term training runs. By adjusting the power, you can control how fast EMA will ramp up to your specified beta. @crowsonkb's notes on EMA Warmup: If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps), gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at 215.4k steps). Args: inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1. power (float): Exponential factor of EMA warmup. Default: 1. min_value (float): The minimum EMA decay rate. Default: 0. """ def __init__( self, model, ema_model=None, # if your model has lazylinears or other types of non-deepcopyable modules, you can pass in your own ema model beta=0.9999, update_after_step=100, update_every=10, inv_gamma=1.0, power=2 / 3, min_value=0.0, param_or_buffer_names_no_ema=set(), ignore_names=set(), ignore_startswith_names=set(), include_online_model=True # set this to False if you do not wish for the online model to be saved along with the ema model (managed externally) ): super().__init__() self.beta = beta # whether to include the online model within the module tree, so that state_dict also saves it self.include_online_model = include_online_model if include_online_model: self.online_model = model else: self.online_model = [model] # hack # ema model self.ema_model = ema_model if not exists(self.ema_model): try: self.ema_model = copy.deepcopy(model) except: print('Your model was not copyable. Please make sure you are not using any LazyLinear') exit() self.ema_model.requires_grad_(False) self.parameter_names = {name for name, param in self.ema_model.named_parameters() if param.dtype in [torch.float, torch.float16]} self.buffer_names = {name for name, buffer in self.ema_model.named_buffers() if buffer.dtype in [torch.float, torch.float16]} self.update_every = update_every self.update_after_step = update_after_step self.inv_gamma = inv_gamma self.power = power self.min_value = min_value assert isinstance(param_or_buffer_names_no_ema, (set, list)) self.param_or_buffer_names_no_ema = param_or_buffer_names_no_ema # parameter or buffer self.ignore_names = ignore_names self.ignore_startswith_names = ignore_startswith_names self.register_buffer('initted', torch.Tensor([False])) self.register_buffer('step', torch.tensor([0])) @property def model(self): return self.online_model if self.include_online_model else self.online_model[0] def restore_ema_model_device(self): device = self.initted.device self.ema_model.to(device) def get_params_iter(self, model): for name, param in model.named_parameters(): if name not in self.parameter_names: continue yield name, param def get_buffers_iter(self, model): for name, buffer in model.named_buffers(): if name not in self.buffer_names: continue yield name, buffer def copy_params_from_model_to_ema(self): for (_, ma_params), (_, current_params) in zip(self.get_params_iter(self.ema_model), self.get_params_iter(self.model)): ma_params.data.copy_(current_params.data) for (_, ma_buffers), (_, current_buffers) in zip(self.get_buffers_iter(self.ema_model), self.get_buffers_iter(self.model)): ma_buffers.data.copy_(current_buffers.data) def get_current_decay(self): epoch = clamp(self.step.item() - self.update_after_step - 1, min_value=0.) value = 1 - (1 + epoch / self.inv_gamma) ** - self.power if epoch <= 0: return 0. return clamp(value, min_value=self.min_value, max_value=self.beta) def update(self): step = self.step.item() self.step += 1 if (step % self.update_every) != 0: return if step <= self.update_after_step: self.copy_params_from_model_to_ema() return if not self.initted.item(): self.copy_params_from_model_to_ema() self.initted.data.copy_(torch.Tensor([True])) self.update_moving_average(self.ema_model, self.model) @torch.no_grad() def update_moving_average(self, ma_model, current_model): current_decay = self.get_current_decay() for (name, current_params), (_, ma_params) in zip(self.get_params_iter(current_model), self.get_params_iter(ma_model)): if name in self.ignore_names: continue if any([name.startswith(prefix) for prefix in self.ignore_startswith_names]): continue if name in self.param_or_buffer_names_no_ema: ma_params.data.copy_(current_params.data) continue ma_params.data.lerp_(current_params.data, 1. - current_decay) for (name, current_buffer), (_, ma_buffer) in zip(self.get_buffers_iter(current_model), self.get_buffers_iter(ma_model)): if name in self.ignore_names: continue if any([name.startswith(prefix) for prefix in self.ignore_startswith_names]): continue if name in self.param_or_buffer_names_no_ema: ma_buffer.data.copy_(current_buffer.data) continue ma_buffer.data.lerp_(current_buffer.data, 1. - current_decay) def __call__(self, *args, **kwargs): return self.ema_model(*args, **kwargs) ema_decay = 0.9000 out_dir = '/scratch/07946/ss95332/out2' out_dir_ema = '/scratch/07946/ss95332/out_ema2' eval_interval = 200 log_interval = 1 eval_iters = 200 eval_only = False # if True, script exits right after the first eval always_save_checkpoint = True # if True, always save a checkpoint after each eval init_from = 'resume' # 'scratch' or 'resume' or 'gpt2*' # ddp = True # wandb logging wandb_log = False # disabled by default wandb_project = 'owt' wandb_run_name = 'gpt2' # 'run' + str(time.time()) # data dataset = 'openwebtext' gradient_accumulation_steps = 8 # used to simulate larger batch sizes, was 5 earlier batch_size = 16 # if gradient_accumulation_steps > 1, this is the micro-batch size, was 12 earlier block_size = 1024 # model n_layer = 12 n_head = 12 n_embd = 768 dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+ bias = False # do we use bias inside LayerNorm and Linear layers? # optimizer optimizer_name = 'adamw' learning_rate = 6e-3 # max learning rate, earlier it was 6e-4 max_iters = 70000 # total number of training iterations, earlier it was 600000 weight_decay = 1e-1 beta1 = 0.9 beta2 = 0.95 grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0 rho = 0.1 interval = 10 variant = 4 # learning rate decay settings decay_lr = True # whether to decay the learning rate warmup_iters = 2000 # how many steps to warm up for lr_decay_iters = 70000 # should be ~= max_iters per Chinchilla, it was 600000 earlier min_lr = 6e-4 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla # DDP settings backend = 'nccl' # 'nccl', 'gloo', etc. # system device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks dtype = 'bfloat16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler compile = True # use PyTorch 2.0 to compile the model to be faster scale_attn_by_inverse_layer_idx = True # ----------------------------------------------------------------------------- config_keys = [k for k, v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))] # exec(open('configurator.py').read()) # overrides from command line or config file config = {k: globals()[k] for k in config_keys} # will be useful for logging # ----------------------------------------------------------------------------- # various inits, derived attributes, I/O setup ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run? if ddp: init_process_group(backend=backend) ddp_rank = int(os.environ['RANK']) ddp_local_rank = int(os.environ['LOCAL_RANK']) device = f'cuda:{ddp_local_rank}' torch.cuda.set_device(device) master_process = ddp_rank == 0 # this process will do logging, checkpointing etc. seed_offset = ddp_rank # each process gets a different seed else: # if not ddp, we are running on a single gpu, and one process master_process = True seed_offset = 0 gradient_accumulation_steps *= 8 # simulate 8 gpus if master_process: os.makedirs(out_dir, exist_ok=True) os.makedirs(out_dir_ema, exist_ok=True) torch.manual_seed(5000 + seed_offset) torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast # note: float16 data type will automatically use a GradScaler ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = nullcontext() if device_type == 'cpu' else torch.autocast(device_type=device_type, dtype=ptdtype) # poor man's data loader data_dir = os.path.join('data', dataset) train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r') val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r') def get_batch(split): data = train_data if split == 'train' else val_data ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([torch.from_numpy((data[i:i + block_size]).astype(np.int64)) for i in ix]) y = torch.stack([torch.from_numpy((data[i + 1:i + 1 + block_size]).astype(np.int64)) for i in ix]) if device_type == 'cuda': # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True) x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True) else: x, y = x.to(device), y.to(device) return x, y # init these up here, can override if init_from='resume' (i.e. from a checkpoint) iter_num = 0 best_val_loss = 1e9 # attempt to derive vocab_size from the dataset meta_path = os.path.join(data_dir, 'meta.pkl') meta_vocab_size = None if os.path.exists(meta_path): with open(meta_path, 'rb') as f: meta = pickle.load(f) meta_vocab_size = meta['vocab_size'] print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})") # model init model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size, bias=bias, vocab_size=None, dropout=dropout, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx) # start with model_args from command line if init_from == 'scratch': # init a new model from scratch print("Initializing a new model from scratch") # determine the vocab size we'll use for from-scratch training if meta_vocab_size is None: print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)") model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304 gptconf = GPTConfig(**model_args) model = GPT(gptconf) # Initialize the EMA for the model # model_ema = ModelEMA(model) elif init_from == 'resume': print(f"Resuming training from {out_dir}") # resume training from a checkpoint. ckpt_path = os.path.join(out_dir, 'ckpt_best.pt') checkpoint = torch.load(ckpt_path, map_location=device) checkpoint_model_args = checkpoint['model_args'] # force these config attributes to be equal otherwise we can't even resume training # the rest of the attributes (e.g. dropout) can stay as desired from command line for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']: model_args[k] = checkpoint_model_args[k] # create the model gptconf = GPTConfig(**model_args) model = GPT(gptconf) state_dict = checkpoint['model'] # fix the keys of the state dictionary :( # honestly no idea how checkpoints sometimes get this prefix, have to debug more unwanted_prefix = '_orig_mod.' for k, v in list(state_dict.items()): if k.startswith(unwanted_prefix): state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) model.load_state_dict(state_dict) iter_num = checkpoint['iter_num'] best_val_loss = checkpoint['best_val_loss'] elif init_from.startswith('gpt2'): print(f"Initializing from OpenAI GPT-2 weights: {init_from}") # initialize from OpenAI GPT-2 weights override_args = dict(dropout=dropout) model = GPT.from_pretrained(init_from, override_args) # read off the created config params, so we can store them into checkpoint correctly for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']: model_args[k] = getattr(model.config, k) # crop down the model block size if desired, using model surgery if block_size < model.config.block_size: model.crop_block_size(block_size) model_args['block_size'] = block_size # so that the checkpoint will have the right value model.to(device) # initialize a GradScaler. If enabled=False scaler is a no-op scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16')) # optimizer optimizer = model.configure_optimizers(optimizer_name, weight_decay, learning_rate, (beta1, beta2), rho, device_type) if init_from == 'resume': optimizer.load_state_dict(checkpoint['optimizer']) del state_dict del checkpoint # compile the model if compile: print("compiling the model... (takes a ~minute)") unoptimized_model = model model = torch.compile(model) # requires PyTorch 2.0 model_ema = EMA( model, beta=ema_decay, # exponential moving average factor update_after_step=0, # only after this number of .update() calls will it start updating update_every=1, # how often to actually update, to save on compute (updates every 10th .update() call) ) # wrap model into DDP container if ddp: model = DDP(model, device_ids=[ddp_local_rank]) # helps estimate an arbitrarily accurate loss over either split using many batches @torch.no_grad() def estimate_loss(): out = {} model.eval() # model_ema = model_ema.to(device) for split in ['train', 'val']: out[split] = {} losses = torch.zeros(eval_iters) losses_ema = torch.zeros(eval_iters) for k in tqdm(range(eval_iters), desc="Evaluating", ncols=100): X, Y = get_batch(split) with ctx: logits, loss = model(X, Y) logits_ema, loss_ema = model_ema(X, Y) losses[k] = loss.item() losses_ema[k] = loss_ema.item() out[split]['vanilla'] = losses.mean() out[split]['ema'] = losses_ema.mean() model.train() # model_ema = model_ema.to(device) return out # learning rate decay scheduler (cosine with warmup) def get_lr(it): # 1) linear warmup for warmup_iters steps if it < warmup_iters: return learning_rate * it / warmup_iters # 2) if it > lr_decay_iters, return min learning rate if it > lr_decay_iters: return min_lr # 3) in between, use cosine decay down to min learning rate decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) assert 0 <= decay_ratio <= 1 coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1 return min_lr + coeff * (learning_rate - min_lr) # logging if wandb_log and master_process: import wandb wandb.init(project=wandb_project, name=wandb_run_name, config=config) # training loop X, Y = get_batch('train') # fetch the very first batch t0 = time.time() local_iter_num = 0 # number of iterations in the lifetime of this process raw_model = model.module if ddp else model # unwrap DDP container if needed running_mfu = -1.0 clip_time = 0 while True: # determine and set the learning rate for this iteration lr = get_lr(iter_num) if decay_lr else learning_rate for param_group in optimizer.param_groups: param_group['lr'] = lr # evaluate the loss on train/val sets and write checkpoints if iter_num % eval_interval == 0 and master_process: losses = estimate_loss() # log_text = f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}" log_text = f"step {iter_num}: train loss {losses['train']['vanilla']:.4f}, val loss {losses['val']['vanilla']:.4f}, train loss ema {losses['train']['ema']:.4f}, val loss ema {losses['val']['ema']:.4f}" with open("logs/train2-log/training_val.txt", "a") as log_file: log_file.write(log_text + "\n") print(log_text) # print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") checkpoint = { 'model': raw_model.state_dict(), 'optimizer': optimizer.state_dict(), 'model_args': model_args, 'iter_num': iter_num, 'best_val_loss': best_val_loss, 'config': config, } checkpoint_ema = { 'model': model_ema.state_dict(), 'optimizer': optimizer.state_dict(), 'model_args': model_args, 'iter_num': iter_num, 'best_val_loss': best_val_loss, 'config': config, } print(f"saving checkpoint to {out_dir}") torch.save(checkpoint, os.path.join(out_dir, 'ckpt_' + str(iter_num) + '.pt')) print(f"saving checkpoint to {out_dir_ema}") torch.save(checkpoint_ema, os.path.join(out_dir_ema, 'ckpt_' + str(iter_num) + '.pt')) if wandb_log: wandb.log({ "iter": iter_num, "train/loss": losses['train']['vanilla'], "val/loss": losses['val']['vanilla'], "lr": lr, "mfu": running_mfu * 100, # convert to percentage }, step=iter_num) if losses['val']['vanilla'] < best_val_loss or always_save_checkpoint: best_val_loss = losses['val']['vanilla'] if iter_num > 0: checkpoint = { 'model': raw_model.state_dict(), 'optimizer': optimizer.state_dict(), 'model_args': model_args, 'iter_num': iter_num, 'best_val_loss': best_val_loss, 'config': config, } print(f"saving checkpoint to {out_dir}") torch.save(checkpoint, os.path.join(out_dir, 'ckpt_best.pt')) if iter_num == 0 and eval_only: break # forward backward update, with optional gradient accumulation to simulate larger batch size # and using the GradScaler if data type is float16 for micro_step in range(gradient_accumulation_steps): if ddp: # in DDP training we only need to sync gradients at the last micro step. # the official way to do this is with model.no_sync() context manager, but # I really dislike that this bloats the code and forces us to repeat code # looking at the source of that context manager, it just toggles this variable model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1) with ctx: logits, loss = model(X, Y) # immediately async prefetch next batch while model is doing the forward pass on the GPU X, Y = get_batch('train') # backward pass, with gradient scaling if training in fp16 scaler.scale(loss).backward() # clip the gradient if grad_clip != 0.0: scaler.unscale_(optimizer) total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) if total_norm.item() > grad_clip: clip_time += 1 # step the optimizer and scaler if training in fp16 scaler.step(optimizer) # Update EMA weights after the model update # model_ema.update() scaler.update() # flush the gradients as soon as we can, no need for this memory anymore optimizer.zero_grad(set_to_none=True) # ema update model_ema.update() # timing and logging t1 = time.time() dt = t1 - t0 t0 = t1 if iter_num % log_interval == 0 and master_process: lossf = loss.item() # loss as float. note: this is a CPU-GPU sync point if local_iter_num >= 5: # let the training loop settle a bit mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt) running_mfu = mfu if running_mfu == -1.0 else 0.9 * running_mfu + 0.1 * mfu print(f"iter {iter_num}: loss {lossf:.4f}, time {dt * 1000:.2f}ms, mfu {running_mfu * 100:.2f}%") params = [] for (name, p) in model.named_parameters(): params.append(p) total_param_norm = 0 for p in params: param_norm = p.data.norm(2) total_param_norm += param_norm.item() ** 2 total_param_norm = total_param_norm ** 0.5 momentum_norm = 0 LL = len(optimizer.state_dict()['state']) for jj in range(LL): momentum_norm += (optimizer.state_dict()['state'][jj]['exp_avg'].detach().norm(2)) ** 2 momentum_norm = torch.sqrt(momentum_norm).item() def generate_log_message(iter_num, lossf, lr, total_param_norm, momentum_norm, clip_time): log_message = ( f"iter: {iter_num}, " f"train/loss: {lossf}, " f"lr: {lr}, " f"param_norm: {total_param_norm}, " f"momentum_norm: {momentum_norm}, " f"train/clip_rate: {clip_time / (iter_num + 1)}" ) return log_message # During training: log_message = generate_log_message(iter_num, lossf, lr, total_param_norm, momentum_norm, clip_time) # Print the log message to console # print(log_message) # append the log message to the log file with open("logs/train2-log/training_log.txt", "a") as log_file: log_file.write(log_message + "\n") if wandb_log: wandb.log({ "iter": iter_num, "train/loss": lossf, "lr": lr, "param_norm": total_param_norm, "momentum_norm": momentum_norm, "train/clip_rate": clip_time / (iter_num + 1) }, step=iter_num) iter_num += 1 local_iter_num += 1 # termination conditions if iter_num > max_iters: break if ddp: destroy_process_group()
[]
2024-01-10
ryanhoangt/openai-api-integration-apps
03-Auto-Recipe-Creator~recipe.py
import os import openai from decouple import Config, RepositoryEnv config = Config(RepositoryEnv("/workspaces/codespaces-jupyter/.env")) openai.api_key = config("OPENAI_API_KEY") class RecipeGenerator: def __init__(self): self.list_of_ingredients = self.ask_for_ingredients() @staticmethod def ask_for_ingredients(): list_of_ingredients = [] while True: ingredient = input( "Enter an ingredient (or type 'done' to finish): ") if ingredient.lower() == "done": break list_of_ingredients.append(ingredient) print(f"Your ingredients are: {', '.join(list_of_ingredients)}") return list_of_ingredients def generate_recipe(self): prompt = RecipeGenerator.create_recipe_prompt(self.list_of_ingredients) if RecipeGenerator._verify_prompt(prompt): response = RecipeGenerator.generate(prompt) return response["choices"][0]["text"] raise ValueError("Prompt not accepted.") @staticmethod def create_recipe_prompt(list_of_ingredients): prompt = f"Create a detailed recipe based on only the following ingredients: {', '.join(list_of_ingredients)}.\n" \ + f"Additionally, assign a title starting with 'Recipe Title: ' to this dish, which can be used to create a photorealistic image of it." return prompt @staticmethod def _verify_prompt(prompt): print(prompt) response = input("Are you happy with the prompt? (y/n)") if response.upper() == "Y": return True return False @staticmethod def generate(prompt): response = openai.Completion.create(engine="text-davinci-003", prompt=prompt, max_tokens=256, temperature=0.7) return response def store_recipe(self, recipe, filename): with open(filename, "w") as f: f.write(recipe) if __name__ == "__main__": """ Test RecipeGenerator class without creating an image of the dish. """ gen = RecipeGenerator() recipe = gen.generate_recipe() print(recipe)
[ ", ", "f\"Create a detailed recipe based on only the following ingredients: {', '.join(list_of_ingredients)}.\\n\" \\\r\n + f\"Additionally, assign a title starting with 'Recipe Title: ' to this dish, which can be used to create a photorealistic image of it.", "Additionally, assign a title starting with 'Recipe Title: ' to this dish, which can be used to create a photorealistic image of it." ]
2024-01-10
ryanhoangt/openai-api-integration-apps
01-NLP-to-SQL~db_utils.py
from sqlalchemy import create_engine, text def dataframe_to_database(df, table_name): """Convert a pandas dataframe to a database. Args: df (dataframe): pd.DataFrame which is to be converted to a database table_name (string): Name of the table within the database Returns: engine: SQLAlchemy engine object """ engine = create_engine('sqlite:///:memory:', echo=False) df.to_sql(name=table_name, con=engine, index=False) return engine def handle_response(response): """Handles the response from OpenAI. Args: response (openAi response): Response json from OpenAI Returns: string: Proposed SQL query """ query = response["choices"][0]["text"] if query.startswith(" "): query = "Select" + query return query def execute_query(engine, query): """Execute a query on a database. Args: engine (SQLAlchemy engine object): database engine query (string): SQL query Returns: list: List of tuples containing the result of the query """ with engine.connect() as conn: result = conn.execute(text(query)) return result.fetchall()
[]
2024-01-10
alysawyer/one-textbook
eval-model-pt3~perplexity_test.py
import openai import os # Set up your OpenAI API key openai.api_key = os.getenv("OPENAI_API_KEY") def calculate_perplexity(model, sentence): # Define the prompt with the sentence to evaluate # Define the completion parameters completion_parameters = { "model": model, "prompt": sentence, "max_tokens": 0, "logprobs": 0, "echo": True } # Call the OpenAI API to generate the completion response = openai.Completion.create(**completion_parameters) print(response) # Extract the perplexity from the API response choices = response['choices'][0] token_logprobs = choices['logprobs']['token_logprobs'] print(token_logprobs) l = sum(token_logprobs[1:]) / len(token_logprobs[1:]) perplexity = 2 ** (-l) return perplexity # Example usage sentence = "I love davinci" model = "davinci" perplexity = calculate_perplexity(model, sentence) if perplexity is not None: print(f"The perplexity of the sentence is: {perplexity:.2f}") else: print("Perplexity calculation failed.")
[]
2024-01-10
alysawyer/one-textbook
eval-model-pt3~get_perplexity.py
import lmql import json from pathlib import Path import argparse from functools import partial import os import openai import time def get_perplexity(model, sentence): '''queries openai api to get logprobs of the prompt sentence''' # define the completion parameters completion_parameters = { "model": model, "prompt": sentence, "max_tokens": 0, "logprobs": 0, "echo": True } # calling openai api to get completion response response = openai.Completion.create(**completion_parameters) # extracing the log probabilities choices = response['choices'][0] token_logprobs = choices['logprobs']['token_logprobs'] return token_logprobs def evaluate_questions(questions): '''takes in model output json data, returns a list of 1s and 0s, where 1s represent correct answers''' results = [] # iterate thru questions for question in questions: lowest_perplexity = float('inf') lowest_perplexity_index = -1 for i, evalsentence in enumerate(question['evalsentences']): perplexity = evalsentence['perplexity'] # Extract perplexity from the evaluated sentence # flagging if lowest perplexity if perplexity < lowest_perplexity: lowest_perplexity = perplexity lowest_perplexity_index = i # seeing if the answer is correct, if lowest perplexity sentence is the same as the answer is_correct = 1 if question['evalsentences'][lowest_perplexity_index]['evalsentence'] == question['answer'] else 0 results.append(is_correct) return results # getting json name parser = argparse.ArgumentParser() parser.add_argument('second_argument') # opening json file file_path = Path.cwd() / parser.parse_args().second_argument with file_path.open(mode='r', encoding="utf-8") as f: data = json.load(f) model = "davinci" # creating output base filename info_list = parser.parse_args().second_argument.split(".") json_name = ".".join([ info_list[1].split("/")[1], info_list[0].split("/")[1], model, info_list[1].split("/")[0]]) print(json_name) # creating output filepaths output_perplexity_file = "results/cap1to5-accent-experiment/" + json_name + ".json" output_response_file = "results/cap1to5-accent-experiment-raw/" + json_name + ".raw.json" # only running new code if not os.path.exists(output_perplexity_file) or os.path.getsize(output_perplexity_file) == 0: # Iterate through questions for item in data: question = item["question"] evalsentences = item["evalsentences"] answer = item["answer"] print("Question:", question) # Iterate through evalsentences result_list = [] time.sleep(7) for sentence in evalsentences: # Evaluate each sentence and calculate perplexity log_probs = get_perplexity(model, sentence) # Calculate perplexity from log_probs l = sum(log_probs[1:]) / len(log_probs[1:]) perplexity = 2 ** (-l) # Create a dictionary with evaluated sentence, perplexity, and log_probs result = { "evalsentence": sentence, "perplexity": perplexity, "log_probs": log_probs } # Append the result to the list result_list.append(result) # Update the evalsentences key with the result list item["evalsentences"] = result_list print("Result:", json.dumps(item, ensure_ascii=False, indent=4)) with open(output_response_file, "w") as outfile: outfile.write(json.dumps(data)) # Evaluate the questions based on perplexity and print the results results = evaluate_questions(data) accuracy = sum(results) / len(results) with open(output_perplexity_file, "w") as outfile: outfile.write(str(accuracy))
[]
2024-01-10
alysawyer/one-textbook
eval-model-pt3~test_name.py
import lmql import json from pathlib import Path import argparse from functools import partial import os import openai import time # getting json name parser = argparse.ArgumentParser() parser.add_argument('second_argument') # opening json file file_path = Path.cwd() / parser.parse_args().second_argument with file_path.open(mode='r', encoding="utf-8") as f: data = json.load(f) model = "davinci" # creating output base filename info_list = parser.parse_args().second_argument.split(".") print(info_list) json_name = ".".join([ info_list[1].split("/")[1], info_list[0].split("/")[1], model, info_list[1].split("/")[0]]) print(json_name)
[]
2024-01-10
maquenneville/WikiWhat
WikiWhat~pinecone_memory.py
# -*- coding: utf-8 -*- """ Created on Tue May 16 22:59:06 2023 @author: marca """ import tiktoken import configparser import openai from openai.error import RateLimitError, InvalidRequestError, APIError import pinecone from pinecone import PineconeProtocolError import time import pandas as pd from tqdm.auto import tqdm import sys import os from embedder import Embedder import asyncio import nest_asyncio nest_asyncio.apply() class PineconeMemory: def __init__(self, index_name=None, namespace=None): if not os.path.exists("config.ini"): raise FileNotFoundError("The config file was not found.") self.encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") self.openai_api_key, self.pinecone_api_key, self.pinecone_env, self.index_name, self.namespace = self._get_api_keys("config.ini") if index_name: self.index_name = index_name if namespace: self.namespace = namespace self.pending_data = None pinecone.init(api_key=self.pinecone_api_key, environment=self.pinecone_env) if self.index_name not in pinecone.list_indexes(): dimension = 1536 metric = "cosine" pod_type = "p1" pinecone.create_index( self.index_name, dimension=dimension, metric=metric, pod_type=pod_type ) self.index = pinecone.Index(index_name=self.index_name) openai.api_key = self.openai_api_key self.embedder = Embedder() def __str__(self): """Returns a string representation of the PineconeMemory object.""" return f"Pinecone Memory | Index: {self.index_name}" def _get_api_keys(self, config_file): config = configparser.ConfigParser() config.read(config_file) openai_api_key = config.get("API_KEYS", "OpenAI_API_KEY") pinecone_api_key = config.get("API_KEYS", "Pinecone_API_KEY") pinecone_env = config.get("API_KEYS", "Pinecone_ENV") index = config.get("API_KEYS", "Pinecone_Index") namespace = config.get("API_KEYS", "Pinecone_Namespace") return openai_api_key, pinecone_api_key, pinecone_env, index, namespace def _count_tokens(self, text): tokens = len(self.encoding.encode(text)) return tokens def store_single(self, chunk: str): """Store a single embedding in Pinecone.""" assert self._count_tokens(chunk) <= 1200, "Text too long, chunk text before passing to .store_single()" vector = self.embedder.get_embedding(chunk) idx = self.index.describe_index_stats()["namespaces"][self.namespace]['vector_count'] + 1 # Prepare metadata for upsert metadata = {"context": chunk} vectors_to_upsert = [(idx, vector, metadata)] # Attempt to upsert the vector to Pinecone while True: try: upsert_response = self.index.upsert( vectors=vectors_to_upsert, namespace=self.namespace ) break except pinecone.core.client.exceptions.ApiException: print("Pinecone is a little overwhelmed, trying again in a few seconds...") time.sleep(10) def store(self, context_chunks: list): if context_chunks: batch_size = 80 vectors_to_upsert = [] batch_count = 0 start_id = self.index.describe_index_stats()["namespaces"][self.namespace]['vector_count'] + 1 data = asyncio.run(self.embedder.create_embeddings(context_chunks, start_id=start_id)) # Calculate the total number of batches total_batches = -(-len(data) // batch_size) # Create a tqdm progress bar object progress_bar = tqdm(total=total_batches, desc="Loading info into Pinecone", position=0) for index, row in data.iterrows(): context_chunk = row["chunk"] vector = row["embeddings"] pine_index = str(row["id"]) metadata = {"context": context_chunk} vectors_to_upsert.append((pine_index, vector, metadata)) # Upsert when the batch is full or it's the last row if len(vectors_to_upsert) == batch_size or index == len(data) - 1: while True: try: upsert_response = self.index.upsert( vectors=vectors_to_upsert, namespace=self.namespace ) batch_count += 1 vectors_to_upsert = [] # Update the progress bar progress_bar.update(1) sys.stdout.flush() break except pinecone.core.client.exceptions.ApiException: print( "Pinecone is a little overwhelmed, trying again in a few seconds..." ) time.sleep(10) # Close the progress bar after completing all upserts progress_bar.close() else: print("No dataframe to retrieve embeddings") def fetch_context(self, query, top_n=5): # Generate the query embedding query_embedding = self.embedder.get_embedding(query) while True: try: query_response = self.index.query( namespace=self.namespace, top_k=top_n, include_values=False, include_metadata=True, vector=query_embedding, ) break except PineconeProtocolError: print("Pinecone needs a moment....") time.sleep(3) continue # Retrieve metadata for the relevant embeddings context_chunks = [ match["metadata"]["context"] for match in query_response["matches"] ] return context_chunks
[]
2024-01-10
maquenneville/WikiWhat
WikiWhat~chroma_memory.py
# -*- coding: utf-8 -*- """ Created on Wed Jul 26 00:08:42 2023 @author: marca """ import chromadb from embedder import Embedder import configparser import os import time import openai from openai.error import RateLimitError, InvalidRequestError, APIError import tiktoken from tqdm.auto import tqdm import sys import random from chromadb.utils import embedding_functions import asyncio import nest_asyncio nest_asyncio.apply() class ChromaMemory: def __init__(self, collection_name=None): if not os.path.exists("config.ini"): raise FileNotFoundError("The config file was not found.") self.encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") ( self.openai_api_key, self.chroma_collection, self.storage ) = self._get_api_keys("config.ini") openai.api_key = self.openai_api_key self.ef = embedding_functions.OpenAIEmbeddingFunction( api_key=self.openai_api_key, model_name="text-embedding-ada-002" ) if collection_name: self.chroma_collection = collection_name.lower() self.client = chromadb.Client() if self.storage: self.client = chromadb.PersistentClient(path=self.storage) try: self.collection = self.client.create_collection(self.chroma_collection, embedding_function=self.ef, metadata={"hnsw:space": "cosine"}) except ValueError: self.collection = self.client.get_collection(self.chroma_collection) self.embedder = Embedder() def __str__(self): """Returns a string representation of the ChromaMemory object.""" return f"Chroma Memory | Collection: {self.chroma_collection}" def _get_api_keys(self, config_file): config = configparser.ConfigParser() config.read(config_file) openai_api_key = config.get("API_KEYS", "OpenAI_API_KEY") chroma_collection = config.get("API_KEYS", "Chroma_Collection") try: chroma_storage = config.get("API_KEYS", "Optional_Chroma_Local_Storage") except: chroma_storage = None return openai_api_key, chroma_collection, chroma_storage def _count_tokens(self, text): tokens = len(self.encoding.encode(text)) return tokens def store_single(self, text: str, doc_id: str = None, metadata: dict = None): """Store a single document in Chroma.""" assert ( self._count_tokens(text) <= 1200 ), "Text too long, chunk text before passing to .store_single()" # Compute the embedding embedding = self.embedder.get_embedding(text) unique_id = doc_id if doc_id else f"chunk_{self.collection.count()}" # Store the document in Chroma if metadata is None: self.collection.add( documents=[text], embeddings=[embedding], ids=[unique_id], ) else: self.collection.add( documents=[text], embeddings=[embedding], metadatas=[metadata], ids=[unique_id], ) def store(self, context_chunks: list, metadatas=None): """Store multiple documents in Chroma""" start_id = self.collection.count() data = asyncio.run(self.embedder.create_embeddings(context_chunks, start_id=start_id)) if metadatas is None: self.collection.add( documents=data["chunk"].tolist(), embeddings=data["embeddings"].tolist(), ids=data["id"].tolist(), # Convert to list ) else: self.collection.add( documents=data["chunk"].tolist(), embeddings=data["embeddings"].tolist(), metadatas=metadatas, ids=data["id"].tolist(), # Convert to list ) def fetch_context(self, query, top_n=5): if self.collection.count() < 5: top_n = self.collection.count() # Generate the query embedding query_embedding = self.embedder.get_embedding(query) # Query the most similar results results = self.collection.query( query_embeddings=[query_embedding], n_results=top_n, ) # Retrieve the documents for the relevant embeddings context_chunks = results['documents'] return context_chunks
[]
2024-01-10
maquenneville/WikiWhat
WikiWhat~simple_bot.py
# -*- coding: utf-8 -*- """ Created on Thu May 18 12:22:23 2023 @author: marca """ import openai from openai.error import RateLimitError, InvalidRequestError, APIError import time import configparser import tiktoken import trafilatura class SimpleBot: def __init__(self, primer, model="gpt-3.5-turbo"): self.openai_api_key = self._get_api_keys("config.ini") openai.api_key = self.openai_api_key self.model = model self.encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") if isinstance(primer, list): self.primer = [ {"role": "system", "content": "You are a helpful assistant."} ] for message in primer: self.primer.append({"role": "user", "content": message}) else: self.primer = [ {"role": "system", "content": primer}, ] def _get_api_keys(self, config_file): config = configparser.ConfigParser() config.read(config_file) openai_api_key = config.get("API_KEYS", "OpenAI_API_KEY") return openai_api_key def _count_tokens(self, text): tokens = len(self.encoding.encode(text)) return tokens def _generate_response( self, messages, function_desc=None, temperature=0.5, n=1, max_tokens=4000, frequency_penalty=0, ): token_ceiling = 4096 if self.model == "gpt-4": max_tokens = 8000 token_ceiling = 8000 if self.model == "gpt-3.5-turbo-16k": max_tokens = 16000 token_ceiling = 16000 tokens_used = sum([self._count_tokens(msg["content"]) for msg in messages]) tokens_available = token_ceiling - tokens_used max_tokens = min(max_tokens, (tokens_available - 100)) if tokens_used + max_tokens > token_ceiling: max_tokens = token_ceiling - tokens_used - 10 if max_tokens < 1: max_tokens = 1 max_retries = 10 retries = 0 backoff_factor = 1 # Initial sleep time factor while retries < max_retries: try: completion_params = { "model": self.model, "messages": messages, "n": n, "temperature": temperature, "max_tokens": max_tokens, "frequency_penalty": frequency_penalty, } if function_desc is not None: completion_params["functions"] = function_desc completion = openai.ChatCompletion.create(**completion_params) response = completion return response except Exception as e: print(e) retries += 1 sleep_time = backoff_factor * (2 ** retries) # Exponential backoff print(f"Server overloaded, retrying in {sleep_time} seconds...") time.sleep(sleep_time) print("Failed to generate prompt after max retries") return def smart_agent(self): self.model = "gpt-4" def fast_agent(self): self.model = "gpt-3.5-turbo" def long_agent(self): self.model = "gpt-3.5-turbo-16k" def add_primer(self, primer_text): self.primer.append({"role": "user", "content": primer_text}) def chat(self, input_string: str, context_chunks: list=None): # Create a local copy of self.primer messages = self.primer.copy() # Append new user message messages.append({"role": "user", "content": f"{input_string}"}) if context_chunks: memories = [{"role": "user", "content": f"Context:\n{context}"} for context in context_chunks] messages.extend(memories) response = self._generate_response(messages, temperature=0.1) return response class WebpageSummaryBot(SimpleBot): def __init__(self, model="gpt-3.5-turbo-16k"): super().__init__( primer="You are my Webpage Summary Assistant. Your job is to take the full, main text of a webpage, and trim it down into a summary. Maintain all important details, while attempting to keep the summary as short as possible. You must respond with a summary, and only a summary, no explanatory text or pleasantries.", model='gpt-3.5-turbo-16k') def _chunk_webpage_text(self, text, max_token_length=10000): words = text.split() chunks = [] current_chunk = "" for word in words: # Check if adding the word to the current chunk would exceed the max_token_length if self._count_tokens(current_chunk + " " + word) > max_token_length: # If so, add the current chunk to the chunks list and start a new chunk with the current word chunks.append(current_chunk.strip()) current_chunk = word else: # Otherwise, add the word to the current chunk current_chunk += f" {word}" # Add the last chunk to the chunks list if current_chunk: chunks.append(current_chunk.strip()) return chunks def _summarize_text(self, input_string: str): # Create a local copy of self.primer messages = self.primer.copy() # Append new user message messages.append({"role": "user", "content": f"Text to summarize: {input_string}"}) response = self._generate_response(messages, temperature=0.1) return response.choices[0].message.content def summarize_url_content(self, url: str): downloaded = trafilatura.fetch_url(url) webpage_text = trafilatura.extract(downloaded) if self._count_tokens(webpage_text) > 10000: chunks = self._chunk_webpage_text(webpage_text) summary = "\n".join([self._summarize_text(chunk) for chunk in chunks]) else: summary = self._summarize_text(webpage_text) return summary
[ "Text to summarize: PLACEHOLDER", "PLACEHOLDER", "Context:\nPLACEHOLDER", "You are a helpful assistant." ]
2024-01-10
fenghaiquan/babyagi
classic~BabyElfAGI~skills~web_search.py
from skills.skill import Skill from serpapi import GoogleSearch import openai from bs4 import BeautifulSoup import requests import re headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.81 Safari/537.36" } class WebSearch(Skill): name = 'web_search' description = 'A tool that performs web searches.' api_keys_required = [['openai'],['serpapi']] def __init__(self, api_keys): super().__init__(api_keys) def execute(self, params, dependent_task_outputs, objective): # Your function goes here # Modify the query based on the dependent task output if dependent_task_outputs != "": dependent_task = f"Use the dependent task output below as reference to help craft the correct search query for the provided task above. Dependent task output:{dependent_task_outputs}." else: dependent_task = "." query = self.text_completion_tool("You are an AI assistant tasked with generating a Google search query based on the following task: "+params+". If the task looks like a search query, return the identical search query as your response. " + dependent_task + "\nSearch Query:") print("\033[90m\033[3m"+"Search query: " +str(query)+"\033[0m") # Set the search parameters search_params = { "engine": "google", "q": query, "api_key": self.serpapi_api_key, "num": 3 } # Perform the web search search_results = GoogleSearch(search_params).get_dict() # Simplify the search results search_results = self.simplify_search_results(search_results.get('organic_results', [])) print("\033[90m\033[3mCompleted search. Now scraping results.\n\033[0m") # Store the results from web scraping results = "" for result in search_results: url = result.get('link') print("\033[90m\033[3m" + "Scraping: "+url+"" + "...\033[0m") content = self.web_scrape_tool({"url": url, "task": params,"objective":objective}) results += str(content) + ". " print("\033[90m\033[3m"+str(results[0:100])[0:100]+"...\033[0m") # Process the results and generate a report results = self.text_completion_tool(f"You are an expert analyst combining the results of multiple web scrapes. Rewrite the following information as one cohesive report without removing any facts. Ignore any reports of not having info, unless all reports say so - in which case explain that the search did not work and suggest other web search queries to try. \n###INFORMATION:{results}.\n###REPORT:") return results def simplify_search_results(self, search_results): simplified_results = [] for result in search_results: simplified_result = { "position": result.get("position"), "title": result.get("title"), "link": result.get("link"), "snippet": result.get("snippet") } simplified_results.append(simplified_result) return simplified_results def text_completion_tool(self, prompt: str): messages = [ {"role": "user", "content": prompt} ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k-0613", messages=messages, temperature=0.2, max_tokens=1500, top_p=1, frequency_penalty=0, presence_penalty=0 ) return response.choices[0].message['content'].strip() def web_scrape_tool(self, params): content = self.fetch_url_content(params['url']) if content is None: return None text = self.extract_text(content) print("\033[90m\033[3m"+"Scrape completed. Length:" +str(len(text))+".Now extracting relevant info..."+"...\033[0m") info = self.extract_relevant_info(params['objective'], text[0:11000], params['task']) links = self.extract_links(content) #result = f"{info} URLs: {', '.join(links)}" result = info return result def fetch_url_content(self,url: str): try: response = requests.get(url, headers=headers, timeout=10) response.raise_for_status() return response.content except requests.exceptions.RequestException as e: print(f"Error while fetching the URL: {e}") return "" def extract_links(self,content: str): soup = BeautifulSoup(content, "html.parser") links = [link.get('href') for link in soup.findAll('a', attrs={'href': re.compile("^https?://")})] return links def extract_text(self,content: str): soup = BeautifulSoup(content, "html.parser") text = soup.get_text(strip=True) return text def extract_relevant_info(self, objective, large_string, task): chunk_size = 12000 overlap = 500 notes = "" if len(large_string) == 0: print("error scraping") return "Error scraping." for i in range(0, len(large_string), chunk_size - overlap): print("\033[90m\033[3m"+"Reading chunk..."+"\033[0m") chunk = large_string[i:i + chunk_size] messages = [ {"role": "system", "content": f"You are an AI assistant."}, {"role": "user", "content": f"You are an expert AI research assistant tasked with creating or updating the current notes. If the current note is empty, start a current-notes section by exracting relevant data to the task and objective from the chunk of text to analyze. If there is a current note, add new relevant info frol the chunk of text to analyze. Make sure the new or combined notes is comprehensive and well written. Here's the current chunk of text to analyze: {chunk}. ### Here is the current task: {task}.### For context, here is the objective: {objective}.### Here is the data we've extraced so far that you need to update: {notes}.### new-or-updated-note:"} ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k-0613", messages=messages, max_tokens=800, n=1, stop="###", temperature=0.7, ) notes += response.choices[0].message['content'].strip()+". "; return notes
[ "You are an AI assistant.", "You are an expert AI research assistant tasked with creating or updating the current notes. If the current note is empty, start a current-notes section by exracting relevant data to the task and objective from the chunk of text to analyze. If there is a current note, add new relevant info frol the chunk of text to analyze. Make sure the new or combined notes is comprehensive and well written. Here's the current chunk of text to analyze: PLACEHOLDER. ### Here is the current task: PLACEHOLDER.### For context, here is the objective: PLACEHOLDER.### Here is the data we've extraced so far that you need to update: PLACEHOLDER.### new-or-updated-note:" ]
2024-01-10
fenghaiquan/babyagi
classic~BabyElfAGI~tasks~task_registry.py
import openai import json import threading import os import numpy as np class TaskRegistry: def __init__(self): self.tasks = [] # Initialize the lock self.lock = threading.Lock() objectives_file_path = "tasks/example_objectives" self.example_loader = ExampleObjectivesLoader(objectives_file_path) def load_example_objectives(self, user_objective): return self.example_loader.load_example_objectives(user_objective) def create_tasklist(self, objective, skill_descriptions): #load most relevant object and tasklist from objectives_examples.json example_objective, example_tasklist = self.load_example_objectives(objective) prompt = ( f"You are an expert task list creation AI tasked with creating a list of tasks as a JSON array, considering the ultimate objective of your team: {objective}. " f"Create a very short task list based on the objective, the final output of the last task will be provided back to the user. Limit tasks types to those that can be completed with the available skills listed below. Task description should be detailed.###" f"AVAILABLE SKILLS: {skill_descriptions}.###" f"RULES:" f"Do not use skills that are not listed." f"Always include one skill." f"dependent_task_ids should always be an empty array, or an array of numbers representing the task ID it should pull results from." f"Make sure all task IDs are in chronological order.###\n" f"EXAMPLE OBJECTIVE={json.dumps(example_objective)}" f"TASK LIST={json.dumps(example_tasklist)}" f"OBJECTIVE={objective}" f"TASK LIST=" ) print("\033[90m\033[3m" + "\nInitializing...\n" + "\033[0m") response = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=[ { "role": "system", "content": "You are a task creation AI." }, { "role": "user", "content": prompt } ], temperature=0, max_tokens=1500, top_p=1, frequency_penalty=0, presence_penalty=0 ) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] try: task_list = json.loads(result) self.tasks = task_list except Exception as error: print(error) def execute_task(self, i, task, skill_registry, task_outputs, objective): p_nexttask="\033[92m\033[1m"+"\n*****NEXT TASK ID:"+str(task['id'])+"*****\n"+"\033[0m\033[0m" p_nexttask += f"\033[ EExecuting task {task.get('id')}: {task.get('task')}) [{task.get('skill')}]\033[)" print(p_nexttask) # Retrieve the skill from the registry skill = skill_registry.get_skill(task['skill']) # Get the outputs of the dependent tasks dependent_task_outputs = {dep: task_outputs[dep]["output"] for dep in task['dependent_task_ids']} if 'dependent_task_ids' in task else {} # Execute the skill # print("execute:"+str([task['task'], dependent_task_outputs, objective])) task_output = skill.execute(task['task'], dependent_task_outputs, objective) print("\033[93m\033[1m"+"\nTask Output (ID:"+str(task['id'])+"):"+"\033[0m\033[0m") print("TASK: "+str(task["task"])) print("OUTPUT: "+str(task_output)) return i, task_output def reorder_tasks(self): self.tasks = sorted(self.tasks, key=lambda task: task['id']) def add_task(self, task, after_task_id): # Get the task ids task_ids = [t["id"] for t in self.tasks] # Get the index of the task id to add the new task after insert_index = task_ids.index(after_task_id) + 1 if after_task_id in task_ids else len(task_ids) # Insert the new task self.tasks.insert(insert_index, task) self.reorder_tasks() def update_tasks(self, task_update): for task in self.tasks: if task['id'] == task_update['id']: # This merges the original task dictionary with the update, overwriting only the fields present in the update. task.update(task_update) self.reorder_tasks() def reflect_on_output(self, task_output, skill_descriptions): with self.lock: example = [ [ {"id": 3, "task": "New task 1 description", "skill": "text_completion_skill", "dependent_task_ids": [], "status": "complete"}, {"id": 4, "task": "New task 2 description", "skill": "text_completion_skill", "dependent_task_ids": [], "status": "incomplete"} ], [2, 3], {"id": 5, "task": "Complete the objective and provide a final report", "skill": "text_completion_skill", "dependent_task_ids": [1, 2, 3, 4], "status": "incomplete"} ] prompt = ( f"You are an expert task manager, review the task output to decide at least one new task to add." f"As you add a new task, see if there are any tasks that need to be updated (such as updating dependencies)." f"Use the current task list as reference." f"Do not add duplicate tasks to those in the current task list." f"Only provide JSON as your response without further comments." f"Every new and updated task must include all variables, even they are empty array." f"Dependent IDs must be smaller than the ID of the task." f"New tasks IDs should be no larger than the last task ID." f"Always select at least one skill." f"Task IDs should be unique and in chronological order." f"Do not change the status of complete tasks." f"Only add skills from the AVAILABLE SKILLS, using the exact same spelling." f"Provide your array as a JSON array with double quotes. The first object is new tasks to add as a JSON array, the second array lists the ID numbers where the new tasks should be added after (number of ID numbers matches array), and the third object provides the tasks that need to be updated." f"Make sure to keep dependent_task_ids key, even if an empty array." f"AVAILABLE SKILLS: {skill_descriptions}.###" f"\n###Here is the last task output: {task_output}" f"\n###Here is the current task list: {self.tasks}" f"\n###EXAMPLE OUTPUT FORMAT = {json.dumps(example)}" f"\n###OUTPUT = " ) print("\033[90m\033[3m" + "\nReflecting on task output to generate new tasks if necessary...\n" + "\033[0m") response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k-0613", messages=[ { "role": "system", "content": "You are a task creation AI." }, { "role": "user", "content": prompt } ], temperature=0.7, max_tokens=1500, top_p=1, frequency_penalty=0, presence_penalty=0 ) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] print("\n#" + str(result)) # Check if the returned result has the expected structure if isinstance(result, str): try: task_list = json.loads(result) # print("RESULT:") print(task_list) # return [],[],[] return task_list[0], task_list[1], task_list[2] except Exception as error: print(error) else: raise ValueError("Invalid task list structure in the output") def get_tasks(self): """ Returns the current list of tasks. Returns: list: the list of tasks. """ return self.tasks def get_task(self, task_id): """ Returns a task given its task_id. Parameters: task_id : int The unique ID of the task. Returns: dict The task that matches the task_id. """ matching_tasks = [task for task in self.tasks if task["id"] == task_id] if matching_tasks: return matching_tasks[0] else: print(f"No task found with id {task_id}") return None def print_tasklist(self, task_list): p_tasklist="\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m" for t in task_list: dependent_task_ids = t.get('dependent_task_ids', []) dependent_task = "" if dependent_task_ids: dependent_task = f"\033[31m<dependencies: {', '.join([f'#{dep_id}' for dep_id in dependent_task_ids])}>\033[0m" status_color = "\033[32m" if t.get('status') == "completed" else "\033[31m" p_tasklist+= f"\033[1m{t.get('id')}\033[0m: {t.get('task')} {status_color}[{t.get('status')}]\033[0m \033[93m[{t.get('skill')}] {dependent_task}\033[0m\n" print(p_tasklist) class ExampleObjectivesLoader: def __init__(self, objectives_folder_path): self.objectives_folder_path = objectives_folder_path self.objectives_examples = [] # Initialize as an empty list def load_objectives_examples(self): self.objectives_examples = [] for filename in os.listdir(self.objectives_folder_path): file_path = os.path.join(self.objectives_folder_path, filename) with open(file_path, 'r') as file: objectives = json.load(file) self.objectives_examples.extend(objectives) def find_most_relevant_objective(self, user_input): user_input_embedding = self.get_embedding(user_input, model='text-embedding-ada-002') most_relevant_objective = max( self.objectives_examples, key=lambda pair: self.cosine_similarity(pair['objective'], user_input_embedding) ) return most_relevant_objective['objective'], most_relevant_objective['examples'] def get_embedding(self, text, model='text-embedding-ada-002'): response = openai.Embedding.create(input=[text], model=model) embedding = response['data'][0]['embedding'] return embedding def cosine_similarity(self, objective, embedding): max_similarity = float('-inf') objective_embedding = self.get_embedding(objective, model='text-embedding-ada-002') similarity = self.calculate_similarity(objective_embedding, embedding) max_similarity = max(max_similarity, similarity) return max_similarity def calculate_similarity(self, embedding1, embedding2): embedding1 = np.array(embedding1, dtype=np.float32) embedding2 = np.array(embedding2, dtype=np.float32) similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2)) return similarity def load_example_objectives(self, user_objective): self.load_objectives_examples() most_relevant_objective, most_relevant_tasklist = self.find_most_relevant_objective(user_objective) example_objective = most_relevant_objective example_tasklist = most_relevant_tasklist return example_objective, example_tasklist
