date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
eldarsilver/DQN_Pytorch_ROS
openai_ros~openai_ros~src~openai_ros~task_envs~cartpole_stay_up~stay_up.py
from gym import utils from openai_ros.robot_envs import cartpole_env from gym.envs.registration import register from gym import error, spaces import rospy import math import numpy as np from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class CartPoleStayUpEnv(cartpole_env.CartPoleEnv): def __init__(self): ros_ws_abspath = rospy.get_param("/cartpole_v0/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="cartpole_description", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/cartpole_stay_up/config", yaml_file_name="stay_up.yaml") self.get_params() self.action_space = spaces.Discrete(self.n_actions) high = np.array([ 2.5 * 2, np.finfo(np.float32).max, 0.7 * 2, np.finfo(np.float32).max]) self.observation_space = spaces.Box(-high, high) # TODO: Remove when working """ cartpole_env.CartPoleEnv.__init__( self, control_type=self.control_type ) """ # Here we will add any init functions prior to starting the MyRobotEnv super(CartPoleStayUpEnv, self).__init__(control_type=self.control_type, ros_ws_abspath=ros_ws_abspath) def get_params(self): # get configuration parameters self.n_actions = rospy.get_param('/cartpole_v0/n_actions') self.min_pole_angle = rospy.get_param('/cartpole_v0/min_pole_angle') self.max_pole_angle = rospy.get_param('/cartpole_v0/max_pole_angle') self.max_base_velocity = rospy.get_param( '/cartpole_v0/max_base_velocity') self.min_base_pose_x = rospy.get_param('/cartpole_v0/min_base_pose_x') self.max_base_pose_x = rospy.get_param('/cartpole_v0/max_base_pose_x') self.pos_step = rospy.get_param('/cartpole_v0/pos_step') self.running_step = rospy.get_param('/cartpole_v0/running_step') self.init_pos = rospy.get_param('/cartpole_v0/init_pos') self.wait_time = rospy.get_param('/cartpole_v0/wait_time') self.control_type = rospy.get_param('/cartpole_v0/control_type') def _set_action(self, action): # Take action if action == 0: # LEFT rospy.loginfo("GO LEFT...") self.pos[0] -= self.pos_step elif action == 1: # RIGHT rospy.loginfo("GO RIGHT...") self.pos[0] += self.pos_step elif action == 2: # LEFT BIG rospy.loginfo("GO LEFT BIG...") self.pos[0] -= self.pos_step * 10 elif action == 3: # RIGHT BIG rospy.loginfo("GO RIGHT BIG...") self.pos[0] += self.pos_step * 10 # Apply action to simulation. rospy.loginfo("MOVING TO POS=="+str(self.pos)) # 1st: unpause simulation #rospy.logdebug("Unpause SIM...") # self.gazebo.unpauseSim() self.move_joints(self.pos) rospy.logdebug( "Wait for some time to execute movement, time="+str(self.running_step)) rospy.sleep(self.running_step) # wait for some time rospy.logdebug( "DONE Wait for some time to execute movement, time=" + str(self.running_step)) # 3rd: pause simulation #rospy.logdebug("Pause SIM...") # self.gazebo.pauseSim() def _get_obs(self): data = self.joints # base_postion base_velocity pole angle pole velocity #obs = [round(data.position[1],1), round(data.velocity[1],1), round(data.position[0],1), round(data.velocity[0],1)] obs = [data.position[1], data.velocity[1], data.position[0], data.velocity[0]] return np.array(obs) def _is_done(self, observations): done = False data = self.joints rospy.loginfo("BASEPOSITION=="+str(observations[0])) rospy.loginfo("POLE ANGLE==" + str(observations[2])) # check if the base is still within the ranges of (-2, 2) if (self.min_base_pose_x >= observations[0] or observations[0] >= self.max_base_pose_x): rospy.logerr("Base Outside Limits==>min="+str(self.min_base_pose_x) + ",pos="+str(observations[0])+",max="+str(self.max_base_pose_x)) done = True # check if pole has toppled over if (self.min_pole_angle >= observations[2] or observations[2] >= self.max_pole_angle): rospy.logerr( "Pole Angle Outside Limits==>min=" + str(self.min_pole_angle) + ",pos=" + str(observations[2]) + ",max=" + str( self.max_pole_angle)) done = True rospy.loginfo("FINISHED get _is_done") return done def _compute_reward(self, observations, done): """ Gives more points for staying upright, gets data from given observations to avoid having different data than other previous functions :return:reward """ rospy.logdebug("START _compute_reward") if not done: reward = 1.0 elif self.steps_beyond_done is None: # Pole just fell! self.steps_beyond_done = 0 reward = 1.0 else: if self.steps_beyond_done == 0: logger.warning("You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.") self.steps_beyond_done += 1 reward = 0.0 rospy.logdebug("END _compute_reward") return reward def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ self.steps_beyond_done = None def _set_init_pose(self): """ Sets joints to initial position [0,0,0] :return: """ self.check_publishers_connection() # Reset Internal pos variable self.init_internal_vars(self.init_pos) self.move_joints(self.pos)
[]
2024-01-10
eldarsilver/DQN_Pytorch_ROS
turtle2_openai_ros_example~src~deepq.py
#!/usr/bin/env python import gym from gym import wrappers # ROS packages required import rospy import rospkg from openai_ros.openai_ros_common import StartOpenAI_ROS_Environment from functools import reduce import pickle import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter import os import time import random import numpy as np import matplotlib.pyplot as plt from collections import namedtuple import math import glob import io import base64 from memory import ReplayMemory import datetime import json class DQN(nn.Module): # hidden_size=64 def __init__(self, inputs, outputs, hidden_size=128): super(DQN, self).__init__() self.fc1 = nn.Linear(in_features=inputs, out_features=hidden_size) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=0.5) self.bn1 = nn.BatchNorm1d(num_features=hidden_size) self.bn2 = nn.BatchNorm1d(num_features=64) self.bn3 = nn.BatchNorm1d(num_features=32) self.fc2 = nn.Linear(in_features=hidden_size, out_features=64) self.fc3 = nn.Linear(in_features=64, out_features=32) self.fc4 = nn.Linear(in_features=32, out_features=outputs) #self.fc5 = nn.Linear(in_features=16, out_features=outputs) def forward(self, x): x = self.fc1(x) x = self.bn1(x) x = self.relu(x) #x = self.dropout(x) x = self.fc2(x) x = self.bn2(x) x = self.relu(x) #x = self.dropout(x) x = self.fc3(x) x = self.bn3(x) x = self.relu(x) #x = self.dropout(x) x = self.fc4(x) #x = self.relu(x) #x = self.dropout(x) #x = self.fc5(x) return x def compute_eps_threshold(step, eps_start, eps_end, eps_decay): # eps_start = 1.0, eps_end = 0.1, eps_decay = num_steps = 9e4 # 0.1 + 0.9 * math.exp(-1. * step / 9e4) # with step = 9e4: 0.1 + 0.9 * 0.36787944117 = 0.1 + 0.33109149705 = 0.43109149705 # with step = 0: 0.1 + 0.9 * math.exp(-1 * 0) = 0.1 + 0.9 * 1 = 1.0 #return eps_end + (eps_start - eps_end) * math.exp(-1. * step / eps_decay) return eps_end + (eps_start - eps_end) * math.exp(-1. * step / eps_decay) def select_action(policy, state, device, env, eps_greedy_threshold, n_actions): rospy.logwarn("eps_greedy_threshold: " + str(eps_greedy_threshold)) if random.random() > eps_greedy_threshold: rospy.logwarn("Entering select action random.random() > eps_greedy_threshold...") policy_used = True #rospy.logwarn("state.shape: ") #rospy.logwarn(state.shape) #rospy.logwarn("n_actions Env.action_space.n%d", n_actions) with torch.no_grad(): # t.max(1) will return largest column value of each row. # second column on max result is index of where max element was # found, so we pick action with the larger expected reward. policy.eval() action = policy(state).max(1)[1].view(1, 1) policy_act = action policy.train() else: rospy.logwarn("Entering select action random.random() < eps_greedy_threshold...") policy_used = False action = torch.tensor([[random.randrange(n_actions)]], device=device, dtype=torch.long) with torch.no_grad(): policy.eval() policy_act = policy(state).max(axis=1)[1].view(1, 1) return action, policy_act, policy_used def train(policy_net, target_net, optimizer, scheduler, memory, batch_size, gamma, device, env): if len(memory) < batch_size: return full_memory = memory.sample(len(memory)) full_memory_fields = memory.Transition(*zip(*full_memory)) full_rewards = torch.cat(full_memory_fields.reward).float() #full_states = torch.cat(full_memory_fields.state) transitions = memory.sample(batch_size) # This converts batch-array of Transitions to Transition of batch-arrays. # list of Transitions: [(s, a, r, s', d), (s, a, r, s', d), ...] # will become: # Transition((s0, s1, s2, ...), (a0, a1, a2, ...), ...) batch = memory.Transition(*zip(*transitions)) # Compute a mask of non-final states and concatenate the batch elements # (a final state would've been the one after which simulation ended) # self.Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward')) non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=device, dtype=torch.bool) non_final_next_states = torch.cat([s for s in batch.next_state if s is not None]) e = np.finfo(np.float32).eps.item() state_batch = torch.cat(batch.state) #state_batch = (state_batch - full_states.mean()) / (full_states.std() + e) action_batch = torch.cat(batch.action) reward_batch = torch.cat(batch.reward) #.float() #reward_batch = (reward_batch - full_rewards.mean()) / (full_rewards.std() + e) # Compute Q(s_t, a) - the model computes Q(s_t) for all a, then we select the columns of actions taken. #rospy.logwarn("state_batch.shape: ") #rospy.logwarn(state_batch.shape) #rospy.logwarn("n_inputs Env.observation_space: ") #rospy.logwarn(env.observation_space) #rospy.logwarn("n_inputs Env.observation_space.shape: ") #rospy.logwarn(env.observation_space.shape) #rospy.logwarn("n_inputs Env.observation_space.shape[0] %d", n_inputs) #rospy.logwarn("n_actions Env.action_space.n %d", n_actions) state_action_values = policy_net(state_batch).gather(1, action_batch) #rospy.logwarn("state_action_values.shape: ") #rospy.logwarn(state_action_values.shape) #rospy.logwarn("state_action_values: ") #rospy.logwarn(state_action_values) # Compute Q(s_{t+1}) for all next states. # Expected values of actions for non_final_next_states are computed based # on the "older" target_net; selecting their best reward with max(1)[0]. # This is merged based on the mask, such that we'll have either the expected # state value or 0 in case the state was final. # Note the call to detach() on Q(s_{t+1}), which prevents gradient flow next_state_values = torch.zeros(batch_size, device=device) next_state_values[non_final_mask] = target_net(non_final_next_states).max(dim=1)[0].detach() # Compute targets for Q values: y_t = r_t + gamma * max(Q_{t+1}) expected_state_action_values = reward_batch + (gamma * next_state_values) """ rospy.logwarn("expected_state_action_values.shape: ") rospy.logwarn(expected_state_action_values.shape) rospy.logwarn("expected_state_action_values: ") rospy.logwarn(expected_state_action_values) rospy.logwarn("expected_state_action_values.unsqueeze(1): ") rospy.logwarn(expected_state_action_values.unsqueeze(1)) """ # Compute Pseudo-Huber loss between predicted Q values and targets y loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1)) # Take an SGD step optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() for name, weight in policy_net.named_parameters(): """ print("\nname: ") print(name) print("\nweight: ") print(weight) print("\nweight.grad: ") print(weight.grad) """ writer.add_histogram(name, weight, step_count) writer.add_histogram(str(name) + '/grad', weight.grad, step_count) def test(env, policy_net, device, test_global_step, render=False): state, ep_reward, done = env.reset(), 0, False rospy.logwarn("Entering test method ...") test_local_step = 0 while not done: if render: env.render() state = torch.from_numpy(np.array(state)).float().unsqueeze(0).to(device) action, policy_act, policy_used = select_action(policy_net, state, device, env, eps_greedy_threshold=0., n_actions=1) state, reward, done, _ = env.step(action.item()) test_local_step += 1 test_global_step += 1 rospy.logwarn("Testing: Reward of this step: ") rospy.logwarn(reward) #writer.add_scalar("Test_step_Reward", reward, global_step=test_local_step) ep_reward += reward rospy.logwarn("Testing: Cumulative Reward of this episode: ") rospy.logwarn(ep_reward) writer.add_scalar("Test_Cumulative_Rewards", ep_reward, global_step=test_global_step) return ep_reward, test_global_step if __name__ == '__main__': rospy.init_node('example_turtlebot2_maze_dqn', anonymous=True, log_level=rospy.WARN) # Init OpenAI_ROS ENV task_and_robot_environment_name = rospy.get_param('/turtlebot2/task_and_robot_environment_name') # Create the Gym environment env = StartOpenAI_ROS_Environment(task_and_robot_environment_name) rospy.loginfo("Gym environment done") rospy.loginfo("Starting Learning") # Set the logging system rospack = rospkg.RosPack() pkg_path = rospack.get_path('turtle2_openai_ros_example') outdir = pkg_path + '/training_results' env = wrappers.Monitor(env, outdir, force=True) rospy.loginfo("Monitor Wrapper started") last_time_steps = np.ndarray(0) """ # Loads parameters from the ROS param server # Parameters are stored in a yaml file inside the config directory # They are loaded at runtime by the launch file Alpha = rospy.get_param("/turtlebot2/alpha") Epsilon = rospy.get_param("/turtlebot2/epsilon") Gamma = rospy.get_param("/turtlebot2/gamma") epsilon_discount = rospy.get_param("/turtlebot2/epsilon_discount") nepisodes = rospy.get_param("/turtlebot2/nepisodes") nsteps = rospy.get_param("/turtlebot2/nsteps") running_step = rospy.get_param("/turtlebot2/running_step") """ # Hyperparameters gamma = 0.999 # initially 0.99 discount factor seed = 543 # random seed log_interval = 25 # controls how often we log progress, in episodes num_steps = 15e4 # 11e4 number of steps to train on batch_size = 512 # batch size for optimization lr = 1e-3 # 1e-4learning rate eps_start = 1.0 # initial value for epsilon (in epsilon-greedy) eps_end = 0.1 # final value for epsilon (in epsilon-greedy) eps_decay = 9e4 # 8e4 num_steps, length of epsilon decay, in env steps target_update = 1000 # how often to update target net, in env steps test_global_step = 0 # Global number of testing steps for tracking cummulative rewards in Tensorboard # If gpu is to be used device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Fix random seed (for reproducibility) env.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # Get number of actions from gym action space #n_inputs = env.observation_space.shape[0] # 76 n_inputs = 5 # 76, 720, 360 n_actions = env.action_space.n #rospy.logwarn("n_inputs Env.observation_space.shape[0] %d", n_inputs) #rospy.logwarn("n_actions Env.action_space.n %d", n_actions) policy_net = DQN(n_inputs, n_actions).to(device) target_net = DQN(n_inputs, n_actions).to(device) target_net.load_state_dict(policy_net.state_dict()) target_net.eval() optimizer = torch.optim.Adam(policy_net.parameters(), lr=lr) # Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr. #scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size= 5, gamma=0.9) scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, total_steps=int(num_steps)) memory = ReplayMemory(10000) ############################################################################ #logdir = os.path.join("$HOME/python3_ws/src/turtle2_openai_ros_example/src/logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) basedir = os.path.dirname(__file__) basedirpathlogs = os.path.join(basedir, "logs") logdir = os.path.join(basedirpathlogs, datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) writer = SummaryWriter(log_dir=logdir) #tracedir = "$HOME/python3_ws/src/turtle2_openai_ros_example/src/trace" tracedir = os.path.join(basedir, "trace") ############################################################################ print("Target reward: {}".format(env.spec.reward_threshold)) step_count = 0 ep_rew_history = [] i_episode, ep_reward = 0, -float('inf') while step_count < num_steps: rospy.logdebug("############### START EPISODE=>" + str(i_episode)) # Initialize the environment and state # type(state): <class 'list'> state, done = env.reset(), False state = [round(num, 1) for num in state] list_state = state #print("\n type(state): ") #print(type(state)) rospy.logwarn("# state we are => " + str(state)) state = torch.from_numpy(np.array(state)).float().unsqueeze(0).to(device) while not done: rospy.logwarn("i_episode: " + str(i_episode)) rospy.logwarn("step_count: " + str(step_count)) # Select an action eps_greedy_threshold = compute_eps_threshold(step_count, eps_start, eps_end, eps_decay) action, policy_act, policy_used = select_action(policy_net, state, device, env, eps_greedy_threshold, n_actions) rospy.logwarn("Next action is:%d", action) # Perform action in env next_state, reward, done, _ = env.step(action.item()) next_state = [round(num, 1) for num in next_state] list_next_state = next_state #rospy.logwarn(str(next_state) + " " + str(reward)) # Bookkeeping next_state = torch.from_numpy(np.array(next_state)).float().unsqueeze(0).to(device) #reward = reward_shaper(reward, done) reward = torch.tensor([reward], device=device) step_count += 1 # Store the transition in memory memory.push(state, action, next_state, reward) memory.push_trace(i_episode, step_count, list_state, action.item(), list_next_state, reward.item(), policy_act.item(), eps_greedy_threshold, policy_used) """ # Make the algorithm learn based on the results rospy.logwarn("# state we were=>" + str(state)) rospy.logwarn("# action that we took=>" + str(action)) rospy.logwarn("# reward that action gave=>" + str(reward)) #rospy.logwarn("# episode cumulated_reward=>" + str(cumulated_reward)) rospy.logwarn("# State in which we will start next step=>" + str(next_state)) """ # Move to the next state state = next_state list_state = list_next_state # Perform one step of the optimization (on the policy network) train(policy_net, target_net, optimizer, scheduler, memory, batch_size, gamma, device, env) """ for name, weight in policy_net.named_parameters(): writer.add_histogram(name, weight, step_count) writer.add_histogram(str(name) + '/grad', weight.grad, step_count) """ # Update the target network, copying all weights and biases in DQN if step_count % target_update == 0: target_net.load_state_dict(policy_net.state_dict()) if not os.path.exists('checkpoints'): os.makedirs('checkpoints') ############################################################################################################# #torch.save(policy_net.state_dict(), '$HOME/python3_ws/src/turtle2_openai_ros_example/src/checkpoints/dqn-episode-{0}-step-{1}.pt'.format(str(i_episode), str(step_count))) model_dir = os.path.dirname(__file__) MODEL_PATH = os.path.join(model_dir, 'checkpoints/dqn-episode-{0}-step-{1}.pt'.format(str(i_episode), str(step_count))) torch.save(policy_net.state_dict(), MODEL_PATH) #torch.save(policy_net.state_dict(), 'checkpoints/dqn-episode-{0}-step-{1}.pt'.format(str(i_episode), str(step_count))) fname = datetime.datetime.now().strftime("%Y_%m_%d-%H:%M:%S") + ".json" list_namedtuple = memory.get_memtrace() with open(os.path.join(tracedir, fname), 'w') as f: json.dump([elem._asdict() for elem in list_namedtuple[-1000:-1]], f) #torch.save(policy_net.state_dict(), '/home/eldar/python3_ws/src/turtle2_openai_ros_example/src/checkpoints/dqn-{}.pt'.format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))) i_episode += 1 for name, weight in policy_net.named_parameters(): """ print("\nname: ") print(name) print("\nweight: ") print(weight) print("\nweight.grad: ") print(weight.grad) """ writer.add_histogram(name, weight, step_count) #writer.add_histogram('grad', weight.grad, step_count) # Evaluate greedy policy if i_episode % log_interval == 0 or step_count >= num_steps: ep_reward, test_global_step = test(env, policy_net, device, test_global_step) ep_rew_history.append((i_episode, ep_reward)) print('Episode {}\tSteps: {:.2f}k' '\tEval reward: {:.2f}'.format( i_episode, step_count/1000., ep_reward)) print("\nFinished training! Eval reward: {:.2f}".format(ep_reward)) print("\nFinished training! List of Eval rewards: ") print(ep_rew_history) if not os.path.exists('checkpoints'): os.makedirs('checkpoints') str_i_episode = str(i_episode) ####################################################################################### #torch.save(policy_net.state_dict(), '$HOME/python3_ws/src/turtle2_openai_ros_example/src/checkpoints/dqn-final-episode-{0}-step-{1}.pt'.format(str_i_episode, str(step_count))) model_dir = os.path.dirname(__file__) MODEL_PATH = os.path.join(model_dir, 'checkpoints/dqn-episode-{0}-step-{1}.pt'.format(str(i_episode), str(step_count))) torch.save(policy_net.state_dict(), MODEL_PATH)
[]
2024-01-10
eldarsilver/DQN_Pytorch_ROS
openai_ros~openai_ros~src~openai_ros~task_envs~turtlebot2~turtlebot2_maze.py
import rospy import numpy import time import math from gym import spaces from openai_ros.robot_envs import turtlebot2_env from gym.envs.registration import register from sensor_msgs.msg import LaserScan from std_msgs.msg import Header from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class TurtleBot2MazeEnv(turtlebot2_env.TurtleBot2Env): def __init__(self): """ This Task Env is designed for having the TurtleBot2 in some kind of maze. It will learn how to move around the maze without crashing. """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there # This parameter HAS to be set up in the MAIN launch of the AI RL script ros_ws_abspath = rospy.get_param("/turtlebot2/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path "+ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p "+ros_ws_abspath + \ "/src;cd "+ros_ws_abspath+";catkin_make" ROSLauncher(rospackage_name="turtlebot_gazebo", launch_file_name="start_world_maze_loop_brick.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/turtlebot2/config", yaml_file_name="turtlebot2_maze.yaml") # Here we will add any init functions prior to starting the MyRobotEnv super(TurtleBot2MazeEnv, self).__init__(ros_ws_abspath) # Only variable needed to be set here number_actions = rospy.get_param('/turtlebot2/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) #number_observations = rospy.get_param('/turtlebot2/n_observations') """ We set the Observation space for the 6 observations cube_observations = [ round(current_disk_roll_vel, 0), round(y_distance, 1), round(roll, 1), round(pitch, 1), round(y_linear_speed,1), round(yaw, 1), ] """ # Actions and Observations self.dec_obs = rospy.get_param( "/turtlebot2/number_decimals_precision_obs", 1) self.linear_forward_speed = rospy.get_param( '/turtlebot2/linear_forward_speed') self.linear_turn_speed = rospy.get_param( '/turtlebot2/linear_turn_speed') self.angular_speed = rospy.get_param('/turtlebot2/angular_speed') self.init_linear_forward_speed = rospy.get_param( '/turtlebot2/init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param( '/turtlebot2/init_linear_turn_speed') self.n_observations = rospy.get_param('/turtlebot2/n_observations') self.min_range = rospy.get_param('/turtlebot2/min_range') self.max_laser_value = rospy.get_param('/turtlebot2/max_laser_value') self.min_laser_value = rospy.get_param('/turtlebot2/min_laser_value') # We create two arrays based on the binary values that will be assigned # In the discretization method. #laser_scan = self._check_laser_scan_ready() laser_scan = self.get_laser_scan() rospy.logdebug("laser_scan len===>"+str(len(laser_scan.ranges))) # Laser data self.laser_scan_frame = laser_scan.header.frame_id # Number of laser reading jumped self.new_ranges = int( math.ceil(float(len(laser_scan.ranges)) / float(self.n_observations))) rospy.logdebug("n_observations===>"+str(self.n_observations)) rospy.logdebug( "new_ranges, jumping laser readings===>"+str(self.new_ranges)) high = numpy.full((self.n_observations), self.max_laser_value) low = numpy.full((self.n_observations), self.min_laser_value) # We only use two integers self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>" + str(self.observation_space)) # Rewards self.forwards_reward = rospy.get_param("/turtlebot2/forwards_reward") self.turn_reward = rospy.get_param("/turtlebot2/turn_reward") self.end_episode_points = rospy.get_param( "/turtlebot2/end_episode_points") self.cumulated_steps = 0.0 self.laser_filtered_pub = rospy.Publisher( '/turtlebot2/laser/scan_filtered', LaserScan, queue_size=1) def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base(self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10, min_laser_distance=-1) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Set to false Done, because its calculated asyncronously self._episode_done = False # We wait a small ammount of time to start everything because in very fast resets, laser scan values are sluggish # and sometimes still have values from the prior position that triguered the done. time.sleep(1.0) # TODO: Add reset of published filtered laser readings laser_scan = self.get_laser_scan() discretized_ranges = laser_scan.ranges self.publish_filtered_laser_scan(laser_original_data=laser_scan, new_filtered_laser_range=discretized_ranges) def _set_action(self, action): """ This set action will Set the linear and angular speed of the turtlebot2 based on the action number given. :param action: The action integer that set s what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv if action == 0: # FORWARD linear_speed = self.linear_forward_speed angular_speed = 0.0 self.last_action = "FORWARDS" elif action == 1: # LEFT linear_speed = self.linear_turn_speed angular_speed = self.angular_speed self.last_action = "TURN_LEFT" elif action == 2: # RIGHT linear_speed = self.linear_turn_speed angular_speed = -1*self.angular_speed self.last_action = "TURN_RIGHT" # We tell TurtleBot2 the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10, min_laser_distance=self.min_range) rospy.logdebug("END Set Action ==>"+str(action) + ", NAME="+str(self.last_action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the TurtleBot2Env API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan = self.get_laser_scan() rospy.logdebug("BEFORE DISCRET _episode_done==>" + str(self._episode_done)) discretized_observations = self.discretize_observation(laser_scan, self.new_ranges ) rospy.logdebug("Observations==>"+str(discretized_observations)) rospy.logdebug("AFTER DISCRET_episode_done==>"+str(self._episode_done)) rospy.logdebug("END Get Observation ==>") return discretized_observations def _is_done(self, observations): if self._episode_done: rospy.logdebug("TurtleBot2 is Too Close to wall==>" + str(self._episode_done)) else: rospy.logerr("TurtleBot2 is Ok ==>") return self._episode_done def _compute_reward(self, observations, done): if not done: if self.last_action == "FORWARDS": reward = self.forwards_reward else: reward = self.turn_reward else: reward = -1*self.end_episode_points rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_observation(self, data, new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] filtered_range = [] #mod = len(data.ranges)/new_ranges mod = new_ranges max_laser_value = data.range_max min_laser_value = data.range_min rospy.logdebug("data = " + str(data)) rospy.logwarn("len(data.ranges) = " + str(len(data.ranges))) rospy.logwarn("mod=" + str(mod)) """ idx_ranges = [0, 5, 10, 15, 20, 25, 30, 35, 40, 44, 50, 55, 60, 65, 70, 75, 80, 85, 89, 119, 144, 160, 165, 170, 175, 179, 183, 185, 187, 190, 193, 195, 198, 200, 203, 206, 208, 210, 213, 215, 218, 220, 224, 227, 230, 233, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 269, 272, 275, 280, 285, 290, 295, 300, 305, 310, 314, 319, 325, 330, 335, 340, 345, 350, 355] """ idx_ranges = [89, 135, 179, 224, 269] #for item, _ in enumerate(data.ranges): for item in idx_ranges: if data.ranges[item] == float('Inf') or numpy.isinf(data.ranges[item]): # discretized_ranges.append(self.max_laser_value) discretized_ranges.append(round(max_laser_value, self.dec_obs)) elif numpy.isnan(data.ranges[item]): # discretized_ranges.append(self.min_laser_value) discretized_ranges.append(round(min_laser_value, self.dec_obs)) else: # discretized_ranges.append(int(item)) discretized_ranges.append(round(data.ranges[item], self.dec_obs)) if (self.min_range > data.ranges[item] > 0): rospy.logerr("done Validation >>> data.ranges[" + str(item) + "]=" + str(data.ranges[item])+"< "+str(self.min_range)) self._episode_done = True else: rospy.logwarn("NOT done Validation >>> data.ranges[" + str(item) + "]=" + str(data.ranges[item])+"< "+str(self.min_range)) """ for i, item in enumerate(data.ranges): if (i % mod == 0): if item == float('Inf') or numpy.isinf(item): # discretized_ranges.append(self.max_laser_value) discretized_ranges.append( round(max_laser_value, self.dec_obs)) elif numpy.isnan(item): # discretized_ranges.append(self.min_laser_value) discretized_ranges.append( round(min_laser_value, self.dec_obs)) else: # discretized_ranges.append(int(item)) discretized_ranges.append(round(item, self.dec_obs)) if (self.min_range > item > 0): rospy.logerr("done Validation >>> item=" + str(item)+"< "+str(self.min_range)) self._episode_done = True else: rospy.logwarn("NOT done Validation >>> item=" + str(item)+"< "+str(self.min_range)) # We add last value appended filtered_range.append(discretized_ranges[-1]) else: # We add value zero filtered_range.append(0.1) """ rospy.logdebug( "Size of observations, discretized_ranges==>"+str(len(discretized_ranges))) self.publish_filtered_laser_scan(laser_original_data=data, new_filtered_laser_range=discretized_ranges) return discretized_ranges def publish_filtered_laser_scan(self, laser_original_data, new_filtered_laser_range): rospy.logdebug("new_filtered_laser_range==>" + str(new_filtered_laser_range)) laser_filtered_object = LaserScan() h = Header() # Note you need to call rospy.init_node() before this will work h.stamp = rospy.Time.now() h.frame_id = laser_original_data.header.frame_id laser_filtered_object.header = h laser_filtered_object.angle_min = laser_original_data.angle_min laser_filtered_object.angle_max = laser_original_data.angle_max new_angle_incr = abs(laser_original_data.angle_max - laser_original_data.angle_min) / len(new_filtered_laser_range) #laser_filtered_object.angle_increment = laser_original_data.angle_increment laser_filtered_object.angle_increment = new_angle_incr laser_filtered_object.time_increment = laser_original_data.time_increment laser_filtered_object.scan_time = laser_original_data.scan_time laser_filtered_object.range_min = laser_original_data.range_min laser_filtered_object.range_max = laser_original_data.range_max laser_filtered_object.ranges = [] laser_filtered_object.intensities = [] for item in new_filtered_laser_range: if item == 0.0: laser_distance = 0.1 else: laser_distance = item laser_filtered_object.ranges.append(laser_distance) laser_filtered_object.intensities.append(item) self.laser_filtered_pub.publish(laser_filtered_object)
[]
2024-01-10
eldarsilver/DQN_Pytorch_ROS
turtle2_openai_ros_example~src~my_start_qlearning_maze_v2.py
#!/usr/bin/env python import gym import numpy import time import qlearn from gym import wrappers # ROS packages required import rospy import rospkg from openai_ros.openai_ros_common import StartOpenAI_ROS_Environment from functools import reduce import pickle if __name__ == '__main__': rospy.init_node('example_turtlebot2_maze_qlearn', anonymous=True, log_level=rospy.WARN) # Init OpenAI_ROS ENV task_and_robot_environment_name = rospy.get_param( '/turtlebot2/task_and_robot_environment_name') env = StartOpenAI_ROS_Environment( task_and_robot_environment_name) # Create the Gym environment rospy.loginfo("Gym environment done") rospy.loginfo("Starting Learning") # Set the logging system rospack = rospkg.RosPack() pkg_path = rospack.get_path('turtle2_openai_ros_example') outdir = pkg_path + '/training_results' env = wrappers.Monitor(env, outdir, force=True) rospy.loginfo("Monitor Wrapper started") last_time_steps = numpy.ndarray(0) # Loads parameters from the ROS param server # Parameters are stored in a yaml file inside the config directory # They are loaded at runtime by the launch file Alpha = rospy.get_param("/turtlebot2/alpha") Epsilon = rospy.get_param("/turtlebot2/epsilon") Gamma = rospy.get_param("/turtlebot2/gamma") epsilon_discount = rospy.get_param("/turtlebot2/epsilon_discount") nepisodes = rospy.get_param("/turtlebot2/nepisodes") nsteps = rospy.get_param("/turtlebot2/nsteps") running_step = rospy.get_param("/turtlebot2/running_step") rospy.logwarn("env.action_space %s" % env.action_space) rospy.logwarn("env.action_space.n %s" % env.action_space.n) rospy.logwarn("range(env.action_space.n) %s" % range(env.action_space.n)) # Initialises the algorithm that we are going to use for learning qlearn = qlearn.QLearn(actions=range(env.action_space.n), alpha=Alpha, gamma=Gamma, epsilon=Epsilon) initial_epsilon = qlearn.epsilon start_time = time.time() highest_reward = 0 q_file_mid = open("/home/eldar/python3_ws/src/turtle2_openai_ros_example/src/qdictmid.pkl", "wb") q_file_end = open("/home/eldar/python3_ws/src/turtle2_openai_ros_example/src/qdict.pkl", "wb") #env._max_episode_steps = nsteps # Starts the main training loop: the one about the episodes to do for x in range(nepisodes-1): rospy.logdebug("############### START EPISODE=>" + str(x)) cumulated_reward = 0 done = False if qlearn.epsilon > 0.05: qlearn.epsilon *= epsilon_discount # Initialize the environment and get first state of the robot observation = env.reset() state = ''.join(map(str, observation)) # Show on screen the actual situation of the robot # env.render() # for each episode, we test the robot for nsteps #for i in range(nsteps-1): i = 0 while (i < nsteps) and (not done): rospy.logwarn("############### Start Step=>" + str(i) + " of episode ==> " + str(x)) # Pick an action based on the current state action = qlearn.chooseAction(state) rospy.logwarn("Next action is:%d", action) # Execute the action in the environment and get feedback observation, reward, done, info = env.step(action) rospy.logwarn(str(observation) + " " + str(reward)) cumulated_reward += reward if highest_reward < cumulated_reward: highest_reward = cumulated_reward nextState = ''.join(map(str, observation)) # Make the algorithm learn based on the results rospy.logwarn("# state we were=>" + str(state)) rospy.logwarn("# action that we took=>" + str(action)) rospy.logwarn("# reward that action gave=>" + str(reward)) rospy.logwarn("# episode cumulated_reward=>" + str(cumulated_reward)) rospy.logwarn("# State in which we will start next step=>" + str(nextState)) qlearn.learn(state, action, reward, nextState) if not (done): rospy.logwarn("NOT DONE") state = nextState else: rospy.logwarn("DONE") last_time_steps = numpy.append(last_time_steps, [int(i + 1)]) #break rospy.logwarn("############### END Step=>" + str(i)) i += 1 #raw_input("Next Step...PRESS KEY") # rospy.sleep(2.0) if x == (nepisodes - 2): q_dict = qlearn.returnQ() pickle.dump(q_dict, q_file_end) q_file_end.close() rospy.logwarn("Saving final pickle") elif x == 200: q_dict = qlearn.returnQ() pickle.dump(q_dict, q_file_mid) q_file_mid.close() rospy.logwarn("Saving pickle for 200 episodes") m, s = divmod(int(time.time() - start_time), 60) h, m = divmod(m, 60) rospy.logerr(("EP: " + str(x + 1) + " - [alpha: " + str(round(qlearn.alpha, 2)) + " - gamma: " + str( round(qlearn.gamma, 2)) + " - epsilon: " + str(round(qlearn.epsilon, 2)) + "] - Reward: " + str( cumulated_reward) + " Time: %d:%02d:%02d" % (h, m, s))) rospy.loginfo((" nepisodes " + str(nepisodes) + " alpha " + str(qlearn.alpha) + " gamma " + str(qlearn.gamma) + " initial epsilon " + str( initial_epsilon) + " epsilon discount " + str(epsilon_discount) + " highest reward " + str(highest_reward) + " ")) l = last_time_steps.tolist() l.sort() # print("Parameters: a="+str) rospy.loginfo("Overall score: {:0.2f}".format(last_time_steps.mean())) rospy.loginfo("Best 100 score: {:0.2f}".format(reduce(lambda x, y: x + y, l[-100:]) / len(l[-100:]))) env.close()
[]
2024-01-10
eldarsilver/DQN_Pytorch_ROS
turtle2_openai_ros_example~src~deploy_robot_qlearning.py
#!/usr/bin/env python import rospy import numpy import time import math from gym import spaces #from openai_ros.robot_envs import turtlebot2_env #from gym.envs.registration import register from sensor_msgs.msg import LaserScan from std_msgs.msg import Header from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest #from openai_ros.openai_ros_common import ROSLauncher import os from cv_bridge import CvBridge, CvBridgeError from datetime import datetime from std_msgs.msg import String #from sensor_msgs.msg import Image from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist import pickle class rlComponent(object): def __init__(self): """ This Task Env is designed for having the TurtleBot2 in some kind of maze. It will learn how to move around the maze without crashing. """ # Only variable needed to be set here number_actions = rospy.get_param('~n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) #number_observations = rospy.get_param('/turtlebot2/n_observations') # Actions and Observations self.dec_obs = rospy.get_param( "~number_decimals_precision_obs", 1) self.linear_forward_speed = rospy.get_param( '~linear_forward_speed') self.linear_turn_speed = rospy.get_param( '~linear_turn_speed') self.angular_speed = rospy.get_param('~angular_speed') self.init_linear_forward_speed = rospy.get_param( '~init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param( '~init_linear_turn_speed') self.n_observations = rospy.get_param('~n_observations') self.min_range = rospy.get_param('~min_range') self.max_laser_value = rospy.get_param('~max_laser_value') self.min_laser_value = rospy.get_param('~min_laser_value') self.actions = range(number_actions) self._cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self.last_action = "FORWARDS" self.laser_scan = None rospy.Subscriber("/scan", LaserScan, self._laser_scan_callback) laser_scan = self._check_laser_scan_ready() rospy.logdebug("laser_scan len===>"+str(len(laser_scan.ranges))) # Number of laser reading jumped self.new_ranges = int( math.ceil(float(len(laser_scan.ranges)) / float(self.n_observations))) rospy.logdebug("n_observations===>"+str(self.n_observations)) rospy.logdebug( "new_ranges, jumping laser readings===>"+str(self.new_ranges)) high = numpy.full((self.n_observations), self.max_laser_value) low = numpy.full((self.n_observations), self.min_laser_value) # We only use two integers self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>" + str(self.observation_space)) # Rewards self.forwards_reward = rospy.get_param("~forwards_reward") self.turn_reward = rospy.get_param("~turn_reward") self.end_episode_points = rospy.get_param( "~end_episode_points") self.cumulated_steps = 0.0 self.laser_filtered_pub = rospy.Publisher( '/scan_filtered', LaserScan, queue_size=1) self._init_env_variables() self._set_init_pose() rospy.spin() def _laser_scan_callback(self, data): self.laser_scan = data def get_laser_scan(self): return self.laser_scan def _check_laser_scan_ready(self): #self.laser_scan = None rospy.logdebug("Waiting for /scan to be READY...") while self.laser_scan is None and not rospy.is_shutdown(): try: self.laser_scan = rospy.wait_for_message("/scan", LaserScan, timeout=5.0) rospy.logdebug("Current /scan READY=>") except: rospy.logerr("Current /scan not ready yet, retrying for getting laser_scan") return self.laser_scan def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base(self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10, min_laser_distance=-1) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Set to false Done, because its calculated asyncronously self._episode_done = False # We wait a small ammount of time to start everything because in very fast resets, laser scan values are sluggish # and sometimes still have values from the prior position that triguered the done. time.sleep(1.0) # TODO: Add reset of published filtered laser readings #laser_scan = self.get_laser_scan() discretized_ranges = self.laser_scan.ranges self.publish_filtered_laser_scan(laser_original_data=self.laser_scan, new_filtered_laser_range=discretized_ranges) with open("/home/eldar/python3_ws/src/turtle2_openai_ros_example/src/qdictmid1.pkl","rb") as f: self.q = pickle.load(f) #rospy.logwarn("self.q %s" % str(self.q)) self.step() def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the TurtleBot2Env API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan = self.get_laser_scan() rospy.logdebug("BEFORE DISCRET _episode_done==>" + str(self._episode_done)) discretized_observations = self.discretize_observation(laser_scan, self.new_ranges ) rospy.logdebug("Observations==>"+str(discretized_observations)) rospy.logdebug("AFTER DISCRET_episode_done==>"+str(self._episode_done)) rospy.logdebug("END Get Observation ==>") return discretized_observations def _is_done(self, observations): if self._episode_done: rospy.logdebug("TurtleBot2 is Too Close to wall==>" + str(self._episode_done)) else: rospy.logerr("TurtleBot2 is Ok ==>") return self._episode_done def _compute_reward(self, observations, done): if not done: if self.last_action == "FORWARDS": reward = self.forwards_reward else: reward = self.turn_reward else: reward = -1*self.end_episode_points rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_observation(self, data, new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] filtered_range = [] #mod = len(data.ranges)/new_ranges mod = new_ranges max_laser_value = data.range_max min_laser_value = data.range_min rospy.logdebug("data=" + str(data)) rospy.logwarn("data.range_max= %s" % data.range_max) rospy.logwarn("data.range_min= %s" % data.range_min) rospy.logwarn("len(data.ranges)= %s" % len(data.ranges)) rospy.logwarn("data.angle_min)= %s" % data.angle_min) rospy.logwarn("data.angle_max)= %s" % data.angle_max) rospy.logwarn("data.angle_increment= %s" % data.angle_increment) rospy.logwarn("mod=" + str(mod)) rospy.loginfo('right data.ranges[89] %s' % data.ranges[89]) rospy.loginfo('left data.ranges[269] %s ' % data.ranges[269]) rospy.loginfo('back data.ranges[359] %s' % data.ranges[359]) rospy.loginfo('back data.ranges[0] %s' % data.ranges[0]) rospy.loginfo('front data.ranges[179] %s' % data.ranges[179]) #idx_ranges = [0, 89, 179, 269] idx_ranges = [0, 44, 89, 144, 179, 224, 269, 314] for item in idx_ranges: if data.ranges[item] == float('Inf') or numpy.isinf(data.ranges[item]): # discretized_ranges.append(self.max_laser_value) discretized_ranges.append(round(max_laser_value, self.dec_obs)) elif numpy.isnan(data.ranges[item]): # discretized_ranges.append(self.min_laser_value) discretized_ranges.append(round(min_laser_value, self.dec_obs)) else: # discretized_ranges.append(int(item)) discretized_ranges.append(round(data.ranges[item], self.dec_obs)) if (self.min_range > data.ranges[item] > 0): rospy.logerr("done Validation >>> data.ranges[item]=" + str(data.ranges[item])+"< "+str(self.min_range)) self._episode_done = True else: rospy.logwarn("NOT done Validation >>> data.ranges[item]=" + str(data.ranges[item])+"< "+str(self.min_range)) rospy.logdebug("Size of observations, discretized_ranges==>"+str(len(discretized_ranges))) return discretized_ranges """ for i, item in enumerate(data.ranges): if (i % mod == 0): if item == float('Inf') or numpy.isinf(item): # discretized_ranges.append(self.max_laser_value) discretized_ranges.append( round(max_laser_value, self.dec_obs)) elif numpy.isnan(item): # discretized_ranges.append(self.min_laser_value) discretized_ranges.append( round(min_laser_value, self.dec_obs)) else: # discretized_ranges.append(int(item)) discretized_ranges.append(round(item, self.dec_obs)) if (self.min_range > item > 0): rospy.logerr("done Validation >>> item=" + str(item)+"< "+str(self.min_range)) self._episode_done = True else: rospy.logwarn("NOT done Validation >>> item=" + str(item)+"< "+str(self.min_range)) # We add last value appended filtered_range.append(discretized_ranges[-1]) else: # We add value zero filtered_range.append(0.1) rospy.logdebug( "Size of observations, discretized_ranges==>"+str(len(discretized_ranges))) self.publish_filtered_laser_scan(laser_original_data=data, new_filtered_laser_range=discretized_ranges) return discretized_ranges """ def publish_filtered_laser_scan(self, laser_original_data, new_filtered_laser_range): rospy.logdebug("new_filtered_laser_range==>" + str(new_filtered_laser_range)) laser_filtered_object = LaserScan() h = Header() # Note you need to call rospy.init_node() before this will work h.stamp = rospy.Time.now() h.frame_id = laser_original_data.header.frame_id laser_filtered_object.header = h laser_filtered_object.angle_min = laser_original_data.angle_min laser_filtered_object.angle_max = laser_original_data.angle_max new_angle_incr = abs(laser_original_data.angle_max - laser_original_data.angle_min) / len(new_filtered_laser_range) #laser_filtered_object.angle_increment = laser_original_data.angle_increment laser_filtered_object.angle_increment = new_angle_incr laser_filtered_object.time_increment = laser_original_data.time_increment laser_filtered_object.scan_time = laser_original_data.scan_time laser_filtered_object.range_min = laser_original_data.range_min laser_filtered_object.range_max = laser_original_data.range_max laser_filtered_object.ranges = [] laser_filtered_object.intensities = [] for item in new_filtered_laser_range: if item == 0.0: laser_distance = 0.1 else: laser_distance = item laser_filtered_object.ranges.append(laser_distance) laser_filtered_object.intensities.append(item) self.laser_filtered_pub.publish(laser_filtered_object) def move_base(self, linear_speed, angular_speed, epsilon=0.05, update_rate=10, min_laser_distance=-1): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed: Speed in the X axis of the robot base frame :param angular_speed: Speed of the angular turning of the robot base frame :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed cmd_vel_value.angular.z = angular_speed rospy.logdebug("TurtleBot2 Base Twist Cmd>>" + str(cmd_vel_value)) #self._check_publishers_connection() self._cmd_vel_pub.publish(cmd_vel_value) time.sleep(0.2) #time.sleep(0.02) """ self.wait_until_twist_achieved(cmd_vel_value, epsilon, update_rate, min_laser_distance) """ def _set_action(self, action): """ This set action will Set the linear and angular speed of the turtlebot2 based on the action number given. :param action: The action integer that set s what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv if action == 0: # FORWARD linear_speed = self.linear_forward_speed angular_speed = 0.0 self.last_action = "FORWARDS" elif action == 1: # LEFT linear_speed = self.linear_turn_speed angular_speed = self.angular_speed self.last_action = "TURN_LEFT" elif action == 2: # RIGHT linear_speed = self.linear_turn_speed angular_speed = -1*self.angular_speed self.last_action = "TURN_RIGHT" elif action == 3: # Stop linear_speed = 0.0 angular_speed = 0.0 self.last_action = "STOP" # We tell TurtleBot2 the linear and angular speed to set to execute """ self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10, min_laser_distance=self.min_range) """ rospy.logdebug("END Set Action ==>"+str(action) + ", NAME="+str(self.last_action)) def chooseAction(self, state): qv = [self.q[(state, a)] for a in self.actions if (state, a) in self.q] if len(qv) > 0: maxQ = max(qv) count = qv.count(maxQ) # In case there're several state-action max values # we select a random one among them if count > 1: #best = [i for i in range(len(self.actions)) if qv[i] == maxQ] best = [i for i in range(len(qv)) if qv[i] == maxQ] i = random.choice(best) else: i = qv.index(maxQ) action = self.actions[i] else: action = -1 return action def step(self): obs = self._get_obs() rospy.loginfo("obs %s" % obs) while obs != [] and self.last_action != "STOP": state = ''.join(map(str, obs)) rospy.loginfo('state %s' % state) # Pick an action based on the current state #action = qlearn.chooseAction(state) actionq = self.chooseAction(state) if obs[2] < 1: # 180 front if obs[1] < 1: # 120 right if obs[3] < 1: # 240 left action = 3 # stop else: action = 1 # left else: action = 2 # right else: action = 0 # front rospy.logwarn("Next action is:%d", action) rospy.logwarn("Next actionq is:%d", actionq) # Execute the action in the environment and get feedback self._set_action(action) obs = self._get_obs() if __name__ == '__main__': try: rospy.init_node('re_fr', anonymous=False) rlComp = rlComponent() #while frComp.ok(): # pass except rospy.ROSInterruptException: pass
[]
2024-01-10
eldarsilver/DQN_Pytorch_ROS
openai_ros~openai_ros~src~openai_ros~robot_envs~sawyer_env.py