[ "Always select at least one skill.", "TASK LIST=", "Provide your array as a JSON array with double quotes. The first object is new tasks to add as a JSON array, the second array lists the ID numbers where the new tasks should be added after (number of ID numbers matches array), and the third object provides the tasks that need to be updated.", "\n###OUTPUT = ", "Use the current task list as reference.", "Dependent IDs must be smaller than the ID of the task.", "Make sure all task IDs are in chronological order.###\n", "AVAILABLE SKILLS: PLACEHOLDER.###", "Only add skills from the AVAILABLE SKILLS, using the exact same spelling.", "Make sure to keep dependent_task_ids key, even if an empty array.", "As you add a new task, see if there are any tasks that need to be updated (such as updating dependencies).", "Create a very short task list based on the objective, the final output of the last task will be provided back to the user. Limit tasks types to those that can be completed with the available skills listed below. Task description should be detailed.###", "Do not change the status of complete tasks.", "Do not add duplicate tasks to those in the current task list.", "New tasks IDs should be no larger than the last task ID.", "You are an expert task manager, review the task output to decide at least one new task to add.", "Always include one skill.", "Task IDs should be unique and in chronological order.", "You are an expert task list creation AI tasked with creating a list of tasks as a JSON array, considering the ultimate objective of your team: PLACEHOLDER. ", "OBJECTIVE=PLACEHOLDER", "\n###Here is the last task output: PLACEHOLDER", "Do not use skills that are not listed.", "You are a task creation AI.", "Every new and updated task must include all variables, even they are empty array.", "dependent_task_ids should always be an empty array, or an array of numbers representing the task ID it should pull results from.", "Only provide JSON as your response without further comments." ]
2024-01-10
andrewhinh/admirer
question_answer~answer.py
# Imports import argparse from collections import defaultdict import json import os from pathlib import Path import random from typing import Any, Dict, List, Tuple, Union from dotenv import load_dotenv import numpy as np from onnxruntime import InferenceSession from openai import OpenAI from PIL import Image import torch from transformers import ( AutoTokenizer, CLIPProcessor, DetrFeatureExtractor, DetrForSegmentation, pipeline, VisionEncoderDecoderModel, ViTFeatureExtractor, ) import question_answer.metadata.pica as metadata # Loading env variables load_dotenv() # Variables # OpenAI params CLIENT = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) MODEL = "gpt-3.5-turbo-1106" # Artifact path artifact_path = Path(__file__).resolve().parent / "artifacts" / "answer" # PICa formatting/config img_id = 100 # Random idx for inference question_id = 1005 # Random idx for inference # Significant driver of performance with little extra cost # PICa paper's max = 16, but can set higher if model's speed + context size can handle it n_shot = 16 coco_path = artifact_path / "coco_annotations" similarity_path = artifact_path / "coco_clip_new" # Model setup transformers_path = artifact_path / "transformers" onnx_path = artifact_path / "onnx" # Segmentation model config tag_model = transformers_path / "facebook" / "detr-resnet-50-panoptic" max_length = 16 num_beams = 4 # Caption model config caption_model = transformers_path / "nlpconnect" / "vit-gpt2-image-captioning" # CLIP Encoders config clip_processor = transformers_path / "openai" / "clip-vit-base-patch16" clip_onnx = onnx_path / "clip.onnx" # Dataset variables NUM_ORIGINAL_EXAMPLES = metadata.NUM_ORIGINAL_EXAMPLES NUM_ADDED_EXAMPLES = metadata.NUM_ADDED_EXAMPLES NUM_TEST_EXAMPLES = metadata.NUM_TEST_EXAMPLES # Helper/main classes class PICa_OKVQA: """ Question Answering Class """ def __init__( self, caption_info: Dict[Any, Any] = None, tag_info: Dict[Any, Any] = None, questions: Dict[str, List[Dict[str, str]]] = None, context_idxs: Dict[str, str] = None, question_features: np.ndarray = None, image_features: np.ndarray = None, evaluate: bool = False, ): self.evaluate = evaluate ( self.traincontext_caption_dict, self.traincontext_answer_dict, self.traincontext_question_dict, ) = self.load_anno( "%s/captions_train2014.json" % coco_path, "%s/mscoco_train2014_annotations.json" % coco_path, "%s/OpenEnded_mscoco_train2014_questions.json" % coco_path, ) ( self.traincontext_caption_dict, _, self.traincontext_answer_dict, self.traincontext_question_dict, ) = self.add_anno( "%s/admirer-pica.json" % coco_path, self.traincontext_caption_dict, self.traincontext_answer_dict, self.traincontext_question_dict, ) if evaluate: ( self.testcontext_caption_dict, self.testcontext_tags_dict, self.testcontext_answer_dict, self.testcontext_question_dict, ) = self.add_anno( "%s/admirer-pica.json" % coco_path, evaluate=evaluate, ) # load cached image representation (Coco caption & Tags) self.inputtext_dict = self.load_cachetext(self.testcontext_caption_dict, self.testcontext_tags_dict) self.load_similarity(evaluate=evaluate) question_dict_keys = list(self.testcontext_question_dict.keys()) image_ids, question_ids = [key.split("<->")[0] for key in question_dict_keys], [ key.split("<->")[1] for key in question_dict_keys ] list_questions = list(self.testcontext_question_dict.values()) self.questions = { "questions": [ {"image_id": image_id, "question": question_str, "question_id": quest_id} for image_id, question_str, quest_id in zip(image_ids, list_questions, question_ids) ] } else: # load cached image representation (Coco caption & Tags) self.inputtext_dict = self.load_cachetext(caption_info, tag_info) _ = self.load_similarity(context_idxs, question_features, image_features) self.questions = questions self.train_keys = list(self.traincontext_answer_dict.keys()) def answer_gen(self): _, _, question_dict = self.load_anno(questions=self.questions) if self.evaluate: pred_answers = [] gt_answers = [] keys = list(question_dict.keys()) for key in keys: img_key = int(key.split("<->")[0]) question, caption = ( question_dict[key], self.inputtext_dict[img_key], ) context_key_list = self.get_context_keys( key, n_shot, ) # prompt format following OpenAI QA API messages = [] system_message = { "role": "system", "content": str( "You are given {n_shot} examples of image content, a question about the image, and an answer. " + "Given a new set of content and question, " + "you are tasked with coming up with an answer in a similar way to the examples. " + "If the content is not enough to answer the question, " + "make up an answer structured as:" + "\n" + "1) an acknowledgment of not knowing the correct answer to the question," + "\n" + "2) a comedic reply using what you can from the content." + "\n" + "For example, if the question is 'What is the color of the user's shirt?', " + "and the context is 'The user is wearing a shirt with a picture of a cat on it', " + "a good answer could be 'I don't know, but I think the cat is cute!'" ), } messages.append(system_message) for ni in range(n_shot): if context_key_list is None: context_key = self.train_keys[random.randint(0, len(self.train_keys) - 1)] else: context_key = context_key_list[ni] img_context_key = int(context_key.split("<->")[0]) while True: # make sure get context with valid question and answer if ( len(self.traincontext_question_dict[context_key]) != 0 and len(self.traincontext_answer_dict[context_key][0]) != 0 ): break context_key = self.train_keys[random.randint(0, len(self.train_keys) - 1)] caption = self.traincontext_caption_dict[img_context_key] question = self.traincontext_question_dict[context_key] answer = self.traincontext_answer_dict[context_key] if type(caption) == list: caption = caption[0] # sometimes annotators messed up if type(question) == list: question = question[0] if type(answer) == list: answer = answer[0] user_message = { "role": "user", "content": str( "Image content: " + caption + "\n" + "Question: " + question + "\n" + "Answer: " + answer ), } messages.append(user_message) current_user_message = { "role": "user", "content": str("Image content: " + caption + "\n" + "Question: " + question + "\n" + "Answer: "), } messages.append(current_user_message) try: response = CLIENT.chat.completions.create( model=MODEL, messages=messages, ) except Exception as e: print(e) exit(0) pred_answer = response.choices[0].message.content if self.evaluate: answer = self.testcontext_answer_dict[key] pred_answers.append(pred_answer) gt_answers.append(answer) else: return pred_answer from question_answer.lit_models.metrics import BertF1Score return BertF1Score()(pred_answers, gt_answers) def get_context_keys(self, key: str, n: int) -> List[str]: """Get context keys based on similarity scores""" # combined with Q-similairty (image+question) lineid = self.valkey2idx[key] # Removing validation key from train similarity arrays if needed temp_train_feature = None temp_image_train_feature = None temp_train_idx = None for idx in range(NUM_ORIGINAL_EXAMPLES, NUM_ORIGINAL_EXAMPLES + NUM_ADDED_EXAMPLES): question_feature_equal = np.array_equal(self.val_feature[lineid], self.train_feature[idx]) image_feature_equal = np.array_equal(self.val_feature[lineid], self.image_train_feature[idx]) if question_feature_equal and image_feature_equal: mask = np.ones(len(self.train_feature), dtype=bool) mask[[idx]] = False temp_train_feature = self.train_feature[mask] temp_image_train_feature = self.image_train_feature[mask] temp_train_idx = self.train_idx.pop(str(idx)) break removed = temp_train_feature is not None and temp_image_train_feature is not None and temp_train_idx is not None if removed: question_similarity: np.ndarray = np.matmul(temp_train_feature, self.val_feature[lineid, :]) # end of Q-similairty similarity: np.ndarray = question_similarity + np.matmul( temp_image_train_feature, self.image_val_feature[lineid, :] ) else: question_similarity: np.ndarray = np.matmul(self.train_feature, self.val_feature[lineid, :]) # end of Q-similairty similarity: np.ndarray = question_similarity + np.matmul( self.image_train_feature, self.image_val_feature[lineid, :] ) index: np.ndarray = similarity.argsort()[-n:][::-1] return [self.train_idx[str(x)] for x in index] def load_similarity( self, context_idxs: Dict[str, str] = None, question_features: np.ndarray = None, image_features: np.ndarray = None, evaluate=False, ): # Add question train feature, image train feature, and train idx self.train_feature = np.load("%s/coco_clip_vitb16_train2014_okvqa_question.npy" % similarity_path) self.train_idx: Dict[str, str] = json.load( open( "%s/okvqa_qa_line2sample_idx_train2014.json" % similarity_path, "r", ) ) self.image_train_feature = np.load( "%s/coco_clip_vitb16_train2014_okvqa_convertedidx_image.npy" % similarity_path ) if evaluate: context_idxs = dict(list(self.train_idx.items())[NUM_ORIGINAL_EXAMPLES:]) new_keys = [str(idx) for idx in range(len(context_idxs))] context_idxs = dict(zip(new_keys, list(context_idxs.values()))) self.val_feature = self.train_feature[-NUM_ADDED_EXAMPLES:, :] self.image_val_feature = self.image_train_feature[-NUM_ADDED_EXAMPLES:, :] else: self.val_feature = question_features self.image_val_feature = image_features val_idx = context_idxs self.valkey2idx: Dict[str, int] = {} for ii in val_idx: self.valkey2idx[val_idx[ii]] = int(ii) def load_tags( self, tag_info: Dict[Any, List[str]], ) -> Dict[int, str]: """Loads tags for an image""" tags_dict = {} image_ids, list_tags = list(tag_info.keys()), list(tag_info.values()) # Concatenate tags into one string list_str_tags = [tags for tags in list_tags] for id in range(len(image_ids)): tags_dict[image_ids[id]] = list_str_tags[id] return tags_dict def load_cachetext( self, caption_info: Dict[Any, List[str]], tag_info: Dict[Any, List[str]], ): """Loads and adds cachetect to the caption""" tags_dict = self.load_tags(tag_info) caption_dict = {} image_ids, captions = list(caption_info.keys()), list(caption_info.values()) for id in range(len(image_ids)): caption_dict[image_ids[id]] = captions[id] + ". " + list(tags_dict.values())[id] return caption_dict def load_anno( self, coco_caption_file: Path = None, answer_anno_file: Path = None, question_anno_file: Path = None, questions: Dict[str, List[Dict[str, str]]] = None, ) -> Tuple[Dict[int, List[str]], Dict[str, List[str]], Dict[str, str]]: """Loads annotation from a caption file""" # Define default dictionaries caption_dict: defaultdict[int, List[str]] = defaultdict(list) answer_dict: defaultdict[str, List[str]] = defaultdict(list) question_dict: defaultdict[str, str] = defaultdict(list) # Create caption dictionary if coco_caption_file is not None: coco_caption = json.load(open(coco_caption_file, "r")) if isinstance(coco_caption, dict): coco_caption: List[Dict[str, Union[str, int]]] = coco_caption["annotations"] for sample in coco_caption: caption_dict[sample["image_id"]].append(sample["caption"]) # int -> sample[image_id] # Create answer dictionary if answer_anno_file is not None: answer_data = json.load(open(answer_anno_file, "r")) answer_annotations: List[Dict[str, Any]] = answer_data["annotations"] for sample in answer_annotations: id = str(sample["image_id"]) + "<->" + str(sample["question_id"]) if id not in answer_dict: answer_dict[id] = [x["answer"] for x in sample["answers"]] # Create question dictionary if question_anno_file is not None: question_data = json.load(open(question_anno_file, "r")) else: question_data = questions question_annotations: List[Dict[str, Union[str, int]]] = question_data["questions"] for sample in question_annotations: id = str(sample["image_id"]) + "<->" + str(sample["question_id"]) if id not in question_dict: question_dict[id] = sample["question"] return dict(caption_dict), dict(answer_dict), dict(question_dict) def add_anno( self, add: Path, context_caption_dict: Dict[int, List[str]] = None, context_answer_dict: Dict[str, List[str]] = None, context_question_dict: Dict[str, str] = None, evaluate=False, ): """Load/add extra annotations to the annotations dictionaries""" add_dict = json.load(open(add, "r")) context_tag_dict = {} caption_add = dict(zip(list(add_dict["image_id"].values()), list(add_dict["caption"].values()))) tags_add = dict(zip(list(add_dict["image_id"].values()), list(add_dict["tags"].values()))) combine_ids = [ str(image_id) + "<->" + str(question_id) for image_id, question_id in zip( list(add_dict["image_id"].values()), list(add_dict["question_id"].values()) ) ] answer_add = dict(zip(combine_ids, list(add_dict["answer"].values()))) question_add = dict(zip(combine_ids, list(add_dict["question"].values()))) if evaluate: context_caption_dict = {} context_answer_dict = {} context_question_dict = {} context_caption_dict.update(caption_add) context_tag_dict.update(tags_add) context_answer_dict.update(answer_add) context_question_dict.update(question_add) if evaluate: context_caption_dict = dict(list(context_caption_dict.items())[-NUM_TEST_EXAMPLES:]) context_tag_dict = dict(list(context_tag_dict.items())[-NUM_TEST_EXAMPLES:]) context_answer_dict = dict(list(context_answer_dict.items())[-NUM_TEST_EXAMPLES:]) context_question_dict = dict(list(context_question_dict.items())[-NUM_TEST_EXAMPLES:]) return context_caption_dict, context_tag_dict, context_answer_dict, context_question_dict class Pipeline: """ Main inference class """ def __init__(self): # Tagging model setup segment_model = DetrForSegmentation.from_pretrained(tag_model, use_pretrained_backbone=False) self.segment = pipeline( "image-segmentation", model=segment_model, feature_extractor=DetrFeatureExtractor.from_pretrained(tag_model) ) self.tags = [] # Caption model setup self.caption_model = VisionEncoderDecoderModel.from_pretrained(caption_model) self.caption_feature_extractor = ViTFeatureExtractor.from_pretrained(caption_model) self.caption_tokenizer = AutoTokenizer.from_pretrained(caption_model) self.device = torch.device("cpu") # torch.device("cuda" if torch.cuda.is_available() else "cpu") # CLIP Setup self.clip_session = InferenceSession(str(clip_onnx)) self.clip_processor = CLIPProcessor.from_pretrained(clip_processor) def predict_caption(self, image): pixel_values = self.caption_feature_extractor(images=[image], return_tensors="pt").pixel_values pixel_values = pixel_values.to(self.device) gen_kwargs = {"max_length": max_length, "num_beams": num_beams} output_ids = self.caption_model.generate(pixel_values, **gen_kwargs) preds = self.caption_tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds[0] def predict(self, image: Union[str, Path, Image.Image], question: Union[str, Path]) -> str: if not isinstance(image, Image.Image): image_pil = Image.open(image) if image_pil.mode != "RGB": image_pil = image_pil.convert(mode="RGB") else: image_pil = image if isinstance(question, Path) | os.path.exists(question): with open(question, "r") as f: question_str = f.readline() else: question_str = question # Generating image tag(s) for dic in self.segment(image_pil): self.tags.append(dic["label"]) if not self.tags: self.tags.append("") tag_info: Dict[int, List[str]] = {img_id: ", ".join(self.tags)} # Generating image caption caption = self.predict_caption(image_pil) if not caption: caption = "" caption_info: Dict[int, str] = {img_id: caption} # Generating image/question features inputs = self.clip_processor(text=[question_str], images=image_pil, return_tensors="np", padding=True) # for i in session.get_outputs(): print(i.name) outputs = self.clip_session.run( output_names=["logits_per_image", "logits_per_text", "text_embeds", "image_embeds"], input_feed=dict(inputs) ) # Generating context idxs context_idxs: Dict[str, str] = {"0": str(img_id) + "<->" + str(question_id)} # Answering question questions = {"questions": [{"image_id": img_id, "question": question_str, "question_id": question_id}]} okvqa = PICa_OKVQA( caption_info, tag_info, questions, context_idxs, outputs[2], outputs[3] ) # Have to initialize here because necessary objects need to be generated answer = okvqa.answer_gen() # rationale = okvqa.rationale(answer) return answer # + " because " + rationale def evaluate(self): okvqa = PICa_OKVQA( evaluate=True, ) acc = okvqa.answer_gen() print(acc) return acc # Running model def main(): parser = argparse.ArgumentParser() # Inputs parser.add_argument("--image", type=str, required=True) parser.add_argument("--question", type=str, required=True) args = parser.parse_args() # Answering question pipeline = Pipeline() pred_str = pipeline.predict(args.image, args.question) print(pred_str) if __name__ == "__main__": main()
[ "Image content: PLACEHOLDER\nQuestion: PLACEHOLDER\nAnswer: ", "Image content: PLACEHOLDER\nQuestion: PLACEHOLDER\nAnswer: PLACEHOLDER", "You are given {n_shot} examples of image content, a question about the image, and an answer. Given a new set of content and question, you are tasked with coming up with an answer in a similar way to the examples. If the content is not enough to answer the question, make up an answer structured as:\n1) an acknowledgment of not knowing the correct answer to the question,\n2) a comedic reply using what you can from the content.\nFor example, if the question is 'What is the color of the user's shirt?', and the context is 'The user is wearing a shirt with a picture of a cat on it', a good answer could be 'I don't know, but I think the cat is cute!'" ]
2024-01-10
lazarusking/job-search-backend
recruiters~resume_llm.py
# !pip install langchain # !pip install unstructured # !pip install openai # !pip install chromadb # !pip install Cython # !pip install tiktoken # !pip install pdf2image # !pip install pdfminer.six import os from langchain.document_loaders import PDFMinerLoader from langchain.indexes import VectorstoreIndexCreator from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate from langchain.chains.question_answering import load_qa_chain from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.text_splitter import RecursiveCharacterTextSplitter from dotenv import load_dotenv load_dotenv() os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY') def create_index(pdf_folder_path: list[str]): # Load the PDF files from the specified folder print([i.path for i in pdf_folder_path]) def add_end(file): loader=PDFMinerLoader(os.path.join(file.path)) for i in loader.load(): # print(i.page_content) i.page_content="".join(f"{i.page_content},<End>") return loader loaders = [add_end(file) for file in pdf_folder_path] # Create and return a VectorstoreIndex from the PDF loaders index = VectorstoreIndexCreator(text_splitter=RecursiveCharacterTextSplitter(separators='<End>', chunk_size=len(loaders)*1000, chunk_overlap=0)).from_loaders(loaders) print(loaders) return index def prompt_decorator(func): def wrapper(*args, **kwargs): job_desc = func(*args, **kwargs) prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. You are a chatbot that helps recruiters analyze resumes based on a job description. You will be passed information on some resumes as the context, try your best to answer accurately about them based on the job description also note the full name of the person in each resume. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer. {context} Job Description: {job_desc} Question: {question} Answer:""" return prompt_template.format(job_desc=job_desc, context='{context}', question='{question}') return wrapper def load_qa_chain_with_prompt(llm, job_desc): # Define the prompt template for the QA chain @prompt_decorator def my_func(desc): return desc result = my_func(job_desc) prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. You will be passed documents about resume, try your best to answer accurately about them based on this job description. Use three sentences maximum and keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer. {context} Question: {question} Answer:""" PROMPT = PromptTemplate(template=result, input_variables=["context", "question"]) return load_qa_chain(llm=llm, chain_type="stuff", prompt=PROMPT, verbose=True) def search_resumes(index, query: str, job_desc: str): # Set the OpenAI API key llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo", streaming=True, callbacks=[StreamingStdOutCallbackHandler()]) # Create the VectorstoreIndex # Load the QA chain with the specified prompt template qa_chain = load_qa_chain_with_prompt(llm, job_desc) # Create a RetrievalQA instance with the QA chain and index retriever qa = RetrievalQA(combine_documents_chain=qa_chain, retriever=index.vectorstore.as_retriever()) # Run the query and return the result result = qa.run(query) # return qa({"query": query,"job_desc":job_desc})['result'] return result
[ "question", "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n You will be passed documents about resume, try your best to answer accurately about them based on this job description.\n Use three sentences maximum and keep the answer as concise as possible. \n Always say \"thanks for asking!\" at the end of the answer. \n\n {context}\n\n Question: {question}\n Answer:", "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n You are a chatbot that helps recruiters analyze resumes based on a job description. You will be passed information on some resumes as the context, try your best to answer accurately about them based on the job description also note the full name of the person in each resume.\n\n Keep the answer as concise as possible. \n Always say \"thanks for asking!\" at the end of the answer. \n {context}\n\n Job Description: {job_desc}\n Question: {question}\n Answer:", "context" ]
2024-01-10
yusk/django-project-default
main~management~commands~gen_img.py
from django.core.management.base import BaseCommand from main.utils import OpenAIImageHelper, ImageHelper class Command(BaseCommand): help = 'gen_img' def add_arguments(self, parser): parser.add_argument(dest='prompt', help='prompt') def handle(self, *args, **options): print('gen_img') prompt = options['prompt'] print(prompt) # urls = OpenAIImageHelper.gen_img(prompt, size="256x256") # print(urls) # ImageHelper.imgurl2file(urls[0], "local/gen_img.png") with open("local/gen_img.png", "rb") as f: d = f.read() urls = OpenAIImageHelper.variate_img(d, size="256x256") ImageHelper.imgurl2file(urls[0], "local/variate_img.png")
[]
2024-01-10
PIG208/topic-bot
topic_summarizer.py
# Modified from https://gist.github.com/rht/c5fd97d9171a5e71863d85e47af7a7e3 import time import traceback from typing import Any, Dict from langchain import OpenAI, PromptTemplate from langchain.docstore.document import Document from langchain.callbacks import get_openai_callback from langchain.chains.llm import LLMChain from langchain.chains.summarize import load_summarize_chain from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain from langchain.output_parsers.regex import RegexParser import zulip # Supply the API key by setting OPENAI_API_KEY # Set the temperature to 0 for a more deterministic output llm = OpenAI(temperature=0) def create_topic_generator(): # Creates a topic phrase for the conversation. topic_generator_prompt_template = """ Write a topic phrase of at most 4 words of the following: {text} TOPIC PHRASE OF THE TEXT:""" TOPIC_GENERATOR_PROMPT = PromptTemplate( template=topic_generator_prompt_template, input_variables=["text"] ) return load_summarize_chain(llm, chain_type="stuff", prompt=TOPIC_GENERATOR_PROMPT) def create_stuff_summarizer(): # Creates a summary of the conversation using the # stuff summarizer. return load_summarize_chain(llm, chain_type="stuff") def create_refine_summarizer(): refine_template = ( "Your job is to produce a final summary of a conversation\n" "We have provided an existing summary up to a certain point: {existing_answer}\n" "We have the opportunity to refine the existing summary" "(only if needed) with some more context below.\n" "------------\n" "{text}\n" "------------\n" "Given the new context, refine the original summary" "If the context isn't useful, return the original summary." ) refine_prompt = PromptTemplate( input_variables=["existing_answer", "text"], template=refine_template, ) return load_summarize_chain(llm, chain_type="refine", refine_prompt=refine_prompt) def create_map_reduce_summarizer(): return load_summarize_chain(llm, chain_type="map_reduce") def create_map_rerank_summarizer(): map_template_string = """Given a part of a conversation below, your job is try to produce a possible summary for the entire conversation and give an integer score from 0 to 100 on how confident you are with that the summary reflects the entire conversation including the parts that are not seen, in the following format where SUMMARY must be only followed by a newline before SCORE: SUMMARY: SCORE: ENDOFFORMAT {text} """ output_parser = RegexParser( regex=r"SUMMARY: (.+)\nSCORE: (\d+)", output_keys=["topic", "score"] ) MAP_PROMPT = PromptTemplate( input_variables=["text"], template=map_template_string, output_parser=output_parser, ) map_rerank = MapRerankDocumentsChain( llm_chain=LLMChain(llm=llm, prompt=MAP_PROMPT), rank_key="score", answer_key="topic", document_variable_name="text", return_intermediate_steps=True, ) return map_rerank chain_topic_generator_stuff = create_topic_generator() chain_topic_generator_map_rerank = create_map_rerank_summarizer() chain_topic_summarizer_stuff = create_stuff_summarizer() chain_topic_summarizer_refine = create_refine_summarizer() chain_topic_summarizer_map_reduce = create_map_reduce_summarizer() def topic_from_string(text): return chain_topic_generator_stuff.run([Document(page_content=text)]).strip() def exit_immediately(s): print("\nERROR\n", s) exit(1) # Retrieves all messages matching request from Zulip, starting at post id anchor. # As recommended in the Zulip API docs, requests 1000 messages at a time. # Returns a list of messages. def request_all(client, request, anchor=0): request["anchor"] = anchor request["num_before"] = 0 request["num_after"] = 1000 response = safe_request(client.get_messages, request) msgs = response["messages"] while not response["found_newest"]: request["anchor"] = response["messages"][-1]["id"] + 1 response = safe_request(client.get_messages, request) msgs = msgs + response["messages"] return msgs # runs client.cmd(args). If the response is a rate limit error, waits # the requested time and then retries the request. def safe_request(cmd, *args, **kwargs): rsp = cmd(*args, **kwargs) while rsp["result"] == "error": if "retry-after" in rsp: print("Timeout hit: {}".format(rsp["retry-after"])) time.sleep(float(rsp["retry-after"]) + 1) rsp = cmd(*args, **kwargs) else: exit_immediately(rsp["msg"]) return rsp zulip_client = zulip.Client(config_file="./zuliprc") def generate_topic(chain, docs): try: topic = chain.run(docs).strip() except Exception: traceback.print_exc() return "Error in generation" return f"**topic:** {topic}" def summarize_and_generate_topic(chain, docs): try: response = chain(docs) if "intermediate_steps" in response: print("intermediate_steps:", response["intermediate_steps"]) summary = response["output_text"].strip() topic = topic_from_string(summary) except Exception: traceback.print_exc() return "Error in generation" return f"**topic:** {topic} \n\n **summary:** {summary}" def generate_topic_from_intro_message(chain, docs): return generate_topic(chain, docs[:1]) def get_answer(message): stream_topic = message.split("#**")[1][:-2] stream_name, topic_name = stream_topic.split(">") request = { "narrow": [ {"operator": "stream", "operand": stream_name}, {"operator": "topic", "operand": topic_name}, ], "client_gravatar": True, "apply_markdown": False, } thread_content = request_all(zulip_client, request) thread_formatted = [] for msg in thread_content: thread_formatted.append(f"{msg['sender_full_name']} said: {msg['content']}") print("Conversation text input from Zulip:\n{}".format("\n".join(thread_formatted))) # texts = text_splitter.split_text(thread_txt) docs = [Document(page_content=t) for t in thread_formatted] topic_chain = { "stuff": chain_topic_generator_stuff, } summary_chain = { "refine": chain_topic_summarizer_refine, "stuff": chain_topic_summarizer_stuff, "map_reduce": chain_topic_summarizer_map_reduce, "map_rerank": chain_topic_generator_map_rerank, } chain_tests = { "topic": (topic_chain, generate_topic), "summary": (summary_chain, summarize_and_generate_topic), "summary from first message only": ( topic_chain, generate_topic_from_intro_message, ), } output = [] output.append(f"# Summarize #**{stream_topic}**") for chain_type in chain_tests: chain_map, generate_content = chain_tests[chain_type] for chain_name in chain_map: before = time.perf_counter() with get_openai_callback() as cb: print(f'Running {chain_name} ({chain_type}) for "{stream_topic}"...') output.append( f"## {chain_name} ({chain_type}):\n{generate_content(chain_map[chain_name], docs).strip()}" ) after = time.perf_counter() output.append( f"**Tokens Used:** *{cb.total_tokens}*; **API Cost:** *{cb.total_cost}*; **Total Time:** *{after - before} seconds*" ) return "\n\n".join(output) # The code after this line could be simplified by https://github.com/zulip/python-zulip-api/pull/786 def handle_message(msg: Dict[str, Any]) -> None: print(f"Processing\n{msg}") if msg["type"] != "stream": return message = msg["content"] try: content = get_answer(message) except Exception: traceback.print_exc() content = "Failed to process message {}".format(msg["content"]) request = { "type": "stream", "to": msg["display_recipient"], "topic": msg["subject"], "content": content, } print(f"Sending\n{content}") zulip_client.send_message(request) def watch_messages() -> None: print("Watching for messages...") def handle_event(event: Dict[str, Any]) -> None: if "message" not in event: # ignore heartbeat events return handle_message(event["message"]) # https://zulip.com/api/real-time-events narrow = [["is", "mentioned"]] zulip_client.call_on_each_event( handle_event, event_types=["message"], all_public_streams=True, narrow=narrow ) def generate_answers(): questions = [ # Short conversations "#**api documentation>user activity**", "#**api documentation>security scheme validation/testing**", '#**issues>visual notification on despite setting "Do not disturb"**', "#**design>@topic mention**", # Long conversations "#**design>Mark all messages as read.**", "#**feedback>issues link in description**", "#**design>Profile button**", # Extra long conversations "#**api documentation>prev_stream in message history**", "#**api design>Previewable URL Api**", ] for question in questions: content = get_answer(question) with open("output.log", "+a") as f: f.write(content + "\n") # If you want to test directly: # generate_answers() # Run the summarizer as an interactive bot watch_messages()
[ "Given a part of a conversation below, your job is try to produce a possible summary\n for the entire conversation and give an integer score from 0 to 100 on how confident\n you are with that the summary reflects the entire conversation including the parts that are not seen,\n in the following format where SUMMARY must be only followed by a newline before SCORE:\n SUMMARY: \n SCORE: \n \n ENDOFFORMAT\n {text}\n ", "Your job is to produce a final summary of a conversation\nWe have provided an existing summary up to a certain point: {existing_answer}\nWe have the opportunity to refine the existing summary(only if needed) with some more context below.\n------------\n{text}\n------------\nGiven the new context, refine the original summaryIf the context isn't useful, return the original summary.", "\n Write a topic phrase of at most 4 words of the following:\n\n {text}\n\n TOPIC PHRASE OF THE TEXT:", "existing_answer" ]
2024-01-10
nicolasugrinovic/size_depth_disambiguation
util~depth.py
import torch from util.misc import save_points, read_json import numpy as np import os from .misc import plot_joints_cv2 def get_sign_matix(gt_trans_): all_depts = gt_trans_[:, 2] z_diffs = all_depts[:, None] - all_depts[None, :] sign_matrix = z_diffs / abs(z_diffs + 0.000000001) return np.ceil(sign_matrix) def get_sign_matix_from_depths(all_depts): z_diffs = all_depts[:, None] - all_depts[None, :] sign_matrix = z_diffs / abs(z_diffs + 0.000000001) return np.ceil(sign_matrix) def upper_tri_masking(A): m = A.shape[0] r = np.arange(m) mask = r[:, None] < r return A[mask] def upper_tri_masking_torch(A): m = A.shape[0] r = np.arange(m) mask = r[:, None] < r return A * torch.Tensor(mask).cuda() def mask_distance_reverse(masks_person_arr, kpts_int, w, h): scores = [] for i, persons_mask in enumerate(masks_person_arr): this_mask = [] for smpl_joints_as_idx in kpts_int[..., :2]: xs, ys = zip(*smpl_joints_as_idx) xs = np.clip(xs, 0, w - 1) ys = np.clip(ys, 0, h - 1) smpl_joints_as_idx = np.array([ys, xs]).T joint_in_mask = [] for idx in smpl_joints_as_idx: mask_at_joint = persons_mask[tuple(idx)] joint_in_mask.append(mask_at_joint) joint_in_mask = np.array(joint_in_mask).sum() this_mask.append(joint_in_mask) # print(joint_in_mask) this_mask = np.array(this_mask) scores.append(this_mask) scores_arr = np.stack(scores, 1) maxsc = scores_arr.max(1) cost = maxsc[:, None] - scores_arr return cost def vis_proj_joints_t(image, joints_projected, gt_keypoints, do_plot=True): ''' Args: image: joints_projected: tensor de [B, njoints, 3] gt_keypoints: Returns: ''' init_joints = joints_projected.int().cpu() if gt_keypoints is None: init_joints = init_joints else: conf = gt_keypoints[..., -1].cpu() vis = conf > 0.0 init_joints = init_joints * vis[..., None] out_img = plot_joints_cv2(image, init_joints, do_plot, with_text=True) return out_img def get_person_depth(d_img, masks_person, i): depth_img = torch.Tensor(d_img).cuda() depth_person = masks_person[i] * depth_img sum = depth_person.sum() n = masks_person[i].sum() calc_mean = sum / n return calc_mean, depth_person # plot(depth_person.cpu()) def get_depths_from_crops(masked_depth, persons_mask, bboxes): depths = [] for bbox in bboxes: x0, y0, x1, y1 = bbox # crop = image[y0:y1, x0:x1, :] # plot(crop) crop = persons_mask[y0:y1, x0:x1] # plot(crop) depth_crop = masked_depth[y0:y1, x0:x1] # plot(depth_crop) sum = depth_crop.sum() n = crop.sum() calc_mean = sum / n mean_crop_ = calc_mean / 65535 mean_crop_ = 10 * (1 - mean_crop_) depths.append(mean_crop_) return depths def perspective_projection(points, translation, camera_center, focal_length=1000, rotation=None, return_instrinsics=False): """ Taken from Coherent Multiperson This function computes the perspective projection of a set of points. Input: points (bs, N, 3): 3D points rotation (bs, 3, 3): Camera rotation translation (bs, 3): Camera translation focal_length (bs,) or scalar: Focal length camera_center (bs, 2): Camera center """ batch_size = points.shape[0] # this is identity matrix rotation = torch.eye(3).unsqueeze(0).repeat(batch_size, 1, 1).to(points.device) # focal_length has to be fixed K = torch.zeros([batch_size, 3, 3], device=points.device) K[:,0,0] = focal_length K[:,1,1] = focal_length K[:,2,2] = 1. K[:,:-1, -1] = camera_center # Transform points. Rotation and translation. Rotation here is identity as SMPL first rot is global points = torch.einsum('bij,bkj->bki', rotation, points) points = points + translation.unsqueeze(1) # Apply perspective distortion projected_points = points / points[:,:,-1].unsqueeze(-1) # Apply camera intrinsics projected_points = torch.einsum('bij,bkj->bki', K, projected_points) if return_instrinsics: return projected_points[:, :, :-1], K else: return projected_points[:, :, :-1] def weak_perspective_projection(points, translation, camera_center, focal_length=1000, rotation=None): """ Taken from Coherent Multiperson This function computes the perspective projection of a set of points. Input: points (bs, N, 3): 3D points rotation (bs, 3, 3): Camera rotation translation (bs, 3): Camera translation focal_length (bs,) or scalar: Focal length camera_center (bs, 2): Camera center """ batch_size = points.shape[0] # this is identity matrix rotation = torch.eye(3).unsqueeze(0).repeat(batch_size, 1, 1).to(points.device) # focal_length has to be fixed K = torch.zeros([batch_size, 3, 3], device=points.device) K[:,0,0] = focal_length K[:,1,1] = focal_length K[:,2,2] = 1. K[:,:-1, -1] = camera_center # Transform points. Rotation and translation. Rotation here is identity as SMPL first rot is global points = torch.einsum('bij,bkj->bki', rotation, points) points = points + translation.unsqueeze(1) # Apply perspective distortion z_mean = points[:,:,-1].mean() z_root = points[:,14,-1] projected_points = points / z_root # Apply camera intrinsics projected_points = torch.einsum('bij,bkj->bki', K, projected_points) return projected_points[:, :, :-1] def project_joints_to_img(joints3d, img_size, translation, focal_lenght=1000, return_instrinsics=False): projected_joints_2d = perspective_projection(joints3d, translation, camera_center=img_size / 2, focal_length=focal_lenght, return_instrinsics=return_instrinsics ) return projected_joints_2d def weak_project_joints_to_img(joints3d, img_size, translation, focal_lenght=1000): projected_joints_2d = weak_perspective_projection(joints3d, translation, camera_center=img_size / 2, focal_length=focal_lenght, ) return projected_joints_2d def read_ankles(folder='./input/annots/', name='test_3djoints_0.json'): # these joints are in global order from CRMP so ankels=0, 5 fpath = os.path.join(folder, name) keypoints = read_json(fpath) j3d = keypoints['joints_3d'] trans = keypoints['translation'] j3d = np.array(j3d) trans = np.array(trans) ankles = j3d[[0, 5]] ankles_translated = j3d[[0, 5]] + trans save_points(ankles, 'ankles_0.ply') return ankles, ankles_translated, trans def read_hips(folder='./input/annots/', name='test_3djoints_0.json'): # these joints are in global order from CRMP so ankels=0, 5 fpath = os.path.join(folder, name) keypoints = read_json(fpath) j3d = keypoints['joints_3d'] trans = keypoints['translation'] j3d = np.array(j3d) trans = np.array(trans) ankles = j3d[[2, 3]] ankles_translated = j3d[[2, 3]] + trans save_points(ankles, 'ankles_0.ply') return ankles, ankles_translated, trans def read_joints(folder='./input/annots/', name='test_3djoints_0.json'): # these joints are in global order from CRMP so ankels=0, 5 fpath = os.path.join(folder, name) keypoints = read_json(fpath) j3d = keypoints['joints_3d'] trans = keypoints['translation'] j3d = np.array(j3d) trans = np.array(trans) j3d_translated = j3d+ trans return j3d, j3d_translated, trans def read_all_joints(folder='./input/annots/', names=['test_3djoints_0.json']): # these joints are in global order from CRMP so ankels=0, 5 j3d_all = [] j3d_translated_all = [] trans_all = [] for i, name in enumerate(names): fpath = os.path.join(folder, name) keypoints = read_json(fpath) j3d = keypoints['joints_3d'] trans = keypoints['translation'] j3d = np.array(j3d) trans = np.array(trans) j3d_translated = j3d + trans # save_points(j3d, 'j3d_person_%d.ply' % i) j3d_all.append(j3d) j3d_translated_all.append(j3d_translated) trans_all.append(trans) j3d_all = np.array(j3d_all) j3d_translated_all = np.array(j3d_translated_all) trans_all = np.array(trans_all) return j3d_all, j3d_translated_all, trans_all
[]
2024-01-10
Alex-Neo-Projects/yt-clips
script.py
import os import sys import subprocess import whisper import openai def download_youtube(link): arg = f"bash ./scripts/download_youtube.sh {link}" proc = subprocess.Popen([arg], stdout=subprocess.PIPE, shell=True) (out, err) = proc.communicate() return out.decode("utf-8").split("\n")[0] def download_whisper(uuid): arg = f"bash ./scripts/download_whisper.sh {uuid}" proc = subprocess.Popen([arg], stdout=subprocess.PIPE, shell=True) (out, err) = proc.communicate() def make_summarization(path, uuid): text_output = read_text_file(path) output_summarize_path = f"./summarize/{uuid}.txt" # Uncomment line under to store summarization to a file # sys.stdout = open(output_summarize_path, 'a+') openai.api_key="" for res in openai.Completion.create( model="text-davinci-003", prompt=f"I will provide you with transcript from a video. Gime a me a one sentence TLDR of the transcript. Then extract the most important key points and use them as markdown formatted headings. Give a detailed extractive and abstract summary for each key point. It is important that you are very specific and clear in your response. Conclude with a one paragraph abstract summary of what the video wanted to convince us of. \n\nVideo transcript:\n{text_output}\nSummary:", max_tokens=1000, temperature=0, stream=True ): sys.stdout.write(res.choices[0].text) sys.stdout.flush() print('\n') def read_text_file(path): f = open(path, "r") return f.read() def create_text_file(path): f = open(path, "a+") return f # def find_num_tokens(path): # output = read_text_file(path) # return len(output)//4 # def break_into_chunks(path): # num_tokens = find_num_tokens(path) # text_file_output = read_text_file(path) # output = [text_file_output[i:i+2000] for i in range(0, 5)] # return output def main(): # download youtube audio using yt-dlp print('Downloading Youtube Video') youtube_audio_uuid = download_youtube('https://www.youtube.com/clip/UgkxmZ_575WLr_y6dkXJ60F9U2a310aB63D6') # convert to transcript using whisper print('Converting Video to Transcript') whisper_audio_path = download_whisper(youtube_audio_uuid) # use chat-gpt to summarize the whisper output print('Summarizing transcript:') make_summarization(f'./whisper-downloads/{youtube_audio_uuid}/{youtube_audio_uuid}.mp3.txt', youtube_audio_uuid) if __name__ == "__main__": main()
[ "I will provide you with transcript from a video. Gime a me a one sentence TLDR of the transcript. Then extract the most important key points and use them as markdown formatted headings. Give a detailed extractive and abstract summary for each key point. It is important that you are very specific and clear in your response. Conclude with a one paragraph abstract summary of what the video wanted to convince us of. \n\nVideo transcript:\nPLACEHOLDER\nSummary:" ]
2024-01-10
hanseokOh/KtrlF
ktrlf_dataset_pipeline~ktrlf_2_1_target_selection_openai.py
import argparse import pickle from tqdm.auto import tqdm import os import parmap import json from collections import defaultdict, Counter import logging import asyncio from utils.api_request_parallel_processor import process_api_requests_from_file import time import copy import openai from pathlib import Path from utils.statistics import print_number_of_targets, print_number_of_mentions from utils.entity_evidence import crawl_wikipedia_article def make_entity_evidence_dict(all_task, num_evidence_sent=20): entity_evidence_dict = {} for dic in tqdm(all_task): for entity_dic in dic['data']['entity_info']: entity = entity_dic['entity'] if entity_evidence_dict.get(entity) is not None: continue evidence = crawl_wikipedia_article(entity_dic['wikipedia_link'].split('/')[-1], num_evidence_sent) entity_evidence_dict[entity] = evidence return entity_evidence_dict def _need_to_determine(qa_pair, entity, need_to_determine_key_list): if len(need_to_determine_key_list) == 0: return True _entity_cnt_dict = dict(Counter([_ent for key in need_to_determine_key_list for _ent in qa_pair[key]])) count = _entity_cnt_dict.get(entity) if count == 1: return True return False def _dump_gpt_input(all_task, input_filepath, gpt_model_name, entity_evidence_dict, num_evidence_sent=10, need_to_determine_key_list=[]): system_prompt = f""" You are a QA system to identify the given entity is the answer. The inputs are entity, query and evidence. You must follow this requirements. Requirements: - Output have to be either 'true' or 'false' - Do not say anything except 'true' or 'false' The example is as below. Entity: Google Query: Find all IT companies in Computer industry Evidence: Google LLC (/ˈɡuːɡəl/ (listen)) is an American multinational technology company focusing on artificial intelligence,[9] online advertising, search engine technology, cloud computing, computer software, quantum computing, e-commerce, and consumer electronics. It has often been considered "the most powerful company in the world"[10] and as one of the world's most valuable brands due to its market dominance, data collection, and technological advantages in the field of artificial intelligence.[11][12][13] Its parent company Alphabet is often considered one of the Big Five American information technology companies, alongside Amazon, Apple, Meta, and Microsoft. Output: true Entity: Samsung Query: Find all companies in United States Evidence: Samsung Group,[3] or simply Samsung (Korean: 삼성; RR: samseong [samsʌŋ]) (stylized as SΛMSUNG), is a South Korean multinational manufacturing conglomerate headquartered in Samsung Town, Seoul, South Korea.[1] It comprises numerous affiliated businesses,[1] most of them united under the Samsung brand, and is the largest South Korean chaebol (business conglomerate). As of 2020, Samsung has the eighth highest global brand value. Output: false """ odqa_input_format = [] for dic in all_task: _entity_set = dict.fromkeys([tag_dic['entity'] for tag_dic in dic['data']['entity_info']]) for q_idx,qa_pair in enumerate(dic['data']['qa_pairs']): odqa_input_format += [ { 'id': f"{dic['id']}[SEP]q{q_idx}[SEP]e{ent_idx}", 'question': qa_pair['question'], 'entity': entity, 'evidence': ' '.join(entity_evidence_dict[entity][:num_evidence_sent]) } for ent_idx, entity in enumerate(_entity_set) if _need_to_determine(qa_pair, entity, need_to_determine_key_list)] all_input_format = [] for dic in odqa_input_format: all_input_format.append({ "model": gpt_model_name, 'messages': [ {'role': 'system', 'content': system_prompt.strip()}, {'role': 'user', 'content': f"Entity: {dic['entity']}\nQuery: {dic['question']}\nEvidence: {dic['evidence']}\nOutput: "} ], 'user': dic['id'] }) with open(input_filepath, 'w') as f: for dic in all_input_format: f.write(json.dumps(dic)+'\n') def _load_gpt_output(output_filepath): tup_list = [] with open(output_filepath) as f: for line in f: input_, output = json.loads(line) input_id = input_['user'] try: generated_answer_str = output['choices'][0]['message']['content'] except: generated_answer_str = "" tup_list.append({'id': input_id, 'output': generated_answer_str}) # sort by original order generated_output_list = sorted(tup_list, key=lambda dic: dic['id']) return generated_output_list def _parse_gpt_output(all_task, generated_output_list, to_answer_key): _output_idx_mapper = defaultdict(lambda: defaultdict(list)) for dic in generated_output_list: output = dic['output'].lower().strip() if output != 'true': continue original_id, q_idx, ent_idx = dic['id'].split('[SEP]') q_idx = int(q_idx[1:]) ent_idx = int(ent_idx[1:]) _output_idx_mapper[original_id][q_idx].append(ent_idx) for dic in all_task: id = dic['id'] _entity_set = list(dict.fromkeys([tag_dic['entity'] for tag_dic in dic['data']['entity_info']])) for q_idx, qa_pair in enumerate(dic['data']['qa_pairs']): odqa_gpt_preds = [_entity_set[ent_idx] for ent_idx in _output_idx_mapper[id][q_idx]] qa_pair[to_answer_key] = odqa_gpt_preds def select_target_using_model(all_task, entity_evidence_dict, gpt_model_name, request_url, api_key, to_answer_key, need_to_determine_key_list): Path("./dump/.gpt_format").mkdir(parents=True, exist_ok=True) _timestamp = str(int(time.time())) input_format_path = f'./dump/.gpt_format/_openai_{_timestamp}_input_format.jsonl' output_format_path = f'./dump/.gpt_format/_openai_{_timestamp}_output_format.jsonl' max_attempts = 10 _dump_gpt_input(all_task, input_format_path, gpt_model_name, entity_evidence_dict, num_evidence_sent=10, need_to_determine_key_list=need_to_determine_key_list) asyncio.run( process_api_requests_from_file( requests_filepath=input_format_path, save_filepath=output_format_path, request_url=request_url, api_key=api_key, max_requests_per_minute=float(3_000 * 0.5), max_tokens_per_minute=float(250_000 * 0.5), token_encoding_name="cl100k_base", max_attempts=int(max_attempts), logging_level=int(logging.INFO), ) ) generated_output = _load_gpt_output(output_format_path) _parse_gpt_output(all_task, generated_output, to_answer_key) def clear_query_with_empty_target(all_task, answer_key): new_all_task = [] for dic in all_task: _new_qa_pairs = [qa_dic for qa_dic in dic['data']['qa_pairs'] if len(qa_dic[answer_key])>0] _new_dic = copy.deepcopy(dic) _new_dic['data']['qa_pairs'] = _new_qa_pairs new_all_task.append(_new_dic) return new_all_task def clear_doc_with_emtpy_query(all_task): new_all_task = [] for dic in all_task: if len(dic['data']['qa_pairs'])==0: continue new_all_task.append(copy.deepcopy(dic)) return new_all_task if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument("--entity_evidence_cache_path", type=str, default=None) parser.add_argument("--input_path", type=str, required=True) parser.add_argument("--openai_model_name", type=str, choices=['gpt-3.5-turbo-0613','gpt-4-0613']) parser.add_argument("--openai_request_url", type=str, default="https://api.openai.com/v1/chat/completions") parser.add_argument("--openai_api_key", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) args = parser.parse_args() need_to_determine_key_list = ['_llama2_query_generation_preds', 'chatgpt_preds'] to_answer_key = 'gpt4_preds' with open(args.input_path, 'rb') as f: all_task = pickle.load(f) # get evidence if args.entity_evidence_cache_path: with open(args.entity_evidence_cache_path, 'rb') as f: entity_evidence_dict = pickle.load(f) else: _num_proc = os.cpu_count() _batch_size = 70 _splited_all_task = [all_task[x:x+_batch_size] for x in range(0, len(all_task), _batch_size)] results = parmap.map(make_entity_evidence_dict, _splited_all_task, pm_pbar=True, pm_processes=_num_proc) entity_evidence_dict = {k:v for dic in results for k,v in dic.items()} with open('./dump/entity_evidence_dict.pickle', 'wb') as f: pickle.dump(entity_evidence_dict, f) select_target_using_model(all_task, entity_evidence_dict, args.openai_model_name, args.openai_request_url, args.openai_api_key, to_answer_key, need_to_determine_key_list) print(f"[Num. of Targets] Final:") print(f"{print_number_of_targets(all_task, to_answer_key)}") with open(args.output_path, 'wb') as f: pickle.dump(all_task, f)
[ "\nYou are a QA system to identify the given entity is the answer.\nThe inputs are entity, query and evidence.\n\nYou must follow this requirements.\nRequirements:\n- Output have to be either 'true' or 'false'\n- Do not say anything except 'true' or 'false'\n\nThe example is as below.\n\nEntity: Google\nQuery: Find all IT companies in Computer industry\nEvidence: Google LLC (/ˈɡuːɡəl/ (listen)) is an American multinational technology company focusing on artificial intelligence,[9] online advertising, search engine technology, cloud computing, computer software, quantum computing, e-commerce, and consumer electronics. It has often been considered \"the most powerful company in the world\"[10] and as one of the world's most valuable brands due to its market dominance, data collection, and technological advantages in the field of artificial intelligence.[11][12][13] Its parent company Alphabet is often considered one of the Big Five American information technology companies, alongside Amazon, Apple, Meta, and Microsoft.\nOutput: true\n\nEntity: Samsung\nQuery: Find all companies in United States\nEvidence: Samsung Group,[3] or simply Samsung (Korean: 삼성; RR: samseong [samsʌŋ]) (stylized as SΛMSUNG), is a South Korean multinational manufacturing conglomerate headquartered in Samsung Town, Seoul, South Korea.[1] It comprises numerous affiliated businesses,[1] most of them united under the Samsung brand, and is the largest South Korean chaebol (business conglomerate). As of 2020, Samsung has the eighth highest global brand value.\nOutput: false\n", "You are a QA system to identify the given entity is the answer.\nThe inputs are entity, query and evidence.\n\nYou must follow this requirements.\nRequirements:\n- Output have to be either 'true' or 'false'\n- Do not say anything except 'true' or 'false'\n\nThe example is as below.\n\nEntity: Google\nQuery: Find all IT companies in Computer industry\nEvidence: Google LLC (/ˈɡuːɡəl/ (listen)) is an American multinational technology company focusing on artificial intelligence,[9] online advertising, search engine technology, cloud computing, computer software, quantum computing, e-commerce, and consumer electronics. It has often been considered \"the most powerful company in the world\"[10] and as one of the world's most valuable brands due to its market dominance, data collection, and technological advantages in the field of artificial intelligence.[11][12][13] Its parent company Alphabet is often considered one of the Big Five American information technology companies, alongside Amazon, Apple, Meta, and Microsoft.\nOutput: true\n\nEntity: Samsung\nQuery: Find all companies in United States\nEvidence: Samsung Group,[3] or simply Samsung (Korean: 삼성; RR: samseong [samsʌŋ]) (stylized as SΛMSUNG), is a South Korean multinational manufacturing conglomerate headquartered in Samsung Town, Seoul, South Korea.[1] It comprises numerous affiliated businesses,[1] most of them united under the Samsung brand, and is the largest South Korean chaebol (business conglomerate). As of 2020, Samsung has the eighth highest global brand value.\nOutput: false", "Entity: PLACEHOLDER\nQuery: PLACEHOLDER\nEvidence: PLACEHOLDER\nOutput: " ]
2024-01-10
Matanatr96/KFL
get_scores.py
import argparse from collections import defaultdict import openai import pandas as pd from sleeper_wrapper import League from dotenv import dotenv_values config = dotenv_values(".env") openai.api_key = config['OPENAI_API_KEY'] league = League(config['LEAGUE_ID']) roster_conversions = ['Mattapalli', 'Komaragiri', 'Idate', 'Bada', 'Digby', 'Nethi', 'Rattan', 'Upadhyaya', 'Aireddy', 'Hansen', 'Le', 'Pandya'] parser = argparse.ArgumentParser() parser.add_argument('-w', '--week', required=True) args = parser.parse_args() def get_matchups(week: int) -> (defaultdict, pd.DataFrame): all_matchups = league.get_matchups(week) matchups = defaultdict(list) ranks = [] for matchup in all_matchups: matchup_id = matchup['matchup_id'] matchups[matchup_id].append((matchup['roster_id'], matchup['points'])) ranks.append([matchup['roster_id'], matchup['points']]) ranks_df = pd.DataFrame(ranks, columns=['Id', 'Score']).sort_values(by='Score', ascending=False).set_index('Id') ranks_df['Rank'] = range(1, 13) return matchups, ranks_df def get_scores(week: int) -> list: matchups, ranks = get_matchups(week) all_scores = [] for j in matchups.values(): roster_id1 = j[0][0] roster_id2 = j[1][0] one_score = j[0][1] two_score = j[1][1] one_diff = round(one_score - two_score, 2) two_diff = round(two_score - one_score, 2) all_scores.extend( ( [ 2023, roster_conversions[roster_id1 - 1], week, 1 if one_score > two_score else 0, one_score, two_score, roster_conversions[roster_id2 - 1], one_diff, ranks.loc[roster_id1, 'Rank'], ], [ 2023, roster_conversions[roster_id2 - 1], week, 1 if one_score < two_score else 0, two_score, one_score, roster_conversions[roster_id1 - 1], two_diff, ranks.loc[roster_id2, 'Rank'], ], ) ) return all_scores def chat_gpt_format(scores: list) -> str: completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "system", "content": f"""Convert the following array of arrays into text I can copy into excel with newlines after each line and remove the quotations: {scores}"""}]) return completion.choices[0].message.content if __name__ == '__main__': df = get_scores(args.week) formatted_scores = chat_gpt_format(df) print(formatted_scores)
[ "Convert the following array \n of arrays into text I can copy into excel with newlines after each line \n and remove the quotations: PLACEHOLDER" ]
2024-01-10
borisdayma/datasets
datasets~openwebtext~openwebtext.py
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Open WebText Corpus""" import os import re from itertools import chain import datasets _CITATION = """\ @misc{Gokaslan2019OpenWeb, title={OpenWebText Corpus}, author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex}, howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}}, year={2019} } """ _DESCRIPTION = """\ An open-source replication of the WebText dataset from OpenAI. """ _URL = "https://zenodo.org/record/3834942/files/openwebtext.tar.xz" class Openwebtext(datasets.GeneratorBasedBuilder): """The Open WebText dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="plain_text", description="Plain text", version=datasets.Version("1.0.0"), ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({"text": datasets.Value("string")}), homepage="https://skylion007.github.io/OpenWebTextCorpus/", citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URL) owt_dir = os.path.join(dl_dir, "openwebtext") subset_xzs = [ os.path.join(owt_dir, file_name) for file_name in sorted(os.listdir(owt_dir)) if file_name.endswith("xz") # filter out ...xz.lock ] ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75)) nested_txt_files = [ [ os.path.join(ex_dir, txt_file_name) for txt_file_name in sorted(os.listdir(ex_dir)) if txt_file_name.endswith("txt") ] for ex_dir in ex_dirs ] txt_files = chain(*nested_txt_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}), ] def _generate_examples(self, txt_files): """Yields examples.""" for idx, filepath in enumerate(txt_files): with open(filepath, encoding="utf-8") as f: yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()}
[]
2024-01-10
amitbasunias/uniai
writer~beta.py
import openai OPENAI_API_KEY = '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' openai.api_key = OPENAI_API_KEY def headline (headprompt): response = openai.Completion.create( engine="text-davinci-002", prompt="{}" .format(headprompt), temperature=0.9, max_tokens=3400, top_p=1, frequency_penalty=0, presence_penalty=0 ) if 'choices' in response: answer= response['choices'][0]['text'] return answer
[]
2024-01-10
benfield97/news_analyzer
fn_calling.py
import openai import requests from bs4 import BeautifulSoup from dotenv import load_dotenv import os import re load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') def format_list(input_string): # Split the string into a list of phrases phrases = input_string.split(',') # Remove leading/trailing whitespace, quotation marks and final punctuation cleaned_phrases = [re.sub(r'^["\s]+|["\s]+$|[.,;:!?"]$', '', phrase) for phrase in phrases] return cleaned_phrases def get_article_text(input, format = 'url'): # Send a request to the website if format == 'url': r = requests.get(input) elif format == 'html': r = input # Parse HTML and save to BeautifulSoup object soup = BeautifulSoup(r.text, "html.parser") # Find article text and combine it into one string article_text = ' '.join([p.text for p in soup.find_all('p')]) return article_text def article_detection(article_text): message = [{"role": "system", "content": "You are an expert on journalism."}] prompt = f""" Please assess the following body of text, which is delimited by triple backticks. Determine if you believe this is an article, as in a piece of writing included with others in a newspaper, magazine, or other print or online publication. If it is an article, format your response by only printing: True If it is not an article, format your response by only printing: False Article: ```{article_text}``` """ response = get_completion(prompt, message) if 'True' in response: return True else: return False def get_completion(prompt, messages, model=4): messages.append({"role": "user", "content": prompt}) response = openai.ChatCompletion.create( model=f"gpt-{model}", messages= messages ) messages.append({"role": "system", "content": response['choices'][0]['message']['content']}) return response['choices'][0]['message']['content'] def get_emotive_list(article_text, messages): prompt = f""" Extract all examples of emotive language used in the following article, which is delimited by triple backticks. Format your response as a list of items separated by commas. Article: '''{article_text}''' """ response = get_completion(prompt, messages) response = format_list(response) return response def get_emotive_rating(messages): prompt = """ Based strictly on the presence of emotive language, can you rate on a scale of 1-10 how emotive the article is. Please format your response as an integer only """ response = get_completion(prompt, messages) try: return int(response) except: prompt = """ Please try again and format this response as an integer only. """ response = get_completion(prompt, messages) return int(response) def get_political_bias_list(article_text, messages): prompt = f""" You are evaluating in which ways the article below, delimited by triple backticks, is politically biased, specifically, biased to either the left-wing or the right-wing. Extract all examples of politically biased phrases used in the article. Format your response as a list of items separated by commas. Article: ```{article_text}``` """ response = get_completion(prompt, messages) response = format_list(response) return response def get_political_bias_rating(messages): prompt = """ You are evaluating in which political direction the previous article is biased. On a scale from 1 (strongly left-wing) to 10 (strongly right-wing) can you rate the article for the position of it's political bias. Please format your response as an integer only. """ response = get_completion(prompt, messages) try: return int(response) except: prompt = """ Please try again and format this response as an integer only. """ response = get_completion(prompt, messages) return int(response) def get_establishment_list(article_text, messages): prompt = f""" You are evaluating in which ways the article below, delimited by triple backticks, is biased in a manner that is either pro-establishment or anti-establishment. Extract all examples of politically biased phrases used in the article. Format your response as a list of items separated by commas. Article: ```{article_text}``` """ response = get_completion(prompt, messages) response = format_list(response) return response def get_establishment_bias_rating(messages): prompt = """ You are evaluating in which direction the previous article is biased, in regards to its stance on the establishment. On a scale from 1 (strongly anti-establishment) to 10 (strongly pro-establishment) can you rate the article for the position of it's establishment bias. Please format your response as an integer only. """ response = get_completion(prompt, messages) try: return int(response) except: prompt = """ Please try again and format this response as an integer only. """ response = get_completion(prompt, messages) return int(response) article = get_article_text('https://www.foxnews.com/politics/biden-admin-quietly-reverses-trump-era-rule-bans-transporting-fossil-fuels-train') is_article = article_detection(article) emo_msgs = [{"role": "system", "content": "You are an expert on journalism. You specialise in assessing how emotive language is used to position readers"}] emotive_list = get_emotive_list(article, emo_msgs) def run(url): article = get_article_text(url) is_article = article_detection(article) emo_msgs = [{"role": "system", "content": "You are an expert on journalism. You specialise in assessing how emotive language is used to position readers"}] emotive_list = get_emotive_list(article, emo_msgs) emotive_rating = get_emotive_rating(emo_msgs) pol_msgs = [{"role": "system", "content": "You are an expert on journalism and politics. You specialise in assessing the presence of political bias in articles."}] political_list = get_political_bias_list(article, pol_msgs) political_rating = get_political_bias_rating(pol_msgs) est_msgs = [{"role": "system", "content": "You are an expert on journalism and politics. You specialise in assessing the presence of pro or anti establishment bias in articles."}] establishment_list = get_establishment_list(article, est_msgs) establishment_bias_rating = get_establishment_bias_rating(est_msgs) return { 'is_article': is_article, 'emotive_list': emotive_list, 'emotive_rating': emotive_rating, 'political_list': political_list, 'political_rating': political_rating, 'establishment_list': establishment_list, 'establishment_bias_rating': establishment_bias_rating }
[ "\n You are evaluating in which political direction the previous article is biased.\n \n On a scale from 1 (strongly left-wing) to 10 (strongly right-wing) can you rate the article for the position of it's political bias.\n\n Please format your response as an integer only.\n ", "\n Please assess the following body of text, which is delimited by triple backticks.\n\n Determine if you believe this is an article, as in a piece of writing included with others in a newspaper, magazine, or other print or online publication.\n\n If it is an article, format your response by only printing: True\n If it is not an article, format your response by only printing: False\n\n Article: ```PLACEHOLDER```\n ", "You are an expert on journalism and politics. You specialise in assessing the presence of pro or anti establishment bias in articles.", "\n Based strictly on the presence of emotive language, can you rate on a scale of 1-10 how emotive the article is.\n \n Please format your response as an integer only\n ", "You are an expert on journalism. You specialise in assessing how emotive language is used to position readers", "\n Please try again and format this response as an integer only.\n ", "\n You are evaluating in which ways the article below, delimited by triple backticks, is politically biased, specifically, biased to \n either the left-wing or the right-wing.\n \n Extract all examples of politically biased phrases used in the article.\n\n Format your response as a list of items separated by commas.\n \n Article: ```PLACEHOLDER```\n ", "\n You are evaluating in which direction the previous article is biased, in regards to its stance on the establishment.\n\n On a scale from 1 (strongly anti-establishment) to 10 (strongly pro-establishment) can you rate the article for the position of it's establishment bias.\n\n Please format your response as an integer only.\n ", "You are an expert on journalism and politics. You specialise in assessing the presence of political bias in articles.", "\n You are evaluating in which ways the article below, delimited by triple backticks, is biased in a manner that is either pro-establishment or anti-establishment.\n\n Extract all examples of politically biased phrases used in the article.\n\n Format your response as a list of items separated by commas.\n \n Article: ```PLACEHOLDER```\n ", "\n Extract all examples of emotive language used in the \n following article, which is delimited by triple backticks.\n\n Format your response as a list of items separated by commas.\n\n Article: '''PLACEHOLDER'''\n ", "You are an expert on journalism.", "content" ]
2024-01-10
benfield97/news_analyzer
guidance.py
import openai import requests from bs4 import BeautifulSoup from dotenv import load_dotenv import os import re load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') def format_list(input_string): # Split the string into a list of phrases phrases = input_string.split(',') # Remove leading/trailing whitespace, quotation marks and final punctuation cleaned_phrases = [re.sub(r'^["\s]+|["\s]+$|[.,;:!?"]$', '', phrase) for phrase in phrases] return cleaned_phrases def get_article_text(input, format = 'url'): # Send a request to the website if format == 'url': r = requests.get(input) elif format == 'html': r = input # Parse HTML and save to BeautifulSoup object soup = BeautifulSoup(r.text, "html.parser") # Find article text and combine it into one string article_text = ' '.join([p.text for p in soup.find_all('p')]) return article_text def article_detection(article_text): message = [{"role": "system", "content": "You are an expert on journalism."}] prompt = f""" Please assess the following body of text, which is delimited by triple backticks. Determine if you believe this is an article, as in a piece of writing included with others in a newspaper, magazine, or other print or online publication. If it is an article, format your response by only printing: True If it is not an article, format your response by only printing: False Article: ```{article_text}``` """ response = get_completion(prompt, message) if 'True' in response: return True else: return False def get_completion(prompt, messages, model=4): messages.append({"role": "user", "content": prompt}) response = openai.ChatCompletion.create( model=f"gpt-{model}", messages= messages ) messages.append({"role": "system", "content": response['choices'][0]['message']['content']}) return response['choices'][0]['message']['content'] def get_emotive_list(article_text, messages): prompt = f""" Extract all examples of emotive language used in the following article, which is delimited by triple backticks. Format your response as a list of items separated by commas. Article: '''{article_text}''' """ response = get_completion(prompt, messages) response = format_list(response) return response def get_emotive_rating(messages): prompt = """ Based strictly on the presence of emotive language, can you rate on a scale of 1-10 how emotive the article is. Please format your response as an integer only """ response = get_completion(prompt, messages) try: return int(response) except: prompt = """ Please try again and format this response as an integer only. """ response = get_completion(prompt, messages) return int(response) def get_political_bias_list(article_text, messages): prompt = f""" You are evaluating in which ways the article below, delimited by triple backticks, is politically biased, specifically, biased to either the left-wing or the right-wing. Extract all examples of politically biased phrases used in the article. Format your response as a list of items separated by commas. Article: ```{article_text}``` """ response = get_completion(prompt, messages) response = format_list(response) return response def get_political_bias_rating(messages): prompt = """ You are evaluating in which political direction the previous article is biased. On a scale from 1 (strongly left-wing) to 10 (strongly right-wing) can you rate the article for the position of it's political bias. Please format your response as an integer only. """ response = get_completion(prompt, messages) try: return int(response) except: prompt = """ Please try again and format this response as an integer only. """ response = get_completion(prompt, messages) return int(response) def get_establishment_list(article_text, messages): prompt = f""" You are evaluating in which ways the article below, delimited by triple backticks, is biased in a manner that is either pro-establishment or anti-establishment. Extract all examples of politically biased phrases used in the article. Format your response as a list of items separated by commas. Article: ```{article_text}``` """ response = get_completion(prompt, messages) response = format_list(response) return response def get_establishment_bias_rating(messages): prompt = """ You are evaluating in which direction the previous article is biased, in regards to its stance on the establishment. On a scale from 1 (strongly anti-establishment) to 10 (strongly pro-establishment) can you rate the article for the position of it's establishment bias. Please format your response as an integer only. """ response = get_completion(prompt, messages) try: return int(response) except: prompt = """ Please try again and format this response as an integer only. """ response = get_completion(prompt, messages) return int(response) article = get_article_text('https://www.foxnews.com/politics/biden-admin-quietly-reverses-trump-era-rule-bans-transporting-fossil-fuels-train') is_article = article_detection(article) emo_msgs = [{"role": "system", "content": "You are an expert on journalism. You specialise in assessing how emotive language is used to position readers"}] emotive_list = get_emotive_list(article, emo_msgs) def run(url): article = get_article_text(url) is_article = article_detection(article) emo_msgs = [{"role": "system", "content": "You are an expert on journalism. You specialise in assessing how emotive language is used to position readers"}] emotive_list = get_emotive_list(article, emo_msgs) emotive_rating = get_emotive_rating(emo_msgs) pol_msgs = [{"role": "system", "content": "You are an expert on journalism and politics. You specialise in assessing the presence of political bias in articles."}] political_list = get_political_bias_list(article, pol_msgs) political_rating = get_political_bias_rating(pol_msgs) est_msgs = [{"role": "system", "content": "You are an expert on journalism and politics. You specialise in assessing the presence of pro or anti establishment bias in articles."}] establishment_list = get_establishment_list(article, est_msgs) establishment_bias_rating = get_establishment_bias_rating(est_msgs) return { 'is_article': is_article, 'emotive_list': emotive_list, 'emotive_rating': emotive_rating, 'political_list': political_list, 'political_rating': political_rating, 'establishment_list': establishment_list, 'establishment_bias_rating': establishment_bias_rating }
[ "\n You are evaluating in which political direction the previous article is biased.\n \n On a scale from 1 (strongly left-wing) to 10 (strongly right-wing) can you rate the article for the position of it's political bias.\n\n Please format your response as an integer only.\n ", "\n Please assess the following body of text, which is delimited by triple backticks.\n\n Determine if you believe this is an article, as in a piece of writing included with others in a newspaper, magazine, or other print or online publication.\n\n If it is an article, format your response by only printing: True\n If it is not an article, format your response by only printing: False\n\n Article: ```PLACEHOLDER```\n ", "You are an expert on journalism and politics. You specialise in assessing the presence of pro or anti establishment bias in articles.", "\n Based strictly on the presence of emotive language, can you rate on a scale of 1-10 how emotive the article is.\n \n Please format your response as an integer only\n ", "You are an expert on journalism. You specialise in assessing how emotive language is used to position readers", "\n Please try again and format this response as an integer only.\n ", "\n You are evaluating in which direction the previous article is biased, in regards to its stance on the establishment.\n\n On a scale from 1 (strongly anti-establishment) to 10 (strongly pro-establishment) can you rate the article for the position of it's establishment bias.\n\n Please format your response as an integer only.\n ", "\n You are evaluating in which ways the article below, delimited by triple backticks, is politically biased, specifically, biased to \n either the left-wing or the right-wing.\n \n Extract all examples of politically biased phrases used in the article.\n\n Format your response as a list of items separated by commas.\n \n Article: ```PLACEHOLDER```\n ", "You are an expert on journalism and politics. You specialise in assessing the presence of political bias in articles.", "\n You are evaluating in which ways the article below, delimited by triple backticks, is biased in a manner that is either pro-establishment or anti-establishment.\n\n Extract all examples of politically biased phrases used in the article.\n\n Format your response as a list of items separated by commas.\n \n Article: ```PLACEHOLDER```\n ", "\n Extract all examples of emotive language used in the \n following article, which is delimited by triple backticks.\n\n Format your response as a list of items separated by commas.\n\n Article: '''PLACEHOLDER'''\n ", "You are an expert on journalism.", "content" ]
2024-01-10
achilela/chatbots
Andro_GPT_Llama2.py
from typing import List, Union from langchain.vectorstores.chroma import Chroma from langchain.callbacks import get_openai_callback from langchain.schema import (SystemMessage, HumanMessage, AIMessage) from langchain.llms import LlamaCpp from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler import streamlit as st from langchain.schema import Memory as StreamlitChatMessageHistory from langchain.llms import CTransformers from langchain.prompts import ChatPromptTemplate from langchain.prompts import PromptTemplate from langchain.prompts.chat import SystemMessagePromptTemplate from time import sleep from langchain.embeddings.openai import OpenAIEmbeddings from langchain.schema import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import DeepLake, VectorStore from streamlit.runtime.uploaded_file_manager import UploadedFile import warnings from langchain.memory import ConversationBufferWindowMemory from langchain import PromptTemplate, LLMChain import os import tempfile from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.embeddings import HuggingFaceEmbeddings from langchain.callbacks.base import BaseCallbackHandler from langchain.chains import ConversationalRetrievalChain from langchain.vectorstores import DocArrayInMemorySearch from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter from langchain.document_loaders import (PyPDFLoader, Docx2txtLoader, CSVLoader, DirectoryLoader, GitLoader, NotebookLoader, OnlinePDFLoader, PythonLoader, TextLoader, UnstructuredFileLoader, UnstructuredHTMLLoader, UnstructuredPDFLoader, UnstructuredWordDocumentLoader, WebBaseLoader, ) from langchain.vectorstores import FAISS from dotenv import load_dotenv load_dotenv() warnings.filterwarnings("ignore", category=UserWarning) APP_NAME = "ValonyLabsz" MODEL = "gpt-3.5-turbo" PAGE_ICON = ":rocket:" st.set_option("client.showErrorDetails", True) st.set_page_config( page_title=APP_NAME, page_icon=PAGE_ICON, initial_sidebar_state="expanded" ) av_us = '/https://raw.githubusercontent.com/achilela/main/Ataliba' av_ass = '/https://raw.githubusercontent.com/achilela/main/Robot' st.title(":rocket: Agent Lirio :rocket:") st.markdown("I am your Technical Assistant ready to do all of the leg work on your documents, emails, procedures, etc.\ I am capable to extract relevant info and domain knowledge!") @st.cache_resource(ttl="1h") def init_page() -> None: st.sidebar.title("Options") def init_messages() -> None: clear_button = st.sidebar.button("Clear Conversation", key="clear") if clear_button or "messages" not in st.session_state: st.session_state.messages = [ ] st.session_state.costs = [] user_query = st.chat_input(placeholder="Ask me Anything!") def select_llm() -> Union[ChatOpenAI, LlamaCpp]: model_name = st.sidebar.radio("Choose LLM:", ("gpt-3.5-turbo-0613", "gpt-4", "llama-2"), key="llm_choice") temperature = st.sidebar.slider("Temperature:", min_value=0.0, max_value=1.0, value=0.0, step=0.01) if model_name.startswith("gpt-"): return ChatOpenAI(temperature=temperature, model_name=model_name, streaming=True ) elif model_name.startswith("llama-2-"): callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) return CTransformers(model="/home/ataliba/LLM_Workshop/Experimental_Lama_QA_Retrieval/models/Wizard-Vicuna-13B-Uncensored.ggmlv3.q5_1.bin", model_type="llama", max_new_tokens=512, temperature=temperature) #openai_api_key = os.getenv("OPENAI_API_KEY") #openai.api_key = os.getenv("OPENAI_API_KEY") #openai_api_key = os.environ[OPENAI_API_KEY] #openai_api_key = "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" def configure_qa_chain(uploaded_files): docs = [] if uploaded_files: if "processed_data" not in st.session_state: documents = [] for file in uploaded_files: temp_filepath = os.path.join(os.getcwd(), file.name) # os.path.join(temp_dir.name, file.name) with open(temp_filepath, "wb") as f: f.write(file.getvalue()) if temp_filepath.endswith((".pdf", ".docx", ".txt")): #if temp_filepath.lower() == (".pdf", ".docx", ".txt"): loader = UnstructuredFileLoader(temp_filepath) loaded_documents = loader.load() #loader = PyPDFLoader(temp_filepath) docs.extend(loaded_documents) #loader.load_and_split()) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200) splits = text_splitter.split_documents(docs) embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) # storing embeddings in the vector store vectorstore = FAISS.from_documents(splits, embeddings) persist_directory = "/home/ataliba/LLM_Workshop/Experimental_Lama_QA_Retrieval/db/" memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=False) retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 2, "fetch_k": 4}) return retriever class StreamHandler(BaseCallbackHandler): def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ""): self.container = container self.text = initial_text self.run_id_ignore_token = None def on_llm_start(self, serialized: dict, prompts: list, **kwargs): if prompts[0].startswith("Human"): self.run_id_ignore_token = kwargs.get("run_id") def on_llm_new_token(self, token: str, **kwargs) -> None: if self.run_id_ignore_token == kwargs.get("run_id", False): return self.text += token self.container.markdown(self.text) class PrintRetrievalHandler(BaseCallbackHandler): def __init__(self, container): self.container = container.expander("Context Retrieval") def on_retriever_start(self, query: str): #def on_retriever_start(self, query: str, **kwargs): self.container.write(f"**Question:** {query}") def on_retriever_end(self, documents, **kwargs): for idx, doc in enumerate(documents): source = os.path.basename(doc.metadata["source"]) self.container.write(f"**Document {idx} from {source}**") self.container.markdown(doc.page_content) uploaded_files = st.sidebar.file_uploader( label="Upload your files", accept_multiple_files=True,type=None ) if not uploaded_files: st.info("Please upload your documents to continue.") st.stop() retriever = configure_qa_chain(uploaded_files) memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) llm = select_llm() # model_name="gpt-3.5-turbo" qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, memory=memory) #retriever=retriever, memory=memory)#, verbose=False if "messages" not in st.session_state or st.sidebar.button("Clear message history"): st.session_state["messages"] = [{"role": "assistant", "content": "Please let me know how can I be of a help today?"}] for msg in st.session_state.messages: if msg["role"] == "user": with st.chat_message(msg["role"]): #,avatar=av_us): st.markdown(msg["content"]) else: with st.chat_message(msg["role"]): #,avatar=av_ass): st.markdown(msg["content"]) if user_query: # st.session_state.messages.append({"role": "user", "content": user_query}) st.chat_message("user").write(user_query) with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" cb = PrintRetrievalHandler(st.container()) response = qa_chain.run(user_query, callbacks=[cb]) resp = response.split(" ") for r in resp: full_response = full_response + r + " " message_placeholder.markdown(full_response + "▌") sleep(0.1) message_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response})
[ "Please let me know how can I be of a help today?" ]
2024-01-10
waleedkadous/ansari-backend
agents~ansari.py
import time from pydantic import BaseModel from util.prompt_mgr import PromptMgr from tools.search_quran import SearchQuran from tools.search_hadith import SearchHadith import json from openai import OpenAI import litellm from langfuse import Langfuse from datetime import datetime, date from langfuse.model import InitialGeneration, CreateGeneration, CreateTrace import hashlib lf = Langfuse() lf.auth_check() MODEL = 'gpt-4-1106-preview' MAX_FUNCTION_TRIES = 3 class Ansari: def __init__(self, json_format = False): sq = SearchQuran() sh = SearchHadith() self.tools = { sq.get_fn_name(): sq, sh.get_fn_name(): sh} self.model = MODEL self.pm = PromptMgr() self.sys_msg = self.pm.bind('system_msg_fn').render() self.functions = [x.get_function_description() for x in self.tools.values()] self.message_history = [{ 'role': 'system', 'content': self.sys_msg }] self.json_format = json_format # The trace id is a hash of the first user input and the time. def compute_trace_id(self): today = date.today() hashstring = str(today) + self.message_history[1]['content'] result = hashlib.md5(hashstring.encode()) return 'chash_' + result.hexdigest() def greet(self): self.greeting = self.pm.bind('greeting') return self.greeting.render() def process_input(self, user_input): self.message_history.append({ 'role': 'user', 'content': user_input }) return self.process_message_history() def log(self): trace_id = self.compute_trace_id() print('trace id is ', trace_id) trace = lf.trace(CreateTrace( id=trace_id, name='ansari-trace' )) generation = trace.generation(CreateGeneration( name='ansari-gen', startTime=self.start_time, endTime=datetime.now(), model=MODEL, prompt=self.message_history[:-1], completion=self.message_history[-1]['content'], )) def replace_message_history(self, message_history): self.message_history = [{ 'role': 'system', 'content': self.sys_msg }] + message_history for m in self.process_message_history(): if m: yield m def process_message_history(self): # Keep processing the user input until we get something from the assistant self.start_time = datetime.now() count = 0 while self.message_history[-1]['role'] != 'assistant': try: print(f'Processing one round {self.message_history}') # This is pretty complicated so leaving a comment. # We want to yield from so that we can send the sequence through the input # Also use functions only if we haven't tried too many times use_function = True if count >= MAX_FUNCTION_TRIES: use_function = False print('Not using functions -- tries exceeded') yield from self.process_one_round(use_function) count += 1 except Exception as e: print('Exception occurred: ', e) print('Retrying in 5 seconds...') time.sleep(5) self.log() def process_one_round(self, use_function = True): response = None while not response: try: if use_function: if self.json_format: response = litellm.completion( model = self.model, messages = self.message_history, stream = True, functions = self.functions, timeout = 30.0, temperature = 0.0, metadata = {'generation-name': 'ansari'}, response_format = { "type": "json_object" }, num_retries = 5 ) else: response = litellm.completion( model = self.model, messages = self.message_history, stream = True, functions = self.functions, timeout = 30.0, temperature = 0.0, metadata = {'generation-name': 'ansari'}, num_retries = 5 ) else: if self.json_format: response = litellm.completion( model = self.model, messages = self.message_history, stream = True, timeout = 30.0, temperature = 0.0, response_format = { "type": "json_object" }, metadata = {'generation-name': 'ansari'}, num_retries = 5 ) else: response = litellm.completion( model = self.model, messages = self.message_history, stream = True, timeout = 30.0, temperature = 0.0, metadata = {'generation-name': 'ansari'}, num_retries = 5 ) except Exception as e: print('Exception occurred: ', e) print('Retrying in 5 seconds...') time.sleep(5) words = '' function_name = '' function_arguments = '' response_mode = '' # words or fn for tok in response: #print(f'Tok is {tok}') delta = tok.choices[0].delta if not response_mode: # This code should only trigger the first # time through the loop. if 'function_call' in delta and delta.function_call: # We are in function mode response_mode = 'fn' print(f'Tok is {tok}') function_name = delta.function_call.name else: response_mode = 'words' print('Response mode: ' + response_mode) # We process things differently depending on whether it is a function or a # text if response_mode == 'words': if delta.content == None: # End token self.message_history.append({ 'role': 'assistant', 'content': words }) break elif delta.content != None: words += delta.content yield delta.content else: continue elif response_mode == 'fn': if not 'function_call' in delta: # End token function_call = function_name + '(' + function_arguments + ')' # The function call below appends the function call to the message history yield self.process_fn_call(input, function_name, function_arguments) # break elif 'function_call' in delta: function_arguments += delta.function_call.arguments #print(f'Function arguments are {function_arguments}') yield '' # delta['function_call']['arguments'] # we shouldn't yield anything if it's a fn else: continue else: raise Exception("Invalid response mode: " + response_mode) def process_fn_call(self, orig_question, function_name, function_arguments): if function_name in self.tools.keys(): args = json.loads(function_arguments) query = args['query'] results = self.tools[function_name].run_as_list(query) # print(f'Results are {results}') # Now we have to pass the results back in if len(results) > 0: for result in results: self.message_history.append({ 'role': 'function', 'name': function_name, 'content': result }) else: self.message_history.append({ 'role': 'function', 'name': function_name, 'content': 'No results found' }) else: print('Unknown function name: ', function_name)
[ "No results found" ]
2024-01-10
gkorepanov/llm-tools
llm_tools~llm_fallback.py
from typing import ( AsyncIterator, Any, Callable, Dict, List, Optional, Tuple, ) from llm_tools.tokens import ( TokenExpense, TokenExpenses, ) from llm_tools.chat_message import OpenAIChatMessage from llm_tools.errors import ( should_fallback_to_other_model, MultipleException, ) from llm_tools.llm_streaming import StreamingOpenAIChatModel from llm_tools.llm_streaming_base import StreamingLLMBase class StreamingModelWithFallback(StreamingLLMBase): def __init__( self, models: List[StreamingOpenAIChatModel], should_fallback_to_other_model: Callable[[Exception], bool] = \ should_fallback_to_other_model, ): self.models = models self.should_fallback_to_other_model = should_fallback_to_other_model self.exceptions = [] async def stream_llm_reply( self, messages: List[OpenAIChatMessage], stop: Optional[List[str]] = None, ) -> AsyncIterator[Tuple[str, str]]: self.exceptions = [] for model in self.models: try: async for completion, token in model.stream_llm_reply(messages, stop): yield completion, token except Exception as e: if self.should_fallback_to_other_model(e): self.exceptions.append(e) continue else: raise else: break else: if len(self.exceptions) == 1: raise self.exceptions[0] else: raise MultipleException(self.exceptions) from self.exceptions[-1] @property def succeeded(self) -> bool: return any(model.succeeded for model in self.models) def get_tokens_spent( self, only_successful_trial: bool = False, ) -> TokenExpenses: if not self.succeeded and only_successful_trial: raise ValueError("Cannot get tokens spent for unsuccessful trial") if only_successful_trial: first_successful_model = next(model for model in self.models if model._succeeded) return first_successful_model.get_tokens_spent(only_successful_trial) else: return sum( ( model.get_tokens_spent(only_successful_trial) for model in self.models ), TokenExpenses() )
[]
2024-01-10
gkorepanov/llm-tools
llm_tools~errors.py
from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, AsyncRetrying, retry_if_exception, ) from tenacity.wait import wait_base from typing import Any, Callable, Tuple, Optional, List import logging import openai import openai.error import aiohttp import aiohttp.client_exceptions import asyncio import re logger = logging.getLogger(__name__) class ModelContextSizeExceededError(Exception): def __init__( self, model_name: str, max_context_length: int, context_length: Optional[int] = None, during_streaming: bool = False, ): self.model_name = model_name self.max_context_length = max_context_length self.context_length = context_length self.during_streaming = during_streaming def __str__(self) -> str: suffix = " (during streaming)" if self.during_streaming else "" if self.context_length is None: return f"Context length exceeded for model {self.model_name}{suffix}" else: return f"Context length exceeded for model {self.model_name}{suffix}: {self.context_length} > {self.max_context_length}" @classmethod def from_openai_error( cls, error: openai.error.InvalidRequestError, model_name: str, during_streaming: bool = False, ) -> "ModelContextSizeExceededError": assert error.code == CONTEXT_LENGTH_EXCEEDED_ERROR_CODE max_context_length_pattern = r"maximum context length is (\d+) tokens" tokens_number_pattern = r"messages resulted in (\d+) tokens" max_context_length = re.search(max_context_length_pattern, str(error)) tokens_number = re.search(tokens_number_pattern, str(error)) if max_context_length is not None: max_context_length = int(max_context_length.group(1)) if tokens_number is not None: tokens_number = int(tokens_number.group(1)) return ModelContextSizeExceededError( model_name=model_name, max_context_length=max_context_length, context_length=tokens_number, during_streaming=during_streaming, ) class StreamingNextTokenTimeoutError(asyncio.TimeoutError): pass class OpenAIRequestTimeoutError(asyncio.TimeoutError): pass class MultipleException(Exception): def __init__( self, exceptions: List[Exception], ): self.exceptions = exceptions def __str__(self): return "\n".join( f"{type(e).__name__}: {str(e)}" for e in self.exceptions ) CONTEXT_LENGTH_EXCEEDED_ERROR_CODE = "context_length_exceeded" def should_retry_initital_openai_request_error(error: Exception) -> bool: OPENAI_REQUEST_ERRORS = ( openai.error.Timeout, openai.error.APIError, openai.error.APIConnectionError, openai.error.RateLimitError, openai.error.ServiceUnavailableError, OpenAIRequestTimeoutError, ) return isinstance(error, OPENAI_REQUEST_ERRORS) def should_retry_streaming_openai_request_error(error: Exception) -> bool: OPENAI_STREAMING_ERRORS = ( aiohttp.client_exceptions.ClientPayloadError, StreamingNextTokenTimeoutError, ) return isinstance(error, OPENAI_STREAMING_ERRORS) def should_fallback_to_other_model(error: Exception) -> bool: if isinstance(error, ModelContextSizeExceededError): return False if isinstance(error, openai.error.InvalidRequestError) and error.code == CONTEXT_LENGTH_EXCEEDED_ERROR_CODE: return False return True def get_openai_retrying_iterator( retry_if_exception_fn: Callable[[Exception], bool], wait: wait_base, max_retries: int = 1, ) -> AsyncRetrying: return AsyncRetrying( reraise=True, stop=stop_after_attempt(max_retries), wait=wait, retry=retry_if_exception(retry_if_exception_fn), before_sleep=before_sleep_log(logger, logging.WARNING), )
[]
2024-01-10
gkorepanov/llm-tools
llm_tools~chat_message.py
from typing import ( Dict, Union, List, ) from langchain.schema import BaseMessage, HumanMessage, AIMessage, SystemMessage, ChatMessage from funcy import omit OpenAIChatMessage = Union[BaseMessage, Dict[str, str]] def convert_message_to_dict(message: BaseMessage) -> Dict[str, str]: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} else: raise ValueError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict def convert_dict_to_message(_dict: Dict[str, str]) -> BaseMessage: role = _dict["role"] additional_kwargs = dict(omit(_dict, ["role", "content"])) if role == "user": return HumanMessage(content=_dict["content"], additional_kwargs=additional_kwargs) elif role == "assistant": return AIMessage(content=_dict["content"], additional_kwargs=additional_kwargs) elif role == "system": return SystemMessage(content=_dict["content"], additional_kwargs=additional_kwargs) else: return ChatMessage(content=_dict["content"], role=role, additional_kwargs=additional_kwargs) def prepare_message(message: OpenAIChatMessage) -> BaseMessage: if isinstance(message, dict): return convert_dict_to_message(message) elif isinstance(message, BaseMessage): return message else: raise ValueError(f"Unknown message type: {type(message)}") def prepare_messages(messages: List[OpenAIChatMessage]) -> List[BaseMessage]: return [prepare_message(message) for message in messages]
[ "content" ]
2024-01-10
gkorepanov/llm-tools
llm_tools~llm_streaming.py
from typing import ( AsyncIterator, Any, Callable, Dict, List, Optional, Tuple, Union, ) from tenacity import wait_exponential import asyncio from tenacity.wait import wait_base from dataclasses import dataclass from langchain.chat_models import ChatOpenAI, AzureChatOpenAI from langchain.schema import BaseMessage from langchain.chat_models.openai import _convert_dict_to_message import tiktoken import openai import openai.error from concurrent.futures import Executor from functools import partial from llm_tools.chat_message import OpenAIChatMessage, prepare_messages from llm_tools.tokens import ( TokenExpense, TokenExpenses, count_tokens_from_input_messages, count_tokens_from_output_text, ) from llm_tools.errors import ( should_retry_initital_openai_request_error, should_retry_streaming_openai_request_error, should_fallback_to_other_model, get_openai_retrying_iterator, ModelContextSizeExceededError, StreamingNextTokenTimeoutError, OpenAIRequestTimeoutError, CONTEXT_LENGTH_EXCEEDED_ERROR_CODE, MultipleException, ) from llm_tools.llm_streaming_base import StreamingLLMBase class StreamingOpenAIChatModel(StreamingLLMBase): def __init__( self, chat_model: Union[ChatOpenAI, AzureChatOpenAI], max_initial_request_retries: int = 5, max_streaming_retries: int = 2, wait_between_retries=wait_exponential(multiplier=1, min=1, max=60), streaming_next_token_timeout: int = 10, request_timeout: wait_base = wait_exponential(multiplier=1, min=5, max=60), token_count_executor: Optional[Executor] = None, ): self.chat_model = chat_model self.encoding = tiktoken.encoding_for_model(self.chat_model.model_name) self.max_request_retries = max_initial_request_retries self.max_streaming_retries = max_streaming_retries self.wait_between_retries = wait_between_retries self.streaming_next_token_timeout = streaming_next_token_timeout self.request_timeout = request_timeout self.token_count_executor = token_count_executor self.reset() @property def context_size(self) -> int: model_name = self.chat_model.model_name is_azure = isinstance(self.chat_model, AzureChatOpenAI) if is_azure: return { "gpt-3.5-turbo": 8192, "gpt-4": 8192, }[model_name] else: return { "gpt-3.5-turbo": 4097, "gpt-3.5-turbo-16k": 16384, "gpt-4": 8192, "gpt-4-1106-preview": 128000, "gpt-3.5-turbo-1106": 16385, }[model_name] def reset(self): self.completions = [] self.successful_request_attempts = 0 self.request_attempts = 0 self.streaming_attempts = 0 self.message_dicts = None self._succeeded = False self.input_messages_n_tokens = 0 self.output_tokens_spent_per_completion = [] @property def succeeded(self) -> bool: return self._succeeded def prepare_messages(self, messages: List[OpenAIChatMessage]) -> List[BaseMessage]: result = [] for message in messages: if not isinstance(message, BaseMessage): message = _convert_dict_to_message(message) result.append(message) return result async def stream_llm_reply( self, messages: List[OpenAIChatMessage], stop: Optional[List[str]] = None, ) -> AsyncIterator[Tuple[str, str]]: assert self.chat_model.streaming assert len(messages) > 0 self.reset() _f = partial(count_tokens_from_input_messages, messages=messages, model_name=self.chat_model.model_name, ) if self.token_count_executor is None: self.input_messages_n_tokens = _f() else: self.input_messages_n_tokens = await asyncio.get_running_loop().run_in_executor( self.token_count_executor, _f, ) if self.input_messages_n_tokens > self.context_size: raise ModelContextSizeExceededError( model_name=self.chat_model.model_name, max_context_length=self.context_size, context_length=self.input_messages_n_tokens, during_streaming=False, ) self.message_dicts, params = self.chat_model._create_message_dicts( messages=prepare_messages(messages), stop=stop, ) params["stream"] = True async for streaming_attempt in get_openai_retrying_iterator( retry_if_exception_fn=should_retry_streaming_openai_request_error, max_retries=self.max_streaming_retries, wait=self.wait_between_retries, ): completion = "" role = "assistant" self.streaming_attempts += 1 self.output_tokens_spent_per_completion.append(0) async for request_attempt in get_openai_retrying_iterator( retry_if_exception_fn=should_retry_initital_openai_request_error, max_retries=self.max_request_retries, wait=self.wait_between_retries, ): with request_attempt: self.request_attempts += 1 timeout = self.request_timeout(request_attempt.retry_state) try: gen = await asyncio.wait_for( self.chat_model.client.acreate(messages=self.message_dicts, **params), timeout=timeout, ) except openai.error.InvalidRequestError as e: if e.code == CONTEXT_LENGTH_EXCEEDED_ERROR_CODE: raise ModelContextSizeExceededError.from_openai_error( model_name=self.chat_model.model_name, during_streaming=False, error=e, ) from e else: raise except asyncio.TimeoutError as e: raise OpenAIRequestTimeoutError() from e except: raise else: self.successful_request_attempts += 1 with streaming_attempt: try: gen_iter = gen.__aiter__() while True: try: stream_resp = await asyncio.wait_for( gen_iter.__anext__(), timeout=self.streaming_next_token_timeout, ) except StopAsyncIteration: break except asyncio.TimeoutError as e: raise StreamingNextTokenTimeoutError() from e finish_reason = stream_resp["choices"][0].get("finish_reason") role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") _f = partial(count_tokens_from_output_text, text=token, model_name=self.chat_model.model_name, ) if self.token_count_executor is None: _tokens = _f() else: _tokens = await asyncio.get_running_loop().run_in_executor( self.token_count_executor, _f, ) self.output_tokens_spent_per_completion[-1] += _tokens completion += token if token: yield completion, token if finish_reason: if finish_reason == "length": raise ModelContextSizeExceededError( model_name=self.chat_model.model_name, max_context_length=self.context_size, context_length=self.input_messages_n_tokens + self.output_tokens_spent_per_completion[-1], during_streaming=True, ) elif finish_reason != "stop": raise ValueError(f"Unknown finish reason: {finish_reason}") finally: self.completions.append(completion) self._succeeded = True def get_tokens_spent( self, only_successful_trial: bool = False, ) -> TokenExpenses: if not self.succeeded and only_successful_trial: raise ValueError("Cannot get tokens spent for unsuccessful trial") n_input_tokens_per_trial = self.input_messages_n_tokens if only_successful_trial: n_input_tokens = n_input_tokens_per_trial n_output_tokens = self.output_tokens_spent_per_completion[-1] else: n_input_tokens = n_input_tokens_per_trial * self.successful_request_attempts n_output_tokens = sum(self.output_tokens_spent_per_completion) expenses = TokenExpenses() expense = TokenExpense( n_input_tokens=n_input_tokens, n_output_tokens=n_output_tokens, model_name=self.chat_model.model_name, ) expenses.add_expense(expense) return expenses
[]
2024-01-10
gkorepanov/llm-tools
llm_tools~llm_streaming_base.py
from typing import ( AsyncIterator, List, Optional, Tuple, ) from llm_tools.tokens import TokenExpenses from llm_tools.chat_message import OpenAIChatMessage class StreamingLLMBase(object): async def stream_llm_reply( self, messages: List[OpenAIChatMessage], stop: Optional[List[str]] = None, ) -> AsyncIterator[Tuple[str, str]]: raise NotImplementedError() @property def succeeded(self) -> bool: raise NotImplementedError() def get_tokens_spent( self, only_successful_trial: bool = False, ) -> TokenExpenses: raise NotImplementedError()
[]
2024-01-10
juanpablotr14/backend_toDoList
routes.py
import os from flask import Flask, Blueprint, make_response from flask_restx import Api, Resource, reqparse from config import app, db from models import Task, task_schema from models import CheckList, check_list_schema from api_control import taskCtrlr, taskDto, createTaskCommand, updateTaskCommand from api_control import listCtrlr, listDto, createListCommand, updateListCommand from api_control import langchainCtrlr, createlangChainCommand from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.llms import OpenAI from langchain.schema import BaseOutputParser from langchain.chains import LLMChain # Crea el blueprint de la aplicación blueprint = Blueprint('api', __name__, url_prefix='/api') # La aplicación API se crea atada a un blueprint # Tambien puedes atar el API directamente en una aplicación flask convencional # Si configuras doc=False desabilitaras la pagina UI swagger # Usa validate=True para permitir la validación de los request en todos los APIS api = Api(blueprint, title="Aplicación de tareas", description="Un ejemplo de aplicación API usando flask-restx", version="1.0", doc="/swagger/", validate=True ) # Se crea una endpoint indicando la ruta # Una ruta se representa pot una clase python que herede de "Resource" # Una petición HTTP maneja funciones definidas por get, post, put, delete # Create a request parser to handle query parameters @listCtrlr.route("/") class CheckListDisplay(Resource): @listCtrlr.marshal_list_with(listDto) def get(self): list = CheckList.query.all() return list @listCtrlr.expect(createListCommand) def post(self): payload = listCtrlr.payload newList = CheckList(title=payload["title"]) db.session.add(newList) db.session.commit() return check_list_schema.dump(newList) @listCtrlr.route("/<int:id>") class CheckListInd(Resource): @listCtrlr.marshal_with(listDto) def get(self, id): list = CheckList.query.get(id) if list is not None: return check_list_schema.dump(list) else: listCtrlr.abort(404, f"List with id {id} does not exist") @listCtrlr.expect(updateListCommand) @listCtrlr.marshal_with(listDto) def put(self, id): list = CheckList.query.get(id) if list: payload = listCtrlr.payload list.title = payload["title"] db.session.merge(list) db.session.commit() return check_list_schema.dump(list), 201 else: listCtrlr.abort(404, f"List with id {id} does not exist") def delete(self, id): list = CheckList.query.get(id) if list: db.session.delete(list) db.session.commit() return make_response(f"{list.title} successfully deleted", 200) else: listCtrlr.abort(404, f"List with id {id} does not exist") api.add_namespace(listCtrlr) parser = reqparse.RequestParser() parser.add_argument('listId', type=int, help='Filter tasks by list ID') @taskCtrlr.route("/") class TodosDisplay(Resource): @taskCtrlr.marshal_list_with(taskDto) def get(self): args = parser.parse_args() list_id_filter = args.get('listId') if list_id_filter: tasks = Task.query.filter_by(list_id=list_id_filter).all() else: tasks = Task.query.all() return tasks @taskCtrlr.expect(createTaskCommand) def post(self): # this method handles POST request of the API endpoint # create a todo object in the database using the JSON from API request payload payload = taskCtrlr.payload list_id = payload.get("list_id") if list_id and CheckList.query.get(list_id): newTask = Task(value=payload["value"], order=payload["order"], list_id=payload["list_id"]) db.session.add(newTask) db.session.commit() return task_schema.dump(newTask) else: taskCtrlr.abort(404, f"List with id {list_id} does not exist") # extract id variable of endpoint from URL segment for use in the request handling functions @taskCtrlr.route("/<int:id>") class Todo(Resource): @taskCtrlr.marshal_with(taskDto) def get(self, id): # this method handles GET request of the API endpoint # get the todo object based on id from request URL task = Task.query.get(id) if task is not None: return task_schema.dump(task) else: taskCtrlr.abort(404, f"Task with id {id} does not exist") @taskCtrlr.expect(updateTaskCommand) @taskCtrlr.marshal_with(taskDto) def put(self, id): task = Task.query.get(id) if task: payload = taskCtrlr.payload list_id = payload["list_id"] list = CheckList.query.get(list_id) if list is None: taskCtrlr.abort(404, f"List with id {list_id} does not exist") task.value = payload["value"] task.order = payload["order"] task.list_id = payload["list_id"] task.completed = payload["completed"] db.session.merge(task) db.session.commit() return task_schema.dump(task), 201 else: taskCtrlr.abort(404, f"Task with id {id} does not exist") def delete(self, id): task = Task.query.get(id) if task: db.session.delete(task) db.session.commit() return make_response(f"{task.value} successfully deleted", 200) else: listCtrlr.abort(404, f"Task with id {id} does not exist") api.add_namespace(taskCtrlr) @langchainCtrlr.route("/") class SendTaskToLangChain(Resource): @langchainCtrlr.expect(createlangChainCommand) def post(self): payload = langchainCtrlr.payload class CommaSeparatedListOutputParser(BaseOutputParser): """Parse the output of an LLM call to a comma-separated list.""" def parse(self, text: str): """Parse the output of an LLM call.""" return text.strip().split(", ") llm = OpenAI(openai_api_key=os.environ.get("SECRET_KEY_OPENAI")) template = """Eres un asistente que genera una lista sin numeracion separada por comas. La cantidad maxima de elementos por lista es de 10. Los elementos de la lista deben estar ordenados. Imagina que eres un experto en un productividad dentro de tres asteristicos vamos a escribirte el titulo de una lista de tareas y quiero que me digas que actividades debo realizar para completarla. *** {data} *** """ prompt = PromptTemplate.from_template(template) prompt.format(data=payload["prompt"]) list = llm.predict(prompt.format(data=payload["prompt"])).strip().split(", ") newList = CheckList(title=payload["prompt"]) db.session.add(newList) db.session.commit() order = 1 for task in list: newTask = Task(value=task, order=order, completed=False, list_id=newList.id) order +=1 db.session.add(newTask) db.session.commit() return make_response(f"List created successfully", 200) api.add_namespace(langchainCtrlr)
[ "Eres un asistente que genera una lista sin numeracion separada por comas.\n La cantidad maxima de elementos por lista es de 10.\n Los elementos de la lista deben estar ordenados. \n Imagina que eres un experto en un productividad dentro de tres\n asteristicos vamos a escribirte el titulo de una lista de tareas y quiero que\n me digas que actividades debo realizar para completarla. \n ***\n {data}\n ***\n " ]
2024-01-10
bennettwbrown/BulkAssistantFileTool
DELETE_ALL_FILES_ASSISTANTS.py
import os import pandas as pd from openai import OpenAI from dotenv import load_dotenv load_dotenv() """ This script is used for testing accounts only. WARNING: This script will delete all files and assistants in your OpenAI organization. Run this script to delete all files and assistants in your OpenAI organization. """ # TODO: # - Allow passing a list of assistants and files to delete api_key = os.getenv("OPENAI_API_KEY") organization = os.getenv("OPENAI_ORG_KEY") client = OpenAI(organization=organization, api_key=api_key) def delete_all_files_assistants(): try: # Collect all file IDs first file_ids = [file_obj.id for file_obj in client.files.list()] # Now delete each file for file_id in file_ids: client.files.delete(file_id) print(f"Deleted file with ID: {file_id}") except Exception as e: print(f"An error occurred while deleting files: {e}") try: # Collect all assistant IDs first assistant_ids = [ assistant.id for assistant in client.beta.assistants.list(order="desc", limit="20") ] # Now delete each assistant for assistant_id in assistant_ids: client.beta.assistants.delete(assistant_id) print(f"Deleted assistant with ID: {assistant_id}") except Exception as e: print(f"An error occurred while deleting assistants: {e}") def main(): proceed = input( "type 'DELETE ALL' to delete all files and assistants in your OpenAI organization. " ) if proceed == "DELETE ALL": delete_all_files_assistants() else: print("Exiting without deleting anything.") main()
[]
2024-01-10
q734550709/SQLBot
src~plan~content_moderation.py
import openai from src.get_completion_from_messages import get_completion_from_messages # 创建审查输入内容的函数,0为正常,>0为异常 def content_moderation (eval_message): response = openai.Moderation.create( input=eval_message ) moderation_output = sum(1 for value in response["results"][0]["categories"].values() if value) return moderation_output #判断是否查询表信息 def is_query_question(user_message): delimiter = "####" # 遍历关键词列表,检查文本中是否存在这些关键词 system_message = f""" 你是任务是确定用户的输入是否属于查询表信息的文本。 输入的文本可能包含下面的文字: 查找,找出,从……查询,取一下,取出,等等类似表述 或者,英文的表述有:which; find; how many; what is; what are 用户输入的内容会使用{delimiter}作为分割符, 使用 Y 或者 N 回复: Y - 如果用户的输入属于查询表信息的文本 N - 其他情况 只需输出一个字符 """ user_message_for_model = f""" {delimiter}{user_message}{delimiter} """ messages = [ {'role':'system', 'content': system_message}, {'role':'user', 'content': user_message_for_model}, ] is_query_question = get_completion_from_messages(messages, max_tokens=1) return is_query_question