import numpy import rospy import time import tf from openai_ros import robot_gazebo_env import intera_interface import intera_external_devices from intera_interface import CHECK_VERSION from intera_core_msgs.msg import JointLimits from sensor_msgs.msg import Image from openai_ros.openai_ros_common import ROSLauncher class SawyerEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all SawyerEnv environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new SawyerEnv environment. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /robot/joint_limits: Odometry of the Base of Wamv Actuators Topic List: * As actuator we will use a class to interface with the movements through commands. Args: """ rospy.logdebug("Start SawyerEnv INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="sawyer_gazebo", launch_file_name="put_sawyer_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(SawyerEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") rospy.logdebug("SawyerEnv unpause...") self.gazebo.unpauseSim() # self.controllers_object.reset_controllers() # TODO: Fill it with the sensors self._check_all_systems_ready() rospy.Subscriber("/io/internal_camera/head_camera/image_raw", Image, self._head_camera_image_raw_callback) rospy.Subscriber("/io/internal_camera/right_hand_camera/image_raw", Image, self._right_hand_camera_image_raw_callback) self._setup_tf_listener() self._setup_movement_system() self.gazebo.pauseSim() rospy.logdebug("Finished SawyerEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ rospy.logdebug("SawyerEnv check_all_systems_ready...") self._check_all_sensors_ready() rospy.logdebug("END SawyerEnv _check_all_systems_ready...") return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") # TODO: Here go the sensors like cameras and joint states self._check_head_camera_image_raw_ready() self._check_right_hand_camera_image_raw_ready() rospy.logdebug("ALL SENSORS READY") def _check_head_camera_image_raw_ready(self): self.head_camera_image_raw = None rospy.logdebug( "Waiting for /io/internal_camera/head_camera/image_raw to be READY...") while self.head_camera_image_raw is None and not rospy.is_shutdown(): try: self.head_camera_image_raw = rospy.wait_for_message( "/io/internal_camera/head_camera/image_raw", Image, timeout=5.0) rospy.logdebug( "Current /io/internal_camera/head_camera/image_raw READY=>") except: rospy.logerr( "Current /io/internal_camera/head_camera/image_raw not ready yet, retrying for getting head_camera_image_raw") return self.head_camera_image_raw def _check_right_hand_camera_image_raw_ready(self): self.right_hand_camera_image_raw = None rospy.logdebug( "Waiting for /io/internal_camera/right_hand_camera/image_raw to be READY...") while self.right_hand_camera_image_raw is None and not rospy.is_shutdown(): try: self.right_hand_camera_image_raw = rospy.wait_for_message( "/io/internal_camera/right_hand_camera/image_raw", Image, timeout=5.0) rospy.logdebug( "Current /io/internal_camera/right_hand_camera/image_raw READY=>") except: rospy.logerr( "Current /io/internal_camera/right_hand_camera/image_raw not ready yet, retrying for getting right_hand_camera_image_raw") return self.right_hand_camera_image_raw def _head_camera_image_raw_callback(self, data): self.head_camera_image_raw = data def _right_hand_camera_image_raw_callback(self, data): self.right_hand_camera_image_raw = data def _setup_tf_listener(self): """ Set ups the TF listener for getting the transforms you ask for. """ self.listener = tf.TransformListener() def _setup_movement_system(self): """ Setup of the movement system. :return: """ rp = intera_interface.RobotParams() valid_limbs = rp.get_limb_names() if not valid_limbs: rp.log_message(("Cannot detect any limb parameters on this robot. " "Exiting."), "ERROR") return rospy.loginfo("Valid Sawyer Limbs==>"+str(valid_limbs)) print("Getting robot state... ") rs = intera_interface.RobotEnable(CHECK_VERSION) init_state = rs.state().enabled rospy.loginfo("Enabling robot...") rs.enable() self._map_actions_to_movement() def _map_actions_to_movement(self, side="right", joint_delta=0.1): self.limb = intera_interface.Limb(side) try: self.gripper = intera_interface.Gripper(side + '_gripper') except: self.has_gripper = False rospy.loginfo("The electric gripper is not detected on the robot.") else: self.has_gripper = True self.joints = self.limb.joint_names() self.bindings = { self.joints[0]+"_increase": (self.set_j, [self.joints[0], joint_delta], self.joints[0]+" increase"), self.joints[0]+"_decrease": (self.set_j, [self.joints[0], -joint_delta], self.joints[0]+" decrease"), self.joints[1]+"_increase": (self.set_j, [self.joints[1], joint_delta], self.joints[1]+" increase"), self.joints[1]+"_decrease": (self.set_j, [self.joints[1], -joint_delta], self.joints[1]+" decrease"), self.joints[2]+"_increase": (self.set_j, [self.joints[2], joint_delta], self.joints[2]+" increase"), self.joints[2]+"_decrease": (self.set_j, [self.joints[2], -joint_delta], self.joints[2]+" decrease"), self.joints[3]+"_increase": (self.set_j, [self.joints[3], joint_delta], self.joints[3]+" increase"), self.joints[3]+"_decrease": (self.set_j, [self.joints[3], -joint_delta], self.joints[3]+" decrease"), self.joints[4]+"_increase": (self.set_j, [self.joints[4], joint_delta], self.joints[4]+" increase"), self.joints[4]+"_decrease": (self.set_j, [self.joints[4], -joint_delta], self.joints[4]+" decrease"), self.joints[5]+"_increase": (self.set_j, [self.joints[5], joint_delta], self.joints[5]+" increase"), self.joints[5]+"_decrease": (self.set_j, [self.joints[5], -joint_delta], self.joints[5]+" decrease"), self.joints[6]+"_increase": (self.set_j, [self.joints[6], joint_delta], self.joints[6]+" increase"), self.joints[6]+"_decrease": (self.set_j, [self.joints[6], -joint_delta], self.joints[6]+" decrease") } if self.has_gripper: self.bindings.update({ "close": (self.set_g, "close", side+" gripper close"), "open": (self.set_g, "open", side+" gripper open"), "calibrate": (self.set_g, "calibrate", side+" gripper calibrate") }) rospy.loginfo("Controlling joints...") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def execute_movement(self, action_id): """ It executed the command given through an id. This will move any joint of Sawyer, including the gripper if it has it. :param: action_id: These are the possible action_id values and the action asociated. self.joints[0]+"_increase", self.joints[0]+_decrease, self.joints[1]+"_increase", self.joints[1]+"_decrease", self.joints[2]+"_increase", self.joints[2]+"_decrease", self.joints[3]+"_increase", self.joints[3]+"_decrease", self.joints[4]+"_increase", self.joints[4]+"_decrease", self.joints[5]+"_increase", self.joints[5]+"_decrease", self.joints[6]+"_increase", self.joints[6]+"_decrease", gripper_close, gripper_open, gripper_calibrate """ if action_id in self.bindings: cmd = self.bindings[action_id] if action_id == "gripper_close" or action_id == "gripper_open" or action_id == "gripper_calibrate": cmd[0](cmd[1]) rospy.loginfo("command: %s" % (cmd[2],)) else: # expand binding to something like "self.set_j(right, 'j0', joint_delta)" cmd[0](*cmd[1]) rospy.loginfo("command: %s" % (cmd[2],)) else: rospy.logerr("NOT VALID key binding, it should be one of these: ") for key, val in sorted(self.bindings.items(), key=lambda x: x[1][2]): rospy.logerr(" %s: %s" % (key, val[2])) def set_j(self, joint_name, delta): current_position = self.limb.joint_angle(joint_name) joint_command = {joint_name: current_position + delta} self.limb.set_joint_positions(joint_command) def set_g(self, action): if self.has_gripper: if action == "close": self.gripper.close() elif action == "open": self.gripper.open() elif action == "calibrate": self.gripper.calibrate() def move_joints_to_angle_blocking(self, joint_positions_dict, timeout=15.0, threshold=0.008726646): """ It moves all the joints to the given position and doesnt exit until it reaches that position """ self.limb.move_to_joint_positions(positions=joint_positions_dict, timeout=15.0, threshold=0.008726646, test=None) def get_limb_joint_names_array(self): """ Returns the Joint Names array of the Limb. """ return self.joints def get_all_limb_joint_angles(self): """ Return dictionary dict({str:float}) with all the joints angles """ return self.limb.joint_angles() def get_all_limb_joint_efforts(self): """ Returns a dictionary dict({str:float}) with all the joints efforts """ return self.limb.joint_efforts() def get_tf_start_to_end_frames(self, start_frame_name, end_frame_name): """ Given two frames, it returns the transform from the start_frame_name to the end_frame_name. It will only return something different to None if the TFs of the Two frames are in TF topic published and are connected through the TF tree. :param: start_frame_name: Start Frame of the TF transform end_frame_name: End Frame of the TF transform :return: trans,rot of the transform between the start and end frames. """ start_frame = "/"+start_frame_name end_frame = "/"+end_frame_name trans, rot = None, None while (trans is None or rot is None) and not rospy.is_shutdown(): try: (trans, rot) = self.listener.lookupTransform( start_frame, end_frame, rospy.Time(0)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): rospy.logerr("TF start to end not ready YET...") duration_obj = rospy.Duration.from_sec(1.0) rospy.sleep(duration_obj) return trans, rot def check_joint_limits_ready(self): self.joint_limits = None rospy.logdebug("Waiting for /robot/joint_limits to be READY...") while self.joint_limits is None and not rospy.is_shutdown(): try: self.joint_limits = rospy.wait_for_message( "/robot/joint_limits", JointLimits, timeout=3.0) rospy.logdebug("Current /robot/joint_limits READY=>") except: rospy.logerr( "Current /robot/joint_limits not ready yet, retrying for getting joint_limits") return self.joint_limits def get_joint_limits(self): return self.joint_limits def get_head_camera_image_raw(self): return self.head_camera_image_raw def get_right_hand_camera_image_raw(self): return self.right_hand_camera_image_raw def init_joint_limits(self): """ Get the Joint Limits, in the init fase where we need to unpause the simulation to get them :return: joint_limits: The Joint Limits Dictionary, with names, angles, vel and effort limits. """ self.gazebo.unpauseSim() joint_limits = self.check_joint_limits_ready() self.gazebo.pauseSim() return joint_limits
[]
2024-01-10
Jaywhisker/AI_design_framework
Data_Collection~Design_Opportunities~GPT_keyword.py
##################################################################################################### # This is the functions to retrieve the product specification, flaws and strengths from GPT-3 # imports: openai, ast and helper functions from Helper. ###################################################################################################### import openai import ast import nltk from ...Helper import * #function to generate the product specification def get_specifications(search_terms, model, apikey): openai.api_key = apikey prompt = "give me the design specifications of the" + " ".join(search_terms) + "in a python dictionary in the form of specifications:value." output = generate_texts(prompt, model) #sometimes the output may be output = {}, if so remove output = try: index = output.index("{") output = output[index:].strip() except: pass design_specifications = ast.literal_eval(output) #remove the string as output = '{}' such that it is a dictionary print("design specifications", design_specifications) return design_specifications #edited ver of get_specification for product flaws def get_flaws(search_terms, model, apikey): openai.api_key = apikey prompt = "give me the design flaws of the" + " ".join(search_terms) + "in a python dictionary in the form of specifications:value." output = generate_texts(prompt, model) try: index = output.index("{") output = output[index:].strip() except: pass design_flaws = ast.literal_eval(output) print("design flaws", design_flaws) return design_flaws #edited ver of get_specification for product strengths def get_strength(search_terms, model, apikey): openai.api_key = apikey prompt = "give me the design strengths of the" + " ".join(search_terms) + "in a python dictionary in the form of specifications:value." output = generate_texts(prompt, model) try: index = output.index("{") output = output[index:].strip() except: pass design_strengths = ast.literal_eval(output) print("design strengths", design_strengths) return design_strengths #edited ver of get_competitors for product def get_competitors(search_terms, model, apikey): openai.api_key = apikey prompt = "give me the competitors of the" + " ".join(search_terms) + "in a python dictionary in the form of product:company." output = generate_texts(prompt, model) try: index = output.index("{") output = output[index:].strip() except: pass competitors = ast.literal_eval(output) print("competitors", competitors) return competitors
[ "give me the design strengths of the", "in a python dictionary in the form of specifications:value.", "give me the competitors of the", " ", "give me the design specifications of the", "give me the design flaws of the", "in a python dictionary in the form of product:company." ]
2024-01-10
Jaywhisker/AI_design_framework
Generating_Design_Opportunities~Transcript_Summariser.py
##################################################################################################### # This is the functions to summarise youtube transcript # imports: ast, open ai and helper functions from Helper. ###################################################################################################### import openai import ast from ...Helper import * #function to summarise one youtube transcript into its pros and cons #require: data is a singular paragraph containing the youtube transcript to summarise def single_transcript_summariser(data, search_terms, model = "text-davinci-003", apikey): openai.api_key = apikey prompt = "Summarise the flaws and strengths of the" + " ".join(search_terms) + ":" + data summary = generate_text(prompt, model) return summary #function to summarise all youtube transcripts into its pros and cons #require: nested list of paragraph containing each youtube transcript def transcript_summariser(youtube_transcript, search_terms, model = "text-davinci-003", apikey): for transcripts in youtube_transcripts: result = single_transcript_summariser(transcripts, search_terms,model, apikey) summarised_reviews += result.strip() #remove whitespace return summarised_reviews #function to summarise the opinions of each category for the product based on the youtube transcript summary #require: finalised design outcomes keywords, data = singular paragraph containing summarised youtube transcript def features_extractor(categories, data, model = "text-davinci-003", apikey): openai.api_key = apikey prompt = "based on this paragraph:" + data + "\n summarise why the product should be improved or maintained for each of these categories: " + str(categories) + "and return the output in a python dictionary" print("prompt": prompt) result = generate_text(prompt, model) try: index = result.index("{") #just in case the result: output = {} result = result[index:].strip() #remove output = except: pass return ast.literal_eval(result)
[ "Summarise the flaws and strengths of the", " ", "based on this paragraph:PLACEHOLDER\n summarise why the product should be improved or maintained for each of these categories: PLACEHOLDERand return the output in a python dictionary" ]
2024-01-10
Jaywhisker/AI_design_framework
Generating_Design_Opportunities~Design_Opportunities.py
##################################################################################################### # This is the functions to generate design opportunities based on all the data collected # Data include: Categorised reviews and comments + summarised youtube transcripts # imports: openai and helper functions from Helper. ###################################################################################################### import openai from ...Helper import * #function to give suggestions on what to improve for each respective category with regards to the product #require the keyword, the product name and data which is the list of negative comments related to the category of that product def suggestion_maker(data, keyword, search_term, model = "text-davinci-003", apikey): openai.api_key = apikey prompt = "based on the paragraph below, what is the best way to improve the" + " ".join(search_term) + " with regards to " + keyword + "only ?\n" + str(data) model = "text-davinci-003" suggestion = generate_text(prompt, model) return suggestion.strip() #function to state what should be maintained for each respective category with regards to the product #require the keyword, the product name and data which is the list of positive comments related to the category of that product def maintain_maker(data, keyword, search_term, model = "text-davinci-003",apikey): openai.api_key = apikey prompt = "based on the paragraph below, what is the best way to maintain in the" + " ".join(search_term) + " with regards to " + keyword + "only ?\n" + str(data) model = "text-davinci-003" maintainence = generate_text(prompt, model, apikey) return maintainence.strip() #function that creates the total_opportunities through GPT-3 #requires: all negative keywords, top 5 posiitve keywords, all categorised data, the summarised yt transcript, search_terms and api key #the code will extract all negative comments categorised under the negative keywords and ask GPT-3 for suggestions before merging it with the summarised yt transcript #the code will repeat with the top 5 positive keywords def reviews_design_outcomes(negative_design_outcomes, positive_design_outcomes, categorical_data, summarised_transcript, search_terms, model = "text-davinci-003",apikey): total_opportunities = {} #dictionary to hold all the suggestions (merges features_extractor and suggestion/maintain_maker outputs) #negative design outcomes for n_outcomes in negative_design_outcomes: #iterate through every negative keyword negative_key = n_outcomes[0] #get negative keyword negative_comments = categorical_data[negative_key]['negative'] #get negative comments related to category #update total_opportunities with suggestions from yt transcript, yt comments, shopee and amazon reviews for negative keywords total_opportunities[negative_key] = summarised_transcript[negative_key] + " " + suggestion_maker(negative_comments, negative_key, search_terms, model = "text-davinci-003",apikey) print(total_opportunities) #positive design outcomes for p_outcomes in positive_design_outcomes: positive_key = p_outcomes[0] #get positive keyword positive_comments = categorical_data[positive_key]['positive'] #get positive comments related to category #update total_opportunities on what to maintain from yt transcript, yt comments, shopee and amazon reviews total_opportunities[positive_key] = summarised_transcript[positive_key] + " " + maintain_maker(positive_comments, positive_key, search_terms, model = "text-davinci-003",apikey) print(total_opportunities) return total_opportunities #function that tells GPT-3 to give us a new product specification #the prompt must mainly contain the reviews (containing things to maintain and suggestions for improvements) as well as prompts to compare with current product specifcations #after which you can save the file def generate_design_outcomes(design_outcomes, search_terms, model = "text-davinci-003", apikey): openai.api_key = apikey prompt = "Imagine you are a product designer and these are the reviews you have received. Using the current " + " ".join(search_terms) + " specifications, provide a new set of product specifications with comparison to the current one to design an improved " + " ".join(search_terms) + " that meets the demands of the reviews. \n Reviews:" + str(design_outcomes) final_design_outcomes = generate_text(prompt, model) return final_design_outcomes.strip()
[ " that meets the demands of the reviews. \n Reviews:", "Imagine you are a product designer and these are the reviews you have received. Using the current ", " specifications, provide a new set of product specifications with comparison to the current one to design an improved ", "based on the paragraph below, what is the best way to maintain in the", "based on the paragraph below, what is the best way to improve the", " ", " with regards to ", "only ?\n" ]
2024-01-10
Panny777/Insta-Caption-Generator
trial.py
import os import openai openai.api_key = "" openai.Completion.create( engine="text-davinci-002", prompt="Say this is a test", max_tokens=5 )
[ "Say this is a test" ]
2024-01-10
Matthew-Redrup/agentic-experiment
agentic_edu~agents~agents.py
from typing import Optional, List, Dict, Any from agentic_edu.agents.instruments import PostgresAgentInstruments from agentic_edu.modules import orchestrator from agentic_edu.agents import agent_config import autogen import guidance # ------------------------ PROMPTS ------------------------ USER_PROXY_PROMPT = "A human admin. Interact with the Product Manager to discuss the plan. Plan execution needs to be approved by this admin." DATA_ENGINEER_PROMPT = "A Data Engineer. Generate the initial SQL based on the requirements provided. Send it to the Sr Data Analyst to be executed. " SR_DATA_ANALYST_PROMPT = "Sr Data Analyst. You run the SQL query using the run_sql function, send the raw response to the data viz team. You use the run_sql function exclusively." GUIDANCE_SCRUM_MASTER_SQL_NLQ_PROMPT = """ Is the following block of text a SQL Natural Language Query (NLQ)? Please rank from 1 to 5, where: 1: Definitely not NLQ 2: Likely not NLQ 3: Neutral / Unsure 4: Likely NLQ 5: Definitely NLQ Return the rank as a number exclusively using the rank variable to be casted as an integer. Block of Text: {{potential_nlq}} {{#select "rank" logprobs='logprobs'}} 1{{or}} 2{{or}} 3{{or}} 4{{or}} 5{{/select}} """ DATA_INSIGHTS_GUIDANCE_PROMPT = """ You're a data innovator. You analyze SQL databases table structure and generate 3 novel insights for your team to reflect on and query. Format your insights in JSON format. ```json [{{#geneach 'insight' num_iterations=3 join=','}} { "insight": "{{gen 'insight' temperature=0.7}}", "actionable_business_value": "{{gen 'actionable_value' temperature=0.7}}", "sql": "{{gen 'new_query' temperature=0.7}}" } {{/geneach}}] ```""" INSIGHTS_FILE_REPORTER_PROMPT = "You're a data reporter. You write json data you receive directly into a file using the write_innovation_file function." # unused prompts COMPLETION_PROMPT = "If everything looks good, respond with APPROVED" PRODUCT_MANAGER_PROMPT = ( "Product Manager. Validate the response to make sure it's correct" + COMPLETION_PROMPT ) TEXT_REPORT_ANALYST_PROMPT = "Text File Report Analyst. You exclusively use the write_file function on a summarized report." JSON_REPORT_ANALYST_PROMPT = "Json Report Analyst. You exclusively use the write_json_file function on the report." YML_REPORT_ANALYST_PROMPT = "Yaml Report Analyst. You exclusively use the write_yml_file function on the report." # ------------------------ BUILD AGENT TEAMS ------------------------ def build_data_eng_team(instruments: PostgresAgentInstruments): """ Build a team of agents that can generate, execute, and report an SQL query """ # create a set of agents with specific roles # admin user proxy agent - takes in the prompt and manages the group chat user_proxy = autogen.UserProxyAgent( name="Admin", system_message=USER_PROXY_PROMPT, code_execution_config=False, human_input_mode="NEVER", ) # data engineer agent - generates the sql query data_engineer = autogen.AssistantAgent( name="Engineer", llm_config=agent_config.base_config, system_message=DATA_ENGINEER_PROMPT, code_execution_config=False, human_input_mode="NEVER", ) sr_data_analyst = autogen.AssistantAgent( name="Sr_Data_Analyst", llm_config=agent_config.run_sql_config, system_message=SR_DATA_ANALYST_PROMPT, code_execution_config=False, human_input_mode="NEVER", function_map={ "run_sql": instruments.run_sql, }, ) return [ user_proxy, data_engineer, sr_data_analyst, ] def build_data_viz_team(instruments: PostgresAgentInstruments): # admin user proxy agent - takes in the prompt and manages the group chat user_proxy = autogen.UserProxyAgent( name="Admin", system_message=USER_PROXY_PROMPT, code_execution_config=False, human_input_mode="NEVER", ) # text report analyst - writes a summary report of the results and saves them to a local text file text_report_analyst = autogen.AssistantAgent( name="Text_Report_Analyst", llm_config=agent_config.write_file_config, system_message=TEXT_REPORT_ANALYST_PROMPT, human_input_mode="NEVER", function_map={ "write_file": instruments.write_file, }, ) # json report analyst - writes a summary report of the results and saves them to a local json file json_report_analyst = autogen.AssistantAgent( name="Json_Report_Analyst", llm_config=agent_config.write_json_file_config, system_message=JSON_REPORT_ANALYST_PROMPT, human_input_mode="NEVER", function_map={ "write_json_file": instruments.write_json_file, }, ) yaml_report_analyst = autogen.AssistantAgent( name="Yml_Report_Analyst", llm_config=agent_config.write_yaml_file_config, system_message=YML_REPORT_ANALYST_PROMPT, human_input_mode="NEVER", function_map={ "write_yml_file": instruments.write_yml_file, }, ) return [ user_proxy, text_report_analyst, json_report_analyst, yaml_report_analyst, ] def build_scrum_master_team(instruments: PostgresAgentInstruments): user_proxy = autogen.UserProxyAgent( name="Admin", system_message=USER_PROXY_PROMPT, code_execution_config=False, human_input_mode="NEVER", ) scrum_agent = DefensiveScrumMasterAgent( name="Scrum_Master", llm_config=agent_config.base_config, system_message=GUIDANCE_SCRUM_MASTER_SQL_NLQ_PROMPT, human_input_mode="NEVER", ) return [user_proxy, scrum_agent] def build_insights_team(instruments: PostgresAgentInstruments): user_proxy = autogen.UserProxyAgent( name="Admin", system_message=USER_PROXY_PROMPT, code_execution_config=False, human_input_mode="NEVER", ) insights_agent = InsightsAgent( name="Insights", llm_config=agent_config.base_config, system_message=DATA_INSIGHTS_GUIDANCE_PROMPT, human_input_mode="NEVER", ) insights_data_reporter = autogen.AssistantAgent( name="Insights_Data_Reporter", llm_config=agent_config.write_innovation_file_config, system_message=INSIGHTS_FILE_REPORTER_PROMPT, human_input_mode="NEVER", function_map={ "write_innovation_file": instruments.write_innovation_file, }, ) return [user_proxy, insights_agent, insights_data_reporter] # ------------------------ ORCHESTRATION ------------------------ def build_team_orchestrator( team: str, agent_instruments: PostgresAgentInstruments, validate_results: callable = None, ) -> orchestrator.Orchestrator: """ Based on a team name, build a team of agents and return an orchestrator """ if team == "data_eng": return orchestrator.Orchestrator( name="data_eng_team", agents=build_data_eng_team(agent_instruments), instruments=agent_instruments, validate_results_func=validate_results, ) elif team == "data_viz": return orchestrator.Orchestrator( name="data_viz_team", agents=build_data_viz_team(agent_instruments), validate_results_func=validate_results, ) elif team == "scrum_master": return orchestrator.Orchestrator( name="scrum_master_team", agents=build_scrum_master_team(agent_instruments), instruments=agent_instruments, validate_results_func=validate_results, ) elif team == "data_insights": return orchestrator.Orchestrator( name="data_insights_team", agents=build_insights_team(agent_instruments), instruments=agent_instruments, validate_results_func=validate_results, ) raise Exception("Unknown team: " + team) # ------------------------ CUSTOM AGENTS ------------------------ class DefensiveScrumMasterAgent(autogen.ConversableAgent): """ Custom agent that uses the guidance function to determine if a message is a SQL NLQ """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Register the new reply function for this specific agent self.register_reply(self, self.check_sql_nlq, position=0) def check_sql_nlq( self, messages: Optional[List[Dict]] = None, sender: Optional[autogen.Agent] = None, config: Optional[Any] = None, # Persistent state. ): # Check the last received message last_message = messages[-1]["content"] # Use the guidance string to determine if the message is a SQL NLQ response = guidance( GUIDANCE_SCRUM_MASTER_SQL_NLQ_PROMPT, potential_nlq=last_message ) # You can return the exact response or just a simplified version, # here we are just returning the rank for simplicity rank = response.get("choices", [{}])[0].get("rank", "3") return True, rank class InsightsAgent(autogen.ConversableAgent): """ Custom agent that uses the guidance function to generate insights in JSON format """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.register_reply(self, self.generate_insights, position=0) def generate_insights( self, messages: Optional[List[Dict]] = None, sender: Optional[autogen.Agent] = None, config: Optional[Any] = None, ): insights = guidance(DATA_INSIGHTS_GUIDANCE_PROMPT) return True, insights
[ "Json Report Analyst. You exclusively use the write_json_file function on the report.", "A Data Engineer. Generate the initial SQL based on the requirements provided. Send it to the Sr Data Analyst to be executed. ", "\nIs the following block of text a SQL Natural Language Query (NLQ)? Please rank from 1 to 5, where:\n1: Definitely not NLQ\n2: Likely not NLQ\n3: Neutral / Unsure\n4: Likely NLQ\n5: Definitely NLQ\n\nReturn the rank as a number exclusively using the rank variable to be casted as an integer.\n\nBlock of Text: {{potential_nlq}}\n{{#select \"rank\" logprobs='logprobs'}} 1{{or}} 2{{or}} 3{{or}} 4{{or}} 5{{/select}}\n", "\nYou're a data innovator. You analyze SQL databases table structure and generate 3 novel insights for your team to reflect on and query. \nFormat your insights in JSON format.\n```json\n[{{#geneach 'insight' num_iterations=3 join=','}}\n{\n \"insight\": \"{{gen 'insight' temperature=0.7}}\",\n \"actionable_business_value\": \"{{gen 'actionable_value' temperature=0.7}}\",\n \"sql\": \"{{gen 'new_query' temperature=0.7}}\"\n}\n{{/geneach}}]\n```", "Yaml Report Analyst. You exclusively use the write_yml_file function on the report.", "You're a data reporter. You write json data you receive directly into a file using the write_innovation_file function.", "A human admin. Interact with the Product Manager to discuss the plan. Plan execution needs to be approved by this admin.", "Product Manager. Validate the response to make sure it's correctIf everything looks good, respond with APPROVED", "Text File Report Analyst. You exclusively use the write_file function on a summarized report.", "Sr Data Analyst. You run the SQL query using the run_sql function, send the raw response to the data viz team. You use the run_sql function exclusively.", "If everything looks good, respond with APPROVED" ]
2024-01-10
bobilan/AudioGPT
audio-chatgpt.py
import sys import os sys.path.append(os.path.dirname(os.path.realpath(__file__))) sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'NeuralSeq')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'audio_detection')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'mono2binaural')) import gradio as gr import matplotlib import librosa import torch from langchain.agents.initialize import initialize_agent from langchain.agents.tools import Tool from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.llms.openai import OpenAI import re import uuid import soundfile from PIL import Image import numpy as np from omegaconf import OmegaConf from einops import repeat from ldm.util import instantiate_from_config from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000 from vocoder.bigvgan.models import VocoderBigVGAN from ldm.models.diffusion.ddim import DDIMSampler import whisper from utils.hparams import set_hparams from utils.hparams import hparams as hp import scipy.io.wavfile as wavfile import librosa from audio_infer.utils import config as detection_config from audio_infer.pytorch.models import PVT import clip import numpy as np AUDIO_CHATGPT_PREFIX = """AudioGPT AudioGPT can not directly read audios, but it has a list of tools to finish different speech, audio, and singing voice tasks. Each audio will have a file name formed as "audio/xxx.wav". When talking about audios, AudioGPT is very strict to the file name and will never fabricate nonexistent files. AudioGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the audio content and audio file name. It will remember to provide the file name from the last tool observation, if a new audio is generated. Human may provide new audios to AudioGPT with a description. The description helps AudioGPT to understand this audio, but AudioGPT should use tools to finish following tasks, rather than directly imagine from the description. Overall, AudioGPT is a powerful audio dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. TOOLS: ------ AudioGPT has access to the following tools:""" AUDIO_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format: ``` Thought: Do I need to use a tool? Yes Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ``` When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format: ``` Thought: Do I need to use a tool? No {ai_prefix}: [your response here] ``` """ AUDIO_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if not exists. You will remember to provide the audio file name loyally if it's provided in the last tool observation. Begin! Previous conversation history: {chat_history} New input: {input} Thought: Do I need to use a tool? {agent_scratchpad}""" def cut_dialogue_history(history_memory, keep_last_n_words = 500): tokens = history_memory.split() n_tokens = len(tokens) print(f"history_memory:{history_memory}, n_tokens: {n_tokens}") if n_tokens < keep_last_n_words: return history_memory else: paragraphs = history_memory.split('\n') last_n_tokens = n_tokens while last_n_tokens >= keep_last_n_words: last_n_tokens = last_n_tokens - len(paragraphs[0].split(' ')) paragraphs = paragraphs[1:] return '\n' + '\n'.join(paragraphs) def merge_audio(audio_path_1, audio_path_2): merged_signal = [] sr_1, signal_1 = wavfile.read(audio_path_1) sr_2, signal_2 = wavfile.read(audio_path_2) merged_signal.append(signal_1) merged_signal.append(signal_2) merged_signal = np.hstack(merged_signal) merged_signal = np.asarray(merged_signal, dtype=np.int16) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") wavfile.write(audio_filename, sr_2, merged_signal) return audio_filename class T2I: def __init__(self, device): from transformers import AutoModelForCausalLM, AutoTokenizer from diffusers import StableDiffusionPipeline from transformers import pipeline print("Initializing T2I to %s" % device) self.device = device self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device) self.pipe.to(device) def inference(self, text): image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"] print(f'{text} refined to {refined_text}') image = self.pipe(refined_text).images[0] image.save(image_filename) print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}") return image_filename class ImageCaptioning: def __init__(self, device): from transformers import BlipProcessor, BlipForConditionalGeneration print("Initializing ImageCaptioning to %s" % device) self.device = device self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device) def inference(self, image_path): inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device) out = self.model.generate(**inputs) captions = self.processor.decode(out[0], skip_special_tokens=True) return captions class T2A: def __init__(self, device): print("Initializing Make-An-Audio to %s" % device) self.device = device self.sampler = self._initialize_model('text_to_audio/Make_An_Audio/configs/text_to_audio/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta40multi_epoch=000085.ckpt', device=device) self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device) def _initialize_model(self, config, ckpt, device): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt, map_location='cpu')["state_dict"], strict=False) model = model.to(device) model.cond_stage_model.to(model.device) model.cond_stage_model.device = model.device sampler = DDIMSampler(model) return sampler def txt2audio(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80): SAMPLE_RATE = 16000 prng = np.random.RandomState(seed) start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32) uc = self.sampler.model.get_learned_conditioning(n_samples * [""]) c = self.sampler.model.get_learned_conditioning(n_samples * [text]) shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x) samples_ddim, _ = self.sampler.sample(S = ddim_steps, conditioning = c, batch_size = n_samples, shape = shape, verbose = False, unconditional_guidance_scale = scale, unconditional_conditioning = uc, x_T = start_code) x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1] wav_list = [] for idx,spec in enumerate(x_samples_ddim): wav = self.vocoder.vocode(spec) wav_list.append((SAMPLE_RATE,wav)) best_wav = self.select_best_audio(text, wav_list) return best_wav def select_best_audio(self, prompt, wav_list): from wav_evaluation.models.CLAPWrapper import CLAPWrapper clap_model = CLAPWrapper('text_to_audio/Make_An_Audio/useful_ckpts/CLAP/CLAP_weights_2022.pth', 'text_to_audio/Make_An_Audio/useful_ckpts/CLAP/config.yml', use_cuda=torch.cuda.is_available()) text_embeddings = clap_model.get_text_embeddings([prompt]) score_list = [] for data in wav_list: sr, wav = data audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav), sr)], resample=True) score = clap_model.compute_similarity(audio_embeddings, text_embeddings, use_logit_scale=False).squeeze().cpu().numpy() score_list.append(score) max_index = np.array(score_list).argmax() print(score_list, max_index) return wav_list[max_index] def inference(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80): melbins,mel_len = 80,624 with torch.no_grad(): result = self.txt2audio( text = text, H = melbins, W = mel_len ) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, result[1], samplerate = 16000) print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}") return audio_filename class I2A: def __init__(self, device): print("Initializing Make-An-Audio-Image to %s" % device) self.device = device self.sampler = self._initialize_model('text_to_audio/Make_An_Audio/configs/img_to_audio/img2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta54_epoch=000216.ckpt', device=device) self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device) def _initialize_model(self, config, ckpt, device): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt, map_location='cpu')["state_dict"], strict=False) model = model.to(device) model.cond_stage_model.to(model.device) model.cond_stage_model.device = model.device sampler = DDIMSampler(model) return sampler def img2audio(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80): SAMPLE_RATE = 16000 n_samples = 1 # only support 1 sample prng = np.random.RandomState(seed) start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32) uc = self.sampler.model.get_learned_conditioning(n_samples * [""]) #image = Image.fromarray(image) image = Image.open(image) image = self.sampler.model.cond_stage_model.preprocess(image).unsqueeze(0) image_embedding = self.sampler.model.cond_stage_model.forward_img(image) c = image_embedding.repeat(n_samples, 1, 1) shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x) samples_ddim, _ = self.sampler.sample(S=ddim_steps, conditioning=c, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc, x_T=start_code) x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1] wav_list = [] for idx,spec in enumerate(x_samples_ddim): wav = self.vocoder.vocode(spec) wav_list.append((SAMPLE_RATE,wav)) best_wav = wav_list[0] return best_wav def inference(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80): melbins,mel_len = 80,624 with torch.no_grad(): result = self.img2audio( image=image, H=melbins, W=mel_len ) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, result[1], samplerate = 16000) print(f"Processed I2a.run, image_filename: {image}, audio_filename: {audio_filename}") return audio_filename class TTS: def __init__(self, device=None): from inference.tts.PortaSpeech import TTSInference if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print("Initializing PortaSpeech to %s" % device) self.device = device self.exp_name = 'checkpoints/ps_adv_baseline' self.set_model_hparams() self.inferencer = TTSInference(self.hp, device) def set_model_hparams(self): set_hparams(exp_name=self.exp_name, print_hparams=False) self.hp = hp def inference(self, text): self.set_model_hparams() inp = {"text": text} out = self.inferencer.infer_once(inp) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, out, samplerate=22050) return audio_filename class T2S: def __init__(self, device= None): from inference.svs.ds_e2e import DiffSingerE2EInfer if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print("Initializing DiffSinger to %s" % device) self.device = device self.exp_name = 'checkpoints/0831_opencpop_ds1000' self.config= 'NeuralSeq/egs/egs_bases/svs/midi/e2e/opencpop/ds1000.yaml' self.set_model_hparams() self.pipe = DiffSingerE2EInfer(self.hp, device) self.default_inp = { 'text': '你 说 你 不 SP 懂 为 何 在 这 时 牵 手 AP', 'notes': 'D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | rest | D#4/Eb4 | D4 | D4 | D4 | D#4/Eb4 | F4 | D#4/Eb4 | D4 | rest', 'notes_duration': '0.113740 | 0.329060 | 0.287950 | 0.133480 | 0.150900 | 0.484730 | 0.242010 | 0.180820 | 0.343570 | 0.152050 | 0.266720 | 0.280310 | 0.633300 | 0.444590' } def set_model_hparams(self): set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False) self.hp = hp def inference(self, inputs): self.set_model_hparams() val = inputs.split(",") key = ['text', 'notes', 'notes_duration'] try: inp = {k: v for k, v in zip(key, val)} wav = self.pipe.infer_once(inp) except: print('Error occurs. Generate default audio sample.\n') inp = self.default_inp wav = self.pipe.infer_once(inp) #if inputs == '' or len(val) < len(key): # inp = self.default_inp #else: # inp = {k:v for k,v in zip(key,val)} #wav = self.pipe.infer_once(inp) wav *= 32767 audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16)) print(f"Processed T2S.run, audio_filename: {audio_filename}") return audio_filename class t2s_VISinger: def __init__(self, device=None): from espnet2.bin.svs_inference import SingingGenerate if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print("Initializing VISingere to %s" % device) tag = 'AQuarterMile/opencpop_visinger1' self.model = SingingGenerate.from_pretrained( model_tag=str_or_none(tag), device=device, ) phn_dur = [[0. , 0.219 ], [0.219 , 0.50599998], [0.50599998, 0.71399999], [0.71399999, 1.097 ], [1.097 , 1.28799999], [1.28799999, 1.98300004], [1.98300004, 7.10500002], [7.10500002, 7.60400009]] phn = ['sh', 'i', 'q', 'v', 'n', 'i', 'SP', 'AP'] score = [[0, 0.50625, 'sh_i', 58, 'sh_i'], [0.50625, 1.09728, 'q_v', 56, 'q_v'], [1.09728, 1.9832100000000001, 'n_i', 53, 'n_i'], [1.9832100000000001, 7.105360000000001, 'SP', 0, 'SP'], [7.105360000000001, 7.604390000000001, 'AP', 0, 'AP']] tempo = 70 tmp = {} tmp["label"] = phn_dur, phn tmp["score"] = tempo, score self.default_inp = tmp def inference(self, inputs): val = inputs.split(",") key = ['text', 'notes', 'notes_duration'] try: # TODO: input will be update inp = {k: v for k, v in zip(key, val)} wav = self.model(text=inp)["wav"] except: print('Error occurs. Generate default audio sample.\n') inp = self.default_inp wav = self.model(text=inp)["wav"] audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, wav, samplerate=self.model.fs) return audio_filename class TTS_OOD: def __init__(self, device): from inference.tts.GenerSpeech import GenerSpeechInfer if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print("Initializing GenerSpeech to %s" % device) self.device = device self.exp_name = 'checkpoints/GenerSpeech' self.config = 'NeuralSeq/modules/GenerSpeech/config/generspeech.yaml' self.set_model_hparams() self.pipe = GenerSpeechInfer(self.hp, device) def set_model_hparams(self): set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False) f0_stats_fn = f'{hp["binary_data_dir"]}/train_f0s_mean_std.npy' if os.path.exists(f0_stats_fn): hp['f0_mean'], hp['f0_std'] = np.load(f0_stats_fn) hp['f0_mean'] = float(hp['f0_mean']) hp['f0_std'] = float(hp['f0_std']) hp['emotion_encoder_path'] = 'checkpoints/Emotion_encoder.pt' self.hp = hp def inference(self, inputs): self.set_model_hparams() key = ['ref_audio', 'text'] val = inputs.split(",") inp = {k: v for k, v in zip(key, val)} wav = self.pipe.infer_once(inp) wav *= 32767 audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16)) print( f"Processed GenerSpeech.run. Input text:{val[1]}. Input reference audio: {val[0]}. Output Audio_filename: {audio_filename}") return audio_filename class Inpaint: def __init__(self, device): print("Initializing Make-An-Audio-inpaint to %s" % device) self.device = device self.sampler = self._initialize_model_inpaint('text_to_audio/Make_An_Audio/configs/inpaint/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/inpaint7_epoch00047.ckpt') self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device) self.cmap_transform = matplotlib.cm.viridis def _initialize_model_inpaint(self, config, ckpt): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt, map_location='cpu')["state_dict"], strict=False) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) print(model.device, device, model.cond_stage_model.device) sampler = DDIMSampler(model) return sampler def make_batch_sd(self, mel, mask, num_samples=1): mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32) mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32) masked_mel = (1 - mask) * mel mel = mel * 2 - 1 mask = mask * 2 - 1 masked_mel = masked_mel * 2 -1 batch = { "mel": repeat(mel.to(device=self.device), "1 ... -> n ...", n=num_samples), "mask": repeat(mask.to(device=self.device), "1 ... -> n ...", n=num_samples), "masked_mel": repeat(masked_mel.to(device=self.device), "1 ... -> n ...", n=num_samples), } return batch def gen_mel(self, input_audio_path): SAMPLE_RATE = 16000 sr, ori_wav = wavfile.read(input_audio_path) print("gen_mel") print(sr,ori_wav.shape,ori_wav) ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 if len(ori_wav.shape)==2:# stereo ori_wav = librosa.to_mono(ori_wav.T) print(sr,ori_wav.shape,ori_wav) ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE) mel_len,hop_size = 848,256 input_len = mel_len * hop_size if len(ori_wav) < input_len: input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0) else: input_wav = ori_wav[:input_len] mel = TRANSFORMS_16000(input_wav) return mel def gen_mel_audio(self, input_audio): SAMPLE_RATE = 16000 sr,ori_wav = input_audio print("gen_mel_audio") print(sr,ori_wav.shape,ori_wav) ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 if len(ori_wav.shape)==2:# stereo ori_wav = librosa.to_mono(ori_wav.T) print(sr,ori_wav.shape,ori_wav) ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE) mel_len,hop_size = 848,256 input_len = mel_len * hop_size if len(ori_wav) < input_len: input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0) else: input_wav = ori_wav[:input_len] mel = TRANSFORMS_16000(input_wav) return mel def show_mel_fn(self, input_audio_path): crop_len = 500 crop_mel = self.gen_mel(input_audio_path)[:,:crop_len] color_mel = self.cmap_transform(crop_mel) image = Image.fromarray((color_mel*255).astype(np.uint8)) image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") image.save(image_filename) return image_filename def inpaint(self, batch, seed, ddim_steps, num_samples=1, W=512, H=512): model = self.sampler.model prng = np.random.RandomState(seed) start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32) c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"])) cc = torch.nn.functional.interpolate(batch["mask"], size=c.shape[-2:]) c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask shape = (c.shape[1]-1,)+c.shape[2:] samples_ddim, _ = self.sampler.sample(S=ddim_steps, conditioning=c, batch_size=c.shape[0], shape=shape, verbose=False) x_samples_ddim = model.decode_first_stage(samples_ddim) mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0) mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0) predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0) inpainted = (1-mask)*mel+mask*predicted_mel inpainted = inpainted.cpu().numpy().squeeze() inapint_wav = self.vocoder.vocode(inpainted) return inpainted, inapint_wav def inference(self, input_audio, mel_and_mask, seed = 55, ddim_steps = 100): SAMPLE_RATE = 16000 torch.set_grad_enabled(False) mel_img = Image.open(mel_and_mask['image']) mask_img = Image.open(mel_and_mask["mask"]) show_mel = np.array(mel_img.convert("L"))/255 mask = np.array(mask_img.convert("L"))/255 mel_bins,mel_len = 80,848 input_mel = self.gen_mel_audio(input_audio)[:,:mel_len] mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0) print(mask.shape,input_mel.shape) with torch.no_grad(): batch = self.make_batch_sd(input_mel,mask,num_samples=1) inpainted,gen_wav = self.inpaint( batch=batch, seed=seed, ddim_steps=ddim_steps, num_samples=1, H=mel_bins, W=mel_len ) inpainted = inpainted[:,:show_mel.shape[1]] color_mel = self.cmap_transform(inpainted) input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0]) gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len] image = Image.fromarray((color_mel*255).astype(np.uint8)) image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") image.save(image_filename) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, gen_wav, samplerate = 16000) return image_filename, audio_filename class ASR: def __init__(self, device): print("Initializing Whisper to %s" % device) self.device = device self.model = whisper.load_model("base", device=device) def inference(self, audio_path): audio = whisper.load_audio(audio_path) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(self.device) _, probs = self.model.detect_language(mel) options = whisper.DecodingOptions() result = whisper.decode(self.model, mel, options) return result.text def translate_english(self, audio_path): audio = self.model.transcribe(audio_path, language='English') return audio['text'] class A2T: def __init__(self, device): from audio_to_text.inference_waveform import AudioCapModel print("Initializing Audio-To-Text Model to %s" % device) self.device = device self.model = AudioCapModel("audio_to_text/audiocaps_cntrstv_cnn14rnn_trm") def inference(self, audio_path): audio = whisper.load_audio(audio_path) caption_text = self.model(audio) return caption_text[0] class GeneFace: def __init__(self, device=None): print("Initializing GeneFace model to %s" % device) from audio_to_face.GeneFace_binding import GeneFaceInfer if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = device self.geneface_model = GeneFaceInfer(device) print("Loaded GeneFace model") def inference(self, audio_path): audio_base_name = os.path.basename(audio_path)[:-4] out_video_name = audio_path.replace("audio","video").replace(".wav", ".mp4") inp = { 'audio_source_name': audio_path, 'out_npy_name': f'geneface/tmp/{audio_base_name}.npy', 'cond_name': f'geneface/tmp/{audio_base_name}.npy', 'out_video_name': out_video_name, 'tmp_imgs_dir': f'video/tmp_imgs', } self.geneface_model.infer_once(inp) return out_video_name class SoundDetection: def __init__(self, device): self.device = device self.sample_rate = 32000 self.window_size = 1024 self.hop_size = 320 self.mel_bins = 64 self.fmin = 50 self.fmax = 14000 self.model_type = 'PVT' self.checkpoint_path = 'audio_detection/audio_infer/useful_ckpts/audio_detection.pth' self.classes_num = detection_config.classes_num self.labels = detection_config.labels self.frames_per_second = self.sample_rate // self.hop_size # Model = eval(self.model_type) self.model = PVT(sample_rate=self.sample_rate, window_size=self.window_size, hop_size=self.hop_size, mel_bins=self.mel_bins, fmin=self.fmin, fmax=self.fmax, classes_num=self.classes_num) checkpoint = torch.load(self.checkpoint_path, map_location=self.device) self.model.load_state_dict(checkpoint['model']) self.model.to(device) def inference(self, audio_path): # Forward (waveform, _) = librosa.core.load(audio_path, sr=self.sample_rate, mono=True) waveform = waveform[None, :] # (1, audio_length) waveform = torch.from_numpy(waveform) waveform = waveform.to(self.device) # Forward with torch.no_grad(): self.model.eval() batch_output_dict = self.model(waveform, None) framewise_output = batch_output_dict['framewise_output'].data.cpu().numpy()[0] """(time_steps, classes_num)""" # print('Sound event detection result (time_steps x classes_num): {}'.format( # framewise_output.shape)) import numpy as np import matplotlib.pyplot as plt sorted_indexes = np.argsort(np.max(framewise_output, axis=0))[::-1] top_k = 10 # Show top results top_result_mat = framewise_output[:, sorted_indexes[0 : top_k]] """(time_steps, top_k)""" # Plot result stft = librosa.core.stft(y=waveform[0].data.cpu().numpy(), n_fft=self.window_size, hop_length=self.hop_size, window='hann', center=True) frames_num = stft.shape[-1] fig, axs = plt.subplots(2, 1, sharex=True, figsize=(10, 4)) axs[0].matshow(np.log(np.abs(stft)), origin='lower', aspect='auto', cmap='jet') axs[0].set_ylabel('Frequency bins') axs[0].set_title('Log spectrogram') axs[1].matshow(top_result_mat.T, origin='upper', aspect='auto', cmap='jet', vmin=0, vmax=1) axs[1].xaxis.set_ticks(np.arange(0, frames_num, self.frames_per_second)) axs[1].xaxis.set_ticklabels(np.arange(0, frames_num / self.frames_per_second)) axs[1].yaxis.set_ticks(np.arange(0, top_k)) axs[1].yaxis.set_ticklabels(np.array(self.labels)[sorted_indexes[0 : top_k]]) axs[1].yaxis.grid(color='k', linestyle='solid', linewidth=0.3, alpha=0.3) axs[1].set_xlabel('Seconds') axs[1].xaxis.set_ticks_position('bottom') plt.tight_layout() image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") plt.savefig(image_filename) return image_filename class SoundExtraction: def __init__(self, device): from sound_extraction.model.LASSNet import LASSNet from sound_extraction.utils.stft import STFT import torch.nn as nn self.device = device self.model_file = 'sound_extraction/useful_ckpts/LASSNet.pt' self.stft = STFT() self.model = nn.DataParallel(LASSNet(device)).to(device) checkpoint = torch.load(self.model_file) self.model.load_state_dict(checkpoint['model']) self.model.eval() def inference(self, inputs): #key = ['ref_audio', 'text'] from sound_extraction.utils.wav_io import load_wav, save_wav val = inputs.split(",") audio_path = val[0] # audio_path, text text = val[1] waveform = load_wav(audio_path) waveform = torch.tensor(waveform).transpose(1,0) mixed_mag, mixed_phase = self.stft.transform(waveform) text_query = ['[CLS] ' + text] mixed_mag = mixed_mag.transpose(2,1).unsqueeze(0).to(self.device) est_mask = self.model(mixed_mag, text_query) est_mag = est_mask * mixed_mag est_mag = est_mag.squeeze(1) est_mag = est_mag.permute(0, 2, 1) est_wav = self.stft.inverse(est_mag.cpu().detach(), mixed_phase) est_wav = est_wav.squeeze(0).squeeze(0).numpy() #est_path = f'output/est{i}.wav' audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") print('audio_filename ', audio_filename) save_wav(est_wav, audio_filename) return audio_filename class Binaural: def __init__(self, device): from src.models import BinauralNetwork self.device = device self.model_file = 'mono2binaural/useful_ckpts/m2b/binaural_network.net' self.position_file = ['mono2binaural/useful_ckpts/m2b/tx_positions.