[ "\n 你是任务是确定用户的输入是否属于查询表信息的文本。\n 输入的文本可能包含下面的文字:\n\n 查找,找出,从……查询,取一下,取出,等等类似表述\n\n 或者,英文的表述有:which; find; how many; what is; what are\n\n 用户输入的内容会使用####作为分割符,\n 使用 Y 或者 N 回复:\n Y - 如果用户的输入属于查询表信息的文本\n N - 其他情况\n\n 只需输出一个字符\n ", "\n ####PLACEHOLDER####\n " ]
2024-01-10
q734550709/SQLBot
src~plan~get_table_info.py
import openai import json import pandas as pd from src.get_completion_from_messages import get_completion_from_messages from src.plan.content_moderation import * from constants.constants import constants # 解包constant中的常量 locals().update(constants) #生成表字典信息 def generate_table_dic(database_datalist = database_datalist): table_dic = {} database_df = pd.DataFrame(database_datalist,columns=database_columns) # 遍历 DataFrame 的每一行 for index, row in database_df.iterrows(): key = f"{row['database']}_{row['table']}" value = row['tabledetail'] #按照“库_表:表”信息的形式存储表信息字典 table_dic[key] = value return table_dic #生成数据库信息字符串 def database_str_generate(database_datalist = database_datalist): database_df = pd.DataFrame(database_datalist,columns=database_columns) database_list = set(database_df['database']) database_str = ','.join(map(str, database_list)) return database_str #生成库表对应信息字符串 def database_tableinfo_generate(database_datalist = database_datalist): #生成database_df表格 database_df = pd.DataFrame(database_datalist,columns=database_columns) #根据database列分组 grouped = database_df[['database','table','tableinfo']].groupby('database') # 创建一个字典,用于存储按照 Category 分组后的数据 grouped_data = {} # 遍历原始数据并按照 Category 分组 for category, group in grouped: # 使用 join 方法将每个组的 Description 列合并为一个字符串 merged_description = '\n'.join(f"{row['table']} --{row['tableinfo']}" for _, row in group.iterrows()) # 将合并后的结果存储到字典中 grouped_data[category] = merged_description # 创建一个字符串来保存结果 database_table_info = '' # 将字典中的结果添加到字符串中 for category, description in grouped_data.items(): database_table_info += f"{category}:\n{description}\n\n" # 库表对应关系database_table_info return database_table_info #查询表信息的函数 def query_table_info(user_message, model = 'gpt-3.5-turbo-16k', temperature = 0, max_tokens = 3000, database_datalist = database_datalist ): delimiter = "####" database_str = database_str_generate(database_datalist) database_table_info = database_tableinfo_generate(database_datalist) table_system_message = f''' 你会收到用户查询表信息的请求 用户的信息放在{delimiter}分割符里 输出一个python的list对象,其中每个元素按照下面的格式提供: 'database': <{database_str}> 的其中之一, 'table': <必须在下面列出的database和table中选择> 其中,这些database和table需要在客户的查询中被提到 允许的table列表: {database_table_info} 仅输出一个列表对象,不输出其他内容 如果找不到相关的database和table,输出一个空列表 ''' user_message_for_model = f""" {delimiter}{user_message}{delimiter} """ messages = [ {'role':'system', 'content': table_system_message}, {'role':'user', 'content': user_message_for_model}, ] database_and_table_response = get_completion_from_messages(messages, model = model, temperature = temperature, max_tokens = max_tokens) return database_and_table_response #json转列表 def read_string_to_list(input_string): if input_string is None: return None try: input_string = input_string.replace("'", "\"") data = json.loads(input_string) return data except json.JSONDecodeError: print("Error: Invalid JSON string") return None # 定义一个函数,添加表信息 def generate_table_info(data_list, database_datalist=database_datalist): #生成database_df表格 database_df = pd.DataFrame(database_datalist,columns=database_columns) #生成库表字典 table_dic = generate_table_dic(database_datalist) # 如果data_list是None,直接返回空字符串 if data_list is None: return "" # 遍历data_list中的每一个元素data for data in data_list: #判断生成的表里面是否在给定库表范围内,如果在,添加表详细信息 table_name = data['database']+'_'+data['table'] if table_name in table_dic: table_info = table_dic[table_name] data['table_detail'] = table_info #如果得到的表没有在库表范围内,则去掉该元素(GPT会误生成不存在的库表信息) else: data_list.remove(data) #生成判断后的库表&表信息,存在字符串中 output_string = ["\n".join([f"'{k}':'{v}'" for k, v in item.items()]) for item in data_list] output_string = ';\n'.join(output_string) # 返回处理后的output_string return output_string
[]
2024-01-10
q734550709/SQLBot
src~generate~sql_generation.py
import openai #SQL产生函数 def sql_generation( user_input, model="gpt-3.5-turbo-16k", temperature=0, max_tokens=3000, sql_type = 'hive' ): system_message = f""" 根据用户的描述写一段{sql_type} SQL代码,仅提供{sql_type} SQL代码: """ messages = [ {'role':'system', 'content': system_message}, {'role':'user', 'content': user_input}, ] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, ) return response.choices[0].message["content"] # 定义合并函数 def merge_textbox(textbox1='', textbox2='', textbox3='', textbox4=''): merged_text = f"{textbox1}\n{textbox2}\n{textbox3}\n{textbox4}" return merged_text
[ "\n 根据用户的描述写一段PLACEHOLDER SQL代码,仅提供PLACEHOLDER SQL代码:\n " ]
2024-01-10
q734550709/SQLBot
src~plan~text_to_sql.py
import os import openai from src.get_completion_from_messages import get_completion_from_messages from src.plan.content_moderation import * from src.plan.get_table_info import * from constants.constants import constants # 解包constant中的常量 locals().update(constants) # 构建database_df题目文件的路径 database_df_path = os.path.join("data", "database_df.xlsx") #读取database_df database_df = pd.read_excel(database_df_path) #定义database_columns&database_datalist database_columns = list(database_df.columns) database_datalist = database_df.values.tolist() # 定义一个函数,返回列表中某个值的最后一个出现的索引 def rindex(lst, value): """ 返回列表中某个值的最后一个出现的索引。 lst: 一个列表,我们将在其中搜索。 value: 一个字符串值,我们要在列表中查找它的最后一个出现的位置。 """ try: return len(lst) - lst[::-1].index(value) - 1 except ValueError: raise ValueError(f"这个字符`{value}`未出现") # 定义生成候选补全的函数 def get_candidates( messages, model = 'gpt-3.5-turbo-16k', temperature = 0, max_tokens = 3000, n = 3, stop = [';'], ): prefix = '' # 使用 OpenAI 完成接口生成响应 response = openai.ChatCompletion.create( model=model, messages = messages, temperature=temperature, n=n, stop=stop, max_tokens=max_tokens, ) # 将生成的响应与指定的前缀组合 responses = [prefix + choice.message.content for choice in response.choices] return responses # 评估候选答案得分 def eval_candidate( candidate_answer, nl_query, engine = 'text-davinci-003', ): eval_template = "{};\n--上述查询的易于理解的解释为\n-- {}" prompt = eval_template.format(candidate_answer, nl_query) answer_start_token = "--" # 使用 OpenAI 完成接口生成响应 response = openai.Completion.create( engine=engine, prompt=prompt, #评估模板,填入生成结果,查询语句 temperature=0, max_tokens=0, #设置为0,不会耗费token logprobs=1, #设置为1,是因为只需要判断当前已有prompt的概率,无需生成新结果 echo=True, #设置为True,可以实现对prompt进行对数概率计算 ) # 获取答案开始的索引 answer_start = rindex( response["choices"][0]["logprobs"]["tokens"], answer_start_token ) #计算原始查询语句通过LLM模型计算出的平均对数概率(越大越好) logprobs = response["choices"][0]["logprobs"]["token_logprobs"][answer_start + 1 :] return sum(logprobs) / len(logprobs) # 反向翻译,根据自然语言指令生成一系列的SQL查询,并选择最佳的一个。 def backtranslation( nl_query, messages, model = 'gpt-3.5-turbo-16k', temperature = 0, max_tokens = 3000, n = 3, stop = [';'], ): candidates = [] #用于存放待评估项及得分 responses = get_candidates(messages = messages, model = model, temperature = temperature, max_tokens = max_tokens, n = n, stop = stop ) for i in range(n): quality = eval_candidate( responses[i], nl_query, ) candidates.append((responses[i], quality)) # 根据评估得分对候选项进行排序 candidates.sort(key=lambda x: x[1], reverse=True) return candidates[0][0] # 定义一个处理用户消息的函数 def process_user_message(user_input, all_messages, model = 'gpt-3.5-turbo-16k', temperature = 0, max_tokens = 3000, hive_select='hive', is_current_table = True, data_scope_definition = data_scope_definition, database_datalist = database_datalist ): delimiter = "####" # 定义一个分隔符 # 步骤1:检查输入是否涉及有害语句或不属于查询问题 ''' check_error = (content_moderation(user_input) == 1 or is_query_question(user_input) == 'N')''' # 如果输入被标记了 ''' if check_error: all_messages+= [(user_input,"对不起,您的问题不是一个查询问题,请重新输入")] return "", all_messages # 返回错误消息''' # 步骤2:从字符串中提取产品列表 database_df = pd.DataFrame(database_datalist,columns=database_columns) database_and_table_str = query_table_info( user_message = user_input, model = model, temperature = temperature, max_tokens = max_tokens, database_datalist = database_datalist ) database_and_table_list = read_string_to_list(database_and_table_str) # 步骤3:如果找到了库表信息,查找表字段信息 database_and_table_info = generate_table_info(database_and_table_list,database_datalist) ''' if database_and_table_info == "" and is_current_table: all_messages+= [(user_input,"对不起,未查到相关表信息")] return "", all_messages''' # 步骤4:回答用户的问题 # 定义系统消息 system_message = f""" You are a helpful assistant capable of aiding users in converting natural language into SQL statements. Here's how you can assist users in generating {hive_select} SQL statements and provide help: 1. Based on the provided SQL table information, list the fields related to the content the user wishes to query. 2. Ask the user if these are the fields they need, encouraging them to provide additional information such as field definitions and caliber definitions. 3. Once the user confirms the information they wish to query, provide the corresponding {hive_select} SQL statement, ensuring it adheres to {hive_select} SQL syntax standards. 4. If the user wishes to understand SQL syntax, inquire about their level of understanding of {hive_select} SQL statements: beginner, novice, intermediate, or advanced. -- If the user is a beginner, shift the conversation towards a basic explanation of SQL syntax. -- If the user is a novice, guide them to ask more {hive_select} SQL-related questions and provide clear and patient answers. -- If the user is at an intermediate or advanced level, engage in a Socratic dialogue to help them clarify their difficulties in understanding {hive_select} SQL. Always remember, you are an assistant for generating SQL statements, and there's no need to answer other unrelated questions. related caliber definitions:{data_scope_definition} Be concise and constructive with feedback. 注意,对于用户的输入,始终使用中文回复 """ prefix = '' nl_query = f"{delimiter}{user_input}{delimiter}" history_prompt = [] for turn in all_messages: user_message, bot_message = turn history_prompt += [ {'role': 'user', 'content':user_message}, {'role': 'assistant', 'content': bot_message} ] # 创建消息列表,包括系统消息、用户消息和助手消息 messages = [ {'role': 'system', 'content': system_message}] \ + history_prompt + \ [{'role': 'assistant', 'content': database_and_table_info}, {'role': 'user', 'content': nl_query+prefix} ] # 根据消息生成完成的回复 final_response = backtranslation( nl_query = nl_query, messages = messages, model = model, temperature = temperature, max_tokens = max_tokens, ) all_messages+= [(user_input,final_response)] return "", all_messages # 返回最终回复和所有消息
[ "[]", "PLACEHOLDERPLACEHOLDER", "{};\n--上述查询的易于理解的解释为\n-- {}" ]
2024-01-10
q734550709/SQLBot
src~get_api_key.py
import json import os import openai # 构建config.json文件的路径 config_file_path = os.path.join("config", "config.json") # 读取配置文件 with open(config_file_path, "r") as config_file: config = json.load(config_file) # 设置环境变量 os.environ["OPENAI_API_KEY"] = config.get("OPENAI_API_KEY") #获取api_key函数 def get_api_key(key): if key == '': openai.api_key = os.environ.get('OPENAI_API_KEY') openai.api_key = key
[]
2024-01-10
q734550709/SQLBot
src~analysis~sql_observation.py
import openai from src.get_completion_from_messages import get_completion_from_messages #详细解释 def sql_explain(user_input, model="gpt-3.5-turbo-16k", temperature=0, max_tokens=3000): system_message = """ You are a helpful assistant capable of aiding users in understanding SQL syntax. Here's how you can assist users in comprehending SQL content and provide help: 1. Begin by translating the SQL code input by the user into simple, concise natural language. 2. Ask the user if they understand the SQL statement, encouraging them to continue asking questions. 3. Once the user starts asking questions, inquire about their understanding level of SQL syntax: beginner, novice, intermediate, or advanced. -- If the user is a beginner, shift the conversation towards a basic explanation of SQL syntax. -- If the user is a novice, guide them to ask more SQL-related questions and provide clear and patient answers. -- If the user is at an intermediate or advanced level, engage in a Socratic dialogue to help them clarify their difficulties in understanding SQL. Always remember, you are an assistant for interpreting SQL syntax, and there's no need to answer other unrelated questions. Be concise and constructive with feedback. """ messages = [ {'role':'system', 'content': system_message}, {'role':'user', 'content': user_input}, ] response = get_completion_from_messages(messages, model, temperature, max_tokens) return response #自然语言解释 def sql_translate(user_input, model="gpt-3.5-turbo-16k", temperature=0, max_tokens=3000): system_message = """ You are a helpful assistant capable of aiding users in understanding SQL syntax. Here's how you can assist users in comprehending SQL content and provide help: Translating the SQL code input by the user into simple, concise natural language. Always remember, you are an assistant for interpreting SQL syntax, and there's no need to answer other unrelated questions. Be concise and constructive with feedback. """ messages = [ {'role':'system', 'content': system_message}, {'role':'user', 'content': user_input}, ] response = get_completion_from_messages(messages, model, temperature, max_tokens) return response #模型选择函数 def function_select(input_text, model, temperature, max_token, flag = False): if flag: response = sql_explain(input_text,model,temperature,max_token) return response else: response = sql_translate(input_text,model,temperature,max_token) return response
[]
2024-01-10
q734550709/SQLBot
src~study~answer_evaluation.py
import os import openai import pandas as pd import random # 构建leetcode题目文件的路径 leetcode_path = os.path.join("data", "leetcode_questions.xlsx") #读取leetcode题目 leetcode_df = pd.read_excel(leetcode_path) #SQL产生函数 def answer_evaluation( user_input, all_messages, question, answer, model="gpt-3.5-turbo-16k", temperature=0, max_tokens=3000, ): system_message = f""" 根据下面的问题(使用<>符号分隔),结合答案(使用####分割符分隔)判断用户的回答是否正确,并给出改进建议 问题如下:<{question}> 答案如下:####{answer}#### 请使用中文回复 """ history_prompt = [] for turn in all_messages: user_message, bot_message = turn history_prompt += [ {'role': 'user', 'content':user_message}, {'role': 'assistant', 'content': bot_message} ] messages = [ {'role':'system', 'content': system_message}] \ + history_prompt + \ [{'role':'user', 'content': user_input}, ] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, ) final_response = response.choices[0].message["content"] all_messages+= [(user_input,final_response)] return "", all_messages # 返回最终回复和所有消息 #根据难度随机选择题目 def question_choice(difficulty = '简单'): simple_records = leetcode_df[leetcode_df['难度'] == difficulty] random_simple_record = simple_records.sample(n=1, random_state=random.seed()) title = random_simple_record['题目标题'].values[0] question_url = random_simple_record['题目地址'].values[0] question = random_simple_record['题目'].values[0] example = random_simple_record['示例'].values[0] answer = random_simple_record['答案'].values[0] answer_explain = random_simple_record['可参考解析'].values[0] #用于生成答案链接 title_url = f"""### 本题链接:[{title}]({question_url})""" answer_explain = f"""### 答案解析见:[{title}]({answer_explain})""" return title_url, question, example, answer, answer_explain
[ "\n 根据下面的问题(使用<>符号分隔),结合答案(使用####分割符分隔)判断用户的回答是否正确,并给出改进建议\n 问题如下:<PLACEHOLDER>\n 答案如下:####PLACEHOLDER####\n\n 请使用中文回复\n ", "[\n {'role':'system', 'content': system_message}] \\\n + history_prompt + \\\n [{'role':'user', 'content': user_input},\n ]", "[]" ]
2024-01-10
q734550709/SQLBot
src~get_completion_from_messages.py
import openai #对话函数 def get_completion_from_messages( messages, model="gpt-3.5-turbo-16k", temperature=0, max_tokens=3000): response = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, ) return response.choices[0].message["content"]
[]
2024-01-10
karpator/openai_threading_async_error
non_stucking_example.py
import asyncio from openai import AsyncAzureOpenAI import threading from typing import ( Callable, Any, ) class AsyncThreadingHelper: def __init__(self, async_function: Callable): self.__async_function = async_function def __process_callback(self, *args: Any) -> None: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop.run_until_complete( self.__async_function(*args) ) loop.close() def run_async_task_on_thread(self, args: Any) -> None: thread = threading.Thread( target=self.__process_callback, args=args ) thread.start() class OpenAIAdapter: def __init__(self): self.__openai_client = AsyncAzureOpenAI( azure_endpoint=" AZURE ENDPOINT ", api_key=" API KEY ", max_retries=1, api_version="2023-05-15", timeout=10 ) async def get_chat_response(self, text: str = "How are you?"): _ = await self.__openai_client.chat.completions.create( messages=[{'role': 'system', 'content': "Generate a response for the user's message."},{'role': 'user', 'content': text}], model="gpt-4", max_tokens=800, presence_penalty=1.05, temperature=0, top_p=0.52, stream=False, timeout=10 ) async def some_process_on_thread_a(openai_adapter: OpenAIAdapter): print("A: Start some process on thread A") await openai_adapter.get_chat_response() print("A: Finish some process on thread A") async def some_process_on_thread_b(openai_adapter: OpenAIAdapter): print("B: Start some process on different thread") await openai_adapter.get_chat_response() print("B: Finish some process on different thread") async def main(): # Create OpenAI object on thread A openai_adapter_thread_a = OpenAIAdapter() openai_adapter_thread_b = OpenAIAdapter() for i in range(10): print(f"Start iteration {i}") # Let's call an OpenAI call on thread B if i == 5: async_threading_helper = AsyncThreadingHelper( async_function=some_process_on_thread_b ) async_threading_helper.run_async_task_on_thread( args=( openai_adapter_thread_b, ) ) # Call OpenAI on thread A await some_process_on_thread_a(openai_adapter_thread_a) if __name__ == '__main__': asyncio.run(main())
[ "Generate a response for the user's message." ]
2024-01-10
karpator/openai_threading_async_error
stucking_example.py
import asyncio from openai import AsyncAzureOpenAI import threading from typing import ( Callable, Any, ) """ This class is used to trigger the OpenAI API stuck. """ def singleton(class_: Any) -> Any: """ This is the singleton pattern, which is a software design pattern that restricts the instantiation of a class to one single instance. This is useful when exactly one object is needed to coordinate actions across the system. :param class_: any class type :return: none """ __instances = {} def get_instance(*args: Any, **kwargs: Any) -> Any: """ This function checks if there are any instances registered in the dictionary if not it will return a new instances of a class. :rtype Any :param args: non-keyword arguments :param kwargs: keyword arguments :return: """ if class_ not in __instances: __instances[class_] = class_(*args, **kwargs) return __instances[class_] return get_instance class AsyncThreadingHelper: def __init__(self, async_function: Callable): self.__async_function = async_function def __process_callback(self, *args: Any) -> None: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop.run_until_complete( self.__async_function(*args) ) loop.close() def run_async_task_on_thread(self, args: Any) -> None: thread = threading.Thread( target=self.__process_callback, args=args ) thread.start() @singleton class OpenAIAdapter: def __init__(self): self.__openai_client = AsyncAzureOpenAI( azure_endpoint=" AZURE ENDPOINT ", api_key=" API KEY ", max_retries=1, api_version="2023-05-15", timeout=10 ) async def get_chat_response(self, text: str = "How are you?"): _ = await self.__openai_client.chat.completions.create( messages=[{'role': 'system', 'content': "Generate a response for the user's message."},{'role': 'user', 'content': text}], model="gpt-4", max_tokens=800, presence_penalty=1.05, temperature=0, top_p=0.52, stream=False, timeout=10 ) async def some_process_on_thread_a(openai_adapter: OpenAIAdapter): print("A: Start some process on thread A") await openai_adapter.get_chat_response() print("A: Finish some process on thread A") async def some_process_on_thread_b(openai_adapter: OpenAIAdapter): print("B: Start some process on different thread") await openai_adapter.get_chat_response() print("B: Finish some process on different thread") async def main(): # Create OpenAI object on thread A openai_adapter = OpenAIAdapter() for i in range(10): print(f"Start iteration {i}") # Let's call an OpenAI call on thread B if i == 5: async_threading_helper = AsyncThreadingHelper( async_function=some_process_on_thread_b ) async_threading_helper.run_async_task_on_thread( args=( openai_adapter, ) ) # Call OpenAI on thread A await some_process_on_thread_a(openai_adapter) if __name__ == '__main__': asyncio.run(main())
[ "Generate a response for the user's message." ]
2024-01-10
lanceshih/btgym
btgym~algorithms~aac.py
############################################################################### # # Copyright (C) 2017 Andrew Muzikin # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### from __future__ import print_function import sys import numpy as np import tensorflow as tf from logbook import Logger, StreamHandler from btgym.algorithms.memory import Memory from btgym.algorithms.rollout import make_data_getter from btgym.algorithms.runner import BaseEnvRunnerFn, RunnerThread from btgym.algorithms.math_utils import log_uniform from btgym.algorithms.nn.losses import value_fn_loss_def, rp_loss_def, pc_loss_def, aac_loss_def, ppo_loss_def from btgym.algorithms.utils import feed_dict_rnn_context, feed_dict_from_nested, batch_stack from btgym.spaces import DictSpace as ObSpace # now can simply be gym.Dict class BaseAAC(object): """ Base Asynchronous Advantage Actor Critic algorithm framework class with auxiliary control tasks and option to run several instances of environment for every worker in vectorized fashion, PAAC-like. Can be configured to run with different losses and policies. Auxiliary tasks implementation borrows heavily from Kosuke Miyoshi code, under Apache License 2.0: https://miyosuda.github.io/ https://github.com/miyosuda/unreal Original A3C code comes from OpenAI repository under MIT licence: https://github.com/openai/universe-starter-agent Papers: https://arxiv.org/abs/1602.01783 https://arxiv.org/abs/1611.05397 """ def __init__(self, env, task, policy_config, log_level, _log_name='AAC', on_policy_loss=aac_loss_def, off_policy_loss=aac_loss_def, vr_loss=value_fn_loss_def, rp_loss=rp_loss_def, pc_loss=pc_loss_def, runner_fn_ref=BaseEnvRunnerFn, random_seed=None, model_gamma=0.99, # decay model_gae_lambda=1.00, # GAE lambda model_beta=0.01, # entropy regularizer opt_max_env_steps=10 ** 7, opt_decay_steps=None, opt_end_learn_rate=None, opt_learn_rate=1e-4, opt_decay=0.99, opt_momentum=0.0, opt_epsilon=1e-8, rollout_length=20, time_flat=False, episode_train_test_cycle=(1,0), episode_summary_freq=2, # every i`th environment episode env_render_freq=10, # every i`th environment episode model_summary_freq=100, # every i`th algorithm iteration test_mode=False, # gym_atari test mode replay_memory_size=2000, replay_batch_size=None, replay_rollout_length=None, use_off_policy_aac=False, use_reward_prediction=False, use_pixel_control=False, use_value_replay=False, rp_lambda=1.0, # aux tasks loss weights pc_lambda=1.0, vr_lambda=1.0, off_aac_lambda=1, gamma_pc=0.9, # pixel change gamma-decay - not used rp_reward_threshold=0.1, # r.prediction: abs.rewards values bigger than this are considered non-zero rp_sequence_size=3, # r.prediction sampling clip_epsilon=0.1, num_epochs=1, pi_prime_update_period=1, _use_target_policy=False, # target policy tracking behavioral one with delay _aux_render_modes=None, **kwargs): """ Args: env: environment instance or list of instances task: int, parent worker id policy_config: policy estimator class and configuration dictionary log_level: int, logbook.level _log_name: str, class-wide logger name, internal on_policy_loss: callable returning tensor holding on_policy training loss graph and summaries off_policy_loss: callable returning tensor holding off_policy training loss graph and summaries vr_loss: callable returning tensor holding value replay loss graph and summaries rp_loss: callable returning tensor holding reward prediction loss graph and summaries pc_loss: callable returning tensor holding pixel_control loss graph and summaries runner_fn_ref: callable defining environment runner execution logic random_seed: int or None model_gamma: scalar, gamma discount factor model_gae_lambda: scalar, GAE lambda model_beta: entropy regularization beta, scalar or [high_bound, low_bound] for log_uniform. opt_max_env_steps: int, total number of environment steps to run training on. opt_decay_steps: int, learn ratio decay steps, in number of environment steps. opt_end_learn_rate: scalar, final learn rate opt_learn_rate: start learn rate, scalar or [high_bound, low_bound] for log_uniform distr. opt_decay: scalar, optimizer decay, if apll. opt_momentum: scalar, optimizer momentum, if apll. opt_epsilon: scalar, optimizer epsilon rollout_length: int, on-policy rollout length time_flat: bool, flatten rnn time-steps in rollouts while training - see `Notes` below episode_train_test_cycle: tuple or list as (train_number, test_number), def=(1,0): enables infinite loop such as: run `train_number` of train data episodes, than `test_number` of test data episodes, repeat. Should be consistent with provided dataset parameters (test data should exist if `test_number > 0`) episode_summary_freq: int, write episode summary for every i'th episode env_render_freq: int, write environment rendering summary for every i'th train step model_summary_freq: int, write model summary for every i'th train step test_mode: bool, True: Atari, False: BTGym replay_memory_size: int, in number of experiences replay_batch_size: int, mini-batch size for off-policy training, def = 1 replay_rollout_length: int off-policy rollout length by def. equals on_policy_rollout_length use_off_policy_aac: bool, use full AAC off-policy loss instead of Value-replay use_reward_prediction: bool, use aux. off-policy reward prediction task use_pixel_control: bool, use aux. off-policy pixel control task use_value_replay: bool, use aux. off-policy value replay task (not used if use_off_policy_aac=True) rp_lambda: reward prediction loss weight, scalar or [high, low] for log_uniform distr. pc_lambda: pixel control loss weight, scalar or [high, low] for log_uniform distr. vr_lambda: value replay loss weight, scalar or [high, low] for log_uniform distr. off_aac_lambda: off-policy AAC loss weight, scalar or [high, low] for log_uniform distr. gamma_pc: NOT USED rp_reward_threshold: scalar, reward prediction classification threshold, above which reward is 'non-zero' rp_sequence_size: int, reward prediction sample size, in number of experiences clip_epsilon: scalar, PPO: surrogate L^clip epsilon num_epochs: int, num. of SGD runs for every train step, val. > 1 should be used with caution. pi_prime_update_period: int, PPO: pi to pi_old update period in number of train steps, def: 1 _use_target_policy: bool, PPO: use target policy (aka pi_old), delayed by `pi_prime_update_period` delay _aux_render_modes: additional visualisationas to include in per-episode rendering summary, internal Note: - On `time_flat` arg: There are two alternatives to run RNN part of policy estimator: a. Feed initial RNN state for every experience frame in rollout (those are stored anyway if we want random memory repaly sampling) and do single time-step RNN advance for all experiences in a batch; this is when time_flat=True; b. Reshape incoming batch after convolution part of network in time-wise fashion for every rollout in a batch i.e. batch_size=number_of_rollouts and rnn_timesteps=max_rollout_length. In this case we need to feed initial rnn_states for rollouts only. There is some little extra work to pad rollouts to max_time_size and feed true rollout lengths to rnn. Thus, when time_flat=False, we unroll RNN in specified number of time-steps for every rollout. Both options has pros and cons: Unrolling dynamic RNN is computationally more expensive but gives clearly faster convergence, [possibly] due to the fact that RNN states for 2nd, 3rd, ... frames of rollouts are computed using updated policy estimator, which is supposed to be closer to optimal one. When time_flattened, every time-step uses RNN states computed when rollout was collected (i.e. by behavioral policy estimator with older parameters). Nevertheless, time_flatting can be interesting because one can safely shuffle training batch or mix on-policy and off-policy data in single mini-batch, ensuring iid property and allowing, say, proper batch normalisation (this has yet to be tested). """ # Logging: self.log_level = log_level self.log_name = _log_name self.task = task StreamHandler(sys.stdout).push_application() self.log = Logger('{}_{}'.format(self.log_name, self.task), level=self.log_level) # Get direct traceback: try: self.random_seed = random_seed if self.random_seed is not None: np.random.seed(self.random_seed) tf.set_random_seed(self.random_seed) self.log.debug('rnd_seed:{}, log_u_sample_(0,1]x5: {}'. format(random_seed, log_uniform([1e-10,1], 5))) if kwargs != {}: self.log.warning('Unexpected kwargs found: {}, ignored.'.format(kwargs)) self.env_list = env try: assert isinstance(self.env_list, list) except AssertionError: self.env_list = [env] ref_env = self.env_list[0] # reference instance to get obs shapes etc. try: assert isinstance(ref_env.observation_space, ObSpace) except AssertionError: self.log.exception( 'expected environment observation space of type {}, got: {}'.\ format(ObSpace, type(ref_env.observation_space)) ) raise AssertionError self.policy_class = policy_config['class_ref'] self.policy_kwargs = policy_config['kwargs'] # Losses: self.on_policy_loss = on_policy_loss self.off_policy_loss = off_policy_loss self.vr_loss = vr_loss self.rp_loss = rp_loss self.pc_loss = pc_loss # Environmnet runner runtime function: self.runner_fn_ref = runner_fn_ref # AAC specific: self.model_gamma = model_gamma # decay self.model_gae_lambda = model_gae_lambda # general advantage estimator lambda self.model_beta = log_uniform(model_beta, 1) # entropy reg. self.time_flat = time_flat # Optimizer self.opt_max_env_steps = opt_max_env_steps self.opt_learn_rate = log_uniform(opt_learn_rate, 1) if opt_end_learn_rate is None: self.opt_end_learn_rate = self.opt_learn_rate else: self.opt_end_learn_rate = opt_end_learn_rate if opt_decay_steps is None: self.opt_decay_steps = self.opt_max_env_steps else: self.opt_decay_steps = opt_decay_steps self.opt_decay = opt_decay self.opt_epsilon = opt_epsilon self.opt_momentum = opt_momentum self.rollout_length = rollout_length # Data sampling control: self.num_train_episodes = episode_train_test_cycle[0] self.num_test_episodes = episode_train_test_cycle[-1] try: assert self.num_train_episodes + self.num_test_episodes > 0 and \ self.num_train_episodes >= 0 and \ self.num_test_episodes >= 0 except AssertionError: self.log.exception( 'Train/test episode cycle values could not be both zeroes or negative, got: train={}, test={}'.\ format(self.num_train_episodes, self.num_test_episodes) ) raise AssertionError self.current_train_episode = 0 self.current_test_episode = 0 # Summaries : self.episode_summary_freq = episode_summary_freq self.env_render_freq = env_render_freq self.model_summary_freq = model_summary_freq # If True - use ATARI gym env.: self.test_mode = test_mode # UNREAL/AUX and Off-policy specific: self.off_aac_lambda = log_uniform(off_aac_lambda, 1) self.rp_lambda = log_uniform(rp_lambda, 1) self.pc_lambda = log_uniform(pc_lambda, 1) self.vr_lambda = log_uniform(vr_lambda, 1) self.gamma_pc = gamma_pc self.replay_memory_size = replay_memory_size if replay_rollout_length is not None: self.replay_rollout_length = replay_rollout_length else: self.replay_rollout_length = rollout_length # by default off-rollout equals on-policy one self.rp_sequence_size = rp_sequence_size self.rp_reward_threshold = rp_reward_threshold if replay_batch_size is not None: self.replay_batch_size = replay_batch_size else: self.replay_batch_size = len(self.env_list) # by default off-batch equals on-policy one # PPO related: self.clip_epsilon = clip_epsilon self.num_epochs = num_epochs self.pi_prime_update_period = pi_prime_update_period # On/off switchers for off-policy training and auxiliary tasks: self.use_off_policy_aac = use_off_policy_aac self.use_reward_prediction = use_reward_prediction self.use_pixel_control = use_pixel_control if use_off_policy_aac: self.use_value_replay = False # v-replay is redundant in this case else: self.use_value_replay = use_value_replay self.use_any_aux_tasks = use_value_replay or use_pixel_control or use_reward_prediction self.use_memory = self.use_any_aux_tasks or self.use_off_policy_aac self.use_target_policy = _use_target_policy self.log.notice('learn_rate: {:1.6f}, entropy_beta: {:1.6f}'.format(self.opt_learn_rate, self.model_beta)) if self.use_off_policy_aac: self.log.notice('off_aac_lambda: {:1.6f}'.format(self.off_aac_lambda,)) if self.use_any_aux_tasks: self.log.notice('vr_lambda: {:1.6f}, pc_lambda: {:1.6f}, rp_lambda: {:1.6f}'. format(self.vr_lambda, self.pc_lambda, self.rp_lambda)) if _aux_render_modes is not None: self.aux_render_modes = list(_aux_render_modes) else: self.aux_render_modes = [] #self.log.notice( # 'AAC_{}: max_steps: {}, decay_steps: {}, end_rate: {:1.6f},'. # format(self.task, self.opt_max_env_steps, self.opt_decay_steps, self.opt_end_learn_rate)) self.worker_device = "/job:worker/task:{}/cpu:0".format(task) # Update policy configuration self.policy_kwargs.update( { 'ob_space': ref_env.observation_space.shape, 'ac_space': ref_env.action_space.n, 'rp_sequence_size': self.rp_sequence_size, 'aux_estimate': self.use_any_aux_tasks, } ) # Start building graphs: self.log.debug('started building graphs') # PS: with tf.device(tf.train.replica_device_setter(1, worker_device=self.worker_device)): self.network = self._make_policy('global') # Worker: with tf.device(self.worker_device): self.local_network = pi = self._make_policy('local') if self.use_target_policy: self.local_network_prime = pi_prime = self._make_policy('local_prime') else: self.local_network_prime = pi_prime = self._make_dummy_policy() # Meant for Batch-norm layers: pi.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='.*local.*') self.log.debug('local_network_upd_ops_collection:\n{}'.format(pi.update_ops)) self.log.debug('\nlocal_network_var_list_to_save:') for v in pi.var_list: self.log.debug('{}: {}'.format(v.name, v.get_shape())) # Learning rate annealing: self.learn_rate_decayed = tf.train.polynomial_decay( self.opt_learn_rate, self.global_step + 1, self.opt_decay_steps, self.opt_end_learn_rate, power=1, cycle=False, ) clip_epsilon = tf.cast(self.clip_epsilon * self.learn_rate_decayed / self.opt_learn_rate, tf.float32) # Freeze training if train_phase is False: train_learn_rate = self.learn_rate_decayed * tf.cast(pi.train_phase, tf.float64) self.log.debug('learn rate ok') # On-policy AAC loss definition: self.on_pi_act_target = tf.placeholder( tf.float32, [None, ref_env.action_space.n], name="on_policy_action_pl" ) self.on_pi_adv_target = tf.placeholder(tf.float32, [None], name="on_policy_advantage_pl") self.on_pi_r_target = tf.placeholder(tf.float32, [None], name="on_policy_return_pl") on_pi_loss, on_pi_summaries = self.on_policy_loss( act_target=self.on_pi_act_target, adv_target=self.on_pi_adv_target, r_target=self.on_pi_r_target, pi_logits=pi.on_logits, pi_vf=pi.on_vf, pi_prime_logits=pi_prime.on_logits, entropy_beta=self.model_beta, epsilon=clip_epsilon, name='on_policy', verbose=True ) # Start accumulating total loss: self.loss = on_pi_loss model_summaries = on_pi_summaries # Off-policy losses: self.off_pi_act_target = tf.placeholder( tf.float32, [None, ref_env.action_space.n], name="off_policy_action_pl") self.off_pi_adv_target = tf.placeholder(tf.float32, [None], name="off_policy_advantage_pl") self.off_pi_r_target = tf.placeholder(tf.float32, [None], name="off_policy_return_pl") if self.use_off_policy_aac: # Off-policy AAC loss graph mirrors on-policy: off_pi_loss, off_pi_summaries = self.off_policy_loss( act_target=self.off_pi_act_target, adv_target=self.off_pi_adv_target, r_target=self.off_pi_r_target, pi_logits=pi.off_logits, pi_vf=pi.off_vf, pi_prime_logits=pi_prime.off_logits, entropy_beta=self.model_beta, epsilon=clip_epsilon, name='off_policy', verbose=False ) self.loss = self.loss + self.off_aac_lambda * off_pi_loss model_summaries += off_pi_summaries if self.use_pixel_control: # Pixel control loss: self.pc_action = tf.placeholder(tf.float32, [None, ref_env.action_space.n], name="pc_action") self.pc_target = tf.placeholder(tf.float32, [None, None, None], name="pc_target") pc_loss, pc_summaries = self.pc_loss( actions=self.pc_action, targets=self.pc_target, pi_pc_q=pi.pc_q, name='off_policy', verbose=True ) self.loss = self.loss + self.pc_lambda * pc_loss # Add specific summary: model_summaries += pc_summaries if self.use_value_replay: # Value function replay loss: self.vr_target = tf.placeholder(tf.float32, [None], name="vr_target") vr_loss, vr_summaries = self.vr_loss( r_target=self.vr_target, pi_vf=pi.vr_value, name='off_policy', verbose=True ) self.loss = self.loss + self.vr_lambda * vr_loss model_summaries += vr_summaries if self.use_reward_prediction: # Reward prediction loss: self.rp_target = tf.placeholder(tf.float32, [None, 3], name="rp_target") rp_loss, rp_summaries = self.rp_loss( rp_targets=self.rp_target, pi_rp_logits=pi.rp_logits, name='off_policy', verbose=True ) self.loss = self.loss + self.rp_lambda * rp_loss model_summaries += rp_summaries #grads = tf.gradients(self.loss, pi.var_list) # Clipped gradients: self.grads, _ = tf.clip_by_global_norm( tf.gradients(self.loss, pi.var_list), 40.0 ) # Copy weights from the parameter server to the local model self.sync = self.sync_pi = tf.group(*[v1.assign(v2) for v1, v2 in zip(pi.var_list, self.network.var_list)]) if self.use_target_policy: # Copy weights from new policy model to target one: self.sync_pi_prime = tf.group(*[v1.assign(v2) for v1, v2 in zip(pi_prime.var_list, pi.var_list)]) grads_and_vars = list(zip(self.grads, self.network.var_list)) # Set global_step incremention equal to observation space batch size: obs_space_keys = list(pi.on_state_in.keys()) assert 'external' in obs_space_keys,\ 'Expected observation space to contain `external` mode, got: {}'.format(obs_space_keys) self.inc_step = self.global_step.assign_add(tf.shape(pi.on_state_in['external'])[0]) # Each worker gets a different set of adam optimizer parameters: self.optimizer = tf.train.AdamOptimizer(train_learn_rate, epsilon=1e-5) #self.optimizer = tf.train.RMSPropOptimizer( # learning_rate=train_learn_rate, # decay=self.opt_decay, # momentum=self.opt_momentum, # epsilon=self.opt_epsilon, #) #self.train_op = tf.group(*pi.update_ops, opt.apply_gradients(grads_and_vars), self.inc_step) #self.train_op = tf.group(opt.apply_gradients(grads_and_vars), self.inc_step) self.train_op = self.optimizer.apply_gradients(grads_and_vars) # Add model-wide statistics: with tf.name_scope('model'): model_summaries += [ tf.summary.scalar("grad_global_norm", tf.global_norm(self.grads)), tf.summary.scalar("var_global_norm", tf.global_norm(pi.var_list)), tf.summary.scalar("learn_rate", train_learn_rate), #tf.summary.scalar("learn_rate", self.learn_rate_decayed), # cause actual rate is a jaggy due to test freezes tf.summary.scalar("total_loss", self.loss), ] self.summary_writer = None self.local_steps = 0 self.log.debug('train op defined') # Model stat. summary: self.model_summary_op = tf.summary.merge(model_summaries, name='model_summary') # Episode-related summaries: self.ep_summary = dict( # Summary placeholders render_atari=tf.placeholder(tf.uint8, [None, None, None, 1]), total_r=tf.placeholder(tf.float32, ), cpu_time=tf.placeholder(tf.float32, ), final_value=tf.placeholder(tf.float32, ), steps=tf.placeholder(tf.int32, ), ) if self.test_mode: # For Atari: self.ep_summary['render_op'] = tf.summary.image("model/state", self.ep_summary['render_atari']) else: # BTGym rendering: self.ep_summary.update( { mode: tf.placeholder(tf.uint8, [None, None, None, None], name=mode + '_pl') for mode in self.env_list[0].render_modes + self.aux_render_modes } ) self.ep_summary['render_op'] = tf.summary.merge( [tf.summary.image(mode, self.ep_summary[mode]) for mode in self.env_list[0].render_modes + self.aux_render_modes] ) # Episode stat. summary: self.ep_summary['btgym_stat_op'] = tf.summary.merge( [ tf.summary.scalar('episode_train/total_reward', self.ep_summary['total_r']), tf.summary.scalar('episode_train/cpu_time_sec', self.ep_summary['cpu_time']), tf.summary.scalar('episode_train/final_value', self.ep_summary['final_value']), tf.summary.scalar('episode_train/env_steps', self.ep_summary['steps']) ], name='episode_train_btgym' ) # Test episode stat. summary: self.ep_summary['test_btgym_stat_op'] = tf.summary.merge( [ tf.summary.scalar('episode_test/total_reward', self.ep_summary['total_r']), tf.summary.scalar('episode_test/final_value', self.ep_summary['final_value']), tf.summary.scalar('episode_test/env_steps', self.ep_summary['steps']) ], name='episode_test_btgym' ) self.ep_summary['atari_stat_op'] = tf.summary.merge( [ tf.summary.scalar('episode/total_reward', self.ep_summary['total_r']), tf.summary.scalar('episode/steps', self.ep_summary['steps']) ], name='episode_atari' ) # Replay memory_config: if self.use_memory: memory_config = dict( class_ref=Memory, kwargs=dict( history_size=self.replay_memory_size, max_sample_size=self.replay_rollout_length, priority_sample_size=self.rp_sequence_size, reward_threshold=self.rp_reward_threshold, use_priority_sampling=self.use_reward_prediction, task=self.task, log_level=self.log_level, ) ) else: memory_config = None # Make runners: # `rollout_length` represents the number of "local steps": the number of time steps # we run the policy before we get full rollout, run train step and update the parameters. self.runners = [] task = 0 # Runners will have [worker_task][env_count] id's for env in self.env_list: self.runners.append( RunnerThread( env=env, policy=pi, runner_fn_ref=self.runner_fn_ref, task=self.task + task, rollout_length=self.rollout_length, # ~20 episode_summary_freq=self.episode_summary_freq, env_render_freq=self.env_render_freq, test=self.test_mode, ep_summary=self.ep_summary, memory_config=memory_config, log_level=log_level, ) ) task += 0.01 # Make rollouts provider[s]: self.data_getter = [make_data_getter(runner.queue) for runner in self.runners] self.log.debug('trainer.init() done') except: msg = 'Base class __init__() exception occurred.' +\ '\n\nPress `Ctrl-C` or jupyter:[Kernel]->[Interrupt] for clean exit.\n' self.log.exception(msg) raise RuntimeError(msg) def _get_data(self): """ Collect rollouts from every environmnet. Returns: dictionary of lists of data streams collected from every runner """ # TODO: nowait? data_streams = [get_it() for get_it in self.data_getter] return {key: [stream[key] for stream in data_streams] for key in data_streams[0].keys()} def get_sample_config(self, _new_trial=False): """ Returns environment configuration parameters for next episode to sample. By default is simple stateful iterator, works correctly with `DTGymDataset` data class, repeating cycle: - sample `num_train_episodes` from train data, - sample `num_test_episodes` from test data. Convention: supposed to override dummy method of local policy instance, see inside ._make_policy() method Returns: configuration dictionary of type `btgym.datafeed.base.EnvResetConfig` """ # sess = tf.get_default_session() if self.current_train_episode < self.num_train_episodes: episode_type = 0 # train self.current_train_episode += 1 self.log.debug( 'c_1, c_train={}, c_test={}, type={}'. format(self.current_train_episode, self.current_test_episode, episode_type) ) else: if self.current_test_episode < self.num_test_episodes: episode_type = 1 # test self.current_test_episode += 1 self.log.debug( 'c_2, c_train={}, c_test={}, type={}'. format(self.current_train_episode, self.current_test_episode, episode_type) ) else: # cycle end, reset and start new (rec. depth 1) self.current_train_episode = 0 self.current_test_episode = 0 self.log.debug( 'c_3, c_train={}, c_test={}'. format(self.current_train_episode, self.current_test_episode) ) return self.get_sample_config(_new_trial=True) # Compose btgym.datafeed.base.EnvResetConfig-consistent dict: sample_config = dict( episode_config=dict( get_new=True, sample_type=episode_type, b_alpha=1.0, b_beta=1.0 ), trial_config=dict( get_new=_new_trial, sample_type=episode_type, b_alpha=1.0, b_beta=1.0 ) ) return sample_config def _make_policy(self, scope): """ Configures and instantiates policy network and ops. Note: `global` name_scope network should be defined first. Args: scope: name scope Returns: policy instance """ with tf.variable_scope(scope): # Make policy instance: network = self.policy_class(**self.policy_kwargs) if scope not in 'global': try: # For locals those should be already defined: assert hasattr(self, 'global_step') and \ hasattr(self, 'global_episode') and \ hasattr(self, 'inc_episode') # Add attrs to local: network.global_step = self.global_step network.global_episode = self.global_episode network.inc_episode= self.inc_episode # Override: network.get_sample_config = self.get_sample_config except AssertionError: self.log.exception( '`global` name_scope network should be defined before any `local` ones.'. format(self.task) ) raise RuntimeError else: # Set counters: self.global_step = tf.get_variable( "global_step", [], tf.int32, initializer=tf.constant_initializer( 0, dtype=tf.int32 ), trainable=False ) self.global_episode = tf.get_variable( "global_episode", [], tf.int32, initializer=tf.constant_initializer( 0, dtype=tf.int32 ), trainable=False ) # Increment episode count: self.inc_episode = self.global_episode.assign_add(1) return network def _make_dummy_policy(self): class _Dummy(object): """ Policy plug when target network is not used. """ def __init__(self): self.on_state_in = None self.off_state_in = None self.on_lstm_state_pl_flatten = None self.off_lstm_state_pl_flatten = None self.on_a_r_in = None self.off_a_r_in = None self.on_logits = None self.off_logits = None self.on_vf = None self.off_vf = None self.on_batch_size = None self.on_time_length = None self.off_batch_size = None self.off_time_length = None return _Dummy() def start(self, sess, summary_writer, **kwargs): """ Executes all initializing operations, starts environment runner[s]. Supposed to be called by parent worker just before training loop starts. Args: sess: tf session object. kwargs: not used by default. """ try: # Copy weights from global to local: sess.run(self.sync) # Start thread_runners: self._start_runners(sess, summary_writer) except: msg = 'start() exception occurred' + \ '\n\nPress `Ctrl-C` or jupyter:[Kernel]->[Interrupt] for clean exit.\n' self.log.exception(msg) raise RuntimeError(msg) def _start_runners(self, sess, summary_writer): """ Args: sess: summary_writer: Returns: """ for runner in self.runners: runner.start_runner(sess, summary_writer) # starting runner threads self.summary_writer = summary_writer def _get_rp_feeder(self, batch): """ Returns feed dictionary for `reward prediction` loss estimation subgraph. """ feeder = feed_dict_from_nested(self.local_network.rp_state_in, batch['state']) feeder.update( { self.rp_target: batch['rp_target'], self.local_network.rp_batch_size: batch['batch_size'], } ) return feeder def _get_vr_feeder(self, batch): """ Returns feed dictionary for `value replay` loss estimation subgraph. """ if not self.use_off_policy_aac: # use single pass of network on same off-policy batch feeder = feed_dict_from_nested(self.local_network.vr_state_in, batch['state']) feeder.update(feed_dict_rnn_context(self.local_network.vr_lstm_state_pl_flatten, batch['context'])) feeder.update( { self.local_network.vr_batch_size: batch['batch_size'], self.local_network.vr_time_length: batch['time_steps'], self.local_network.vr_a_r_in: batch['last_action_reward'], self.vr_target: batch['r'] } ) else: feeder = {self.vr_target: batch['r']} # redundant actually :) return feeder def _get_pc_feeder(self, batch): """ Returns feed dictionary for `pixel control` loss estimation subgraph. """ if not self.use_off_policy_aac: # use single pass of network on same off-policy batch feeder = feed_dict_from_nested(self.local_network.pc_state_in, batch['state']) feeder.update( feed_dict_rnn_context(self.local_network.pc_lstm_state_pl_flatten, batch['context'])) feeder.update( { self.local_network.pc_a_r_in: batch['last_action_reward'], self.pc_action: batch['action'], self.pc_target: batch['pixel_change'] } ) else: feeder = {self.pc_action: batch['action'], self.pc_target: batch['pixel_change']} return feeder def process_data(self, sess, data, is_train): """ Processes data, composes train step feed dictionary. Args: sess: tf session obj. data (dict): data dictionary is_train (bool): is data provided are train or test Returns: feed_dict (dict): train step feed dictionary """ # Process minibatch for on-policy train step: on_policy_rollouts = data['on_policy'] on_policy_batch = batch_stack( [ r.process( gamma=self.model_gamma, gae_lambda=self.model_gae_lambda, size=self.rollout_length, time_flat=self.time_flat, ) for r in on_policy_rollouts ] ) # Feeder for on-policy AAC loss estimation graph: feed_dict = feed_dict_from_nested(self.local_network.on_state_in, on_policy_batch['state']) feed_dict.update( feed_dict_rnn_context(self.local_network.on_lstm_state_pl_flatten, on_policy_batch['context']) ) feed_dict.update( { self.local_network.on_a_r_in: on_policy_batch['last_action_reward'], self.local_network.on_batch_size: on_policy_batch['batch_size'], self.local_network.on_time_length: on_policy_batch['time_steps'], self.on_pi_act_target: on_policy_batch['action'], self.on_pi_adv_target: on_policy_batch['advantage'], self.on_pi_r_target: on_policy_batch['r'], self.local_network.train_phase: is_train, # Zeroes learn rate, [+ batch_norm] } ) if self.use_target_policy: feed_dict.update( feed_dict_from_nested(self.local_network_prime.on_state_in, on_policy_batch['state']) ) feed_dict.update( feed_dict_rnn_context(self.local_network_prime.on_lstm_state_pl_flatten, on_policy_batch['context']) ) feed_dict.update( { self.local_network_prime.on_batch_size: on_policy_batch['batch_size'], self.local_network_prime.on_time_length: on_policy_batch['time_steps'], self.local_network_prime.on_a_r_in: on_policy_batch['last_action_reward'] } ) if self.use_memory: # Process rollouts from replay memory: off_policy_rollouts = data['off_policy'] off_policy_batch = batch_stack( [ r.process( gamma=self.model_gamma, gae_lambda=self.model_gae_lambda, size=self.replay_rollout_length, time_flat=self.time_flat, ) for r in off_policy_rollouts ] ) # Feeder for off-policy AAC loss estimation graph: off_policy_feed_dict = feed_dict_from_nested(self.local_network.off_state_in, off_policy_batch['state']) off_policy_feed_dict.update( feed_dict_rnn_context(self.local_network.off_lstm_state_pl_flatten, off_policy_batch['context'])) off_policy_feed_dict.update( { self.local_network.off_a_r_in: off_policy_batch['last_action_reward'], self.local_network.off_batch_size: off_policy_batch['batch_size'], self.local_network.off_time_length: off_policy_batch['time_steps'], self.off_pi_act_target: off_policy_batch['action'], self.off_pi_adv_target: off_policy_batch['advantage'], self.off_pi_r_target: off_policy_batch['r'], } ) if self.use_target_policy: off_policy_feed_dict.update( feed_dict_from_nested(self.local_network_prime.off_state_in, off_policy_batch['state']) ) off_policy_feed_dict.update( { self.local_network_prime.off_batch_size: off_policy_batch['batch_size'], self.local_network_prime.off_time_length: off_policy_batch['time_steps'], self.local_network_prime.off_a_r_in: off_policy_batch['last_action_reward'] } ) off_policy_feed_dict.update( feed_dict_rnn_context( self.local_network_prime.off_lstm_state_pl_flatten, off_policy_batch['context'] ) ) feed_dict.update(off_policy_feed_dict) # Update with reward prediction subgraph: if self.use_reward_prediction: # Rebalanced 50/50 sample for RP: rp_rollouts = data['off_policy_rp'] rp_batch = batch_stack([rp.process_rp(self.rp_reward_threshold) for rp in rp_rollouts]) feed_dict.update(self._get_rp_feeder(rp_batch)) # Pixel control ... if self.use_pixel_control: feed_dict.update(self._get_pc_feeder(off_policy_batch)) # VR... if self.use_value_replay: feed_dict.update(self._get_vr_feeder(off_policy_batch)) return feed_dict def process_summary(self, sess, data, model_data=None): """ Fetches and writes summary data from `data` and `model_data`. Args: sess: tf summary obj. data(dict): thread_runner rollouts and metadata model_data(dict): model summary data """ # Every worker writes train episode summaries: ep_summary_feeder = {} # Look for train episode summaries from all env runners: for stat in data['ep_summary']: if stat is not None: for key in stat.keys(): if key in ep_summary_feeder.keys(): ep_summary_feeder[key] += [stat[key]] else: ep_summary_feeder[key] = [stat[key]] # Average values among thread_runners, if any, and write episode summary: if ep_summary_feeder != {}: ep_summary_feed_dict = { self.ep_summary[key]: np.average(list) for key, list in ep_summary_feeder.items() } if self.test_mode: # Atari: fetched_episode_stat = sess.run(self.ep_summary['atari_stat_op'], ep_summary_feed_dict) else: # BTGym fetched_episode_stat = sess.run(self.ep_summary['btgym_stat_op'], ep_summary_feed_dict) self.summary_writer.add_summary(fetched_episode_stat, sess.run(self.global_episode)) self.summary_writer.flush() # Every worker writes test episode summaries: test_ep_summary_feeder = {} # Look for test episode summaries: for stat in data['test_ep_summary']: if stat is not None: for key in stat.keys(): if key in test_ep_summary_feeder.keys(): test_ep_summary_feeder[key] += [stat[key]] else: test_ep_summary_feeder[key] = [stat[key]] # Average values among thread_runners, if any, and write episode summary: if test_ep_summary_feeder != {}: test_ep_summary_feed_dict = { self.ep_summary[key]: np.average(list) for key, list in test_ep_summary_feeder.items() } fetched_test_episode_stat = sess.run(self.ep_summary['test_btgym_stat_op'], test_ep_summary_feed_dict) self.summary_writer.add_summary(fetched_test_episode_stat, sess.run(self.global_episode)) # Look for renderings (chief worker only, always 0-numbered environment in a list): if self.task == 0: if data['render_summary'][0] is not None: render_feed_dict = { self.ep_summary[key]: pic for key, pic in data['render_summary'][0].items() } renderings = sess.run(self.ep_summary['render_op'], render_feed_dict) self.summary_writer.add_summary(renderings, sess.run(self.global_episode)) self.summary_writer.flush() # Every worker writes train episode summaries: if model_data is not None: self.summary_writer.add_summary(tf.Summary.FromString(model_data), sess.run(self.global_step)) self.summary_writer.flush() def process(self, sess): """ Grabs an on_policy_rollout [and off_policy rollout[s] from replay memory] that's been produced by the thread runner. If data identified as 'train data' - computes gradients and updates the parameters; writes summaries if any. The update is then sent to the parameter server. If on_policy_rollout identified as 'test data' - no policy update is performed (learn rate is set to zero); Note that test data does not get stored in replay memory (thread runner area). Writes all available summaries. Args: sess (tensorflow.Session): tf session obj. """ # Quick wrap to get direct traceback from this trainer if something goes wrong: try: # Collect data from child thread runners: data = self._get_data() # Copy weights from local policy to local target policy: if self.use_target_policy and self.local_steps % self.pi_prime_update_period == 0: sess.run(self.sync_pi_prime) # Test or train: if at least one on-policy rollout from parallel runners is test one - # set learn rate to zero for entire minibatch. Doh. try: is_train = not np.asarray([env['state']['metadata']['type'] for env in data['on_policy']]).any() except KeyError: is_train = True if is_train: # If there is no any test rollouts - copy weights from shared to local new_policy: sess.run(self.sync_pi) # self.log.debug('is_train: {}'.format(is_train)) feed_dict = self.process_data(sess, data, is_train) # Say No to redundant summaries: wirte_model_summary =\ self.local_steps % self.model_summary_freq == 0 #fetches = [self.train_op, self.local_network.debug] # include policy debug shapes fetches = [self.train_op] if wirte_model_summary: fetches_last = fetches + [self.model_summary_op, self.inc_step] else: fetches_last = fetches + [self.inc_step] # Do a number of SGD train epochs: # When doing more than one epoch, we actually use only last summary: for i in range(self.num_epochs - 1): fetched = sess.run(fetches, feed_dict=feed_dict) fetched = sess.run(fetches_last, feed_dict=feed_dict) if wirte_model_summary: model_summary = fetched[-2] else: model_summary = None # Write down summaries: self.process_summary(sess, data, model_summary) self.local_steps += 1 # print debug info: #for k, v in fetched[1].items(): # print('{}: {}'.format(k,v)) #print('\n') #for k, v in feed_dict.items(): # try: # print(k, v.shape) # except: # print(k, type(v)) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # except: msg = 'process() exception occurred' + \ '\n\nPress `Ctrl-C` or jupyter:[Kernel]->[Interrupt] for clean exit.