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions2.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions3.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions4.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions5.txt'] self.net = BinauralNetwork(view_dim=7, warpnet_layers=4, warpnet_channels=64, ) self.net.load_from_file(self.model_file) self.sr = 48000 def inference(self, audio_path): mono, sr = librosa.load(path=audio_path, sr=self.sr, mono=True) mono = torch.from_numpy(mono) mono = mono.unsqueeze(0) import numpy as np import random rand_int = random.randint(0,4) view = np.loadtxt(self.position_file[rand_int]).transpose().astype(np.float32) view = torch.from_numpy(view) if not view.shape[-1] * 400 == mono.shape[-1]: mono = mono[:,:(mono.shape[-1]//400)*400] # if view.shape[1]*400 > mono.shape[1]: m_a = view.shape[1] - mono.shape[-1]//400 rand_st = random.randint(0,m_a) view = view[:,m_a:m_a+(mono.shape[-1]//400)] # # binauralize and save output self.net.eval().to(self.device) mono, view = mono.to(self.device), view.to(self.device) chunk_size = 48000 # forward in chunks of 1s rec_field = 1000 # add 1000 samples as "safe bet" since warping has undefined rec. field rec_field -= rec_field % 400 # make sure rec_field is a multiple of 400 to match audio and view frequencies chunks = [ { "mono": mono[:, max(0, i-rec_field):i+chunk_size], "view": view[:, max(0, i-rec_field)//400:(i+chunk_size)//400] } for i in range(0, mono.shape[-1], chunk_size) ] for i, chunk in enumerate(chunks): with torch.no_grad(): mono = chunk["mono"].unsqueeze(0) view = chunk["view"].unsqueeze(0) binaural = self.net(mono, view).squeeze(0) if i > 0: binaural = binaural[:, -(mono.shape[-1]-rec_field):] chunk["binaural"] = binaural binaural = torch.cat([chunk["binaural"] for chunk in chunks], dim=-1) binaural = torch.clamp(binaural, min=-1, max=1).cpu() #binaural = chunked_forwarding(net, mono, view) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") import torchaudio torchaudio.save(audio_filename, binaural, sr) #soundfile.write(audio_filename, binaural, samplerate = 48000) print(f"Processed Binaural.run, audio_filename: {audio_filename}") return audio_filename class TargetSoundDetection: def __init__(self, device): from target_sound_detection.src import models as tsd_models from target_sound_detection.src.models import event_labels self.device = device self.MEL_ARGS = { 'n_mels': 64, 'n_fft': 2048, 'hop_length': int(22050 * 20 / 1000), 'win_length': int(22050 * 40 / 1000) } self.EPS = np.spacing(1) self.clip_model, _ = clip.load("ViT-B/32", device=self.device) self.event_labels = event_labels self.id_to_event = {i : label for i, label in enumerate(self.event_labels)} config = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_config.pth', map_location='cpu') config_parameters = dict(config) config_parameters['tao'] = 0.6 if 'thres' not in config_parameters.keys(): config_parameters['thres'] = 0.5 if 'time_resolution' not in config_parameters.keys(): config_parameters['time_resolution'] = 125 model_parameters = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_model_7_loss=-0.0724.pt' , map_location=lambda storage, loc: storage) # load parameter self.model = getattr(tsd_models, config_parameters['model'])(config_parameters, inputdim=64, outputdim=2, time_resolution=config_parameters['time_resolution'], **config_parameters['model_args']) self.model.load_state_dict(model_parameters) self.model = self.model.to(self.device).eval() self.re_embeds = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/text_emb.pth') self.ref_mel = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/ref_mel.pth') def extract_feature(self, fname): import soundfile as sf y, sr = sf.read(fname, dtype='float32') print('y ', y.shape) ti = y.shape[0]/sr if y.ndim > 1: y = y.mean(1) y = librosa.resample(y, sr, 22050) lms_feature = np.log(librosa.feature.melspectrogram(y, **self.MEL_ARGS) + self.EPS).T return lms_feature,ti def build_clip(self, text): text = clip.tokenize(text).to(self.device) # ["a diagram with dog", "a dog", "a cat"] text_features = self.clip_model.encode_text(text) return text_features def cal_similarity(self, target, retrievals): ans = [] #target =torch.from_numpy(target) for name in retrievals.keys(): tmp = retrievals[name] #tmp = torch.from_numpy(tmp) s = torch.cosine_similarity(target.squeeze(), tmp.squeeze(), dim=0) ans.append(s.item()) return ans.index(max(ans)) def inference(self, text, audio_path): from target_sound_detection.src.utils import median_filter, decode_with_timestamps target_emb = self.build_clip(text) # torch type idx = self.cal_similarity(target_emb, self.re_embeds) target_event = self.id_to_event[idx] embedding = self.ref_mel[target_event] embedding = torch.from_numpy(embedding) embedding = embedding.unsqueeze(0).to(self.device).float() #print('embedding ', embedding.shape) inputs,ti = self.extract_feature(audio_path) #print('ti ', ti) inputs = torch.from_numpy(inputs) inputs = inputs.unsqueeze(0).to(self.device).float() #print('inputs ', inputs.shape) decision, decision_up, logit = self.model(inputs, embedding) pred = decision_up.detach().cpu().numpy() pred = pred[:,:,0] frame_num = decision_up.shape[1] time_ratio = ti / frame_num filtered_pred = median_filter(pred, window_size=1, threshold=0.5) #print('filtered_pred ', filtered_pred) time_predictions = [] for index_k in range(filtered_pred.shape[0]): decoded_pred = [] decoded_pred_ = decode_with_timestamps(target_event, filtered_pred[index_k,:]) if len(decoded_pred_) == 0: # neg deal decoded_pred_.append((target_event, 0, 0)) decoded_pred.append(decoded_pred_) for num_batch in range(len(decoded_pred)): # when we test our model,the batch_size is 1 cur_pred = pred[num_batch] # Save each frame output, for later visualization label_prediction = decoded_pred[num_batch] # frame predict # print(label_prediction) for event_label, onset, offset in label_prediction: time_predictions.append({ 'onset': onset*time_ratio, 'offset': offset*time_ratio,}) ans = '' for i,item in enumerate(time_predictions): ans = ans + 'segment' + str(i+1) + ' start_time: ' + str(item['onset']) + ' end_time: ' + str(item['offset']) + '\t' #print(ans) return ans # class Speech_Enh_SS_SC: # """Speech Enhancement or Separation in single-channel # Example usage: # enh_model = Speech_Enh_SS("cuda") # enh_wav = enh_model.inference("./test_chime4_audio_M05_440C0213_PED_REAL.wav") # """ # def __init__(self, device="cuda", model_name="lichenda/chime4_fasnet_dprnn_tac"): # self.model_name = model_name # self.device = device # print("Initializing ESPnet Enh to %s" % device) # self._initialize_model() # def _initialize_model(self): # from espnet_model_zoo.downloader import ModelDownloader # from espnet2.bin.enh_inference import SeparateSpeech # d = ModelDownloader() # cfg = d.download_and_unpack(self.model_name) # self.separate_speech = SeparateSpeech( # train_config=cfg["train_config"], # model_file=cfg["model_file"], # # for segment-wise process on long speech # segment_size=2.4, # hop_size=0.8, # normalize_segment_scale=False, # show_progressbar=True, # ref_channel=None, # normalize_output_wav=True, # device=self.device, # ) # def inference(self, speech_path, ref_channel=0): # speech, sr = soundfile.read(speech_path) # speech = speech[:, ref_channel] # assert speech.dim() == 1 # enh_speech = self.separate_speech(speech[None, ], fs=sr) # if len(enh_speech) == 1: # return enh_speech[0] # return enh_speech # class Speech_Enh_SS_MC: # """Speech Enhancement or Separation in multi-channel""" # def __init__(self, device="cuda", model_name=None, ref_channel=4): # self.model_name = model_name # self.ref_channel = ref_channel # self.device = device # print("Initializing ESPnet Enh to %s" % device) # self._initialize_model() # def _initialize_model(self): # from espnet_model_zoo.downloader import ModelDownloader # from espnet2.bin.enh_inference import SeparateSpeech # d = ModelDownloader() # cfg = d.download_and_unpack(self.model_name) # self.separate_speech = SeparateSpeech( # train_config=cfg["train_config"], # model_file=cfg["model_file"], # # for segment-wise process on long speech # segment_size=2.4, # hop_size=0.8, # normalize_segment_scale=False, # show_progressbar=True, # ref_channel=self.ref_channel, # normalize_output_wav=True, # device=self.device, # ) # def inference(self, speech_path): # speech, sr = soundfile.read(speech_path) # speech = speech.T # enh_speech = self.separate_speech(speech[None, ...], fs=sr) # if len(enh_speech) == 1: # return enh_speech[0] # return enh_speech class Speech_Enh_SS_SC: """Speech Enhancement or Separation in single-channel Example usage: enh_model = Speech_Enh_SS("cuda") enh_wav = enh_model.inference("./test_chime4_audio_M05_440C0213_PED_REAL.wav") """ def __init__(self, device="cuda", model_name="espnet/Wangyou_Zhang_chime4_enh_train_enh_conv_tasnet_raw"): self.model_name = model_name self.device = device print("Initializing ESPnet Enh to %s" % device) self._initialize_model() def _initialize_model(self): from espnet_model_zoo.downloader import ModelDownloader from espnet2.bin.enh_inference import SeparateSpeech d = ModelDownloader() cfg = d.download_and_unpack(self.model_name) self.separate_speech = SeparateSpeech( train_config=cfg["train_config"], model_file=cfg["model_file"], # for segment-wise process on long speech segment_size=2.4, hop_size=0.8, normalize_segment_scale=False, show_progressbar=True, ref_channel=None, normalize_output_wav=True, device=self.device, ) def inference(self, speech_path, ref_channel=0): speech, sr = soundfile.read(speech_path) speech = speech[:, ref_channel] # speech = torch.from_numpy(speech) # assert speech.dim() == 1 enh_speech = self.separate_speech(speech[None, ...], fs=sr) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") # if len(enh_speech) == 1: soundfile.write(audio_filename, enh_speech[0].squeeze(), samplerate=sr) # return enh_speech[0] # return enh_speech # else: # print("############") # audio_filename_1 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") # soundfile.write(audio_filename_1, enh_speech[0].squeeze(), samplerate=sr) # audio_filename_2 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") # soundfile.write(audio_filename_2, enh_speech[1].squeeze(), samplerate=sr) # audio_filename = merge_audio(audio_filename_1, audio_filename_2) return audio_filename class Speech_SS: def __init__(self, device="cuda", model_name="lichenda/wsj0_2mix_skim_noncausal"): self.model_name = model_name self.device = device print("Initializing ESPnet SS to %s" % device) self._initialize_model() def _initialize_model(self): from espnet_model_zoo.downloader import ModelDownloader from espnet2.bin.enh_inference import SeparateSpeech d = ModelDownloader() cfg = d.download_and_unpack(self.model_name) self.separate_speech = SeparateSpeech( train_config=cfg["train_config"], model_file=cfg["model_file"], # for segment-wise process on long speech segment_size=2.4, hop_size=0.8, normalize_segment_scale=False, show_progressbar=True, ref_channel=None, normalize_output_wav=True, device=self.device, ) def inference(self, speech_path): speech, sr = soundfile.read(speech_path) enh_speech = self.separate_speech(speech[None, ...], fs=sr) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") if len(enh_speech) == 1: soundfile.write(audio_filename, enh_speech[0], samplerate=sr) else: # print("############") audio_filename_1 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename_1, enh_speech[0].squeeze(), samplerate=sr) audio_filename_2 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename_2, enh_speech[1].squeeze(), samplerate=sr) audio_filename = merge_audio(audio_filename_1, audio_filename_2) return audio_filename class ConversationBot: def __init__(self): print("Initializing AudioGPT") self.llm = OpenAI(temperature=0) self.t2i = T2I(device="cuda:1") self.i2t = ImageCaptioning(device="cuda:0") self.t2a = T2A(device="cuda:0") self.tts = TTS(device="cpu") self.t2s = T2S(device="cpu") self.i2a = I2A(device="cuda:0") self.a2t = A2T(device="cpu") self.asr = ASR(device="cuda:0") self.SE_SS_SC = Speech_Enh_SS_SC(device="cuda:0") # self.SE_SS_MC = Speech_Enh_SS_MC(device="cuda:0") self.SS = Speech_SS(device="cuda:0") self.inpaint = Inpaint(device="cuda:0") self.tts_ood = TTS_OOD(device="cpu") self.geneface = GeneFace(device="cuda:0") self.detection = SoundDetection(device="cpu") self.binaural = Binaural(device="cuda:0") self.extraction = SoundExtraction(device="cuda:0") self.TSD = TargetSoundDetection(device="cuda:0") self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output') def init_tools(self, interaction_type): if interaction_type == 'text': self.tools = [ Tool(name="Generate Image From User Input Text", func=self.t2i.inference, description="useful for when you want to generate an image from a user input text and it saved it to a file. like: generate an image of an object or something, or generate an image that includes some objects. " "The input to this tool should be a string, representing the text used to generate image. "), Tool(name="Get Photo Description", func=self.i2t.inference, description="useful for when you want to know what is inside the photo. receives image_path as input. " "The input to this tool should be a string, representing the image_path. "), Tool(name="Generate Audio From User Input Text", func=self.t2a.inference, description="useful for when you want to generate an audio from a user input text and it saved it to a file." "The input to this tool should be a string, representing the text used to generate audio."), Tool( name="Style Transfer", func= self.tts_ood.inference, description="useful for when you want to generate speech samples with styles (e.g., timbre, emotion, and prosody) derived from a reference custom voice." "Like: Generate a speech with style transferred from this voice. The text is xxx., or speak using the voice of this audio. The text is xxx." "The input to this tool should be a comma seperated string of two, representing reference audio path and input text."), Tool(name="Generate Singing Voice From User Input Text, Note and Duration Sequence", func= self.t2s.inference, description="useful for when you want to generate a piece of singing voice (Optional: from User Input Text, Note and Duration Sequence) and save it to a file." "If Like: Generate a piece of singing voice, the input to this tool should be \"\" since there is no User Input Text, Note and Duration Sequence ." "If Like: Generate a piece of singing voice. Text: xxx, Note: xxx, Duration: xxx. " "Or Like: Generate a piece of singing voice. Text is xxx, note is xxx, duration is xxx." "The input to this tool should be a comma seperated string of three, representing text, note and duration sequence since User Input Text, Note and Duration Sequence are all provided."), Tool(name="Synthesize Speech Given the User Input Text", func=self.tts.inference, description="useful for when you want to convert a user input text into speech audio it saved it to a file." "The input to this tool should be a string, representing the text used to be converted to speech."), # Tool(name="Speech Enhancement Or Separation In Single-Channel", func=self.SE_SS_SC.inference, # description="useful for when you want to enhance the quality of the speech signal by reducing background noise (single-channel), " # "or separate each speech from the speech mixture (single-channel), receives audio_path as input." # "The input to this tool should be a string, representing the audio_path."), Tool(name="Speech Enhancement In Single-Channel", func=self.SE_SS_SC.inference, description="useful for when you want to enhance the quality of the speech signal by reducing background noise (single-channel), receives audio_path as input." "The input to this tool should be a string, representing the audio_path."), Tool(name="Speech Separation In Single-Channel", func=self.SS.inference, description="useful for when you want to separate each speech from the speech mixture, receives audio_path as input." "The input to this tool should be a string, representing the audio_path."), # Tool(name="Speech Enhancement In Multi-Channel", func=self.SE_SS_MC.inference, # description="useful for when you want to enhance the quality of the speech signal by reducing background noise (multi-channel), receives audio_path as input." # "The input to this tool should be a string, representing the audio_path."), Tool(name="Generate Audio From The Image", func=self.i2a.inference, description="useful for when you want to generate an audio based on an image." "The input to this tool should be a string, representing the image_path. "), Tool(name="Generate Text From The Audio", func=self.a2t.inference, description="useful for when you want to describe an audio in text, receives audio_path as input." "The input to this tool should be a string, representing the audio_path."), Tool(name="Audio Inpainting", func=self.inpaint.show_mel_fn, description="useful for when you want to inpaint a mel spectrum of an audio and predict this audio, this tool will generate a mel spectrum and you can inpaint it, receives audio_path as input, " "The input to this tool should be a string, representing the audio_path."), Tool(name="Transcribe Speech", func=self.asr.inference, description="useful for when you want to know the text corresponding to a human speech, receives audio_path as input." "The input to this tool should be a string, representing the audio_path."), Tool(name="Generate a talking human portrait video given a input Audio", func=self.geneface.inference, description="useful for when you want to generate a talking human portrait video given a input audio." "The input to this tool should be a string, representing the audio_path."), Tool(name="Detect The Sound Event From The Audio", func=self.detection.inference, description="useful for when you want to know what event in the audio and the sound event start or end time, this tool will generate an image of all predict events, receives audio_path as input. " "The input to this tool should be a string, representing the audio_path. "), Tool(name="Sythesize Binaural Audio From A Mono Audio Input", func=self.binaural.inference, description="useful for when you want to transfer your mono audio into binaural audio, receives audio_path as input. " "The input to this tool should be a string, representing the audio_path. "), Tool(name="Extract Sound Event From Mixture Audio Based On Language Description", func=self.extraction.inference, description="useful for when you extract target sound from a mixture audio, you can describe the target sound by text, receives audio_path and text as input. " "The input to this tool should be a comma seperated string of two, representing mixture audio path and input text."), Tool(name="Target Sound Detection", func=self.TSD.inference, description="useful for when you want to know when the target sound event in the audio happens. You can use language descriptions to instruct the model. receives text description and audio_path as input. " "The input to this tool should be a comma seperated string of two, representing audio path and the text description. ")] self.agent = initialize_agent( self.tools, self.llm, agent="conversational-react-description", verbose=True, memory=self.memory, return_intermediate_steps=True, agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, ) return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) else: self.tools = [ Tool(name="Generate Audio From User Input Text", func=self.t2a.inference, description="useful for when you want to generate an audio from a user input text and it saved it to a file." "The input to this tool should be a string, representing the text used to generate audio."), Tool( name="Style Transfer", func= self.tts_ood.inference, description="useful for when you want to generate speech samples with styles (e.g., timbre, emotion, and prosody) derived from a reference custom voice." "Like: Generate a speech with style transferred from this voice. The text is xxx., or speak using the voice of this audio. The text is xxx." "The input to this tool should be a comma seperated string of two, representing reference audio path and input text."), Tool(name="Generate Singing Voice From User Input Text, Note and Duration Sequence", func= self.t2s.inference, description="useful for when you want to generate a piece of singing voice (Optional: from User Input Text, Note and Duration Sequence) and save it to a file." "If Like: Generate a piece of singing voice, the input to this tool should be \"\" since there is no User Input Text, Note and Duration Sequence ." "If Like: Generate a piece of singing voice. Text: xxx, Note: xxx, Duration: xxx. " "Or Like: Generate a piece of singing voice. Text is xxx, note is xxx, duration is xxx." "The input to this tool should be a comma seperated string of three, representing text, note and duration sequence since User Input Text, Note and Duration Sequence are all provided."), Tool(name="Synthesize Speech Given the User Input Text", func=self.tts.inference, description="useful for when you want to convert a user input text into speech audio it saved it to a file." "The input to this tool should be a string, representing the text used to be converted to speech."), Tool(name="Generate Text From The Audio", func=self.a2t.inference, description="useful for when you want to describe an audio in text, receives audio_path as input." "The input to this tool should be a string, representing the audio_path."), Tool(name="Generate a talking human portrait video given a input Audio", func=self.geneface.inference, description="useful for when you want to generate a talking human portrait video given a input audio." "The input to this tool should be a string, representing the audio_path."), Tool(name="Generate Binaural Audio From A Mono Audio Input", func=self.binaural.inference, description="useful for when you want to transfer your mono audio into binaural audio, receives audio_path as input. " "The input to this tool should be a string, representing the audio_path. "), Tool(name="Extract Sound Event From Mixture Audio Based On Language Description", func=self.extraction.inference, description="useful for when you extract target sound from a mixture audio, you can describe the target sound by text, receives audio_path and text as input. " "The input to this tool should be a comma seperated string of two, representing mixture audio path and input text."), Tool(name="Target Sound Detection", func=self.TSD.inference, description="useful for when you want to know when the target sound event in the audio happens. You can use language descriptions to instruct the model. receives text description and audio_path as input. " "The input to this tool should be a comma seperated string of two, representing audio path and the text description. ")] self.agent = initialize_agent( self.tools, self.llm, agent="conversational-react-description", verbose=True, memory=self.memory, return_intermediate_steps=True, agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, ) return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) def run_text(self, text, state): print("===============Running run_text =============") print("Inputs:", text, state) print("======>Previous memory:\n %s" % self.agent.memory) self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500) res = self.agent({"input": text}) if res['intermediate_steps'] == []: print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) else: tool = res['intermediate_steps'][0][0].tool if tool == "Generate Image From User Input Text" or tool == "Generate Text From The Audio" or tool == "Target Sound Detection": print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) elif tool == "Transcribe Speech": response = res['output'] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) elif tool == "Detect The Sound Event From The Audio": image_filename = res['intermediate_steps'][0][1] response = res['output'] + f"![](/file={image_filename})*{image_filename}*" state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) elif tool == "Audio Inpainting": audio_filename = res['intermediate_steps'][0][0].tool_input image_filename = res['intermediate_steps'][0][1] print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Video.update(visible=False), gr.Image.update(value=image_filename,visible=True), gr.Button.update(visible=True) elif tool == "Generate a talking human portrait video given a input Audio": video_filename = res['intermediate_steps'][0][1] print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(value=video_filename,visible=True), gr.Image.update(visible=False), gr.Button.update(visible=False) print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) audio_filename = res['intermediate_steps'][0][1] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) def run_image_or_audio(self, file, state, txt): file_type = file.name[-3:] if file_type == "wav": print("===============Running run_audio =============") print("Inputs:", file, state) print("======>Previous memory:\n %s" % self.agent.memory) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") # audio_load = whisper.load_audio(file.name) audio_load, sr = soundfile.read(file.name) soundfile.write(audio_filename, audio_load, samplerate = sr) description = self.a2t.inference(audio_filename) Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \ "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(audio_filename, description) AI_prompt = "Received. " self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt print("======>Current memory:\n %s" % self.agent.memory) #state = state + [(f"<audio src=audio_filename controls=controls></audio>*{audio_filename}*", AI_prompt)] state = state + [(f"*{audio_filename}*", AI_prompt)] print("Outputs:", state) return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Video.update(visible=False) else: print("===============Running run_image =============") print("Inputs:", file, state) print("======>Previous memory:\n %s" % self.agent.memory) image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") print("======>Auto Resize Image...") img = Image.open(file.name) width, height = img.size ratio = min(512 / width, 512 / height) width_new, height_new = (round(width * ratio), round(height * ratio)) img = img.resize((width_new, height_new)) img = img.convert('RGB') img.save(image_filename, "PNG") print(f"Resize image form {width}x{height} to {width_new}x{height_new}") description = self.i2t.inference(image_filename) Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \ "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description) AI_prompt = "Received. " self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt print("======>Current memory:\n %s" % self.agent.memory) state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False) def speech(self, speech_input, state): input_audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") text = self.asr.translate_english(speech_input) print("Inputs:", text, state) print("======>Previous memory:\n %s" % self.agent.memory) self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500) res = self.agent({"input": text}) if res['intermediate_steps'] == []: print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] output_audio_filename = self.tts.inference(response) state = state + [(text, response)] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) else: tool = res['intermediate_steps'][0][0].tool if tool == "Generate Image From User Input Text" or tool == "Generate Text From The Audio" or tool == "Target Sound Detection": print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) output_audio_filename = self.tts.inference(res['output']) state = state + [(text, response)] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) elif tool == "Transcribe Speech": print("======>Current memory:\n %s" % self.agent.memory) output_audio_filename = self.tts.inference(res['output']) response = res['output'] state = state + [(text, response)] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) elif tool == "Detect The Sound Event From The Audio": print("======>Current memory:\n %s" % self.agent.memory) image_filename = res['intermediate_steps'][0][1] output_audio_filename = self.tts.inference(res['output']) response = res['output'] + f"![](/file={image_filename})*{image_filename}*" state = state + [(text, response)] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) elif tool == "Generate a talking human portrait video given a input Audio": video_filename = res['intermediate_steps'][0][1] print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] output_audio_filename = self.tts.inference(res['output']) state = state + [(text, response)] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(value=video_filename,visible=True) print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) audio_filename = res['intermediate_steps'][0][1] Res = "The audio file has been generated and the audio is " output_audio_filename = merge_audio(self.tts.inference(Res), audio_filename) print(output_audio_filename) state = state + [(text, response)] response = res['output'] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) def inpainting(self, state, audio_filename, image_filename): print("===============Running inpainting =============") print("Inputs:", state) print("======>Previous memory:\n %s" % self.agent.memory) new_image_filename, new_audio_filename = self.inpaint.inference(audio_filename, image_filename) AI_prompt = "Here are the predict audio and the mel spectrum." + f"*{new_audio_filename}*" + f"![](/file={new_image_filename})*{new_image_filename}*" output_audio_filename = self.tts.inference(AI_prompt) self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt print("======>Current memory:\n %s" % self.agent.memory) state = state + [(f"Audio Inpainting", AI_prompt)] print("Outputs:", state) return state, state, gr.Image.update(visible=False), gr.Audio.update(value=new_audio_filename, visible=True), gr.Video.update(visible=False), gr.Button.update(visible=False) def clear_audio(self): return gr.Audio.update(value=None, visible=False) def clear_input_audio(self): return gr.Audio.update(value=None) def clear_image(self): return gr.Image.update(value=None, visible=False) def clear_video(self): return gr.Video.update(value=None, visible=False) def clear_button(self): return gr.Button.update(visible=False) if __name__ == '__main__': bot = ConversationBot() with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo: with gr.Row(): gr.Markdown("## AudioGPT") chatbot = gr.Chatbot(elem_id="chatbot", label="AudioGPT", visible=False) state = gr.State([]) with gr.Row() as select_raws: with gr.Column(scale=0.7): interaction_type = gr.Radio(choices=['text', 'speech'], value='text', label='Interaction Type') with gr.Column(scale=0.3, min_width=0): select = gr.Button("Select") with gr.Row(visible=False) as text_input_raws: with gr.Column(scale=0.7): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False) with gr.Column(scale=0.1, min_width=0): run = gr.Button("🏃‍♂️Run") with gr.Column(scale=0.1, min_width=0): clear_txt = gr.Button("🔄Clear️") with gr.Column(scale=0.1, min_width=0): btn = gr.UploadButton("🖼️Upload", file_types=["image","audio"]) with gr.Row(): outaudio = gr.Audio(visible=False) with gr.Row(): with gr.Column(scale=0.3, min_width=0): outvideo = gr.Video(visible=False) with gr.Row(): show_mel = gr.Image(type="filepath",tool='sketch',visible=False) with gr.Row(): run_button = gr.Button("Predict Masked Place",visible=False) with gr.Row(visible=False) as speech_input_raws: with gr.Column(scale=0.7): speech_input = gr.Audio(source="microphone", type="filepath", label="Input") with gr.Column(scale=0.15, min_width=0): submit_btn = gr.Button("🏃‍♂️Submit") with gr.Column(scale=0.15, min_width=0): clear_speech = gr.Button("🔄Clear️") with gr.Row(): speech_output = gr.Audio(label="Output",visible=False) select.click(bot.init_tools, [interaction_type], [chatbot, select_raws, text_input_raws, speech_input_raws]) txt.submit(bot.run_text, [txt, state], [chatbot, state, outaudio, outvideo, show_mel, run_button]) txt.submit(lambda: "", None, txt) run.click(bot.run_text, [txt, state], [chatbot, state, outaudio, outvideo, show_mel, run_button]) run.click(lambda: "", None, txt) btn.upload(bot.run_image_or_audio, [btn, state, txt], [chatbot, state, outaudio, outvideo]) run_button.click(bot.inpainting, [state, outaudio, show_mel], [chatbot, state, show_mel, outaudio, outvideo, run_button]) clear_txt.click(bot.memory.clear) clear_txt.click(lambda: [], None, chatbot) clear_txt.click(lambda: [], None, state) clear_txt.click(lambda:None, None, txt) clear_txt.click(bot.clear_button, None, run_button) clear_txt.click(bot.clear_image, None, show_mel) clear_txt.click(bot.clear_audio, None, outaudio) clear_txt.click(bot.clear_video, None, outvideo) submit_btn.click(bot.speech, [speech_input, state], [speech_input, speech_output, state, outvideo]) clear_speech.click(bot.clear_input_audio, None, speech_input) clear_speech.click(bot.clear_audio, None, speech_output) clear_speech.click(lambda: [], None, state) clear_speech.click(bot.clear_video, None, outvideo) demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
[ "\nHuman: provide a figure named PLACEHOLDER. The description is: PLACEHOLDER. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n", "Received. ", "Here are the predict audio and the mel spectrum.*PLACEHOLDER*![](/file=PLACEHOLDER)*PLACEHOLDER*", "\nHuman: provide an audio named PLACEHOLDER. The description is: PLACEHOLDER. This information helps you to understand this audio, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n" ]
2024-01-10
adjeielias90/Sentiment-Analysis-With-Bert-and-Hugging-Face
sentiment_analysis_and_classification_with_bert_and_hugging_face.py
# -*- coding: utf-8 -*- """Sentiment Analysis and Classification with BERT and Hugging Face.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1vvCSehFYukB8VcyllqLHlkTOocfwyUp8 # Sentiment Analysis with BERT > In this exercise tutorial, we will obtain and fine-tune BERT base model for sentiment analysis. We'll do the required text preprocessing such as adding special tokens, padding, and attention masks. Finally we will build a Sentiment Classifier using the amazing Transformers library provided by Hugging Face. We will: - Preprocess text data for BERT and build PyTorch Dataset (tokenization, attention masks, and padding) - Use Transfer Learning to build Sentiment Classifier using the Transformers library by Hugging Face - Evaluate the model on test data - Predict sentiment on raw text #### Source: Comprehensive tutorial on sentiment classification: https://youtu.be/8N-nM3QW7O0 BERT Paper: https://arxiv.org/abs/1810.04805 Attention is All you Need: https://arxiv.org/abs/1706.03762 Encoding words with context: https://arxiv.org/abs/1802.05365v2 """ !nvidia-smi """## What is BERT? BERT stands for Bidirectional Encoder Representations from Transformers. According to the BERT paper, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layersm much unlike recent language representation models, such as LSTM. As a result, the pre-trained BERT model we will download can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. Some important features of the BERT model are: - Bidirectional - to understand the text you're looking you'll have to look back (at the previous words) and forward (at the next words) - Transformers - The "Attention Is All You Need" paper presented the Transformer model. The Transformer reads entire sequences of tokens at once. This well preserves the context of our natural languages, allowing us to avoid the contextual loss problem. In a sense, the model is non-directional, while LSTMs read sequentially (left-to-right or right-to-left). The attention mechanism allows for learning contextual relations between words. - (Pre-trained) contextualized word embeddings - The ELMO paper introduced a way to encode words based on their meaning/context. Nails has multiple meanings - fingernails and metal nails. BERT was trained by masking 15% of the tokens with the goal to guess them. An additional objective was to predict the next sentence. BERT our of the box if very capable at asked Language Modeling (Where we let the model guess striked out words in our input) and Next Sentence Prediction (where BERT predicts the next item in our sentence based on an input). BERT is simply a pre-trained stack of Transformer Encoders. There exists two versions of BERT, - one with 12 encoders (BERT base) and 24 encoders (BERT Large). ### Is This Thing Useful in Practice? The best part is that you can do Transfer Learning (thanks to the ideas from OpenAI Transformer) with BERT for many NLP tasks - Classification, Question Answering, Entity Recognition, etc. You can train with small amounts of data and achieve great performance! ## Setup We'll need the Transformers library by Hugging Face, so we'll go ahead and download it: """ !pip install -q -U watermark !pip install -qq transformers # Commented out IPython magic to ensure Python compatibility. # %reload_ext watermark # %watermark -v -p numpy,pandas,torch,transformers # Commented out IPython magic to ensure Python compatibility. #@title Setup & Config # We'll perfomr some quick setup, these will come in handy later when # we train and evaluate our model. # We will also be using the GPU mostly for our mdoeling, as recommended by the BERT paper. import transformers from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup import torch import numpy as np import pandas as pd import seaborn as sns from pylab import rcParams import matplotlib.pyplot as plt from matplotlib import rc from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report from collections import defaultdict from textwrap import wrap from torch import nn, optim from torch.utils.data import Dataset, DataLoader import torch.nn.functional as F # %matplotlib inline # %config InlineBackend.figure_format='retina' sns.set(style='whitegrid', palette='muted', font_scale=1.2) HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F00FF"] sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE)) rcParams['figure.figsize'] = 12, 8 RANDOM_SEED = 42 np.random.seed(RANDOM_SEED) torch.manual_seed(RANDOM_SEED) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device """## EDA We'll load the Google Play app reviews dataset, gathered from the tutorial: """ !gdown --id 1S6qMioqPJjyBLpLVz4gmRTnJHnjitnuV !gdown --id 1zdmewp7ayS4js4VtrJEHzAheSW-5NBZv df = pd.read_csv("reviews.csv") df.head() df.shape """We have about 16k examples. Let's check for missing values:""" df.info() """Great, no missing values in the score and review texts! Do we have class imbalance?""" sns.countplot(df.score) plt.xlabel('review score'); """Our dataset is initialy hugely imbalanced, but that's fine, We will convert the dataset into negative, neutral and positive sentiment, totaling 3 classes. """ def to_sentiment(rating): rating = int(rating) if rating <= 2: return 0 elif rating == 3: return 1 else: return 2 df['sentiment'] = df.score.apply(to_sentiment) class_names = ['negative', 'neutral', 'positive'] ax = sns.countplot(df.sentiment) plt.xlabel('review sentiment') ax.set_xticklabels(class_names); """The balance is mostly restored after our custom scoring. Next, we need to pre-process our data so pytorch can handle it. ## Data Preprocessing Since Machine Learning models don't work with raw text, We need to convert all the text to numbers. BERT requires even more attention, pun intended. We need to effectively: - Add special tokens to separate sentences and do classification - Pass sequences of constant length (introduce padding to fill up empty spaces) - Create array of 0s (pad token) and 1s (real token) called *attention mask* The Transformers library provides a wide variety of Transformer models including BERT. It works with TensorFlow and PyTorch, for the purpose of our exercise we will be using pytorch. It also includes prebuilt tokenizers that will do the heavy lifting for us. """ # We will use the case-sensitive model since more context may be attributed to cased words or sentences. PRE_TRAINED_MODEL_NAME = 'bert-base-cased' """We will use the case-sensitive model since more context may be attributed to cased words or sentences. The cased version simply works better. Intuitively, that makes sense, since "HEY!" might convey more sentiment than "hey". Let's load a pre-trained Bert Tokenizer next """ tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME) """We'll use this text to understand the tokenization process:""" sample_txt = 'Machine Learning is not as hard as previously thought. Things have obviously gotten easier over the years!' """We run some basic operations can convert the text to tokens and tokens to unique integers (ids):""" tokens = tokenizer.tokenize(sample_txt) token_ids = tokenizer.convert_tokens_to_ids(tokens) print(f' Sentence: {sample_txt}') print(f' Tokens: {tokens}') print(f'Token IDs: {token_ids}') """### Special Tokens `[SEP]` - marker for ending of a sentence """ tokenizer.sep_token, tokenizer.sep_token_id """`[CLS]` - we must add this token to the start of each sentence, so BERT knows we're doing classification""" tokenizer.cls_token, tokenizer.cls_token_id """There is also a special token for padding:""" tokenizer.pad_token, tokenizer.pad_token_id """BERT understands tokens that were in the training set. Everything else can be encoded using the `[UNK]` (unknown) token:""" tokenizer.unk_token, tokenizer.unk_token_id """All of that work can be done using the [`encode_plus()`](https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.PreTrainedTokenizer.encode_plus) method:""" # Our method converts our input natural text into a form that pytorch will understand, # In this case, a tensor. encoding = tokenizer.encode_plus( sample_txt, max_length=32, add_special_tokens=True, # Add '[CLS]' and '[SEP]' return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', # Return PyTorch tensors ) # A look at what is contained in our encoding. encoding.keys() """The token ids are now stored in a Tensor and padded to a length of 32:""" print(len(encoding['input_ids'][0])) encoding['input_ids'][0] """The attention mask has the same length:""" print(len(encoding['attention_mask'][0])) encoding['attention_mask'] """We can inverse the tokenization to have a look at the special tokens:""" tokenizer.convert_ids_to_tokens(encoding['input_ids'][0]) """### Choosing Sequence Length BERT works with fixed-length sequences. We'll use a simple strategy to choose the max length. Let's store the token length of each review: """ token_lens = [] for txt in df.content: tokens = tokenizer.encode(txt, max_length=512) token_lens.append(len(tokens)) """and plot the distribution:""" # We realize that most of our sentences have a token length below 170 sns.distplot(token_lens) plt.xlim([0, 256]); plt.xlabel('Token count'); """Most of the reviews seem to contain less than 128 tokens, but we'll be on the safe side and choose a maximum length of 160.""" # We will therefore set our maximum token length to 160 MAX_LEN = 160 """We have all building blocks required to create a PyTorch dataset. Let's do it:""" class GPReviewDataset(Dataset): def __init__(self, reviews, targets, tokenizer, max_len): self.reviews = reviews self.targets = targets self.tokenizer = tokenizer self.max_len = max_len def __len__(self): return len(self.reviews) def __getitem__(self, item): review = str(self.reviews[item]) target = self.targets[item] encoding = self.tokenizer.encode_plus( review, add_special_tokens=True, max_length=self.max_len, return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) return { 'review_text': review, 'input_ids': encoding['input_ids'].flatten(), 'attention_mask': encoding['attention_mask'].flatten(), 'targets': torch.tensor(target, dtype=torch.long) } """The tokenizer does most of the heavy lifting for us. We also return the review texts, so it'll be easier to evaluate the predictions from our model. From there we split our data into test, train and validation sets.""" df_train, df_test = train_test_split(df, test_size=0.1, random_state=RANDOM_SEED) df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=RANDOM_SEED) df_train.shape, df_val.shape, df_test.shape """We also need to create a couple of data loaders. Here's a helper function to do it. Our data loader will take our data set, divide them into batches and tokenize them. It will return a format that will be easier for us to handle.""" def create_data_loader(df, tokenizer, max_len, batch_size): ds = GPReviewDataset( reviews=df.content.to_numpy(), targets=df.sentiment.to_numpy(), tokenizer=tokenizer, max_len=max_len ) return DataLoader( ds, batch_size=batch_size, num_workers=2 ) BATCH_SIZE = 16 train_data_loader = create_data_loader(df_train, tokenizer, MAX_LEN, BATCH_SIZE) val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE) test_data_loader = create_data_loader(df_test, tokenizer, MAX_LEN, BATCH_SIZE) """Let's have a look at an example batch from our training data loader:""" data = next(iter(train_data_loader)) data.keys() print(data['input_ids'].shape) print(data['attention_mask'].shape) print(data['targets'].shape) """## Sentiment Classification with BERT and Hugging Face There are a lot of helpers that make using BERT easy with the Transformers library. Depending on the task you might want to use BertForSequenceClassification or BertForQuestionAnswering. For our use case we'll use the basic BERT model and build our sentiment classifier on top of it using transfer learning. """ bert_model = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME) """And try to use it on the encoding of our sample text:""" last_hidden_state, pooled_output = bert_model( input_ids=encoding['input_ids'], attention_mask=encoding['attention_mask'], return_dict = False # this is needed to get a tensor as result, instead of a dict of str ) """The `last_hidden_state` is a sequence of hidden states of the last layer of the model. Obtaining the `pooled_output` is done by applying the BertPooler on `last_hidden_state`:""" last_hidden_state.shape """We have the hidden state for each of our 32 tokens (the length of our example sequence). But why 768? This is the number of hidden units in the feedforward-networks. We can verify that by checking the config:""" bert_model.config.hidden_size """ You can think of the `pooled_output` as a summary of the content, according to BERT. Albeit, you might try and do better. Let's look at the shape of the output:""" pooled_output.shape """ We will then create a classifier that uses the BERT model:""" class SentimentClassifier(nn.Module): def __init__(self, n_classes): super(SentimentClassifier, self).__init__() self.bert = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME, return_dict=False) self.drop = nn.Dropout(p=0.3) self.out = nn.Linear(self.bert.config.hidden_size, n_classes) def forward(self, input_ids, attention_mask): _, pooled_output = self.bert( input_ids=input_ids, attention_mask=attention_mask ) output = self.drop(pooled_output) return self.out(output) """Our classifier delegates most of the heavy lifting to the BertModel. We use a dropout layer for some regularization and a fully-connected layer for our output. Note that we're returning the raw output of the last layer since that is required for the cross-entropy loss function in PyTorch to work. We create an instance and delegate it to the GPU """ model = SentimentClassifier(len(class_names)) model = model.to(device) """We'll move the example batch of our training data to the GPU:""" input_ids = data['input_ids'].to(device) attention_mask = data['attention_mask'].to(device) print(input_ids.shape) # batch size x seq length print(attention_mask.shape) # batch size x seq length """To get the predicted probabilities from our trained model, we'll apply the softmax function to the outputs:""" # Apply softmax to our output. F.softmax(model(input_ids, attention_mask), dim=1) """### Training To reproduce the training procedure from the BERT paper, we'll use the AdamW optimizer provided by Hugging Face. It corrects weight decay, so it's similar to the original paper. We will then use 4 epochs are recommended by the paper.We'll also use a linear scheduler with no warmup steps to train our model. """ EPOCHS = 4 optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False) total_steps = len(train_data_loader) * EPOCHS scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=0, num_training_steps=total_steps ) loss_fn = nn.CrossEntropyLoss().to(device) """How do we come up with all hyperparameters? The BERT authors have some recommendations for fine-tuning: - Batch size: 16, 32 - Learning rate (Adam): 5e-5, 3e-5, 2e-5 - Number of epochs: 2, 3, 4 For the purpose of our exercise, we will stick with the recommendation. Note that increasing the batch size reduces the training time significantly, but gives you lower accuracy. We will then have a helper function for training our model for one epoch. """ def train_epoch( model, data_loader, loss_fn, optimizer, device, scheduler, n_examples ): model = model.train() losses = [] correct_predictions = 0 for d in data_loader: input_ids = d["input_ids"].to(device) attention_mask = d["attention_mask"].to(device) targets = d["targets"].to(device) outputs = model( input_ids=input_ids, attention_mask=attention_mask ) _, preds = torch.max(outputs, dim=1) loss = loss_fn(outputs, targets) correct_predictions += torch.sum(preds == targets) losses.append(loss.item()) loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() scheduler.step() optimizer.zero_grad() return correct_predictions.double() / n_examples, np.mean(losses) """Training the model has some interesting paramters. The scheduler gets called every time a batch is fed to the model. We're avoiding exploding gradients by clipping the gradients of the model by clipping the gradient when neccesary. We will also have another helper that will help us evaluate our model based on our data loader. """ def eval_model(model, data_loader, loss_fn, device, n_examples): model = model.eval() losses = [] correct_predictions = 0 with torch.no_grad(): for d in data_loader: input_ids = d["input_ids"].to(device) attention_mask = d["attention_mask"].to(device) targets = d["targets"].to(device) outputs = model( input_ids=input_ids, attention_mask=attention_mask ) _, preds = torch.max(outputs, dim=1) loss = loss_fn(outputs, targets) correct_predictions += torch.sum(preds == targets) losses.append(loss.item()) return correct_predictions.double() / n_examples, np.mean(losses) """Using those two, we can then write our training loop. We'll also store the training history:""" # Commented out IPython magic to ensure Python compatibility. # # We'll keep track of the time. # # This will probably take a while. # %%time # # history = defaultdict(list) # best_accuracy = 0 # # for epoch in range(EPOCHS): # # print(f'Epoch {epoch + 1}/{EPOCHS}') # print('-' * 10) # # train_acc, train_loss = train_epoch( # model, # train_data_loader, # loss_fn, # optimizer, # device, # scheduler, # len(df_train) # ) # # print(f'Train loss {train_loss} accuracy {train_acc}') # # val_acc, val_loss = eval_model( # model, # val_data_loader, # loss_fn, # device, # len(df_val) # ) # # print(f'Val loss {val_loss} accuracy {val_acc}') # print() # # history['train_acc'].append(train_acc) # history['train_loss'].append(train_loss) # history['val_acc'].append(val_acc) # history['val_loss'].append(val_loss) # # # We will save the best state of our model as a binary file # if val_acc > best_accuracy: # torch.save(model.state_dict(), 'best_model_state.bin') # best_accuracy = val_acc """After training, we will store the state of the best model, indicated by the highest validation accuracy. We can retrieve this later and perform our prediction and classification instead of going through the whole training process again. ### Evaluating Our Model It took a while to train our model. More epochs will definitely be better, if we spend more time training our model. We can look at the training vs validation accuracy: """ plt.plot(history['train_acc'], label='train accuracy') plt.plot(history['val_acc'], label='validation accuracy') plt.title('Training history') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend() plt.ylim([0, 1]); """We are guessing the training accuracy starts to approach 100% after 10 epochs or so. We could try to fine-tune the parameters a bit more, but this will be good enough for us.""" model = SentimentClassifier(len(class_names)) model.load_state_dict(torch.load('./best_model_state.bin')) model = model.to(device) """## Evaluation So how good is our model on predicting sentiment? Let's start by calculating the accuracy on the test data: """ test_acc, _ = eval_model( model, test_data_loader, loss_fn, device, len(df_test) ) test_acc.item() """The accuracy is about 2% higher on the test set. Our model seems to generalize well. We'll define a helper function to get the predictions from our model. """ def get_predictions(model, data_loader): model = model.eval() review_texts = [] predictions = [] prediction_probs = [] real_values = [] with torch.no_grad(): for d in data_loader: texts = d["review_text"] input_ids = d["input_ids"].to(device) attention_mask = d["attention_mask"].to(device) targets = d["targets"].to(device) outputs = model( input_ids=input_ids, attention_mask=attention_mask ) _, preds = torch.max(outputs, dim=1) probs = F.softmax(outputs, dim=1) review_texts.extend(texts) predictions.extend(preds) prediction_probs.extend(probs) real_values.extend(targets) predictions = torch.stack(predictions).cpu() prediction_probs = torch.stack(prediction_probs).cpu() real_values = torch.stack(real_values).cpu() return review_texts, predictions, prediction_probs, real_values """This is similar to the evaluation function, except that we're storing the text of the reviews and the predicted probabilities (by applying the softmax on the model outputs):""" y_review_texts, y_pred, y_pred_probs, y_test = get_predictions( model, test_data_loader ) """Let's have a look at the classification report""" print(classification_report(y_test, y_pred, target_names=class_names)) """Looks like it is really hard to classify neutral (3 stars) reviews. And I can tell you from experience, looking at many reviews, those are hard to classify. We'll continue with the confusion matrix: """ def show_confusion_matrix(confusion_matrix): hmap = sns.heatmap(confusion_matrix, annot=True, fmt="d", cmap="Blues") hmap.yaxis.set_ticklabels(hmap.yaxis.get_ticklabels(), rotation=0, ha='right') hmap.xaxis.set_ticklabels(hmap.xaxis.get_ticklabels(), rotation=30, ha='right') plt.ylabel('True sentiment') plt.xlabel('Predicted sentiment'); cm = confusion_matrix(y_test, y_pred) df_cm = pd.DataFrame(cm, index=class_names, columns=class_names) show_confusion_matrix(df_cm) """This confirms that our model is having difficulty classifying neutral reviews. It mistakes those for negative and positive at a roughly equal frequency. That's a good overview of the performance of our model. But let's have a look at an example from our test data. """ idx = 6 review_text = y_review_texts[idx] true_sentiment = y_test[idx] pred_df = pd.DataFrame({ 'class_names': class_names, 'values': y_pred_probs[idx] }) print("\n".join(wrap(review_text))) print() print(f'True sentiment: {class_names[true_sentiment]}') """Now we can look at the confidence of each sentiment of our model:""" sns.barplot(x='values', y='class_names', data=pred_df, orient='h') plt.ylabel('sentiment') plt.xlabel('probability') plt.xlim([0, 1]); """### Predicting on Raw Text Let's use our model to predict the sentiment of some raw text: """ review_text = "I couldn't figure this out. Worst app ever!" """We have to use the tokenizer to encode the text:""" encoded_review = tokenizer.encode_plus( review_text, max_length=MAX_LEN, add_special_tokens=True, return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) """Let's get the predictions from our model:""" input_ids = encoded_review['input_ids'].to(device) attention_mask = encoded_review['attention_mask'].to(device) output = model(input_ids, attention_mask) _, prediction = torch.max(output, dim=1) print(f'Review text: {review_text}') print(f'Sentiment : {class_names[prediction]}') """## Conclusion In this exercise, we used BERT for sentiment analysis. We built a custom classifier using the Hugging Face library and trained it on our app reviews dataset, and validated our model with the validation set. We achieved quite a high level of accuracy, with our model generalizing well. Our attention mask helped us protect the context of our embeddings, overall resulting in a much accurate understanding of what we saying by our model. In conclusion, we did a lot less work than if we had to implement this from scratch. ## References - [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) - [L11 Language Models - Alec Radford (OpenAI)](https://www.youtube.com/watch?v=BnpB3GrpsfM) - [The Illustrated BERT, ELMo, and co.](https://jalammar.github.io/illustrated-bert/) - [BERT Fine-Tuning Tutorial with PyTorch](https://mccormickml.com/2019/07/22/BERT-fine-tuning/) - [How to Fine-Tune BERT for Text Classification?](https://arxiv.org/pdf/1905.05583.pdf) - [Huggingface Transformers](https://huggingface.co/transformers/) - [BERT Explained: State of the art language model for NLP](https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270) - [Read the `Getting Things Done with Pytorch`](https://github.com/curiousily/Getting-Things-Done-with-Pytorch) """
[]
2024-01-10
rjvgupta/selfactualize-ai-agent
agent~lambda~agent-handler~fsi_agent.py
from langchain.agents.tools import Tool from langchain.agents.conversational.base import ConversationalAgent from langchain.agents import AgentExecutor from tools import tools from datetime import datetime PREFIX = "\n\nHuman: You are a Financial Services AI chatbot (Assistant) for a company called Octank Financial. Also, you can answer general questions about anything. You quickly respond to questions from a user with an answer and the sources you used to find your answer in the format: \ [Source 1: Source Title 1 - Source Link 1], \ [Source 2: Source Title 2 - Source Link 2], \ [Source n: Source Title n - Source Link n]. Provide two newline characters between your answer and the sources. By the way, the date is " + datetime.now().strftime("%m/%d/%Y, %H:%M:%S") + ".\n\nAssistant:" FORMAT_INSTRUCTIONS = "\n\nHuman: \n\nAssistant:" class FSIAgent(): def __init__(self,llm, memory) -> None: self.prefix = PREFIX self.ai_prefix = "Assistant" self.human_prefix = "Human" self.llm = llm self.memory = memory self.format_instructions = FORMAT_INSTRUCTIONS self.agent = self.create_agent() def create_agent(self): fsi_agent = ConversationalAgent.from_llm_and_tools( llm = self.llm, tools = tools, prefix = self.prefix, ai_prefix = self.ai_prefix, human_prefix = self.human_prefix, format_instructions = self.format_instructions, return_intermediate_steps = True, return_source_documents = True ) agent_executor = AgentExecutor.from_agent_and_tools(agent=fsi_agent, tools=tools, verbose=True, memory=self.memory, return_source_documents=True, return_intermediate_steps=True) # , handle_parsing_errors=True return agent_executor def run(self, input): print("Running FSI Agent with input: " + str(input)) try: response = self.agent(input) except ValueError as e: response = str(e) if not response.startswith("An output parsing error occurred"): raise e response = response.removeprefix("An output parsing error occurred. In order to pass this error back to the agent and have it try again, pass `handle_parsing_errors=True` to the AgentExecutor. This is the error: Could not parse LLM output: `").removesuffix("`") return response
[]
2024-01-10
whwhwana/alldata
mlops~modelscope~modelscope~models~cv~image_probing_model~backbone.py
# The implementation is adopted from OpenAI-CLIP, # made pubicly available under the MIT License at https://github.com/openai/CLIP import math import sys from collections import OrderedDict from functools import reduce from operator import mul import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from PIL import Image from torchvision import models from .utils import convert_weights, load_pretrained class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed # after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, # and the subsequent convolution has stride 1 self.downsample = nn.Sequential( OrderedDict([('-1', nn.AvgPool2d(stride)), ('0', nn.Conv2d( inplanes, planes * self.expansion, 1, stride=1, bias=False)), ('1', nn.BatchNorm2d(planes * self.expansion))])) def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter( torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) x = x + self.positional_embedding[:, None, :].to(x.dtype) x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat( [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False) return x[0] class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential( OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)), ('gelu', QuickGELU()), ('c_proj', nn.Linear(d_model * 4, d_model))])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to( dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn( x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor, idx): features = {} x_norm = self.ln_1(x) features['layer_{}_pre_attn'.format(idx)] = x_norm.permute(1, 0, 2) attn = self.attention(x_norm) features['layer_{}_attn'.format(idx)] = attn.permute(1, 0, 2) x = x + attn mlp = self.mlp(self.ln_2(x)) features['layer_{}_mlp'.format(idx)] = mlp.permute(1, 0, 2) x = x + mlp return x, features class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.ModuleList() for i in range(layers): block = ResidualAttentionBlock(width, heads, attn_mask) self.resblocks.append(block) def forward(self, x: torch.Tensor): features = {} for idx, block in enumerate(self.resblocks): x, block_feats = block(x, idx) features.update(block_feats) return x, features class VisualTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() print(input_resolution, patch_size, width, layers, heads, output_dim) self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d( in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width**-0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn( (input_resolution // patch_size)**2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor, return_all=True): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] zeros = torch.zeros( x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device) # shape = [*, grid ** 2 + 1, width] x = torch.cat([self.class_embedding.to(x.dtype) + zeros, x], dim=1) x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x, features = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if return_all: features['pre_logits'] = x return features if self.proj is not None: x = x @ self.proj return x class CLIPNet(nn.Module): def __init__(self, arch_name, pretrained, **kwargs): super(CLIPNet, self).__init__() if arch_name == 'CLIP_ViTB32': self.clip = VisualTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512) elif arch_name in ('CLIP_ViTB16', 'CLIP_ViTB16_FP16'): self.clip = VisualTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512) elif arch_name in ('CLIP_ViTL14', 'CLIP_ViTL14_FP16'): self.clip = VisualTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768) else: raise KeyError(f'Unsupported arch_name for CLIP, {arch_name}') def forward(self, input_data): output = self.clip(input_data) return output def CLIP(arch_name='CLIP_RN50', use_pretrain=False, load_from='', state_dict=None, **kwargs): model = CLIPNet(arch_name=arch_name, pretrained=None, **kwargs) if use_pretrain: if arch_name.endswith('FP16'): convert_weights(model.clip) load_pretrained(model.clip, state_dict, load_from) return model class ProbingModel(torch.nn.Module): def __init__(self, feat_size, num_classes): super(ProbingModel, self).__init__() self.linear = torch.nn.Linear(feat_size, num_classes) def forward(self, x): return self.linear(x)
[]
2024-01-10
tooniez/ml-search
haystack~nodes~retriever~_embedding_encoder.py
import json import logging from abc import abstractmethod from pathlib import Path from typing import Optional, TYPE_CHECKING, Any, Callable, Dict, List, Union import numpy as np import requests import torch from sentence_transformers import InputExample from torch.utils.data import DataLoader from torch.utils.data.sampler import SequentialSampler from tqdm.auto import tqdm from transformers import AutoModel, AutoTokenizer from haystack.document_stores.base import BaseDocumentStore from haystack.errors import OpenAIError, OpenAIRateLimitError, CohereError from haystack.modeling.data_handler.dataloader import NamedDataLoader from haystack.modeling.data_handler.dataset import convert_features_to_dataset, flatten_rename from haystack.modeling.infer import Inferencer from haystack.nodes.retriever._losses import _TRAINING_LOSSES from haystack.schema import Document from haystack.utils.reflection import retry_with_exponential_backoff if TYPE_CHECKING: from haystack.nodes.retriever import EmbeddingRetriever logger = logging.getLogger(__name__) class _BaseEmbeddingEncoder: @abstractmethod def embed_queries(self, queries: List[str]) -> np.ndarray: """ Create embeddings for a list of queries. :param queries: List of queries to embed. :return: Embeddings, one per input query, shape: (queries, embedding_dim) """ pass @abstractmethod def embed_documents(self, docs: List[Document]) -> np.ndarray: """ Create embeddings for a list of documents. :param docs: List of documents to embed. :return: Embeddings, one per input document, shape: (documents, embedding_dim) """ pass def train( self, training_data: List[Dict[str, Any]], learning_rate: float = 2e-5, n_epochs: int = 1, num_warmup_steps: Optional[int] = None, batch_size: int = 16, ): """ Trains or adapts the underlying embedding model. Each training data example is a dictionary with the following keys: * question: The question string. * pos_doc: Positive document string (the document containing the answer). * neg_doc: Negative document string (the document that doesn't contain the answer). * score: The score margin the answer must fall within. :param training_data: The training data in a dictionary format. Required. :type training_data: List[Dict[str, Any]] :param learning_rate: The speed at which the model learns. Required. We recommend that you leave the default `2e-5` value. :type learning_rate: float :param n_epochs: The number of epochs (complete passes of the training data through the algorithm) that you want the model to go through. Required. :type n_epochs: int :param num_warmup_steps: The number of warmup steps for the model. Warmup steps are epochs when the learning rate is very low. You can use them at the beginning of the training to prevent early overfitting of your model. Required. :type num_warmup_steps: int :param batch_size: The batch size to use for the training. Optional. The default values is 16. :type batch_size: int (optional) """ pass def save(self, save_dir: Union[Path, str]): """ Save the model to the directory you specify. :param save_dir: The directory where the model is saved. Required. :type save_dir: Union[Path, str] """ pass def _check_docstore_similarity_function(self, document_store: BaseDocumentStore, model_name: str): """ Check that document_store uses a similarity function compatible with the embedding model """ if "sentence-transformers" in model_name.lower(): model_similarity = None if "-cos-" in model_name.lower(): model_similarity = "cosine" elif "-dot-" in model_name.lower(): model_similarity = "dot_product" if model_similarity is not None and document_store.similarity != model_similarity: logger.warning( f"You seem to be using {model_name} model with the {document_store.similarity} function instead of the recommended {model_similarity}. " f"This can be set when initializing the DocumentStore" ) elif "dpr" in model_name.lower() and document_store.similarity != "dot_product": logger.warning( f"You seem to be using a DPR model with the {document_store.similarity} function. " f"We recommend using dot_product instead. " f"This can be set when initializing the DocumentStore" ) class _DefaultEmbeddingEncoder(_BaseEmbeddingEncoder): def __init__(self, retriever: "EmbeddingRetriever"): self.embedding_model = Inferencer.load( retriever.embedding_model, revision=retriever.model_version, task_type="embeddings", extraction_strategy=retriever.pooling_strategy, extraction_layer=retriever.emb_extraction_layer, gpu=retriever.use_gpu, batch_size=retriever.batch_size, max_seq_len=retriever.max_seq_len, num_processes=0, use_auth_token=retriever.use_auth_token, ) if retriever.document_store: self._check_docstore_similarity_function( document_store=retriever.document_store, model_name=retriever.embedding_model ) def embed(self, texts: Union[List[List[str]], List[str], str]) -> np.ndarray: # TODO: FARM's `sample_to_features_text` need to fix following warning - # tokenization_utils.py:460: FutureWarning: `is_pretokenized` is deprecated and will be removed in a future version, use `is_split_into_words` instead. emb = self.embedding_model.inference_from_dicts(dicts=[{"text": t} for t in texts]) emb = np.stack([r["vec"] for r in emb]) return emb def embed_queries(self, queries: List[str]) -> np.ndarray: """ Create embeddings for a list of queries. :param queries: List of queries to embed. :return: Embeddings, one per input query, shape: (queries, embedding_dim) """ return self.embed(queries) def embed_documents(self, docs: List[Document]) -> np.ndarray: """ Create embeddings for a list of documents. :param docs: List of documents to embed. :return: Embeddings, one per input document, shape: (documents, embedding_dim) """ passages = [d.content for d in docs] return self.embed(passages) def train( self, training_data: List[Dict[str, Any]], learning_rate: float = 2e-5, n_epochs: int = 1, num_warmup_steps: Optional[int] = None, batch_size: int = 16, ): raise NotImplementedError( "You can't train this retriever. You can only use the `train` method with sentence-transformers EmbeddingRetrievers." ) def save(self, save_dir: Union[Path, str]): raise NotImplementedError( "You can't save your record as `save` only works for sentence-transformers EmbeddingRetrievers." ) class _SentenceTransformersEmbeddingEncoder(_BaseEmbeddingEncoder): def __init__(self, retriever: "EmbeddingRetriever"): # pretrained embedding models coming from: https://github.com/UKPLab/sentence-transformers#pretrained-models # e.g. 'roberta-base-nli-stsb-mean-tokens' try: from sentence_transformers import SentenceTransformer except (ImportError, ModuleNotFoundError) as ie: from haystack.utils.import_utils import _optional_component_not_installed _optional_component_not_installed(__name__, "sentence", ie) self.embedding_model = SentenceTransformer( retriever.embedding_model, device=str(retriever.devices[0]), use_auth_token=retriever.use_auth_token ) self.batch_size = retriever.batch_size self.embedding_model.max_seq_length = retriever.max_seq_len self.show_progress_bar = retriever.progress_bar if retriever.document_store: self._check_docstore_similarity_function( document_store=retriever.document_store, model_name=retriever.embedding_model ) def embed(self, texts: Union[List[str], str]) -> np.ndarray: # texts can be a list of strings # get back list of numpy embedding vectors emb = self.embedding_model.encode( texts, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_numpy=True ) return emb def embed_queries(self, queries: List[str]) -> np.ndarray: """ Create embeddings for a list of queries. :param queries: List of queries to embed. :return: Embeddings, one per input query, shape: (queries, embedding_dim) """ return self.embed(queries) def embed_documents(self, docs: List[Document]) -> np.ndarray: """ Create embeddings for a list of documents. :param docs: List of documents to embed. :return: Embeddings, one per input document, shape: (documents, embedding_dim) """ passages = [d.content for d in docs] return self.embed(passages) def train( self, training_data: List[Dict[str, Any]], learning_rate: float = 2e-5, n_epochs: int = 1, num_warmup_steps: Optional[int] = None, batch_size: int = 16, train_loss: str = "mnrl", ): if train_loss not in _TRAINING_LOSSES: raise ValueError(f"Unrecognized train_loss {train_loss}. Should be one of: {_TRAINING_LOSSES.keys()}") st_loss = _TRAINING_LOSSES[train_loss] train_examples = [] for train_i in training_data: missing_attrs = st_loss.required_attrs.difference(set(train_i.keys())) if len(missing_attrs) > 0: raise ValueError( f"Some training examples don't contain the fields {missing_attrs} which are necessary when using the '{train_loss}' loss." ) texts = [train_i["question"], train_i["pos_doc"]] if "neg_doc" in train_i: texts.append(train_i["neg_doc"]) if "score" in train_i: train_examples.append(InputExample(texts=texts, label=train_i["score"])) else: train_examples.append(InputExample(texts=texts)) logger.info("Training/adapting %s with %s examples", self.embedding_model, len(train_examples)) train_dataloader = DataLoader(train_examples, batch_size=batch_size, drop_last=True, shuffle=True) train_loss = st_loss.loss(self.embedding_model) # Tune the model self.embedding_model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=n_epochs, optimizer_params={"lr": learning_rate}, warmup_steps=int(len(train_dataloader) * 0.1) if num_warmup_steps is None else num_warmup_steps, ) def save(self, save_dir: Union[Path, str]): self.embedding_model.save(path=str(save_dir)) class _RetribertEmbeddingEncoder(_BaseEmbeddingEncoder): def __init__(self, retriever: "EmbeddingRetriever"): self.progress_bar = retriever.progress_bar self.batch_size = retriever.batch_size self.max_length = retriever.max_seq_len self.embedding_tokenizer = AutoTokenizer.from_pretrained( retriever.embedding_model, use_auth_token=retriever.use_auth_token ) self.embedding_model = AutoModel.from_pretrained( retriever.embedding_model, use_auth_token=retriever.use_auth_token ).to(str(retriever.devices[0])) def embed_queries(self, queries: List[str]) -> np.ndarray: """ Create embeddings for a list of queries. :param queries: List of queries to embed. :return: Embeddings, one per input query, shape: (queries, embedding_dim) """ query_text = [{"text": q} for q in queries] dataloader = self._create_dataloader(query_text) embeddings: List[np.ndarray] = [] disable_tqdm = True if len(dataloader) == 1 else not self.progress_bar for i, batch in enumerate(tqdm(dataloader, desc=f"Creating Embeddings", unit=" Batches", disable=disable_tqdm)): batch = {key: batch[key].to(self.embedding_model.device) for key in batch} with torch.no_grad(): q_reps = ( self.embedding_model.embed_questions( input_ids=batch["input_ids"], attention_mask=batch["padding_mask"] ) .cpu() .numpy() ) embeddings.append(q_reps) return np.concatenate(embeddings) def embed_documents(self, docs: List[Document]) -> np.ndarray: """ Create embeddings for a list of documents. :param docs: List of documents to embed. :return: Embeddings, one per input document, shape: (documents, embedding_dim) """ doc_text = [{"text": d.content} for d in docs] dataloader = self._create_dataloader(doc_text) embeddings: List[np.ndarray] = [] disable_tqdm = True if len(dataloader) == 1 else not self.progress_bar for i, batch in enumerate(tqdm(dataloader, desc=f"Creating Embeddings", unit=" Batches", disable=disable_tqdm)): batch = {key: batch[key].to(self.embedding_model.device) for key in batch} with torch.no_grad(): q_reps = ( self.embedding_model.embed_answers( input_ids=batch["input_ids"], attention_mask=batch["padding_mask"] ) .cpu() .numpy() ) embeddings.append(q_reps) return np.concatenate(embeddings) def _create_dataloader(self, text_to_encode: List[dict]) -> NamedDataLoader: dataset, tensor_names = self.dataset_from_dicts(text_to_encode) dataloader = NamedDataLoader( dataset=dataset, sampler=SequentialSampler(dataset), batch_size=self.batch_size, tensor_names=tensor_names ) return dataloader def dataset_from_dicts(self, dicts: List[dict]): texts = [x["text"] for x in dicts] tokenized_batch = self.embedding_tokenizer( texts, return_token_type_ids=True, return_attention_mask=True, max_length=self.max_length, truncation=True, padding=True, ) features_flat = flatten_rename( tokenized_batch, ["input_ids", "token_type_ids", "attention_mask"], ["input_ids", "segment_ids", "padding_mask"], ) dataset, tensornames = convert_features_to_dataset(features=features_flat) return dataset, tensornames def train( self, training_data: List[Dict[str, Any]], learning_rate: float = 2e-5, n_epochs: int = 1, num_warmup_steps: Optional[int] = None, batch_size: int = 16, ): raise NotImplementedError( "You can't train this retriever. You can only use the `train` method with sentence-transformers EmbeddingRetrievers." ) def save(self, save_dir: Union[Path, str]): raise NotImplementedError( "You can't save your record as `save` only works for sentence-transformers EmbeddingRetrievers." ) class _OpenAIEmbeddingEncoder(_BaseEmbeddingEncoder): def __init__(self, retriever: "EmbeddingRetriever"): # See https://beta.openai.com/docs/guides/embeddings for more details # OpenAI has a max seq length of 2048 tokens and unknown max batch size self.max_seq_len = min(2048, retriever.max_seq_len) self.url = "https://api.openai.com/v1/embeddings" self.api_key = retriever.api_key self.batch_size = min(64, retriever.batch_size) self.progress_bar = retriever.progress_bar model_class: str = next( (m for m in ["ada", "babbage", "davinci", "curie"] if m in retriever.embedding_model), "babbage" ) self.query_model_encoder_engine = f"text-search-{model_class}-query-001" self.doc_model_encoder_engine = f"text-search-{model_class}-doc-001" self.tokenizer = AutoTokenizer.from_pretrained("gpt2") def _ensure_text_limit(self, text: str) -> str: """ Ensure that length of the text is within the maximum length of the model. OpenAI embedding models have a limit of 2048 tokens """ tokenized_payload = self.tokenizer(text) return self.tokenizer.decode(tokenized_payload["input_ids"][: self.max_seq_len]) @retry_with_exponential_backoff(backoff_in_seconds=10, max_retries=5) def embed(self, model: str, text: List[str]) -> np.ndarray: payload = {"model": model, "input": text} headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"} response = requests.request("POST", self.url, headers=headers, data=json.dumps(payload), timeout=30) res = json.loads(response.text) if response.status_code != 200: openai_error: OpenAIError if response.status_code == 429: openai_error = OpenAIRateLimitError(f"API rate limit exceeded: {response.text}") else: openai_error = OpenAIError( f"OpenAI returned an error.\n" f"Status code: {response.status_code}\n" f"Response body: {response.text}", status_code=response.status_code, ) raise openai_error unordered_embeddings = [(ans["index"], ans["embedding"]) for ans in res["data"]] ordered_embeddings = sorted(unordered_embeddings, key=lambda x: x[0]) generated_embeddings = [emb[1] for emb in ordered_embeddings] return np.array(generated_embeddings) def embed_batch(self, model: str, text: List[str]) -> np.ndarray: all_embeddings = [] for i in tqdm( range(0, len(text), self.batch_size), disable=not self.progress_bar, desc="Calculating embeddings" ): batch = text[i : i + self.batch_size] batch_limited = [self._ensure_text_limit(content) for content in batch] generated_embeddings = self.embed(model, batch_limited) all_embeddings.append(generated_embeddings) return np.concatenate(all_embeddings) def embed_queries(self, queries: List[str]) -> np.ndarray: return self.embed_batch(self.query_model_encoder_engine, queries) def embed_documents(self, docs: List[Document]) -> np.ndarray: return self.embed_batch(self.doc_model_encoder_engine, [d.content for d in docs]) def train( self, training_data: List[Dict[str, Any]], learning_rate: float = 2e-5, n_epochs: int = 1, num_warmup_steps: Optional[int] = None, batch_size: int = 16, ): raise NotImplementedError(f"Training is not implemented for {self.__class__}") def save(self, save_dir: Union[Path, str]): raise NotImplementedError(f"Saving is not implemented for {self.__class__}") class _CohereEmbeddingEncoder(_BaseEmbeddingEncoder): def __init__(self, retriever: "EmbeddingRetriever"): # See https://docs.cohere.ai/embed-reference/ for more details # Cohere has a max seq length of 4096 tokens and a max batch size of 16 self.max_seq_len = min(4096, retriever.max_seq_len) self.url = "https://api.cohere.ai/embed" self.api_key = retriever.api_key self.batch_size = min(16, retriever.batch_size) self.progress_bar = retriever.progress_bar self.model: str = next((m for m in ["small", "medium", "large"] if m in retriever.embedding_model), "large") self.tokenizer = AutoTokenizer.from_pretrained("gpt2") def _ensure_text_limit(self, text: str) -> str: """ Ensure that length of the text is within the maximum length of the model. Cohere embedding models have a limit of 4096 tokens """ tokenized_payload = self.tokenizer(text) return self.tokenizer.decode(tokenized_payload["input_ids"][: self.max_seq_len]) @retry_with_exponential_backoff(backoff_in_seconds=10, max_retries=5, errors=(CohereError,)) def embed(self, model: str, text: List[str]) -> np.ndarray: payload = {"model": model, "texts": text} headers = {"Authorization": f"BEARER {self.api_key}", "Content-Type": "application/json"} response = requests.request("POST", self.url, headers=headers, data=json.dumps(payload), timeout=30) res = json.loads(response.text) if response.status_code != 200: raise CohereError(response.text, status_code=response.status_code) generated_embeddings = [e for e in res["embeddings"]] return np.array(generated_embeddings) def embed_batch(self, text: List[str]) -> np.ndarray: all_embeddings = [] for i in tqdm( range(0, len(text), self.batch_size), disable=not self.progress_bar, desc="Calculating embeddings" ): batch = text[i : i + self.batch_size] batch_limited = [self._ensure_text_limit(content) for content in batch] generated_embeddings = self.embed(self.model, batch_limited) all_embeddings.append(generated_embeddings) return np.concatenate(all_embeddings) def embed_queries(self, queries: List[str]) -> np.ndarray: return self.embed_batch(queries) def embed_documents(self, docs: List[Document]) -> np.ndarray: return self.embed_batch([d.content for d in docs]) def train( self, training_data: List[Dict[str, Any]], learning_rate: float = 2e-5, n_epochs: int = 1, num_warmup_steps: Optional[int] = None, batch_size: int = 16, ): raise NotImplementedError(f"Training is not implemented for {self.__class__}") def save(self, save_dir: Union[Path, str]): raise NotImplementedError(f"Saving is not implemented for {self.__class__}") _EMBEDDING_ENCODERS: Dict[str, Callable] = { "farm": _DefaultEmbeddingEncoder, "transformers": _DefaultEmbeddingEncoder, "sentence_transformers": _SentenceTransformersEmbeddingEncoder, "retribert": _RetribertEmbeddingEncoder, "openai": _OpenAIEmbeddingEncoder, "cohere": _CohereEmbeddingEncoder, }
[]
2024-01-10
alxschwrz/dalle2_python
dalle2_python.py
import os import configparser import sys import webbrowser import urllib.request import openai class Dalle: def __init__(self, img_sz="512", n_images=2): self._api_keys_location = "./config" self._generated_image_location = "./output" self._stream = True self._img_sz = img_sz self._n_images = n_images self._image_urls = [] self._input_prompt = None self._response = None self.initialize_openai_api() def create_template_ini_file(self): """ If the ini file does not exist create it and add the organization_id and secret_key """ if not os.path.isfile(self._api_keys_location): with open(self._api_keys_location, 'w') as f: f.write('[openai]\n') f.write('organization_id=\n') f.write('secret_key=\n') print('OpenAI API config file created at {}'.format(self._api_keys_location)) print('Please edit it and add your organization ID and secret key') print('If you do not yet have an organization ID and secret key, you\n' 'need to register for OpenAI Codex: \n' 'https://openai.com/blog/openai-codex/') sys.exit(1) def initialize_openai_api(self): """ Initialize the OpenAI API """ # Check if file at API_KEYS_LOCATION exists self.create_template_ini_file() config = configparser.ConfigParser() config.read(self._api_keys_location) openai.organization_id = config['openai']['organization_id'].strip('"').strip("'") openai.api_key = config['openai']['secret_key'].strip('"').strip("'") del config def read_from_command_line(self): self._input_prompt = input("What image should dalle create: ") def generate_image_from_prompt(self): self._response = openai.Image.create( prompt=self._input_prompt, n=self._n_images, size=f"{self._img_sz}x{self._img_sz}", ) def get_urls_from_response(self): for i in range(self._n_images): self._image_urls.append(self._response['data'][i]['url']) def open_urls_in_browser(self, image_urls=None): if image_urls is None: image_urls = self._image_urls for url in image_urls: webbrowser.open(url) def save_urls_as_image(self): if not os.path.isdir(self._generated_image_location): os.mkdir(self._generated_image_location) for idx, image_url in enumerate(self._image_urls): file_name = f"{self._generated_image_location}/{self._input_prompt}_{idx}.png" urllib.request.urlretrieve(image_url, file_name) print(f"Generated image stored in: {file_name}") def generate_and_save_images(self): self.read_from_command_line() self.generate_image_from_prompt() self.get_urls_from_response() self.save_urls_as_image() commandLineDalle = Dalle() commandLineDalle.generate_and_save_images() commandLineDalle.open_urls_in_browser()
[]
2024-01-10
sarah-4-coder/Ai_prompt
FlaskWithData.py
from flask import Flask, request, send_file, jsonify import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import openai import tempfile import os from flask_cors import CORS app = Flask(__name__) CORS(app) upload_dir = os.path.join(app.root_path, 'uploads.csv') def plotter(data, plot_type, time_start, time_end, column_name): req_data = data[(data['Year'] >= time_start) & (data['Year'] <= time_end)] plt.figure(figsize=(8, 6)) if "point" in plot_type.lower(): sns.pointplot(x=req_data["Year"], y=req_data[column_name]) elif "bar" in plot_type.lower(): sns.barplot(x=req_data["Year"], y=req_data[column_name]) elif "pie" in plot_type.lower(): colors = sns.color_palette('pastel')[0:5] plt.pie(req_data[column_name], labels=req_data["Year"], colors=colors) plt.xlabel('Year') plt.ylabel(column_name) plt.title(f'{plot_type.capitalize()} of {column_name} ({time_start}-{time_end})') plt.xticks(rotation=90) plt.tight_layout() temp_dir = tempfile.gettempdir() temp_file = os.path.join(temp_dir, 'temp_figure.png') plt.savefig(temp_file) plt.close() return temp_file api_key = "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" openai.api_key = api_key def extract_categories(prompt_text): prompt = "Given the following statement, identify the categories for column_name, time_start, time_end, and plot_type:\n\n"\ "\"" + prompt_text + '"' response = openai.Completion.create( engine="text-davinci-003", prompt=prompt, max_tokens=50, temperature=0.6, stop=None ) categories = response.choices[0].text.strip().split('\n') column_name = categories[0][13:] column_name = column_name.replace(" ", "") time_start = int(categories[1][12:]) time_end = int(categories[2][10:]) plot_type = categories[3][11:] plot_type = plot_type.lower() plot_type = plot_type.replace(" ", "") if 'plot' not in plot_type: plot_type = plot_type + 'plot' return column_name, time_start, time_end, plot_type @app.route('/generate_plot', methods=['POST']) def generate_plot(): try: print(request.form) request_data = request.form prompt_text = request_data.get('prompt_text') file = request.files['file'] if file and file.filename.endswith('.csv'): file.save(upload_dir) else: return jsonify({'error': 'Invalid or missing CSV file'}) data = pd.read_csv('uploads.csv') column_name, time_start, time_end, plot_type = extract_categories(prompt_text) temp_file_path = plotter(data, plot_type, time_start, time_end, column_name) return send_file(temp_file_path, mimetype='image/png') except Exception as e: print(e) return jsonify({'error': str(e)}) if __name__ == '__main__': app.run(debug=True)
[ "Given the following statement, identify the categories for column_name, time_start, time_end, and plot_type:\n\n\"PLACEHOLDER\"", "prompt_text" ]
2024-01-10
sarah-4-coder/Ai_prompt
123.py
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import openai data = pd.read_csv("Ai_prompt\data.csv") def plotter(data, plot_type, time_start, time_end, column_name): req_data = data[(data['Year'] >= time_start) & (data['Year'] <= time_end)] if "point" in plot_type.lower(): sns.pointplot(x=req_data["Year"], y=req_data[column_name]) if "bar" in plot_type.lower(): sns.barplot(x=req_data["Year"], y=req_data[column_name]) if "pie" in plot_type.lower(): colors = sns.color_palette('pastel')[0:5] plt.pie(req_data["Year"], labels=req_data[column_name], colors=colors) plt.xlabel('Index') plt.ylabel('Values') plt.title(f'Bar Plot of {column_name}') plt.xticks(rotation=90) # Rotate x-axis labels for better readability plt.tight_layout() plt.savefig('1.png') plt.show() # Set your OpenAI API key api_key = "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" # Initialize the OpenAI API client openai.api_key = api_key # Define the prompt prompt = "Given the following statement, identify the categories for column_name, time_start, time_end, and plot_type:\n\n"\ "\"Prepare a bar plot for the column agriculture between the time period of 1985 and 1989 from the data.\"" # Call the OpenAI API to get the categories response = openai.Completion.create( engine="text-davinci-003", prompt=prompt, max_tokens=50, # Adjust as needed to capture the required information temperature=0.6, stop=None ) prompt1 = input("Enter prompt") prompt_fin = "Given the following statement, identify the categories for column_name, time_start, time_end, and plot_type:\n\n" \ "\"" + prompt1 + '"' # Call the OpenAI API to get the categories response = openai.Completion.create( engine="text-davinci-003", prompt=prompt_fin, max_tokens=50, # Adjust as needed to capture the required information temperature=0.6, stop=None ) categories = response.choices[0].text.strip().split('\n') column_name = categories[0][13:] column_name = column_name.replace(" ", "") time_start = int(categories[1][12:]) time_end = int(categories[2][10:]) plot_type = categories[3][11:] plot_type = plot_type.lower() plot_type = plot_type.replace(" ", "") if 'plot' not in plot_type: plot_type = plot_type + 'plot' plotter(data, plot_type, time_start, time_end, column_name)
[ "Given the following statement, identify the categories for column_name, time_start, time_end, and plot_type:\n\n\"PLACEHOLDER\"", "Enter prompt", "Given the following statement, identify the categories for column_name, time_start, time_end, and plot_type:\n\n\"Prepare a bar plot for the column agriculture between the time period of 1985 and 1989 from the data.\"" ]
2024-01-10
sarah-4-coder/Ai_prompt
Flassk.py
from flask import Flask, request, send_file, jsonify import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import openai import tempfile import os from flask_cors import CORS app = Flask(__name__) CORS(app) data = pd.read_csv("data.csv") def plotter(data, plot_type, time_start, time_end, column_name): req_data = data[(data['Year'] >= time_start) & (data['Year'] <= time_end)] plt.figure(figsize=(8, 6)) if "point" in plot_type.lower(): sns.pointplot(x=req_data["Year"], y=req_data[column_name]) elif "bar" in plot_type.lower(): sns.barplot(x=req_data["Year"], y=req_data[column_name]) elif "pie" in plot_type.lower(): colors = sns.color_palette('pastel')[0:5] plt.pie(req_data[column_name], labels=req_data["Year"], colors=colors) plt.xlabel('Year') plt.ylabel(column_name) plt.title(f'{plot_type.capitalize()} of {column_name} ({time_start}-{time_end})') plt.xticks(rotation=90) plt.tight_layout() temp_dir = tempfile.gettempdir() temp_file = os.path.join(temp_dir, 'temp_figure.png') plt.savefig(temp_file) plt.close() return temp_file api_key = "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" openai.api_key = api_key def extract_categories(prompt_text): prompt = "Given the following statement, identify the categories for column_name, time_start, time_end, and plot_type:\n\n"\ "\"" + prompt_text + '"' response = openai.Completion.create( engine="text-davinci-003", prompt=prompt, max_tokens=50, temperature=0.6, stop=None ) categories = response.choices[0].text.strip().split('\n') column_name = categories[0][13:] column_name = column_name.replace(" ", "") time_start = int(categories[1][12:]) time_end = int(categories[2][10:]) plot_type = categories[3][11:] plot_type = plot_type.lower() plot_type = plot_type.replace(" ", "") if 'plot' not in plot_type: plot_type = plot_type + 'plot' return column_name, time_start, time_end, plot_type @app.route('/generate_plot', methods=['POST']) def generate_plot(): try: request_data = request.form prompt_text = request_data.get('prompt_text') column_name, time_start, time_end, plot_type = extract_categories(prompt_text) temp_file_path = plotter(data, plot_type, time_start, time_end, column_name) return send_file(temp_file_path, mimetype='image/png') except Exception as e: return jsonify({'error': str(e)}) if __name__ == '__main__': app.run(debug=True)
[ "Given the following statement, identify the categories for column_name, time_start, time_end, and plot_type:\n\n\"PLACEHOLDER\"", "prompt_text" ]
2024-01-10
gurugithub/CXChat
datachad~backend~deeplake.py
from glob import glob from typing import List import deeplake from deeplake.client.client import DeepLakeBackendClient from deeplake.util.bugout_reporter import deeplake_reporter from langchain.schema import Document from langchain.vectorstores import DeepLake, VectorStore from datachad.backend.constants import DATA_PATH, DEFAULT_USER, FORCE_LOCAL_DEEPLAKE from datachad.backend.io import clean_string_for_storing from datachad.backend.loader import load_data_source, split_docs from datachad.backend.logging import logger from datachad.backend.models import MODES, get_embeddings from datachad.backend.utils import clean_string_for_storing SPLIT = "_" def list_deeplake_datasets( org_id: str = "", token: str = None, ) -> None: """List all available Deep Lake cloud datasets for a given user / orgnaization. Removed from deeplake in: https://github.com/activeloopai/deeplake/pull/2182/files """ deeplake_reporter.feature_report( feature_name="list", parameters={"org_id": org_id}, ) def get_datasets(self, workspace: str): LIST_DATASETS = "/api/datasets/{}" suffix_public = LIST_DATASETS.format("public") suffix_user = LIST_DATASETS.format("all") if workspace: res_datasets = self.get_workspace_datasets( workspace, suffix_public, suffix_user ) else: public_datasets = self.request( "GET", suffix_public, endpoint=self.endpoint(), ).json() user_datasets = self.request( "GET", suffix_user, endpoint=self.endpoint(), ).json() res_datasets = public_datasets + user_datasets return [ds["_id"] for ds in res_datasets] client = DeepLakeBackendClient(token=token) client.get_datasets = get_datasets datasets = client.get_datasets(client, workspace=org_id) return datasets def get_deeplake_dataset_path(dataset_name: str, options: dict, credentials: dict): # TODO add user id and dataset size as unique id if options["mode"] == MODES.LOCAL or FORCE_LOCAL_DEEPLAKE: dataset_path = str(DATA_PATH / dataset_name) else: dataset_path = f"hub://{credentials['activeloop_id']}/{dataset_name}" return dataset_path def delete_all_deeplake_datasets(credentials: dict): datasets = list_deeplake_datasets( credentials["activeloop_id"], credentials["activeloop_token"] ) for dataset in datasets: path = f"hub://{dataset}" logger.info(f"Deleting dataset: {path}") deeplake.delete(path, token=credentials["activeloop_token"], force=True) def get_existing_deeplake_vector_store_paths( options: str, credentials: dict ) -> list[str]: if options["mode"] == MODES.LOCAL or FORCE_LOCAL_DEEPLAKE: return glob(str(DATA_PATH / "*"), recursive=False) else: dataset_names = list_deeplake_datasets( credentials["activeloop_id"], credentials["activeloop_token"] ) dataset_pahs = [f"hub://{name}" for name in dataset_names] return dataset_pahs def get_deeplake_vector_store_paths_for_user( options: str, credentials: dict ) -> list[str]: all_paths = get_existing_deeplake_vector_store_paths(options, credentials) # TODO: replace DEFAULT_USER with user id once supported user_paths = [p for p in all_paths if p.split(SPLIT)[-1] == DEFAULT_USER] return user_paths def get_data_source_from_deeplake_dataset_path(dataset_path): return dataset_path.split(SPLIT)[-4].split("/")[-1] def get_deeplake_vector_store_path( data_source: str, options: dict, credentials: dict ) -> str: dataset_name = ( f"{clean_string_for_storing(data_source)}" f"{SPLIT}{options['chunk_size']}-{options['chunk_overlap_pct']}" f"{SPLIT}{options['model'].embedding}" # TODO: replace DEFAULT_USER with user id once supported f"{SPLIT}{DEFAULT_USER}" ) dataset_path = get_deeplake_dataset_path(dataset_name, options, credentials) return dataset_path def get_deeplake_docs_path(data_source: str, options: dict, credentials: dict) -> str: dataset_name = clean_string_for_storing(data_source) dataset_name += "-docs" dataset_path = get_deeplake_dataset_path(dataset_name, options, credentials) return dataset_path def load_docs_from_deeplake(docs_path: str, credentials: dict) -> List[Document]: ds = deeplake.load(docs_path, token=credentials["activeloop_token"]) metadatas = ds["metadata"].data()["value"] texts = ds["text"].data()["value"] docs = [ Document( page_content=text, metadata=metadata, ) for text, metadata in zip(texts, metadatas) ] return docs def store_docs_to_deeplake(docs: List[Document], docs_path: str, credentials: dict): ds = deeplake.empty(docs_path, token=credentials["activeloop_token"]) ds.create_tensor( "text", htype="text", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, chunk_compression="lz4", ) ds.create_tensor( "metadata", htype="json", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, chunk_compression="lz4", ) for doc in docs: ds.append( { "text": doc.page_content, "metadata": doc.metadata, } ) ds.commit() logger.info(f"Stored docs to: {docs_path}") def load_data_source_or_docs_from_deeplake( data_source: str, options: dict, credentials: dict ) -> List[Document]: if options["store_docs_extra"]: docs_path = get_deeplake_docs_path(data_source, options, credentials) if deeplake.exists(docs_path, token=credentials["activeloop_token"]): logger.info(f"Docs exist -> loading docs: {docs_path}") docs = load_docs_from_deeplake(docs_path, credentials) else: logger.info( f"Docs do not exist for data source -> loading data source: {data_source}" ) docs = load_data_source(data_source) store_docs_to_deeplake(docs, docs_path, credentials) logger.info(f"Docs {docs_path} loaded!") else: docs = load_data_source(data_source) return docs def get_deeplake_vector_store( data_source: str, vector_store_path: str, options: dict, credentials: dict ) -> VectorStore: # either load existing vector store or upload a new one to the hub embeddings = get_embeddings(options, credentials) if not vector_store_path: vector_store_path = get_deeplake_vector_store_path( data_source, options, credentials ) if deeplake.exists(vector_store_path, token=credentials["activeloop_token"]): logger.info(f"Vector Store '{vector_store_path}' exists -> loading") vector_store = DeepLake( dataset_path=vector_store_path, read_only=True, embedding_function=embeddings, token=credentials["activeloop_token"], ) else: logger.info(f"Vector Store '{vector_store_path}' does not exist -> uploading") docs = load_data_source_or_docs_from_deeplake(data_source, options, credentials) docs = split_docs(docs, options) vector_store = DeepLake.from_documents( docs, embeddings, dataset_path=vector_store_path, token=credentials["activeloop_token"], ) logger.info(f"Vector Store {vector_store_path} loaded!") return vector_store