\n' self.log.exception(msg) raise RuntimeError(msg) class Unreal(BaseAAC): """ Unreal: Asynchronous Advantage Actor Critic with auxiliary control tasks. Auxiliary tasks implementation borrows heavily from Kosuke Miyoshi code, under Apache License 2.0: https://miyosuda.github.io/ https://github.com/miyosuda/unreal Original A3C code comes from OpenAI repository under MIT licence: https://github.com/openai/universe-starter-agent Papers: https://arxiv.org/abs/1602.01783 https://arxiv.org/abs/1611.05397 """ def __init__(self, **kwargs): """ See BaseAAC class args for details: Args: env: environment instance or list of instances task: int, parent worker id policy_config: policy estimator class and configuration dictionary log_level: int, logbook.level on_policy_loss: callable returning tensor holding on_policy training loss graph and summaries off_policy_loss: callable returning tensor holding off_policy training loss graph and summaries vr_loss: callable returning tensor holding value replay loss graph and summaries rp_loss: callable returning tensor holding reward prediction loss graph and summaries pc_loss: callable returning tensor holding pixel_control loss graph and summaries random_seed: int or None model_gamma: scalar, gamma discount factor model_gae_lambda: scalar, GAE lambda model_beta: entropy regularization beta, scalar or [high_bound, low_bound] for log_uniform. opt_max_env_steps: int, total number of environment steps to run training on. opt_decay_steps: int, learn ratio decay steps, in number of environment steps. opt_end_learn_rate: scalar, final learn rate opt_learn_rate: start learn rate, scalar or [high_bound, low_bound] for log_uniform distr. opt_decay: scalar, optimizer decay, if apll. opt_momentum: scalar, optimizer momentum, if apll. opt_epsilon: scalar, optimizer epsilon rollout_length: int, on-policy rollout length time_flat: bool, flatten rnn time-steps in rollouts while training - see `Notes` below episode_train_test_cycle: tuple or list as (train_number, test_number), def=(1,0): enables infinite loop such as: run `train_number` of train data episodes, than `test_number` of test data episodes, repeat. Should be consistent with provided dataset parameters (test data should exist if `test_number > 0`) episode_summary_freq: int, write episode summary for every i'th episode env_render_freq: int, write environment rendering summary for every i'th train step model_summary_freq: int, write model summary for every i'th train step test_mode: bool, True: Atari, False: BTGym replay_memory_size: int, in number of experiences replay_batch_size: int, mini-batch size for off-policy training, def = 1 replay_rollout_length: int off-policy rollout length by def. equals on_policy_rollout_length use_off_policy_aac: bool, use full AAC off-policy loss instead of Value-replay use_reward_prediction: bool, use aux. off-policy reward prediction task use_pixel_control: bool, use aux. off-policy pixel control task use_value_replay: bool, use aux. off-policy value replay task (not used if use_off_policy_aac=True) rp_lambda: reward prediction loss weight, scalar or [high, low] for log_uniform distr. pc_lambda: pixel control loss weight, scalar or [high, low] for log_uniform distr. vr_lambda: value replay loss weight, scalar or [high, low] for log_uniform distr. off_aac_lambda: off-policy AAC loss weight, scalar or [high, low] for log_uniform distr. gamma_pc: NOT USED rp_reward_threshold: scalar, reward prediction classification threshold, above which reward is 'non-zero' rp_sequence_size: int, reward prediction sample size, in number of experiences clip_epsilon: scalar, PPO: surrogate L^clip epsilon num_epochs: int, num. of SGD runs for every train step, val. > 1 should be used with caution. pi_prime_update_period: int, PPO: pi to pi_old update period in number of train steps, def: 1 _use_target_policy: bool, PPO: use target policy (aka pi_old), delayed by `pi_prime_update_period` delay Note: - On `time_flat` arg: There are two alternatives to run RNN part of policy estimator: a. Feed initial RNN state for every experience frame in rollout (those are stored anyway if we want random memory repaly sampling) and do single time-step RNN advance for all experiences in a batch; this is when time_flat=True; b. Reshape incoming batch after convolution part of network in time-wise fashion for every rollout in a batch i.e. batch_size=number_of_rollouts and rnn_timesteps=max_rollout_length. In this case we need to feed initial rnn_states for rollouts only. There is some little extra work to pad rollouts to max_time_size and feed true rollout lengths to rnn. Thus, when time_flat=False, we unroll RNN in specified number of time-steps for every rollout. Both options has pros and cons: Unrolling dynamic RNN is computationally more expensive but gives clearly faster convergence, [possibly] due to the fact that RNN states for 2nd, 3rd, ... frames of rollouts are computed using updated policy estimator, which is supposed to be closer to optimal one. When time_flattened, every time-step uses RNN states computed when rollout was collected (i.e. by behavioral policy estimator with older parameters). Nevertheless, time_flatting can be interesting because one can safely shuffle training batch or mix on-policy and off-policy data in single mini-batch, ensuring iid property and allowing, say, proper batch normalisation (this has yet to be tested). """ super(Unreal, self).__init__( _log_name='UNREAL', **kwargs ) class A3C(BaseAAC): """ Vanilla Asynchronous Advantage Actor Critic algorithm. Based on original code taken from OpenAI repository under MIT licence: https://github.com/openai/universe-starter-agent Paper: https://arxiv.org/abs/1602.01783 """ def __init__(self, **kwargs): """ A3C args. is a subset of BaseAAC arguments, see `BaseAAC` class for descriptions. Args: env: task: policy_config: log: random_seed: model_gamma: model_gae_lambda: model_beta: opt_max_env_steps: opt_decay_steps: opt_end_learn_rate: opt_learn_rate: opt_decay: opt_momentum: opt_epsilon: rollout_length: episode_summary_freq: env_render_freq: model_summary_freq: test_mode: """ super(A3C, self).__init__( on_policy_loss=aac_loss_def, use_off_policy_aac=False, use_reward_prediction=False, use_pixel_control=False, use_value_replay=False, _use_target_policy=False, _log_name='A3C', **kwargs ) class PPO(BaseAAC): """ AAC with Proximal Policy Optimization surrogate L^Clip loss, optionally augmented with auxiliary control tasks. paper: https://arxiv.org/pdf/1707.06347.pdf Based on PPO-SGD code from OpenAI `Baselines` repository under MIT licence: https://github.com/openai/baselines Async. framework code comes from OpenAI repository under MIT licence: https://github.com/openai/universe-starter-agent """ def __init__(self, **kwargs): """ PPO args. is a subset of BaseAAC arguments, see `BaseAAC` class for descriptions. Args: env: task: policy_config: log_level: vr_loss: rp_loss: pc_loss: random_seed: model_gamma: model_gae_lambda: model_beta: opt_max_env_steps: opt_decay_steps: opt_end_learn_rate: opt_learn_rate: opt_decay: opt_momentum: opt_epsilon: rollout_length: episode_summary_freq: env_render_freq: model_summary_freq: test_mode: replay_memory_size: replay_rollout_length: use_off_policy_aac: use_reward_prediction: use_pixel_control: use_value_replay: rp_lambda: pc_lambda: vr_lambda: off_aac_lambda: rp_reward_threshold: rp_sequence_size: clip_epsilon: num_epochs: pi_prime_update_period: """ super(PPO, self).__init__( on_policy_loss=ppo_loss_def, off_policy_loss=ppo_loss_def, _use_target_policy=True, _log_name='PPO', **kwargs )
[]
2024-01-10
lanceshih/btgym
btgym~algorithms~nn~networks.py
# Original code comes from OpenAI repository under MIT licence: # # https://github.com/openai/universe-starter-agent # https://github.com/openai/baselines # import numpy as np import tensorflow as tf import tensorflow.contrib.rnn as rnn from tensorflow.contrib.layers import layer_norm as norm_layer from tensorflow.python.util.nest import flatten as flatten_nested from btgym.algorithms.nn.layers import normalized_columns_initializer, categorical_sample from btgym.algorithms.nn.layers import linear, noisy_linear, conv2d, deconv2d, conv1d from btgym.algorithms.utils import rnn_placeholders def conv_2d_network(x, ob_space, ac_space, conv_2d_layer_ref=conv2d, conv_2d_num_filters=(32, 32, 64, 64), conv_2d_filter_size=(3, 3), conv_2d_stride=(2, 2), pad="SAME", dtype=tf.float32, name='conv2d', collections=None, reuse=False, **kwargs): """ Stage1 network: from preprocessed 2D input to estimated features. Encapsulates convolutions + layer normalisation + nonlinearity. Can be shared. Returns: tensor holding state features; """ with tf.variable_scope(name, reuse=reuse): #for i in range(conv_2d_num_layers): for i, num_filters in enumerate(conv_2d_num_filters): x = tf.nn.elu( norm_layer( conv_2d_layer_ref( x, num_filters, "_layer_{}".format(i + 1), conv_2d_filter_size, conv_2d_stride, pad, dtype, collections, reuse ), scope=name + "_layer_{}".format(i + 1) ) ) # A3c/BaseAAC original paper design: #x = tf.nn.elu(conv2d(x, 16, 'conv2d_1', [8, 8], [4, 4], pad, dtype, collections, reuse)) #x = tf.nn.elu(conv2d(x, 32, 'conv2d_2', [4, 4], [2, 2], pad, dtype, collections, reuse)) #x = tf.nn.elu( # linear(batch_flatten(x), 256, 'conv_2d_dense', normalized_columns_initializer(0.01), reuse=reuse) #) return x def conv_1d_network(x, ob_space, ac_space, conv_1d_num_layers=4, conv_1d_num_filters=32, conv_1d_filter_size=3, conv_1d_stride=2, pad="SAME", dtype=tf.float32, collections=None, reuse=False): """ Stage1 network: from preprocessed 1D input to estimated features. Encapsulates convolutions, [possibly] skip-connections etc. Can be shared. Returns: tensor holding state features; """ for i in range(conv_1d_num_layers): x = tf.nn.elu( conv1d( x, conv_1d_num_filters, "conv1d_{}".format(i + 1), conv_1d_filter_size, conv_1d_stride, pad, dtype, collections, reuse ) ) return x def lstm_network( x, lstm_sequence_length, lstm_class=rnn.BasicLSTMCell, lstm_layers=(256,), name='lstm', reuse=False, **kwargs ): """ Stage2 network: from features to flattened LSTM output. Defines [multi-layered] dynamic [possibly shared] LSTM network. Returns: batch-wise flattened output tensor; lstm initial state tensor; lstm state output tensor; lstm flattened feed placeholders as tuple. """ with tf.variable_scope(name, reuse=reuse): # Flatten, add action/reward and expand with fake [time] batch? dim to feed LSTM bank: #x = tf.concat([x, a_r] ,axis=-1) #x = tf.concat([batch_flatten(x), a_r], axis=-1) #x = tf.expand_dims(x, [0]) # Define LSTM layers: lstm = [] for size in lstm_layers: lstm += [lstm_class(size)] #, state_is_tuple=True)] lstm = rnn.MultiRNNCell(lstm, state_is_tuple=True) # Get time_dimension as [1]-shaped tensor: step_size = tf.expand_dims(tf.shape(x)[1], [0]) lstm_init_state = lstm.zero_state(1, dtype=tf.float32) lstm_state_pl = rnn_placeholders(lstm.zero_state(1, dtype=tf.float32)) lstm_state_pl_flatten = flatten_nested(lstm_state_pl) lstm_outputs, lstm_state_out = tf.nn.dynamic_rnn( lstm, x, initial_state=lstm_state_pl, sequence_length=lstm_sequence_length, time_major=False ) #x_out = tf.reshape(lstm_outputs, [-1, lstm_layers[-1]]) x_out = lstm_outputs return x_out, lstm_init_state, lstm_state_out, lstm_state_pl_flatten def dense_aac_network(x, ac_space, name='dense_aac', linear_layer_ref=noisy_linear, reuse=False): """ Stage3 network: from LSTM flattened output to advantage actor-critic. Returns: logits tensor value function tensor action sampling function. """ with tf.variable_scope(name, reuse=reuse): # Center-logits: logits = norm_layer( linear_layer_ref( x=x, size=ac_space, name='action', initializer=normalized_columns_initializer(0.01), reuse=reuse ), center=True, scale=False, ) # logits = linear_layer_ref( # x=x, # size=ac_space, # name='action', # initializer=normalized_columns_initializer(0.01), # reuse=reuse # ) vf = tf.reshape( linear_layer_ref( x=x, size=1, name="value", initializer=normalized_columns_initializer(1.0), reuse=reuse ), [-1] ) sample = categorical_sample(logits, ac_space)[0, :] return logits, vf, sample def dense_rp_network(x, linear_layer_ref=noisy_linear): """ Stage3 network: From shared convolutions to reward-prediction task output tensor. """ # print('x_shape:', x.get_shape()) #x = tf.reshape(x, [1, -1]) # flatten to pretend we got batch of size 1 # Fully connected x128 followed by 3-way classifier [with softmax], as in paper: x = tf.nn.elu( linear_layer_ref( x=x, size=128, name='rp_dense', initializer=normalized_columns_initializer(0.01) ) ) logits = linear_layer_ref( x=x, size=3, name='rp_classifier', initializer=normalized_columns_initializer(0.01) ) # Note: softmax is actually not here but inside loss operation (see losses.py) return logits def pixel_change_2d_estimator(ob_space, pc_estimator_stride=(2, 2), **kwargs): """ Defines tf operation for estimating `pixel change` as subsampled absolute difference of two states. Note: crops input array by one pix from either side; --> 1D signal to be shaped as [signal_length, 3] """ input_state = tf.placeholder(tf.float32, list(ob_space), name='pc_change_est_state_in') input_last_state = tf.placeholder(tf.float32, list(ob_space), name='pc_change_est_last_state_in') x = tf.abs(tf.subtract(input_state, input_last_state)) # TODO: tf.square? if x.shape[-2] <= 3: x = tf.expand_dims(x, 0)[:, 1:-1, :, :] # Assume 1D signal, fake batch dim and crop H dim only #x = tf.transpose(x, perm=[0, 1, 3, 2]) # Swap channels and height for else: x = tf.expand_dims(x, 0)[:, 1:-1, 1:-1, :] # True 2D, fake batch dim and crop H, W dims x = tf.reduce_mean(x, axis=-1, keepdims=True) x_out = tf.nn.max_pool( x, [1, pc_estimator_stride[0], pc_estimator_stride[1], 1], [1, pc_estimator_stride[0], pc_estimator_stride[1], 1], 'SAME' ) return input_state, input_last_state, x_out def duelling_pc_network(x, ac_space, duell_pc_x_inner_shape=(9, 9, 32), duell_pc_filter_size=(4, 4), duell_pc_stride=(2, 2), linear_layer_ref=noisy_linear, reuse=False, **kwargs): """ Stage3 network for `pixel control' task: from LSTM output to Q-aux. features tensor. """ x = tf.nn.elu( linear_layer_ref( x=x, size=np.prod(duell_pc_x_inner_shape), name='pc_dense', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse ) ) x = tf.reshape(x, [-1] + list(duell_pc_x_inner_shape)) pc_a = deconv2d(x, ac_space, 'pc_advantage', duell_pc_filter_size, duell_pc_stride, reuse=reuse) # [None, 20, 20, ac_size] pc_v = deconv2d(x, 1, 'pc_value_fn', duell_pc_filter_size, duell_pc_stride, reuse=reuse) # [None, 20, 20, 1] # Q-value estimate using advantage mean, # as (9) in "Dueling Network Architectures..." paper: # https://arxiv.org/pdf/1511.06581.pdf pc_a_mean = tf.reduce_mean(pc_a, axis=-1, keepdims=True) pc_q = pc_v + pc_a - pc_a_mean # [None, 20, 20, ac_size] return pc_q
[]
2024-01-10
lanceshih/btgym
btgym~algorithms~launcher.py
############################################################################### # # Copyright (C) 2017 Andrew Muzikin # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### # # Original asynchronous framework code comes from OpenAI repository under MIT licence: # https://github.com/openai/universe-starter-agent # import os from logbook import Logger, StreamHandler, WARNING, NOTICE, INFO, DEBUG import time import psutil import glob from subprocess import PIPE import signal import numpy as np import copy from .worker import Worker from .aac import A3C from .policy import BaseAacPolicy import sys sys.path.insert(0,'..') class Launcher(): """ Configures and starts distributed TF training session with workers running sets of separate instances of BTgym/Atari environment. """ def __init__(self, env_config=None, cluster_config=None, policy_config=None, trainer_config=None, max_env_steps=None, root_random_seed=None, test_mode=False, purge_previous=0, log_level=None, verbose=0): """ Args: env_config (dict): environment class_config_dict, see 'Note' below. cluster_config (dict): tf cluster configuration, see 'Note' below. policy_config (dict): policy class_config_dict holding corr. policy class args. trainer_config (dict): trainer class_config_dict holding corr. trainer class args. max_env_steps (int): total number of environment steps to run training on. root_random_seed (int): int or None test_mode (bool): if True - use Atari gym env., BTGym otherwise. purge_previous (int): keep or remove previous log files and saved checkpoints from log_dir: {0 - keep, 1 - ask, 2 - remove}. verbose (int): verbosity mode, {0 - WARNING, 1 - INFO, 2 - DEBUG}. log_level (int): logbook level {DEBUG=10, INFO=11, NOTICE=12, WARNING=13}, overrides `verbose` arg. Note: class_config_dict: dictionary containing at least two keys: - `class_ref`: reference to class constructor or function; - `kwargs`: dictionary of keyword arguments, see corr. environment class args. cluster_config: dictionary containing at least these keys: - 'host': cluster host, def: '127.0.0.1' - 'port': cluster port, def: 12222 - 'num_workers': number of workers to run, def: 1 - 'num_ps': number of parameter servers, def: 1 - 'num_envs': number of environments to run in parallel for each worker, def: 1 - 'log_dir': directory to save model and summaries, def: './tmp/btgym_aac_log' """ self.env_config = dict( class_ref=None, kwargs=dict( port=5000, data_port=4999, gym_id=None, ) ) self.cluster_config = dict( host='127.0.0.1', port=12222, num_workers=1, num_ps=1, log_dir='./tmp/btgym_aac_log', num_envs=1, ) self.policy_config = dict( class_ref=BaseAacPolicy, kwargs=dict( lstm_layers=(256,) ) ) self.trainer_config = dict( class_ref=A3C, kwargs={} ) self.max_env_steps = 100 * 10 ** 6 self.ports_to_use = [] self.root_random_seed = root_random_seed self.purge_previous = purge_previous self.test_mode = test_mode self.log_level = log_level self.verbose = verbose if max_env_steps is not None: self.max_env_steps = max_env_steps self.env_config = self._update_config_dict(self.env_config, env_config) self.cluster_config = self._update_config_dict(self.cluster_config, cluster_config) self.policy_config = self._update_config_dict(self.policy_config, policy_config) self.trainer_config = self._update_config_dict(self.trainer_config, trainer_config) self.trainer_config['kwargs']['test_mode'] = self.test_mode # Logging config: StreamHandler(sys.stdout).push_application() if self.log_level is None: log_levels = [(0, NOTICE), (1, INFO), (2, DEBUG)] self.log_level = WARNING for key, value in log_levels: if key == self.verbose: self.log_level = value self.log = Logger('LauncherShell', level=self.log_level) # Seeding: if self.root_random_seed is not None: np.random.seed(self.root_random_seed) self.log.info('Random seed: {}'.format(self.root_random_seed)) # Seeding for workers: workers_rnd_seeds = list( np.random.randint(0, 2**30, self.cluster_config['num_workers'] + self.cluster_config['num_ps']) ) # Log_dir: if os.path.exists(self.cluster_config['log_dir']): # Remove previous log files and saved model if opted: if self.purge_previous > 0: confirm = 'y' if self.purge_previous < 2: confirm = input('<{}> already exists. Override[y/n]? '.format(self.cluster_config['log_dir'])) if confirm in 'y': files = glob.glob(self.cluster_config['log_dir'] + '/*') p = psutil.Popen(['rm', '-R', ] + files, stdout=PIPE, stderr=PIPE) self.log.notice('Files in <{}> purged.'.format(self.cluster_config['log_dir'])) else: self.log.notice('Appending to <{}>.'.format(self.cluster_config['log_dir'])) else: os.makedirs(self.cluster_config['log_dir']) self.log.notice('<{}> created.'.format(self.cluster_config['log_dir'])) for kwarg in ['port', 'data_port']: assert kwarg in self.env_config['kwargs'].keys() assert self.env_config['class_ref'] is not None # Make cluster specification dict: self.cluster_spec = self.make_cluster_spec(self.cluster_config) # Configure workers: self.workers_config_list = [] env_ports = np.arange(self.cluster_config['num_envs']) worker_port = self.env_config['kwargs']['port'] # start value for BTGym comm. port # TODO: Hacky, cause dataset is threadlocked; do: pass dataset as class_ref + kwargs_dict: if self.test_mode: dataset_instance = None else: dataset_instance = self.env_config['kwargs'].pop('dataset') for key, spec_list in self.cluster_spec.items(): task_index = 0 # referenced farther as worker id for _id in spec_list: env_config = copy.deepcopy(self.env_config) worker_config = {} if key in 'worker': # Configure worker BTgym environment: if task_index == 0: env_config['kwargs']['data_master'] = True # set worker_0 as chief and data_master env_config['kwargs']['dataset'] = dataset_instance env_config['kwargs']['render_enabled'] = True else: env_config['kwargs']['data_master'] = False env_config['kwargs']['render_enabled'] = False # disable rendering for all but chief # Add list of connection ports for every parallel env for each worker: env_config['kwargs']['port'] = list(worker_port + env_ports) worker_port += self.cluster_config['num_envs'] worker_config.update( { 'env_config': env_config, 'policy_config': self.policy_config, 'trainer_config': self.trainer_config, 'cluster_spec': self.cluster_spec, 'job_name': key, 'task': task_index, 'test_mode': self.test_mode, 'log_dir': self.cluster_config['log_dir'], 'max_env_steps': self.max_env_steps, 'log_level': self.log_level, 'random_seed': workers_rnd_seeds.pop() } ) self.clear_port(env_config['kwargs']['port']) self.workers_config_list.append(worker_config) task_index += 1 self.clear_port(self.env_config['kwargs']['data_port']) self.log.debug('Launcher ready.') def make_cluster_spec(self, config): """ Composes cluster specification dictionary. """ cluster = {} all_ps = [] port = config['port'] for _ in range(config['num_ps']): self.clear_port(port) self.ports_to_use.append(port) all_ps.append('{}:{}'.format(config['host'], port)) port += 1 cluster['ps'] = all_ps all_workers = [] for _ in range(config['num_workers']): self.clear_port(port) self.ports_to_use.append(port) all_workers.append('{}:{}'.format(config['host'], port)) port += 1 cluster['worker'] = all_workers return cluster def clear_port(self, port_list): """ Kills process on specified ports list, if any. """ if not isinstance(port_list, list): port_list = [port_list] for port in port_list: p = psutil.Popen(['lsof', '-i:{}'.format(port), '-t'], stdout=PIPE, stderr=PIPE) pid = p.communicate()[0].decode()[:-1] # retrieving PID if pid is not '': p = psutil.Popen(['kill', pid]) self.log.info('port {} cleared'.format(port)) def _update_config_dict(self, old_dict, new_dict=None): """ Service, updates nested dictionary with values from other one of same structure. Args: old_dict: dict to update to new_dict: dict to update from Returns: new updated dict """ if type(new_dict) is not dict: new_dict = old_dict # ~identity op for key, value in new_dict.items(): if type(value) == dict: old_dict[key] = self._update_config_dict(old_dict[key], value) else: old_dict[key] = value return old_dict def run(self): """ Launches processes: distributed workers; parameter_server. """ workers_list = [] p_servers_list = [] chief_worker = None def signal_handler(signal, frame): nonlocal workers_list nonlocal chief_worker nonlocal p_servers_list def stop_worker(worker_list): for worker in worker_list: worker.terminate() stop_worker(workers_list) stop_worker([chief_worker]) stop_worker(p_servers_list) # Start workers: for worker_config in self.workers_config_list: # Make: worker = Worker(**worker_config) # Launch: worker.daemon = False worker.start() if worker.job_name in 'worker': # Allow data-master to launch datafeed_server: if worker_config['env_config']['kwargs']['data_master']: time.sleep(5) chief_worker = worker else: workers_list.append(worker) else: p_servers_list.append(worker) # TODO: auto-launch tensorboard? signal.signal(signal.SIGINT, signal_handler) # Halt here: msg = '\n********************************************************************************************\n' +\ '** Press `Ctrl-C` or jupyter:[Kernel]->[Interrupt] to stop training and close launcher. **\n' + \ '********************************************************************************************\n' print(msg) signal.pause() # Wait every worker to finish: for worker in workers_list: worker.join() self.log.notice('worker_{} has joined.'.format(worker.task)) chief_worker.join() self.log.notice('chief_worker_{} has joined.'.format(chief_worker.task)) for ps in p_servers_list: ps.join() self.log.notice('parameter_server_{} has joined.'.format(ps.task)) # TODO: close tensorboard self.log.notice('Launcher closed.')
[]
2024-01-10
lanceshih/btgym
btgym~algorithms~runner~threadrunner.py
# Async. framework code comes from OpenAI repository under MIT licence: # https://github.com/openai/universe-starter-agent # from logbook import Logger, StreamHandler, WARNING import sys import six.moves.queue as queue import threading from btgym.algorithms.runner import BaseEnvRunnerFn class RunnerThread(threading.Thread): """ Async. framework code comes from OpenAI repository under MIT licence: https://github.com/openai/universe-starter-agent Despite the fact BTgym is not real-time environment [yet], thread-runner approach is still here. From original `universe-starter-agent`: `...One of the key distinctions between a normal environment and a universe environment is that a universe environment is _real time_. This means that there should be a thread that would constantly interact with the environment and tell it what to do. This thread is here.` Another idea is to see ThreadRunner as all-in-one data provider, thus shaping data distribution fed to estimator from single place. So, replay memory is also here, as well as some service functions (collecting summary data). """ def __init__(self, env, policy, task, rollout_length, episode_summary_freq, env_render_freq, test, ep_summary, runner_fn_ref=BaseEnvRunnerFn, memory_config=None, log_level=WARNING, ): """ Args: env: environment instance policy: policy instance task: int rollout_length: int episode_summary_freq: int env_render_freq: int test: Atari or BTGyn ep_summary: tf.summary runner_fn_ref: callable defining runner execution logic memory_config: replay memory configuration dictionary log_level: int, logbook.level """ threading.Thread.__init__(self) self.queue = queue.Queue(5) self.rollout_length = rollout_length self.env = env self.last_features = None self.policy = policy self.runner_fn_ref = runner_fn_ref self.daemon = True self.sess = None self.summary_writer = None self.episode_summary_freq = episode_summary_freq self.env_render_freq = env_render_freq self.task = task self.test = test self.ep_summary = ep_summary self.memory_config = memory_config self.log_level = log_level StreamHandler(sys.stdout).push_application() self.log = Logger('ThreadRunner_{}'.format(self.task), level=self.log_level) def start_runner(self, sess, summary_writer): try: self.sess = sess self.summary_writer = summary_writer self.start() except: msg = 'start() exception occurred.\n\nPress `Ctrl-C` or jupyter:[Kernel]->[Interrupt] for clean exit.\n' self.log.exception(msg) raise RuntimeError def run(self): """Just keep running.""" try: with self.sess.as_default(): self._run() except: msg = 'RunTime exception occurred.\n\nPress `Ctrl-C` or jupyter:[Kernel]->[Interrupt] for clean exit.\n' self.log.exception(msg) raise RuntimeError def _run(self): rollout_provider = self.runner_fn_ref( self.sess, self.env, self.policy, self.task, self.rollout_length, self.summary_writer, self.episode_summary_freq, self.env_render_freq, self.test, self.ep_summary, self.memory_config, self.log ) while True: # the timeout variable exists because apparently, if one worker dies, the other workers # won't die with it, unless the timeout is set to some large number. This is an empirical # observation. self.queue.put(next(rollout_provider), timeout=600.0)
[]
2024-01-10
lanceshih/btgym
btgym~algorithms~envs.py
# Original code is taken from OpenAI repository under MIT licence: # https://github.com/openai/universe-starter-agent import numpy as np import cv2 import gym from gym import spaces from btgym import DictSpace def _process_frame42(frame): frame = frame[34:34+160, :160] # Resize by half, then down to 42x42 (essentially mipmapping). If # we resize directly we lose pixels that, when mapped to 42x42, # aren't close enough to the pixel boundary. frame = cv2.resize(frame, (80, 80)) frame = cv2.resize(frame, (42, 42)) frame = frame.mean(2) frame = frame.astype(np.float32) frame *= (1.0 / 255.0) frame = np.reshape(frame, [42, 42, 1]) return frame class AtariRescale42x42(gym.ObservationWrapper): """ Gym wrapper, pipes Atari into BTgym algorithms, as later expect observations to be DictSpace. Makes Atari environment return state as dictionary with single key 'external' holding normalized in [0,1] grayscale 42x42 visual output. """ def __init__(self, env_id=None): """ Args: env_id: conventional Gym id. """ assert "." not in env_id # universe environments have dots in names. env = gym.make(env_id) super(AtariRescale42x42, self).__init__(env) self.observation_space = DictSpace( {'external': spaces.Box(0.0, 1.0, [42, 42, 1], dtype=np.float32)} ) def _observation(self, observation): return {'external': _process_frame42(observation)}
[]
2024-01-10
lanceshih/btgym
btgym~algorithms~rollout.py
# Original A3C code comes from OpenAI repository under MIT licence: # https://github.com/openai/universe-starter-agent # # Papers: # https://arxiv.org/abs/1602.01783 # https://arxiv.org/abs/1611.05397 import numpy as np from tensorflow.contrib.rnn import LSTMStateTuple from btgym.algorithms.math_utils import discount from btgym.algorithms.utils import batch_pad # Info: ExperienceConfig = ['position', 'state', 'action', 'reward', 'value', 'terminal', 'r', 'context', 'last_action_reward', 'pixel_change'] def make_data_getter(queue): """ Data stream getter constructor. Args: queue: instance of `Queue` class to get rollouts from. Returns: callable, returning dictionary of data. """ def pull_rollout_from_queue(): return queue.get(timeout=600.0) return pull_rollout_from_queue class Rollout(dict): """ Experience rollout as [nested] dictionary of lists of ndarrays, tuples and rnn states. """ def __init__(self): super(Rollout, self).__init__() self.size = 0 def add(self, values, _struct=None): """ Adds single experience frame to rollout. Args: values: [nested] dictionary of values. """ if _struct is None: # Top level: _struct = self self.size += 1 top = True else: top = False if isinstance(values, dict): for key, value in values.items(): if key not in _struct.keys(): _struct[key] = {} _struct[key] =self.add(value, _struct[key]) elif isinstance(values, tuple): if not isinstance(_struct, tuple): _struct = ['empty' for entry in values] _struct = tuple([self.add(*pair) for pair in zip(values, _struct)]) elif isinstance(values, LSTMStateTuple): if not isinstance(_struct, LSTMStateTuple): _struct = LSTMStateTuple(0, 0) c = self.add(values[0], _struct[0]) h = self.add(values[1], _struct[1]) _struct = LSTMStateTuple(c, h) else: if isinstance(_struct, list): _struct += [values] else: _struct = [values] if not top: return _struct def add_memory_sample(self, sample): """ Given replay memory sample as list of experience-dictionaries of `length`, converts it to rollout of same `length`. """ for frame in sample: self.add(frame) def process(self, gamma, gae_lambda=1.0, size=None, time_flat=False): """ Converts single-trajectory rollout of experiences to dictionary of ready-to-feed arrays. Computes rollout returns and the advantages. Pads with zeroes to desired length, if size arg is given. Args: gamma: discount factor gae_lambda: GAE lambda size: if given and time_flat=False, pads outputs with zeroes along `time' dim. to exact 'size'. time_flat: reduce time dimension to 1 step by stacking all experiences along batch dimension. Returns: batch as [nested] dictionary of np.arrays, tuples and LSTMStateTuples. of size: [1, time_size, depth] or [1, size, depth] if not time_flatten and `size` is not/given, with single `context` entry for entire trajectory, i.e. of size [1, context_depth]; [batch_size, 1, depth], if time_flatten, with batch_size = time_size and `context` entry for every experience frame, i.e. of size [batch_size, context_depth]. """ # self._check_it() batch = dict() for key in self.keys() - {'context', 'reward', 'r', 'value', 'position'}: batch[key] = self.as_array(self[key]) if time_flat: batch['context'] = self.as_array(self['context'], squeeze_axis=1) # LSTM state for every frame else: batch['context'] = self.get_frame(0)['context'] # just get rollout initial LSTM state #print('batch_context:') #self._check_it(batch['context']) # Total accumulated empirical return: rewards = np.asarray(self['reward']) rollout_r = self['r'][-1][0] # bootstrapped V_next or 0 if terminal vpred_t = np.asarray(self['value'] + [rollout_r]) rewards_plus_v = np.asarray(self['reward'] + [rollout_r]) batch['r'] = discount(rewards_plus_v, gamma)[:-1] # This formula for the advantage is (16) from "Generalized Advantage Estimation" paper: # https://arxiv.org/abs/1506.02438 delta_t = rewards + gamma * vpred_t[1:] - vpred_t[:-1] batch['advantage'] = discount(delta_t, gamma * gae_lambda) # Shape it out: if time_flat: batch['batch_size'] = batch['advantage'].shape[0] # time length turned batch size batch['time_steps'] = np.ones(batch['batch_size']) else: batch['time_steps'] = batch['advantage'].shape[0] # real non-padded time length batch['batch_size'] = 1 # want rollout as a trajectory if size is not None and not time_flat and batch['advantage'].shape[0] != size: # Want all batches to be exact size for further batch stacking: batch = batch_pad(batch, to_size=size) return batch def process_rp(self, reward_threshold=0.1): """ Processes rollout process()-alike and estimates reward prediction target for first n-1 frames. Args: reward_threshold: reward values such as |r|> reward_threshold are classified as neg. or pos. Returns: Processed batch with size reduced by one and with extra `rp_target` key holding one hot encodings for classes {zero, positive, negative}. """ # Remove last frame: last_frame = self.pop_frame(-1) batch = self.process(gamma=1) # Make one hot vector for target rewards (i.e. reward taken from last of sampled frames): r = last_frame['reward'] rp_t = np.zeros(3) if r > reward_threshold: rp_t[1] = 1.0 # positive [010] elif r < - reward_threshold: rp_t[2] = 1.0 # negative [001] else: rp_t[0] = 1.0 # zero [100] batch['rp_target'] = rp_t[None,...] batch['time_steps'] = batch['advantage'].shape[0] # e.g -1 of original return batch def get_frame(self, idx, _struct=None): """ Extracts single experience from rollout. Args: idx: experience position Returns: frame as [nested] dictionary """ # No idx range checks here! if _struct is None: _struct = self if isinstance(_struct, dict) or type(_struct) == type(self): frame = {} for key, value in _struct.items(): frame[key] = self.get_frame(idx, value) return frame elif isinstance(_struct, tuple): return tuple([self.get_frame(idx, value) for value in _struct]) elif isinstance(_struct, LSTMStateTuple): return LSTMStateTuple(self.get_frame(idx, _struct[0]), self.get_frame(idx, _struct[1])) else: return _struct[idx] def pop_frame(self, idx, _struct=None): """ Pops single experience from rollout. Args: idx: experience position Returns: frame as [nested] dictionary """ # No idx range checks here! if _struct is None: _struct = self if isinstance(_struct, dict) or type(_struct) == type(self): frame = {} for key, value in _struct.items(): frame[key] = self.pop_frame(idx, value) return frame elif isinstance(_struct, tuple): return tuple([self.pop_frame(idx, value) for value in _struct]) elif isinstance(_struct, LSTMStateTuple): return LSTMStateTuple(self.pop_frame(idx, _struct[0]), self.pop_frame(idx, _struct[1])) else: return _struct.pop(idx) def as_array(self, struct, squeeze_axis=None): if isinstance(struct, dict): out = {} for key, value in struct.items(): out[key] = self.as_array(value, squeeze_axis) return out elif isinstance(struct, tuple): return tuple([self.as_array(value, squeeze_axis) for value in struct]) elif isinstance(struct, LSTMStateTuple): return LSTMStateTuple(self.as_array(struct[0], squeeze_axis), self.as_array(struct[1], squeeze_axis)) else: if squeeze_axis is not None: return np.squeeze(np.asarray(struct), axis=squeeze_axis) else: return np.asarray(struct) def _check_it(self, _struct=None): if _struct is None: _struct = self if type(_struct) == dict or type(_struct) == type(self): for key, value in _struct.items(): print(key, ':') self._check_it(_struct=value) elif type(_struct) == tuple or type(_struct) == list: print('tuple/list:') for value in _struct: self._check_it(_struct=value) else: try: print('length: {}, type: {}, shape of element: {}\n'.format(len(_struct), type(_struct[0]), _struct[0].shape)) except: print('length: {}, type: {}\n'.format(len(_struct), type(_struct[0])))
[]
2024-01-10
lanceshih/btgym
btgym~algorithms~worker.py
# # Original A3C code comes from OpenAI repository under MIT licence: # https://github.com/openai/universe-starter-agent # # Papers: # https://arxiv.org/abs/1602.01783 # https://arxiv.org/abs/1611.05397 from logbook import Logger, StreamHandler import sys sys.path.insert(0,'..') import os import logging import multiprocessing import cv2 import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) # suppress tf.train.MonitoredTrainingSession deprecation warning # TODO: switch to tf.train.MonitoredTrainingSession class _FastSaver(tf.train.Saver): """ Disables write_meta_graph argument, which freezes entire process and is mostly useless. """ def save(self, sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix="meta", write_meta_graph=True): super(_FastSaver, self).save(sess, save_path, global_step, latest_filename, meta_graph_suffix, False) class Worker(multiprocessing.Process): """ Distributed tf worker class. Sets up environment, trainer and starts training process in supervised session. """ env_list = None def __init__(self, env_config, policy_config, trainer_config, cluster_spec, job_name, task, log_dir, log_level, max_env_steps, random_seed=None, test_mode=False): """ Args: env_config: environment class_config_dict. policy_config: model policy estimator class_config_dict. trainer_config: algorithm class_config_dict. cluster_spec: tf.cluster specification. job_name: worker or parameter server. task: integer number, 0 is chief worker. log_dir: for tb summaries and checkpoints. log_level: int, logbook.level max_env_steps: number of environment steps to run training on test_mode: if True - use Atari mode, BTGym otherwise. Note: - Conventional `self.global_step` refers to number of environment steps, summarized over all environment instances, not to number of policy optimizer train steps. - Every worker can run several environments in parralell, as specified by `cluster_config'['num_envs']. If use 4 forkers and num_envs=4 => total number of environments is 16. Every env instance has it's own ThreadRunner process. - When using replay memory, keep in mind that every ThreadRunner is keeping it's own replay memory, If memory_size = 2000, num_workers=4, num_envs=4 => total replay memory size equals 32 000 frames. """ super(Worker, self).__init__() self.env_class = env_config['class_ref'] self.env_kwargs = env_config['kwargs'] self.policy_config = policy_config self.trainer_class = trainer_config['class_ref'] self.trainer_kwargs = trainer_config['kwargs'] self.cluster_spec = cluster_spec self.job_name = job_name self.task = task self.log_dir = log_dir self.max_env_steps = max_env_steps self.log_level = log_level self.log = None self.test_mode = test_mode self.random_seed = random_seed def run(self): """Worker runtime body. """ # Logging: StreamHandler(sys.stdout).push_application() self.log = Logger('Worker_{}'.format(self.task), level=self.log_level) tf.reset_default_graph() if self.test_mode: import gym # Define cluster: cluster = tf.train.ClusterSpec(self.cluster_spec).as_cluster_def() # Start tf.server: if self.job_name in 'ps': server = tf.train.Server( cluster, job_name=self.job_name, task_index=self.task, config=tf.ConfigProto(device_filters=["/job:ps"]) ) self.log.debug('parameters_server started.') # Just block here: server.join() else: server = tf.train.Server( cluster, job_name='worker', task_index=self.task, config=tf.ConfigProto( intra_op_parallelism_threads=1, # original was: 1 inter_op_parallelism_threads=2 # original was: 2 ) ) self.log.debug('tf.server started.') self.log.debug('making environments:') # Making as many environments as many entries in env_config `port` list: # TODO: Hacky-II: only one example of parallel [all] environments can be data-master and renderer # TODO: measure data_server lags, maybe launch several instances self.env_list = [] env_kwargs = self.env_kwargs.copy() env_kwargs['log_level'] = self.log_level port_list = env_kwargs.pop('port') data_master = env_kwargs.pop('data_master') render_enabled = env_kwargs.pop('render_enabled') # Parallel envs. numbering: if len(port_list) > 1: task_id = 0.0 else: task_id = 0 for port in port_list: if not self.test_mode: # Assume BTgym env. class: self.log.debug('env at port_{} is data_master: {}'.format(port, data_master)) try: self.env_list.append( self.env_class( port=port, data_master=data_master, render_enabled=render_enabled, task= self.task + task_id, **env_kwargs ) ) data_master = False render_enabled = False self.log.info('set BTGym environment {} at port_{}.'.format(self.task + task_id, port)) task_id += 0.01 except: self.log.exception( 'failed to make BTGym environment at port_{}.'.format(port) ) raise RuntimeError else: # Assume atari testing: try: self.env_list.append(self.env_class(env_kwargs['gym_id'])) self.log.debug('set Gyn/Atari environment.') except: self.log.exception('failed to make Gym/Atari environment') raise RuntimeError # Define trainer: trainer = self.trainer_class( env=self.env_list, task=self.task, policy_config=self.policy_config, log_level=self.log_level, random_seed=self.random_seed, **self.trainer_kwargs, ) self.log.debug('trainer ok.') # Saver-related: variables_to_save = [v for v in tf.global_variables() if not v.name.startswith("local")] local_variables = [v for v in tf.global_variables() if v.name.startswith("local")] init_op = tf.variables_initializer(variables_to_save) local_init_op = tf.variables_initializer(local_variables) init_all_op = tf.global_variables_initializer() saver = _FastSaver(variables_to_save) self.log.debug('vars_to_save:') for v in variables_to_save: self.log.debug('{}: {}'.format(v.name, v.get_shape())) def init_fn(ses): self.log.info("initializing all parameters.") ses.run(init_all_op) config = tf.ConfigProto(device_filters=["/job:ps", "/job:worker/task:{}/cpu:0".format(self.task)]) logdir = os.path.join(self.log_dir, 'train') summary_dir = logdir + "_{}".format(self.task) summary_writer = tf.summary.FileWriter(summary_dir) # TODO: switch to tf.train.MonitoredTrainingSession sv = tf.train.Supervisor( is_chief=(self.task == 0), logdir=logdir, saver=saver, summary_op=None, init_op=init_op, local_init_op=local_init_op, init_fn=init_fn, #ready_op=tf.report_uninitialized_variables(variables_to_save), ready_op=tf.report_uninitialized_variables(), global_step=trainer.global_step, save_model_secs=300, ) self.log.info("connecting to the parameter server... ") with sv.managed_session(server.target, config=config) as sess, sess.as_default(): #sess.run(trainer.sync) trainer.start(sess, summary_writer) # Note: `self.global_step` refers to number of environment steps # summarized over all environment instances, not to number of policy optimizer train steps. global_step = sess.run(trainer.global_step) self.log.notice("started training at step: {}".format(global_step)) while not sv.should_stop() and global_step < self.max_env_steps: trainer.process(sess) global_step = sess.run(trainer.global_step) # Ask for all the services to stop: for env in self.env_list: env.close() sv.stop() self.log.notice('reached {} steps, exiting.'.format(global_step))
[]
2024-01-10
lanceshih/btgym
btgym~algorithms~nn~layers.py
# Original code comes from OpenAI repository under MIT licence: # # https://github.com/openai/universe-starter-agent # https://github.com/openai/baselines # import numpy as np import tensorflow as tf def normalized_columns_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer # def categorical_sample(logits, d): # value = tf.squeeze(tf.multinomial(logits - tf.reduce_max(logits, [1], keepdims=True), 1), [1]) # return tf.one_hot(value, d) def categorical_sample(logits, d): value = tf.squeeze(tf.multinomial(logits, 1), [1]) one_hot = tf.one_hot(value, d, name='sample_one_hot') return one_hot # def categorical_sample(logits, d): # DET! # value = tf.argmax(logits, axis=-1) # one_hot = tf.one_hot(value, d, name='sample_one_hot') # return one_hot def linear(x, size, name, initializer=None, bias_init=0, reuse=False): """ Linear network layer. """ with tf.variable_scope(name, reuse=reuse): w = tf.get_variable("/w", [x.get_shape()[1], size], initializer=initializer) b = tf.get_variable("/b", [size], initializer=tf.constant_initializer(bias_init)) return tf.matmul(x, w) + b def noisy_linear(x, size, name, bias=True, activation_fn=tf.identity, reuse=False, **kwargs): """ Noisy Net linear network layer using Factorised Gaussian noise; Code by Andrew Liao, https://github.com/andrewliao11/NoisyNet-DQN Papers: https://arxiv.org/abs/1706.10295 https://arxiv.org/abs/1706.01905 """ with tf.variable_scope(name, reuse=reuse): # the function used in eq.7,8 def f(x): return tf.multiply(tf.sign(x), tf.pow(tf.abs(x), 0.5)) # Initializer of \mu and \sigma mu_init = tf.random_uniform_initializer(minval=-1*1/np.power(x.get_shape().as_list()[1], 0.5), maxval=1*1/np.power(x.get_shape().as_list()[1], 0.5)) sigma_init = tf.constant_initializer(0.4/np.power(x.get_shape().as_list()[1], 0.5)) # Sample noise from gaussian p = tf.random_normal([x.get_shape().as_list()[1], 1]) q = tf.random_normal([1, size]) f_p = f(p); f_q = f(q) w_epsilon = f_p*f_q; b_epsilon = tf.squeeze(f_q) # w = w_mu + w_sigma*w_epsilon w_mu = tf.get_variable("/w_mu", [x.get_shape()[1], size], initializer=mu_init) w_sigma = tf.get_variable("/w_sigma", [x.get_shape()[1], size], initializer=sigma_init) w = w_mu + tf.multiply(w_sigma, w_epsilon) ret = tf.matmul(x, w) if bias: # b = b_mu + b_sigma*b_epsilon b_mu = tf.get_variable("/b_mu", [size], initializer=mu_init) b_sigma = tf.get_variable("/b_sigma", [size], initializer=sigma_init) b = b_mu + tf.multiply(b_sigma, b_epsilon) return activation_fn(ret + b) else: return activation_fn(ret) def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None, reuse=False): """ 2D convolution layer. """ with tf.variable_scope(name, reuse=reuse): stride_shape = [1, stride[0], stride[1], 1] filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters] w = tf.get_variable("W", filter_shape, dtype, initializer=tf.contrib.layers.xavier_initializer(), collections=collections) b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.constant_initializer(0.0), collections=collections) return tf.nn.conv2d(x, w, stride_shape, pad) + b def deconv2d(x, output_channels, name, filter_size=(4, 4), stride=(2, 2), dtype=tf.float32, collections=None, reuse=False): """ Deconvolution layer, paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf """ with tf.variable_scope(name, reuse=reuse): stride_shape = [1, stride[0], stride[1], 1] batch_size = tf.shape(x)[0] input_height = int(x.get_shape()[1]) input_width = int(x.get_shape()[2]) input_channels = int(x.get_shape()[3]) out_height = (input_height - 1) * stride[0] + filter_size[0] out_width = (input_width - 1) * stride[1] + filter_size[1] filter_shape = [filter_size[0], filter_size[1], output_channels, input_channels] output_shape = tf.stack([batch_size, out_height, out_width, output_channels]) fan_in = np.prod(filter_shape[:2]) * input_channels fan_out = np.prod(filter_shape[:2]) * output_channels # initialize weights with random weights w_bound = np.sqrt(6. / (fan_in + fan_out)) w = tf.get_variable("d_W", filter_shape, dtype, initializer=tf.contrib.layers.xavier_initializer(), collections=collections) b = tf.get_variable("d_b", [1, 1, 1, output_channels], initializer=tf.constant_initializer(0.0), collections=collections) return tf.nn.conv2d_transpose(x, w, output_shape, strides=stride_shape, padding='VALID') + b def conv1d(x, num_filters, name, filter_size=3, stride=2, pad="SAME", dtype=tf.float32, collections=None, reuse=False): """ 1D convolution layer. """ with tf.variable_scope(name, reuse=reuse): stride_shape = stride # print('stride_shape:',stride_shape) filter_shape = [filter_size, int(x.get_shape()[-1]), num_filters] # print('filter_shape:', filter_shape) # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = np.prod(filter_shape[:2]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = np.prod(filter_shape[:1]) * num_filters # initialize weights with random weights w_bound = np.sqrt(6. / (fan_in + fan_out)) w = tf.get_variable("W", filter_shape, dtype, initializer=tf.contrib.layers.xavier_initializer(), collections=collections) b = tf.get_variable("b", [1, 1, num_filters], initializer=tf.constant_initializer(0.0), collections=collections) return tf.nn.conv1d(x, w, stride_shape, pad) + b def conv2d_dw(x, num_filters, name='conv2d_dw', filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None, reuse=False): """ Depthwise 2D convolution layer. Slow, do not use. """ with tf.variable_scope(name, reuse=reuse): stride_shape = [1, stride[0], stride[1], 1] filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[-1]), num_filters] fan_in = np.prod(filter_shape[:3]) fan_out = np.prod(filter_shape[:2]) * num_filters # initialize weights with random weights w_bound = np.sqrt(6. / (fan_in + fan_out)) w = tf.get_variable("W", filter_shape, dtype, tf.contrib.layers.xavier_initializer(), collections=collections) b = tf.get_variable("b", [1, 1, 1, num_filters * int(x.get_shape()[-1])], initializer=tf.constant_initializer(0.0), collections=collections) return tf.nn.depthwise_conv2d(x, w, stride_shape, pad, [1, 1]) + b
[]
2024-01-10
Muhammad-Ahsan-Rasheed/cohere-python
tests~test_client.py
import unittest import cohere from utils import get_api_key API_KEY = get_api_key() class TestClient(unittest.TestCase): def test_client_name(self): co = cohere.Client(API_KEY, client_name='test') co.generate(model='medium', prompt='co:here', max_tokens=1)
[]
2024-01-10
Muhammad-Ahsan-Rasheed/cohere-python
cohere~rerank.py
from typing import List, Optional, Dict, NamedTuple, Any, Iterator from cohere.response import CohereObject RerankDocument = NamedTuple("Document", [("text", str)]) RerankDocument.__doc__ = """ Returned by co.rerank, dict which always contains text but can also contain arbitrary fields """ class RerankResult(CohereObject): def __init__(self, document: Dict[str, Any] = None, index: int = None, relevance_score: float = None, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.document = document self.index = index self.relevance_score = relevance_score def __repr__(self) -> str: score = self.relevance_score index = self.index if self.document is None: return f"RerankResult<index: {index}, relevance_score: {score}>" else: text = self.document['text'] return f"RerankResult<document['text']: {text}, index: {index}, relevance_score: {score}>" class Reranking(CohereObject): def __init__(self, response: Optional[Dict[str, Any]] = None, **kwargs) -> None: super().__init__(**kwargs, id=response.get('id')) assert response is not None self.results = self._results(response) def _results(self, response: Dict[str, Any]) -> List[RerankResult]: results = [] for res in response['results']: if 'document' in res.keys(): results.append( RerankResult(res['document'], res['index'], res['relevance_score'])) else: results.append( RerankResult(index=res['index'], relevance_score=res['relevance_score'])) return results def __str__(self) -> str: return str(self.results) def __repr__(self) -> str: return self.results.__repr__() def __iter__(self) -> Iterator: return iter(self.results) def __getitem__(self, index) -> RerankResult: return self.results[index]
[]
2024-01-10
Muhammad-Ahsan-Rasheed/cohere-python
cohere~client.py