[]
2024-01-10
gurugithub/CXChat
datachad~backend~loader.py
import os import shutil from pathlib import Path from typing import List from langchain.document_loaders import ( CSVLoader, EverNoteLoader, GitLoader, NotebookLoader, OnlinePDFLoader, PDFMinerLoader, PythonLoader, TextLoader, UnstructuredEPubLoader, UnstructuredFileLoader, UnstructuredHTMLLoader, UnstructuredMarkdownLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, UnstructuredWordDocumentLoader, WebBaseLoader, ) from langchain.document_loaders.base import BaseLoader from langchain.schema import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from tqdm import tqdm from datachad.backend.constants import DATA_PATH from datachad.backend.logging import logger from datachad.backend.models import get_tokenizer class AutoGitLoader: def __init__(self, data_source: str) -> None: self.data_source = data_source def load(self) -> List[Document]: # We need to try both common main branches # Thank you github for the "master" to "main" switch # we need to make sure the data path exists if not os.path.exists(DATA_PATH): os.makedirs(DATA_PATH) repo_name = self.data_source.split("/")[-1].split(".")[0] repo_path = str((DATA_PATH / repo_name).absolute()) clone_url = self.data_source if os.path.exists(repo_path): clone_url = None branches = ["main", "master"] for branch in branches: try: docs = GitLoader(repo_path, clone_url, branch).load() break except Exception as e: logger.error(f"Error loading git: {e}") if os.path.exists(repo_path): # cleanup repo afterwards shutil.rmtree(repo_path) try: return docs except: raise RuntimeError( "Error loading git. Make sure to use HTTPS GitHub repo links." ) FILE_LOADER_MAPPING = { ".csv": (CSVLoader, {"encoding": "utf-8"}), ".doc": (UnstructuredWordDocumentLoader, {}), ".docx": (UnstructuredWordDocumentLoader, {}), ".enex": (EverNoteLoader, {}), ".epub": (UnstructuredEPubLoader, {}), ".html": (UnstructuredHTMLLoader, {}), ".md": (UnstructuredMarkdownLoader, {}), ".odt": (UnstructuredODTLoader, {}), ".pdf": (PDFMinerLoader, {}), ".ppt": (UnstructuredPowerPointLoader, {}), ".pptx": (UnstructuredPowerPointLoader, {}), ".txt": (TextLoader, {"encoding": "utf8"}), ".ipynb": (NotebookLoader, {}), ".py": (PythonLoader, {}), # Add more mappings for other file extensions and loaders as needed } WEB_LOADER_MAPPING = { ".git": (AutoGitLoader, {}), ".pdf": (OnlinePDFLoader, {}), } def load_document( file_path: str, mapping: dict = FILE_LOADER_MAPPING, default_loader: BaseLoader = UnstructuredFileLoader, ) -> Document: # Choose loader from mapping, load default if no match found ext = "." + file_path.rsplit(".", 1)[-1] if ext in mapping: loader_class, loader_args = mapping[ext] loader = loader_class(file_path, **loader_args) else: loader = default_loader(file_path) return loader.load() def load_directory(path: str, silent_errors=True) -> List[Document]: # We don't load hidden files starting with "." all_files = list(Path(path).rglob("**/[!.]*")) results = [] with tqdm(total=len(all_files), desc="Loading documents", ncols=80) as pbar: for file in all_files: try: results.extend(load_document(str(file))) except Exception as e: if silent_errors: logger.error(f"failed to load {file}") else: raise e pbar.update() return results def load_data_source(data_source: str) -> List[Document]: # Ugly thing that decides how to load data # It aint much, but it's honest work is_web = data_source.startswith("http") is_dir = os.path.isdir(data_source) is_file = os.path.isfile(data_source) docs = None try: if is_dir: docs = load_directory(data_source) elif is_file: docs = load_document(data_source) elif is_web: docs = load_document(data_source, WEB_LOADER_MAPPING, WebBaseLoader) return docs except Exception as e: error_msg = f"Failed to load your data source '{data_source}'." logger.error(error_msg) e.args += (error_msg,) raise e def split_docs(docs: List[Document], options: dict) -> List[Document]: tokenizer = get_tokenizer(options) def length_function(text: str) -> int: # count chunks like the embeddings model tokenizer does return len(tokenizer.encode(text)) chunk_overlap = int(options["chunk_size"] * options["chunk_overlap_pct"] / 100) text_splitter = RecursiveCharacterTextSplitter( chunk_size=options["chunk_size"], chunk_overlap=chunk_overlap, length_function=length_function, separators=["\n\n", "\n", " ", ""], ) splitted_docs = text_splitter.split_documents(docs) logger.info(f"Loaded: {len(splitted_docs)} document chucks") return splitted_docs
[]
2024-01-10
gurugithub/CXChat
datachad~streamlit~helper.py
import os import deeplake import openai import streamlit as st from dotenv import load_dotenv from langchain.callbacks import OpenAICallbackHandler, get_openai_callback from datachad.backend.chain import get_qa_chain from datachad.backend.deeplake import ( get_data_source_from_deeplake_dataset_path, get_deeplake_vector_store_paths_for_user, ) from datachad.backend.io import delete_files, save_files from datachad.backend.logging import logger from datachad.backend.models import MODELS, MODES from datachad.streamlit.constants import ( ACTIVELOOP_HELP, AUTHENTICATION_HELP, CHUNK_OVERLAP_PCT, CHUNK_SIZE, DEFAULT_DATA_SOURCE, DISTANCE_METRIC, ENABLE_ADVANCED_OPTIONS, ENABLE_LOCAL_MODE, K_FETCH_K_RATIO, LOCAL_MODE_DISABLED_HELP, MAX_TOKENS, MAXIMAL_MARGINAL_RELEVANCE, MODE_HELP, MODEL_N_CTX, OPENAI_HELP, PAGE_ICON, PROJECT_URL, STORE_DOCS_EXTRA, TEMPERATURE, ) # loads environment variables load_dotenv() def initialize_session_state(): # Initialise all session state variables with defaults SESSION_DEFAULTS = { "past": [], "usage": {}, "chat_history": [], "generated": [], "auth_ok": False, "chain": None, "openai_api_key": None, "activeloop_token": None, "activeloop_id": None, "uploaded_files": None, "info_container": None, "data_source": DEFAULT_DATA_SOURCE, "mode": MODES.OPENAI, "model": MODELS.GPT35TURBO, "k_fetch_k_ratio": K_FETCH_K_RATIO, "chunk_size": CHUNK_SIZE, "chunk_overlap_pct": CHUNK_OVERLAP_PCT, "temperature": TEMPERATURE, "max_tokens": MAX_TOKENS, "model_n_ctx": MODEL_N_CTX, "distance_metric": DISTANCE_METRIC, "maximal_marginal_relevance": MAXIMAL_MARGINAL_RELEVANCE, "store_docs_extra": STORE_DOCS_EXTRA, "vector_store": None, "existing_vector_stores": [], } for k, v in SESSION_DEFAULTS.items(): if k not in st.session_state: st.session_state[k] = v def authentication_form() -> None: # widget for authentication input form st.title("Authentication", help=AUTHENTICATION_HELP) with st.form("authentication"): openai_api_key = st.text_input( f"{st.session_state['mode']} API Key", type="password", help=OPENAI_HELP, placeholder="This field is mandatory", ) activeloop_token = st.text_input( "ActiveLoop Token", type="password", help=ACTIVELOOP_HELP, placeholder="Optional, using ours if empty", ) activeloop_id = st.text_input( "ActiveLoop Organisation Name", type="password", help=ACTIVELOOP_HELP, placeholder="Optional, using ours if empty", ) submitted = st.form_submit_button("Submit") if submitted: authenticate(openai_api_key, activeloop_token, activeloop_id) def advanced_options_form() -> None: # Input Form that takes advanced options and rebuilds chain with them advanced_options = st.checkbox( "Advanced Options", help="Caution! This may break things!" ) if advanced_options: with st.form("advanced_options"): st.selectbox( "model", options=MODELS.for_mode(st.session_state["mode"]), help=f"Learn more about which models are supported [here]({PROJECT_URL})", key="model", ) col1, col2 = st.columns(2) col1.number_input( "temperature", min_value=0.0, max_value=1.0, value=TEMPERATURE, help="Controls the randomness of the language model output", key="temperature", ) col2.number_input( "max_tokens", min_value=1, max_value=30000, value=MAX_TOKENS, help=( "Limits the documents returned from " "database based on number of tokens" ), key="max_tokens", ) col1.number_input( "chunk_size", min_value=1, max_value=100000, value=CHUNK_SIZE, help=( "The size at which the text is divided into smaller chunks " "before being embedded.\n\nChanging this parameter makes re-embedding " "and re-uploading the data to the database necessary " ), key="chunk_size", ) col2.number_input( "chunk_overlap", min_value=0, max_value=50, value=CHUNK_OVERLAP_PCT, help="The percentage of overlap between splitted document chunks", key="chunk_overlap_pct", ) applied = st.form_submit_button("Apply") if applied: update_chain() def app_can_be_started(): # Only start App if authentication is OK or Local Mode return st.session_state["auth_ok"] or st.session_state["mode"] == MODES.LOCAL def update_model_on_mode_change(): # callback for mode selectbox # the default model must be updated for the mode st.session_state["model"] = MODELS.for_mode(st.session_state["mode"])[0] # Chain needs to be rebuild if app can be started if not st.session_state["chain"] is None and app_can_be_started(): update_chain() def authentication_and_options_side_bar(): # Sidebar with Authentication and Advanced Options with st.sidebar: mode = st.selectbox( "Mode", MODES.all(), key="mode", help=MODE_HELP, on_change=update_model_on_mode_change, ) if mode == MODES.LOCAL and not ENABLE_LOCAL_MODE: st.error(LOCAL_MODE_DISABLED_HELP, icon=PAGE_ICON) st.stop() if mode != MODES.LOCAL: authentication_form() st.info(f"Learn how it works [here]({PROJECT_URL})") if not app_can_be_started(): st.stop() # Advanced Options if ENABLE_ADVANCED_OPTIONS: advanced_options_form() def authenticate( openai_api_key: str, activeloop_token: str, activeloop_id: str ) -> None: # Validate all credentials are set and correct # Check for env variables to enable local dev and deployments with shared credentials openai_api_key = ( openai_api_key or os.environ.get("OPENAI_API_KEY") or st.secrets.get("OPENAI_API_KEY") ) activeloop_token = ( activeloop_token or os.environ.get("ACTIVELOOP_TOKEN") or st.secrets.get("ACTIVELOOP_TOKEN") ) activeloop_id = ( activeloop_id or os.environ.get("ACTIVELOOP_ID") or st.secrets.get("ACTIVELOOP_ID") ) if not (openai_api_key and activeloop_token and activeloop_id): st.session_state["auth_ok"] = False st.error("Credentials neither set nor stored", icon=PAGE_ICON) return try: # Try to access openai and deeplake with st.spinner("Authentifying..."): openai.api_key = openai_api_key openai.Model.list() deeplake.exists( f"hub://{activeloop_id}/DataChad-Authentication-Check", token=activeloop_token, ) except Exception as e: logger.error(f"Authentication failed with {e}") st.session_state["auth_ok"] = False st.error("Authentication failed", icon=PAGE_ICON) return # store credentials in the session state st.session_state["auth_ok"] = True st.session_state["openai_api_key"] = openai_api_key st.session_state["activeloop_token"] = activeloop_token st.session_state["activeloop_id"] = activeloop_id logger.info("Authentification successful!") def update_chain() -> None: # Build chain with parameters from session state and store it back # Also delete chat history to not confuse the bot with old context try: with st.session_state["info_container"], st.spinner("Building Chain..."): vector_store_path = None data_source = st.session_state["data_source"] if st.session_state["uploaded_files"] == st.session_state["data_source"]: # Save files uploaded by streamlit to disk and set their path as data source. # We need to repeat this at every chain update as long as data source is the uploaded file # as we need to delete the files after each chain build to make sure to not pollute the app # and to ensure data privacy by not storing user data data_source = save_files(st.session_state["uploaded_files"]) if st.session_state["vector_store"] == st.session_state["data_source"]: # Load an existing vector store if it has been choosen vector_store_path = st.session_state["vector_store"] data_source = get_data_source_from_deeplake_dataset_path( vector_store_path ) options = { "mode": st.session_state["mode"], "model": st.session_state["model"], "k_fetch_k_ratio": st.session_state["k_fetch_k_ratio"], "chunk_size": st.session_state["chunk_size"], "chunk_overlap_pct": st.session_state["chunk_overlap_pct"], "temperature": st.session_state["temperature"], "max_tokens": st.session_state["max_tokens"], "model_n_ctx": st.session_state["model_n_ctx"], "distance_metric": st.session_state["distance_metric"], "maximal_marginal_relevance": st.session_state[ "maximal_marginal_relevance" ], "store_docs_extra": st.session_state["store_docs_extra"], } credentials = { "openai_api_key": st.session_state["openai_api_key"], "activeloop_token": st.session_state["activeloop_token"], "activeloop_id": st.session_state["activeloop_id"], } st.session_state["chain"] = get_qa_chain( data_source=data_source, vector_store_path=vector_store_path, options=options, credentials=credentials, ) if st.session_state["uploaded_files"] == st.session_state["data_source"]: # remove uploaded files from disk delete_files(st.session_state["uploaded_files"]) # update list of existing vector stores st.session_state["existing_vector_stores"] = get_existing_vector_stores( options, credentials ) st.session_state["chat_history"] = [] print("data_source", data_source, type(data_source)) msg = f"Data source **{data_source}** is ready to go with model **{st.session_state['model']}**!" logger.info(msg) st.session_state["info_container"].info(msg, icon=PAGE_ICON) except Exception as e: msg = f"Failed to build chain for data source **{data_source}** with model **{st.session_state['model']}**: {e}" logger.error(msg) st.session_state["info_container"].error(msg, icon=PAGE_ICON) def update_usage(cb: OpenAICallbackHandler) -> None: # Accumulate API call usage via callbacks logger.info(f"Usage: {cb}") callback_properties = [ "total_tokens", "prompt_tokens", "completion_tokens", "total_cost", ] for prop in callback_properties: value = getattr(cb, prop, 0) st.session_state["usage"].setdefault(prop, 0) st.session_state["usage"][prop] += value def generate_response(prompt: str) -> str: # call the chain to generate responses and add them to the chat history with st.spinner("Generating response"), get_openai_callback() as cb: response = st.session_state["chain"]( {"question": prompt, "chat_history": st.session_state["chat_history"]} ) update_usage(cb) logger.info(f"Response: '{response}'") st.session_state["chat_history"].append((prompt, response["answer"])) return response["answer"] def get_existing_vector_stores(options: dict, credentials: dict) -> list[str]: return [None] + get_deeplake_vector_store_paths_for_user(options, credentials) def format_vector_stores(option: str) -> str: if option is not None: return get_data_source_from_deeplake_dataset_path(option) return option
[]
2024-01-10
gurugithub/CXChat
datachad~backend~models.py
from dataclasses import dataclass from typing import Any, List import streamlit as st import tiktoken from langchain.base_language import BaseLanguageModel from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.chat_models import ChatOpenAI from langchain.embeddings import HuggingFaceEmbeddings from langchain.embeddings.openai import Embeddings, OpenAIEmbeddings from langchain.llms import GPT4All from transformers import AutoTokenizer from datachad.backend.constants import GPT4ALL_BINARY, MODEL_PATH from datachad.backend.logging import logger class Enum: @classmethod def all(cls) -> List[Any]: return [v for k, v in cls.__dict__.items() if not k.startswith("_")] @dataclass class Model: name: str mode: str embedding: str path: str = None # for local models only def __str__(self) -> str: return self.name class MODES(Enum): # Add more modes as needed OPENAI = "OpenAI" LOCAL = "Local" class EMBEDDINGS(Enum): # Add more embeddings as needed OPENAI = "text-embedding-ada-002" HUGGINGFACE = "sentence-transformers/all-MiniLM-L6-v2" class MODELS(Enum): # Add more models as needed GPT35TURBO = Model( name="gpt-3.5-turbo", mode=MODES.OPENAI, embedding=EMBEDDINGS.OPENAI, ) GPT4 = Model(name="gpt-4", mode=MODES.OPENAI, embedding=EMBEDDINGS.OPENAI) GPT4ALL = Model( name="GPT4All", mode=MODES.LOCAL, embedding=EMBEDDINGS.HUGGINGFACE, path=str(MODEL_PATH / GPT4ALL_BINARY), ) @classmethod def for_mode(cls, mode) -> List[Model]: return [m for m in cls.all() if isinstance(m, Model) and m.mode == mode] def get_model(options: dict, credentials: dict) -> BaseLanguageModel: match options["model"].name: case MODELS.GPT35TURBO.name | MODELS.GPT4.name: model = ChatOpenAI( model_name=options["model"].name, temperature=options["temperature"], openai_api_key=credentials["openai_api_key"], ) case MODELS.GPT4ALL.name: model = GPT4All( model=options["model"].path, n_ctx=options["model_n_ctx"], backend="gptj", temp=options["temperature"], verbose=True, callbacks=[StreamingStdOutCallbackHandler()], ) # Added models need to be cased here case _default: msg = f"Model {options['model'].name} not supported!" logger.error(msg) st.error(msg) exit return model def get_embeddings(options: dict, credentials: dict) -> Embeddings: match options["model"].embedding: case EMBEDDINGS.OPENAI: embeddings = OpenAIEmbeddings( model=EMBEDDINGS.OPENAI, disallowed_special=(), openai_api_key=credentials["openai_api_key"], ) case EMBEDDINGS.HUGGINGFACE: embeddings = HuggingFaceEmbeddings( model_name=EMBEDDINGS.HUGGINGFACE, cache_folder=str(MODEL_PATH) ) # Added embeddings need to be cased here case _default: msg = f"Embeddings {options['model'].embedding} not supported!" logger.error(msg) st.error(msg) exit return embeddings def get_tokenizer(options: dict) -> Embeddings: match options["model"].embedding: case EMBEDDINGS.OPENAI: tokenizer = tiktoken.encoding_for_model(EMBEDDINGS.OPENAI) case EMBEDDINGS.HUGGINGFACE: tokenizer = AutoTokenizer.from_pretrained(EMBEDDINGS.HUGGINGFACE) # Added tokenizers need to be cased here case _default: msg = f"Tokenizer {options['model'].embedding} not supported!" logger.error(msg) st.error(msg) exit return tokenizer
[]
2024-01-10
AngelSanchezAW/Blue
blueapp~analis~utils~new_ai_post.py
from analis.models import ArticuloGenerado from openai import OpenAI from consts import APIKEYOAI client = OpenAI(api_key=APIKEYOAI) from consts import APIKEYOAI def new_ai_post(nombreSitioWeb, urlSitioWeb, postUrl, titulo_new_post, extracto_texto_new_post): # Establecer la clave de API de OpenAI prompt = f"Crea un articulo original optimizado para SEO con esta información: {titulo_new_post} {extracto_texto_new_post}" # Configurar el modelo de lenguaje modelo = "gpt-3.5-turbo" mensaje = [ {"role":"system","content":"Eres un experto en redacción de articulos."}, {"role":"user","content":prompt} ] # Generar la respuesta utilizando la API de OpenAI response = client.chat.completions.create(model=modelo, messages=mensaje, temperature=1, max_tokens=2000) respuesta = response.choices[0].message.content # Crear una instancia de ArticuloGenerado y guardarla en la base de datos ai_post_instance = ArticuloGenerado.objects.create( contenido_generado=respuesta, titulo=titulo_new_post, nombre_sitio_web=nombreSitioWeb, url_sitio_web=urlSitioWeb, post_url=postUrl ) print("Artículo generado con éxito y guardado en la base de datos") return ai_post_instance
[ "Eres un experto en redacción de articulos.", "Crea un articulo original optimizado para SEO con esta información: PLACEHOLDER PLACEHOLDER" ]
2024-01-10
ransjnr/GPT3-Python--AI
getAccessToGptAPI.py
#api_key = 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 #pip install openai #npm install openai import os import openai openai.api_key = "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" #list of names of different models available for OpenAI gpt-3 # print(openai.Model.list()) answer = openai.Completion.create( model="text-davinci-003", prompt="Say this is a test", max_tokens=7, temperature=0 ) print(answer)
[ "Say this is a test" ]
2024-01-10
ransjnr/GPT3-Python--AI
voiceAssistant.py
#GPT-3 Rans AI Voice Assistant import pyttsx3 #pip install pyttsx3 - python text-to-speech #GPT-3 powered AGI Chat Application: RANSFORD OPPONG: Aug 4,2023 import os import openai #pip install openai import gradio as gr #pip install gradio import speech_recognition as sr #pip install SpeechRecognition == voice to text import pyaudio ##sudo apt install espeak openai.api_key = "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" #command to tell the model how to arrange the inputs and outputs. start_sequence = "\nAI:" restart_sequence = "\Human: " #initial input prompt ="The following is a conversation with an AI Assistant. The Assistant is helpful, creative, clever and very friendly. \n\nHuman: Hello, who are you\nAI: I am an AI created by OpenAI. How may I assist you today?\nHuman: ", #Speak Function: text to voice engine = pyttsx3.init() def speak(text): engine.say(text) engine.runAndWait() speak("Hello , I'm Rans AI Voice Assistant, How can I help you?") #voice to text def STT(): r = sr.Recognizer() with sr.Microphone() as source: print("Listening...") r.pause_threshold = 1 audio = r.listen(source) try: print("Recognizing...") query = r.recognize_google(audio,language = "en-IN") print("Human said :" +query) except Exception as e: print(e) speak("Say that again please...") return "None" return query def gpt_output(prompt): response = openai.Completion.create( model ="text-davinci-003", prompt = prompt, temperature = 0.9, max_tokens = 150, top_p = 1, frequency_penalty = 0, presence_penalty = 0.6, stop = ["Human: ","AI: "] ) data = response.choice[0].text # return data print(data) speak(data) # a loop to take input from a user when the function is true while True: query = STT() gpt_output(query) ##Solving pyaudio problem: ###### sudo apt-get install portaudio19.dev ###### pip install pyaudio
[ "The following is a conversation with an AI Assistant. The Assistant is helpful, creative, clever and very friendly. \n\nHuman: Hello, who are you\nAI: I am an AI created by OpenAI. How may I assist you today?\nHuman: " ]
2024-01-10
ransjnr/GPT3-Python--AI
ChatApplication.py
#GPT-3 powered AGI Chat Application: RANSFORD OPPONG: Aug 4,2023 import os import openai import gradio as gr openai.api_key = "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" #command to tell the model how to arrange the inputs and outputs. start_sequence = "\nAI:" restart_sequence = "\Human: " #initial input prompt ="The following is a conversation with an AI Assistant. The Assistant is helpful, creative, clever and very friendly. \n\nHuman: Hello, who are you\nAI: I am an AI created by OpenAI. How may I assist you today?\nHuman: ", def gpt_output(prompt): response = openai.Completion.create( model ="text-davinci-003", prompt = prompt, temperature = 0.9, max_tokens = 150, top_p = 1, frequency_penalty = 0, presence_penalty = 0.6, stop = ["Human: ","AI: "] ) return response.choice[0].text #a loop to take input from a user when the function is true # while True: # query = input("Ask a QUestion to AI:\n") # gpt_output(query) #context storage or history def chatgpt_clone(input,history): history = history or [] s = list(sum(history,())) s.append(input) inp = ''.join(s) output = gpt_output(inp) history.append((input,output)) return history,history #pip install gradio - chat application web interface block = gr.Blocks() #builtin gradio functions for the interface with block: gr.Markdown("""<h1><center>Rans AI Assistant</center></h1>""") chatbot = gr.Chatbot() message = gr.Textbox(placeholder = prompt) state = gr.State() # session = gr.File() submit = gr.Button("SEND") submit.click(chatgpt_clone,inputs=[message,state],outputs=[chatbot,state]) #set the launch to true block.launch(debug=True)
[ "The following is a conversation with an AI Assistant. The Assistant is helpful, creative, clever and very friendly. \n\nHuman: Hello, who are you\nAI: I am an AI created by OpenAI. How may I assist you today?\nHuman: " ]
2024-01-10
ortmasiu/Galileo
app~galileo.py
import os import openai import argparse from ast import List import re MAX_INPUT_LENGTH = 280 def main(): # https://docs.python.org/3/library/argparse.html parser = argparse.ArgumentParser() parser.add_argument("--input", "-i", type=str, required=True) args = parser.parse_args() user_input = args.input print(f"User input: {user_input}") if validate_length(user_input): text_result = generate_summarized_text(user_input) keywords_result = generate_keywords(user_input) print(text_result) print(keywords_result) else: raise ValueError( f"Input lenght is too long. Must be under {MAX_INPUT_LENGTH}.") def validate_length(prompt: str) -> bool: return len(prompt) <= MAX_INPUT_LENGTH def generate_summarized_text(prompt: str) -> str: # Load API key from env openai.api_key = os.getenv("OPENAI_API_KEY") enriched_prompt = f"Summarize this for a twelve-grade student:\n\n{prompt}" print(enriched_prompt) response = openai.Completion.create( model="text-davinci-002", prompt=enriched_prompt, temperature=0.7, max_tokens=50, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) # Extract output text summarized_text: str = response["choices"][0]["text"] last_char = summarized_text[-1] if last_char not in {".", "!", "?"}: summarized_text += "..." print(f"snippet: {summarized_text}") return summarized_text def generate_keywords(prompt: str) -> List(str): # Load API key from an environment variable openai.api_key = os.getenv("OPENAI_API_KEY") enriched_prompt = f"Generate 5 category keywords for {prompt}: " print(enriched_prompt) response = openai.Completion.create( model="text-davinci-002", prompt=enriched_prompt, max_tokens=50, ) # Extract output text keywords_text: str = response["choices"][0]["text"] last_char = keywords_text[-1] if last_char not in {".", "!", "?"}: keywords_text += "..." # Remove the unwanted characters keywords_array = re.split(",|\n|-", keywords_text) keywords_array = [k.lower().strip() for k in keywords_array] keywords_array = [k.strip("12345).") for k in keywords_array if len(k) > 0] # strip whitespace keywords_array = [k.strip() for k in keywords_array] print(f"keywords: {keywords_array}") return keywords_array if __name__ == "__main__": main()
[ "Generate 5 category keywords for PLACEHOLDER: ", "Summarize this for a twelve-grade student:\n\nPLACEHOLDER" ]
2024-01-10
ortmasiu/Galileo
cdk.out~asset.3b1e429fc8690bd6b40c7247ba21dfa85b26fce158068b6f473a0d5e4aacdfed~galileo.py
import os import openai import argparse from ast import List import re MAX_INPUT_LENGTH = 280 def main(): # https://docs.python.org/3/library/argparse.html parser = argparse.ArgumentParser() parser.add_argument("--input", "-i", type=str, required=True) args = parser.parse_args() user_input = args.input print(f"User input: {user_input}") if validate_length(user_input): text_result = generate_summarized_text(user_input) keywords_result = generate_keywords(user_input) print(text_result) print(keywords_result) else: raise ValueError( f"Input lenght is too long. Must be under {MAX_INPUT_LENGTH}.") def validate_length(prompt: str) -> bool: return len(prompt) <= MAX_INPUT_LENGTH def generate_summarized_text(prompt: str) -> str: # Load API key from env openai.api_key = os.getenv("OPENAI_API_KEY") enriched_prompt = f"Summarize this for a twelve-grade student:\n\n{prompt}" print(enriched_prompt) response = openai.Completion.create( model="text-davinci-002", prompt=enriched_prompt, temperature=0.7, max_tokens=50, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) # Extract output text summarized_text: str = response["choices"][0]["text"] last_char = summarized_text[-1] if last_char not in {".", "!", "?"}: summarized_text += "..." print(f"snippet: {summarized_text}") return summarized_text def generate_keywords(prompt: str) -> List(str): # Load API key from an environment variable openai.api_key = os.getenv("OPENAI_API_KEY") enriched_prompt = f"Generate 5 category keywords for {prompt}: " print(enriched_prompt) response = openai.Completion.create( model="text-davinci-002", prompt=enriched_prompt, max_tokens=50, ) # Extract output text keywords_text: str = response["choices"][0]["text"] last_char = keywords_text[-1] if last_char not in {".", "!", "?"}: keywords_text += "..." # Remove the unwanted characters keywords_array = re.split(",|\n|-", keywords_text) keywords_array = [k.lower().strip() for k in keywords_array] keywords_array = [k.strip("12345).") for k in keywords_array if len(k) > 0] # strip whitespace keywords_array = [k.strip() for k in keywords_array] print(f"keywords: {keywords_array}") return keywords_array if __name__ == "__main__": main()
[ "Generate 5 category keywords for PLACEHOLDER: ", "Summarize this for a twelve-grade student:\n\nPLACEHOLDER" ]
2024-01-10
ai-ld/processor
reporting~analyze.py
import os import re import json import nltk import openai import shutil import logging import operator import tarfile import numpy as np import pandas as pd import seaborn as sns import datetime as dt import reporting.calc as cal import reporting.utils as utl import reporting.vmcolumns as vmc import reporting.dictionary as dct import reporting.vendormatrix as vm import reporting.dictcolumns as dctc class Analyze(object): date_col = 'date' database_cache = 'database_cache' delivery_col = 'delivery' under_delivery_col = 'under-delivery' full_delivery_col = 'full-delivery' over_delivery_col = 'over-delivery' unknown_col = 'unknown' delivery_comp_col = 'delivery_completion' daily_delivery_col = 'daily_delivery' over_daily_pace = 'over_daily_pace' under_daily_pace = 'under_daily_pace' adserving_alert = 'adserving_alert' daily_pacing_alert = 'daily_pacing' raw_file_update_col = 'raw_file_update' topline_col = 'topline_metrics' lw_topline_col = 'last_week_topline_metrics' tw_topline_col = 'two_week_topline_merics' kpi_col = 'kpi_col' raw_columns = 'raw_file_columns' vk_metrics = 'vendor_key_metrics' vendor_metrics = 'vendor_metrics' missing_metrics = 'missing_metrics' flagged_metrics = 'flagged_metrics' placement_col = 'placement_col' max_api_length = 'max_api_length' double_counting_all = 'double_counting_all' double_counting_partial = 'double_counting_partial' missing_flat = 'missing_flat' missing_serving = 'missing_serving' missing_ad_rate = 'missing_ad_rate' package_cap = 'package_cap' package_vendor = 'package_vendor' package_vendor_good = 'package_vendor_good' package_vendor_bad = 'package_vendor_bad' cap_name = 'cap_name' blank_lines = 'blank_lines' change_auto_order = 'change_auto_order' brandtracker_imports = 'brandtracker_imports' analysis_dict_file_name = 'analysis_dict.json' analysis_dict_key_col = 'key' analysis_dict_data_col = 'data' analysis_dict_msg_col = 'message' analysis_dict_date_col = 'date' analysis_dict_param_col = 'parameter' analysis_dict_param_2_col = 'parameter_2' analysis_dict_filter_col = 'filter_col' analysis_dict_filter_val = 'filter_val' analysis_dict_split_col = 'split_col' analysis_dict_small_param_2 = 'Smallest' analysis_dict_large_param_2 = 'Largest' analysis_dict_only_param_2 = 'Only' fixes_to_run = False topline_metrics = [[cal.TOTAL_COST], [cal.NCF], [vmc.impressions, 'CTR'], [vmc.clicks, 'CPC'], [vmc.views], [vmc.views100, 'VCR'], [vmc.landingpage, 'CPLPV'], [vmc.btnclick, 'CPBC'], [vmc.purchase, 'CPP']] topline_metrics_final = [vmc.impressions, 'CPM', vmc.clicks, 'CTR', 'CPC', vmc.views, vmc.views100, 'VCR', 'CPV', 'CPCV', vmc.landingpage, vmc.btnclick, vmc.purchase, 'CPLPV', 'CPBC', 'CPP', cal.NCF, cal.TOTAL_COST] def __init__(self, df=pd.DataFrame(), file_name=None, matrix=None, load_chat=False, chat_path=utl.config_path): self.analysis_dict = [] self.df = df self.file_name = file_name self.matrix = matrix self.load_chat = load_chat self.chat_path = chat_path self.chat = None self.vc = ValueCalc() self.class_list = [ CheckRawFileUpdateTime, CheckFirstRow, CheckColumnNames, FindPlacementNameCol, CheckAutoDictOrder, CheckApiDateLength, CheckFlatSpends, CheckDoubleCounting, GetPacingAnalysis, GetDailyDelivery, GetServingAlerts, GetDailyPacingAlerts, CheckPackageCapping] if self.df.empty and self.file_name: self.load_df_from_file() if self.load_chat: self.chat = AliChat(config_path=self.chat_path) def get_base_analysis_dict_format(self): analysis_dict_format = { self.analysis_dict_key_col: '', self.analysis_dict_data_col: {}, self.analysis_dict_msg_col: '', self.analysis_dict_param_col: '', self.analysis_dict_param_2_col: '', self.analysis_dict_split_col: '', self.analysis_dict_filter_col: '', self.analysis_dict_filter_val: '' } return analysis_dict_format def load_df_from_file(self): self.df = utl.import_read_csv(self.file_name) def add_to_analysis_dict(self, key_col, message='', data='', param='', param2='', split='', filter_col='', filter_val=''): base_dict = self.get_base_analysis_dict_format() base_dict[self.analysis_dict_key_col] = str(key_col) base_dict[self.analysis_dict_msg_col] = str(message) base_dict[self.analysis_dict_param_col] = str(param) base_dict[self.analysis_dict_param_2_col] = str(param2) base_dict[self.analysis_dict_split_col] = str(split) base_dict[self.analysis_dict_filter_col] = str(filter_col) base_dict[self.analysis_dict_filter_val] = str(filter_val) base_dict[self.analysis_dict_data_col] = data self.analysis_dict.append(base_dict) def check_delivery(self, df): plan_names = self.matrix.vendor_set(vm.plan_key) if not plan_names: logging.warning('VM does not have plan key') return False plan_names = plan_names[vmc.fullplacename] miss_cols = [x for x in plan_names if x not in df.columns] if miss_cols: logging.warning('Df does not have cols {}'.format(miss_cols)) return False df = df.groupby(plan_names).apply(lambda x: 0 if x[dctc.PNC].sum() == 0 else x[vmc.cost].sum() / x[dctc.PNC].sum()) f_df = df[df > 1] if f_df.empty: delivery_msg = 'Nothing has delivered in full.' logging.info(delivery_msg) self.add_to_analysis_dict(key_col=self.delivery_col, param=self.under_delivery_col, message=delivery_msg) else: del_p = f_df.apply(lambda x: "{0:.2f}%".format(x * 100)) delivery_msg = 'The following have delivered in full: ' logging.info('{}\n{}'.format(delivery_msg, del_p)) data = del_p.reset_index().rename(columns={0: 'Delivery'}) self.add_to_analysis_dict(key_col=self.delivery_col, param=self.full_delivery_col, message=delivery_msg, data=data.to_dict()) o_df = f_df[f_df > 1.5] if not o_df.empty: del_p = o_df.apply(lambda x: "{0:.2f}%".format(x * 100)) delivery_msg = 'The following have over-delivered:' logging.info('{}\n{}'.format(delivery_msg, del_p)) data = del_p.reset_index().rename(columns={0: 'Delivery'}) self.add_to_analysis_dict(key_col=self.delivery_col, param=self.over_delivery_col, message=delivery_msg, data=data.to_dict()) @staticmethod def get_start_end_dates(df, plan_names): """ Gets start and end dates at the level of the planned net full placement name. Dates taken from mediaplan where available, else from vendormatrix based on which vendorkey has more spend. :param df: full output df :param plan_names: planned net full placement columns :returns: two dfs w/ start and end dates for each unique breakout """ matrix = vm.VendorMatrix().vm_df matrix = matrix[[vmc.vendorkey, vmc.startdate, vmc.enddate]] matrix = matrix.rename(columns={vmc.startdate: dctc.SD, vmc.enddate: dctc.ED}) matrix = utl.data_to_type(matrix, date_col=[dctc.SD, dctc.ED], fill_empty=False) matrix[[dctc.SD, dctc.ED]] = matrix[[dctc.SD, dctc.ED]].fillna(pd.NaT) matrix[[dctc.SD, dctc.ED]] = matrix[ [dctc.SD, dctc.ED]].replace([""], pd.NaT) vm_dates = df[plan_names + [vmc.vendorkey, vmc.cost]] vm_dates = vm_dates.merge(matrix, how='left', on=vmc.vendorkey) vm_dates = vm_dates.groupby( plan_names + [vmc.vendorkey]).agg( {vmc.cost: 'sum', dctc.SD: 'min', dctc.ED: 'max'}).reset_index() vm_dates = vm_dates[vm_dates[vmc.cost] > 0] vm_dates = vm_dates.groupby(plan_names).agg( {dctc.SD: 'min', dctc.ED: 'max'}).reset_index() if dctc.SD in df.columns and dctc.ED in df.columns: start_end_dates = df[plan_names + [dctc.SD, dctc.ED]] start_end_dates = start_end_dates.groupby(plan_names).agg( {dctc.SD: 'min', dctc.ED: 'max'}) start_end_dates = start_end_dates.reset_index() else: start_end_dates = vm_dates[plan_names + [dctc.SD, dctc.ED]] start_end_dates = start_end_dates[start_end_dates.apply( lambda x: (x[dctc.SD] != x[dctc.ED] and not pd.isnull(x[dctc.SD]) and not pd.isnull(x[dctc.ED])), axis=1)] vm_dates[plan_names] = vm_dates[plan_names].astype(object) vm_dates = vm_dates.merge( start_end_dates, how='left', on=plan_names, indicator=True) vm_dates = vm_dates[vm_dates['_merge'] == 'left_only'] vm_dates = vm_dates.drop( columns=['_merge', 'mpStart Date_y', 'mpEnd Date_y']) vm_dates = vm_dates.rename(columns={'mpStart Date_x': dctc.SD, 'mpEnd Date_x': dctc.ED}) start_end_dates = pd.concat([start_end_dates, vm_dates]) start_end_dates = utl.data_to_type(start_end_dates, date_col=[dctc.SD, dctc.ED], fill_empty=False) start_dates = start_end_dates[plan_names + [dctc.SD]] end_dates = start_end_dates[plan_names + [dctc.ED]] return start_dates, end_dates def get_plan_names(self): plan_names = self.matrix.vendor_set(vm.plan_key) if not plan_names: logging.warning('VM does not have plan key') plan_names = None else: plan_names = plan_names[vmc.fullplacename] return plan_names def check_plan_error(self, df): plan_names = self.get_plan_names() if not plan_names: return False er = self.matrix.vendor_set(vm.plan_key)[vmc.filenameerror] edf = utl.import_read_csv(er, utl.error_path) if edf.empty: plan_error_msg = ('No Planned error - all {} ' 'combinations are defined.'.format(plan_names)) logging.info(plan_error_msg) self.add_to_analysis_dict(key_col=self.unknown_col, message=plan_error_msg) return True if dctc.PFPN not in df.columns: logging.warning('Df does not have column: {}'.format(dctc.PFPN)) return False df = df[df[dctc.PFPN].isin(edf[vmc.fullplacename].values)][ plan_names + [vmc.vendorkey]].drop_duplicates() df = vm.full_placement_creation(df, None, dctc.FPN, plan_names) df = df[df[dctc.FPN].isin(edf[dctc.FPN].values)] df = utl.col_removal(df, None, [dctc.FPN]) for col in df.columns: df[col] = "'" + df[col] + "'" df = df.dropna() df_dict = '\n'.join(['{}{}'.format(k, v) for k, v in df.to_dict(orient='index').items()]) undefined_msg = 'Missing planned spends have the following keys:' logging.info('{}\n{}'.format(undefined_msg, df_dict)) self.add_to_analysis_dict(key_col=self.unknown_col, message=undefined_msg, data=df.to_dict()) def backup_files(self): bu = os.path.join(utl.backup_path, dt.date.today().strftime('%Y%m%d')) logging.info('Backing up all files to {}'.format(bu)) dir_to_backup = [utl.config_path, utl.dict_path, utl.raw_path] for path in [utl.backup_path, bu] + dir_to_backup: utl.dir_check(path) file_dicts = {'raw.gzip': self.df} for file_name, df in file_dicts.items(): file_name = os.path.join(bu, file_name) df.to_csv(file_name, compression='gzip') for file_path in dir_to_backup: file_name = '{}.tar.gz'.format(file_path.replace('/', '')) file_name = os.path.join(bu, file_name) tar = tarfile.open(file_name, "w:gz") tar.add(file_path, arcname=file_path.replace('/', '')) tar.close() for file_name in ['logfile.log']: if os.path.exists(file_name): new_file_name = os.path.join(bu, file_name) shutil.copy(file_name, new_file_name) logging.info('Successfully backed up files to {}'.format(bu)) # noinspection PyUnresolvedReferences @staticmethod def make_heat_map(df, cost_cols=None): fig, axs = sns.plt.subplots(ncols=len(df.columns), gridspec_kw={'hspace': 0, 'wspace': 0}) for idx, col in enumerate(df.columns): text_format = ",.0f" sns.heatmap(df[[col]], annot=True, fmt=text_format, linewidths=.5, cbar=False, cmap="Blues", ax=axs[idx]) if col in cost_cols: for t in axs[idx].texts: t.set_text('$' + t.get_text()) if idx != 0: axs[idx].set_ylabel('') axs[idx].get_yaxis().set_ticks([]) else: labels = [val[:30] for val in reversed(list(df.index))] axs[idx].set_yticklabels(labels=labels) axs[idx].xaxis.tick_top() sns.plt.show() sns.plt.close() def generate_table(self, group, metrics, sort=None): df = self.generate_df_table(group, metrics, sort) cost_cols = [x for x in metrics if metrics[x]] self.make_heat_map(df, cost_cols) def generate_df_table(self, group, metrics, sort=None, data_filter=None, df=pd.DataFrame()): base_metrics = [x for x in metrics if x not in self.vc.metric_names] calc_metrics = [x for x in metrics if x not in base_metrics] if df.empty: df = self.df.copy() if data_filter: filter_col = data_filter[0] filter_val = data_filter[1] if filter_col in df.columns: df = df[df[filter_col].isin(filter_val)] else: logging.warning('{} not in df columns'.format(filter_col)) columns = group + metrics + [filter_col] return pd.DataFrame({x: [] for x in columns}) for group_col in group: if group_col not in df.columns: logging.warning('{} not in df columns'.format(group)) columns = group + metrics return pd.DataFrame({x: [] for x in columns}) df = df.groupby(group)[base_metrics].sum() df = self.vc.calculate_all_metrics(calc_metrics, df) if sort: df = df.sort_values(sort, ascending=False) return df @staticmethod def give_df_default_format(df, columns=None): df = utl.give_df_default_format(df, columns) return df def get_table_without_format(self, data_filter=None, group=dctc.CAM): group = [group] metrics = [] kpis = self.get_kpis() for metric in self.topline_metrics: if metric[0] in self.df.columns: metrics += metric if kpis: metrics += list(kpis.keys()) metrics += [value for values in kpis.values() for value in values] metrics = list(set(metrics)) df = self.generate_df_table(group=group, metrics=metrics, data_filter=data_filter) return df def generate_topline_metrics(self, data_filter=None, group=dctc.CAM): df = self.get_table_without_format(data_filter, group) df = self.give_df_default_format(df) final_cols = [x for x in self.topline_metrics_final if x in df.columns] df = df[final_cols] df = df.transpose() df = df.reindex(final_cols) df = df.replace([np.inf, -np.inf], np.nan) df = df.fillna(0) df = df.reset_index().rename(columns={'index': 'Topline Metrics'}) log_info_text = ('Topline metrics are as follows: \n{}' ''.format(df.to_string())) if data_filter: log_info_text = data_filter[2] + log_info_text logging.info(log_info_text) return df def calculate_kpi_trend(self, kpi, group, metrics): df = self.get_df_based_on_kpi(kpi, group, metrics, split=vmc.date) if len(df) < 2: logging.warning('Less than two datapoints for KPI {}'.format(kpi)) return False df = df.sort_values(vmc.date).reset_index(drop=True).reset_index() df = df.replace([np.inf, -np.inf], np.nan).fillna(0) fit = np.polyfit(df['index'], df[kpi], deg=1) format_map = utl.get_default_format(kpi) if fit[0] > 0: trend = 'increasing' else: trend = 'decreasing' msg = ('The KPI {} is {} at a rate of {} per day when given ' 'linear fit').format(kpi, trend, format_map(abs(fit[0]))) logging.info(msg) df['fit'] = fit[0] * df['index'] + fit[1] df[vmc.date] = df[vmc.date].dt.strftime('%Y-%m-%d') self.add_to_analysis_dict( key_col=self.kpi_col, message=msg, data=df.to_dict(), param=kpi, param2='Trend', split=vmc.date) def explain_lowest_kpi_for_vendor(self, kpi, group, metrics, filter_col): min_val = self.find_in_analysis_dict( self.kpi_col, param=kpi, param_2=self.analysis_dict_small_param_2, split_col=dctc.VEN) if len(min_val) == 0: min_val = self.find_in_analysis_dict( self.kpi_col, param=kpi, param_2=self.analysis_dict_only_param_2, split_col=dctc.VEN) if len(min_val) == 0: return False min_val = min_val[0][self.analysis_dict_data_col][dctc.VEN].values() for val in min_val: for split in [dctc.CRE, dctc.TAR, dctc.PKD, dctc.PLD, dctc.ENV]: self.evaluate_smallest_largest_kpi( kpi, group, metrics, split, filter_col, val, number=1) def get_df_based_on_kpi(self, kpi, group, metrics, split=None, filter_col=None, filter_val=None, sort=None): if split: group = group + [split] if filter_col: group = group + [filter_col] if not sort: sort = kpi df = self.generate_df_table(group=group, metrics=metrics, sort=sort) df = df.reset_index().replace([np.inf, -np.inf], np.nan).fillna(0) df = df.loc[(df[dctc.KPI] == kpi) & (df[kpi].notnull()) & (df[kpi] > 0)] if filter_col: df = df.loc[(df[filter_col] == filter_val)] return df def evaluate_df_kpi_smallest_largest(self, df, kpi, split, filter_col, filter_val, small_large='Smallest'): format_df = self.give_df_default_format(df, columns=[kpi]) if split == vmc.date: df[split] = df[split].dt.strftime('%Y-%m-%d') split_values = ['{} ({})'.format(x, y) for x, y in format_df[[split, kpi]].values] split_values = ', '.join(split_values) msg = '{} value(s) for KPI {} broken out by {} are {}'.format( small_large, kpi, split, split_values) if filter_col: msg = '{} when filtered by the {} {}'.format( msg, filter_col, filter_val) log_info_text = ('{}\n{}'.format(msg, format_df.to_string())) logging.info(log_info_text) self.add_to_analysis_dict( key_col=self.kpi_col, message=msg, data=df.to_dict(), param=kpi, param2=small_large, split=split, filter_col=filter_col, filter_val=filter_val) def evaluate_smallest_largest_kpi(self, kpi, group, metrics, split=None, filter_col=None, filter_val=None, number=3): df = self.get_df_based_on_kpi(kpi, group, metrics, split, filter_col, filter_val) if df.empty: msg = ('Value(s) for KPI {} broken out by {} could ' 'not be calculated'.format(kpi, split)) if filter_col: msg = '{} when filtered by the {} {}'.format( msg, filter_col, filter_val) logging.warning(msg) return False if len(df) < 2: df_list = [[df, self.analysis_dict_only_param_2]] else: smallest_df = df.nsmallest(n=number, columns=[kpi]) largest_df = df.nlargest(n=number, columns=[kpi]) df_list = [[smallest_df, self.analysis_dict_small_param_2], [largest_df, self.analysis_dict_large_param_2]] for df in df_list: self.evaluate_df_kpi_smallest_largest(df[0], kpi, split, filter_col, filter_val, df[1]) def evaluate_on_kpi(self, kpi, formula): metrics = [kpi] + formula group = [dctc.CAM, dctc.KPI] self.evaluate_smallest_largest_kpi(kpi, group, metrics, split=dctc.VEN) self.explain_lowest_kpi_for_vendor( kpi=kpi, group=group, metrics=metrics, filter_col=dctc.VEN) self.evaluate_smallest_largest_kpi(kpi, group, metrics, split=vmc.date) self.calculate_kpi_trend(kpi, group, metrics) def get_kpi(self, kpi, write=False): kpi_cols = [] kpi_formula = [ self.vc.calculations[x] for x in self.vc.calculations if self.vc.calculations[x][self.vc.metric_name] == kpi] if kpi_formula: kpi_cols = kpi_formula[0][self.vc.formula][::2] missing_cols = [x for x in kpi_cols if x not in self.df.columns] if missing_cols: msg = 'Missing columns could not evaluate {}'.format(kpi) logging.warning(msg) if write: self.add_to_analysis_dict(key_col=self.kpi_col, message=msg, param=kpi) kpi = False elif kpi not in self.df.columns: msg = 'Unknown KPI: {}'.format(kpi) logging.warning(msg) kpi = False return kpi, kpi_cols def get_kpis(self, write=False): kpis = {} if dctc.KPI in self.df.columns: for kpi in self.df[dctc.KPI].unique(): kpi, kpi_cols = self.get_kpi(kpi, write) if kpi: kpis[kpi] = kpi_cols return kpis def evaluate_on_kpis(self): kpis = self.get_kpis(write=True) if kpis: for kpi, formula in kpis.items(): self.evaluate_on_kpi(kpi, formula) def generate_topline_and_weekly_metrics(self, group=dctc.CAM): df = self.generate_topline_metrics(group=group) last_week_filter = [ dt.datetime.strftime( (dt.datetime.today() - dt.timedelta(days=x)), '%Y-%m-%d') for x in range(1, 8)] tdf = self.generate_topline_metrics( data_filter=[vmc.date, last_week_filter, 'Last Weeks '], group=group) two_week_filter = [ dt.datetime.strftime( (dt.datetime.today() - dt.timedelta(days=x)), '%Y-%m-%d') for x in range(8, 15)] twdf = self.generate_topline_metrics( data_filter=[vmc.date, two_week_filter, '2 Weeks Ago '], group=group) for val in [(self.topline_col, df), (self.lw_topline_col, tdf), (self.tw_topline_col, twdf)]: msg = '{} as follows:'.format(val[0].replace('_', ' ')) self.add_to_analysis_dict(key_col=self.topline_col, message=msg, data=val[1].to_dict(), param=val[0]) return df, tdf, twdf def get_metrics_by_vendor_key(self): data_sources = self.matrix.get_all_data_sources() df = self.df.copy() if df.empty: logging.warning('Dataframe empty could not get metrics.') return False metrics = [] for source in data_sources: metrics.extend(source.get_active_metrics()) metrics = list(set(metrics)) metrics = [x for x in metrics if x in df.columns] agg_map = {x: [np.min, np.max] if (x == vmc.date) else np.sum for x in metrics} df = df.groupby([vmc.vendorkey]).agg(agg_map) df.columns = [' - '.join(col).strip() for col in df.columns] df.columns = [x[:-6] if x[-6:] == ' - sum' else x for x in df.columns] df = df.reset_index() for col in [' - amin', ' - amax']: df[vmc.date + col] = df[vmc.date + col].astype('U') update_msg = 'Metrics by vendor key are as follows:' logging.info('{}\n{}'.format(update_msg, df.to_string())) self.add_to_analysis_dict(key_col=self.vk_metrics, message=update_msg, data=df.to_dict()) return True def find_missing_metrics(self): df = self.get_table_without_format(group=dctc.VEN) format_df = self.give_df_default_format(df.copy()) df = df.T update_msg = 'Metrics by vendor are as follows:' logging.info('{}\n{}'.format(update_msg, format_df.to_string())) self.add_to_analysis_dict(key_col=self.vendor_metrics, message=update_msg, data=format_df.T.to_dict()) mdf = [] for col in df.columns: missing_metrics = df[df[col] == 0][col].index.to_list() if missing_metrics: miss_dict = {dctc.VEN: col, self.missing_metrics: missing_metrics} if mdf is None: mdf = [] mdf.append(miss_dict) mdf = pd.DataFrame(mdf) if mdf.empty: missing_msg = 'No vendors have missing metrics.' logging.info('{}'.format(missing_msg)) else: missing_msg = 'The following vendors have missing metrics:' logging.info('{}\n{}'.format(missing_msg, mdf.to_string())) self.add_to_analysis_dict(key_col=self.missing_metrics, message=missing_msg, data=mdf.to_dict()) def flag_errant_metrics(self): metrics = [vmc.impressions, vmc.clicks, 'CTR'] if [metric for metric in metrics[:2] if metric not in self.df.columns]: logging.warning('Missing metric, could not determine flags.') return False df = self.generate_df_table(group=[dctc.VEN, dctc.CAM], metrics=metrics) if df.empty: logging.warning('Dataframe empty, could not determine flags.') return False all_threshold = 'All' threshold_col = 'threshold' thresholds = {'CTR': {'Google SEM': 0.2, all_threshold: 0.06}} for metric_name, threshold_dict in thresholds.items(): edf = df.copy() edf = edf.reset_index().set_index(dctc.VEN) edf[threshold_col] = edf.index.map(threshold_dict).fillna( threshold_dict[all_threshold]) edf = edf[edf['CTR'] > edf[threshold_col]] if not edf.empty: edf = edf[[metric_name, threshold_col]] edf = edf.replace([np.inf, -np.inf], np.nan).fillna(0) flagged_msg = ('The following vendors have unusually high {}s' '.'.format(metric_name)) logging.info('{}\n{}'.format( flagged_msg, edf.to_string())) self.add_to_analysis_dict( key_col=self.flagged_metrics, param=metric_name, message=flagged_msg, data=edf.to_dict()) return True @staticmethod def processor_clean_functions(df, cd, cds_name, clean_functions): success = True for text, clean_func in clean_functions.items(): if not success: msg = 'A previous step failed to process.' cd[text][cds_name] = (False, msg) continue try: df = clean_func(df) msg = 'Successfully able to {}'.format(text) cd[text][cds_name] = (True, msg) except Exception as e: msg = 'Could not {} with error: {}'.format(text, e) cd[text][cds_name] = (False, msg) success = False return df, cd, success @staticmethod def compare_start_end_date_raw(df, cd, cds_name, cds, vk='vk'): df = df.copy() df[vmc.vendorkey] = vk date_col_name = cds.p[vmc.date][0] if str(date_col_name) == 'nan' or date_col_name not in df.columns: msg = 'Date not specified or not column names.' msg = (False, msg) else: df[vmc.date] = df[cds.p[vmc.date][0]] df = utl.data_to_type(df=df, date_col=vmc.datadatecol) df = df[[vmc.vendorkey, vmc.date]].groupby([vmc.vendorkey]).agg( {vmc.date: [np.min, np.max]}) df.columns = [' - '.join(col).strip() for col in df.columns] tdf = df.reset_index() max_date = tdf['{} - amax'.format(vmc.date)][0].date() min_date = tdf['{} - amin'.format(vmc.date)][0].date() sd = cds.p[vmc.startdate].date() ed = cds.p[vmc.enddate].date() if max_date < sd: msg = ('Last day in raw file {} is less than start date {}.\n' 'Result will be blank. Change start date.'.format( max_date, sd)) msg = (False, msg) elif min_date > ed: msg = ('First day in raw file {} is less than end date {}.\n' 'Result will be blank. Change end date.'.format( min_date, ed)) msg = (False, msg) else: msg = ('Some or all data in raw file with date range {} - {} ' 'falls between start and end dates {} - {}'.format( sd, ed, min_date, max_date)) msg = (True, msg) cd[vmc.startdate][cds_name] = msg return cd def check_raw_file_against_plan_net(self, df, cd, cds_name): plan_df = self.matrix.vendor_get(vm.plan_key) if plan_df.empty: msg = (False, 'Plan net is empty could not check.') else: plan_names = self.matrix.vendor_set(vm.plan_key)[vmc.fullplacename] df = vm.full_placement_creation(df, None, dctc.FPN, plan_names) missing = [x for x in df[dctc.FPN].unique() if x not in plan_df[dctc.FPN].unique()] if not missing: msg = (True, 'All values defined in plan net.') else: missing = ', '.join(missing) msg = (False, 'The following values were not in the plan net ' 'dictionary: {}'.format(missing)) cd[vm.plan_key][cds_name] = msg return cd @staticmethod def write_raw_file_dict(vk, cd): utl.dir_check(utl.tmp_file_suffix) file_name = '{}.json'.format(vk) file_name = os.path.join(utl.tmp_file_suffix, file_name) with open(file_name, 'w') as fp: json.dump(cd, fp, cls=utl.NpEncoder) @staticmethod def check_combine_col_totals(cd, df, cds_name, c_cols): for col in c_cols: if col in df.columns: total = df[col].sum() if total <= 0: msg = (False, 'Sum of column {} was {}'.format(col, total)) else: msg = (True, int(total)) if cds_name == 'New': if 'Old' not in cd[col]: old_total = 0 else: old_total = cd[col]['Old'][1] if (not isinstance(old_total, str) and not isinstance(total, str) and old_total > total): msg = ( False, 'Old file total {} was greater than new ' 'file total {} for col {}'.format( old_total, total, col)) cd[col][cds_name] = msg return cd @staticmethod def get_base_raw_file_dict(ds): cd = {'file_load': {}, vmc.fullplacename: {}, vmc.placement: {}, vmc.date: {}, 'empty': {}, vmc.startdate: {}} c_cols = [x for x in vmc.datafloatcol if ds.p[x] != ['nan']] clean_functions = { 'get and merge dictionary': ds.get_and_merge_dictionary, 'combine data': ds.combine_data, 'remove cols and make calculations': ds.remove_cols_and_make_calculations} for x in c_cols + list(clean_functions.keys()) + [vm.plan_key]: cd[x] = {} return cd, clean_functions, c_cols @staticmethod def check_sheet_names(tds, sheet_names): missing_sheets = [] xl = pd.read_excel(tds.p[vmc.filename], None) sheet_lists = list(xl.keys()) for sheet_name in sheet_names: if sheet_name not in sheet_lists: missing_sheets.append(sheet_name) return missing_sheets def compare_raw_files(self, vk): ds = self.matrix.get_data_source(vk) tds = self.matrix.get_data_source(vk) file_type = os.path.splitext(ds.p[vmc.filename_true])[1] tmp_file = ds.p[vmc.filename_true].replace( file_type, '{}{}'.format(utl.tmp_file_suffix, file_type)) tds.p[vmc.filename_true] = tmp_file tds.p[vmc.filename] = tmp_file missing_sheets = [] if ':::' in ds.p[vmc.filename]: sheet_names = ds.p[vmc.filename].split(':::')[1:] sheet_info = ':::' + ':::'.join(sheet_names) missing_sheets = self.check_sheet_names(tds, sheet_names) tds.p[vmc.filename] += sheet_info cd, clean_functions, c_cols = self.get_base_raw_file_dict(ds) for cds_name, cds in {'Old': ds, 'New': tds}.items(): try: df = cds.get_raw_df() except Exception as e: logging.warning('Unknown exception: {}'.format(e)) if cds_name == 'New': if missing_sheets: missing_sheets = ', '.join(missing_sheets).upper() msg = ('Xlsx file is missing the following sheets: ' '{}. Rename sheets if naming is wrong. Else, ' 'check w/ vendor to get all needed sheets.' ).format(missing_sheets) else: msg = 'Please open the file in excel, select all ' 'columns, select General in the Number format ' 'dropdown, save as a csv and retry.' else: msg = ('The old file may not exist. ' 'Please save the new file.') cd['file_load'][cds_name] = ( False, '{} file could not be loaded. {}'.format(cds_name, msg)) continue cd['file_load'][cds_name] = (True, 'File was successfully read.') for col in [vmc.fullplacename, vmc.placement, vmc.date] + c_cols: cols_to_check = ds.p[col] if col == vmc.placement: cols_to_check = [ds.p[col]] missing_cols = [x for x in cols_to_check if x.replace('::', '') not in df.columns] if missing_cols: msg = (False, 'Columns specified in the {} are not in the' ' new file those columns are: ' '{}'.format(col, ','.join(missing_cols))) else: msg = (True, '{} columns are in the raw file.'.format(col)) cd[col][cds_name] = msg if df is None or df.empty: msg = '{} file is empty skipping checks.'.format(cds_name) cd['empty'][cds_name] = (False, msg) continue total_mb = int(round(df.memory_usage(index=True).sum() / 1000000)) msg = '{} file has {} rows and is {}MB.'.format( cds_name, len(df.index), total_mb) cd['empty'][cds_name] = (True, msg) cd = self.compare_start_end_date_raw(df, cd, cds_name, cds, vk) df, cd, success = self.processor_clean_functions( df, cd, cds_name, clean_functions) if not success: for col in [vm.plan_key]: msg = ('Could not fully process files so no ' 'additional checks could be made.') cd[col][cds_name] = (False, msg) cd = self.check_combine_col_totals(cd, df, cds_name, c_cols) cd = self.check_raw_file_against_plan_net(df, cd, cds_name) cds.df = df self.write_raw_file_dict(vk, cd) def find_missing_serving(self): groups = [vmc.vendorkey, dctc.SRV, dctc.AM, dctc.PN] metrics = [] serving_vals = ['1x1 Click & Imp', '1x1 Click Only', 'In-Banner', 'In-Stream Video', 'No Tracking', 'Rich Media', 'Standard', 'VAST', 'VPAID'] df = self.generate_df_table(groups, metrics, sort=None, data_filter=None) df = df.reset_index() if df.empty: logging.warning('Dataframe empty, ' 'could not determine missing serving.') return False df = df[(df[vmc.vendorkey].str.contains(vmc.api_dc_key)) | (df[vmc.vendorkey].str.contains(vmc.api_szk_key))] df = df[(df[dctc.AM] == 'nan') | (df[dctc.AM] == 0) | (df[dctc.AM].isnull())] df = df[~df[dctc.SRV].isin(serving_vals)] df = df.astype({dctc.SRV: str, dctc.AM: str}) if not df.empty: msg = ('The following placements are under an adserver w/o ' 'a recognized serving model. Add via Edit Processor Files' 'Translate or in platform:') logging.info('{}\n{}'.format(msg, df.to_string())) else: msg = ('All placements under an adserver have an associated ' 'serving model.') logging.info('{}'.format(msg)) self.add_to_analysis_dict(key_col=self.missing_serving, message=msg, data=df.to_dict()) return True def find_missing_ad_rate(self): groups = [vmc.vendorkey, dctc.SRV, dctc.AM, dctc.AR] metrics = [] df = self.generate_df_table(groups, metrics, sort=None, data_filter=None) df = df.reset_index() if df.empty: logging.warning( 'Dataframe empty, could not determine missing ad rate.') return False df = df[((df[vmc.vendorkey].str.contains(vmc.api_dc_key)) | (df[vmc.vendorkey].str.contains(vmc.api_szk_key))) & (df[dctc.SRV] != 'No Tracking')] df = df[(df[dctc.AR] == 0) | (df[dctc.AR].isnull()) | (df[dctc.AR] == 'nan')] df = df.astype({dctc.SRV: str, dctc.AM: str, dctc.AR: str}) df = df.drop(columns=vmc.vendorkey) if not df.empty: msg = ('The following Adserving Models are missing associated ' 'rates. Add via Edit Processor Files -> Edit Relation ' 'Dictionaries -> Relation - Serving:') logging.info('{}\n{}'.format(msg, df.to_string())) else: msg = ('All placements w/ Adserving Models have associated ' 'adserving rates.') logging.info('{}'.format(msg)) self.add_to_analysis_dict(key_col=self.missing_ad_rate, message=msg, data=df.to_dict()) return True def find_in_analysis_dict(self, key, param=None, param_2=None, split_col=None, filter_col=None, filter_val=None, analysis_dict=None): if not analysis_dict: analysis_dict = self.analysis_dict item = [x for x in analysis_dict if x[self.analysis_dict_key_col] == key] if param: item = [x for x in item if x[self.analysis_dict_param_col] == param] if param_2: item = [x for x in item if x[self.analysis_dict_param_2_col] == param_2] if split_col: item = [x for x in item if x[self.analysis_dict_split_col] == split_col] if filter_col: item = [x for x in item if x[self.analysis_dict_filter_col] == filter_col] if filter_val: item = [x for x in item if x[self.analysis_dict_filter_val] == filter_val] return item def write_analysis_dict(self): with open(self.analysis_dict_file_name, 'w') as fp: json.dump(self.analysis_dict, fp) def do_all_analysis(self): self.backup_files() self.check_delivery(self.df) self.check_plan_error(self.df) self.generate_topline_and_weekly_metrics() self.evaluate_on_kpis() self.get_metrics_by_vendor_key() self.find_missing_metrics() self.flag_errant_metrics() self.find_missing_serving() self.find_missing_ad_rate() for analysis_class in self.class_list: analysis_class(self).do_analysis() self.write_analysis_dict() def load_old_raw_file_dict(self, new, cu): old = None if os.path.exists(self.analysis_dict_file_name): try: with open(self.analysis_dict_file_name, 'r') as f: old = json.load(f) except json.decoder.JSONDecodeError as e: logging.warning('Json error assuming new sources: {}'.format(e)) if old: old = self.find_in_analysis_dict(key=self.raw_file_update_col, analysis_dict=old) old = pd.DataFrame(old[0]['data']) else: logging.warning('No analysis dict assuming all new sources.') old = new.copy() old[cu.update_tier_col] = cu.update_tier_never return old def get_new_files(self): cu = CheckRawFileUpdateTime(self) cu.do_analysis() new = self.find_in_analysis_dict(key=self.raw_file_update_col) if not new: logging.warning('Could not find update times.') return False new = pd.DataFrame(new[0]['data']) old = self.load_old_raw_file_dict(new, cu) if vmc.vendorkey not in old.columns: logging.warning('Old df missing vendor key column.') return [] df = new.merge(old, how='left', on=vmc.vendorkey) df = df[df['{}_y'.format(cu.update_tier_col)] == cu.update_tier_never] df = df[df['{}_x'.format(cu.update_tier_col)] != cu.update_tier_never] new_sources = df[vmc.vendorkey].to_list() return new_sources def do_analysis_and_fix_processor(self, pre_run=False, first_run=False, new_files=False): new_file_check = [] if new_files: new_file_check = self.get_new_files() kwargs = {'only_new_files': new_files, 'new_file_list': new_file_check} for analysis_class in self.class_list: if analysis_class.fix: is_pre_run = pre_run and analysis_class.pre_run is_new_file = new_files and analysis_class.new_files is_all_files = analysis_class.all_files if new_files and is_all_files: kwargs['only_new_files'] = False kwargs['new_file_list'] = [] if is_pre_run or first_run or is_new_file: analysis_class(self).do_and_fix_analysis(**kwargs) self.matrix = vm.VendorMatrix(display_log=False) return self.fixes_to_run class AnalyzeBase(object): name = '' fix = False pre_run = False new_files = False all_files = False def __init__(self, analyze_class=None): self.aly = analyze_class self.matrix = self.aly.matrix def do_analysis(self): self.not_implemented_warning('do_analysis') def fix_analysis(self, aly_dict, write=True): self.not_implemented_warning('fix_analysis') return None def not_implemented_warning(self, func_name): logging.warning('{} function not implemented for: {}'.format( func_name, self.name)) def do_and_fix_analysis(self, only_new_files=False, new_file_list=None): self.do_analysis() aly_dict = self.aly.find_in_analysis_dict(self.name) if (len(aly_dict) > 0 and 'data' in aly_dict[0] and len(aly_dict[0]['data']) > 0): aly_dict = aly_dict[0]['data'] if only_new_files: df = pd.DataFrame(aly_dict) df = df[df[vmc.vendorkey].isin(new_file_list)] aly_dict = df.to_dict(orient='records') self.aly.fixes_to_run = True self.fix_analysis(pd.DataFrame(aly_dict)) def add_to_analysis_dict(self, df, msg): self.aly.add_to_analysis_dict( key_col=self.name, message=msg, data=df.to_dict()) class CheckAutoDictOrder(AnalyzeBase): name = Analyze.change_auto_order fix = True new_files = True @staticmethod def get_vendor_list(col=dctc.VEN): tc = dct.DictTranslationConfig() tc.read(dctc.filename_tran_config) ven_list = [] if dctc.DICT_COL_NAME not in tc.df.columns: return ven_list tdf = tc.df[tc.df[dctc.DICT_COL_NAME] == col] for col in [dctc.DICT_COL_VALUE, dctc.DICT_COL_NVALUE]: new_ven_list = tdf[col].unique().tolist() ven_list = list(set(ven_list + new_ven_list)) ven_list = [x for x in ven_list if x not in ['nan', '0', 'None']] return ven_list def do_analysis_on_data_source(self, source, df, ven_list=None, cou_list=None): if vmc.autodicord not in source.p: return df if not ven_list: ven_list = self.get_vendor_list() if not cou_list: cou_list = self.get_vendor_list(dctc.COU) auto_dict_idx = (source.p[vmc.autodicord].index(dctc.VEN) if dctc.VEN in source.p[vmc.autodicord] else None) auto_order = source.p[vmc.autodicord] if not auto_dict_idx or (len(auto_order) <= (auto_dict_idx + 1)): return df cou_after_ven = auto_order[auto_dict_idx + 1] == dctc.COU if not cou_after_ven: return df tdf = source.get_raw_df() if dctc.FPN not in tdf.columns or tdf.empty: return df auto_place = source.p[vmc.autodicplace] if auto_place == dctc.PN: auto_place = source.p[vmc.placement] tdf = pd.DataFrame(tdf[auto_place].str.split('_').to_list()) max_idx = 0 max_val = 0 ven_counts = 0 for col in tdf.columns: cou_counts = tdf[col].isin(cou_list).sum() total = ven_counts + cou_counts if total > max_val: max_val = total max_idx = col - 1 ven_counts = tdf[col].isin(ven_list).sum() if auto_dict_idx and max_idx != auto_dict_idx and max_val > 0: diff = auto_dict_idx - max_idx if diff > 0: new_order = auto_order[diff:] else: new_order = (diff * -1) * [dctc.MIS] + auto_order data_dict = {vmc.vendorkey: source.key, self.name: new_order} if df is None: df = [] df.append(data_dict) return df def do_analysis(self): data_sources = self.matrix.get_all_data_sources() df = [] ven_list = self.get_vendor_list() cou_list = self.get_vendor_list(dctc.COU) for ds in data_sources: df = self.do_analysis_on_data_source(ds, df, ven_list, cou_list) df = pd.DataFrame(df) if df.empty: msg = 'No new proposed order.' else: msg = 'Proposed new order by key as follows:' logging.info('{}\n{}'.format(msg, df.to_string())) self.aly.add_to_analysis_dict(key_col=self.name, message=msg, data=df.to_dict()) def fix_analysis_for_data_source(self, source_aly_dict, write=True): vk = source_aly_dict[vmc.vendorkey] new_order = '|'.join(source_aly_dict[self.name]) logging.info('Changing order for {} to {}'.format(vk, new_order)) data_source = self.aly.matrix.get_data_source(vk) try: os.remove(os.path.join(utl.dict_path, data_source.p[vmc.filenamedict])) except FileNotFoundError as e: logging.warning('File not found error: {}'.format(e)) self.aly.matrix.vm_change_on_key(vk, vmc.autodicord, new_order) if write: self.aly.matrix.write() def fix_analysis(self, aly_dict, write=True): aly_dict = aly_dict.to_dict(orient='records') for x in aly_dict: self.fix_analysis_for_data_source(x, write=write) if write: self.aly.matrix.write() return self.aly.matrix.vm_df class CheckFirstRow(AnalyzeBase): name = Analyze.blank_lines fix = True new_files = True all_files = True new_first_line = 'new_first_line' def find_first_row(self, source, df): """ finds the first row in a raw file where any column in FPN appears loops through only first 10 rows in case of major error source -> an item from the VM new_first_row -> row to be found If first row is incorrect, returns a data frame containing: vendor key and new_first_row returns empty df otherwise """ l_df = df if vmc.filename not in source.p: return l_df raw_file = source.p[vmc.filename] place_cols = source.p[dctc.FPN] place_cols = [s.strip('::') if s.startswith('::') else s for s in place_cols] old_first_row = int(source.p[vmc.firstrow]) df = utl.import_read_csv(raw_file, nrows=10) if df.empty: return l_df for idx in range(len(df)): tdf = utl.first_last_adj(df, idx, 0) check = [x for x in place_cols if x in tdf.columns] if check: if idx == old_first_row: break new_first_row = str(idx) data_dict = pd.DataFrame({vmc.vendorkey: [source.key], self.new_first_line: [new_first_row]}) l_df = pd.concat([data_dict, l_df], ignore_index=True) break return l_df def do_analysis(self): data_sources = self.matrix.get_all_data_sources() df = pd.DataFrame() for source in data_sources: df = self.find_first_row(source, df) if df.empty: msg = 'All first and last rows seem correct' else: msg = 'Suggested new row adjustments:' logging.info('{}\n{}'.format(msg, df.to_string())) self.aly.add_to_analysis_dict(key_col=self.name, message=msg, data=df.to_dict()) def fix_analysis_for_data_source(self, source, write=True): """ Plugs in new first line from aly dict to the VM source -> data source from aly dict (created from find_first_row) """ vk = source[vmc.vendorkey] new_first_line = source[self.new_first_line] if int(new_first_line) > 0: logging.info('Changing {} {} to {}'.format( vk, vmc.firstrow, new_first_line)) self.aly.matrix.vm_change_on_key(vk, vmc.firstrow, new_first_line) if write: self.aly.matrix.write() self.matrix = vm.VendorMatrix(display_log=False) def fix_analysis(self, aly_dict, write=True): aly_dict = aly_dict.to_dict(orient='records') for x in aly_dict: self.fix_analysis_for_data_source(x, write=write) if write: self.aly.matrix.write() self.matrix = vm.VendorMatrix(display_log=False) return self.aly.matrix.vm_df class CheckPackageCapping(AnalyzeBase): name = Analyze.package_cap cap_name = Analyze.cap_name package_vendor_good = 'Package_Vendor_Good' package_vendor_bad = 'Package_Vendor_Bad' plan_net_temp = 'Planned Net Cost - TEMP' net_cost_capped = 'Net Cost (Capped)' pre_run = True fix = False def initialize_cap_file(self): """ gets Cap Config file and the file to be capped df -> raw data appended with cap file (will later be grouped cleaner) temp_package_cap -> the column name to be capped on, stated in cap file c -> config file pdf -> cap file data cap_file -> MetricCap() object """ df = self.aly.df df = cal.net_cost_calculation(df).reset_index(drop=True) cap_file = cal.MetricCap() df = cap_file.apply_all_caps(df, final_calculation=False) temp_package_cap = cap_file.c[cap_file.proc_dim] return df, temp_package_cap, cap_file.c, cap_file.pdf, cap_file def check_package_cap(self, df, temp_package_cap): """ Checks if a package used for capping has reached or exceeded its cap Prints to logfile Make sure cap file exists, set as pdf and append to our dataframe temp_package_cap -> column name we are capping on from raw file 'plan_net_temp -> how much we cap,taken from raw file """ cols = [temp_package_cap, self.plan_net_temp, vmc.cost] missing_cols = [x for x in cols if x not in df.columns] if any(missing_cols): logging.warning('Missing columns: {}'.format(missing_cols)) return pd.DataFrame() df = df[cols] df = df.groupby([temp_package_cap]) df = df.apply(lambda x: 0 if x[self.plan_net_temp].sum() == 0 else x[vmc.cost].sum() / x[self.plan_net_temp].sum()) f_df = df[df >= 1] if f_df.empty: delivery_msg = 'No Packages have exceeded their cap' logging.info(delivery_msg) self.aly.add_to_analysis_dict( key_col=self.cap_name, param=self.aly.under_delivery_col, message=delivery_msg) return f_df else: del_p = f_df.apply(lambda x: "{0:.2f}%".format(x * 100)) delivery_msg = 'The following packages have delivered in full: ' logging.info('{}\n{}'.format(delivery_msg, del_p)) data = del_p.reset_index().rename(columns={0: 'Cap'}) self.aly.add_to_analysis_dict( key_col=self.cap_name, param=self.aly.full_delivery_col, message=delivery_msg, data=data.to_dict()) o_df = f_df[f_df > 1.5] if not o_df.empty: del_p = o_df.apply(lambda x: "{0:.2f}%".format(x * 100)) delivery_msg = 'The following packages have over-delivered:' logging.info('{}\n{}'.format(delivery_msg, del_p)) data = del_p.reset_index().rename(columns={0: 'Cap'}) self.aly.add_to_analysis_dict( key_col=self.cap_name, param=self.aly.over_delivery_col, message=delivery_msg, data=data.to_dict()) return data def check_package_vendor(self, df, temp_package_cap, pdf): """ Warns if the package cap file will affect multiple vendors creates dataframe grouped by cap and vendor counts unique members, if there are more vendors than there are caps, raise a warning return df of packages with multiple vendors associated """ cols = [dctc.VEN, vmc.vendorkey, dctc.PN, temp_package_cap, self.plan_net_temp, vmc.cost] missing_cols = [x for x in cols if x not in df.columns] if any(missing_cols) or df.empty: logging.warning('Missing columns: {}'.format(missing_cols)) return pd.DataFrame() df = df[cols] try: df = df.groupby([temp_package_cap, dctc.VEN]) except ValueError as e: logging.warning('ValueError as follows: {}'.format(e)) return pd.DataFrame() try: df = df.size().reset_index(name='count') except ValueError as e: logging.warning('ValueError as follows: {}'.format(e)) return pd.DataFrame() df = df[[temp_package_cap, dctc.VEN]] if (temp_package_cap not in df.columns or temp_package_cap not in pdf.columns): return pd.DataFrame() df = df[df[temp_package_cap].isin(pdf[temp_package_cap])] df = df[df.duplicated(subset=temp_package_cap, keep=False)] if not df.empty: delivery_msg = ('One or more of the packages you are capping on is ' 'associated with multiple vendors') logging.warning('{}\n{}'.format(delivery_msg, df)) self.aly.add_to_analysis_dict(key_col=self.name, param=self.aly.package_vendor_bad, message=delivery_msg, data=df.to_dict()) return df else: delivery_msg = "All packages are capping on a single vendor" logging.info('{}\n{}'.format(delivery_msg, df)) self.aly.add_to_analysis_dict(key_col=self.name, param=self.aly.package_vendor_good, message=delivery_msg, data=df.to_dict()) return df def fix_package_vendor(self, temp_package_cap, c, pdf, cap_file, write=None, aly_dict=None): """ Takes in capped packages that are associated with more than one vendor Changes their names to be unique Translates all instances in dictionaries to match """ df = aly_dict if not df.empty: t_df = pd.DataFrame({dctc.DICT_COL_NAME: [], dctc.DICT_COL_VALUE: [], dctc.DICT_COL_NVALUE: [], dctc.DICT_COL_FNC: [], dctc.DICT_COL_SEL: [], 'index': []}) t_df[dctc.DICT_COL_SEL] = df[dctc.VEN] t_df[dctc.DICT_COL_NAME] = temp_package_cap t_df[dctc.DICT_COL_VALUE] = df[temp_package_cap] for temp_package_cap in df[[temp_package_cap]]: df[temp_package_cap] = df[temp_package_cap] + '-' + df[dctc.VEN] df[c[cap_file.file_metric]] = pdf[self.plan_net_temp] df = df[[temp_package_cap, c[cap_file.file_metric]]] df = df.fillna(0) path = c[cap_file.file_name] df = pd.concat([pdf, df]) df.to_csv(path, index=False, encoding='utf-8') t_df[dctc.DICT_COL_NVALUE] = df[temp_package_cap].copy() t_df[dctc.DICT_COL_FNC] = 'Select::mpVendor' t_df = t_df[[dctc.DICT_COL_NAME, dctc.DICT_COL_VALUE, dctc.DICT_COL_NVALUE, dctc.DICT_COL_FNC, dctc.DICT_COL_SEL]] if write: translation = dct.DictTranslationConfig() translation.read(dctc.filename_tran_config) translation.df = pd.concat([translation.df, t_df]) translation.write(translation.df, dctc.filename_tran_config) fix_msg = 'Automatically changing capped package names:' logging.info('{}\n{}'.format(fix_msg, t_df)) return t_df def do_analysis(self): try: df, temp_package_cap, c, pdf, cap_file = self.initialize_cap_file() except TypeError: logging.debug("cap config file is missing") return None except AttributeError: logging.debug("one of the files may be empty") return None except KeyError: logging.debug("mpPlacement name does not exist") return None self.check_package_cap(df, temp_package_cap) self.check_package_vendor(df, temp_package_cap, pdf) def fix_analysis(self, aly_dict, write=True): try: df, temp_package_cap, c, pdf, cap_file = self.initialize_cap_file() except TypeError: logging.debug("cap config file is missing") return None except AttributeError: logging.debug("one of the files may be empty") return None except KeyError: logging.debug("mpPlacement name does not exist") return None self.fix_package_vendor(temp_package_cap, c, pdf, cap_file, write=write, aly_dict=aly_dict) class FindPlacementNameCol(AnalyzeBase): name = Analyze.placement_col fix = True new_files = True @staticmethod def do_analysis_on_data_source(source, df): if vmc.filename not in source.p: return pd.DataFrame() file_name = source.p[vmc.filename] first_row = source.p[vmc.firstrow] transforms = str(source.p[vmc.transform]).split(':::') transforms = [x for x in transforms if x.split('::')[0] in ['FilterCol', 'MergeReplaceExclude']] p_col = source.p[vmc.placement] if os.path.exists(file_name): tdf = source.get_raw_df(nrows=first_row + 3) if tdf.empty and transforms: tdf = source.get_raw_df() tdf = tdf.drop([vmc.fullplacename], axis=1, errors='ignore') if tdf.empty: return df tdf = tdf.applymap( lambda x: str(x).count('_')).apply(lambda x: sum(x)) max_col = tdf.idxmax() max_exists = max_col in tdf p_exists = p_col in tdf no_p_check = (not p_exists and max_exists) p_check = (max_exists and p_exists and tdf[max_col] >= (tdf[p_col] + 9) and 75 <= tdf[max_col] <= 105) if no_p_check or p_check: data_dict = {vmc.vendorkey: source.key, 'Current Placement Col': p_col, 'Suggested Col': max_col} df.append(data_dict) return df def do_analysis(self): self.matrix = vm.VendorMatrix(display_log=False) data_sources = self.matrix.get_all_data_sources() df = [] for source in data_sources: df = self.do_analysis_on_data_source(source, df) df = pd.DataFrame(df) if df.empty: msg = ('Placement Name columns look correct. ' 'No columns w/ more breakouts.') logging.info('{}'.format(msg)) else: msg = ('The following data sources have more breakouts in ' 'another column. Consider changing placement name ' 'source:') logging.info('{}\n{}'.format(msg, df.to_string())) self.aly.add_to_analysis_dict(key_col=self.name, message=msg, data=df.to_dict()) def fix_analysis_for_data_source(self, source_aly_dict, write=True, col=vmc.placement): vk = source_aly_dict[vmc.vendorkey] new_col = source_aly_dict['Suggested Col'] logging.info('Changing {} {} to {}'.format(vk, col, new_col)) self.aly.matrix.vm_change_on_key(vk, col, new_col) if write: self.aly.matrix.write() def fix_analysis(self, aly_dict, write=True): aly_dict = aly_dict.to_dict(orient='records') for x in aly_dict: self.fix_analysis_for_data_source(x, False) if write: self.aly.matrix.write() return self.aly.matrix.vm_df class CheckApiDateLength(AnalyzeBase): """Checks APIs for max date length and splits data sources if necessary.""" name = Analyze.max_api_length fix = True pre_run = True def do_analysis(self): """ Loops through all data sources checking and flagging through those that are too long. Those sources are added to a df and the analysis dict """ vk_list = [] data_sources = self.matrix.get_all_data_sources() max_date_dict = { vmc.api_amz_key: 60, vmc.api_szk_key: 60, vmc.api_db_key: 60, vmc.api_tik_key: 30, vmc.api_ttd_key: 80, vmc.api_sc_key: 30, vmc.api_amd_key: 30} data_sources = [x for x in data_sources if 'API_' in x.key] for ds in data_sources: if 'API_' in ds.key: key = ds.key.split('_')[1] if key in max_date_dict.keys(): max_date = max_date_dict[key] date_range = (ds.p[vmc.enddate] - ds.p[vmc.startdate]).days if date_range > (max_date - 3): vk_list.append(ds.key) mdf = pd.DataFrame({vmc.vendorkey: vk_list}) mdf[self.name] = '' if vk_list: msg = 'The following APIs are within 3 days of their max length:' logging.info('{}\n{}'.format(msg, vk_list)) mdf[self.name] = mdf[vmc.vendorkey].str.split( '_').str[1].replace(max_date_dict) else: msg = 'No APIs within 3 days of max length.' logging.info('{}'.format(msg)) self.add_to_analysis_dict(df=mdf, msg=msg) def fix_analysis(self, aly_dict, write=True): """ Takes data sources that are too long and splits them based on date. :param aly_dict: a df containing items to fix :param write: boolean will write the vm as csv when true :returns: the vm as a df """ tdf = aly_dict.to_dict(orient='records') df = self.aly.matrix.vm_df for x in tdf: vk = x[vmc.vendorkey] logging.info('Duplicating vendor key {}'.format(vk)) max_date_length = x[self.name] ndf = df[df[vmc.vendorkey] == vk].reset_index(drop=True) ndf = utl.data_to_type(ndf, date_col=[vmc.startdate]) new_sd = ndf[vmc.startdate][0] + dt.timedelta( days=max_date_length - 3) if new_sd.date() >= dt.datetime.today().date(): new_sd = dt.datetime.today() - dt.timedelta(days=3) new_str_sd = new_sd.strftime('%Y-%m-%d') ndf.loc[0, vmc.startdate] = new_str_sd ndf.loc[0, vmc.enddate] = '' new_vk = '{}_{}'.format(vk, new_str_sd) ndf.loc[0, vmc.vendorkey] = new_vk file_type = os.path.splitext(ndf[vmc.filename][0])[1].lower() new_fn = '{}{}'.format(new_vk.replace('API_', '').lower(), file_type) ndf.loc[0, vmc.filename] = new_fn idx = df[df[vmc.vendorkey] == vk].index df.loc[idx, vmc.vendorkey] = df.loc[ idx, vmc.vendorkey][idx[0]].replace('API_', '') old_ed = new_sd - dt.timedelta(days=1) df.loc[idx, vmc.enddate] = old_ed.strftime('%Y-%m-%d') df = pd.concat([df, ndf]).reset_index(drop=True) self.aly.matrix.vm_df = df if write: self.aly.matrix.write() return self.aly.matrix.vm_df class CheckColumnNames(AnalyzeBase): """Checks raw data for column names and reassigns if necessary.""" name = Analyze.raw_columns fix = True new_files = True all_files = True def do_analysis(self): """ Loops through all data sources adds column names and flags if missing active metrics. """ self.matrix = vm.VendorMatrix(display_log=False) data_sources = self.matrix.get_all_data_sources() data = [] for source in data_sources: if vmc.firstrow not in source.p: continue first_row = source.p[vmc.firstrow] transforms = str(source.p[vmc.transform]).split(':::') transforms = [x for x in transforms if x.split('::')[0] in ['FilterCol', 'MergeReplaceExclude']] missing_cols = [] tdf = source.get_raw_df(nrows=first_row+5) if tdf.empty and transforms: tdf = source.get_raw_df() cols = [str(x) for x in tdf.columns if str(x) != 'nan'] active_metrics = source.get_active_metrics() active_metrics[vmc.placement] = [source.p[vmc.placement]] for k, v in active_metrics.items(): for c in v: if c not in cols: missing_cols.append({k: c}) data_dict = {vmc.vendorkey: source.key, self.name: cols, 'missing': missing_cols} data.append(data_dict) df = pd.DataFrame(data) df = df.fillna('') update_msg = 'Columns and missing columns by key as follows:' logging.info('{}\n{}'.format(update_msg, df)) self.add_to_analysis_dict(df=df, msg=update_msg) def fix_analysis(self, aly_dict, write=True): """ Adjusts placement name and auto dict order of data sources when those values are missing. :param aly_dict: a df containing items to fix :param write: boolean will write the vm as csv when true :returns: the vm as a df """ aly_dicts = aly_dict.to_dict(orient='records') self.matrix = vm.VendorMatrix(display_log=False) df = self.aly.matrix.vm_df aly_dicts = [x for x in aly_dicts if x['missing'] and x[Analyze.raw_columns]] for aly_dict in aly_dicts: vk = aly_dict[vmc.vendorkey] source = self.matrix.get_data_source(vk) placement_missing = [x for x in aly_dict['missing'] if vmc.placement in x.keys()] if placement_missing: logging.info('Placement name missing for {}. ' 'Attempting to find.'.format(vk)) fnc = FindPlacementNameCol(self.aly) tdf = fnc.do_analysis_on_data_source(source, []) if tdf: tdf = tdf[0] for col in [vmc.placement, vmc.fullplacename]: fnc.fix_analysis_for_data_source(tdf, True, col) self.matrix = vm.VendorMatrix(display_log=False) source = self.matrix.get_data_source(vk) cad = CheckAutoDictOrder(self.aly) tdf = cad.do_analysis_on_data_source(source, []) tdf = pd.DataFrame(tdf) if not tdf.empty: tdf = tdf.to_dict(orient='records')[0] cad.fix_analysis_for_data_source(tdf, True) self.matrix = vm.VendorMatrix(display_log=False) date_missing = [x for x in aly_dict['missing'] if vmc.date in x.keys()] if date_missing: logging.info('Date col missing for {}. ' 'Attempting to find.'.format(vk)) tdf = source.get_raw_df() for col in tdf.columns: try: tdf[col] = utl.data_to_type(tdf[col].reset_index(), date_col=[col])[col] except: tdf[col] = pd.NaT date_col = (tdf.isnull().sum() * 100 / len(tdf)).idxmin() logging.info('Changing {} date col to {} '.format(vk, date_col)) self.aly.matrix.vm_change_on_key(vk, vmc.date, date_col) self.aly.matrix.write() self.matrix = vm.VendorMatrix(display_log=False) self.aly.matrix.vm_df = df if write: self.aly.matrix.write() return self.aly.matrix.vm_df class CheckFlatSpends(AnalyzeBase): """Checks for past flat packages reassigns placement date if necessary.""" name = Analyze.missing_flat first_click_col = 'First Click Date' error_col = 'Error' missing_clicks_error = 'No Clicks' placement_date_error = 'Incorrect Placement Date' missing_rate_error = 'Missing Buy Rate' fix = True pre_run = True def merge_first_click_date(self, df, tdf, groups): df = df.merge(tdf.drop_duplicates(), on=groups, how='left', indicator=True) df = df.drop(columns=['Clicks_y']) df = df.rename(columns={vmc.date: self.first_click_col, 'Clicks_x': vmc.clicks}) df = df.astype({vmc.clicks: str}) df[dctc.PD] = df[dctc.PD].dt.strftime('%Y-%m-%d %H:%M:%S') df[self.first_click_col] = df[ self.first_click_col].dt.strftime('%Y-%m-%d %H:%M:%S') return df def find_missing_flat_spend(self, df): """ Checks for flat packages w/ no attributed cost past placement date. Sorts into missing clicks, no buy model, or wrong placement date. """ pn_groups = [dctc.VEN, dctc.COU, dctc.PN, dctc.PKD, dctc.PD, dctc.BM, dctc.BR, vmc.date] metrics = [cal.NCF, vmc.clicks] metrics = [metric for metric in metrics if metric in df.columns] df = self.aly.generate_df_table(pn_groups, metrics, sort=None, data_filter=None, df=df) df.reset_index(inplace=True) if dctc.BM in df.columns: df = df[(df[dctc.BM] == cal.BM_FLAT) | (df[dctc.BM] == cal.BM_FLAT2)] if not df.empty: pk_groups = [dctc.VEN, dctc.COU, dctc.PKD] tdf = df.groupby(pk_groups).sum(numeric_only=True) tdf.reset_index(inplace=True) tdf = tdf[tdf[cal.NCF] == 0] df = df.merge(tdf[pk_groups], how='right') if not df.empty: pn_groups.remove(vmc.date) tdf = df[df[vmc.clicks] > 0] tdf = tdf.groupby(pn_groups).min() tdf.reset_index(inplace=True) if cal.NCF not in tdf: return pd.DataFrame() tdf = tdf.drop(columns=[cal.NCF]) tdf = utl.data_to_type(tdf, date_col=[dctc.PD, vmc.date]) df = df.groupby(pn_groups).sum(numeric_only=True) df.reset_index(inplace=True) df = utl.data_to_type(df, date_col=[dctc.PD]) df = self.merge_first_click_date(df, tdf, pn_groups) df = utl.data_to_type(df, date_col=[dctc.PD]) rdf = df[df[dctc.BR] == 0] if not rdf.empty: rdf = rdf.drop(columns='_merge') rdf[self.error_col] = self.missing_rate_error df = df[df[dctc.PD] <= dt.datetime.today()] if not df.empty: cdf = df[df['_merge'] == 'both'] cdf = cdf.iloc[:, :-1] cdf = cdf[cdf[self.first_click_col] != cdf[dctc.PD]] cdf[self.error_col] = self.placement_date_error ndf = df[df['_merge'] == 'left_only'] ndf = ndf.drop(columns=['_merge']) ndf[self.error_col] = self.missing_clicks_error df = pd.concat([cdf, rdf], ignore_index=True) df = pd.concat([df, ndf], ignore_index=True) df = df.reset_index(drop=True) df = df.dropna(how='all') df_cols = [x for x in df.columns if x != '_merge'] df = df[df_cols] for col in df.columns: try: df[col] = df[col].fillna('') except TypeError as e: logging.warning('Error for {}: {}'.format(col, e)) df = utl.data_to_type(df, str_col=[dctc.PD, self.first_click_col]) return df def do_analysis(self): df = self.aly.df rdf = self.find_missing_flat_spend(df) if rdf.empty: msg = ('All flat packages with clicks past their placement date ' 'have associated net cost.') logging.info('{}'.format(msg)) else: msg = ('The following flat packages are not calculating net cost ' 'for the following reasons:') logging.info('{}\n{}'.format(msg, rdf.to_string())) self.add_to_analysis_dict(df=rdf, msg=msg) def fix_analysis(self, aly_dict, write=True): """ Translates flat packages w/ missing spends placement date to first w/ clicks. :param aly_dict: a df containing items to fix :param write: boolean will write the translational_dict as csv when true :returns: the lines added to translational_dict """ if (aly_dict.empty or self.placement_date_error not in aly_dict[self.error_col].values): return pd.DataFrame() translation = dct.DictTranslationConfig() translation.read(dctc.filename_tran_config) translation_df = translation.get() aly_dicts = aly_dict.to_dict(orient='records') tdf = pd.DataFrame(columns=translation_df.columns) for aly_dict in aly_dicts: if aly_dict[self.error_col] == self.placement_date_error: old_val = aly_dict[dctc.PD].strip('00:00:00').strip() new_val = aly_dict[ self.first_click_col].strip('00:00:00').strip() try: trans = [[dctc.PD, old_val, new_val, 'Select::' + dctc.PN, aly_dict[dctc.PN]]] row = pd.DataFrame(trans, columns=translation_df.columns) tdf = pd.concat([tdf, row], ignore_index=True) except ValueError: trans = [[dctc.PD, old_val, new_val, 'Select::' + dctc.PN, aly_dict[dctc.PN], 0]] row = pd.DataFrame(trans, columns=translation_df.columns) tdf = pd.concat([tdf, row], ignore_index=True) translation_df = pd.concat([translation_df, tdf], ignore_index=True) if write: translation.write(translation_df, dctc.filename_tran_config) return tdf class CheckDoubleCounting(AnalyzeBase): """ Checks for double counting datasources. If double counting all placements, removes metric from one of the datasources. """ name = Analyze.double_counting_all error_col = 'Error' double_counting_all = 'All' double_counting_partial = 'Partial' tmp_col = 'temp' metric_col = 'Metric' total_placement_count = 'Total Num Placements' num_duplicates = 'Num Duplicates' fix = True pre_run = True def count_unique_placements(self, df, col): df = df.groupby([dctc.VEN, vmc.vendorkey, dctc.PN]).size() df = df.reset_index().rename(columns={0: self.tmp_col}) df = df.groupby([dctc.VEN, vmc.vendorkey]).size() df = df.reset_index().rename(columns={0: col}) return df def find_metric_double_counting(self, df): rdf = pd.DataFrame() groups = [dctc.VEN, vmc.vendorkey, dctc.PN, vmc.date] metrics = [cal.NCF, vmc.impressions, vmc.clicks, vmc.video_plays, vmc.views, vmc.views25, vmc.views50, vmc.views75, vmc.views100] metrics = [metric for metric in metrics if metric in df.columns] df = self.aly.generate_df_table(groups, metrics, sort=None, data_filter=None, df=df) df.reset_index(inplace=True) if df.empty: return df sdf = self.count_unique_placements(df, self.total_placement_count) sdf = sdf.groupby(dctc.VEN).max().reset_index() df = df[df.duplicated(subset=[dctc.VEN, dctc.PN, vmc.date], keep=False)] if not df.empty: for metric in metrics: tdf = df[df[metric] > 0] tdf = tdf[tdf.duplicated( subset=[dctc.PN, vmc.date], keep=False)] if not tdf.empty: tdf = self.count_unique_placements(tdf, self.num_duplicates) tdf[self.metric_col] = metric rdf = pd.concat([rdf, tdf], ignore_index=True) if not rdf.empty: rdf = sdf[[dctc.VEN, self.total_placement_count]].merge( rdf, how='inner', on=dctc.VEN) rdf = rdf.groupby([dctc.VEN, self.metric_col, self.total_placement_count, self.num_duplicates])[vmc.vendorkey].apply( lambda x: ','.join(x)).reset_index() rdf = rdf.groupby([dctc.VEN, self.metric_col, vmc.vendorkey, self.num_duplicates]).max().reset_index() rdf[self.error_col] = np.where( rdf[self.total_placement_count] == rdf[self.num_duplicates], self.double_counting_all, self.double_counting_partial) return rdf def do_analysis(self): df = self.aly.df rdf = self.find_metric_double_counting(df) if rdf.empty: msg = ('No datasources are double counting placements for any ' 'metric.') logging.info('{}'.format(msg)) else: msg = ('The following datasources are double counting the following' ' metrics on all or some placements:') logging.info('{}\n{}'.format(msg, rdf.to_string())) self.add_to_analysis_dict(df=rdf, msg=msg) @staticmethod def remove_metric(vm_df, vk, metric): if metric == cal.NCF: metric = vmc.cost idx = vm_df[vm_df[vmc.vendorkey] == vk].index vm_df.loc[idx, metric] = '' logging.info('Removing {} from {}.'.format(metric, vk)) return vm_df @staticmethod def update_rule(vm_df, vk, metric, vendor, idx, query_str, metric_str): if metric == cal.NCF: metric = vmc.cost if vendor not in str(vm_df.loc[idx, query_str].values): vm_df.loc[idx, query_str] = ( vm_df.loc[idx, query_str][idx[0]] + ',' + vendor) if not (metric in str(vm_df.loc[idx, metric_str].values)): vm_df.loc[idx, metric_str] = ( vm_df.loc[idx, metric_str][idx[0]] + '|' + metric) logging.info('Adding rule for {} to remove {} {}.'.format( vk, vendor, metric)) return vm_df @staticmethod def add_rule(vm_df, vk, rule_num, idx, metric, vendor): if metric == cal.NCF: metric = vmc.cost metric_str = "_".join([utl.RULE_PREF, str(rule_num), utl.RULE_METRIC]) query_str = "_".join([utl.RULE_PREF, str(rule_num), utl.RULE_QUERY]) factor_str = "_".join([utl.RULE_PREF, str(rule_num), utl.RULE_FACTOR]) vm_df.loc[idx, factor_str] = 0.0 vm_df.loc[idx, metric_str] = ('POST' + '::' + metric) vm_df.loc[idx, query_str] = (dctc.VEN + '::' + vendor) logging.info('Adding rule for {} to remove ''{} {}.'