import json import sys from concurrent.futures import ThreadPoolExecutor from typing import Any, Dict, List, Union from urllib.parse import urljoin import requests from requests import Response from requests.adapters import HTTPAdapter from urllib3 import Retry import cohere from cohere.chat import Chat from cohere.classify import Classification, Classifications from cohere.classify import Example as ClassifyExample from cohere.classify import LabelPrediction from cohere.detectlang import DetectLanguageResponse, Language from cohere.detokenize import Detokenization from cohere.embeddings import Embeddings from cohere.error import CohereError from cohere.feedback import Feedback from cohere.generation import Generations from cohere.tokenize import Tokens from cohere.summarize import SummarizeResponse from cohere.rerank import Reranking use_xhr_client = False try: from js import XMLHttpRequest use_xhr_client = True except ImportError: pass class Client: def __init__(self, api_key: str, version: str = None, num_workers: int = 64, request_dict: dict = {}, check_api_key: bool = True, client_name: str = None, max_retries: int = 3) -> None: """ Initialize the client. Args: * api_key (str): Your API key. * version (str): API version to use. Will use cohere.COHERE_VERSION by default. * num_workers (int): Maximal number of threads for parallelized calls. * request_dict (dict): Additional parameters for calls to requests.post * check_api_key (bool): Whether to check the api key for validity on initialization. * client_name (str): A string to identify your application for internal analytics purposes. """ self.api_key = api_key self.api_url = cohere.COHERE_API_URL self.batch_size = cohere.COHERE_EMBED_BATCH_SIZE self._executor = ThreadPoolExecutor(num_workers) self.num_workers = num_workers self.request_dict = request_dict self.request_source = 'python-sdk' self.max_retries = max_retries if client_name: self.request_source += ":" + client_name if version is None: self.cohere_version = cohere.COHERE_VERSION else: self.cohere_version = version if check_api_key: try: res = self.check_api_key() if not res['valid']: raise CohereError('invalid api key') except CohereError as e: raise CohereError(message=e.message, http_status=e.http_status, headers=e.headers) def check_api_key(self) -> Response: headers = { 'Authorization': 'BEARER {}'.format(self.api_key), 'Content-Type': 'application/json', 'Request-Source': 'python-sdk', } if self.cohere_version != '': headers['Cohere-Version'] = self.cohere_version url = urljoin(self.api_url, cohere.CHECK_API_KEY_URL) if use_xhr_client: response = self.__pyfetch(url, headers, None) return response else: response = requests.request('POST', url, headers=headers) try: res = json.loads(response.text) except Exception: raise CohereError(message=response.text, http_status=response.status_code, headers=response.headers) if 'message' in res.keys(): # has errors raise CohereError(message=res['message'], http_status=response.status_code, headers=response.headers) return res def batch_generate(self, prompts: List[str], **kwargs) -> List[Generations]: generations: List[Generations] = [] for prompt in prompts: kwargs["prompt"] = prompt generations.append(self.generate(**kwargs)) return generations def generate(self, prompt: str = None, prompt_vars: object = {}, model: str = None, preset: str = None, num_generations: int = None, max_tokens: int = None, temperature: float = None, k: int = None, p: float = None, frequency_penalty: float = None, presence_penalty: float = None, end_sequences: List[str] = None, stop_sequences: List[str] = None, return_likelihoods: str = None, truncate: str = None, logit_bias: Dict[int, float] = {}) -> Generations: json_body = { 'model': model, 'prompt': prompt, 'prompt_vars': prompt_vars, 'preset': preset, 'num_generations': num_generations, 'max_tokens': max_tokens, 'temperature': temperature, 'k': k, 'p': p, 'frequency_penalty': frequency_penalty, 'presence_penalty': presence_penalty, 'end_sequences': end_sequences, 'stop_sequences': stop_sequences, 'return_likelihoods': return_likelihoods, 'truncate': truncate, 'logit_bias': logit_bias, } response = self._executor.submit(self.__request, cohere.GENERATE_URL, json=json_body) return Generations(return_likelihoods=return_likelihoods, _future=response, client=self) def chat(self, query: str, session_id: str = "", persona: str = "cohere", model: str = None) -> Chat: json_body = { 'query': query, 'session_id': session_id, 'persona': persona, 'model': model, } response = self._executor.submit(self.__request, cohere.CHAT_URL, json=json_body) return Chat(query=query, persona=persona, _future=response, client=self) def embed(self, texts: List[str], model: str = None, truncate: str = 'NONE') -> Embeddings: responses = [] json_bodys = [] for i in range(0, len(texts), self.batch_size): texts_batch = texts[i:i + self.batch_size] json_bodys.append({ 'model': model, 'texts': texts_batch, 'truncate': truncate, }) if use_xhr_client: for json_body in json_bodys: response = self.__request(cohere.EMBED_URL, json=json_body) responses.append(response['embeddings']) else: for result in self._executor.map(lambda json_body: self.__request(cohere.EMBED_URL, json=json_body), json_bodys): responses.extend(result['embeddings']) return Embeddings(responses) def classify(self, inputs: List[str] = [], model: str = None, preset: str = None, examples: List[ClassifyExample] = [], truncate: str = None) -> Classifications: examples_dicts: list[dict[str, str]] = [] for example in examples: example_dict = {'text': example.text, 'label': example.label} examples_dicts.append(example_dict) json_body = { 'model': model, 'preset': preset, 'inputs': inputs, 'examples': examples_dicts, 'truncate': truncate, } response = self.__request(cohere.CLASSIFY_URL, json=json_body) classifications = [] for res in response['classifications']: labelObj = {} for label, prediction in res['labels'].items(): labelObj[label] = LabelPrediction(prediction['confidence']) classifications.append( Classification(res['input'], res['prediction'], res['confidence'], labelObj, client=self, id=res["id"])) return Classifications(classifications) def summarize(self, text: str, model: str = None, length: str = None, format: str = None, temperature: float = None, additional_instruction: str = None, abstractiveness: str = None) -> SummarizeResponse: """Return a generated summary of the specified length for the provided text. Args: text (str): Text to summarize. model (str): (Optional) ID of the model. length (str): (Optional) One of {"short", "medium", "long"}, defaults to "medium". \ Controls the length of the summary. format (str): (Optional) One of {"paragraph", "bullets"}, defaults to "bullets". \ Controls the format of the summary. abstractiveness (str) One of {"high", "medium", "low"}, defaults to "high". \ Controls how close to the original text the summary is. "Low" abstractiveness \ summaries will lean towards reusing sentences verbatim, while "high" abstractiveness \ summaries will tend to paraphrase more. temperature (float): Ranges from 0 to 5. Controls the randomness of the output. \ Lower values tend to generate more “predictable” output, while higher values \ tend to generate more “creative” output. The sweet spot is typically between 0 and 1. additional_instruction (str): (Optional) Modifier for the underlying prompt, must \ complete the sentence "Generate a summary _". Example: ``` res = co.summarize(text="Stock market report for today...") print(res.summary) ``` Example: ``` res = co.summarize( text="Stock market report for today...", model="summarize-xlarge", length="long", format="bullets", temperature=0.9, additional_instruction="focusing on the highest performing stocks") print(res.summary) ``` """ json_body = { 'model': model, 'text': text, 'length': length, 'format': format, 'temperature': temperature, 'additional_instruction': additional_instruction, 'abstractiveness': abstractiveness, } # remove None values from the dict json_body = {k: v for k, v in json_body.items() if v is not None} response = self.__request(cohere.SUMMARIZE_URL, json=json_body) return SummarizeResponse(id=response["id"], summary=response["summary"]) def batch_tokenize(self, texts: List[str]) -> List[Tokens]: return [self.tokenize(t) for t in texts] def tokenize(self, text: str) -> Tokens: json_body = {'text': text} return Tokens(_future=self._executor.submit(self.__request, cohere.TOKENIZE_URL, json=json_body)) def batch_detokenize(self, list_of_tokens: List[List[int]]) -> List[Detokenization]: return [self.detokenize(t) for t in list_of_tokens] def detokenize(self, tokens: List[int]) -> Detokenization: json_body = {'tokens': tokens} return Detokenization(_future=self._executor.submit(self.__request, cohere.DETOKENIZE_URL, json=json_body)) def detect_language(self, texts: List[str]) -> List[Language]: json_body = { "texts": texts, } response = self.__request(cohere.DETECT_LANG_URL, json=json_body) results = [] for result in response["results"]: results.append(Language(result["language_code"], result["language_name"])) return DetectLanguageResponse(results) def feedback(self, id: str, good_response: bool, desired_response: str = "", feedback: str = "") -> Feedback: """Give feedback on a response from the Cohere API to improve the model. Can be used programmatically like so: Example: a user accepts a model's suggestion in an assisted writing setting ``` generations = co.generate(f"Write me a polite email responding to the one below:\n{email}\n\nResponse:") if user_accepted_suggestion: generations[0].feedback(good_response=True) ``` Example: the user edits the model's suggestion ``` generations = co.generate(f"Write me a polite email responding to the one below:\n{email}\n\nResponse:") if user_edits_suggestion: generations[0].feedback(good_response=False, desired_response=user_edited_response) ``` Args: id (str): the `id` associated with a generation from the Cohere API good_response (bool): a boolean indicator as to whether the generation was good (True) or bad (False). desired_response (str): an optional string of the response expected. To be used when a mistake has been made or a better response exists. feedback (str): an optional natural language description of the specific feedback about this generation. Returns: Feedback: a Feedback object """ json_body = { 'id': id, 'good_response': good_response, 'desired_response': desired_response, 'feedback': feedback, } self.__request(cohere.FEEDBACK_URL, json_body) return Feedback(id=id, good_response=good_response, desired_response=desired_response, feedback=feedback) def rerank(self, query: str, documents: Union[List[str], List[Dict[str, Any]]], top_n: int = None) -> Reranking: """Returns an ordered list of documents ordered by their relevance to the provided query Args: query (str): The search query documents (list[str], list[dict]): The documents to rerank top_n (int): (optional) The number of results to return, defaults to returning all results """ parsed_docs = [] for doc in documents: if isinstance(doc, str): parsed_docs.append({'text': doc}) elif isinstance(doc, dict) and 'text' in doc: parsed_docs.append(doc) else: raise CohereError( message='invalid format for documents, must be a list of strings or dicts with a "text" key') json_body = { "query": query, "documents": parsed_docs, "top_n": top_n, "return_documents": False } reranking = Reranking(self.__request(cohere.RERANK_URL, json=json_body)) for rank in reranking.results: rank.document = parsed_docs[rank.index] return reranking def __print_warning_msg(self, response: Response): if 'X-API-Warning' in response.headers: print("\033[93mWarning: {}\n\033[0m".format(response.headers['X-API-Warning']), file=sys.stderr) def __pyfetch(self, url, headers, json_body) -> Response: req = XMLHttpRequest.new() req.open('POST', url, False) for key, value in headers.items(): req.setRequestHeader(key, value) try: req.send(json_body) except Exception: raise CohereError(message=req.responseText, http_status=req.status, headers=req.getAllResponseHeaders()) res = json.loads(req.response) if 'message' in res.keys(): raise CohereError(message=res['message'], http_status=req.status, headers=req.getAllResponseHeaders()) return res def __request(self, endpoint, json=None) -> Any: headers = { 'Authorization': 'BEARER {}'.format(self.api_key), 'Content-Type': 'application/json', 'Request-Source': self.request_source, } if self.cohere_version != '': headers['Cohere-Version'] = self.cohere_version url = urljoin(self.api_url, endpoint) if use_xhr_client: response = self.__pyfetch(url, headers, json.dumps(json)) self.__print_warning_msg(response) return response else: with requests.Session() as session: retries = Retry( total=self.max_retries, backoff_factor=0.5, allowed_methods=['POST', 'GET'], status_forcelist=[429, 500, 502, 503, 504] ) session.mount('https://', HTTPAdapter(max_retries=retries)) session.mount('http://', HTTPAdapter(max_retries=retries)) response = session.request('POST', url, headers=headers, json=json, **self.request_dict) try: res = response.json() except Exception: raise CohereError( message=response.text, http_status=response.status_code, headers=response.headers) if 'message' in res: # has errors raise CohereError( message=res['message'], http_status=response.status_code, headers=response.headers) self.__print_warning_msg(response) return res
[]
2024-01-10
Muhammad-Ahsan-Rasheed/cohere-python
cohere~chat.py
from concurrent.futures import Future from typing import Any, Dict, Optional from cohere.response import AsyncAttribute, CohereObject class Chat(CohereObject): """ A chat object. Attributes: query (str): The query text. persona (str): The persona name. reply (str): The reply text. session_id (str): The session ID. Methods: respond(response: str) -> Chat: Respond to the chat. Example: >>> chat = client.chat(query="Hello", persona="Alice") >>> chat.reply "Hello, how are you?" >>> chat.session_id "1234567890" >>> chat = chat.respond("I'm fine, thanks.") >>> chat.reply "That's good to hear." >>> chat.session_id "1234567890" """ def __init__(self, query: str, persona: str, response: Optional[Dict[str, Any]] = None, *, _future: Optional[Future] = None, **kwargs) -> None: super().__init__(**kwargs) self.query = query self.persona = persona if _future is not None: self._init_from_future(_future) else: assert response is not None self.reply = self._reply(response) self.session_id = self._session_id(response) def _init_from_future(self, future: Future): self.reply = AsyncAttribute(future, self._reply) self.session_id = AsyncAttribute(future, self._session_id) def _reply(self, response: Dict[str, Any]) -> str: return response['reply'] def _session_id(self, response: Dict[str, Any]) -> str: return response['session_id'] def respond(self, response: str) -> "Chat": return self.client.chat(query=response, session_id=self.session_id, persona=self.persona)
[]
2024-01-10
Muhammad-Ahsan-Rasheed/cohere-python
cohere~response.py
from concurrent.futures import Future from typing import Any, Callable, Iterator from xmlrpc.client import Boolean from cohere.feedback import Feedback class AsyncAttribute(): """An attribute of an object that is lazily fetched. `async_request` is a Future object that is expected to resolve to an object that will be consumed by `getter`. `getter` is a function that recieves the result of `async_request` and processes it into the desired attribute. `getter` is only called once and its result is cached. """ def __init__(self, async_request: Future, getter: Callable[..., Any]) -> None: self._request = async_request self._getter = getter self._resolved = False def __len__(self): return len(self.resolve()) def __iter_(self) -> Iterator: return iter(self.resolve()) def __repr__(self): return repr(self.resolve()) def __str__(self): return str(self.resolve()) def is_resolved(self) -> Boolean: return self._request.done() def resolve(self) -> Any: if "_result" in self.__dict__: return self._result self._result = self._getter(self._request.result()) return self._result class CohereObject(): def __init__(self, client=None, id: str = None) -> None: self.client = client self.id = id def __getattribute__(self, name: str) -> Any: attr = super().__getattribute__(name) if isinstance(attr, AsyncAttribute): return attr.resolve() else: return attr def __repr__(self) -> str: contents = '' exclude_list = ['iterator', 'client'] for k in self.__dict__.keys(): if k not in exclude_list: contents += f'\t{k}: {self.__dict__[k]}\n' output = f'cohere.{type(self).__name__} {{\n{contents}}}' return output def feedback(self, good_response: bool, desired_response: str = "", feedback: str = "") -> Feedback: """Give feedback on a response from the Cohere API to improve the model. Can be used programmatically like so: Example: a user accepts a model's suggestion in an assisted writing setting ``` generations = co.generate(f"Write me a polite email responding to the one below:\n{email}\n\nResponse:") if user_accepted_suggestion: generations[0].feedback(good_response=True) ``` Example: the user edits the model's suggestion ``` generations = co.generate(f"Write me a polite email responding to the one below:\n{email}\n\nResponse:") if user_edits_suggestion: generations[0].feedback(good_response=False, desired_response=user_edited_response) ``` Args: good_response (bool): a boolean indicator as to whether the generation was good (True) or bad (False). desired_response (str): an optional string of the response expected. To be used when a mistake has been made or a better response exists. feedback (str): an optional natural language description of the specific feedback about this generation. Returns: Feedback: a Feedback object """ return self.client.feedback(id=self.id, good_response=good_response, desired_response=desired_response, feedback=feedback)
[]
2024-01-10
solarapparition/agent-automata
agent_automata~builtin_toolkit~automaton_functions.py
"""Run a specific automaton and its sub-automata.""" from functools import partial import json from pathlib import Path from typing import Any, Callable, Mapping, Union from agent_automata.engines import load_engine from agent_automata.types import AutomatonRunner, Engine async def save_text_to_workspace( request: str, self_name: str, workspace_name: str ) -> str: """Save a file.""" try: input_json = json.loads(request) file_name = input_json["file_name"] content = input_json["content"] except (KeyError, json.JSONDecodeError): return "Could not parse input. Please provide the input in the following format: {file_name: <file_name>, description: <description>, content: <content>}" path: Path = Path(f"workspace/{workspace_name}/{file_name}") path.parent.mkdir(parents=True, exist_ok=True) path.write_text(str(content), encoding="utf-8") output = f"{self_name}: saved file to `{path.relative_to('workspace')}`" print(output) return output async def run_llm_assistant(request: str, engine: Engine) -> str: """Run an LLM assistant.""" from langchain.schema import SystemMessage, HumanMessage system_message = SystemMessage( content="You are a helpful assistant who can help generate a variety of content. However, if anyone asks you to access files, or refers to something from a past interaction, you will immediately inform them that the task is not possible, and provide no further information." ) request_message = HumanMessage(content=request) output = await engine([system_message, request_message]) print(output) return output def load_builtin_function( automaton_id: str, automata_location: Path, automaton_data: Mapping[str, Any], requester_id: str, ) -> AutomatonRunner: """Load an automaton function, which are basically wrappers around external functionality (including other agents).""" automaton_path = automata_location / automaton_id extra_args: Union[None, Mapping[str, Any]] = automaton_data.get("extra_args") if automaton_id == "llm_assistant": if ( extra_args is None or "engine" not in extra_args or extra_args["engine"] is None ): raise ValueError( f'Built-in automaton function `{automaton_id}` requires the "engine" value in the `extra_args` field of the spec.' ) engine_name: str = extra_args["engine"] engine: Engine = load_engine(automaton_path, engine_name) # type: ignore return partial(run_llm_assistant, engine=engine) elif automaton_id == "save_text": run = partial( save_text_to_workspace, self_name=automaton_data["name"], workspace_name=requester_id, ) elif automaton_id == "think": async def run(request: str) -> str: print(f"Thinking about: {request}") return request elif automaton_id == "finalize": async def run(request: str) -> str: print(f"Final Result:\n{request}") return request else: raise NotImplementedError(f"Unsupported function name: {automaton_id}.") return run
[ "You are a helpful assistant who can help generate a variety of content. However, if anyone asks you to access files, or refers to something from a past interaction, you will immediately inform them that the task is not possible, and provide no further information." ]
2024-01-10
solarapparition/agent-automata
agent_automata~builtin_toolkit~engines.py
"""Builtin LLM engines that can be used by automata.""" from typing import Any, Sequence, Union from agent_automata.types import Engine BUILTIN_ENGINES = {"gpt-3.5-turbo", "gpt-4"} def load_builtin_engine(name: str) -> Engine: """Load a builtin engine.""" if name in ["gpt-3.5-turbo", "gpt-4"]: from langchain.chat_models import ChatOpenAI model = ChatOpenAI(temperature=0, model_name=name, verbose=True) async def run_model(prompt: Union[str, Sequence[Any]], **kwargs: Any) -> str: if isinstance(prompt, str): return await model.apredict(prompt, **kwargs) return (await model.apredict_messages(prompt, **kwargs)).content return run_model raise ValueError(f"Engine {name} not part of builtin engines: `{BUILTIN_ENGINES}`")
[]
2024-01-10
sbucarion/computer-assitant
email_handler~email.py
import os import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.application import MIMEApplication from os.path import basename import openai import json import re import pyttsx3 from word2number import w2n import pyaudio import wave import speech_recognition as sr import sys gpt_stuff = r"" sys.path.insert(0, gpt_stuff) from gpt_commands import list_of_commands email_list = r"" sys.path.insert(0, email_list) from email_names import known_emails converter = pyttsx3.init() converter.setProperty('rate', 150) converter.setProperty('volume', 0.85) r = sr.Recognizer() FRAMES_PER_BUFFER = 3200 FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 16000 def pierre_speak(phrase): converter.say(phrase) converter.runAndWait() def multiple_attachment_listner(seconds): p = pyaudio.PyAudio() stream = p.open( format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=FRAMES_PER_BUFFER ) print("Pick a file number") frames = [] for i in range(0, int(RATE / FRAMES_PER_BUFFER * seconds)): data = stream.read(FRAMES_PER_BUFFER) frames.append(data) print("....") stream.stop_stream() stream.close() p.terminate() wf = wave.open("attachment_number.wav", 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(b''.join(frames)) wf.close() def audio_to_text(): with sr.AudioFile("attachment_number.wav") as source: audio = r.record(source) try: raw_text = r.recognize_google(audio, show_all=True) #show all prevents error if no audio data = raw_text['alternative'][0] print(data) return (data) except TypeError as e: #For when no audio is recognized return {"transcript": ""} def clean_command_params(raw_params): """Takes in a string of paramets from gpt and converts to python dict""" escape_cleaner = re.compile('(?<!\\\\)\'') #Remove new line characters from string new_text = [] for char in raw_params: if char != "\n": new_text.append(char) command_parameters = "".join(new_text) #Remove escape backslashes from string p = re.compile('(?<!\\\\)\'') command_parameters = p.sub('\"', command_parameters) json_commands = json.loads(command_parameters) #Convert string to JSON print(command_parameters) #remove file string from file path if json_commands["file_name"] != "": if "file" == json_commands["file_name"].split(".")[-1]: json_commands["file_name"] = " ".join(json_commands["file_name"].split(".")[:-1]) elif "file" == json_commands["file_name"].split()[-1]: json_commands["file_name"] = " ".join(json_commands["file_name"].split()[:-1]) json_commands["file_name"] = json_commands["file_name"].replace("/", " ").strip() #remove folder string from file path if json_commands["file_path"] != "": if "folder" == json_commands["file_path"].split()[-1]: json_commands["file_path"] = " ".join(json_commands["file_path"].split()[:-1]) json_commands["file_path"] = json_commands["file_path"].replace("/", " ").strip() return json_commands def extract_email_command(email_command): """Convert the command into a dictionary of parameters using gpt""" #This is where I will send off commands to my own model once build and return the parameters in this function openai.api_key = "" gpt_email_prompt = list_of_commands["send_email_commands"][0] + email_command + list_of_commands["send_email_commands"][1] response = openai.Completion.create( engine="text-davinci-002", prompt=gpt_email_prompt, max_tokens=700, temperature=0 ) text = response['choices'][0]['text'].lower() command_params = clean_command_params(text) #Converts email reciever name to actual address if command_params['to'].lower() in known_emails: command_params['to'] = known_emails[command_params['to']] return command_params def recursive_folder_search(folder_path, folder_list, file_list): for item in os.listdir(folder_path): possible_folder_path = (folder_path + "\\" + item) if not os.path.isdir(possible_folder_path): file_list.append(possible_folder_path) #loop over all items in a folder for item in os.listdir(folder_path): if item == "fullstack redo" or item == "node_modules": #Prevents use searching extremely large files where we know the item isnt continue possible_folder_path = (folder_path + "\\" + item) #if an item is a folder open it and check its folders if os.path.isdir(possible_folder_path): folder_list.append(possible_folder_path) recursive_folder_search(possible_folder_path, folder_list, file_list) return def verify_folder_path(path): # if path in global_paths: # #merge file path and name and check if it exists # #where I will have custom paths like desktop/homework # return #else: #Will only take main files like desktop (C:\Users\sbuca -> all folders in here) folder_path = "" for folder in [path, path.capitalize(), path.upper()]: folder = "~/" + folder folder_path = os.path.normpath(os.path.expanduser(folder)) if os.path.exists(folder_path): break folder_path = "" #Will stop searching if the folder doesnt exist if folder_path == "": return None return folder_path def find_file(folder_name, file_name): file_name = file_name.lower() matched_files = [] folder_path = verify_folder_path(folder_name) if folder_path: #If the desired path if found recurse through every folder in it folder_list = [] file_list = [] recursive_folder_search(folder_path, folder_list, file_list) for file in file_list: split_file = file.split("\\")[-1].split(".")[0] if file_name in split_file.lower(): print(file, split_file) matched_files.append(file) # distance = lev.distance(Str1,Str2) # ratio = lev.ratio(Str1,Str2) return matched_files if matched_files != [] else "No Files Found" def attachment_manager(all_files): """Handles all the files found given the name and folder manages when multiple files are found""" pierre_phrase = """I found {} files within that directory I will list them out now and you say the number of which one is correct""".format(len(all_files)) pierre_speak(pierre_phrase) files_by_index = {} for i, file in enumerate(all_files): file_name = file.split("\\")[-1] file_name = file_name.replace("_", " ") files_by_index[str(i+1)] = file_name pierre_speak("{}, {}".format([i+1], file_name)) print(files_by_index) file_attachment_number = "" while file_attachment_number == "": multiple_attachment_listner(seconds=3) file_attachment_number = audio_to_text()["transcript"] if "repeat" in file_attachment_number.lower(): #file_attachment_number = "" return attachment_manager(all_files) if file_attachment_number == "": continue if len(file_attachment_number) == 1: #Good to go return all_files[int(file_attachment_number)-1] else: print(file_attachment_number) for word in file_attachment_number.split(): if word == "to" or word == "too": word = "two" try: file_attachment_number = w2n.word_to_num(word) return all_files[int(file_attachment_number)-1] except ValueError as e: print(word) continue file_attachment_number = "" def attachment_file_handler(folder_name, file_name): files = find_file(folder_name, file_name) if files == "No Files Found": #handle it return None if len(files) == 1: return files[0] return attachment_manager(files) def add_attachment(msg, file_path): with open(file_path, "rb") as fil: part = MIMEApplication( fil.read(), Name=basename(file_path) ) # After the file is closed part['Content-Disposition'] = 'attachment; filename="%s"' % basename(file_path) msg.attach(part) def pacakge_email_data(sender, email_params): msg = MIMEMultipart() msg['From'] = sender msg['To'] = email_params['to'] msg['Subject'] = email_params['subject'] #Add body to email body = MIMEText(email_params['body']) msg.attach(body) #Add atachment to email -> Update in futrue to have multiple if email_params['file_path'] != "" and email_params['file_name'] != "": attachment_file_path = attachment_file_handler(email_params['file_path'], email_params['file_name']) if attachment_file_path: add_attachment(msg, attachment_file_path) else: return "Could Not Find File" return msg def send_email(sender, sender_password, receiver, email_data): server = smtplib.SMTP_SSL('smtp.gmail.com', 465) server.ehlo() server.login(sender, sender_password) server.sendmail(sender, receiver, email_data.as_string()) server.close() return "Success" def email_main(email_command, email_params=""): email_sender = "" email_app_password = "" email_params = extract_email_command(email_command) print(email_params) email_data = pacakge_email_data(email_sender, email_params) status = send_email(email_sender, email_app_password, email_params["to"], email_data) if __name__ == "__main": email_main(email_command, email_params="")
[ "send_email_commands" ]
2024-01-10
sotot0/gem5
configs~example~gem5_library~riscv-ubuntu-run.py
# Copyright (c) 2021 The Regents of the University of California # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ This script shows an example of running a full system RISCV Ubuntu boot simulation using the gem5 library. This simulation boots Ubuntu 20.04 using 2 TIMING CPU cores. The simulation ends when the startup is completed successfully. Usage ----- ``` scons build/RISCV/gem5.opt ./build/RISCV/gem5.opt \ configs/example/gem5_library/riscv-ubuntu-run.py ``` """ import m5 from m5.objects import Root from gem5.utils.requires import requires from gem5.components.boards.riscv_board import RiscvBoard from gem5.components.memory import DualChannelDDR4_2400 from gem5.components.processors.simple_processor import ( SimpleProcessor, ) from gem5.components.processors.cpu_types import CPUTypes from gem5.isas import ISA from gem5.coherence_protocol import CoherenceProtocol from gem5.resources.resource import Resource from gem5.simulate.simulator import Simulator # This runs a check to ensure the gem5 binary is compiled for RISCV. requires( isa_required=ISA.RISCV, ) # With RISCV, we use simple caches. from gem5.components.cachehierarchies.classic\ .private_l1_private_l2_cache_hierarchy import ( PrivateL1PrivateL2CacheHierarchy, ) # Here we setup the parameters of the l1 and l2 caches. cache_hierarchy = PrivateL1PrivateL2CacheHierarchy( l1d_size="16kB", l1i_size="16kB", l2_size="256kB", ) # Memory: Dual Channel DDR4 2400 DRAM device. memory = DualChannelDDR4_2400(size = "3GB") # Here we setup the processor. We use a simple processor. processor = SimpleProcessor( cpu_type=CPUTypes.TIMING, isa=ISA.RISCV, num_cores=2, ) # Here we setup the board. The RiscvBoard allows for Full-System RISCV # simulations. board = RiscvBoard( clk_freq="3GHz", processor=processor, memory=memory, cache_hierarchy=cache_hierarchy, ) # Here we set the Full System workload. # The `set_kernel_disk_workload` function for the RiscvBoard accepts a # RISCV bootloader and a disk image. Once the system successfully boots, it # encounters an `m5_exit instruction encountered`. We stop the simulation then. # When the simulation has ended you may inspect `m5out/system.pc.com_1.device` # to see the stdout. board.set_kernel_disk_workload( # The RISCV bootloader will be automatically downloaded to the # `~/.cache/gem5` directory if not already present. # The riscv-ubuntu boot-test was tested with riscv-bootloader-5.10 kernel=Resource( "riscv-bootloader-vmlinux-5.10", ), # The RISCV ubuntu image will be automatically downloaded to the # `~/.cache/gem5` directory if not already present. disk_image=Resource( "riscv-ubuntu-20.04-img", ), ) simulator = Simulator(board=board) simulator.run()
[]
2024-01-10
mikkac/ask_pdf
ask_pdf~rag_chat.py
""" Converstaion handler for Retriever-Augmented Generation (RAG) model. """ import openai from llama_index import (ServiceContext, SimpleDirectoryReader, StorageContext, VectorStoreIndex) from llama_index.indices.postprocessor import SentenceTransformerRerank from llama_index.llms import OpenAI from llama_index.query_engine import RetrieverQueryEngine from llama_index.retrievers import AutoMergingRetriever from llama_index.vector_stores import QdrantVectorStore from qdrant_client import QdrantClient class RAGChat: """ A class to handle conversation with a Retriever-Augmented Generation (RAG) model. Attributes: automerging_query_engine: Engine to handle RAG queries. Methods: create_embeddings(file): Processes a file to create embeddings. send_message(user_msg): Sends a message to the RAG model and returns the response. """ def __init__(self, openai_api_key, qdrant_url): """ Initializes the RAGChat with a specified token limit for conversation history and OpenAI API key. Args: openai_api_key (str): OpenAI API key for accessing GPT-3 services. """ openai.api_key = openai_api_key self.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1) self.qdrant_url = qdrant_url self.automerging_index = None self.automerging_query_engine = None # TODO: Make sure that all models are downloaded before first file upload def create_embeddings(self, file): """ Processes the given file to create and store embeddings. Args: file (str): Path to the file to be processed. """ documents = SimpleDirectoryReader(input_files=[file]).load_data() self.automerging_index = self._build_automerging_index(documents, self.llm) self.automerging_query_engine = self._get_automerging_query_engine( self.automerging_index ) def send_message(self, user_msg): """ Sends a user message to the RAG model and returns the model's response. The method formats the input to include both the conversation history and the new user message. Args: user_msg (str): The user's message to send to the model. Returns: str: The response generated by the RAG model. """ return str(self.automerging_query_engine.query(user_msg)) def _build_automerging_index( self, documents, llm, embed_model="local:BAAI/bge-small-en-v1.5", ): """ Builds an automerging index from the given documents using the specified language model and embedding model. Args: documents (list): A list of documents to be indexed. llm: The language model to be used for indexing. embed_model (str, optional): The embedding model to be used. Defaults to "local:BAAI/bge-small-en-v1.5". save_dir (str, optional): The directory where the index is to be saved. Defaults to "merging_index". Returns: An automerging index created from the provided documents and models. """ qdrant_client = QdrantClient(url=self.qdrant_url) service_context = ServiceContext.from_defaults( llm=llm, embed_model=embed_model, ) vector_store = QdrantVectorStore(client=qdrant_client, collection_name="docs") storage_context = StorageContext.from_defaults(vector_store=vector_store) return VectorStoreIndex.from_documents( documents, storage_context=storage_context, service_context=service_context ) def _get_automerging_query_engine( self, automerging_index, similarity_top_k=12, rerank_top_n=2 ): """ Creates a query engine using the provided automerging index. Args: automerging_index: The automerging index to be used for creating the query engine. similarity_top_k (int, optional): The number of top similar items to retrieve. Defaults to 12. rerank_top_n (int, optional): The number of top items to rerank. Defaults to 2. Returns: A query engine built using the provided automerging index and specified parameters. """ base_retriever = automerging_index.as_retriever( similarity_top_k=similarity_top_k ) retriever = AutoMergingRetriever( base_retriever, automerging_index.storage_context, verbose=True ) rerank = SentenceTransformerRerank( top_n=rerank_top_n, model="BAAI/bge-reranker-base" ) auto_merging_engine = RetrieverQueryEngine.from_args( retriever, node_postprocessors=[rerank] ) return auto_merging_engine
[]
2024-01-10
aaronwangj/qg-ai
qgai.py
from fastapi import FastAPI, UploadFile, Form from fastapi.middleware.cors import CORSMiddleware import openai import os openai.api_key = os.environ.get("OPENAI_KEY") content = """ You are grading a student's response. You will return JSON without any new lines that looks like this: "{ accuracy: int; clarity: int; depth: int; overallScore: int; answer: string; feedback: string; }". Your output should be able to be parsed by a JSON.parse() function. The accuracy field is how accurate the student’s response is out of 100. The clarity field is how clear the student’s response is out of 100. The depth field grades the student’s depth out of 100. The overallScore field grades the student’s overall response out of 100. The answer field is an extensive, thorough answer to the prompt. The feedback field is your written feedback to the student’s response, which should be very extensive and explain how the student can improve. Here is the prompt: """ app = FastAPI() origins = ["https://qg-admin.vercel.app/", "https://www.quantguide.io/", "https://quantguide.io/", "https://quant-guide-app-git-dev-quantguide.vercel.app/", "https://www.quant-guide-app-git-dev-quantguide.vercel.app/"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], expose_headers=["*"]) @app.get("/") def test(): return {"message": "quantguide.io"} @app.post("/ai") def ai(file: UploadFile, prompt: str = Form(...)): try: contents = file.file.read() with open(file.filename, "wb") as f: f.write(contents) transcription = get_transcription(file) response = openai.ChatCompletion.create( model="gpt-4", messages=[ { "role": "system", "content": content + prompt, }, { "role": "user", "content": transcription, }, ], temperature=0.8, max_tokens=1024, top_p=1, frequency_penalty=0, presence_penalty=0, ) return {"feedback": response["choices"][0]["message"]["content"], "transcript": transcription} except Exception as e: return {"message": e} finally: file.file.close() if os.path.exists(file.filename): os.remove(file.filename) def get_transcription(file): try: text = "" with open(file.filename, "rb") as f: text = openai.Audio.transcribe("whisper-1", f)["text"] return text finally: if os.path.exists(file.filename): os.remove(file.filename) @app.post("/transcribe") def transcribe(file: UploadFile): try: contents = file.file.read() with open(file.filename, "wb") as f: f.write(contents) return get_transcription(file) except Exception as e: return {"message": e} finally: file.file.close() if os.path.exists(file.filename): os.remove(file.filename) @app.post("/ai-text") def ai_text(text: str = Form(...), prompt: str = Form(...)): response = openai.ChatCompletion.create( model="gpt-4", messages=[ { "role": "system", "content": content + prompt, }, { "role": "user", "content": text, }, ], temperature=0.8, max_tokens=1024, top_p=1, frequency_penalty=0, presence_penalty=0, ) return {"feedback": response["choices"][0]["message"]["content"], "transcript": text}
[ "\nYou are grading a student's response. You will return JSON without any new lines that looks like this:\n\"{\n accuracy: int;\n clarity: int;\n depth: int;\n overallScore: int;\n answer: string;\n feedback: string;\n}\". \nYour output should be able to be parsed by a JSON.parse() function.\n\nThe accuracy field is how accurate the student’s response is out of 100.\nThe clarity field is how clear the student’s response is out of 100.\nThe depth field grades the student’s depth out of 100.\nThe overallScore field grades the student’s overall response out of 100.\nThe answer field is an extensive, thorough answer to the prompt.\nThe feedback field is your written feedback to the student’s response, which should be very extensive and explain how the student can improve.\n\nHere is the prompt: \nPLACEHOLDER" ]
2024-01-10
YuehChuan/chatgpt-api-whisper-api-voice-assistant
therapist.py
import gradio as gr import openai, config, subprocess openai.api_key = config.OPENAI_API_KEY messages = [{"role": "system", "content": 'You are a therapist. Respond to all input in 25 words or less.'}] def transcribe(audio): global messages audio_file = open(audio, "rb") transcript = openai.Audio.transcribe("whisper-1", audio_file) messages.append({"role": "user", "content": transcript["text"]}) response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages) system_message = response["choices"][0]["message"] messages.append(system_message) subprocess.call(["say", system_message['content']]) chat_transcript = "" for message in messages: if message['role'] != 'system': chat_transcript += message['role'] + ": " + message['content'] + "\n\n" return chat_transcript ui = gr.Interface(fn=transcribe, inputs=gr.Audio(source="microphone", type="filepath"), outputs="text").launch() ui.launch()
[ "You are a therapist. Respond to all input in 25 words or less." ]
2024-01-10
goML-offers/data_set
app~services~asset_creation.py
from supabase import Client, create_client import pandas as pd import json import numpy as np import openai # from diffusers import DiffusionPipeline # import torch from PyPDF2 import PdfReader from langchain.embeddings import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.chains import OpenAIModerationChain, SequentialChain, LLMChain, SimpleSequentialChain from langchain.prompts import PromptTemplate from langchain.llms import OpenAI import os import cv2 from PIL import Image from PIL import ImageDraw, ImageFont from colormath.color_objects import sRGBColor, LabColor from colormath.color_conversions import convert_color from datetime import datetime import logging from dotenv import load_dotenv, find_dotenv timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') load_dotenv() logger = logging.getLogger(__name__) log_file_path = f'/app/app/logs/asset_{timestamp}.log' file_handler = logging.FileHandler(log_file_path) console_handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(message)s') file_handler.setFormatter(formatter) console_handler.setFormatter(formatter) logger.addHandler(file_handler) logger.addHandler(console_handler) logger.setLevel(logging.INFO) OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY AWS_ACCESS_KEY = os.environ.get("AWS_ACCESS_KEY") AWS_SECRET_ACCESS_KEY = os.environ.get("AWS_SECRET_ACCESS_KEY") SUPABASE_URL = os.environ.get("SUPABASE_URL") SUPABASE_KEY = os.environ.get("SUPABASE_KEY") supabase_bucket = 'solarplexus' SUPABASE_HOST= os.environ.get("SUPABASE_HOST") SUPABASE_PASSWORD= os.environ.get("SUPABASE_PASSWORD") try: supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY) logger.info('Supabase connection successfull') # pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32, use_safetensors=True, variant="fp16") # commandline_args = os.environ.get('COMMANDLINE_ARGS', "--skip-torch-cuda-test --no-half") except Exception as e: print(f"Error connecting to Supabase: {e}") logger.error(e) def fetch_table_data(table_name): table_response = supabase.from_(table_name).select("*").execute() table_data_raw = [record for record in table_response.data] print(table_data_raw) # table = "segment_metadata" # updates = { # "process_id" : process_id # } # response_update = supabase.from_(table).update(updates).eq("id", segment_id).execute() # update_d = [record for record in response_update.data] table_data_json = json.dumps(table_data_raw) table= json.loads(table_data_json) # update_segment_id = update[0]['id'] # print(update_segment_id) return table def generate_text(cluster_description, categorical_description, asset_to_individulize_file, tone_of_voice): prompt = f"""generate a different marketing asset image for a brand Solarplexus, to target big industries, text should have font as Raleway and secondary font as Open Sans, image should have primary colour code should be #EB691B and secondary color code should be #4B4B4B, and generate images based on these cluster description {cluster_description} {categorical_description}""" # response = openai.ChatCompletion.create( # # model="gpt-3.5-turbo-0613", # model= "gpt-4", # # model = "gpt-3.5-turbo-16k", # # model="gpt-4-0613", # messages=[ # {"role": "user", # "content": f"""generate a very professional marketing asset # text for a brand to place on the image, to target big financial industries the text generate should be # very specific and should be based on these descriptions {cluster_description} {categorical_description} that it will be targetted for."""}, # ] # ) # result = '' # for choice in response.choices: # result += choice.message.content # print(result) reader = PdfReader(asset_to_individulize_file) raw_text = '' for i, page in enumerate(reader.pages): text = page.extract_text() if text: raw_text += text print(raw_text[:100]) # We need to split the text that we read into smaller chunks so that during information retreival we don't hit the token size limits. text_splitter = CharacterTextSplitter( separator = "\n", chunk_size = 1000, chunk_overlap = 200, length_function = len, ) texts = text_splitter.split_text(raw_text) # Download embeddings from OpenAI embeddings = OpenAIEmbeddings() docsearch = FAISS.from_texts(texts, embeddings) chain = load_qa_chain(OpenAI(), chain_type="stuff") llm_answer_list = [] ques = f"""convert the result to short summary in one line based on the cluster description {cluster_description} and {categorical_description}, make the results proper and different based on the industry the cluster is focused and the answer should be very clear. The tone of the document should be in {tone_of_voice}. Don't give me anything else. The result should be attractive that can be used for marketing campaigns.""" docs = docsearch.similarity_search(ques) llm_answer = chain.run(input_documents=docs, question=ques) print("llm_answer----------->", llm_answer) return llm_answer def get_extracted_data(extraction_id_brand, extraction_id_tone): query = supabase.from_("data_extraction").select("*").eq("extraction_id", extraction_id_brand).execute() update_d = [record for record in query.data] print(update_d) color_data = json.dumps(update_d) color = json.loads(color_data) llm_answer = color[0]["llm_answer"] print(type(llm_answer)) print(llm_answer) answer = json.loads(llm_answer) # Create variables to store answers primary_color = None brand_name = None primary_font = None secondary_color = None secondary_font = None # Process the list of dictionaries for item in answer: question = item['question'] answer = item['answer'] if "primary colour code" in question: primary_color = answer elif "brand name" in question: brand_name = answer elif "primary font" in question: primary_font = answer elif "secondary colour code" in question: secondary_color = answer elif "secondary font" in question: secondary_font = answer # Print the stored answers print("Primary Color:", primary_color) print("Brand Name:", brand_name) print("Primary Font:", primary_font) print("Secondary Color:", secondary_color) print("Secondary Font:", secondary_font) response = supabase.from_("data_extraction").select("*").eq("extraction_id", extraction_id_tone).execute() response_d = [record for record in response.data] print(response_d) tone_data = json.dumps(response_d) tone = json.loads(tone_data) tone_llm_answer = tone[0]["llm_answer"] print(type(tone_llm_answer)) print(tone_llm_answer) tone_answer = json.loads(tone_llm_answer) # Create variables to store answers tone_of_voice = None # Process the list of dictionaries for item in tone_answer: question = item['question'] answer = item['answer'] if "tone of voice" in question: tone_of_voice = answer # Print the stored answers print("tone of voice:", tone_of_voice) return {"primary_color": primary_color, "secondary_color": secondary_color, "primary_font": primary_font, "secondary_font":secondary_font, "brand_name": brand_name, "tone_of_voice": tone_of_voice} def get_rgb_colors(primary_color, secondary_color): rgb_color = openai.ChatCompletion.create( # model="gpt-3.5-turbo-0613", model= "gpt-4", # model = "gpt-3.5-turbo-16k", # model="gpt-4-0613", messages=[ {"role": "user", "content": f"""Generate RGB of color {primary_color} and color {secondary_color} and give me a json format strictly only in Red Green Blue nested dictionary and nothing else. You can consider this as an example to generate you result: EXAMPLE: """ + """{"EB691B": { "Red": 235,"Green": 105"Blue": 27},"4B4B4B": { "Red": 75,"Green": 75,"Blue": 75},"95CDED": {"Red": 149,"Green": 205, "Blue": 237}}"""}, ] ) rgb_result = '' for choice in rgb_color.choices: rgb_result += choice.message.content print(rgb_result) print(type(rgb_result)) "------------------------covert to json------------------------------" colors = json.loads(rgb_result) print(colors) print(type(colors)) "------------------------reading rgb from json------------------------" # Initialize variables for primary and secondary colors primary_color_rgb = () secondary_color_rgb = () # Iterate through the dictionary and store RGB values for the first two keys for idx, (key, rgb_values) in enumerate(colors.items()): if idx == 0: primary_color_rgb = (rgb_values['Red'], rgb_values['Green'], rgb_values['Blue']) elif idx == 1: secondary_color_rgb = (rgb_values['Red'], rgb_values['Green'], rgb_values['Blue']) else: break # Only store values for the first two keys # Print the stored RGB values print(f"Primary Color: {primary_color_rgb}") print(f"Secondary Color: {secondary_color_rgb}") return {"primary_color_rgb": primary_color_rgb, "secondary_color_rgb": secondary_color_rgb} def fetch_background_image(file_id_background_image): type = "picture_bank" user = supabase.from_("file_data").select("*").eq("id",file_id_background_image).eq("type", type).execute() user_data = [record for record in user.data] print("user_data",user_data) data = json.dumps(user_data) d = json.loads(data) file_path = d[0]["path"] file_type = d[0]["type"] try: local_file_path = f'/app/app/services/files/{file_path.split("/")[-1]}' print(local_file_path) print(file_path) with open(local_file_path, 'wb+') as f: data = supabase.storage.from_(supabase_bucket).download(file_path) f.write(data) except Exception as e: logging.error('An error occurred:', exc_info=True) return local_file_path # fetch_background_image(803) def fetch_logo(file_id_log): type = "logo" user = supabase.from_("file_data").select("*").eq("id",file_id_log).eq("type", type).execute() user_data = [record for record in user.data] print("user_data",user_data) data = json.dumps(user_data) d = json.loads(data) file_path = d[0]["path"] file_type = d[0]["type"] try: local_file_path = f'/app/app/services/files/{file_path.split("/")[-1]}' print(local_file_path) print(file_path) with open(local_file_path, 'wb+') as f: data = supabase.storage.from_(supabase_bucket).download(file_path) f.write(data) except Exception as e: logging.error('An error occurred:', exc_info=True) return local_file_path def fetch_asset_individualize(project_id): group = "asset" user = supabase.from_("project_files").select("*").eq("project_id",project_id).eq("group", group).execute() user_data = [record for record in user.data] print("user_data",user_data) data = json.dumps(user_data) d = json.loads(data) file_path = d[0]["path"] file_group = d[0]["group"] try: local_file_path = f'/app/app/services/files/{file_path.split("/")[-1]}' print(local_file_path) print(file_path) with open(local_file_path, 'wb+') as f: data = supabase.storage.from_(supabase_bucket).download(file_path) f.write(data) except Exception as e: logging.error('An error occurred:', exc_info=True) return local_file_path def combine_text_image(cluster_id, background_image_path, logo_path, asset_to_individualize, primary_color_rgb, secondary_color_rgb): base_image = Image.open(background_image_path) # Initialize the drawing context draw = ImageDraw.Draw(base_image) # Set primary and secondary colors primary_color_rgb = primary_color_rgb # (R, G, B) for #EB691B secondary_color_rgb = secondary_color_rgb # (R, G, B) for #4B4B4B # Yellow C100%, Pantone 281 C100% # Use built-in fonts primary_font = ImageFont.load_default() # Use the default font secondary_font = ImageFont.load_default() # Use the default font # Set the text to be displayed # text = "Empower Your Legacy Giants with our premier solutions. Captivating 8,200+ financial industries and counting, our robust marketing tools are uniquely designed to serve your distinct needs. Embrace efficiency, cultivate growth and be a part of the top-financial trendsetters across the United Kingdom. Propel your business forward in a landscape dominated by Kingsley Napley LLP and others. Join the movement - Experience difference with us." # text = result text = asset_to_individualize # Set the text position for the primary color text_position_primary = (20, 80) # Draw text in primary color with default font draw.text(text_position_primary, text, fill=primary_color_rgb, font=primary_font) # Load the overlay image # logo = Image.open("arkitektkopia-loggo-ritsPP-cmyk.png") logo = Image.open(logo_path) # You may need to resize the overlay image to fit logo = logo.resize((80, 50)) # Adjust the size as needed # Paste the overlay image on top of the base image base_image.paste(logo, (400, 20)) # Save the modified image asset_path = f"asset_{cluster_id}.jpg" base_image.save(asset_path) # Display the modified image # base_image.show() return asset_path # def combine_text_image(cluster_id, background_image_path, logo_path, asset_to_individualize, primary_color_rgb, secondary_color_rgb): # base_image = Image.open(background_image_path) # draw = ImageDraw.Draw(base_image) # primary_color_rgb = primary_color_rgb # font_size = 20 # # Use the truetype font # primary_font = ImageFont.load_default() # Use the default font # secondary_font = ImageFont.load_default() # font = ImageFont.truetype(primary_font, font_size) # text = asset_to_individualize # text_width, text_height = primary_font.getsize(text) # text_x = (base_image.width - text_width) // 2 # text_y = (base_image.height - text_height) // 2 # draw.text((text_x, text_y), text, fill=primary_color_rgb, font=primary_font) # logo = Image.open(logo_path) # logo = logo.resize((80, 50)) # base_image.paste(logo, (400, 20)) # asset_path = f"asset_{cluster_id}.jpg" # base_image.save(asset_path) # return asset_path def asset_creation(table_name, user_id, project_id, extraction_id_brand, extraction_id_tone, file_id_log, file_id_background_image): print("entered") process_id = None try: process_data_insert = [ { "user_id" :user_id, "process_type": "asset_creation", "process_status": "in_progress", "start_at" : datetime.now().isoformat() }, ] process= supabase.from_("process").insert(process_data_insert).execute() process_data = [record for record in process.data] p_data = json.dumps(process_data) p = json.loads(p_data) process_id = p[0]["process_id"] print("process table:*******************", p) # table_name = "segment_47b0ffec-356a-4c35-8704-23b153d345c5_1087" "--------------------------------------------------------------------" """# Read data from Supabase query = f"SELECT * FROM {table_name}" response = supabase.from_(table_name).select("*").execute() update_d = [record for record in response.data] print(update_d) # table = "segment_metadata" # updates = { # "process_id" : process_id # } # response_update = supabase.from_(table).update(updates).eq("id", segment_id).execute() # update_d = [record for record in response_update.data] response_u = json.dumps(update_d) update= json.loads(response_u) update_segment_id = update[0]['id'] print(update_segment_id)""" "--------------------------------------------------------------------" background_image_path = fetch_background_image(file_id_background_image) logo_path = fetch_logo(file_id_log) table = fetch_table_data(table_name) # Convert the data to a Pandas DataFrame df = pd.DataFrame(table) # Group the data by the cluster column cluster_column = "Cluster" grouped_clusters = df.groupby(cluster_column) categorical_columns = df.select_dtypes(exclude=[np.number]) result_filenames = [] asset_id = [] asset_path = [] for cluster_id, cluster_data in grouped_clusters: # Perform operations on cluster_data # You can access each cluster's data using cluster_data # For example, to get the description of the cluster: # cluster_description = cluster_data["description"].iloc[0] # print(f"Cluster Name: {cluster_name}, Description: {cluster_description}") # Descriptive statistics for each cluster cluster_description = df[df['Cluster'] == cluster_id].describe() print(cluster_description) # Descriptive statistics for categorical columns categorical_cluster_data = categorical_columns[df['Cluster'] == cluster_id] categorical_description = categorical_cluster_data.describe() # print("Categorical Column Statistics:") # print(categorical_description) print(f"Cluster Name: {cluster_id} {cluster_description} {categorical_description}") "--------------------------------------------------------------------" # prompt = f"""generate a marketing asset image for a brand Solarplexus, to target big industries, # text should have font as Raleway and secondary font as Open Sans, image should have primary # colour code should be #EB691B and secondary color code should be #4B4B4B, and generate images based on these cluster # description {cluster_description} {categorical_description}""" # image = pipe(prompt).images[0] # print(image) # filename = f'result_{cluster_id}.jpg' # image.save(filename) # print(filename) # result_filenames.append(filename) # """response = openai.ChatCompletion.create( # # model="gpt-3.5-turbo-0613", # model= "gpt-4", # # model = "gpt-3.5-turbo-16k", # # model="gpt-4-0613", # messages=[ # {"role": "user", # "content": f"""generate a very professional marketing asset # text for a brand to place on the image, to target big financial industries the text generate should be # very specific and should be based on these descriptions {cluster_description} {categorical_description} that it will be targetted for."""}, # ] # ) # result = '' # for choice in response.choices: # result += choice.message.content # print(result)""" "--------------------------------------------------------------------" extracted_data = get_extracted_data(extraction_id_brand, extraction_id_tone) primary_color = extracted_data["primary_color"] secondary_color = extracted_data["secondary_color"] primary_font = extracted_data["primary_font"] secondary_font = extracted_data["secondary_font"] brand_name = extracted_data["brand_name"] tone_of_voice = extracted_data["tone_of_voice"] asset_to_individulize_file = fetch_asset_individualize(project_id) asset_to_individualize = generate_text(cluster_description, categorical_description, asset_to_individulize_file, tone_of_voice) "--------------------------------------------------------------------" "------------------------get color from db----------------------------" # extraction_id = 789 """query = supabase.from_("data_extraction").select("*").eq("extraction_id", extraction_id).execute() update_d = [record for record in query.data] print(update_d) color_data = json.dumps(update_d) color = json.loads(color_data) llm_answer = color[0]["llm_answer"] print(type(llm_answer)) print(llm_answer) answer = json.loads(llm_answer) # Create variables to store answers primary_color = None brand_name = None primary_font = None secondary_color = None secondary_font = None # Process the list of dictionaries for item in answer: question = item['question'] answer = item['answer'] if "primary colour code" in question: primary_color = answer elif "brand name" in question: brand_name = answer elif "primary font" in question: primary_font = answer elif "secondary colour code" in question: secondary_color = answer elif "secondary font" in question: secondary_font = answer # Print the stored answers print("Primary Color:", primary_color) print("Brand Name:", brand_name) print("Primary Font:", primary_font) print("Secondary Color:", secondary_color) print("Secondary Font:", secondary_font)""" "--------------------------------------------------------------------" "--------------------------generate rgb color-------------------------" # primary = "Yellow C100%, Pantone 281 C100%" # secondary = "" "--------------------------------------------------------------------" # rgb_color = openai.ChatCompletion.create( # # model="gpt-3.5-turbo-0613", # model= "gpt-4", # # model = "gpt-3.5-turbo-16k", # # model="gpt-4-0613", # messages=[ # {"role": "user", # "content": f"""Generate RGB of color {primary_color} and color {secondary_color} and give me a json format in Red Green Blue nested dictionary and nothing else"""}, # ] # ) # rgb_result = '' # for choice in rgb_color.choices: # rgb_result += choice.message.content # print(rgb_result) # print(type(rgb_result)) # "------------------------covert to json------------------------------" # colors = json.loads(rgb_result) # print(colors) # print(type(colors)) # "------------------------reading rgb from json------------------------" # # Initialize variables for primary and secondary colors # primary_color_rgb = () # secondary_color_rgb = () # # Iterate through the dictionary and store RGB values for the first two keys # for idx, (key, rgb_values) in enumerate(colors.items()): # if idx == 0: # primary_color_rgb = (rgb_values['Red'], rgb_values['Green'], rgb_values['Blue']) # elif idx == 1: # secondary_color_rgb = (rgb_values['Red'], rgb_values['Green'], rgb_values['Blue']) # else: # break # Only store values for the first two keys # # Print the stored RGB values # print(f"Primary Color: {primary_color_rgb}") # print(f"Secondary Color: {secondary_color_rgb}") "--------------------------------------------------------------------" rgb_colors = get_rgb_colors(primary_color, secondary_color) primary_color_rgb = rgb_colors['primary_color_rgb'] secondary_color_rgb = rgb_colors['secondary_color_rgb'] "--------------------------------------------------------------------" "------------------------reading image----------------------" """# filename = f'result_{cluster_id}.jpg' # Load the existing image base_image = Image.open(background_image_path) # Initialize the drawing context draw = ImageDraw.Draw(base_image) # Set primary and secondary colors primary_color_rgb = primary_color_rgb # (R, G, B) for #EB691B secondary_color_rgb = secondary_color_rgb # (R, G, B) for #4B4B4B # Yellow C100%, Pantone 281 C100% # Use built-in fonts primary_font = ImageFont.load_default() # Use the default font secondary_font = ImageFont.load_default() # Use the default font # Set the text to be displayed # text = "Empower Your Legacy Giants with our premier solutions. Captivating 8,200+ financial industries and counting, our robust marketing tools are uniquely designed to serve your distinct needs. Embrace efficiency, cultivate growth and be a part of the top-financial trendsetters across the United Kingdom. Propel your business forward in a landscape dominated by Kingsley Napley LLP and others. Join the movement - Experience difference with us." # text = result text = asset_to_individualize # Set the text position for the primary color text_position_primary = (100, 100) # Draw text in primary color with default font draw.text(text_position_primary, text, fill=primary_color_rgb, font=primary_font) # Load the overlay image # logo = Image.open("arkitektkopia-loggo-ritsPP-cmyk.png") logo = Image.open(logo_path) # You may need to resize the overlay image to fit logo = logo.resize((100, 100)) # Adjust the size as needed # Paste the overlay image on top of the base image base_image.paste(logo, (200, 200)) # Save the modified image base_image.save(f"asset_{cluster_id}.jpg") # Display the modified image base_image.show()""" "--------------------------------------------------------------------" local_asset_path = combine_text_image(cluster_id, background_image_path, logo_path, asset_to_individualize, primary_color_rgb, secondary_color_rgb) bucket_path = f"/asset/{user_id}/{project_id}/asset_{cluster_id}.jpg" # print("Bucket Pathhhhhhhhhhhhhhh", bucket_path) with open(local_asset_path, 'rb') as f: supabase.storage.from_(supabase_bucket).upload(file=f,path=bucket_path) asset_data_insert = [ { "user_id" :user_id, "project_id": project_id, "asset_path": bucket_path }, ] asset= supabase.from_("asset_metadata").insert(asset_data_insert).execute() asset_data = [record for record in asset.data] p_data = json.dumps(asset_data) p = json.loads(p_data) print("asssettttttt", p) assetid = p[0]["id"] print("Asset id---------", assetid) asset_id.append(assetid) asset_path.append(bucket_path) print("process table:*******************", p) process_data_update = { "process_status": "stopped", "end_at" : datetime.now().isoformat() } supabase.from_("process").update(process_data_update).eq("process_id", process_id).execute() logger.info(f"asset creation done for segment {cluster_id}") os.remove(local_asset_path) os.remove(background_image_path) os.remove(logo_path) logger.info("asset creation done") return {"asset_id": asset_id, "asset_path": asset_path} except Exception as e: logger.error(e) print(e) return {"error": e, "status":"error"}