.format(vk, vendor, metric)) return vm_df def fix_all(self, aly_dict): aly_dict = aly_dict.sort_values(by=[dctc.VEN, self.metric_col]) metric_buckets = { 'ctr_metrics': [vmc.impressions, vmc.clicks], 'vtr_metrics': [ vmc.views25, vmc.views50, vmc.views75, vmc.views100], 'video_play_metrics': [vmc.video_plays, vmc.views], 'net_cost_metrics': [cal.NCF] } vm_df = self.aly.matrix.vm_df logging.info('Attempting to remove double counting.') for index, row in aly_dict.iterrows(): vks = row[vmc.vendorkey].split(',') raw_vks = [x for x in vks if vmc.api_raw_key in x or vmc.api_gs_key in x] serve_vks = [x for x in vks if vmc.api_szk_key in x or vmc.api_dc_key in x] first_empty = None added = False bucket = [k for k, v in metric_buckets.items() if row[self.metric_col] in v] if not bucket: bucket = row[self.metric_col] else: bucket = bucket[0] for vk in raw_vks: if len(vks) > 1: vm_df = self.remove_metric(vm_df, vk, row[self.metric_col]) vks.remove(vk) for vk in serve_vks: if len(vks) > 1: idx = vm_df[vm_df[vmc.vendorkey] == vk].index for i in range(1, 7): metric_str = "_".join( [utl.RULE_PREF, str(i), utl.RULE_METRIC]) query_str = "_".join( [utl.RULE_PREF, str(i), utl.RULE_QUERY]) if ([x for x in metric_buckets[bucket] if x in str(vm_df.loc[idx, metric_str].values)]): vm_df = self.update_rule( vm_df, vk, row[self.metric_col], row[dctc.VEN], idx, query_str, metric_str) added = True break if not vm_df.loc[idx, query_str].any(): if not first_empty: first_empty = i continue if not added: if first_empty: self.add_rule(vm_df, vk, first_empty, idx, row[self.metric_col], row[dctc.VEN]) else: logging.warning('No empty rules for {}. Could not ' 'auto-fix double counting.' .format(vk)) vks.remove(vk) self.aly.matrix.vm_df = vm_df return vm_df def fix_analysis(self, aly_dict, write=True): """ Removes duplicate metrics if all placements duplicated. Prioritizes removal from rawfiles first, adservers otherwise. :param aly_dict: a df containing items to fix :param write: boolean will write the vendormatrix as csv when true :returns: the vendormatrix as a df """ if aly_dict.empty: return pd.DataFrame() self.fix_all( aly_dict[aly_dict[self.error_col] == self.double_counting_all]) if write: self.aly.matrix.write() return self.aly.matrix.vm_df class GetPacingAnalysis(AnalyzeBase): name = Analyze.delivery_comp_col fix = False pre_run = False delivery_col = 'Delivery' proj_completion_col = 'Projected Full Delivery' pacing_goal_col = '% Through Campaign' @staticmethod def get_rolling_mean_df(df, value_col, group_cols): """ Gets rolling means to project delivery from :param df: a df containing dates and desired values/groups :param value_col: values to calculate rolling means of :param group_cols: column breakouts to base rolling means on :returns: df w/ groups cols, value_cols, and 3,7,30 day rolling means """ if df.empty: logging.warning('Dataframe empty, could not get rolling mean.') return df pdf = pd.pivot_table(df, index=vmc.date, columns=group_cols, values=value_col, aggfunc=np.sum) if len(pdf.columns) > 10000: logging.warning('Maximum 10K combos for calculation, data set ' 'has {}'.format(len(pdf.columns))) return pd.DataFrame() df = pdf.unstack().reset_index().rename(columns={0: value_col}) for x in [3, 7, 30]: ndf = pdf.rolling( window=x, min_periods=1).mean().unstack().reset_index().rename( columns={0: '{} rolling {}'.format(value_col, x)}) df = df.merge(ndf, on=group_cols + [vmc.date]) return df def project_delivery_completion(self, df, average_df, plan_names, final_cols): """ Use rolling means to project delivery completion date. :param df: df where planned costs greater than net :param average_df: return df from get_rolling_mean_df :param plan_names: planned net full placement columns :param final_cols: desired columns in final df :returns: original df w/ added projected completion column """ df = df.merge(average_df, how='left', on=plan_names) df['days'] = (df[dctc.PNC] - df[vmc.cost]) / df[ '{} rolling {}'.format(vmc.cost, 3)] df['days'] = df['days'].replace( [np.inf, -np.inf], np.nan).fillna(10000) df['days'] = np.where(df['days'] > 10000, 10000, df['days']) df[self.proj_completion_col] = pd.to_datetime( df[vmc.date]) + pd.to_timedelta( np.ceil(df['days']).astype(int), unit='D') no_date_map = ((df[self.proj_completion_col] > dt.datetime.today() + dt.timedelta(days=365)) | (df[self.proj_completion_col] < dt.datetime.today() - dt.timedelta(days=365))) df[self.proj_completion_col] = df[ self.proj_completion_col].dt.strftime('%Y-%m-%d') df.loc[ no_date_map, self.proj_completion_col] = 'Greater than 1 Year' df[self.proj_completion_col] = df[ self.proj_completion_col].replace( [np.inf, -np.inf, np.datetime64('NaT'), 'NaT'], np.nan ).fillna('Greater than 1 Year') df = df[final_cols] return df def get_actual_delivery(self, df): """ Calculate delivery metrics :param df: df w/ topline planned and actual spend metrics :returns: original df w/ delivery and pacing metrics """ df[self.delivery_col] = (df[vmc.cost] / df[dctc.PNC] * 100).round(2) df[self.delivery_col] = df[self.delivery_col].replace( [np.inf, -np.inf], np.nan).fillna(0) df[self.delivery_col] = df[self.delivery_col].astype(str) + '%' df[self.pacing_goal_col] = ((pd.Timestamp.today(None) - df[dctc.SD] ) / (df[dctc.ED] - df[dctc.SD]) * 100).round(2) df[self.pacing_goal_col] = np.where( df[self.pacing_goal_col] > 100, 100, df[self.pacing_goal_col]) df[self.pacing_goal_col] = df[self.pacing_goal_col].replace( [np.inf, -np.inf], np.nan).fillna(0) df[self.pacing_goal_col] = df[self.pacing_goal_col].astype(str) + '%' return df def get_pacing_analysis(self, df): """ Calculate topline level pacing data for use in pacing table and alerts. :param df: full output df """ if df.empty: logging.warning('Dataframe empty could not get pacing analysis.') return pd.DataFrame() plan_names = self.matrix.vendor_set(vm.plan_key)[vmc.fullplacename] average_df = self.get_rolling_mean_df( df=df, value_col=vmc.cost, group_cols=plan_names) if average_df.empty: msg = ('Average df empty, maybe too large. ' 'Could not project delivery completion.') logging.warning(msg) self.aly.add_to_analysis_dict(key_col=self.aly.delivery_comp_col, message=msg) return pd.DataFrame() last_date = dt.datetime.strftime( dt.datetime.today() - dt.timedelta(days=1), '%Y-%m-%d') average_df = average_df[average_df[vmc.date] == last_date] average_df = average_df.drop(columns=[vmc.cost]) start_dates, end_dates = self.aly.get_start_end_dates( df, plan_names) cols = [vmc.cost, dctc.PNC, vmc.AD_COST] missing_cols = [x for x in cols if x not in df.columns] if missing_cols: logging.warning('Missing columns: {}'.format(missing_cols)) return pd.DataFrame() df = df.groupby(plan_names)[cols].sum() df = df.reset_index() df = df[(df[vmc.cost] > 0) | (df[dctc.PNC] > 0)] tdf = df[df[dctc.PNC] > df[vmc.cost]] df = df[df[dctc.PNC] <= df[vmc.cost]] final_cols = (plan_names + [dctc.PNC] + [vmc.cost] + [vmc.AD_COST] + [self.proj_completion_col]) if not tdf.empty: tdf = self.project_delivery_completion( tdf, average_df, plan_names, final_cols) if not df.empty: df[self.proj_completion_col] = [ 'No Planned' if x == 0 else 'Delivered' for x in df[dctc.PNC]] df = df[final_cols] if not tdf.empty: tdf = tdf.merge( df, how='outer', on=final_cols) else: tdf = df over_delv = self.aly.find_in_analysis_dict( self.delivery_col, param=self.aly.over_delivery_col) if over_delv: df = pd.DataFrame(over_delv[0]['data']) tdf = tdf.merge( df[plan_names], on=plan_names, how='left', indicator=True) tdf[self.proj_completion_col] = [ 'Over Delivered' if tdf['_merge'][x] == 'both' else tdf[self.proj_completion_col][x] for x in tdf.index] tdf = tdf.drop(columns=['_merge']) tdf = tdf.merge(start_dates, how='left', on=plan_names) tdf = tdf.merge(end_dates, how='left', on=plan_names) tdf = self.get_actual_delivery(tdf) final_cols = (plan_names + [dctc.SD] + [dctc.ED] + [vmc.cost] + [dctc.PNC] + [self.delivery_col] + [self.proj_completion_col] + [self.pacing_goal_col] + [vmc.AD_COST]) final_cols = [x for x in final_cols if x in tdf.columns] tdf = tdf[final_cols] tdf = tdf.replace([np.inf, -np.inf], np.nan).fillna(0) tdf = utl.data_to_type( tdf, float_col=[vmc.cost, dctc.PNC, vmc.AD_COST]) for col in [dctc.PNC, vmc.cost, vmc.AD_COST]: tdf[col] = '$' + tdf[col].round(2).astype(str) for col in [dctc.SD, dctc.ED]: tdf[col] = [str(0) if x == 0 else str(pd.to_datetime(x).date()) for x in tdf[col]] return tdf def do_analysis(self): df = self.aly.df df = self.get_pacing_analysis(df) if df.empty: msg = 'Could not calculate pacing data.' logging.info('{}'.format(msg)) else: msg = ('Projected delivery completion and current pacing ' 'is as follows:') logging.info('{}\n{}'.format(msg, df.to_string())) self.aly.add_to_analysis_dict(key_col=self.aly.delivery_comp_col, message=msg, data=df.to_dict()) class GetDailyDelivery(AnalyzeBase): name = Analyze.placement_col fix = False pre_run = False num_days = 'Num Days' daily_spend_goal = 'Daily Spend Goal' day_pacing = 'Day Pacing' def get_daily_delivery(self, df): """ Get daily delivery data for each unique planned net level breakout :param df: full output df """ daily_dfs = [] if df.empty: logging.warning('Dataframe empty cannot get daily delivery') return daily_dfs plan_names = self.matrix.vendor_set(vm.plan_key)[vmc.fullplacename] start_dates, end_dates = self.aly.get_start_end_dates(df, plan_names) pdf_cols = plan_names + [dctc.PNC, dctc.UNC] pdf = self.matrix.vendor_get(vm.plan_key) pdf = pdf[pdf_cols] groups = plan_names + [vmc.date] metrics = [cal.NCF] df = df.groupby(groups)[metrics].sum().reset_index() df = utl.data_to_type(df, date_col=[vmc.date]) unique_breakouts = df.groupby(plan_names).first().reset_index() unique_breakouts = unique_breakouts[plan_names] sort_ascending = [True for _ in plan_names] sort_ascending.append(False) for index, row in unique_breakouts.iterrows(): tdf = df for x in plan_names: tdf = tdf[tdf[x] == row[x]] tdf = tdf.merge(start_dates, how='left', on=plan_names) tdf = tdf.merge(end_dates, how='left', on=plan_names) tdf = tdf.merge(pdf, how='left', on=plan_names) tdf = utl.data_to_type(tdf, float_col=[dctc.PNC]) tdf[self.num_days] = (tdf[dctc.ED] - tdf[dctc.SD]).dt.days tdf = tdf.replace([np.inf, -np.inf], np.nan).fillna(0) if tdf[self.num_days][0] == 0 or tdf[dctc.PNC][0] == 0: tdf[self.daily_spend_goal] = 0 tdf[self.day_pacing] = '0%' else: daily_spend_goal = (tdf[dctc.PNC][0] / tdf[self.num_days][0]) stop_date = (tdf[dctc.SD][0] + dt.timedelta(days=int(tdf[self.num_days][0]))) tdf[self.daily_spend_goal] = [daily_spend_goal if (tdf[dctc.SD][0] <= x <= stop_date ) else 0 for x in tdf[vmc.date]] tdf[self.day_pacing] = ( ((tdf[cal.NCF] / tdf[self.daily_spend_goal]) - 1) * 100) tdf[self.day_pacing] = tdf[self.day_pacing].replace( [np.inf, -np.inf], np.nan).fillna(0.0) tdf[self.day_pacing] = ( tdf[self.day_pacing].round(2).astype(str) + '%') tdf = tdf.sort_values( plan_names + [vmc.date], ascending=sort_ascending) tdf[[dctc.SD, dctc.ED, vmc.date]] = tdf[ [dctc.SD, dctc.ED, vmc.date]].astype(str) tdf = tdf.reset_index(drop=True) daily_dfs.append(tdf.to_dict()) return daily_dfs def do_analysis(self): df = self.aly.df dfs = self.get_daily_delivery(df) msg = 'Daily delivery is as follows:' self.aly.add_to_analysis_dict(key_col=self.aly.daily_delivery_col, message=msg, data=dfs) class GetServingAlerts(AnalyzeBase): name = Analyze.placement_col fix = False pre_run = False adserving_ratio = 'Adserving %' prog_vendors = ['DV360', 'dv360', 'DV 360', 'Verizon', 'VERIZON'] def get_serving_alerts(self): """ Check for adserving overages -- over 6% of net cost (> 2 stddevs) """ pacing_analysis = self.aly.find_in_analysis_dict( self.aly.delivery_comp_col)[0] df = pd.DataFrame(pacing_analysis['data']) plan_names = self.aly.get_plan_names() if not plan_names: return pd.DataFrame() final_cols = plan_names + [vmc.cost, vmc.AD_COST, self.adserving_ratio] if not df.empty and dctc.VEN in df: df = utl.data_to_type(df, float_col=[vmc.cost, vmc.AD_COST]) df[self.adserving_ratio] = df.apply( lambda row: 0 if row[vmc.cost] == 0 else (row[vmc.AD_COST] / row[vmc.cost]) * 100, axis=1) df = df[(df[self.adserving_ratio] > 9) | ((df[self.adserving_ratio] > 6) & ~(df[dctc.VEN].isin(self.prog_vendors)))] if not df.empty: df[[vmc.cost, vmc.AD_COST]] = ( '$' + df[[vmc.cost, vmc.AD_COST]].round(2).astype(str)) df[self.adserving_ratio] = ( df[self.adserving_ratio].round(2).astype(str) + "%") df = df[final_cols] return df def do_analysis(self): df = self.get_serving_alerts() if df.empty: msg = 'No significant adserving overages.' logging.info('{}\n{}'.format(msg, df)) else: msg = 'Adserving cost significantly OVER for the following: ' logging.info('{}\n{}'.format(msg, df)) self.aly.add_to_analysis_dict(key_col=self.aly.adserving_alert, message=msg, data=df.to_dict()) class CheckRawFileUpdateTime(AnalyzeBase): name = Analyze.raw_file_update_col update_tier_today = 'Today' update_tier_week = 'Within A Week' update_tier_greater_week = 'Greater Than One Week' update_tier_never = 'Never' update_time_col = 'update_time' update_tier_col = 'update_tier' last_update_does_not_exist = 'Does Not Exist' def do_analysis(self): data_sources = self.matrix.get_all_data_sources() df = [] for source in data_sources: if vmc.filename not in source.p: continue file_name = source.p[vmc.filename] if os.path.exists(file_name): t = os.path.getmtime(file_name) last_update = dt.datetime.fromtimestamp(t) if last_update.date() == dt.datetime.today().date(): update_tier = self.update_tier_today elif last_update.date() > ( dt.datetime.today() - dt.timedelta(days=7)).date(): update_tier = self.update_tier_week else: update_tier = self.update_tier_greater_week else: last_update = self.last_update_does_not_exist update_tier = self.update_tier_never data_dict = {vmc.vendorkey: source.key, self.update_time_col: last_update, self.update_tier_col: update_tier} df.append(data_dict) df = pd.DataFrame(df) if df.empty: return False df[self.update_time_col] = df[self.update_time_col].astype('U') update_msg = 'Raw File update times and tiers are as follows:' logging.info('{}\n{}'.format(update_msg, df.to_string())) self.aly.add_to_analysis_dict(key_col=self.name, message=update_msg, data=df.to_dict()) class GetDailyPacingAlerts(AnalyzeBase): name = Analyze.placement_col fix = False pre_run = False day_pacing = 'Day Pacing' def get_daily_pacing_alerts(self): """ Check daily pacing issues -- +/- 20% of daily pacing goal """ dfs_dict = self.aly.find_in_analysis_dict( self.aly.daily_delivery_col)[0]['data'] if not dfs_dict: logging.warning('Dataframes empty could not get alerts') return pd.DataFrame(), pd.DataFrame() yesterday = dt.datetime.strftime( dt.datetime.today() - dt.timedelta(days=1), '%Y-%m-%d') over_df = pd.DataFrame(columns=pd.DataFrame(dfs_dict[0]).columns) under_df = pd.DataFrame(columns=pd.DataFrame(dfs_dict[0]).columns) for data in dfs_dict: df = pd.DataFrame(data) if not df.empty: df = df[df[vmc.date] == yesterday] if not df.empty: val = df[self.day_pacing].iloc[0] val = float(val.replace("%", "")) if val >= 20: over_df = pd.concat([over_df, df], ignore_index=True) if val <= -20: df[self.day_pacing].iloc[0] = ( df[self.day_pacing].iloc[0].replace("-", "")) under_df = pd.concat([under_df, df], ignore_index=True) return over_df, under_df def do_analysis(self): over_df, under_df = self.get_daily_pacing_alerts() if over_df.empty: msg = 'No significant daily pacing overages.' logging.info('{}\n{}'.format(msg, over_df)) else: msg = ('Yesterday\'s spend for the following exceeded ' 'daily pacing goal by:') logging.info('{}\n{}'.format(msg, over_df)) self.aly.add_to_analysis_dict( key_col=self.aly.daily_pacing_alert, message=msg, param=self.aly.over_daily_pace, data=over_df.to_dict()) if under_df.empty: msg = 'No significant daily under pacing.' logging.info('{}\n{}'.format(msg, under_df)) else: msg = ('Yesterday\'s spend for the following under paced the ' 'daily goal by:') logging.info('{}\n{}'.format(msg, under_df)) self.aly.add_to_analysis_dict( key_col=self.aly.daily_pacing_alert, message=msg, param=self.aly.under_daily_pace, data=under_df.to_dict()) class ValueCalc(object): file_name = os.path.join(utl.config_path, 'aly_grouped_metrics.csv') metric_name = 'Metric Name' formula = 'Formula' operations = {'+': operator.add, '-': operator.sub, '/': operator.truediv, '*': operator.mul, '%': operator.mod, '^': operator.xor} def __init__(self): self.calculations = self.get_grouped_metrics() self.metric_names = [self.calculations[x][self.metric_name] for x in self.calculations] self.parse_formulas() @staticmethod def get_default_metrics(): metric_names = ['CTR', 'CPC', 'CPA', 'CPLP', 'CPBC', 'View to 100', 'CPCV', 'CPLPV', 'CPP', 'CPM', 'VCR', 'CPV'] formula = ['Clicks/Impressions', 'Net Cost Final/Clicks', 'Net Cost Final/Conv1_CPA', 'Net Cost Final/Landing Page', 'Net Cost Final/Button Click', 'Video Views 100/Video Views', 'Net Cost Final/Video Views 100', 'Net Cost Final/Landing Page', 'Net Cost Final/Purchase', 'Net Cost Final/Impressions', 'Video Views 100/Video Views', 'Net Cost Final/Video Views'] df = pd.DataFrame({'Metric Name': metric_names, 'Formula': formula}) return df def get_grouped_metrics(self): if os.path.isfile(self.file_name): df = pd.read_csv(self.file_name) else: df = self.get_default_metrics() calculations = df.to_dict(orient='index') return calculations def parse_formulas(self): for gm in self.calculations: formula = self.calculations[gm][self.formula] reg_operators = '([' + ''.join(self.operations.keys()) + '])' formula = re.split(reg_operators, formula) self.calculations[gm][self.formula] = formula def get_metric_formula(self, metric_name): f = [self.calculations[x][self.formula] for x in self.calculations if self.calculations[x][self.metric_name] == metric_name][0] return f def calculate_all_metrics(self, metric_names, df=None, db_translate=False): for metric_name in metric_names: if metric_name in self.metric_names: df = self.calculate_metric(metric_name, df, db_translate=db_translate) return df def calculate_metric(self, metric_name, df=None, db_translate=False): col = metric_name formula = self.get_metric_formula(metric_name) current_op = None if db_translate: formula = list(utl.db_df_translation(formula).values()) for item in formula: if item.lower() == 'impressions' and 'Clicks' not in formula: df[item] = df[item] / 1000 if current_op: if col in df and item in df: df[col] = self.operations[current_op](df[col], df[item]) current_op = None else: logging.warning('{} missing could not calc.'.format(item)) return df elif item in self.operations: current_op = item else: if item not in df.columns: df[item] = 0 df[col] = df[item] return df class AliChat(object): openai_found = 'Here is the openai gpt response: ' openai_msg = 'I had trouble understanding but the openai gpt response is:' found_model_msg = 'Here are some links:' create_success_msg = 'The object has been successfully created. ' def __init__(self, config_name='openai.json', config_path='reporting'): self.config_name = config_name self.config_path = config_path self.db = None self.current_user = None self.config = self.load_config(self.config_name, self.config_path) @staticmethod def load_config(config_name='openai.json', config_path='reporting'): file_name = os.path.join(config_path, config_name) try: with open(file_name, 'r') as f: config = json.load(f) except IOError: logging.error('{} not found.'.format(file_name)) return config def get_openai_response(self, message): openai.api_key = self.config['SECRET_KEY'] prompt = f"User: {message}\nAI:" response = openai.Completion.create( engine="text-davinci-002", prompt=prompt, max_tokens=1024, n=1, stop=None, temperature=0.5, ) return response.choices[0].text.strip() @staticmethod def index_db_model_by_word(db_model): word_idx = {} db_all = db_model.query.all() for obj in db_all: words = utl.lower_words_from_str(obj.name) for word in words: if word in word_idx: word_idx[word].append(obj.id) else: word_idx[word] = [obj.id] return word_idx @staticmethod def convert_model_ids_to_message(db_model, model_ids, message='', html_table=False, table_name=''): message = message + '<br>' html_response = '' for idx, model_id in enumerate(model_ids): obj = db_model.query.get(model_id) if obj: html_response += """ {}. <a href="{}" target="_blank">{}</a><br> """.format(idx + 1, obj.get_url(), obj.name) if html_table: table_elem = obj.get_table_elem(table_name) html_response += '<br>{}'.format(table_elem) return message, html_response @staticmethod def check_db_model_table(db_model, words, model_ids): table_response = '' tables = [x for x in db_model.get_table_name_to_task_dict().keys()] cur_model = db_model.query.get(next(iter(model_ids))) cur_model_name = re.split(r'[_\s]|(?<=[a-z])(?=[A-Z])', cur_model.name) cur_model_name = [x.lower() for x in cur_model_name] for table in tables: t_list = re.split(r'[_\s]|(?<=[a-z])(?=[A-Z])', table) t_list = [x.lower() for x in t_list] model_name = db_model.get_model_name_list() table_match = [ x for x in t_list if x.lower() in words and x.lower() not in model_name and x.lower() not in cur_model_name] if table_match: table_response = table break return table_response def find_db_model(self, db_model, message): word_idx = self.index_db_model_by_word(db_model) nltk.download('stopwords') stop_words = list(nltk.corpus.stopwords.words('english')) words = utl.lower_words_from_str(message) words = [x for x in words if x not in db_model.get_model_name_list() + stop_words] model_ids = {} for word in words: if word in word_idx: new_model_ids = word_idx[word] for new_model_id in new_model_ids: if new_model_id in model_ids: model_ids[new_model_id] += 1 else: model_ids[new_model_id] = 1 if model_ids: max_value = max(model_ids.values()) model_ids = {k: v for k, v in model_ids.items() if v == max_value} return model_ids, words def search_db_models(self, db_model, message, response, html_response): model_ids, words = self.find_db_model(db_model, message) if model_ids: table_name = self.check_db_model_table(db_model, words, model_ids) edit_made = self.edit_db_model(db_model, words, model_ids) table_bool = True if table_name else False response = self.found_model_msg if edit_made: response = '{}<br>{}'.format(edit_made, self.found_model_msg) response, html_response = self.convert_model_ids_to_message( db_model, model_ids, response, table_bool, table_name) return response, html_response @staticmethod def db_model_name_in_message(message, db_model): words = utl.lower_words_from_str(message) db_model_name = db_model.get_model_name_list() in_message = utl.is_list_in_list(db_model_name, words, True) return in_message @staticmethod def get_parent_for_db_model(db_model, words): parent = db_model.get_parent() g_parent = parent.get_parent() gg_parent = g_parent.get_parent() prev_model = None for parent_model in [gg_parent, g_parent, parent]: model_name_list = parent_model.get_model_name_list() name = utl.get_next_value_from_list(words, model_name_list) if not name: name_list = parent_model.get_name_list() name = utl.get_dict_values_from_list(words, name_list, True) if name: name = [name[0][next(iter(name[0]))]] else: name = parent_model.get_default_name() new_model = parent_model() new_model.set_from_form({'name': name[0]}, prev_model) new_model = new_model.check_and_add() prev_model = new_model return prev_model @staticmethod def check_children(words, new_g_child): new_model = new_g_child.get_children() if new_model: new_model.check_col_in_words(new_model, words, new_g_child.id) new_model.create_from_rules(new_model, new_g_child.id) def create_db_model_children(self, cur_model, words): response = '' cur_children = cur_model.get_current_children() db_model_child = cur_model.get_children() child_list = db_model_child.get_name_list() child_name = [x for x in words if x in child_list] if not child_name and not cur_children: child_name = child_list if child_name: new_child = db_model_child() new_child.set_from_form({'name': child_name[0]}, cur_model) self.db.session.add(new_child) self.db.session.commit() msg = 'The {} is named {}. '.format( db_model_child.__name__, child_name[0]) response += msg else: new_child = [x for x in cur_children if x.name in words] if not new_child: new_child = cur_children new_child = new_child[0] db_model_g_child = new_child.get_children() partner_list, partner_type_list = db_model_g_child.get_name_list() p_list = utl.get_dict_values_from_list(words, partner_list, True) if p_list: response += '{}(s) added '.format(db_model_g_child.__name__) for g_child in p_list: g_child_name = g_child[next(iter(g_child))] lower_name = g_child_name.lower() post_words = words[words.index(lower_name):] cost = [x for x in post_words if any(y.isdigit() for y in x) and x != cur_model.name] if cost: cost = cost[0].replace('k', '000') else: cost = 0 g_child['total_budget'] = cost new_g_child = db_model_g_child() new_g_child.set_from_form(g_child, new_child) self.db.session.add(new_g_child) self.db.session.commit() response += '{} ({}) '.format(g_child_name, cost) self.check_children(words, new_g_child) return response def create_db_model(self, db_model, message, response, html_response): create_words = ['create', 'make', 'new'] words = utl.lower_words_from_str(message) is_create = utl.is_list_in_list(create_words, words) if is_create: name_words = ['named', 'called', 'name', 'title'] name = utl.get_next_value_from_list(words, name_words) if not name: name = [self.current_user.username] parent_model = self.get_parent_for_db_model(db_model, words) new_model = db_model() name = new_model.get_first_unique_name(name[0]) new_model.set_from_form({'name': name}, parent_model, self.current_user.id) self.db.session.add(new_model) self.db.session.commit() response = self.create_db_model_children(new_model, words) response = '{}{}'.format(self.create_success_msg, response) response, html_response = self.convert_model_ids_to_message( db_model, [new_model.id], response, True) return response, html_response def check_db_model_col(self, db_model, words, cur_model, omit_list=None): response = '' if not omit_list: omit_list = [] for k, v in db_model.__dict__.items(): check_words = re.split(r'[_\s]|(?<=[a-z])(?=[A-Z])', k) check_words = [x for x in check_words if x] in_list = utl.is_list_in_list(check_words, words, True, True) if in_list: pw = words[words.index(in_list[0]) + 1:] skip_words = [cur_model.name.lower()] + omit_list pw = [x for x in pw if x not in skip_words] new_val = re.split('[?.,]', ' '.join(pw))[0].rstrip() setattr(cur_model, k, new_val) self.db.session.commit() response = 'The {} for {} was changed to {}'.format( k, cur_model.name, new_val) break return response def check_children_for_edit(self, cur_model, words): response = '' children = cur_model.get_current_children() omit_list = [cur_model.name] for child in children: lower_name = child.name.lower() in_words = utl.is_list_in_list([lower_name], words, True) if in_words: response = self.check_db_model_col( child, words, child, omit_list) break else: g_children = child.get_current_children() omit_list.append(lower_name) for g_child in g_children: lower_name = g_child.name.lower() in_words = utl.is_list_in_list([lower_name], words, True) if in_words: response = self.check_db_model_col( g_child, words, g_child, omit_list) break if not response: response = self.check_db_model_col(cur_model, words, cur_model) if not response: response = self.create_db_model_children(cur_model, words) return response def edit_db_model(self, db_model, words, model_ids): response = '' edit_words = ['change', 'edit', 'adjust', 'alter', 'add'] is_edit = utl.is_list_in_list(edit_words, words) if is_edit: cur_model = self.db.session.get(db_model, next(iter(model_ids))) response = self.check_children_for_edit(cur_model, words) return response def db_model_response_functions(self, db_model, message): response = False html_response = False model_functions = [self.create_db_model, self.search_db_models] args = [db_model, message, response, html_response] for model_func in model_functions: response, html_response = model_func(*args) if response: break return response, html_response def format_openai_response(self, message, pre_resp): response = self.get_openai_response(message) response = '{}<br>{}'.format(pre_resp, response) html_response = '' return response, html_response def check_if_openai_message(self, message): response = '' html_response = '' open_words = ['openai', 'chatgpt', 'gpt4', 'gpt3'] words = utl.lower_words_from_str(message) in_message = utl.is_list_in_list(open_words, words, True) if in_message: response, html_response = self.format_openai_response( message, self.openai_found) return response, html_response def get_response(self, message, models_to_search=None, db=None, current_user=None): self.db = db self.current_user = current_user response, html_response = self.check_if_openai_message(message) if not response and models_to_search: for db_model in models_to_search: in_message = self.db_model_name_in_message(message, db_model) if in_message: response, html_response = self.db_model_response_functions( db_model, message) break if not response: for db_model in models_to_search: r, hr = self.search_db_models( db_model, message, response, html_response) if r: response = r hr = '{}<br>{}'.format( db_model.get_model_name_list()[0].upper(), hr) if not html_response: html_response = '' html_response += hr if not response: response, html_response = self.format_openai_response( message, self.openai_msg) return response, html_response
[ "User: PLACEHOLDER\nAI:" ]
2024-01-10
soukron/SimulationService
simulation_microservice.py
import requests from time import time from uuid import uuid4 import numpy as np import re import os import openai from time import time,sleep def open_file(filepath): with open(filepath, 'r', encoding='utf-8') as infile: return infile.read() def save_file(filepath, content): with open(filepath, 'w', encoding='utf-8') as outfile: outfile.write(content) openai.api_key = open_file('openaiapikey.txt') scene_dir = 'scenes/' service_name = 'sensor_simulation' content_prefix = 'Sensory input scene: ' tempo = 30 def gpt3_completion(prompt, engine='text-davinci-002', temp=0.7, top_p=1.0, tokens=1000, freq_pen=0.0, pres_pen=0.0, stop=['asdfasdf', 'asdasdf']): max_retry = 5 retry = 0 prompt = prompt.encode(encoding='ASCII',errors='ignore').decode() while True: try: response = openai.Completion.create( engine=engine, prompt=prompt, temperature=temp, max_tokens=tokens, top_p=top_p, frequency_penalty=freq_pen, presence_penalty=pres_pen, stop=stop) text = response['choices'][0]['text'].strip() text = re.sub('\s+', ' ', text) filename = '%s_gpt3.txt' % time() save_file('gpt3_logs/%s' % filename, prompt + '\n\n==========\n\n' + text) return text except Exception as oops: retry += 1 if retry >= max_retry: return "GPT3 error: %s" % oops print('Error communicating with OpenAI:', oops) sleep(1) def get_embedding(payload): # payload is a list of strings # payload example: ['bacon bacon bacon', 'ham ham ham'] # response example: [{'string': 'bacon bacon bacon', 'vector': '[1, 1 ... ]'}, {'string': 'ham ham ham', 'vector': '[1, 1 ... ]'}] # embedding is already rendered as a JSON-friendly string url = 'http://127.0.0.1:999' # currently the USEv5 service, about 0.02 seconds per transaction! response = requests.request(method='POST', url=url, json=payload) return response.json() def nexus_send(payload): # REQUIRED: content url = 'http://127.0.0.1:8888/add' payload['time'] = time() payload['uuid'] = str(uuid4()) payload['content'] = content_prefix + payload['content'] embeddings = get_embedding([payload['content']]) payload['vector'] = embeddings[0]['vector'] payload['service'] = service_name response = requests.request(method='POST', url=url, json=payload) print(response.text) def nexus_search(payload): url = 'http://127.0.0.1:8888/search' response = requests.request(method='POST', url=url, json=payload) return response.json() def nexus_bound(payload): url = 'http://127.0.0.1:8888/bound' response = requests.request(method='POST', url=url, json=payload) #print(response) return response.json() def nexus_save(): url = 'http://127.0.0.1:8888/save' response = requests.request(method='POST', url=url) print(response.text) def find_actions(memories): for m in memories: if m['service'] == 'executive_action': return m['content'] return None # no actions detected in memories if __name__ == '__main__': new_scene = 'Two men are sitting at a stone chess table in Central Park. They are playing chess. The sun is shining and birds are singing. It is a summer day. Children are running and playing in the distance. Horns honking and the bustle of New York can be heard in the background.' backstory = new_scene while True: last_scene = new_scene # generate event prompt = open_file('prompt_event.txt').replace('<<SCENE>>', last_scene).replace('<<STORY>>', backstory).replace('<<RARITY>>', 'likely') event = gpt3_completion(prompt) filename = '%s_event.txt' % time() save_file(scene_dir + filename, event) nexus_send({'content': event}) # incorporate actions from the nexus payload = {'lower_bound': time() - tempo, 'upper_bound': time()} memories = nexus_bound(payload) action = find_actions(memories) if action: event = event + '\nAction I will take: %s' % action print('\n\nEVENT:', event) # new scene prompt = open_file('prompt_scene.txt').replace('<<SCENE>>', last_scene).replace('<<EVENT>>', event).replace('<<STORY>>', backstory) new_scene = gpt3_completion(prompt) print('\n\nSCENE:', new_scene) # save scene filename = '%s_scene.txt' % time() save_file(scene_dir + filename, new_scene) nexus_send({'content': new_scene}) # summarize backstory up to this point backstory = (backstory + ' ' + event + ' ' + new_scene).strip() prompt = open_file('prompt_concise_summary.txt').replace('<<STORY>>', backstory) backstory = gpt3_completion(prompt) print('\n\nBACKSTORY:', backstory) # wait sleep(tempo)
[ "<<RARITY>>", "prompt_event.txt", "prompt_scene.txt", "ignore", "prompt_concise_summary.txt" ]
2024-01-10
lirabenjamin/eaai_sparklearn_sim
simulate%20conversations.py
import openai import pandas as pd import numpy as np import concurrent.futures import os import datetime import dotenv dotenv.load_dotenv() output_dir = "data/simulated_conversations5" TEMP = 1 openai.api_key = os.getenv("OPENAI_KEY") data = pd.read_csv("data/data50_w_correct.csv") ids = data['UserId'].tolist() prompts = essays = data['prompt'].tolist() def simulate_conversation(id, prompt): response = openai.ChatCompletion.create( model="gpt-4", temperature=TEMP, messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": "Generate one full conversation between the student and the tutor"}, ] ) result = response.choices[0].message.content now = datetime.datetime.now().strftime("%Y%m%d%H%M%S") with open(f"{output_dir}/{id}_{now}_temp{TEMP}.txt", "w") as f: f.write(result) simulate_conversation(ids[0], essays[0]) with concurrent.futures.ThreadPoolExecutor() as executor: executor.map(simulate_conversation, ids, essays) def read_all_files_to_dataframe(directory): all_files = [os.path.join(directory, file) for file in os.listdir(directory) if file.endswith('.txt')] df_list = [] for filename in all_files: with open(filename, 'r') as f: content = f.read() df_list.append({"filename": filename, "content": content}) return pd.DataFrame(df_list) combined_df = read_all_files_to_dataframe(output_dir) combined_df.columns = ["id", "content"] combined_df["id"] = combined_df["id"].str.replace("data/simulated_conversations5/", "") combined_df["id"] = combined_df["id"].str.replace(".txt", "") combined_df[["id", "timestamp", "temp"]] = combined_df["id"].str.split("_", expand=True) combined_df.to_parquet("data/simulated_conversations5.parquet") # Now rate them for motivation prompt = """ I will show you an exchange between a student learning math and an intelligent tutoring system. Your goal is to pay attention to what the student is saying, and estimate how this student is feeling with regards to five motivational states. Score them on a scale from 0 to 10. Confidence: How confident is the student in their ability to solve the problem? Frustration: How frustrated is the student with their learning experience? Boredom: How bored is the student with their learning experience? Curiosity/Interest: How interested/curious is the student about the topic? Engagement: How engaged is the student with the learning experience? Your response should be formatted as a python dictionary, with the five motivational states as keys, and the scores as values. """ output_dir = "data/conversations5_ratings" def rate_conversation(id, prompt, conversation): response = openai.ChatCompletion.create( model="gpt-4", temperature=TEMP, messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": f"Here is the conversation:\n{conversation}"}, ] ) result = response.choices[0].message.content now = datetime.datetime.now().strftime("%Y%m%d%H%M%S") with open(f"{output_dir}/{id}_{now}_temp{TEMP}.txt", "w") as f: f.write(result) conversations = combined_df["content"].tolist() rate_conversation(ids[0], prompt, conversations[0]) with concurrent.futures.ThreadPoolExecutor() as executor: executor.map(rate_conversation, ids, [prompt] * len(ids), conversations) combined_df = read_all_files_to_dataframe(output_dir) combined_df.columns = ["id", "content"] combined_df["id"] = combined_df["id"].str.replace("data/conversations5_ratings/", "") combined_df["id"] = combined_df["id"].str.replace(".txt", "") combined_df[["id", "timestamp", "temp"]] = combined_df["id"].str.split("_", expand=True) # unroll the dictionary import ast combined_df["content"] = combined_df["content"].apply(ast.literal_eval) df = pd.DataFrame(combined_df.content.tolist()) # combine df and combined_df df = pd.concat([combined_df, df], axis=1) df.to_parquet("data/conversations5_ratings.parquet") # do ratings match ground truth? df = pd.read_parquet("data/conversations5_ratings.parquet") ground_truth = pd.read_csv("data/data50_w_correct.csv")[["UserId", "confidence", "frustration", "boredom", "curiosity", "engagement"]] # join by id and UserId df['id'] = df['id'].astype(int) df = df.merge(ground_truth, left_on="id", right_on="UserId") # get correlations between ground truth and ratings df[["confidence", "frustration", "boredom", "curiosity", "engagement"]].corrwith(df[["Confidence", "Frustration", "Boredom", "Curiosity/Interest", "Engagement"]]) print(df[["confidence", "frustration", "boredom", "curiosity", "engagement"]].isnull().sum()) print(df[["Confidence", "Frustration", "Boredom", "Curiosity/Interest", "Engagement"]].isnull().sum()) print(df[["confidence", "frustration", "boredom", "curiosity", "engagement"]].nunique()) print(df[["Confidence", "Frustration", "Boredom", "Curiosity/Interest", "Engagement"]].nunique()) print((df[["confidence", "frustration", "boredom", "curiosity", "engagement"]].index == df[["Confidence", "Frustration", "Boredom", "Curiosity/Interest", "Engagement"]].index).all()) print(df["confidence"].corr(df["Confidence"])) print(df["frustration"].corr(df["Frustration"])) print(df["boredom"].corr(df["Boredom"])) print(df["curiosity"].corr(df["Curiosity/Interest"])) print(df["engagement"].corr(df["Engagement"])) df[['confidence', 'frustration', 'boredom', 'curiosity', 'engagement','Confidence', 'Frustration', 'Boredom', 'Curiosity/Interest', 'Engagement']].corr() df.to_csv("data/conversations5_gptratings_and_truth.csv", index=False)
[ "Generate one full conversation between the student and the tutor", "\nI will show you an exchange between a student learning math and an intelligent tutoring system. \nYour goal is to pay attention to what the student is saying, and estimate how this student is feeling with regards to five motivational states. Score them on a scale from 0 to 10.\nConfidence: How confident is the student in their ability to solve the problem?\nFrustration: How frustrated is the student with their learning experience?\nBoredom: How bored is the student with their learning experience?\nCuriosity/Interest: How interested/curious is the student about the topic?\nEngagement: How engaged is the student with the learning experience?\n\nYour response should be formatted as a python dictionary, with the five motivational states as keys, and the scores as values.\n", "Here is the conversation:\nPLACEHOLDER" ]
2024-01-10
TakehikoEsaka/odekakekun
project~backend~users~routes~suggest.py
from fastapi import APIRouter, Depends from sqlalchemy.orm import Session import pandas as pd from pathlib import Path from users import models from users.database import get_db from users import oauth2 import os import json from dotenv import load_dotenv import openai from io import StringIO import uuid load_dotenv(Path(__file__).resolve().parent.parent.parent / Path(".env"), verbose=True) try: openai.api_key = json.loads(os.environ.get("OPENAI_API_KEY"))["OPENAI_API_KEY"] except: openai.api_key = os.environ.get("OPENAI_API_KEY") router = APIRouter() # def get_suggest(db: Session, email: str): # suggests = db.query(models.Suggest).filter(models.Suggest.email == email).first() # if not suggests: # raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f'Suggests with {email} not found') # return suggests def ask_chatgpt(question): try: response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": question}], timeout=1).choices[0]["message"]["content"].strip() df = pd.read_csv(StringIO(response), sep='|', header=0, skiprows=[1], skipinitialspace=True) # 列目に空白が入る時があるので除外 df.columns = df.columns.str.strip() # 余分なカラムが生成される場合があるので除外・英語名に変換 df = df[["場所名", "説明", "距離"]].rename(columns={"場所名": "suggest_place", "説明": "suggest_description", "距離": "suggest_distance"}) # 値に空白が入る時があるので除外 for col in df.columns: df[col] = df[col].str.strip() return df.to_dict(orient='dict') except Exception as e: print(e) return None @router.post("/api/suggest", tags=["suggest"]) def suggest(place: str, time: str, way: str, current_user: models.UserInfo = Depends(oauth2.get_current_active_user), db: Session = Depends(get_db)): question = "{}から{}以内で{}を使っていけるおすすめの場所を3つ表形式で教えて下さい。場所名・距離・説明を列にして下さい".format(place, time, way) # ここでanswerをchat-gptからget print("guess start") answer = ask_chatgpt(question) print("guess end") print("answer is ", answer) if answer is None: print("answer is None") return None # TODO モデルにGoogleMapのリンクを入れるようにする # ログインしている時はDBに追加・そうでない時は追加しない if current_user: question_uuid = str(uuid.uuid4()) new_suggests = [] for i in range(len(answer["suggest_place"])): suggest_place = answer["suggest_place"][i] suggest_description = answer["suggest_description"][i] suggest_distance = answer["suggest_distance"][i] new_suggests.append({ "user_id": current_user.user_id, "question_uuid": question_uuid, "place": place, "time": time, "way": way, "suggest_place": suggest_place, "suggest_description": suggest_description, "suggest_distance": suggest_distance}) db.bulk_insert_mappings(models.Suggest, new_suggests) # db.bulk_update_mappings(models.Suggest, new_suggests) db.commit() else: pass return answer @router.get("/api/get_all_suggest", tags=["suggest"]) def get_suggest(current_user: models.UserInfo = Depends(oauth2.get_current_active_user), db: Session = Depends(get_db)): if current_user: user = db.query(models.UserInfo).filter(models.UserInfo.user_id == current_user.user_id).first() df = pd.DataFrame(columns=["question_uuid", "place", "time", "way", "suggest_place"]) for s in user.suggestions[-1:-16:-1]: df = pd.concat([df, pd.DataFrame([{"question_uuid": s.question_uuid, "place": s.place, "time": s.time, "way": s.way, "suggest_place": s.suggest_place}])], ignore_index=True) # print("last 9 histories is following" , df) return df.to_dict(orient="records") else: None
[]
2024-01-10
CodeHero0/Nondeterminism-of-ChatGPT-in-Code-Generation
Modify_HumanEval.py
import json import os import openai import re import subprocess log_file = './log/demo.log' problem_list = [] model = 'gpt-3.5-turbo' topn = 5 temperature = float(1) openai.api_key = '' # for_list = [32, 38, 44, 50, 53, 65, 66, 68, 71, 74, 76, 79, 83, 84, 88, 89, 91, 92, 93, 94, 100, 101, 105, 107, 108, 109, 111, 113, 114, 115, 116, 122, 123, 126, 128, 132, 133, 140, 143, 145, 151, 152, 154, 157, 159, 160, 163] def run_test_case(i): test_cases = test_case_dic[problem_list[i]['task_id']] demo_file = 'demo.py' with open(demo_file, 'w') as f: f.write(problem_list[i]['prompt'] + problem_list[i]['canonical_solution']) call_demo_file = 'call_demo.py' unpassed_test_case = [] for j in range(len(test_cases)): if test_cases[j]['relation'] == '==': with open('./call_demo.py', 'w') as f: f.write('from %s import %s\nprint(%s(%s))' % ( demo_file.split('.')[0], problem_list[i]['entry_point'], problem_list[i]['entry_point'], test_cases[j]['input'] )) try: output = subprocess.run(["python", call_demo_file], capture_output=True, text=True, timeout=3) except subprocess.TimeoutExpired as e: print(e, flush=True) unpassed_test_case.append([j, 'Timeout']) continue except Exception as e: print(e, flush=True) unpassed_test_case.append([j, 'Exception']) continue if test_cases[j]['output'].strip() != output.stdout.strip(): unpassed_test_case.append([j, 'false']) else: unpassed_test_case.append([j, 'True']) else: if '$input$' in test_cases[j]['relation'] or '$demo$' in test_cases[j]['relation']: with open('./call_demo.py', 'w') as f: f.write('from %s import %s\n%s' % ( demo_file.split('.')[0], problem_list[i]['entry_point'], test_cases[j]['relation'].replace('$input$', str(test_cases[j]['input'])).replace('$demo$', demo_file.split('.')[0]) )) else: with open('./call_demo.py', 'w') as f: f.write('from %s import %s\nprint(%s)' % (demo_file.split('.')[0], problem_list[i]['entry_point'], test_cases[j]['relation'].replace('candidate', problem_list[i]['entry_point']))) try: output = subprocess.run(["python", call_demo_file], capture_output=True, text=True, timeout=3) except subprocess.TimeoutExpired as e: print(e, flush=True) unpassed_test_case.append([j, 'Timeout']) continue except Exception as e: print(e, flush=True) unpassed_test_case.append([j, 'Exception']) continue if output.stdout.strip() != 'True': unpassed_test_case.append([j, 'false']) else: unpassed_test_case.append([j, 'True']) if len(set([i[1] for i in unpassed_test_case])) == 1 and unpassed_test_case[0][1] == 'True': print('ALL TRUE') print(unpassed_test_case) def description_2_code(description, model, topn, temperature): prompt = 'Generate Python3 code (Markdown):\n' completion = openai.ChatCompletion.create( model=model, n=topn, temperature=temperature, messages=[{"role": "user", "content": prompt + description}, ] ) response_list = [] for i in completion['choices']: response_list.append(i['message']['content']) return response_list with open('./HumanEval/HumanEval.jsonl', 'r') as f: for line in f.readlines(): problem_list.append(json.loads(line)) def demo(): i = 0 while not input(): print(problem_list[i]['task_id']) print(problem_list[i]['test']) # print(problem_list[i]['prompt'] + problem_list[i]['canonical_solution']+problem_list[i]['test']) i += 1 def test(i): print(problem_list[i]['task_id']) print(problem_list[i]['test']) test_case_dic = {} p = r'candidate\((.*?)\) == (.*)' # p = r'candidate\((.*?)\)\s+==\s+(.*)' for problem in problem_list: name = problem['task_id'] testcase = [] for line in problem['test'].split('assert'): if 'candidate(' in line: # input p1 = re.search(p, line) if p1: # print('input:'+p1.group(1)) # print('output:'+p1.group(2)) output = p1.group(2).strip() if ('\'' in output[0] and '\'' in output[-1]) or \ ('\"' in output[0] and '\"' in output[-1]): res = { 'input': p1.group(1), 'output': output[1:-1], 'relation': '==' } else: res = { 'input': p1.group(1), 'output': p1.group(2), 'relation': '==' } testcase.append(res) test_case_dic[name] = testcase test_case_dic['HumanEval/1'] = [ {'input': "'(()()) ((())) () ((())()())'", 'output': "['(()())', '((()))', '()', '((())()())']", 'relation': '=='}, {'input': "'() (()) ((())) (((())))'", 'output': "['()', '(())', '((()))', '(((())))']", 'relation': '=='}, {'input': "'(()(())((())))'", 'output': "['(()(())((())))']", 'relation': '=='}, {'input': "'( ) (( )) (( )( ))'", 'output': "['()', '(())', '(()())']", 'relation': '=='} ] test_case_dic['HumanEval/2'] = [ {'input': '3.5', 'output': '0.5', 'relation': '=='}, {'input': '1.33', 'output': '1e-6', 'relation': 'abs(candidate(1.33) - 0.33) < 1e-6'}, {'input': '123.456', 'output': '1e-6', 'relation': 'abs(candidate(123.456) - 0.456) < 1e-6'} ] test_case_dic['HumanEval/4'] = [ {'input': '[1.0, 2.0, 3.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6'}, {'input': '[1.0, 2.0, 3.0, 4.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6'}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6'} ] test_case_dic['HumanEval/8'][3] = {'input': '[3, 5, 7]', 'output': '(15, 105)', 'relation': '=='} test_case_dic['HumanEval/33'] = [ {'input': '[5, 6, 3, 4, 8, 9, 2]', 'output': '[2, 6, 3, 4, 8, 9, 5]', 'relation': '=='}, {'input': '[5, 8, 3, 4, 6, 9, 2]', 'output': '[2, 8, 3, 4, 6, 9, 5]', 'relation': '=='}, {'input': '[5, 6, 9, 4, 8, 3, 2]', 'output': '[2, 6, 9, 4, 8, 3, 5]', 'relation': '=='}, {'input': '[5, 6, 3, 4, 8, 9, 2, 1]', 'output': '[2, 6, 3, 4, 8, 9, 5, 1]', 'relation': '=='} ] test_case_dic['HumanEval/37'] = [ {'input': '[1, 2, 3]', 'output': '[1, 2, 3]', 'relation': '=='}, {'input': '[5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]', 'output': '[-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]', 'relation': '=='}, {'input': '[5, 8, -12, 4, 23, 2, 3, 11, 12, -10]', 'output': '[-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]', 'relation': '=='} ] test_case_dic['HumanEval/32'] = [{'input': [-10, -2], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -6, -7, 7], 'output': 9.76619674020185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 3], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, 6, 9, -10], 'output': 1.337379096355562e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 7, 3, -3], 'output': 1.3840022461408807e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, -2, -10, -5, 3, 1, -2, -6], 'output': 6.92455426332117e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -7, -8, 2], 'output': 2.1342083655895294e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 4, 7, -7, 2, -8], 'output': 1.1405965061328516e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 9, 1, 8, -4, -8], 'output': 4.0877967677488414e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -7], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, 4, 10, 1, -5, 1, 1, -4], 'output': 4.5996983999430086e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, -8, 9, 10, -5, 7], 'output': 4.412106235918145e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, 4, 2, -2], 'output': 7.292131343206165e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -9, -3, -9], 'output': 1.7145054993783493e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -2, -8, -4, 8, 1], 'output': 3.6866111552402714e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 5, 2, 10], 'output': 1.015466821741029e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, -2, -6, -3, 7, 7, -2, 8], 'output': 2.469873194854699e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 2, 1, -3, -6, 6, 5, -8], 'output': 4.654125973502232e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -6], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, 9, -8, 2], 'output': 4.748736473492166e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, 4, 6, -2, 7, -10, -7, 7], 'output': 1.0656506788109255e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 1, -7, -1, 3, -5], 'output': 6.19443163429878e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -2, 6, -5, 6, -7, 10, -1], 'output': 1.039987151951749e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, 1, -5, 7], 'output': 8.558842523598287e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, 1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -7, 1, -1, -3, -9, -3, 8], 'output': 9.059419880941277e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 5], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, -6], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, 7, -5, -2], 'output': 3.864730757641155e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, 7, -4, -1, 2, 10, 1, 4], 'output': 1.152398176884617e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -3, -3, -8, 1, -10, 8, 7], 'output': 1.1465629556894896e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, -3, -10, -8], 'output': 8.052962741089686e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, 5, -4, 7], 'output': 2.8748137204104296e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 8, 5, -3], 'output': 7.751452812954085e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -4, -7, -7, 3, 1, 3, 3], 'output': 3.0882091502093534e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 10, 10, -7, -9, 2, 1, -7], 'output': 2.323840675444444e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, -4, 7, 4], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -5, -2, 4], 'output': 2.471778337564956e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 4, 7, -7], 'output': 5.787530454881562e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 7], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, -3], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, 5, 5, -4], 'output': 4.028066769024008e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, -5, 2, -10, 2, -2, 4, -1], 'output': 1.2186199688235533e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, 5, -6, -4, -1, -4, -9, 8], 'output': 7.55201901014857e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -9], 'output': 4.0745362639427185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 5], 'output': 1.7462298274040222e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 6, -8, -5], 'output': 7.17989223630866e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -7, 8, -3], 'output': 1.2934986415302774e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 8, 6, 1, -2, -4, 1, -3], 'output': 8.968825682131865e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -6, 10, -1, 4, 1], 'output': 1.2246800906723365e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, 4], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 7], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, -2, -6, 1], 'output': 4.1145209461745935e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, 1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, 4, 7, -1, 9, 10], 'output': 2.8451518918615193e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, -1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, -2], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 7], 'output': 4.0745362639427185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -1, 9, -4], 'output': 5.314582107729393e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, 10, -2, 6, 5, -2], 'output': 5.341000801351026e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 10], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -9, -10, 1, -6, 10, -2, -5], 'output': 1.4370016288012266e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, 3, 7, -10, -7, -8, -6, 7], 'output': 1.0816925133383393e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -6, -9, -1], 'output': 4.090063773776187e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 1, -4, -3, -7, 1], 'output': 6.964910426177084e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -6, -3, -5, -5, 3, -10, -5], 'output': 1.3005894139439533e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -3, -2, -5, -7, 2], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, -3], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [4, 1, -1, -3], 'output': 1.2522427539352066e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -4, 2, 1], 'output': 7.0775918459276e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, -2, 1, 10, 6, 2], 'output': 1.0347153134304676e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -7, -2, -5, 8, -2], 'output': 4.458877711499554e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 9], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1, 3, 9, 6, -7, 2, 8], 'output': 6.708447131131834e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -9, 3, -10], 'output': 1.3271347909515896e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 3, -8, 1], 'output': 9.151792171313566e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -1, 6, -1, 3, 1], 'output': 9.165997960636219e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, 7, -6, -4, 3, 2, -5, 9], 'output': 1.2270528522298832e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, 7, -10, -1, -1, -4], 'output': 8.104050763790838e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 9, 10, 1, 4, 4, 4, -4], 'output': 2.9445686777762603e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, -8, -1, 6, 10, 9, 1, -8], 'output': 2.796114451086851e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, -3, -4, -6], 'output': 8.562428543967826e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, -3], 