[ "Generate RGB of color PLACEHOLDER and color PLACEHOLDER and give me a json format strictly only in Red Green Blue nested dictionary and nothing else.\n You can consider this as an example to generate you result: \n EXAMPLE: {\"EB691B\": { \"Red\": 235,\"Green\": 105\"Blue\": 27},\"4B4B4B\": { \"Red\": 75,\"Green\": 75,\"Blue\": 75},\"95CDED\": {\"Red\": 149,\"Green\": 205, \"Blue\": 237}}", "generate a different marketing asset image for a brand Solarplexus, to target big industries, \n text should have font as Raleway and secondary font as Open Sans, image should have primary \n colour code should be #EB691B and secondary color code should be #4B4B4B, and generate images based on these cluster\n description PLACEHOLDER PLACEHOLDER" ]
2024-01-10
dengyang17/LLM-Proactive
otters~otters_chatgpt.py
import openai import time import os API_KEY = YOUR_KEY def query_openai_model(api_key: str, prompt: str, model: str = "gpt-3.5-turbo-0301", max_tokens: int = 128, temperature: float = 0): openai.api_key = api_key completions = openai.ChatCompletion.create( model=model, messages=[{"role": "user", "content": prompt}], max_tokens=max_tokens, n=1, stop=None, temperature=temperature, ) output = completions.choices[0].message.content.strip() return output def infer(infile, outfile): api_key = API_KEY existing_outputs = [] if os.path.exists(outfile): with open(outfile, 'r') as fin: for line in fin: existing_outputs.append(line) with open(infile, 'r') as fin,\ open(outfile, 'w') as fout: count = 0 for line in fin: prompts = eval(line.strip('\n')) if count < len(existing_outputs): outputs = eval(existing_outputs[count].strip('\n')) for key in prompts: #if key not in outputs: if key in ['zs_resp', 'fs_resp']: prompt = prompts[key] flag = True while flag: try: if key in ['zs_resp', 'fs_resp']: output = query_openai_model(api_key, prompt,max_tokens=40) elif key in ['zs', 'zs-pcot']: output = query_openai_model(api_key, prompt,max_tokens=80) else: output = query_openai_model(api_key, prompt) flag = False except openai.error.OpenAIError as e: print("Some error happened here.") time.sleep(1) print(output) outputs[key] = output fout.write('%s\n' % outputs) count += 1 continue outputs = {} for key in prompts: prompt = prompts[key] flag = True while flag: try: if key in ['zs_resp', 'fs_resp']: output = query_openai_model(api_key, prompt,max_tokens=40) elif key in ['zs', 'zs-pcot']: output = query_openai_model(api_key, prompt,max_tokens=80) else: output = query_openai_model(api_key, prompt) flag = False except openai.error.OpenAIError as e: print("Some error happened here.") time.sleep(1) print(output) outputs[key] = output fout.write('%s\n' % outputs) if __name__ == "__main__": infer('otters-source.txt', 'otters-chatgpt.txt')
[ "\n" ]
2024-01-10
dengyang17/LLM-Proactive
negotiate~negotiate_chatgpt.py
import openai import time import os def query_openai_model(api_key: str, prompt: str, model: str = "gpt-3.5-turbo-0301", max_tokens: int = 256, temperature: float = 0): openai.api_key = api_key completions = openai.ChatCompletion.create( model=model, messages=[{"role": "user", "content": prompt}], max_tokens=max_tokens, n=1, stop=None, temperature=temperature, ) output = completions.choices[0].message.content.strip() return output def infer(infile, outfile): api_key = "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" existing_outputs = [] if os.path.exists(outfile): with open(outfile, 'r') as fin: for line in fin: existing_outputs.append(line) with open(infile, 'r') as fin,\ open(outfile, 'w') as fout: count = 0 for line in fin: prompts = eval(line.strip('\n')) if count < len(existing_outputs): outputs = eval(existing_outputs[count].strip('\n')) for key in prompts: if key not in outputs: prompt = prompts[key] flag = True while flag: try: output = query_openai_model(api_key, prompt) flag = False except openai.error.OpenAIError as e: print("Some error happened here.") time.sleep(1) print(output) outputs[key] = output fout.write('%s\n' % outputs) count += 1 continue outputs = {} for key in prompts: prompt = prompts[key] flag = True while flag: try: output = query_openai_model(api_key, prompt) flag = False except openai.error.OpenAIError as e: print("Some error happened here.") time.sleep(1) print(output) outputs[key] = output fout.write('%s\n' % outputs) if __name__ == "__main__": infer('data/negotiate-source.txt', 'output/negotiate-chatgpt.txt')
[ "\n" ]
2024-01-10
Ronterox/Mascot
backend~personalitydata.py
import time from func.rng import rng_choice from enum import IntEnum import openai import json import os, os.path openai.api_key = os.getenv("OPENAI_API_KEY") class Choices(IntEnum): STRONGLY_DISAGRREE = -3 DISAGREE = -2 SLIGHTLY_DISAGREE = -1 NEUTRAL = 0 SLIGHTLY_AGREE = 1 AGREE = 2 STRONGLY_AGREE = 3 personalityTest = json.load(open("../data/personality_test_simplified.json", "r", encoding="utf-8")) def logfile(path, text): os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, 'a') as f: f.write(text) def generate_personality(): personality = { "Extraversion": {"value": 0, "opposite": "Introversion", "letter": "E"}, "Introversion": {"value": 0, "opposite": "Extraversion", "letter": "I"}, "Sensing": {"value": 0, "opposite": "Intuition", "letter": "S"}, "Intuition": {"value": 0, "opposite": "Sensing", "letter": "N"}, "Thinking": {"value": 0, "opposite": "Feeling", "letter": "T"}, "Feeling": {"value": 0, "opposite": "Thinking", "letter": "F"}, "Judging": {"value": 0, "opposite": "Perceiving", "letter": "J"}, "Perceiving": {"value": 0, "opposite": "Judging", "letter": "P"} } answers = {} for category in personalityTest: for question in personalityTest[category]: answer = rng_choice(list(Choices)) personality[category]['value'] += answer personality[personality[category]['opposite']]['value'] -= answer answers[question] = Choices(answer).name return personality, answers def format_personality(personality): acronym, categories, values = "", "", "" for category in personality: if personality[category]['value'] >= 0: acronym += personality[category]['letter'] categories += f"({category}), " values += f"{category}: {personality[category]['value']}\n" return acronym, categories, values trainingQuestions = json.load(open("../data/training_questions.json", "r", encoding="utf-8")) listOfQuestions = [] for category in trainingQuestions: listOfQuestions.extend(trainingQuestions[category]["questions"]) personalities = {} try: with open("../data/training_data.json", "r", encoding="utf-8") as f: training_data = json.load(f) except FileNotFoundError: training_data = [] total_tokens = 0 total_time_taken = 0 for i in range(20_000): startTime = time.time() personality, answers = generate_personality() acronym, _, values = format_personality(personality) question = listOfQuestions[i % len(listOfQuestions)] if acronym not in personalities: personalities[acronym] = 1 else: personalities[acronym] += 1 prompt = "" for answer in answers: choice = Choices[answers[answer]] if choice != 0: prompt += f"{answer} {choice}\n" info = "strongly disagree=-3, disagree=-2, slightly disagree=-1, neutral=0, slightly agree=1, agree=2, strongly agree=3\n" prompt = info + prompt.replace("\n", " ").strip() # This is because GPT sucks with negative numbers prompt = prompt.replace("-3", "6").replace("-2", "5").replace("-1", "4") precontext = "You will respond as if you were the person with the following personality traits:\n\nAfter each sentence you have the personality thought on it.\n\n" postcontext = "\n\nYour response will be concise, and won't mention that you are an AI." prompt = precontext + prompt + postcontext try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": question + " Explain."} ] ) prediction = response['choices'][0]['message']['content'] except Exception as e: logfile("../logs/training_data.log", str(e) + "\n") if i % 10 == 0: print(e) continue total_tokens += response['usage']['total_tokens'] training_data.append({"prompt": prompt, "personality": acronym, "completion": prediction }) with open("../data/training_data.json", "w", encoding="utf-8") as f: json.dump(training_data, f, indent=4) endTime = time.time() total_time_taken += endTime - startTime print(f"Question: {question}") print(f"Personality: {acronym}") print(f"Prediction: {prediction}") print(f"Time: {endTime - startTime}") print(f"Tokens: {response['usage']['total_tokens']}") print(f"Total tokens: {total_tokens}") print(f"Total time: {total_time_taken} seconds") print(f"Time left: {(total_time_taken / (i + 1) * (20000 - i - 1)) / 60:.2f} minutes") print(f"Current cost: {total_tokens * 0.002 / 1000} USD") print("-" * 20) print(f"Personalities: {personalities}") print(f"Total tokens: {total_tokens}\nTotal Cost: {total_tokens * 0.002 / 1000} USD")
[ "\n", "PLACEHOLDER Explain.", "PLACEHOLDERPLACEHOLDERPLACEHOLDER", "PLACEHOLDER PLACEHOLDER\n", " " ]
2024-01-10
Ronterox/Mascot
backend~gpt3mikoapi.py
import os import openai import tiktoken from enum import IntEnum from time import time openai.api_key = os.getenv("OPENAI_API_KEY") MODELS = [("text-ada-001", 0.0016), ("text-babbage-001", 0.0024), ("text-curie-001", 0.0120), ("text-davinci-003", 0.1200)] session_total_cost = 0 class Model(IntEnum): ADA = 0 BABBAGE = 1 CURIE = 2 DAVINCI = 3 def count_tokens(model, prompt, show_output=True): encoding = tiktoken.encoding_for_model(model) tokens = len(encoding.encode(prompt)) if show_output: print(f"{tokens} tokens") return tokens def predict(prompt, model=Model.DAVINCI, temp=0.5, max_tokens=100, top_p=1, freq_penalty=0.5, pres_penalty=0): global session_total_cost MODEL = MODELS[model][0] COST = MODELS[model][1] / 1000 total_tokens = count_tokens(MODEL, prompt) print(f"MODEL: {MODEL:-^50}") print(f"PROMPT: {prompt}\n") time_start = time() response = openai.Completion.create( model=MODEL, prompt=prompt, temperature=temp, max_tokens=max_tokens, top_p=top_p, frequency_penalty=freq_penalty, presence_penalty=pres_penalty ) total_time = time() - time_start response_text = response.choices[0].text total_tokens += count_tokens(MODEL, response_text) cost = total_tokens * COST session_total_cost += cost print(f"RESPONSE: {response_text}") print(f"TOTAL TOKENS: {total_tokens}") print(f"TOTAL COST: {cost} USD in {total_time:.2f} seconds") print(f"TOTAL COST SESSION: {session_total_cost} USD") return response_text if __name__ == "__main__": predict("Hello, world!", Model.DAVINCI)
[]
2024-01-10
OpenGPTX/Megatron-LM
megatron~model~bert_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """BERT model.""" import torch from megatron import get_args from megatron.core import tensor_parallel from megatron.model.enums import AttnMaskType from megatron.model.language_model import parallel_lm_logits from megatron.model.language_model import get_language_model from megatron.model import LayerNorm, RMSNorm from megatron.model.utils import openai_gelu, erf_gelu from megatron.model.utils import get_linear_layer from megatron.model.utils import init_method_normal from megatron.model.utils import scaled_init_method_normal from .module import MegatronModule def bert_extended_attention_mask(attention_mask): # We create a 3D attention mask from a 2D tensor mask. # [b, 1, s] attention_mask_b1s = attention_mask.unsqueeze(1) # [b, s, 1] attention_mask_bs1 = attention_mask.unsqueeze(2) # [b, s, s] attention_mask_bss = attention_mask_b1s * attention_mask_bs1 # [b, 1, s, s] extended_attention_mask = attention_mask_bss.unsqueeze(1) # Convert attention mask to binary: extended_attention_mask = (extended_attention_mask < 0.5) return extended_attention_mask def bert_position_ids(token_ids): # Create position ids seq_length = token_ids.size(1) position_ids = torch.arange(seq_length, dtype=torch.long, device=token_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(token_ids) return position_ids class BertLMHead(MegatronModule): """Masked LM head for Bert Arguments: config: TransformerConfig object mpu_vocab_size: model parallel size of vocabulary. hidden_size: hidden size parallel_output: whether output logits being distributed or not. """ def __init__(self, mpu_vocab_size, hidden_size, config, parallel_output): super().__init__(config=config) args = get_args() self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size)) tensor_parallel.set_tensor_model_parallel_attributes(self.bias, True, 0, 1) self.parallel_output = parallel_output self.dense = get_linear_layer(hidden_size, hidden_size, config.init_method) setattr(self.dense.weight, 'sequence_parallel', config.sequence_parallel) setattr(self.dense.bias, 'sequence_parallel', config.sequence_parallel) if config.normalization == 'LayerNorm': layernorm_cls = LayerNorm elif config.normalization == 'RMSNorm': layernorm_cls = RMSNorm else: raise ValueError(f'unknown normalization "{config.normalization}"') self.layernorm = layernorm_cls(hidden_size, eps=config.layernorm_epsilon, sequence_parallel=config.sequence_parallel) self.gelu = torch.nn.functional.gelu if args.openai_gelu: self.gelu = openai_gelu elif args.onnx_safe: self.gelu = erf_gelu def forward(self, hidden_states, word_embeddings_weight): hidden_states = self.dense(hidden_states) hidden_states = self.gelu(hidden_states) hidden_states = self.layernorm(hidden_states) output = parallel_lm_logits(hidden_states, word_embeddings_weight, self.parallel_output, bias=self.bias) return output def post_language_model_processing(lm_output, pooled_output, lm_head, binary_head, lm_labels, logit_weights, fp16_lm_cross_entropy): # Output. lm_logits = lm_head( lm_output, logit_weights) binary_logits = None if binary_head is not None: binary_logits = binary_head(pooled_output) if lm_labels is None: # [s b h] => [b s h] return lm_logits.transpose(0,1).contiguous(), binary_logits else: # [b s] => [s b] lm_labels = lm_labels.transpose(0,1).contiguous() # lm_logits : [s, b, h] and lm_labels: [s, b] if fp16_lm_cross_entropy: assert lm_logits.dtype == torch.half lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits, lm_labels) else: lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits.float(), lm_labels) # [s, b] => [b s] lm_loss = lm_loss.transpose(0,1).contiguous() return lm_loss, binary_logits class BertModel(MegatronModule): """Bert Language model.""" def __init__(self, config, num_tokentypes=2, add_binary_head=True, parallel_output=True, pre_process=True, post_process=True): super().__init__(config=config) args = get_args() # TODO this option is not yet implemented in BERT assert args.untie_embeddings_and_output_weights is False self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy self.add_binary_head = add_binary_head self.parallel_output = parallel_output self.pre_process = pre_process self.post_process = post_process self.return_embeddings = args.output_bert_embeddings if self.return_embeddings: assert self.post_process and self.add_binary_head self.language_model, self._language_model_key = get_language_model( config=config, num_tokentypes=num_tokentypes, add_pooler=self.add_binary_head, encoder_attn_mask_type=AttnMaskType.padding, pre_process=self.pre_process, post_process=self.post_process) self.initialize_word_embeddings() if self.post_process: self.lm_head = BertLMHead(self.shared_embedding_or_output_weight().size(0), config.hidden_size, config, parallel_output) self._lm_head_key = 'lm_head' self.binary_head = None if self.add_binary_head: self.binary_head = get_linear_layer(config.hidden_size, 2, config.init_method) self._binary_head_key = 'binary_head' def set_input_tensor(self, input_tensor): """See megatron.model.transformer.set_input_tensor()""" self.language_model.set_input_tensor(input_tensor) def forward(self, bert_model_input, attention_mask, tokentype_ids=None, lm_labels=None): extended_attention_mask = bert_extended_attention_mask(attention_mask) input_ids = bert_model_input position_ids = bert_position_ids(input_ids) lm_output = self.language_model( input_ids, position_ids, extended_attention_mask, tokentype_ids=tokentype_ids ) if self.post_process and self.add_binary_head: lm_output, pooled_output = lm_output # Return pooled output (e.g., when computing Bert embeddings). if self.return_embeddings: # Sum attention mask. embeddings = torch.transpose(lm_output, 0, 1) masks = torch.sum(attention_mask, dim=1) # Collect masked embeddings. output = torch.zeros( size=(embeddings.shape[0], embeddings.shape[2]), dtype=torch.float32, device=torch.cuda.current_device()) for i, (embedding, mask) in enumerate(zip(embeddings, masks)): output[i, :] = torch.mean(embedding[1: mask - 1], dim=0) return output else: pooled_output = None if self.post_process: return post_language_model_processing(lm_output, pooled_output, self.lm_head, self.binary_head, lm_labels, self.shared_embedding_or_output_weight(), self.fp16_lm_cross_entropy) else: return lm_output def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): """For easy load when model is combined with other heads, add an extra key.""" state_dict_ = {} state_dict_[self._language_model_key] \ = self.language_model.state_dict_for_save_checkpoint(prefix=prefix, keep_vars=keep_vars) if self.post_process: state_dict_[self._lm_head_key] \ = self.lm_head.state_dict_for_save_checkpoint(prefix=prefix, keep_vars=keep_vars) if self.post_process and self.add_binary_head: state_dict_[self._binary_head_key] \ = self.binary_head.state_dict(prefix=prefix, keep_vars=keep_vars) # Save word_embeddings. if self.post_process and not self.pre_process: state_dict_[self._word_embeddings_for_head_key] \ = self.word_embeddings.state_dict(prefix=prefix, keep_vars=keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" self.language_model.load_state_dict( state_dict[self._language_model_key], strict=strict) if self.post_process: self.lm_head.load_state_dict( state_dict[self._lm_head_key], strict=strict) if self.post_process and self.add_binary_head: self.binary_head.load_state_dict( state_dict[self._binary_head_key], strict=strict) # Load word_embeddings. if self.post_process and not self.pre_process: self.word_embeddings.load_state_dict( state_dict[self._word_embeddings_for_head_key], strict=strict)
[]
2024-01-10
alphasecio/langchain-examples
all-in-one~pages~1_Search.py
import streamlit as st from langchain.llms.openai import OpenAI from langchain.agents import load_tools, initialize_agent # Set API keys from session state openai_api_key = st.session_state.openai_api_key serper_api_key = st.session_state.serper_api_key # Streamlit app st.subheader('Web Search') search_query = st.text_input("Enter Search Query") # If the 'Search' button is clicked if st.button("Search"): # Validate inputs if not openai_api_key or not serper_api_key: st.error("Please provide the missing API keys in Settings.") elif not search_query.strip(): st.error("Please provide the search query.") else: try: with st.spinner('Please wait...'): # Initialize the OpenAI module, load the Google Serper API tool, and run the search query using an agent llm = OpenAI(temperature=0, openai_api_key=openai_api_key, verbose=True) tools = load_tools(["google-serper"], llm, serper_api_key=serper_api_key) agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) result = agent.run(search_query) st.success(result) except Exception as e: st.exception(f"An error occurred: {e}")
[]
2024-01-10
alphasecio/langchain-examples
all-in-one~pages~4_Document_Summary.py
import os, tempfile import streamlit as st from langchain.llms.openai import OpenAI from langchain.vectorstores.chroma import Chroma from langchain.embeddings.openai import OpenAIEmbeddings from langchain.chains.summarize import load_summarize_chain from langchain.document_loaders import PyPDFLoader # Set API keys from session state openai_api_key = st.session_state.openai_api_key # Streamlit app st.subheader('Document Summary') source_doc = st.file_uploader("Upload Source Document", type="pdf") # If the 'Summarize' button is clicked if st.button("Summarize"): # Validate inputs if not openai_api_key: st.error("Please provide the missing API keys in Settings.") elif not source_doc: st.error("Please provide the source document.") else: try: with st.spinner('Please wait...'): # Save uploaded file temporarily to disk, load and split the file into pages, delete temp file with tempfile.NamedTemporaryFile(delete=False) as tmp_file: tmp_file.write(source_doc.read()) loader = PyPDFLoader(tmp_file.name) pages = loader.load_and_split() os.remove(tmp_file.name) # Create embeddings for the pages and insert into Chroma database embeddings=OpenAIEmbeddings(openai_api_key=openai_api_key) vectordb = Chroma.from_documents(pages, embeddings) # Initialize the OpenAI module, load and run the summarize chain llm=OpenAI(temperature=0, openai_api_key=openai_api_key) chain = load_summarize_chain(llm, chain_type="stuff") search = vectordb.similarity_search(" ") summary = chain.run(input_documents=search, question="Write a summary within 200 words.") st.success(summary) except Exception as e: st.exception(f"An error occurred: {e}")
[]
2024-01-10
alphasecio/langchain-examples
all-in-one~pages~2_URL_Summary.py
import validators, streamlit as st from langchain.chat_models import ChatOpenAI from langchain.document_loaders import YoutubeLoader, UnstructuredURLLoader from langchain.chains.summarize import load_summarize_chain from langchain.prompts import PromptTemplate # Set API keys from session state openai_api_key = st.session_state.openai_api_key # Streamlit app st.subheader('URL Summary') url = st.text_input("Enter Source URL") # If 'Summarize' button is clicked if st.button("Summarize"): # Validate inputs if not openai_api_key: st.error("Please provide the missing API keys in Settings.") elif not url: st.error("Please provide the URL.") elif not validators.url(url): st.error("Please enter a valid URL.") else: try: with st.spinner("Please wait..."): # Load URL data if "youtube.com" in url: loader = YoutubeLoader.from_youtube_url(url, add_video_info=True) else: loader = UnstructuredURLLoader(urls=[url], ssl_verify=False, headers={"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 13_5_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36"}) data = loader.load() # Initialize the ChatOpenAI module, load and run the summarize chain llm = ChatOpenAI(temperature=0, model='gpt-3.5-turbo', openai_api_key=openai_api_key) prompt_template = """Write a summary of the following in 250-300 words. {text} """ prompt = PromptTemplate(template=prompt_template, input_variables=["text"]) chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt) summary = chain.run(data) st.success(summary) except Exception as e: st.exception(f"Exception: {e}")
[ "Write a summary of the following in 250-300 words.\n \n {text}\n\n " ]
2024-01-10
alphasecio/langchain-examples
all-in-one~pages~5_News_Summary.py
import streamlit as st, tiktoken from langchain.chat_models import ChatOpenAI from langchain.utilities import GoogleSerperAPIWrapper from langchain.document_loaders import UnstructuredURLLoader from langchain.chains.summarize import load_summarize_chain # Set API keys from session state openai_api_key = st.session_state.openai_api_key serper_api_key = st.session_state.serper_api_key # Streamlit app st.subheader('News Summary') num_results = st.number_input("Number of Search Results", min_value=3, max_value=10) search_query = st.text_input("Enter Search Query") col1, col2 = st.columns(2) # If the 'Search' button is clicked if col1.button("Search"): # Validate inputs if not openai_api_key or not serper_api_key: st.error("Please provide the missing API keys in Settings.") elif not search_query.strip(): st.error("Please provide the search query.") else: try: with st.spinner("Please wait..."): # Show the top X relevant news articles from the previous week using Google Serper API search = GoogleSerperAPIWrapper(type="news", tbs="qdr:w1", serper_api_key=serper_api_key) result_dict = search.results(search_query) if not result_dict['news']: st.error(f"No search results for: {search_query}.") else: for i, item in zip(range(num_results), result_dict['news']): st.success(f"Title: {item['title']}\n\nLink: {item['link']}\n\nSnippet: {item['snippet']}") except Exception as e: st.exception(f"Exception: {e}") # If 'Search & Summarize' button is clicked if col2.button("Search & Summarize"): # Validate inputs if not openai_api_key or not serper_api_key: st.error("Please provide the missing API keys in Settings.") elif not search_query.strip(): st.error("Please provide the search query.") else: try: with st.spinner("Please wait..."): # Show the top X relevant news articles from the previous week using Google Serper API search = GoogleSerperAPIWrapper(type="news", tbs="qdr:w1", serper_api_key=serper_api_key) result_dict = search.results(search_query) if not result_dict['news']: st.error(f"No search results for: {search_query}.") else: # Load URL data from the top X news search results for i, item in zip(range(num_results), result_dict['news']): loader = UnstructuredURLLoader(urls=[item['link']]) data = loader.load() # Initialize the ChatOpenAI module, load and run the summarize chain llm = ChatOpenAI(temperature=0, model='gpt-3.5-turbo', openai_api_key=openai_api_key) chain = load_summarize_chain(llm, chain_type="map_reduce") summary = chain.run(data) st.success(f"Title: {item['title']}\n\nLink: {item['link']}\n\nSummary: {summary}") except Exception as e: st.exception(f"Exception: {e}")
[]
2024-01-10
alphasecio/langchain-examples
text-summary~streamlit_app.py
import os, streamlit as st from langchain.text_splitter import CharacterTextSplitter from langchain.docstore.document import Document from langchain.llms.openai import OpenAI from langchain.chains.summarize import load_summarize_chain # Streamlit app st.subheader('Summarize Text') # Get OpenAI API key and source text input with st.sidebar: openai_api_key = st.text_input("OpenAI API key", value="", type="password") st.caption("*If you don't have an OpenAI API key, get it [here](https://platform.openai.com/account/api-keys).*") source_text = st.text_area("Source Text", label_visibility="collapsed", height=200) # If the 'Summarize' button is clicked if st.button("Summarize"): # Validate inputs if not openai_api_key.strip() or not source_text.strip(): st.error(f"Please provide the missing fields.") else: try: with st.spinner('Please wait...'): # Split the source text text_splitter = CharacterTextSplitter() texts = text_splitter.split_text(source_text) # Create Document objects for the texts (max 3 pages) docs = [Document(page_content=t) for t in texts[:3]] # Initialize the OpenAI module, load and run the summarize chain llm = OpenAI(temperature=0, openai_api_key=openai_api_key) chain = load_summarize_chain(llm, chain_type="map_reduce") summary = chain.run(docs) st.success(summary) except Exception as e: st.exception(f"An error occurred: {e}")
[]
2024-01-10
grumpyp/aixplora
backend~loaders~audio_loader.py
import os import openai import tempfile from sqlalchemy import text from database.database import Database from fastapi import UploadFile class Whisperexporter: """ supports [".m4a", ".mp3", ".mp4", ".mpeg", ".mpga", ".wav", ".webm"] """ def __init__(self): # TODO: move this to utils or something it's used in multiple places try: self.openai_api_key = Database().get_session().execute(text("SELECT openai_api_key FROM config")).fetchall()[-1] except: self.openai_api_key = "notdefined" def whisper_to_text(self, file: bytes, filename: str, file_meta: UploadFile): misc_dir = os.path.join(os.getcwd(), "misc") with tempfile.NamedTemporaryFile(delete=False, suffix=filename) as tmp_file: content = file.read() tmp_file.write(content) tmp_file.flush() tmp_file.close() with open(tmp_file.name, "rb") as audio_file: openai.api_key = self.openai_api_key transcript = openai.Audio.transcribe("whisper-1", audio_file) transcript_text = transcript['text'] # Extract the text content from the transcript object with open(f"{misc_dir}/{filename}.txt", "w", encoding="utf-8") as f: f.write(transcript_text) return f"{misc_dir}/{filename}.txt", file_meta @property def textes(self): return self._textes
[]
2024-01-10
grumpyp/aixplora
backend~embeddings~index_files.py
# TODO: Research if other db is better, refactor to use other db, or choose own (inherit from a base) # TODO: Implement other embeddings algorithm than OpenAI # TODO: Split class into a class which indexes and which does the querying from langchain.document_loaders import TextLoader from typing import List, Dict from langchain.schema import Document from database.database import Database from database.models.prompt import Prompt from sqlalchemy import text from embeddings.utils import openai_ask, openai_ask_no_aixplora_brain import random from qdrant_client import QdrantClient from qdrant_client.http import models import openai from fastapi import UploadFile from embeddings.text_splitter import TextSplitter from embeddings.basesplit import ContextTypes import re import requests from gpt4all import GPT4All import os from sentence_transformers import SentenceTransformer # TODO: This is just a base implementation extend it with metadata,.. # 25.05.2023: Quickfix for now removed langchain components to make it work asap, needs refactor - old # 25.05.2023: Quickfix, seems also to be a problem with chromadb, now using qudrant vector db, needs refactor class Genie: def __init__(self, file_path: str = None, file_meta: UploadFile | Dict[str, str] = None, remote_db: bool = False, apikey: str = None, email: str = None): try: self.openai_api_key = \ Database().get_session().execute(text("SELECT openai_api_key FROM config")).fetchall()[-1] self.openai_model = Database().get_session().execute(text("SELECT model FROM config")).fetchall()[-1] except: self.openai_api_key = "notdefined" try: self.embeddings_model = \ Database().get_session().execute(text("SELECT embeddings_model FROM config")).fetchall()[-1] # By default use OpenAI Model if exception is triggered except Exception as e: print(f"Using default OpenAI model: {e}") self.embeddings_model = "text-embedding-ada-002" self.remote_db = remote_db self.apikey = apikey self.email = email self.remote_headers = {"apikey": self.apikey, "email": self.email} if not remote_db: self.qu = QdrantClient(path="./qdrant_data") try: if self.qu.get_collection(collection_name="aixplora").vectors_count == 0: self.qu.recreate_collection( collection_name="aixplora", vectors_config={ "text-embedding-ada-002": models.VectorParams(size=1536, distance=models.Distance.COSINE), "all-MiniLM-L6-v2": models.VectorParams(size=384, distance=models.Distance.COSINE), "multi-qa-MiniLM-L6-cos-v1": models.VectorParams(size=384, distance=models.Distance.COSINE), "paraphrase-albert-small-v2": models.VectorParams(size=768, distance=models.Distance.COSINE), "multi-qa-mpnet-base-dot-v1": models.VectorParams(size=768, distance=models.Distance.COSINE) }) except: self.qu.recreate_collection( collection_name="aixplora", vectors_config={ "text-embedding-ada-002": models.VectorParams(size=1536, distance=models.Distance.COSINE), "all-MiniLM-L6-v2": models.VectorParams(size=384, distance=models.Distance.COSINE), "multi-qa-MiniLM-L6-cos-v1": models.VectorParams(size=384, distance=models.Distance.COSINE), "paraphrase-albert-small-v2": models.VectorParams(size=768, distance=models.Distance.COSINE), "multi-qa-mpnet-base-dot-v1": models.VectorParams(size=768, distance=models.Distance.COSINE) }) if file_path: self.file_meta = file_meta self.file_path = file_path if not isinstance(self.file_path, list): self.file_path = [self.file_path] for i in self.file_path: self.loader = TextLoader(i) self.documents = self.loader.load() self.texts = self.text_split(self.documents) self.vectordb = self.embeddings(self.texts, page=i) @staticmethod def text_split(documents: TextLoader) -> List[str]: document_str = "".join([document.page_content for document in documents]) text_splitter = TextSplitter(document_str, ContextTypes.TEXT).chunk_document() fixed_whitespaces = [] for document in text_splitter: replaced = document replaced = re.sub('\s*\.\s*', '. ', replaced) # replace ' . ' with '. ' replaced = re.sub('\s*,\s*', ', ', replaced) # replace ' , ' with ', ' replaced = re.sub('\s*:\s*', ': ', replaced) # replace ' : ' with ': ' replaced = re.sub('\s*\(\s*', ' (', replaced) # replace ' ( ' with ' (' replaced = re.sub('\s*\)\s*', ') ', replaced) # replace ' ) ' with ') ' replaced = re.sub('\s+', ' ', replaced) # replace multiple spaces with one space replaced = replaced.replace('\n', '') fixed_whitespaces.append(replaced) return fixed_whitespaces def upload_embedding(self, texts: List[Document], collection_name: str = "aixplora", page: int = 0) -> None: for i in range(len(texts)): if self.embeddings_model[0] != "text-embedding-ada-002": model = SentenceTransformer(f"{self.embeddings_model[0]}") embeddings = [float(x) for x in model.encode(texts[i])] else: response = openai.Embedding.create( input=texts[i], model="text-embedding-ada-002" ) embeddings = response['data'][0]['embedding'] if isinstance(self.file_meta, dict): filename = self.file_meta.get("filename") filetype = self.file_meta.get("content_type", "website") else: # Assuming that in this case it's an object with attributes filename = getattr(self.file_meta, "filename") filetype = getattr(self.file_meta, "content_type") if not self.remote_db: self.qu.upsert( collection_name=collection_name, wait=True, points=[ # TODO: Change randomint to UUID models.PointStruct( id=random.randint(1, 100000000), payload={ "chunk": texts[i], "metadata": {"filename": filename, "filetype": filetype, "page": page, "embeddings_model": self.embeddings_model[0]} }, vector={ f"{self.embeddings_model[0]}": embeddings }, ), ] ) else: # TODO: Clientside restriction if Cloud responses no WRITE access (401, {'message': 'Write permission is not granted'}) payload = { "chunk": texts[i], "metadata": {"filename": filename, "filetype": filetype, "page": page, "embeddings_model": self.embeddings_model[0]}, "vector": { f"{self.embeddings_model[0]}": embeddings }, } # Debug # print(payload) # time.sleep(5) # needs to be json not payload -> because of the encoding application/x-www-form-urlencoded isn't supported r = requests.post("https://api.aixplora.app/api/qdrant/upload/", headers=self.remote_headers, json=payload) return def embeddings(self, texts: List[str], page: int): texts = [text for text in texts] openai.api_key = self.openai_api_key[0] print(len(texts)) self.upload_embedding(texts=texts, page=page) return def search(self, query: str, specific_doc: str | None): openai.api_key = self.openai_api_key[0] print(self.openai_api_key) if not self.remote_db: if self.embeddings_model[0] != "text-embedding-ada-002": model = SentenceTransformer(f"{self.embeddings_model[0]}") embeddings = [float(x) for x in model.encode(query)] else: response = openai.Embedding.create( input=query, model="text-embedding-ada-002" ) embeddings = response['data'][0]['embedding'] results = self.qu.search( collection_name="aixplora", query_vector=(f"{self.embeddings_model[0]}", embeddings), limit=3, with_payload=True ) if specific_doc is not None: # Without the clean it won't find the document specific_doc_clean = specific_doc.replace('https://', '').replace('http://', '').replace('/', '_') results = self.qu.search( collection_name="aixplora", query_vector=(f"{self.embeddings_model[0]}", embeddings), query_filter=models.Filter( must=[ models.FieldCondition( key="metadata.filename", match=models.MatchValue(value=f"{specific_doc_clean}"), ) ] ), limit=3 ) else: if self.embeddings_model[0] != "text-embedding-ada-002": model = SentenceTransformer(f"{self.embeddings_model[0]}") embeddings = [float(x) for x in model.encode(query)] else: response = openai.Embedding.create( input=query, model="text-embedding-ada-002" ) embeddings = response['data'][0]['embedding'] payload = {"query_vector": {f"{self.embeddings_model[0]}": embeddings}} r = requests.post(headers=self.remote_headers, json=payload, url="https://api.aixplora.app/api/qdrant/get/") if specific_doc is not None: specific_doc_clean = specific_doc.replace('https://', '').replace('http://', '').replace('/', '_') payload = {"query_vector": {f"{self.embeddings_model[0]}": embeddings}, "specific_doc": specific_doc_clean} r = requests.post(headers=self.remote_headers, json=payload, url="https://api.aixplora.app/api/qdrant/get/") return (r.json(), r.status_code) return results # This is used to ask questions on all documents # TODO: evaluate how many embeddings are in db, based on that change n_results dynamcially def query(self, query_embedding: List[List[float]] = None, query_texts: str = None, specific_doc: str = None, use_brain: bool = True): meta_data = [] db = Database().get_session() prompts = sorted(db.execute(text("SELECT * FROM prompt")).fetchall(), key=lambda x: x[2], reverse=True) if len(prompts) == 0: prompt = "Answer the following question: {query_texts} based on that context: {relevant_docs}," \ " make sure that the answer of you is in the same language then the question." \ " if you can't just answer: I don't know." else: prompt = prompts[0][1] # The question is referenced as {question} in the prompt # The chunks/ relevant docs are referenced as {relevant_docs} in the prompt if use_brain: if not query_embedding and not query_texts: raise ValueError("Either query_embedding or query_texts must be provided") results = self.search(query_texts, specific_doc) if isinstance(results, tuple): relevant_docs = [doc["payload"]["chunk"] for doc in results[0]] meta_data = [doc["payload"]["metadata"] for doc in results[0]] prompt = prompt.replace("{question}", query_texts) prompt = prompt.replace("{relevant_docs}", " ".join(doc["payload"]["chunk"] for doc in results[0])) else: relevant_docs = [doc.payload["chunk"] for doc in results] meta_data = [doc.payload["metadata"] for doc in results] prompt = prompt.replace("{question}", query_texts) prompt = prompt.replace("{relevant_docs}", " ".join([doc.payload["chunk"] for doc in results])) print(self.openai_model) if not self.openai_model[0].startswith("gpt"): print(f"Using local model: {self.openai_model[0]}") # TODO: refactor this path to be global models_dir = os.path.join(os.getcwd(), "llmsmodels") gptj = GPT4All(model_name=self.openai_model[0], model_path=models_dir) if use_brain: messages = [ {"role": "user", "content": f"{prompt}"} ] else: messages = [ {"role": "user", "content": f"{query_texts}"}] answer = gptj.chat_completion(messages, streaming=False)["choices"][0]["message"]["content"] else: if use_brain: if self.openai_model[0].startswith("gpt"): print(f"Using openai model: {self.openai_model[0]}") answer = openai_ask(context=relevant_docs, question=query_texts, openai_api_key=self.openai_api_key[0], openai_model=self.openai_model[0], prompt=prompt) else: answer = openai_ask(context=relevant_docs, question=query_texts, openai_api_key=self.openai_api_key[0], openai_model=self.openai_model[0], prompt=prompt) else: if self.openai_model[0].startswith("gpt"): answer = openai_ask_no_aixplora_brain(question=query_texts, openai_api_key=self.openai_api_key[0], openai_model=self.openai_model[0]) _answer = {"answer": answer, "meta_data": meta_data} print(meta_data) return _answer
[ "{relevant_docs}", "L", "chunk", "SELECT * FROM prompt", "PLACEHOLDER", "Answer the following question: {query_texts} based on that context: {relevant_docs}, make sure that the answer of you is in the same language then the question. if you can't just answer: I don't know.", " ", "{question}" ]
2024-01-10
kathrinv/what-do-you-mean
frb_functions.py
# library imports # webscraping from selenium import webdriver import re import time # data analysis import numpy as np import pandas as pd import pickle from tqdm import tqdm_notebook as tqdm # natural language processing - NLTK import nltk nltk.download('wordnet') from nltk.corpus import wordnet, stopwords from nltk.probability import FreqDist from nltk.stem import WordNetLemmatizer # natural language processing - Gensim and LDA import gensim from gensim import corpora, models, similarities from gensim.models import CoherenceModel import pyLDAvis.gensim # natural language processing - TextBlob (Sentiment) from textblob import TextBlob # data visualization import matplotlib.pyplot as plt import matplotlib.colors as mcolors import seaborn as sns def navigate_frb_speeches(): """ Navigates the Fed Speeches website and calls get_frb_article_links helper function to scrape the urls to all Fed speeches from the Fed website (non-archived speeches up until 2006). Returns: list: Speech urls for all non-archived speeches on the Feb website. """ # initiating selenium Chrome webdriver instance option = webdriver.ChromeOptions() option.add_argument(" — incognito") browser = webdriver.Chrome(options=option) browser.get("https://www.federalreserve.gov/newsevents/speeches.htm") article_urls = [] new_urls = get_frb_article_links(browser) while not article_urls or article_urls[-1] != new_urls[-1]: article_urls += get_frb_article_links(browser) next_button = browser.find_element_by_css_selector("a[ng-click='selectPage(page + 1, $event)']") next_button.click() new_urls = get_frb_article_links(browser) time.sleep(np.random.randint(5,10)) browser.close() return article_urls def get_frb_article_links(browser): """ Helper function for navigagte_frb_speeches. (only works for non-archived speeches) Parameters: browser: Selenium browser instance Returns: list: Speech urls for the current page of speeches. """ new_urls = [] articles = browser.find_elements_by_class_name('itemTitle') for article in articles: url = article.find_element_by_tag_name('a').get_attribute('href') new_urls.append(url) return new_urls def get_frb_speech_text(url_lst): """ Accesses and scrapes all the speech text from a list of urls provided. Only works for non-archived speeches on the Fed website. Parameters: url_lst (list): list of speech urls to scrape Returns: list: A list of lists that contains the speech url, date, title, speaker, location, and complete text for all speeches in the url_lst. """ option = webdriver.ChromeOptions() option.add_argument(" — incognito") browser = webdriver.Chrome(options=option) frb_articles = [] for url in url_lst: article_details = [] article_details.append(url) browser.get(url) article_times = browser.find_elements_by_class_name('article__time') article_details.append(article_times[0].text) article_titles = browser.find_elements_by_class_name('title') article_details.append(article_titles[0].text) article_speakers = browser.find_elements_by_class_name('speaker') article_details.append(article_speakers[0].text) article_locations = browser.find_elements_by_class_name('location') article_details.append(article_locations[0].text) article_texts = browser.find_elements_by_xpath('//*[@id="article"]/div[3]') article_details.append(article_texts[0].text) frb_articles.append(article_details) time.sleep(np.random.randint(5,10)) browser.close() return frb_articles def get_frb_article_links_archived(browser): """ Helper function for navigagte_frb_archived speeches. (only works for archived speeches) Parameters: browser: Selenium browser instance Returns: list: Speech urls, titles, speakers locations, and dates for the current page of speeches. """ new_urls = [] new_titles = [] new_speakers = [] new_locations = [] new_dates = [] speeches = browser.find_element_by_id('speechIndex') speech_urls = speeches.find_elements_by_tag_name('a') for speech in speech_urls: url = speech.get_attribute('href') new_urls.append(url) title = speech.text new_titles.append(title) speech_dates = speeches.find_elements_by_tag_name('li') for speech in speech_dates: date_ = re.findall(r'(?<=)(\S+ \d+, \d{4})', speech.text)[0] new_dates.append(date_) speech_speakers = speeches.find_elements_by_class_name('speaker') for speaker in speech_speakers: new_speakers.append(speaker.text) speech_locations = speeches.find_elements_by_class_name('location') for location in speech_locations: new_locations.append(location.text) return new_urls, new_titles, new_speakers, new_locations, new_dates def navigate_frb_archived_speeches(): """ Navigates the archived Fed Speeches website and calls get_frb_article_links_archiged helper function to scrape the urls to all Fed speeches from the Fed website (archived speeches up until 1996). Returns: list: Speech urls for all non-archived speeches on the Feb website. """ # initiating selenium Chrome webdriver instance option = webdriver.ChromeOptions() option.add_argument(" — incognito") browser = webdriver.Chrome(options=option) browser.get("https://www.federalreserve.gov/newsevents/speech/speeches-archive.htm") speech_urls = [] speakers = [] locations = [] dates_ = [] titles = [] year_links = [] list_of_years = browser.find_element_by_xpath('//*[@id="article"]/div/div/div/ul') all_year_links = list_of_years.find_elements_by_tag_name("a") for year_link in all_year_links: url = year_link.get_attribute('href') year_links.append(url) for url in year_links: browser.get(url) new_urls, new_titles, new_speakers, new_locations, new_dates = get_frb_article_links_archived(browser) speech_urls = speech_urls + new_urls titles = titles + new_titles speakers = speakers + new_speakers locations = locations + new_locations dates_ = dates_ + new_dates time.sleep(np.random.randint(5,10)) browser.close() # removing extra url accidentally picked up del titles[-118] del speech_urls[-118] return speech_urls, speakers, locations, dates_, titles def get_frb_speech_text_archived(url_lst): """ Accesses and scrapes all the speech text from a list of urls provided. Only works for archived speeches on the Fed website. Parameters: url_lst (list): list of speech urls to scrape Returns: list: speech text """ # initiating selenium Chrome webdriver instance option = webdriver.ChromeOptions() option.add_argument(" — incognito") browser = webdriver.Chrome(options=option) speech_text = [] for url in url_lst: browser.get(url) paragraphs = browser.find_elements_by_tag_name('p') complete_text = "" for paragraph in paragraphs: complete_text += ' ' + paragraph.text speech_text.append(complete_text) time.sleep(np.random.randint(5,10)) browser.close() return speech_text # webscraping functions for FOMC speeches # project expansion # not used in current project def navigate_fomc_speeches(): fomc_urls = [] # initiating selenium Chrome webdriver instance option = webdriver.ChromeOptions() option.add_argument(" — incognito") browser = webdriver.Chrome(options=option) browser.get("https://www.federalreserve.gov/newsevents/pressreleases.htm") new_urls = get_fomc_article_links(browser) while not fomc_urls or (not new_urls or fomc_urls[-1] != new_urls[-1]): fomc_urls += get_fomc_article_links(browser) time.sleep(np.random.randint(5,10)) next_button = browser.find_element_by_css_selector("a[ng-click='selectPage(page + 1, $event)']") next_button.click() new_urls = get_fomc_article_links(browser) browser.close() return fomc_urls def get_fomc_article_links(browser): new_urls = [] speeches = browser.find_elements_by_class_name('itemTitle') for speech in speeches: if re.findall(r'FOMC statement', speech.text): new_urls.append(speech.find_element_by_tag_name('a').get_attribute('href')) return new_urls def get_fomc_speech_text(url_lst): option = webdriver.ChromeOptions() option.add_argument(" — incognito") browser = webdriver.Chrome(options=option) fomc_speeches = [] for url in url_lst: article_details = [] article_details.append(url) browser.get(url) article_times = browser.find_elements_by_class_name('article__time') article_details.append(article_times[0].text) article_titles = browser.find_elements_by_class_name('title') article_details.append(article_titles[0].text) article_texts = browser.find_elements_by_xpath('//*[@id="article"]/div[3]') article_details.append(article_texts[0].text) fomc_speeches.append(article_details) time.sleep(np.random.randint(5,10)) browser.close() return fomc_speeches def navigate_fomc_archived_speeches(): option = webdriver.ChromeOptions() option.add_argument(" — incognito") browser = webdriver.Chrome(options=option) browser.get("https://www.federalreserve.gov/newsevents/pressreleases/press-release-archive.htm") fomc_urls = [] titles = [] year_links = [] list_of_years = browser.find_element_by_xpath('//*[@id="article"]/div/div/div/ul') all_year_links = list_of_years.find_elements_by_tag_name("a") for year_link in all_year_links: url = year_link.get_attribute('href') year_links.append(url) for url in year_links: browser.get(url) new_urls, new_titles = get_fomc_links_archived(browser) fomc_urls = fomc_urls + new_urls titles = titles + new_titles time.sleep(np.random.randint(5,10)) browser.close() return fomc_urls, titles def get_fomc_links_archived(browser): new_urls = [] new_titles = [] releases = browser.find_element_by_id('releaseIndex') release_urls = releases.find_elements_by_tag_name('a') for release in release_urls: if re.findall(r'FOMC [Ss]tatement', release.text): url = release.get_attribute('href') new_urls.append(url) title = release.text new_titles.append(title) return new_urls, new_titles def get_fomc_text_archived(url_lst): # initiating selenium Chrome webdriver instance option = webdriver.ChromeOptions() option.add_argument(" — incognito") browser = webdriver.Chrome(options=option) speech_text = [] fomc_dates = [] for url in url_lst: browser.get(url) paragraphs = browser.find_elements_by_tag_name('p') complete_text = "" for paragraph in paragraphs: complete_text += ' ' + paragraph.text speech_text.append(complete_text) date_ = browser.find_elements_by_tag_name('i')[0] date_ = re.findall(r'(?<=[rR]elease [dD]ate: )(\w* \d*,? \d*)', date_.text)[0] fomc_dates.append(date_) time.sleep(np.random.randint(5,10)) browser.close() return speech_text, fomc_dates def get_fed_funds_rates(archived=False): # initiating selenium Chrome webdriver instance option = webdriver.ChromeOptions() option.add_argument(" — incognito") browser = webdriver.Chrome(options=option) if not archived: browser.get('https://www.federalreserve.gov/monetarypolicy/openmarket.htm') else: browser.get('https://www.federalreserve.gov/monetarypolicy/openmarket_archive.htm') years_txt = [] years = browser.find_elements_by_tag_name('h4') if not archived: years = years[1:] for year in years: years_txt.append(year.text) dates_ = [] inc = [] dec = [] target = [] rate_tables = browser.find_elements_by_class_name('data-table') for i, table in enumerate(rate_tables): for j, td in enumerate(table.find_elements_by_tag_name('td')): if (j+1) % 4 == 1: dates_.append(td.text + ", " + years_txt[i]) elif (j+1) % 4 == 2: inc.append(td.text) elif (j+1) % 4 == 3: dec.append(td.text) elif (j+1) % 4 == 0: target.append(td.text) browser.close() return dates_, inc, dec, target # Data Cleaning def remove_references(text): """ Removes references at the end of speeches, if any. Helper function to assist in data cleaning. Parameters: text (string): speech text Returns: string: cleaned speech text sans references """ references_loc = text.find('\nReferences\n') if references_loc != -1: text = text[:references_loc] return_to_text_loc = text.find('[Rr]eturn to text\n') if return_to_text_loc != -1: text = text[:return_to_text_loc] concluding_remarks_loc = text.find('These remarks represent my own views, which do not necessarily represent those of the Federal Reserve Board or the Federal Open Market Committee.') if concluding_remarks_loc != -1: text = text[:concluding_remarks_loc] return text def clean_speech_text(df): """ Cleans speech text, removing urls, links, numbers, references, and special characters. Parameters: df (DataFrame): FRB speech df with "full_text" column to be cleaned Returns: DataFrame: pandas DataFrame with "full_text" column cleaned """ df_new = df.copy() full_text_col = df_new['full_text'].apply(lambda x: remove_references(x)) full_text_col = full_text_col.str.replace('\n', ' ') full_text_col = full_text_col.apply(lambda x: re.sub(r'(http)\S+(htm)(l)?', '', x)) full_text_col = full_text_col.apply(lambda x: re.sub(r'(www.)\S+', '', x)) full_text_col = full_text_col.apply(lambda x: re.sub(r'[\d]', '', x)) full_text_col = full_text_col.str.replace('—', ' ') full_text_col = full_text_col.str.replace('-', ' ') full_text_col = full_text_col.apply(lambda x: re.sub(r'[^\w\s]', '', x)) full_text_col = full_text_col.apply(lambda x: re.sub(r'([Rr]eturn to text)', '', x)) full_text_col = full_text_col.apply(lambda x: re.sub(r'([Pp]lay [vV]ideo)', '', x)) df_new.drop(labels='full_text', axis="columns", inplace=True) df_new['full_text'] = full_text_col return df_new def get_wordnet_pos(word): """ Maps POS tag to word token """ tag = nltk.pos_tag([word])[0][1][0].upper() tag_dict = {"J": wordnet.ADJ, "N": wordnet.NOUN, "V": wordnet.VERB, "R": wordnet.ADV} return tag_dict.get(tag, wordnet.NOUN) def lemmatize_speech_text(text): """ Lemmatizes text based on Part of Speech (POS) by tokenizing words, finding the POS, and passing the POS and token into nltk's lemmatizer. Parameters: text (string): speech text Returns: list: lemmatized tokens """ lemmatizer = WordNetLemmatizer() tokens_lower = [w.lower() for w in nltk.word_tokenize(text)] return [lemmatizer.lemmatize(w, get_wordnet_pos(w)) for w in tokens_lower] def remove_stop_words(tokens_list): """ Removes English stop words from list of tokens Parameters: tokens_list (list): list of words Returns: list: list of words sans stop words """ stopwords_without_punct = [] for word in stopwords.words('english'): word = word.replace("'", "") stopwords_without_punct.append(word) stopped_tokens = [w for w in tokens_list if w not in stopwords_without_punct] return [w for w in stopped_tokens if len(w) > 2] def count_unique_words(text): """ Counts number of unqiue words in a piece of text Parameters: text (string): speech text Returns: int: number of unique words """ return len(set(text)) # Old function - replaced by lemmatize_speech_text() and remove_stop_words() # def tokenize_and_remove_stopwords(text): # tokens = word_tokenize(text) # stopped_tokens = [w for w in tokens if w not in stopwords_without_punct] # return stopped_tokens def get_most_common_words(tokens, num=20): """ Returns list of a number of most common tokens (words) in a speech Parameters: tokens (list): list of tokenized words from a speech num (int): number of top words to return Returns: list of tuples: Words and count of the number of times each word appears """ fdist = FreqDist(tokens) return fdist.most_common(num) def convert_to_datetime(df): """ Creates 3 new columns in FRB speech df, including speech date, year, and month. Parameters: df (DataFrame): FRB speech df with "speech_date" column to be parsed Returns: DataFrame: pandas DataFrame with 3 new date columns """ df_new = df.copy(deep=True) df_new['speech_datetime'] = df_new['speech_date'].apply(lambda x: pd.to_datetime(x)) df_new['speech_year'] = df_new['speech_datetime'].apply(lambda x: x.year) df_new['speech_month'] = df_new['speech_datetime'].apply(lambda x: x.month) return df_new def plot_most_common_words(df, article_num=9): """ Plots the 20 most common words in a speech, before and after removing stop words Parameters: df (DataFrame): FRB speech df with 'common_20_stopped_lemm_words' column article_num (int): index number of the speech for which to generate the barplot Returns: Displays 2 sns barplots of top 20 words """ fig = plt.figure(figsize=(15, 6)) fig.suptitle(f"Most common words in Speech: {df.iloc[article_num]['title']}") left = fig.add_subplot(121) right = fig.add_subplot(122) # left subplot without stop words sns.barplot(x=[x[0] for x in df.iloc[article_num]['common_20_stopped_lemm_words']], y=[x[1] for x in df.iloc[article_num]['common_20_stopped_lemm_words']], ax=left, color='#ffd966')#palette = mycmap) left.set_xticklabels(left.get_xticklabels(), rotation=45, horizontalalignment="right") left.set_title('Lemmatized Tokens with Stop Words Removed') # right subplot with all tokens sns.barplot(x=[x[0] for x in df.iloc[article_num]['common_20_lemm_words']], y=[x[1] for x in df.iloc[article_num]['common_20_lemm_words']], ax=right, color='gray')#palette = mycmap) right.set_xticklabels(right.get_xticklabels(), rotation=45, horizontalalignment="right") right.set_title('Lemmatized Tokens') plt.show() def create_dictionary(df, col_name = 'stopped_lemm_words', no_below=10, no_above=0.66, keep_n=10000): """ Creates a dictionary for our corpus Parameters: df (DataFrame): df containing the lemmatized and tokenized corpus col_name (str): name of column in the df containing the lemmatized and tokenized corpus no_below (int): Minimum number of documents the word mnust appear in to be included in the corpus no_above (int): Max percentage of documents in the corpus the word can appear in. Otherwise, word is removed from the corpus keep_n (int): Maximum number of words to keep in the dictionary Returns: dictionary: list of tokens in the dictionary """ dictionary = corpora.Dictionary(df[col_name]) print(f"Number of words in dictionary prior to filtering: {len(dictionary)}") dictionary.filter_extremes(no_below=10, no_above=0.66, keep_n=10000) print(f"Number of words in dictionary after filtering: {len(dictionary)}") return dictionary def create_bow(df, dictionary, col_name = 'stopped_lemm_words'): """ Creates a dictionary for our corpus Parameters: df (DataFrame): df containing the lemmatized and tokenized corpus col_name (str): name of column in the df containing the lemmatized and tokenized corpus no_below (int): Minimum number of documents the word mnust appear in to be included in the corpus no_above (int): Max percentage of documents in the corpus the word can appear in. Otherwise, word is removed from the corpus keep_n (int): Maximum number of words to keep in the dictionary """ bow_corpus = [dictionary.doc2bow(speech) for speech in df[col_name]] return bow_corpus def get_scores(corpus, dictionary, df, col_name, min_num_topics = 2, max_num_topics = 15, passes=10, random_state=100): """ """ num_topics = list(range(min_num_topics, max_num_topics + 1)) coherence_scores = [] perplexity_scores = [] for num in range(min_num_topics, max_num_topics+1): lda_model = gensim.models.LdaMulticore(corpus, num_topics=num, id2word=dictionary, random_state = random_state, passes = passes) perplexity_scores.append(lda_model.log_perplexity(corpus)) coherence_model_lda = CoherenceModel(model=lda_model, texts=df[col_name], dictionary=dictionary, coherence='c_v') coherence_scores.append(coherence_model_lda.get_coherence()) data = {'num_topics': num_topics, 'coherence': coherence_scores, 'perplexity': perplexity_scores} return pd.DataFrame(data) def run_and_save_final_lda_model(corpus, dictionary, df, col_name, num_topics = 11, passes = 10, random_state = 100): # fit the lda model lda_model = gensim.models.LdaMulticore(bow_corpus, num_topics=num_topics, id2word=dictionary, random_state = random_state, passes = passes) # pickle the lda model pickle.dump(lda_model, open('lda_model' + str(num_topics) + '.sava', 'wb')) # create the visualization vis = pyLDAvis.gensim.prepare(lda_model, corpus, dictionary=lda_model.id2word) # save the visualization in html format pyLDAvis.save_html(vis, 'lda_' + str(num_topics) + '_topics.html') # get the dominant topic information df_dominant = get_dominant_topic(lda_model, bow_corpus) # pickle the dominant topics df_dominant.to_pickle('df_dominant_' + str(num_topics) + '_topics.pkl') return lda_model, df_dominant def get_dominant_topic(lda_model, corpus): topics_df = pd.DataFrame() # Get main topic in each document for i, row in enumerate(lda_model[corpus]): row = sorted(row, key=lambda x: (x[1]), reverse=True) # Get the Dominant topic, Perc Contribution and Keywords for each document for j, (topic_num, prop_topic) in enumerate(row): if j == 0: # => dominant topic wp = lda_model.show_topic(topic_num) topic_keywords = ", ".join([word for word, prop in wp]) topics_df = topics_df.append(pd.Series([int(topic_num), round(prop_topic,4), topic_keywords]), ignore_index=True) else: break topics_df.reset_index(inplace=True) topics_df.columns = ['Document_No', 'Dominant_Topic', 'Top_Topic_Perc_Contrib', 'Keywords'] return topics_df # EDA def plot_speeches_per_year(df, figsize = (8, 6), color='#ffd966'): fig = plt.figure(figsize = figsize) count_by_year = df.groupby('speech_year').count()['index_no'].reset_index() sns.barplot(data = count_by_year, x = 'speech_year', y = 'index_no', color = color) plt.xticks(rotation=90) plt.xlabel('Speech Year', fontsize=14) plt.ylabel('Number of Speeches', fontsize=14) plt.title('Number of Speeches per Year', fontsize=18) plt.show() def plot_polarity_dist_per_year(df, figsize = (8, 6), color='#ffd966'): fig = plt.figure(figsize = figsize) sns.boxplot(data=df, x = 'speech_year', y = 'polarity', color = color) plt.xticks(rotation=90) plt.xlabel('Speech Year', fontsize=14) plt.ylabel('Polarity', fontsize=14) plt.title('Fed Speech Sentiment (Positive/Negative)', fontsize=18) plt.show() def plot_subjectivity_dist_per_year(df, figsize = (8, 6), color='#ffd966'): fig = plt.figure(figsize = figsize) sns.boxplot(data=df, x = 'speech_year', y = 'subjectivity', color = color) plt.xticks(rotation=90) plt.xlabel('Speech Year', fontsize=14) plt.ylabel('Subjectivity', fontsize=14) plt.title('Fed Speech Subjectivity (Positive/Negative)', fontsize=18) plt.show()
[]
2024-01-10
johntday/ChatBot-CSV
playground.py
import os from dotenv import load_dotenv from langchain import OpenAI from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS DB_NAME = 'notion_hybris_faiss_index' if __name__ == '__main__': do_something() def fetch_vector_store(name=DB_NAME) -> FAISS: vector_db = FAISS.load_local(f"embeddings/{name}", OpenAIEmbeddings()) print(f"\nLoaded '{name}'") return vector_db def extract_keywords(): load_dotenv(verbose=True) NOTION_TOKEN = os.getenv("NOTION_TOKEN") NOTION_DATABASE_ID = os.getenv("NOTION_DATABASE_ID") db = fetch_vector_store() db_dict = db.docstore._dict documents = list(db_dict.values()) # openai.api_key = os.getenv("OPENAI_API_KEY") f = open("keywords.txt", "a") # f.write("Now the file has more content!") llm = OpenAI( model="text-davinci-003", # prompt="Extract keywords from this text:\n\nBlack-on-black ware is a 20th- and 21st-century pottery tradition developed by the Puebloan Native American ceramic artists in Northern New Mexico. Traditional reduction-fired blackware has been made for centuries by pueblo artists. Black-on-black ware of the past century is produced with a smooth surface, with the designs applied through selective burnishing or the application of refractory slip. Another style involves carving or incising designs and selectively polishing the raised areas. For generations several families from Kha'po Owingeh and P'ohwhóge Owingeh pueblos have been making black-on-black ware with the techniques passed down from matriarch potters. Artists from other pueblos have also produced black-on-black ware. Several contemporary artists have created works honoring the pottery of their ancestors.", temperature=0.5, max_tokens=256, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) for doc in documents: keywords = llm(f"Extract keywords from this text:\n\n{doc}") f.write(keywords) # print(keywords) # break f.close()
[]
2024-01-10
johntday/ChatBot-CSV
modules~MyNotionDBLoader.py
"""Notion DB loader for langchain""" import itertools import time from typing import Any, Dict, List import requests from langchain.docstore.document import Document from langchain.document_loaders import PyPDFLoader from langchain.document_loaders.base import BaseLoader NOTION_BASE_URL = "https://api.notion.com/v1" DATABASE_URL = NOTION_BASE_URL + "/databases/{database_id}/query" PAGE_URL = NOTION_BASE_URL + "/pages/{page_id}" BLOCK_URL = NOTION_BASE_URL + "/blocks/{block_id}/children" TIMEOUT = 10000 WAIT = 2 RETRY_COUNT = 3 METADATA_FILTER = ['id', 'title', 'tags', 'version', 'source id', 'published', 'source'] def metadata_filter(pair: tuple) -> bool: key, value = pair if key in METADATA_FILTER: return True else: return False def _get_pdf_content(url_str: str, page_id: str) -> List[Document]: if url_str.startswith("http"): loader = PyPDFLoader(url_str) # loader = OnlinePDFLoader(url_str) pages = loader.load() return pages raise ValueError(f"Invalid URL of pdf: '{url_str}' at page_id: '{page_id}'") class MyNotionDBLoader(BaseLoader): """Notion DB Loader. Reads content from pages within a Noton Database. Args: integration_token (str): Notion integration token. database_id (str): Notion database id. """ def __init__(self, integration_token: str, database_id: str) -> None: """Initialize with parameters.""" if not integration_token: raise ValueError("integration_token must be provided") if not database_id: raise ValueError("database_id must be provided") self.token = integration_token self.database_id = database_id self.headers = { "Authorization": "Bearer " + self.token, "Content-Type": "application/json", "Notion-Version": "2022-06-28", } def load(self) -> List[Document]: """Load documents from the Notion database. Returns: List[Document]: List of documents. """ page_ids = self._retrieve_page_ids() return list(itertools.chain.from_iterable(self.load_page(page_id) for page_id in page_ids)) def _retrieve_page_ids( self, query_dict: Dict[str, Any] = {"page_size": 100} ) -> List[str]: """Get all the pages from a Notion database.""" pages: List[Dict[str, Any]] = [] query_dict = { "filter": { "and": [ { "property": "Pub", "checkbox": { "equals": True } }, { "property": "Status", "select": { "does_not_equal": "Published" } } ] }, 'page_size': 100 } while True: data = self._request( DATABASE_URL.format(database_id=self.database_id), method="POST", query_dict=query_dict, ) pages.extend(data.get("results")) if not data.get("has_more"): break query_dict["start_cursor"] = data.get("next_cursor") page_ids = [page["id"] for page in pages] print(f"Found {len(page_ids)} pages in Notion database {self.database_id}") return page_ids def load_page(self, page_id: str) -> List[Document]: """Read a page.""" is_pdf = False data = self._request(PAGE_URL.format(page_id=page_id)) # load properties as metadata metadata: Dict[str, Any] = {} for prop_name, prop_data in data["properties"].items(): prop_type = prop_data["type"] if prop_type == "rich_text": value = ( prop_data["rich_text"][0]["plain_text"] if prop_data["rich_text"] else None ) elif prop_type == "title": value = ( prop_data["title"][0]["plain_text"] if prop_data["title"] else None ) elif prop_type == "multi_select": value = ( [item["name"] for item in prop_data["multi_select"]] if prop_data["multi_select"] else [] ) elif prop_type == "select": value = ( prop_data["select"]["name"] if prop_data["select"] else None ) elif prop_type == "date": value = ( prop_data["date"]["start"] if prop_data["date"] else None ) elif prop_type == "checkbox": value = ( prop_data["checkbox"] ) if prop_name.lower() == "pdf" and value is True: is_pdf = True elif prop_type == "url": value = ( prop_data["url"] ) else: print(f"Unknown prop_type: {prop_type} for Notion page id: {page_id}") value = None metadata[prop_name.lower()] = value metadata["id"] = page_id page_content = self._load_blocks(block_id=page_id) """ validate """ if not page_content: raise ValueError(f"No content found for page_id: '{page_id}', title: '{metadata['title']}'") if not metadata["source"]: raise ValueError(f"source: '{metadata['source']} not found for page_id: '{page_id}', title: '{metadata['title']}'") """ check status """ if metadata["status"] in ["Archived", "Indexed"]: return [] """ filter metadata """ metadata_filtered = dict(filter(metadata_filter, metadata.items())) if is_pdf: print(f"\n\nLoading PDF '{metadata}'") docs = _get_pdf_content(page_content, page_id) return [Document(page_content=doc.page_content, metadata=metadata_filtered) for doc in docs] else: print(f"\n\nLoading Notion Page '{metadata}'") return [Document(page_content=page_content, metadata=metadata_filtered)] def _load_blocks(self, block_id: str, num_tabs: int = 0) -> str: """Read a block and its children.""" result_lines_arr: List[str] = [] cur_block_id: str = block_id while cur_block_id: data = self._request(BLOCK_URL.format(block_id=cur_block_id)) for result in data["results"]: result_obj = result[result["type"]] if result["type"] == "file" or result["type"] == "pdf": return result["file"]["file"]["url"] if "rich_text" not in result_obj: continue cur_result_text_arr: List[str] = [] for rich_text in result_obj["rich_text"]: if "text" in rich_text: cur_result_text_arr.append( "\t" * num_tabs + rich_text["text"]["content"] ) if result["has_children"]: children_text = self._load_blocks( block_id=result["id"], num_tabs=num_tabs + 1 ) cur_result_text_arr.append(children_text) result_lines_arr.append("\n".join(cur_result_text_arr)) cur_block_id = data.get("next_cursor") return "\n".join(result_lines_arr) def _request( self, url: str, method: str = "GET", query_dict: Dict[str, Any] = {} ) -> Any: """ Make a request to the Notion API. Include retry logic and rate limit handling. """ # https://scrapeops.io/python-web-scraping-playbook/python-requests-retry-failed-requests/ for _ in range(RETRY_COUNT): if WAIT is not None: time.sleep(WAIT) try: response = requests.request( method, url, headers=self.headers, json=query_dict, timeout=TIMEOUT, ) # response.raise_for_status() if response.status_code in [429, 500, 502, 503, 504]: print(f"Got {response.status_code} from Notion API. Retrying...") continue return response.json() except requests.exceptions.ConnectionError: pass return None
[]
2024-01-10
eldarsilver/DQN_Pytorch_ROS
openai_ros~openai_ros~src~openai_ros~robot_envs~cube_single_disk_env.py
#! /usr/bin/env python import numpy import rospy from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from nav_msgs.msg import Odometry from openai_ros.openai_ros_common import ROSLauncher class CubeSingleDiskEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """Initializes a new CubeSingleDisk environment. Args: """ # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="moving_cube_description", launch_file_name="put_robot_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Variables that we give through the constructor. # None in this case # Internal Vars self.controllers_list = ['joint_state_controller', 'inertia_wheel_roll_joint_velocity_controller' ] self.robot_name_space = "moving_cube" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(CubeSingleDiskEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=True) # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/moving_cube/joint_states", JointState, self._joints_callback) rospy.Subscriber("/moving_cube/odom", Odometry, self._odom_callback) self._roll_vel_pub = rospy.Publisher('/moving_cube/inertia_wheel_roll_joint_velocity_controller/command', Float64, queue_size=1) self._check_all_systems_ready() # We pause the simulation once everything is ready self.gazebo.pauseSim() # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() self._check_publishers_connection() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): self._check_joint_states_ready() self._check_odom_ready() rospy.logdebug("ALL SENSORS READY") def _check_joint_states_ready(self): self.joints = None while self.joints is None and not rospy.is_shutdown(): try: self.joints = rospy.wait_for_message( "/moving_cube/joint_states", JointState, timeout=1.0) rospy.logdebug( "Current moving_cube/joint_states READY=>" + str(self.joints)) except: rospy.logerr( "Current moving_cube/joint_states not ready yet, retrying for getting joint_states") return self.joints def _check_odom_ready(self): self.odom = None while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message( "/moving_cube/odom", Odometry, timeout=1.0) rospy.logdebug( "Current /moving_cube/odom READY=>" + str(self.odom)) except: rospy.logerr( "Current /moving_cube/odom not ready yet, retrying for getting odom") return self.odom def _joints_callback(self, data): self.joints = data def _odom_callback(self, data): self.odom = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._roll_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug( "No susbribers to _roll_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_roll_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need. # ---------------------------- def move_joints(self, roll_speed): joint_speed_value = Float64() joint_speed_value.data = roll_speed rospy.logdebug("Single Disk Roll Velocity>>" + str(joint_speed_value)) self._roll_vel_pub.publish(joint_speed_value) self.wait_until_roll_is_in_vel(joint_speed_value.data) def wait_until_roll_is_in_vel(self, velocity): rate = rospy.Rate(10) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 epsilon = 0.1 v_plus = velocity + epsilon v_minus = velocity - epsilon while not rospy.is_shutdown(): joint_data = self._check_joint_states_ready() roll_vel = joint_data.velocity[0] rospy.logdebug("VEL=" + str(roll_vel) + ", ?RANGE=[" + str(v_minus) + ","+str(v_plus)+"]") are_close = (roll_vel <= v_plus) and (roll_vel > v_minus) if are_close: rospy.logdebug("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break rospy.logdebug("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time - start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") return delta_time def get_joints(self): return self.joints def get_odom(self): return self.odom
[]
2024-01-10
eldarsilver/DQN_Pytorch_ROS
openai_ros~openai_ros~src~openai_ros~robot_gazebo_env.py
import rospy import gym from gym.utils import seeding from .gazebo_connection import GazeboConnection from .controllers_connection import ControllersConnection #https://bitbucket.org/theconstructcore/theconstruct_msgs/src/master/msg/RLExperimentInfo.msg from openai_ros.msg import RLExperimentInfo # https://github.com/openai/gym/blob/master/gym/core.py class RobotGazeboEnv(gym.Env): def __init__(self, robot_name_space, controllers_list, reset_controls, start_init_physics_parameters=True, reset_world_or_sim="SIMULATION"): # To reset Simulations rospy.logdebug("START init RobotGazeboEnv") self.gazebo = GazeboConnection(start_init_physics_parameters,reset_world_or_sim) self.controllers_object = ControllersConnection(namespace=robot_name_space, controllers_list=controllers_list) self.reset_controls = reset_controls self.seed() # Set up ROS related variables self.episode_num = 0 self.cumulated_episode_reward = 0 self.reward_pub = rospy.Publisher('/openai/reward', RLExperimentInfo, queue_size=1) # We Unpause the simulation and reset the controllers if needed """ To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. """ self.gazebo.unpauseSim() if self.reset_controls: self.controllers_object.reset_controllers() rospy.logdebug("END init RobotGazeboEnv") # Env methods def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): """ Function executed each time step. Here we get the action execute it in a time step and retrieve the observations generated by that action. :param action: :return: obs, reward, done, info """ """ Here we should convert the action num to movement action, execute the action in the simulation and get the observations result of performing that action. """ rospy.logdebug("START STEP OpenAIROS") self.gazebo.unpauseSim() self._set_action(action) self.gazebo.pauseSim() obs = self._get_obs() done = self._is_done(obs) info = {} reward = self._compute_reward(obs, done) self.cumulated_episode_reward += reward rospy.logdebug("END STEP OpenAIROS") return obs, reward, done, info def reset(self): rospy.logdebug("Reseting RobotGazeboEnvironment") self._reset_sim() self._init_env_variables() self._update_episode() obs = self._get_obs() rospy.logdebug("END Reseting RobotGazeboEnvironment") return obs def close(self): """ Function executed when closing the environment. Use it for closing GUIS and other systems that need closing. :return: """ rospy.logdebug("Closing RobotGazeboEnvironment") rospy.signal_shutdown("Closing RobotGazeboEnvironment") def _update_episode(self): """ Publishes the cumulated reward of the episode and increases the episode number by one. :return: """ rospy.logwarn("PUBLISHING REWARD...") self._publish_reward_topic( self.cumulated_episode_reward, self.episode_num ) rospy.logwarn("PUBLISHING REWARD...DONE="+str(self.cumulated_episode_reward)+",EP="+str(self.episode_num)) self.episode_num += 1 self.cumulated_episode_reward = 0 def _publish_reward_topic(self, reward, episode_number=1): """ This function publishes the given reward in the reward topic for easy access from ROS infrastructure. :param reward: :param episode_number: :return: """ reward_msg = RLExperimentInfo() reward_msg.episode_number = episode_number reward_msg.episode_reward = reward self.reward_pub.publish(reward_msg) # Extension methods # ---------------------------- def _reset_sim(self): """Resets a simulation """ rospy.logdebug("RESET SIM START") if self.reset_controls : rospy.logdebug("RESET CONTROLLERS") self.gazebo.unpauseSim() self.controllers_object.reset_controllers() self._check_all_systems_ready() self._set_init_pose() self.gazebo.pauseSim() self.gazebo.resetSim() self.gazebo.unpauseSim() self.controllers_object.reset_controllers() self._check_all_systems_ready() self.gazebo.pauseSim() else: rospy.logwarn("DONT RESET CONTROLLERS") self.gazebo.unpauseSim() self._check_all_systems_ready() self._set_init_pose() self.gazebo.pauseSim() self.gazebo.resetSim() self.gazebo.unpauseSim() self._check_all_systems_ready() self.gazebo.pauseSim() rospy.logdebug("RESET SIM END") return True def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ raise NotImplementedError() def _get_obs(self): """Returns the observation. """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _is_done(self, observations): """Indicates whether or not the episode is done ( the robot has fallen for example). """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _env_setup(self, initial_qpos): """Initial configuration of the environment. Can be used to configure initial state and extract information from the simulation. """ raise NotImplementedError()
[]
2024-01-10
eldarsilver/DQN_Pytorch_ROS
openai_ros~openai_ros~src~openai_ros~robot_envs~turtlebot2_env.py
import numpy import rospy import time from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan from sensor_msgs.msg import PointCloud2 from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist from openai_ros.openai_ros_common import ROSLauncher class TurtleBot2Env(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new TurtleBot2Env environment. Turtlebot2 doesnt use controller_manager, therefore we wont reset the controllers in the standard fashion. For the moment we wont reset them. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /odom : Odometry readings of the Base of the Robot * /camera/depth/image_raw: 2d Depth image of the depth sensor. * /camera/depth/points: Pointcloud sensor readings * /camera/rgb/image_raw: RGB camera * /kobuki/laser/scan: Laser Readings Actuators Topic List: /cmd_vel, Args: """ rospy.logdebug("Start TurtleBot2Env INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world # launch_file_name="put_robot_in_world.launch" ROSLauncher(rospackage_name="turtlebot_gazebo", launch_file_name="put_robot_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(TurtleBot2Env, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") self.gazebo.unpauseSim() #self.controllers_object.reset_controllers() self._check_all_sensors_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/odom", Odometry, self._odom_callback) #rospy.Subscriber("/camera/depth/image_raw", Image, self._camera_depth_image_raw_callback) #rospy.Subscriber("/camera/depth/points", PointCloud2, self._camera_depth_points_callback) #rospy.Subscriber("/camera/rgb/image_raw", Image, self._camera_rgb_image_raw_callback) rospy.Subscriber("/kobuki/laser/scan", LaserScan, self._laser_scan_callback) #rospy.Subscriber("/scan", LaserScan, self._laser_scan_callback) self._cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self._check_publishers_connection() self.gazebo.pauseSim() rospy.logdebug("Finished TurtleBot2Env INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_odom_ready() # We dont need to check for the moment, takes too long #self._check_camera_depth_image_raw_ready() #self._check_camera_depth_points_ready() #self._check_camera_rgb_image_raw_ready() self._check_laser_scan_ready() rospy.logdebug("ALL SENSORS READY") def _check_odom_ready(self): self.odom = None rospy.logdebug("Waiting for /odom to be READY...") while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message("/odom", Odometry, timeout=5.0) rospy.logdebug("Current /odom READY=>") except: rospy.logerr("Current /odom not ready yet, retrying for getting odom") return self.odom def _check_camera_depth_image_raw_ready(self): self.camera_depth_image_raw = None rospy.logdebug("Waiting for /camera/depth/image_raw to be READY...") while self.camera_depth_image_raw is None and not rospy.is_shutdown(): try: self.camera_depth_image_raw = rospy.wait_for_message("/camera/depth/image_raw", Image, timeout=5.0) rospy.logdebug("Current /camera/depth/image_raw READY=>") except: rospy.logerr("Current /camera/depth/image_raw not ready yet, retrying for getting camera_depth_image_raw") return self.camera_depth_image_raw def _check_camera_depth_points_ready(self): self.camera_depth_points = None rospy.logdebug("Waiting for /camera/depth/points to be READY...") while self.camera_depth_points is None and not rospy.is_shutdown(): try: self.camera_depth_points = rospy.wait_for_message("/camera/depth/points", PointCloud2, timeout=10.0) rospy.logdebug("Current /camera/depth/points READY=>") except: rospy.logerr("Current /camera/depth/points not ready yet, retrying for getting camera_depth_points") return self.camera_depth_points def _check_camera_rgb_image_raw_ready(self): self.camera_rgb_image_raw = None rospy.logdebug("Waiting for /camera/rgb/image_raw to be READY...") while self.camera_rgb_image_raw is None and not rospy.is_shutdown(): try: self.camera_rgb_image_raw = rospy.wait_for_message("/camera/rgb/image_raw", Image, timeout=5.0) rospy.logdebug("Current /camera/rgb/image_raw READY=>") except: rospy.logerr("Current /camera/rgb/image_raw not ready yet, retrying for getting camera_rgb_image_raw") return self.camera_rgb_image_raw def _check_laser_scan_ready(self): self.laser_scan = None rospy.logdebug("Waiting for /kobuki/laser/scan to be READY...") while self.laser_scan is None and not rospy.is_shutdown(): try: self.laser_scan = rospy.wait_for_message("/kobuki/laser/scan", LaserScan, timeout=5.0) rospy.logdebug("Current /kobuki/laser/scan READY=>") except: rospy.logerr("Current /kobuki/laser/scan not ready yet, retrying for getting laser_scan") return self.laser_scan def _odom_callback(self, data): self.odom = data def _camera_depth_image_raw_callback(self, data): self.camera_depth_image_raw = data def _camera_depth_points_callback(self, data): self.camera_depth_points = data def _camera_rgb_image_raw_callback(self, data): self.camera_rgb_image_raw = data def _laser_scan_callback(self, data): self.laser_scan = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._cmd_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug("No susbribers to _cmd_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_cmd_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_base(self, linear_speed, angular_speed, epsilon=0.05, update_rate=10, min_laser_distance=-1): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed: Speed in the X axis of the robot base frame :param angular_speed: Speed of the angular turning of the robot base frame :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed cmd_vel_value.angular.z = angular_speed rospy.logdebug("TurtleBot2 Base Twist Cmd>>" + str(cmd_vel_value)) self._check_publishers_connection() self._cmd_vel_pub.publish(cmd_vel_value) time.sleep(0.2) #time.sleep(0.02) """ self.wait_until_twist_achieved(cmd_vel_value, epsilon, update_rate, min_laser_distance) """ def wait_until_twist_achieved(self, cmd_vel_value, epsilon, update_rate, min_laser_distance=-1): """ We wait for the cmd_vel twist given to be reached by the robot reading from the odometry. :param cmd_vel_value: Twist we want to wait to reach. :param epsilon: Error acceptable in odometry readings. :param update_rate: Rate at which we check the odometry. :return: """ rospy.logwarn("START wait_until_twist_achieved...") rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 epsilon = 0.05 rospy.logdebug("Desired Twist Cmd>>" + str(cmd_vel_value)) rospy.logdebug("epsilon>>" + str(epsilon)) linear_speed = cmd_vel_value.linear.x angular_speed = cmd_vel_value.angular.z linear_speed_plus = linear_speed + epsilon linear_speed_minus = linear_speed - epsilon angular_speed_plus = angular_speed + epsilon angular_speed_minus = angular_speed - epsilon while not rospy.is_shutdown(): crashed_into_something = self.has_crashed(min_laser_distance) current_odometry = self._check_odom_ready() odom_linear_vel = current_odometry.twist.twist.linear.x odom_angular_vel = current_odometry.twist.twist.angular.z rospy.logdebug("Linear VEL=" + str(odom_linear_vel) + ", ?RANGE=[" + str(linear_speed_minus) + ","+str(linear_speed_plus)+"]") rospy.logdebug("Angular VEL=" + str(odom_angular_vel) + ", ?RANGE=[" + str(angular_speed_minus) + ","+str(angular_speed_plus)+"]") linear_vel_are_close = (odom_linear_vel <= linear_speed_plus) and (odom_linear_vel > linear_speed_minus) angular_vel_are_close = (odom_angular_vel <= angular_speed_plus) and (odom_angular_vel > angular_speed_minus) if linear_vel_are_close and angular_vel_are_close: rospy.logwarn("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break if crashed_into_something: rospy.logerr("TurtleBot has crashed, stopping movement!") break rospy.logwarn("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time- start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") rospy.logwarn("END wait_until_twist_achieved...") return delta_time def has_crashed(self, min_laser_distance): """ It states based on the laser scan if the robot has crashed or not. Crashed means that the minimum laser reading is lower than the min_laser_distance value given. If min_laser_distance == -1, it returns always false, because its the way to deactivate this check. """ robot_has_crashed = False if min_laser_distance != -1: laser_data = self.get_laser_scan() for i, item in enumerate(laser_data.ranges): if item == float ('Inf') or numpy.isinf(item): pass elif numpy.isnan(item): pass else: # Has a Non Infinite or Nan Value if (item < min_laser_distance): rospy.logerr("TurtleBot HAS CRASHED >>> item=" + str(item)+"< "+str(min_laser_distance)) robot_has_crashed = True break return robot_has_crashed def get_odom(self): return self.odom def get_camera_depth_image_raw(self): return self.camera_depth_image_raw def get_camera_depth_points(self): return self.camera_depth_points def get_camera_rgb_image_raw(self): return self.camera_rgb_image_raw def get_laser_scan(self): return self.laser_scan def reinit_sensors(self): """ This method is for the tasks so that when reseting the episode the sensors values are forced to be updated with the real data and """
[]
2024-01-10
eldarsilver/DQN_Pytorch_ROS
turtle2_openai_ros_example~src~deploy_robot.py
#!/usr/bin/env python import rospy import numpy import time import math from gym import spaces #from openai_ros.robot_envs import turtlebot2_env #from gym.envs.registration import register from sensor_msgs.msg import LaserScan from std_msgs.msg import Header from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest #from openai_ros.openai_ros_common import ROSLauncher import os from cv_bridge import CvBridge, CvBridgeError from datetime import datetime from std_msgs.msg import String #from sensor_msgs.msg import Image from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist import torch import torch.nn as nn import pickle class DQN(nn.Module): # hidden_size=64 def __init__(self, inputs, outputs, hidden_size=128): super(DQN, self).__init__() self.fc1 = nn.Linear(in_features=inputs, out_features=hidden_size) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=0.5) self.bn1 = nn.BatchNorm1d(num_features=hidden_size) self.bn2 = nn.BatchNorm1d(num_features=64) self.bn3 = nn.BatchNorm1d(num_features=32) self.fc2 = nn.Linear(in_features=hidden_size, out_features=64) self.fc3 = nn.Linear(in_features=64, out_features=32) self.fc4 = nn.Linear(in_features=32, out_features=outputs) #self.fc5 = nn.Linear(in_features=16, out_features=outputs) def forward(self, x): x = self.fc1(x) x = self.bn1(x) x = self.relu(x) #x = self.dropout(x) x = self.fc2(x) x = self.bn2(x) x = self.relu(x) #x = self.dropout(x) x = self.fc3(x) x = self.bn3(x) x = self.relu(x) #x = self.dropout(x) x = self.fc4(x) #x = self.relu(x) #x = self.dropout(x) #x = self.fc5(x) return x class rlComponent(object): def __init__(self): """ This Task Env is designed for having the TurtleBot2 in some kind of maze. It will learn how to move around the maze without crashing. """ # Only variable needed to be set here number_actions = rospy.get_param('~n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) #number_observations = rospy.get_param('/turtlebot2/n_observations') # Actions and Observations self.dec_obs = rospy.get_param( "~number_decimals_precision_obs", 1) self.linear_forward_speed = rospy.get_param( '~linear_forward_speed') self.linear_turn_speed = rospy.get_param( '~linear_turn_speed') self.angular_speed = rospy.get_param('~angular_speed') self.init_linear_forward_speed = rospy.get_param( '~init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param( '~init_linear_turn_speed') self.n_observations = rospy.get_param('~n_observations') self.min_range = rospy.get_param('~min_range') self.max_laser_value = rospy.get_param('~max_laser_value') self.min_laser_value = rospy.get_param('~min_laser_value') MODEL_CKPT = rospy.get_param('~model_ckpt') self.actions = range(number_actions) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.policy = DQN(self.n_observations, number_actions).to(self.device) self.policy.load_state_dict(torch.load(MODEL_CKPT, map_location=self.device)) self.policy.eval() self._cmd_vel_pub = rospy.Publisher('/mobile_base/commands/velocity', Twist, queue_size=1) self.last_action = "FORWARDS" self.laser_scan = None rospy.Subscriber("/scan", LaserScan, self._laser_scan_callback) laser_scan = self._check_laser_scan_ready() rospy.logdebug("laser_scan len===>"+str(len(laser_scan.ranges))) # Number of laser reading jumped self.new_ranges = int( math.ceil(float(len(laser_scan.ranges)) / float(self.n_observations))) rospy.logdebug("n_observations===>"+str(self.n_observations)) rospy.logdebug( "new_ranges, jumping laser readings===>"+str(self.new_ranges)) high = numpy.full((self.n_observations), self.max_laser_value) low = numpy.full((self.n_observations), self.min_laser_value) # We only use two integers self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>" + str(self.observation_space)) # Rewards self.forwards_reward = rospy.get_param("~forwards_reward") self.turn_reward = rospy.get_param("~turn_reward") self.end_episode_points = rospy.get_param( "~end_episode_points") self.cumulated_steps = 0.0 self.laser_filtered_pub = rospy.Publisher( '/scan_filtered', LaserScan, queue_size=1) self._init_env_variables() self._set_init_pose() rospy.spin() def _laser_scan_callback(self, data): self.laser_scan = data def get_laser_scan(self): return self.laser_scan def _check_laser_scan_ready(self): #self.laser_scan = None rospy.logdebug("Waiting for /scan to be READY...") while self.laser_scan is None and not rospy.is_shutdown(): try: self.laser_scan = rospy.wait_for_message("/scan", LaserScan, timeout=5.0) rospy.logdebug("Current /scan READY=>") except: rospy.logerr("Current /scan not ready yet, retrying for getting laser_scan") return self.laser_scan def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base(self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10, min_laser_distance=-1) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Set to false Done, because its calculated asyncronously self._episode_done = False # We wait a small ammount of time to start everything because in very fast resets, laser scan values are sluggish # and sometimes still have values from the prior position that triguered the done. time.sleep(1.0) # TODO: Add reset of published filtered laser readings #laser_scan = self.get_laser_scan() discretized_ranges = self.laser_scan.ranges self.publish_filtered_laser_scan(laser_original_data=self.laser_scan, new_filtered_laser_range=discretized_ranges) self.step() def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the TurtleBot2Env API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan = self.get_laser_scan() rospy.logdebug("BEFORE DISCRET _episode_done==>" + str(self._episode_done)) discretized_observations = self.discretize_observation(laser_scan, self.new_ranges ) rospy.logdebug("Observations==>"+str(discretized_observations)) rospy.logdebug("AFTER DISCRET_episode_done==>"+str(self._episode_done)) rospy.logdebug("END Get Observation ==>") return discretized_observations def _is_done(self, observations): if self._episode_done: rospy.logdebug("TurtleBot2 is Too Close to wall" + str(self._episode_done)) else: rospy.logerr("TurtleBot2 is Ok") return self._episode_done def _compute_reward(self, observations, done): if not done: if self.last_action == "FORWARDS": reward = self.forwards_reward else: reward = self.turn_reward else: reward = -1*self.end_episode_points rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_observation(self, data, new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] filtered_range = [] #mod = len(data.ranges)/new_ranges mod = new_ranges max_laser_value = data.range_max min_laser_value = data.range_min rospy.logdebug("data=" + str(data)) rospy.logwarn("data.range_max= %s" % data.range_max) rospy.logwarn("data.range_min= %s" % data.range_min) rospy.logwarn("len(data.ranges)= %s" % len(data.ranges)) rospy.logwarn("data.angle_min)= %s" % data.angle_min) rospy.logwarn("data.angle_max)= %s" % data.angle_max) rospy.logwarn("data.angle_increment= %s" % data.angle_increment) rospy.logwarn("mod=" + str(mod)) rospy.loginfo('right data.ranges[89] %s' % data.ranges[89]) rospy.loginfo('left data.ranges[269] %s ' % data.ranges[269]) rospy.loginfo('back data.ranges[359] %s' % data.ranges[359]) rospy.loginfo('back data.ranges[0] %s' % data.ranges[0]) rospy.loginfo('front data.ranges[179] %s' % data.ranges[179]) idx_ranges = [89, 135, 179, 224, 269] for item in idx_ranges: if data.ranges[item] == float('Inf') or numpy.isinf(data.ranges[item]): # discretized_ranges.append(self.max_laser_value) discretized_ranges.append(round(max_laser_value, self.dec_obs)) elif numpy.isnan(data.ranges[item]): # discretized_ranges.append(self.min_laser_value) discretized_ranges.append(round(min_laser_value, self.dec_obs)) else: # discretized_ranges.append(int(item)) discretized_ranges.append(round(data.ranges[item], self.dec_obs)) if (self.min_range > data.ranges[item] > 0): rospy.logerr("done Validation >>> data.ranges[item]=" + str(data.ranges[item])+"< "+str(self.min_range)) self._episode_done = True else: rospy.logwarn("NOT done Validation >>> data.ranges[item]=" + str(data.ranges[item])+"< "+str(self.min_range)) #rospy.logdebug("Size of observations, discretized_ranges==>"+str(len(discretized_ranges))) return discretized_ranges """ for i, item in enumerate(data.ranges): if (i % mod == 0): if item == float('Inf') or numpy.isinf(item): # discretized_ranges.append(self.max_laser_value) discretized_ranges.append( round(max_laser_value, self.dec_obs)) elif numpy.isnan(item): # discretized_ranges.append(self.min_laser_value) discretized_ranges.append( round(min_laser_value, self.dec_obs)) else: # discretized_ranges.append(int(item)) discretized_ranges.append(round(item, self.dec_obs)) if (self.min_range > item > 0): rospy.logerr("done Validation >>> item=" + str(item)+"< "+str(self.min_range)) self._episode_done = True else: rospy.logwarn("NOT done Validation >>> item=" + str(item)+"< "+str(self.min_range)) # We add last value appended filtered_range.append(discretized_ranges[-1]) else: # We add value zero filtered_range.append(0.1) rospy.logdebug( "Size of observations, discretized_ranges==>"+str(len(discretized_ranges))) self.publish_filtered_laser_scan(laser_original_data=data, new_filtered_laser_range=discretized_ranges) return discretized_ranges """ def publish_filtered_laser_scan(self, laser_original_data, new_filtered_laser_range): rospy.logdebug("new_filtered_laser_range==>" + str(new_filtered_laser_range)) laser_filtered_object = LaserScan() h = Header() # Note you need to call rospy.init_node() before this will work h.stamp = rospy.Time.now() h.frame_id = laser_original_data.header.frame_id laser_filtered_object.header = h laser_filtered_object.angle_min = laser_original_data.angle_min laser_filtered_object.angle_max = laser_original_data.angle_max new_angle_incr = abs(laser_original_data.angle_max - laser_original_data.angle_min) / len(new_filtered_laser_range) #laser_filtered_object.angle_increment = laser_original_data.angle_increment laser_filtered_object.angle_increment = new_angle_incr laser_filtered_object.time_increment = laser_original_data.time_increment laser_filtered_object.scan_time = laser_original_data.scan_time laser_filtered_object.range_min = laser_original_data.range_min laser_filtered_object.range_max = laser_original_data.range_max laser_filtered_object.ranges = [] laser_filtered_object.intensities = [] for item in new_filtered_laser_range: if item == 0.0: laser_distance = 0.1 else: laser_distance = item laser_filtered_object.ranges.append(laser_distance) laser_filtered_object.intensities.append(item) self.laser_filtered_pub.publish(laser_filtered_object) def move_base(self, linear_speed, angular_speed, epsilon=0.05, update_rate=10, min_laser_distance=-1): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed: Speed in the X axis of the robot base frame :param angular_speed: Speed of the angular turning of the robot base frame :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed cmd_vel_value.angular.z = angular_speed rospy.logwarn("Move Base") rospy.logwarn("linear_speed %d", linear_speed) rospy.logwarn("angular_speed %d", angular_speed) #rospy.logdebug("TurtleBot2 Base Twist Cmd>>" + str(cmd_vel_value)) #self._check_publishers_connection() self._cmd_vel_pub.publish(cmd_vel_value) time.sleep(0.2) #time.sleep(0.02) """ self.wait_until_twist_achieved(cmd_vel_value, epsilon, update_rate, min_laser_distance) """ def _set_action(self, action): """ This set action will Set the linear and angular speed of the turtlebot2 based on the action number given. :param action: The action integer that set s what movement to do next. """ rospy.logdebug("Start Set Action %d", action) # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv if action == 0: # FORWARD linear_speed = self.linear_forward_speed angular_speed = 0.0 self.last_action = "FORWARDS" rospy.logwarn("Action 0 F") elif action == 1: # LEFT linear_speed = self.linear_turn_speed angular_speed = self.angular_speed self.last_action = "TURN_LEFT" rospy.logwarn("Action 1 L") elif action == 2: # RIGHT linear_speed = self.linear_turn_speed angular_speed = -1*self.angular_speed self.last_action = "TURN_RIGHT" rospy.logwarn("Action 2 R") elif self._episode_done == True: # Stop linear_speed = 0.0 angular_speed = 0.0 self.last_action = "STOP" rospy.logwarn("Action end") # We tell TurtleBot2 the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10, min_laser_distance=self.min_range) #rospy.logdebug("END Set Action ==>"+str(action) +", NAME="+str(self.last_action)) rospy.logwarn("END Set Action %d", action) def select_action(self, policy, state): #rospy.logwarn("state.shape: ") #rospy.logwarn(state.shape) with torch.no_grad(): # t.max(1) will return largest column value of each row. # second column on max result is index of where max element was # found, so we pick action with the larger expected reward. policy.eval() action = policy(state).max(axis=1)[1].view(1, 1) return action def step(self): obs = self._get_obs() obs = [round(num, 1) for num in obs] rospy.loginfo("obs %s" % obs) while obs != [] and self._episode_done == False: state = torch.from_numpy(numpy.array(obs)).float().unsqueeze(0).to(self.device) rospy.loginfo('state %s' % state) # Pick an action based on the current state action_dq = self.select_action(self.policy, state) rospy.logwarn("Next actionq is:%d", action_dq) # Execute the action in the environment and get feedback #self._set_action(action_dq) rospy.logwarn("Start Set Action %d", action_dq) if action_dq == 0: # FORWARD linear_speed = self.linear_forward_speed angular_speed = 0.0 self.last_action = "FORWARDS" rospy.logwarn("linear_speed %d", linear_speed) rospy.logwarn("angular_speed %d", angular_speed) elif action_dq == 1: # LEFT linear_speed = self.linear_turn_speed angular_speed = self.angular_speed self.last_action = "TURN_LEFT" rospy.logwarn("linear_speed %d", linear_speed) rospy.logwarn("angular_speed %d", angular_speed) elif action_dq == 2: # RIGHT linear_speed = self.linear_turn_speed angular_speed = -1*self.angular_speed self.last_action = "TURN_RIGHT" rospy.logwarn("linear_speed %d", linear_speed) rospy.logwarn("angular_speed %d", angular_speed) elif self._episode_done == True: # Stop linear_speed = 0.0 angular_speed = 0.0 self.last_action = "STOP" rospy.logwarn("linear_speed %d", linear_speed) rospy.logwarn("angular_speed %d", angular_speed) # We tell TurtleBot2 the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10, min_laser_distance=self.min_range) rospy.logwarn("END Set Action %d", action_dq) obs = self._get_obs() obs = [round(num, 1) for num in obs] if __name__ == '__main__': try: rospy.init_node('re_fr', anonymous=False) rlComp = rlComponent() #while rlComp.ok(): # pass except rospy.ROSInterruptException: pass
[]
2024-01-10
eldarsilver/DQN_Pytorch_ROS
turtle2_openai_ros_example~src~test_deepq.py
#!/usr/bin/env python import gym from gym import wrappers # ROS packages required import rospy import rospkg from openai_ros.openai_ros_common import StartOpenAI_ROS_Environment from functools import reduce import pickle import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter import os import time import random import numpy as np import matplotlib.pyplot as plt from collections import namedtuple import math import glob import io import base64 import datetime import json class DQN(nn.Module): # hidden_size=64 def __init__(self, inputs, outputs, hidden_size=128): super(DQN, self).__init__() self.fc1 = nn.Linear(in_features=inputs, out_features=hidden_size) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=0.5) self.bn1 = nn.BatchNorm1d(num_features=hidden_size) self.bn2 = nn.BatchNorm1d(num_features=64) self.bn3 = nn.BatchNorm1d(num_features=32) self.fc2 = nn.Linear(in_features=hidden_size, out_features=64) self.fc3 = nn.Linear(in_features=64, out_features=32) self.fc4 = nn.Linear(in_features=32, out_features=outputs) #self.fc5 = nn.Linear(in_features=16, out_features=outputs) def forward(self, x): x = self.fc1(x) x = self.bn1(x) x = self.relu(x) #x = self.dropout(x) x = self.fc2(x) x = self.bn2(x) x = self.relu(x) #x = self.dropout(x) x = self.fc3(x) x = self.bn3(x) x = self.relu(x) #x = self.dropout(x) x = self.fc4(x) #x = self.relu(x) #x = self.dropout(x) #x = self.fc5(x) return x def test(env, policy_net, device, test_global_step, render=False): state, ep_reward, done = env.reset(), 0, False state = [round(num, 1) for num in state] rospy.logwarn("Entering test method...") test_local_step = 0 while not done: if render: env.render() state = torch.from_numpy(np.array(state)).float().unsqueeze(0).to(device) # t.max(1) will return largest column value of each row. # second column on max result is index of where max element was # found, so we pick action with the largest expected reward. action = policy_net(state).max(dim=1)[1].view(1, 1) state, reward, done, _ = env.step(action.item()) state = [round(num, 1) for num in state] test_local_step += 1 test_global_step += 1 rospy.logwarn("Testing: Reward of this step: ") rospy.logwarn(reward) ep_reward += reward rospy.logwarn("Testing: Cumulative Reward of this episode: ") rospy.logwarn(ep_reward) writer.add_scalar("Test_Cumulative_Rewards", ep_reward, global_step=test_global_step) return ep_reward, test_global_step if __name__ == '__main__': rospy.init_node('test_turtlebot2_maze_dqn', anonymous=True, log_level=rospy.WARN) # Init OpenAI_ROS ENV #task_and_robot_environment_name = rospy.get_param('task_and_robot_environment_name') task_and_robot_environment_name = rospy.get_param('/turtlebot2/task_and_robot_environment_name') # Create the Gym environment env = StartOpenAI_ROS_Environment(task_and_robot_environment_name) rospy.loginfo("Gym environment done") rospy.loginfo("Starting Test") # Set the logging system rospack = rospkg.RosPack() pkg_path = rospack.get_path('turtle2_openai_ros_example') outdir = pkg_path + '/training_results' env = wrappers.Monitor(env, outdir, force=True) rospy.loginfo("Monitor Wrapper started") # Loads parameters from the ROS param server # Parameters are stored in a yaml file inside the config directory # They are loaded at runtime by the launch file #MODEL_PATH = rospy.get_param("model_ckpt") ######################################################################################### #MODEL_PATH = '$HOME/python3_ws/src/turtle2_openai_ros_example/src/checkpoints/dqn-final-episode-2671-step-110007.pt' model_dir = os.path.dirname(__file__) #MODEL_PATH = os.path.join(model_dir, 'checkpoints/dqn-final-episode-2671-step-110007.pt') MODEL_PATH = os.path.join(model_dir, 'checkpoints/dqn-sparse_reward-episode-1042-step-122000.pt') """ Alpha = rospy.get_param("/turtlebot2/alpha") Epsilon = rospy.get_param("/turtlebot2/epsilon") Gamma = rospy.get_param("/turtlebot2/gamma") epsilon_discount = rospy.get_param("/turtlebot2/epsilon_discount") nepisodes = rospy.get_param("/turtlebot2/nepisodes") nsteps = rospy.get_param("/turtlebot2/nsteps") running_step = rospy.get_param("/turtlebot2/running_step") """ # Hyperparameters gamma = 0.79 # initially 0.99 discount factor seed = 543 # random seed n_epochs = 20 # number of epochs to test the trained model test_global_step = 0 # Global number of testing steps for tracking cummulative rewards in Tensorboard # If gpu is to be used device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Fix random seed (for reproducibility) env.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # Get number of actions from gym action space #n_inputs = env.observation_space.shape[0] n_inputs = 5 n_actions = env.action_space.n policy_net = DQN(n_inputs, n_actions).to(device) policy_net.load_state_dict(torch.load(MODEL_PATH, map_location=device)) policy_net.eval() #################################################################################################################### #logdir = os.path.join("$HOME/python3_ws/src/turtle2_openai_ros_example/src/logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) basedir = os.path.dirname(__file__) basedirpath = os.path.join(basedir, 'logs') logdir = os.path.join(basedirpath, datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) writer = SummaryWriter(log_dir=logdir) for i in range(n_epochs): ep_reward, test_global_step = test(env, policy_net, device, test_global_step) print('Steps: {}' '\tTest reward: {:.2f}'.format(test_global_step, ep_reward))
[]