'output': 1.7462298274040222e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8, 4, 3, 10, 8, -4, 2], 'output': 4.614358672938579e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -3, -6, 10, -10, -7, 3, -3], 'output': 2.5733340805467186e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, 4, -9, 7], 'output': 4.689382215872229e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 4, -6, 4], 'output': 9.2210683533267e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [4, 9, 6, 3, 7, 4], 'output': 2.5149304860860866e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, 4, -2, -3], 'output': 1.9339907453286287e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, 5, 10, -3, -2, 4], 'output': 1.9849579757647007e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, -3], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1, 7, -8, -6, -6], 'output': 4.970059919173764e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}] test_case_dic['HumanEval/38'] = [{'input': "'axdhhixdexrvsncacbgh'", 'output': 'daxihhexdvxrcsnbacgh', 'relation': '=='}, {'input': "'artwugrnwoshzaizfy'", 'output': 'targwuwrnhosizayzf', 'relation': '=='}, {'input': "'iekykgcmdlldiztb'", 'output': 'kiegykdcmdlltizb', 'relation': '=='}, {'input': "'dmrrjctlugwsbvchy'", 'output': 'rdmcrjutlsgwcbvhy', 'relation': '=='}, {'input': "'hdciomlfulglvi'", 'output': 'chdmioulfllgvi', 'relation': '=='}, {'input': "'ctufruhfxmiowruvkhyy'", 'output': 'uctufrxhfomiuwrhvkyy', 'relation': '=='}, {'input': "'bzhmikgscw'", 'output': 'hbzkmicgsw', 'relation': '=='}, {'input': "'upguomieexrhixr'", 'output': 'gupmuoeiehxrrix', 'relation': '=='}, {'input': "'smnhelpcqbdyufevnzt'", 'output': 'nsmlheqpcybdeufzvnt', 'relation': '=='}, {'input': "'mtmqioavrxd'", 'output': 'mmtoqiravxd', 'relation': '=='}, {'input': "'yirukyjndoafxixyfqqd'", 'output': 'ryiyukdjnfoaxxiqyfqd', 'relation': '=='}, {'input': "'uqjgetyflyqrtkaadplz'", 'output': 'juqtgelyfryqatkpadlz', 'relation': '=='}, {'input': "'bhhccspcxryyee'", 'output': 'hbhsccxpcyryee', 'relation': '=='}, {'input': "'rfpqtigrnxwywjgvumlo'", 'output': 'prfiqtngryxwgwjmvulo', 'relation': '=='}, {'input': "'dhockhsrashhcwabhu'", 'output': 'odhhckasrhshacwubh', 'relation': '=='}, {'input': "'kcbhiqpgvre'", 'output': 'bkcqhivpgre', 'relation': '=='}, {'input': "'phspzzgdnvndnnlxbov'", 'output': 'sphzpzngddvnlnnoxbv', 'relation': '=='}, {'input': "'dbuxkmdhzgrgenoiofhc'", 'output': 'udbmxkzdhggroenfiohc', 'relation': '=='}, {'input': "'rdzurbcyafnhpgpmb'", 'output': 'zrdburacyhfnppgmb', 'relation': '=='}, {'input': "'ammzzijnoxzw'", 'output': 'mamizzojnwxz', 'relation': '=='}, {'input': "'wpvgjebsgrbxkbxspb'", 'output': 'vwpegjgbsxrbxkbbsp', 'relation': '=='}, {'input': "'fbqcfqtcchmvshdtbs'", 'output': 'qfbqcfctcvhmdshstb', 'relation': '=='}, {'input': "'nvcsqsigkwkvimhvuej'", 'output': 'cnvssqkigvwkhimevuj', 'relation': '=='}, {'input': "'yckotadcsgqrelich'", 'output': 'kycaotsdcrgqielch', 'relation': '=='}, {'input': "'fojwjrzutavqjvr'", 'output': 'jforwjtzuqavrjv', 'relation': '=='}, {'input': "'idexrdijetg'", 'output': 'eiddxreijtg', 'relation': '=='}, {'input': "'vugqpibciniuakb'", 'output': 'gvuiqpibcunibak', 'relation': '=='}, {'input': "'ifuorxnrwdca'", 'output': 'uifxorwnradc', 'relation': '=='}, {'input': "'blrresebnlzj'", 'output': 'rblsrenebjlz', 'relation': '=='}, {'input': "'gvlvdhyrln'", 'output': 'lgvhvdlyrn', 'relation': '=='}, {'input': "'ehxzzfnafxkfnzzxzvh'", 'output': 'xehfzzfnafxkznzvxzh', 'relation': '=='}, {'input': "'zwfmbdhgpljozh'", 'output': 'fzwdmbphgoljzh', 'relation': '=='}, {'input': "'vgakimyicuqlm'", 'output': 'avgmkicyiluqm', 'relation': '=='}, {'input': "'karifdibstndxzlntkqd'", 'output': 'rkadifsibdtnlxzkntqd', 'relation': '=='}, {'input': "'giswnbqzavxrxvxg'", 'output': 'sgibwnaqzrvxxxvg', 'relation': '=='}, {'input': "'cvntkkdxvqjjnkv'", 'output': 'ncvktkvdxjqjvnk', 'relation': '=='}, {'input': "'jrwgnemvvftxjmsr'", 'output': 'wjregnvmvxftsjmr', 'relation': '=='}, {'input': "'jgjzsnukto'", 'output': 'jjgnzstuko', 'relation': '=='}, {'input': "'vgopzqxfzcjvvuqtk'", 'output': 'ovgqpzzxfvcjqvutk', 'relation': '=='}, {'input': "'hvyhzjeagbh'", 'output': 'yhvjhzgeabh', 'relation': '=='}, {'input': "'yctnuogwsmpwhemuw'", 'output': 'tyconusgwwmpmheuw', 'relation': '=='}, {'input': "'ydynhyzwfq'", 'output': 'yydynhfzwq', 'relation': '=='}, {'input': "'rhboedovzrtqyoktx'", 'output': 'brhdoezovqrtkyotx', 'relation': '=='}, {'input': "'ronxpfiyouihyqyuhp'", 'output': 'nrofxpoiyhuiyyqpuh', 'relation': '=='}, {'input': "'cwohijkrkeechm'", 'output': 'ocwjhikkrceehm', 'relation': '=='}, {'input': "'gcwnknonrgnb'", 'output': 'wgcnnkronbgn', 'relation': '=='}, {'input': "'swyysapamjylnrmx'", 'output': 'yswaysmpaljymnrx', 'relation': '=='}, {'input': "'thzhippankvmzmvfox'", 'output': 'zthphinpamkvvzmxfo', 'relation': '=='}, {'input': "'ratssmacvneu'", 'output': 'tramssvacune', 'relation': '=='}, {'input': "'bifkgmkkomiyniycp'", 'output': 'fbimkgokkymiynicp', 'relation': '=='}, {'input': "'rbxhulyucb'", 'output': 'xrblhucyub', 'relation': '=='}, {'input': "'gahehtpved'", 'output': 'hgatehepvd', 'relation': '=='}, {'input': "'owgylittfwdxfjysadj'", 'output': 'gowiylfttxwdyfjdsaj', 'relation': '=='}, {'input': "'mmvgcwwusdwhjvyzdtz'", 'output': 'vmmwgcswuhdwyjvtzdz', 'relation': '=='}, {'input': "'blznvrcqlkaupdnluno'", 'output': 'zblrnvlcqukanpdnluo', 'relation': '=='}, {'input': "'fxnuiqzrtpoy'", 'output': 'nfxquitzrypo', 'relation': '=='}, {'input': "'sixhckohiosyvmtk'", 'output': 'xsikhciohyostvmk', 'relation': '=='}, {'input': "'kfpglpikzi'", 'output': 'pkfpglziki', 'relation': '=='}, {'input': "'irwqgahxcprnhwyuwpp'", 'output': 'wiraqgchxnpryhwpuwp', 'relation': '=='}, {'input': "'aczhmjhjwslvrqpln'", 'output': 'zacjhmwhjvslprqln', 'relation': '=='}, {'input': "'lwkijohdigkxxrdwfy'", 'output': 'klwoijihdxgkdxrywf', 'relation': '=='}, {'input': "'xpgxsiqtydgjj'", 'output': 'gxpixsyqtjdgj', 'relation': '=='}, {'input': "'fjlwraiberjbw'", 'output': 'lfjawreibbrjw', 'relation': '=='}, {'input': "'ypuasdppjkfo'", 'output': 'uypdasjppokf', 'relation': '=='}, {'input': "'pdimpcsucv'", 'output': 'ipdcmpcsuv', 'relation': '=='}, {'input': "'ezejcsdrhy'", 'output': 'eezsjchdry', 'relation': '=='}, {'input': "'tzthytmoqjsojsnt'", 'output': 'ttzthyqmoojsnjst', 'relation': '=='}, {'input': "'xdtguyivgc'", 'output': 'txdygugivc', 'relation': '=='}, {'input': "'frhfacownpjt'", 'output': 'hfrcfanowtpj', 'relation': '=='}, {'input': "'jwhwojvhci'", 'output': 'hjwjwocvhi', 'relation': '=='}, {'input': "'vzsndghurieebfcjtzxs'", 'output': 'svzgndrhueiecbfzjtxs', 'relation': '=='}, {'input': "'doojwwiqmporct'", 'output': 'odowjwmiqrpoct', 'relation': '=='}, {'input': "'xkniathvcs'", 'output': 'nxktiachvs', 'relation': '=='}, {'input': "'yvasbiyfyqupifonusp'", 'output': 'ayvisbyyfpquoifsnup', 'relation': '=='}, {'input': "'lnpkvkfkdnw'", 'output': 'plnkkvdfknw', 'relation': '=='}, {'input': "'vmjrbyckokdimqyav'", 'output': 'jvmyrbockikdymqav', 'relation': '=='}, {'input': "'nboqlgyptoyugibejr'", 'output': 'onbgqltypuoybgirej', 'relation': '=='}, {'input': "'pdwutahwzjrfrnach'", 'output': 'wpdautzhwfjrarnch', 'relation': '=='}, {'input': "'duopweqwjin'", 'output': 'oduepwjqwin', 'relation': '=='}, {'input': "'hopemrtqgecxyzink'", 'output': 'phoremgtqxeciyznk', 'relation': '=='}, {'input': "'ajijsxvpsorelkpyrr'", 'output': 'iajxjssvpeorplkryr', 'relation': '=='}, {'input': "'kgohswhymbknpwxz'", 'output': 'okgwhsmhynbkxpwz', 'relation': '=='}, {'input': "'vzmepueqbkdsdqoo'", 'output': 'mvzuepbeqskdodqo', 'relation': '=='}, {'input': "'enxecuzipk'", 'output': 'xenuecpzik', 'relation': '=='}, {'input': "'muwkvcmkrwyurbpchtu'", 'output': 'wmuckvrmkuwyprbtchu', 'relation': '=='}, {'input': "'hxjndcuwyofdjawkzbbj'", 'output': 'jhxcndyuwdofwjabkzbj', 'relation': '=='}, {'input': "'nelqnhvzsffftmc'", 'output': 'lnehqnsvzfffctm', 'relation': '=='}, {'input': "'hpvehsuioivozoavrjf'", 'output': 'vhpsehouioivazojvrf', 'relation': '=='}, {'input': "'lsounjiowjg'", 'output': 'olsjunwiojg', 'relation': '=='}, {'input': "'dhpslmjwsavjiams'", 'output': 'pdhmslsjwjavmias', 'relation': '=='}, {'input': "'xbyxptyzjtzhhultigvy'", 'output': 'yxbtxpjyzhtzlhugtivy', 'relation': '=='}, {'input': "'euvuudjzbbsoxeljkcxn'", 'output': 'veuduubjzobslxecjkxn', 'relation': '=='}, {'input': "'ezglqrifqpzi'", 'output': 'gezrlqqifipz', 'relation': '=='}, {'input': "'kzxocdyhexvvmz'", 'output': 'xkzdoceyhvxvmz', 'relation': '=='}, {'input': "'czlaimdorvxlisvulm'", 'output': 'lczmairdolvxvismul', 'relation': '=='}, {'input': "'hpvtrathkuc'", 'output': 'vhpatrkthuc', 'relation': '=='}, {'input': "'wjondubbepdjhrdmoelv'", 'output': 'owjundebbjpddhremolv', 'relation': '=='}, {'input': "'sxnenxdpunitwlboog'", 'output': 'nsxxenudptnibwlgoo', 'relation': '=='}, {'input': "'dvlrulbmlgdio'", 'output': 'ldvlrulbmigdo', 'relation': '=='}, {'input': "'guvtauzkbhe'", 'output': 'vguutabzkhe', 'relation': '=='}] test_case_dic['HumanEval/44'] = test_case_dic['HumanEval/44'][:-1] for x in range(2, 8): test_case_dic['HumanEval/44'].append({ 'input': '%s, %s' % (x, x+1), 'output': '%s' % (x), 'relation': '==' }) test_case_dic['HumanEval/52'] = [ {'input': '[1, 2, 4, 10], 100', 'output': 'True', 'relation': '=='}, {'input': '[1, 20, 4, 10], 5', 'output': 'False', 'relation': '=='}, {'input': '[1, 20, 4, 10], 21', 'output': 'True', 'relation': '=='}, {'input': '[1, 20, 4, 10], 22', 'output': 'True', 'relation': '=='}, {'input': '[1, 8, 4, 10], 11', 'output': 'True', 'relation': '=='}, {'input': '[1, 8, 4, 10], 10', 'output': 'False', 'relation': '=='} ] test_case_dic['HumanEval/50'] = [{'input': "'ifcnmmjciacwhxsgfhlm'", 'output': 'daxihhexdvxrcsnbacgh', 'relation': '=='}, {'input': "'yfwlbzbwsmtxnefdek'", 'output': 'targwuwrnhosizayzf', 'relation': '=='}, {'input': "'pnjldpihriqqyneg'", 'output': 'kiegykdcmdlltizb', 'relation': '=='}, {'input': "'wirhwozyqxlbhgamd'", 'output': 'rdmcrjutlsgwcbvhy', 'relation': '=='}, {'input': "'hmirntzqkqqlan'", 'output': 'chdmioulfllgvi', 'relation': '=='}, {'input': "'zhyzkwcmktrnzbwmapdd'", 'output': 'uctufrxhfomiuwrhvkyy', 'relation': '=='}, {'input': "'mgeprnhlxb'", 'output': 'hbzkmicgsw', 'relation': '=='}, {'input': "'lzurztjnjmcwwnc'", 'output': 'gupmuoeiehxrrix', 'relation': '=='}, {'input': "'sxrqmjvuhdgijzkeasy'", 'output': 'nsmlheqpcybdeufzvnt', 'relation': '=='}, {'input': "'rrytvnwfaci'", 'output': 'mmtoqiravxd', 'relation': '=='}, {'input': "'wdndzpiosktfccnvdkvi'", 'output': 'ryiyukdjnfoaxxiqyfqd', 'relation': '=='}, {'input': "'ozvyljqdkwdvfypufiqe'", 'output': 'juqtgelyfryqatkpadlz', 'relation': '=='}, {'input': "'mgmxhhcuhdwdjj'", 'output': 'hbhsccxpcyryee', 'relation': '=='}, {'input': "'uwknvyslwdcblborazqt'", 'output': 'prfiqtngryxwgwjmvulo', 'relation': '=='}, {'input': "'timmhpfxwmxmfhbzgm'", 'output': 'odhhckasrhshacwubh', 'relation': '=='}, {'input': "'gphvmnaulwj'", 'output': 'bkcqhivpgre', 'relation': '=='}, {'input': "'xumeuesliiasqsstcga'", 'output': 'sphzpzngddvnlnnoxbv', 'relation': '=='}, {'input': "'zigrcpeimllwtjskntmh'", 'output': 'udbmxkzdhggroenfiohc', 'relation': '=='}, {'input': "'ewigzwfhdmksuulrg'", 'output': 'zrdburacyhfnppgmb', 'relation': '=='}, {'input': "'rfrneetosbce'", 'output': 'mamizzojnwxz', 'relation': '=='}, {'input': "'abujlolgxcwgcpggxu'", 'output': 'vwpegjgbsxrbxkbbsp', 'relation': '=='}, {'input': "'vkgvhkhyhamrixmxyg'", 'output': 'qfbqcfctcvhmdshstb', 'relation': '=='}, {'input': "'hsaxxvpnlabpmnrjazo'", 'output': 'cnvssqkigvwkhimevuj', 'relation': '=='}, {'input': "'pdhftyxihwlvnjqhm'", 'output': 'kycaotsdcrgqielch', 'relation': '=='}, {'input': "'oktwboyezvfawoa'", 'output': 'jforwjtzuqavrjv', 'relation': '=='}, {'input': "'jniicwjnoyl'", 'output': 'eiddxreijtg', 'relation': '=='}, {'input': "'laznvunghzsngfp'", 'output': 'gvuiqpibcunibak', 'relation': '=='}, {'input': "'znkctwbswfih'", 'output': 'uifxorwnradc', 'relation': '=='}, {'input': "'wgqxwjsjgoqe'", 'output': 'rblsrenebjlz', 'relation': '=='}, {'input': "'qlamaiqdws'", 'output': 'lgvhvdlyrn', 'relation': '=='}, {'input': "'cjmkeeksfkcpeseacem'", 'output': 'xehfzzfnafxkznzvxzh', 'relation': '=='}, {'input': "'kebirgumltqoem'", 'output': 'fzwdmbphgoljzh', 'relation': '=='}, {'input': "'falrpnhdnqzvr'", 'output': 'avgmkicyiluqm', 'relation': '=='}, {'input': "'wpfinkxngiysqcepsyvi'", 'output': 'rkadifsibdtnlxzkntqd', 'relation': '=='}, {'input': "'xlngbsfvewacccal'", 'output': 'sgibwnaqzrvxxxvg', 'relation': '=='}, {'input': "'shapypaicovoasp'", 'output': 'ncvktkvdxjqjvnk', 'relation': '=='}, {'input': "'bowjlsarackyxorw'", 'output': 'wjregnvmvxftsjmr', 'relation': '=='}, {'input': "'oolsexyzpt'", 'output': 'jjgnzstuko', 'relation': '=='}, {'input': "'talvueeckahovazyp'", 'output': 'ovgqpzzxfvcjqvutk', 'relation': '=='}, {'input': "'dmaomeljfgm'", 'output': 'yhvjhzgeabh', 'relation': '=='}, {'input': "'ydhtszxlbbrurmjzb'", 'output': 'tyconusgwwmpmheuw', 'relation': '=='}, {'input': "'ddidsmkebv'", 'output': 'yydynhfzwq', 'relation': '=='}, {'input': "'gwmitjetavwypdtyc'", 'output': 'brhdoezovqrtkyotx', 'relation': '=='}, {'input': "'swtkcutndmznddvuzm'", 'output': 'nrofxpoiyhuiyyqpuh', 'relation': '=='}, {'input': "'thbomnppwhjjmr'", 'output': 'ocwjhikkrceehm', 'relation': '=='}, {'input': "'blhsspwtsgls'", 'output': 'wgcnnkronbgn', 'relation': '=='}, {'input': "'dxbfdxrufqodrswc'", 'output': 'yswaysmpaljymnrx', 'relation': '=='}, {'input': "'eymumnsufrpaaerckt'", 'output': 'zthphinpamkvvzmxfo', 'relation': '=='}, {'input': "'ywfrxxafhzsj'", 'output': 'tramssvacune', 'relation': '=='}, {'input': "'kgnrpltppdrndsnhu'", 'output': 'fbimkgokkymiynicp', 'relation': '=='}, {'input': "'cwgqmzhdzg'", 'output': 'xrblhucyub', 'relation': '=='}, {'input': "'mlfyjmjuai'", 'output': 'hgatehepvd', 'relation': '=='}, {'input': "'ltbndqkyycbidkoixfo'", 'output': 'gowiylfttxwdyfjdsaj', 'relation': '=='}, {'input': "'arrblhxbzmibdoayeie'", 'output': 'vmmwgcswuhdwyjvtzdz', 'relation': '=='}, {'input': "'egqwsaqhvzpfsuisqzt'", 'output': 'zblrnvlcqukanpdnluo', 'relation': '=='}, {'input': "'skcvznyewdut'", 'output': 'nfxquitzrypo', 'relation': '=='}, {'input': "'cxnpmhntmdtxyarp'", 'output': 'xsikhciohyostvmk', 'relation': '=='}, {'input': "'upkulqenpn'", 'output': 'pkfpglziki', 'relation': '=='}, {'input': "'bnwfvlhmcsuwdmbuzbu'", 'output': 'wiraqgchxnpryhwpuwp', 'relation': '=='}, {'input': "'efhomrbmoaxquwvqs'", 'output': 'zacjhmwhjvslprqln', 'relation': '=='}, {'input': "'pqbtnonmiclpicwdbk'", 'output': 'klwoijihdxgkdxrywf', 'relation': '=='}, {'input': "'lcuncxdvyoilo'", 'output': 'gxpixsyqtjdgj', 'relation': '=='}, {'input': "'qkofbwjnggwob'", 'output': 'lfjawreibbrjw', 'relation': '=='}, {'input': "'zduifxouutpk'", 'output': 'uypdasjppokf', 'relation': '=='}, {'input': "'nuihruhxza'", 'output': 'ipdcmpcsuv', 'relation': '=='}, {'input': "'jjexohmiwd'", 'output': 'eezsjchdry', 'relation': '=='}, {'input': "'yyeymdvrttoxsoxy'", 'output': 'ttzthyqmoojsnjst', 'relation': '=='}, {'input': "'ycidlzlnah'", 'output': 'txdygugivc', 'relation': '=='}, {'input': "'mkwhkfstbyuo'", 'output': 'hfrcfanowtpj', 'relation': '=='}, {'input': "'mobobthamn'", 'output': 'hjwjwocvhi', 'relation': '=='}, {'input': "'xaelsiwmzjnjhgkeoycx'", 'output': 'svzgndrhueiecbfzjtxs', 'relation': '=='}, {'input': "'titbobrnvwuthy'", 'output': 'odowjwmiqrpoct', 'relation': '=='}, {'input': "'scpynfhmax'", 'output': 'nxktiachvs', 'relation': '=='}, {'input': "'fdanxgddkuvztnkxszu'", 'output': 'ayvisbyyfpquoifsnup', 'relation': '=='}, {'input': "'uqsppaikpsb'", 'output': 'plnkkvdfknw', 'relation': '=='}, {'input': "'oardwgthpnpidrvfa'", 'output': 'jvmyrbockikdymqav', 'relation': '=='}, {'input': "'tsglvqyduztdglnwjo'", 'output': 'onbgqltypuoybgirej', 'relation': '=='}, {'input': "'buifzyembkowfwshm'", 'output': 'wpdautzhwfjrarnch', 'relation': '=='}, {'input': "'tizjubovbns'", 'output': 'oduepwjqwin', 'relation': '=='}, {'input': "'umtwjrlyvcjhndesp'", 'output': 'phoremgtqxeciyznk', 'relation': '=='}, {'input': "'nfocoxxaujtwuqpwdw'", 'output': 'iajxjssvpeorplkryr', 'relation': '=='}, {'input': "'tplbmxrmdsgpcube'", 'output': 'okgwhsmhynbkxpwz', 'relation': '=='}, {'input': "'raezjugjvxpitivt'", 'output': 'mvzuepbeqskdodqo', 'relation': '=='}, {'input': "'cjszjhuenp'", 'output': 'xenuecpzik', 'relation': '=='}, {'input': "'brzhpawrpzbduwgyhmz'", 'output': 'wmuckvrmkuwyprbtchu', 'relation': '=='}, {'input': "'omchsidzbitkbofgpego'", 'output': 'jhxcndyuwdofwjabkzbj', 'relation': '=='}, {'input': "'qsjmvsxaekkkhyr'", 'output': 'lnehqnsvzfffctm', 'relation': '=='}, {'input': "'amuxjmtzntnafetoawk'", 'output': 'vhpsehouioivazojvrf', 'relation': '=='}, {'input': "'tqxozsbntol'", 'output': 'olsjunwiojg', 'relation': '=='}, {'input': "'uimrxqxobofarnfx'", 'output': 'pdhmslsjwjavmias', 'relation': '=='}, {'input': "'dcgycuodemyeqmzlynad'", 'output': 'yxbtxpjyzhtzlhugtivy', 'relation': '=='}, {'input': "'ajzizzgoetgxqcjhopcs'", 'output': 'veuduubjzobslxecjkxn', 'relation': '=='}, {'input': "'ljewqvvnknue'", 'output': 'gezrlqqifipz', 'relation': '=='}, {'input': "'cpeithjdmacare'", 'output': 'xkzdoceyhvxvmz', 'relation': '=='}, {'input': "'qherfnwitqacanxrzq'", 'output': 'lczmairdolvxvismul', 'relation': '=='}, {'input': "'amufywpymzh'", 'output': 'vhpatrkthuc', 'relation': '=='}, {'input': "'tbozsijggouiimwjrtqa'", 'output': 'owjundebbjpddhremolv', 'relation': '=='}, {'input': "'sxccjsziuysngbqltt'", 'output': 'nsxxenudptnibwlgoo', 'relation': '=='}, {'input': "'qiaqwzqgrnlit'", 'output': 'ldvlrulbmigdo', 'relation': '=='}, {'input': "'alzzyfgepmj'", 'output': 'vguutabzkhe', 'relation': '=='}] test_case_dic['HumanEval/51'][1] = {'input': '"abcdef\\nghijklm"', 'output': 'bcdf\nghjklm', 'relation': '=='} test_case_dic['HumanEval/53'] = test_case_dic['HumanEval/53'][:-1] + [{'input': '654, 114', 'output': '768', 'relation': '=='}, {'input': '25, 759', 'output': '784', 'relation': '=='}, {'input': '281, 250', 'output': '531', 'relation': '=='}, {'input': '228, 142', 'output': '370', 'relation': '=='}, {'input': '754, 104', 'output': '858', 'relation': '=='}, {'input': '692, 758', 'output': '1450', 'relation': '=='}, {'input': '913, 558', 'output': '1471', 'relation': '=='}, {'input': '89, 604', 'output': '693', 'relation': '=='}, {'input': '432, 32', 'output': '464', 'relation': '=='}, {'input': '30, 95', 'output': '125', 'relation': '=='}, {'input': '223, 238', 'output': '461', 'relation': '=='}, {'input': '517, 616', 'output': '1133', 'relation': '=='}, {'input': '27, 574', 'output': '601', 'relation': '=='}, {'input': '203, 733', 'output': '936', 'relation': '=='}, {'input': '665, 718', 'output': '1383', 'relation': '=='}, {'input': '558, 429', 'output': '987', 'relation': '=='}, {'input': '225, 459', 'output': '684', 'relation': '=='}, {'input': '603, 284', 'output': '887', 'relation': '=='}, {'input': '828, 890', 'output': '1718', 'relation': '=='}, {'input': '6, 777', 'output': '783', 'relation': '=='}, {'input': '825, 163', 'output': '988', 'relation': '=='}, {'input': '714, 432', 'output': '1146', 'relation': '=='}, {'input': '348, 284', 'output': '632', 'relation': '=='}, {'input': '159, 220', 'output': '379', 'relation': '=='}, {'input': '980, 781', 'output': '1761', 'relation': '=='}, {'input': '344, 104', 'output': '448', 'relation': '=='}, {'input': '94, 389', 'output': '483', 'relation': '=='}, {'input': '99, 367', 'output': '466', 'relation': '=='}, {'input': '867, 352', 'output': '1219', 'relation': '=='}, {'input': '618, 270', 'output': '888', 'relation': '=='}, {'input': '826, 44', 'output': '870', 'relation': '=='}, {'input': '747, 470', 'output': '1217', 'relation': '=='}, {'input': '549, 127', 'output': '676', 'relation': '=='}, {'input': '996, 944', 'output': '1940', 'relation': '=='}, {'input': '387, 80', 'output': '467', 'relation': '=='}, {'input': '565, 300', 'output': '865', 'relation': '=='}, {'input': '849, 643', 'output': '1492', 'relation': '=='}, {'input': '633, 906', 'output': '1539', 'relation': '=='}, {'input': '882, 370', 'output': '1252', 'relation': '=='}, {'input': '591, 196', 'output': '787', 'relation': '=='}, {'input': '721, 71', 'output': '792', 'relation': '=='}, {'input': '46, 677', 'output': '723', 'relation': '=='}, {'input': '233, 791', 'output': '1024', 'relation': '=='}, {'input': '296, 81', 'output': '377', 'relation': '=='}, {'input': '875, 238', 'output': '1113', 'relation': '=='}, {'input': '887, 103', 'output': '990', 'relation': '=='}, {'input': '389, 284', 'output': '673', 'relation': '=='}, {'input': '464, 650', 'output': '1114', 'relation': '=='}, {'input': '854, 373', 'output': '1227', 'relation': '=='}, {'input': '166, 379', 'output': '545', 'relation': '=='}, {'input': '363, 214', 'output': '577', 'relation': '=='}, {'input': '686, 273', 'output': '959', 'relation': '=='}, {'input': '718, 959', 'output': '1677', 'relation': '=='}, {'input': '699, 663', 'output': '1362', 'relation': '=='}, {'input': '73, 623', 'output': '696', 'relation': '=='}, {'input': '650, 175', 'output': '825', 'relation': '=='}, {'input': '546, 746', 'output': '1292', 'relation': '=='}, {'input': '250, 167', 'output': '417', 'relation': '=='}, {'input': '473, 388', 'output': '861', 'relation': '=='}, {'input': '276, 947', 'output': '1223', 'relation': '=='}, {'input': '655, 704', 'output': '1359', 'relation': '=='}, {'input': '570, 224', 'output': '794', 'relation': '=='}, {'input': '701, 332', 'output': '1033', 'relation': '=='}, {'input': '863, 786', 'output': '1649', 'relation': '=='}, {'input': '794, 57', 'output': '851', 'relation': '=='}, {'input': '234, 841', 'output': '1075', 'relation': '=='}, {'input': '32, 824', 'output': '856', 'relation': '=='}, {'input': '323, 410', 'output': '733', 'relation': '=='}, {'input': '274, 67', 'output': '341', 'relation': '=='}, {'input': '216, 935', 'output': '1151', 'relation': '=='}, {'input': '965, 580', 'output': '1545', 'relation': '=='}, {'input': '897, 735', 'output': '1632', 'relation': '=='}, {'input': '322, 217', 'output': '539', 'relation': '=='}, {'input': '671, 511', 'output': '1182', 'relation': '=='}, {'input': '405, 905', 'output': '1310', 'relation': '=='}, {'input': '936, 658', 'output': '1594', 'relation': '=='}, {'input': '469, 146', 'output': '615', 'relation': '=='}, {'input': '271, 142', 'output': '413', 'relation': '=='}, {'input': '252, 762', 'output': '1014', 'relation': '=='}, {'input': '574, 551', 'output': '1125', 'relation': '=='}, {'input': '269, 764', 'output': '1033', 'relation': '=='}, {'input': '598, 438', 'output': '1036', 'relation': '=='}, {'input': '919, 597', 'output': '1516', 'relation': '=='}, {'input': '408, 370', 'output': '778', 'relation': '=='}, {'input': '224, 141', 'output': '365', 'relation': '=='}, {'input': '521, 505', 'output': '1026', 'relation': '=='}, {'input': '93, 773', 'output': '866', 'relation': '=='}, {'input': '48, 881', 'output': '929', 'relation': '=='}, {'input': '112, 156', 'output': '268', 'relation': '=='}, {'input': '642, 163', 'output': '805', 'relation': '=='}, {'input': '811, 696', 'output': '1507', 'relation': '=='}, {'input': '432, 610', 'output': '1042', 'relation': '=='}, {'input': '65, 394', 'output': '459', 'relation': '=='}, {'input': '390, 610', 'output': '1000', 'relation': '=='}, {'input': '479, 541', 'output': '1020', 'relation': '=='}, {'input': '257, 994', 'output': '1251', 'relation': '=='}, {'input': '566, 881', 'output': '1447', 'relation': '=='}, {'input': '965, 11', 'output': '976', 'relation': '=='}, {'input': '696, 738', 'output': '1434', 'relation': '=='}, {'input': '117, 698', 'output': '815', 'relation': '=='}] test_case_dic['HumanEval/56'] = [ {'input': "'<>'", 'output': 'True', 'relation': '=='}, {'input': "'<<><>>'", 'output': 'True', 'relation': '=='}, {'input': "'<><><<><>><>'", 'output': 'True', 'relation': '=='}, {'input': "'<><><<<><><>><>><<><><<>>>'", 'output': 'True', 'relation': '=='}, {'input': "'<<<><>>>>'", 'output': 'False', 'relation': '=='}, {'input': "'><<>'", 'output': 'False', 'relation': '=='}, {'input': "'<'", 'output': 'False', 'relation': '=='}, {'input': "'<<<<'", 'output': 'False', 'relation': '=='}, {'input': "'>'", 'output': 'False', 'relation': '=='}, {'input': "'<<>'", 'output': 'False', 'relation': '=='}, {'input': "'<><><<><>><>><<>'", 'output': 'False', 'relation': '=='}, {'input': "'<><><<><>><>>><>'", 'output': 'False', 'relation': '=='} ] test_case_dic['HumanEval/61'] = [ {'input': "'()'", 'output': 'True', 'relation': '=='}, {'input': "'(()())'", 'output': 'True', 'relation': '=='}, {'input': "'()()(()())()'", 'output': 'True', 'relation': '=='}, {'input': "'()()((()()())())(()()(()))'", 'output': 'True', 'relation': '=='}, {'input': "'((()())))'", 'output': 'False', 'relation': '=='}, {'input': "')(()'", 'output': 'False', 'relation': '=='}, {'input': "'('", 'output': 'False', 'relation': '=='}, {'input': "'(((('", 'output': 'False', 'relation': '=='}, {'input': "')'", 'output': 'False', 'relation': '=='}, {'input': "'(()'", 'output': 'False', 'relation': '=='}, {'input': "'()()(()())())(()'", 'output': 'False', 'relation': '=='}, {'input': "'()()(()())()))()'", 'output': 'False', 'relation': '=='} ] test_case_dic['HumanEval/72'] = [ {'input': '[3, 2, 3], 9', 'output': 'True', 'relation': '=='}, {'input': '[1, 2], 5', 'output': 'False', 'relation': '=='}, {'input': '[3], 5', 'output': 'True', 'relation': '=='}, {'input': '[3, 2, 3], 1', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3], 6', 'output': 'False', 'relation': '=='}, {'input': '[5], 5', 'output': 'True', 'relation': '=='} ] test_case_dic['HumanEval/76'] = [ {'input': '16, 2', 'output': 'True', 'relation': '=='}, {'input': '143214, 16', 'output': 'False', 'relation': '=='}, {'input': '4, 2', 'output': 'True', 'relation': '=='}, {'input': '9, 3', 'output': 'True', 'relation': '=='}, {'input': '16, 4', 'output': 'True', 'relation': '=='}, {'input': '24, 2', 'output': 'False', 'relation': '=='}, {'input': '128, 4', 'output': 'False', 'relation': '=='}, {'input': '12, 6', 'output': 'False', 'relation': '=='} ] test_case_dic['HumanEval/92'] = [ {'input': '2, 3, 1', 'output': 'True', 'relation': '=='}, {'input': '2.5, 2, 3', 'output': 'False', 'relation': '=='}, {'input': '1.5, 5, 3.5', 'output': 'False', 'relation': '=='}, {'input': '2, 6, 2', 'output': 'False', 'relation': '=='}, {'input': '4, 2, 2', 'output': 'True', 'relation': '=='}, {'input': '2.2, 2.2, 2.2', 'output': 'False', 'relation': '=='}, {'input': '-4, 6, 2', 'output': 'True', 'relation': '=='}, {'input': '2, 1, 1', 'output': 'True', 'relation': '=='}, {'input': '3, 4, 7', 'output': 'True', 'relation': '=='}, {'input': '3.0, 4, 7', 'output': 'False', 'relation': '=='} ] test_case_dic['HumanEval/133'] = [ {'input': '[1, 2, 3]', 'output': '14', 'relation': '=='}, {'input': '[1.0, 2, 3]', 'output': '14', 'relation': '=='}, {'input': '[1,3,5,7]', 'output': '84', 'relation': '=='}, {'input': '[1.4,4.2,0]', 'output': '29', 'relation': '=='}, {'input': '[-2.4,1,1]', 'output': '6', 'relation': '=='}, {'input': '[100,1,15,2]', 'output': '10230', 'relation': '=='}, {'input': '[10000,10000]', 'output': '200000000', 'relation': '=='}, {'input': '[-1.4,4.6,6.3]', 'output': '75', 'relation': '=='}, {'input': '[-1.4,17.9,18.9,19.9]', 'output': '1086', 'relation': '=='}, {'input': '[0]', 'output': '0', 'relation': '=='}, {'input': '[-1]', 'output': '1', 'relation': '=='}, {'input': '[-1,1,0]', 'output': '2', 'relation': '=='} ] test_case_dic['HumanEval/135'] = [ {'input': '[1,2,4,3,5]', 'output': '3', 'relation': '=='}, {'input': '[1,2,4,5]', 'output': '-1', 'relation': '=='}, {'input': '[1,4,2,5,6,7,8,9,10]', 'output': '2', 'relation': '=='}, {'input': '[4,8,5,7,3]', 'output': '4', 'relation': '=='}, {'input': '[]', 'output': '-1', 'relation': '=='} ] for case in test_case_dic['HumanEval/68']: case['output'] = case['output'].replace(', "Error"', '') for case in test_case_dic['HumanEval/88']: case['output'] = case['output'].replace(', "Error"', '') for case in test_case_dic['HumanEval/105']: case['output'] = case['output'].replace(', "Error"', '') for case in test_case_dic['HumanEval/159']: case['output'] = case['output'].replace(', "Error"', '') test_case_dic['HumanEval/109'] = [ {'input': '[3, 4, 5, 1, 2]', 'output': 'True', 'relation': '=='}, {'input': '[3, 5, 10, 1, 2]', 'output': 'True', 'relation': '=='}, {'input': '[4, 3, 1, 2]', 'output': 'False', 'relation': '=='}, {'input': '[3, 5, 4, 1, 2]', 'output': 'False', 'relation': '=='}, {'input': '[]', 'output': 'True', 'relation': '=='} ] test_case_dic['HumanEval/111'] = [ {'input': "'a b b a'", 'output': "{'a':2,'b': 2}", 'relation': '=='}, {'input': "'a b c a b'", 'output': "{'a': 2, 'b': 2}", 'relation': '=='}, {'input': "'a b c d g'", 'output': "{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}", 'relation': '=='}, {'input': "'r t g'", 'output': "{'r': 1,'t': 1,'g': 1}", 'relation': '=='}, {'input': "'b b b b a'", 'output': "{'b': 4}", 'relation': '=='}, {'input': "''", 'output': "{}", 'relation': '=='}, {'input': "'a'", 'output': "{'a': 1}", 'relation': '=='} ] test_case_dic['HumanEval/113'] = [ {'input': "['1234567']", 'output': "['the number of odd elements 4n the str4ng 4 of the 4nput.']", 'relation': '=='}, {'input': "['3','11111111']", 'output': "['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 8n the str8ng 8 of the 8nput.']", 'relation': '=='}, {'input': "['271', '137', '314']", 'output': "['the number of odd elements 2n the str2ng 2 of the 2nput.', 'the number of odd elements 3n the str3ng 3 of the 3nput.', 'the number of odd elements 2n the str2ng 2 of the 2nput.']", 'relation': '=='} ] # statement after assertation false assertation_comment_list = [64, 65, 66, 71, 76, 77, 79, 78, 80, 84, 89, 91, 92, 93, 94, 95, 97, 99, 107, 114, 115, 122, 126, 132, 133, 139, 140, 144, 151, 154, 157, 160] for i in assertation_comment_list: for case in test_case_dic['HumanEval/%s' % (i)]: # if ',' in res['output']: # res['output'] = res['output'].split(',')[0] case['output'] = case['output'].split(',')[0] test_case_dic['HumanEval/65'][3]['output'] = test_case_dic['HumanEval/65'][3]['output'][1:-1] test_case_dic['HumanEval/65'][4]['output'] = test_case_dic['HumanEval/65'][4]['output'][1:-1] test_case_dic['HumanEval/79'][3]['output'] = test_case_dic['HumanEval/79'][3]['output'][1:-1] for case in test_case_dic['HumanEval/84']: case['output'] = case['output'][:-1] quota_list = [89, 93, 140] for i in quota_list: for case in test_case_dic['HumanEval/%s' % (i)]: case['output'] = case['output'][1:-1] test_case_dic['HumanEval/100'] = [ {'input': '3', 'output': '[3, 5, 7]', 'relation': '=='}, {'input': '4', 'output': '[4, 6, 8, 10]', 'relation': '=='}, {'input': '5', 'output': '[5, 7, 9, 11, 13]', 'relation': '=='}, {'input': '6', 'output': '[6, 8, 10, 12, 14, 16]', 'relation': '=='}, {'input': '8', 'output': '[8, 10, 12, 14, 16, 18, 20, 22]', 'relation': '=='} ] test_case_dic['HumanEval/117'] = [ {'input': '"Mary had a little lamb", 4','output': '["little"]', 'relation': '=='}, {'input': '"Mary had a little lamb", 3','output': '["Mary", "lamb"]', 'relation': '=='}, {'input': '"simple white space", 2', 'output': '[]', 'relation': '=='}, {'input': '"Hello world", 4', 'output': '["world"]', 'relation': '=='}, {'input': '"Uncle sam", 3', 'output': '["Uncle"]', 'relation': '=='}, {'input': '"", 4', 'output': '[]', 'relation': '=='}, {'input': '"a b c d e f", 1', 'output': '["b", "c", "d", "f"]', 'relation': '=='} ] test_case_dic['HumanEval/148'] = [ {'input': '"Jupiter", "Neptune"', 'output': '("Saturn", "Uranus")', 'relation': '=='}, {'input': '"Earth", "Mercury"', 'output': '("Venus",)', 'relation': '=='}, {'input': '"Mercury", "Uranus"', 'output': '("Venus", "Earth", "Mars", "Jupiter", "Saturn")', 'relation': '=='}, {'input': '"Neptune", "Venus"', 'output': '("Earth", "Mars", "Jupiter", "Saturn", "Uranus")', 'relation': '=='}, {'input': '"Earth", "Earth"', 'output': '()', 'relation': '=='}, {'input': '"Mars", "Earth"', 'output': '()', 'relation': '=='}, {'input': '"Jupiter", "Makemake"', 'output': '()', 'relation': '=='} ] test_case_dic['HumanEval/158'] = [ {'input': '["name", "of", "string"]', 'output': 'string', 'relation': '=='}, {'input': '["name", "enam", "game"]', 'output': 'enam', 'relation': '=='}, {'input': '["aaaaaaa", "bb", "cc"]', 'output': 'aaaaaaa', 'relation': '=='}, {'input': '["abc", "cba"]', 'output': 'abc', 'relation': '=='}, {'input': '["play", "this", "game", "of","footbott"]', 'output': 'footbott', 'relation': '=='}, {'input': '["we", "are", "gonna", "rock"]', 'output': 'gonna', 'relation': '=='}, {'input': '["we", "are", "a", "mad", "nation"]', 'output': 'nation', 'relation': '=='}, {'input': '["this", "is", "a", "prrk"]', 'output': 'this', 'relation': '=='}, {'input': '["b"]', 'output': 'b', 'relation': '=='}, {'input': '["play", "play", "play"]', 'output': 'play', 'relation': '=='} ] test_case_dic['HumanEval/151'][-1] = { 'input': '[-99, -97, -95, -93, -91, -89, -87, -85, -83, -81, -79, -77, -75, -73, -71, -69, -67, -65, -63, -61, -59, -57, -55, -53, -51, -49, -47, -45, -43, -41, -39, -37, -35, -33, -31, -29, -27, -25, -23, -21, -19, -17, -15, -13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99]', 'output': '166650', 'relation': '==' } test_case_dic['HumanEval/152'] = [ {'input': '[1,2,3,4,5,1],[1,2,3,4,2,-2]', 'output': '[0,0,0,0,3,3]', 'relation': '=='}, {'input': '[0,0,0,0,0,0],[0,0,0,0,0,0]', 'output': '[0,0,0,0,0,0]', 'relation': '=='}, {'input': '[1,2,3],[-1,-2,-3]', 'output': '[2,4,6]', 'relation': '=='}, {'input': '[1,2,3,5],[-1,2,3,4]', 'output': '[2,0,0,1]', 'relation': '=='} ] test_case_dic['HumanEval/123'] = [ {'input': '14', 'output': '[1, 5, 7, 11, 13, 17]', 'relation': '=='}, {'input': '5', 'output': '[1, 5]', 'relation': '=='}, {'input': '12', 'output': '[1, 3, 5]', 'relation': '=='}, {'input': '1', 'output': '[1]', 'relation': '=='} ] test_case_dic['HumanEval/107'] = [ {'input': '123', 'output': '(8, 13)', 'relation': '=='}, {'input': '12', 'output': '(4, 6)', 'relation': '=='}, {'input': '3', 'output': '(1, 2)', 'relation': '=='}, {'input': '63', 'output': '(6, 8)', 'relation': '=='}, {'input': '25', 'output': '(5, 6)', 'relation': '=='}, {'input': '19', 'output': '(4, 6)', 'relation': '=='}, {'input': '9', 'output': '(4, 5)', 'relation': '=='}, {'input': '1', 'output': '(0, 1)', 'relation': '=='} ] test_case_dic['HumanEval/163'] = [ {'input': '2, 10', 'output': '[2, 4, 6, 8]', 'relation': '=='}, {'input': '10, 2', 'output': '[2, 4, 6, 8]', 'relation': '=='}, {'input': '132, 2', 'output': '[2, 4, 6, 8]', 'relation': '=='}, {'input': '17, 89', 'output': '[]', 'relation': '=='} ] # format problem format_problem_list = [71, 96, 101, 105, 108, 111, 112, 117, 125, 148, 152, 149] for i in format_problem_list: for case in test_case_dic['HumanEval/%s' % (i)]: case['output'] = str(eval(case['output'])) # def test_solution(): case_status = [] for i in range(len(problem_list)): test_cases = test_case_dic[problem_list[i]['task_id']] demo_file = 'demo.py' with open(demo_file, 'w', encoding='utf-8') as f: f.write(problem_list[i]['prompt'] + problem_list[i]['canonical_solution']) call_demo_file = 'call_demo.py' unpassed_test_case = [] for j in range(len(test_cases)): if test_cases[j]['relation'] == '==': with open('./call_demo.py', 'w') as f: f.write('from %s import %s\nprint(%s(%s))' % ( demo_file.split('.')[0], problem_list[i]['entry_point'], problem_list[i]['entry_point'], test_cases[j]['input'] )) try: output = subprocess.run(["python", call_demo_file], capture_output=True, text=True, timeout=3) except subprocess.TimeoutExpired as e: print(e, flush=True) unpassed_test_case.append([j, 'Timeout']) continue except Exception as e: print(e, flush=True) unpassed_test_case.append([j, 'Exception']) continue if test_cases[j]['output'].strip() != output.stdout.strip(): unpassed_test_case.append([j, 'false']) else: unpassed_test_case.append([j, 'True']) else: if '$input$' in test_cases[j]['relation'] or '$demo$' in test_cases[j]['relation']: with open('./call_demo.py', 'w') as f: f.write('from %s import %s\n%s' % ( demo_file.split('.')[0], problem_list[i]['entry_point'], test_cases[j]['relation'].replace('$input$', str(test_cases[j]['input'])).replace('$demo$', demo_file.split('.')[0]) )) else: with open('./call_demo.py', 'w') as f: f.write('from %s import %s\nprint(%s)' % (demo_file.split('.')[0], problem_list[i]['entry_point'], test_cases[j]['relation'].replace('candidate', problem_list[i]['entry_point']))) try: output = subprocess.run(["python", call_demo_file], capture_output=True, text=True, timeout=3) except subprocess.TimeoutExpired as e: print(e, flush=True) unpassed_test_case.append([j, 'Timeout']) continue except Exception as e: print(e, flush=True) unpassed_test_case.append([j, 'Exception']) continue if output.stdout.strip() != 'True': unpassed_test_case.append([j, 'false']) else: unpassed_test_case.append([j, 'True']) if len(set([i[1] for i in unpassed_test_case])) == 1 and unpassed_test_case[0][1] == 'True': # print('ALL TRUE') case_status.append(['ALL TRUE']) else: case_status.append(unpassed_test_case) # print(unpassed_test_case) # test_cases = test_case_dic[problem_list[i]['task_id']] # with open('./demo.py', 'w', encoding='utf-8') as f: # f.write(problem_list[i]['prompt'] + problem_list[i]['canonical_solution']) # call_demo_file = 'call_demo.py' # unpassed_test_case = [] # for j in range(len(test_cases)): # if test_cases[j]['relation'] == '==': # with open('./call_demo.py', 'w') as f: # f.write('from demo import %s\nprint(%s(%s))' % ( # problem_list[i]['entry_point'], problem_list[i]['entry_point'], test_cases[j]['input'])) # try: # output = subprocess.run(["python", call_demo_file], capture_output=True, text=True, timeout=3) # # except subprocess.TimeoutExpired as e: # print(e, flush=True) # unpassed_test_case.append([j,'Timeout']) # continue # except Exception as e: # print(e, flush=True) # unpassed_test_case.append([j,'Exception']) # continue # if test_cases[j]['output'].strip() != output.stdout.strip(): # unpassed_test_case.append([j, 'false']) # else: # with open('./call_demo.py', 'w') as f: # f.write('from demo import %s\nprint(%s)' % ( # problem_list[i]['entry_point'], test_cases[j]['relation'].replace('candidate', problem_list[i]['entry_point']))) # try: # output = subprocess.run(["python", call_demo_file], capture_output=True, text=True, timeout=3) # except subprocess.TimeoutExpired as e: # print(e, flush=True) # unpassed_test_case.append([j,'Timeout']) # continue # except Exception as e: # print(e, flush=True) # unpassed_test_case.append([j,'Exception']) # continue # if output.stdout.strip() != 'True': # unpassed_test_case.append([j, 'false']) # case_status.append(unpassed_test_case) # test_case = [] # for i in range(len(input)): # res = {'input': input[i], 'output': output[i], 'relation': '=='} # test_case.append(res) # reconstruct the dataset if not os.path.exists('HumanEval/HumanEval_new.jsonl'): with open('HumanEval/HumanEval_new.json', 'w') as f: f.write('') for problem in problem_list: res = { 'name': problem['task_id'], 'entry_point': problem['entry_point'], 'prompt': problem['prompt'], 'solution': problem['prompt'] + problem['canonical_solution'], 'test_case': test_case_dic[problem['task_id']] } json_str = json.dumps(res) with open('HumanEval/HumanEval_new.jsonl', 'a') as f: f.write(json_str + '\n')
[ "Generate Python3 code (Markdown):\n", "PLACEHOLDERPLACEHOLDER" ]
2024-01-10
rororowyourboat/CadCAD_GPT_experiments
examples~predator_prey~cadcad_gpt.py
import openai import json import plotly.express as px import pandas as pd from radcad import Experiment from radcad.engine import Engine #importing radcad model from models folder from predator_prey_radcad import model, simulation, experiment from langchain.agents import create_pandas_dataframe_agent from langchain.chat_models import ChatOpenAI from langchain.agents.agent_types import AgentType # from langchain.agents.agent_types import AgentType from langchain.llms import OpenAI from langchain.prompts import ChatPromptTemplate from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.schema.runnable import RunnablePassthrough, RunnableLambda from langchain.schema.output_parser import StrOutputParser with open('docs.txt', 'r') as file: docs = file.read().replace('\n', '') # tools in the tool kit df = pd.DataFrame(experiment.run()) def change_param(param,value): '''Changes the value of a parameter in the model''' # simulation.model.initial_state.update({ # }) value = float(value) simulation.model.params.update({ param: [value] }) experiment = Experiment(simulation) experiment.engine = Engine() result = experiment.run() # Convert the results to a pandas DataFrame globals()['df'] = pd.DataFrame(result) return f'new {param} value is {value} and the simulation dataframe is updated' def model_info(param): '''Returns the information about the model''' if param == 'all': return simulation.model.params elif param in simulation.model.params: return f'{param} = {simulation.model.params[param]}' else: return f'{param} is not a parameter of the model' # pandas agent as a tool def analyze_dataframe(question): '''Analyzes the dataframe and returns the answer to the question''' # pandas_agent = agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df, verbose=True) pandas_agent = create_pandas_dataframe_agent(ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613"), df, verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, ) answer = pandas_agent.run(question) return answer def model_documentation(question): '''Returns the documentation of the model''' vectorstore = FAISS.from_texts([docs], embedding=OpenAIEmbeddings()) retriever = vectorstore.as_retriever() template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI() chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | model | StrOutputParser() ) info = chain.invoke(question) return info def A_B_test(param,param2,metric): '''Runs an A/B test on the model''' return 'A/B test is running' ######################## def plotter(column_name): '''Plots the column from the dataframe''' fig = px.line(df, x="timestep", y=[column_name], title='Predator Prey Model') fig.show() ################## def planner_agent(prompt): """Give LLM a given prompt and get an answer.""" completion = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=[ { "role": "system", "content": ''' You will be provided with a question by the user that is trying to run a cadcad python model. Your job is to provide the set of actions to take to get to the answer using only the functions available. These are the functions available to you: {function_descriptions_multiple}. always remember to start and end plan with ###. Dont give the user any information other than the plan and only use the functions to get to the solution. User: whats the current value of xyz? Planner: ### 1) we use the function model_info to fetch the xyz parameter ### User: What is the current value of all params? Planner: ### 1) we use the function model_info to fetch all the parameters ### User: What are the assumptions in this model? Planner: ### 1) use the function model_documentation to fetch the assumptions in this model. ### User: What are the metrics and params in the model? Planner: ### 1) use the function model_documentation to fetch the metrics and params in the model. ### User: What are the columns in the dataframe? Planner: ### 1) use the function analyze_dataframe to fetch the columns in the dataframe. ### User: What would happen to the A column at the end of the simulation if my xyz param was 20? Planner: ### 1) we use function change_param to change the xyz parameter to 20 .\n 2) we use function analyze_dataframe to get the A at the end of the simulation. ### USer: What is the current value of my xyz param? can you change it to 50 and tell me what the A column at the end of the simulation would be? Planner: ### 1) we use function model_info to fetch the crash_chance parameter. \n 2) we use function change_param to change the xyz parameter to 50 .\n 3) we use function analyze_dataframe to get the A at the end of the simulation. ### User: what would be the max value of A column if we increase the xyz param to 2? Planner: ### 1) we use function change_param to change the xyz parameter to 2 .\n 2) we use function analyze_dataframe to get the max value of A column. ### ''' }, { "role": "user", "content": prompt } ], ) output = completion.choices[0].message return output # tool descriptions function_descriptions_multiple = [ { "name": "change_param", "description": "Changes the parameter of the cadcad simulation and returns dataframe as a global object. The parameter must be in this list:" + str(model.params.keys()), "parameters": { "type": "object", "properties": { "param": { "type": "string", "description": "parameter to change. choose from the list" + str(model.params.keys()), }, "value": { "type": "string", "description": "value to change the parameter to, eg. 0.1", }, }, "required": ["param", "value"], }, }, { "name": "model_info", "description": "quantitative values of current state of the simulation parameters. If no param is specified the argument should be 'all'", "parameters": { "type": "object", "properties": { "param": { "type": "string", "description": "type of information to print. choose from the list: " + str(model.params.keys()), }, }, "required": ["param"], }, }, { "name": "analyze_dataframe", "description": "Use this whenever a quantitative question is asked about the dataframe. The question should be taken exactly as asked by the user", "parameters": { "type": "object", "properties": { "question": { "type": "string", "description": "The question asked by user that can be answered by an LLM dataframe agent", }, }, "required": ["question"], }, }, { "name": "model_documentation", "description": "use when asked about documentation of the model has information about what the model is, assumptions made, mathematical specs, differential model specs etc.", "parameters": { "type": "object", "properties": { "question": { "type": "string", "description": "The question asked by user that can be answered by an LLM dataframe agent", }, }, "required": ["question"], }, }, { "name": "plotter", "description": "use when asked to plot a column from dataframe", "parameters": { "type": "object", "properties": { "column_name": { "type": "string", "description": "The name of the column to be printed", }, }, "required": ["column_name"], }, } ] # plan parser function which takes a string and returns a list of functions to call. It uses the \n as a delimiter to split the string into a list of functions to call. def plan_parser(plan): plan = plan.split('###')[1] plans = plan.split('\n') # plans = [x.strip() for x in plans] #strip the blank space before and after the sentences # plans = [x.strip() for x in plans if x.strip() != ''] return plans # pritn with colors def print_color(string, color): print("\033["+color+"m"+string+"\033[0m") # def orchestrator_pipeline(user_input): # plan = planner_agent(user_input).content # plan_list = plan_parser(plan) # print_color("Planner Agent:", "32") # print('I have made a plan to follow: \n') # for plan in plan_list: # print(plan) # print('\n') # for plan in plan_list: # print_color("Executor Agent:", "31") # print('Thought: My task is to', plan) # answer = executor_agent(plan) # print('Action: I should call', answer.function_call.name,'function with these' , json.loads(answer.function_call.arguments),'arguments') # if answer.function_call.name == 'analyze_dataframe': # print_color("Analyzer Agent:", "34") # print('Observation: ', eval(answer.function_call.name)(**json.loads(answer.function_call.arguments))) def executor_agent(prompt): """Give LLM a given prompt and get an answer.""" completion = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=[{"role": "user", "content": prompt}], # add function calling functions=function_descriptions_multiple, function_call="auto", # specify the function call ) output = completion.choices[0].message return output def cadcad_gpt(user_input): plan = planner_agent(user_input).content plan_list = plan_parser(plan) print_color("Planner Agent:", "32") print('I have made a plan to follow: \n') for plan in plan_list: print(plan) print('\n') for plan in plan_list: print_color("Executor Agent:", "31") print('Thought: My task is to', plan) answer = executor_agent(plan) print('Action: I should call', answer.function_call.name,'function with these' , json.loads(answer.function_call.arguments),'arguments') if answer.function_call.name == 'analyze_dataframe': print_color("Analyzer Agent:", "34") print('Observation: ', eval(answer.function_call.name)(**json.loads(answer.function_call.arguments))) # user_prompt = "whats the current value of crash chance?" # print(executor_agent(user_prompt))
[ "\n You will be provided with a question by the user that is trying to run a cadcad python model. Your job is to provide the set of actions to take to get to the answer using only the functions available.\n These are the functions available to you: {function_descriptions_multiple}. always remember to start and end plan with ###. Dont give the user any information other than the plan and only use the functions to get to the solution.\n\n User: whats the current value of xyz?\n Planner: ### 1) we use the function model_info to fetch the xyz parameter ###\n User: What is the current value of all params?\n Planner: ### 1) we use the function model_info to fetch all the parameters ###\n User: What are the assumptions in this model?\n Planner: ### 1) use the function model_documentation to fetch the assumptions in this model. ###\n User: What are the metrics and params in the model?\n Planner: ### 1) use the function model_documentation to fetch the metrics and params in the model. ###\n User: What are the columns in the dataframe?\n Planner: ### 1) use the function analyze_dataframe to fetch the columns in the dataframe. ###\n User: What would happen to the A column at the end of the simulation if my xyz param was 20?\n Planner: ### 1) we use function change_param to change the xyz parameter to 20 .\n 2) we use function analyze_dataframe to get the A at the end of the simulation. ###\n USer: What is the current value of my xyz param? can you change it to 50 and tell me what the A column at the end of the simulation would be?\n Planner: ### 1) we use function model_info to fetch the crash_chance parameter. \n 2) we use function change_param to change the xyz parameter to 50 .\n 3) we use function analyze_dataframe to get the A at the end of the simulation. ###\n User: what would be the max value of A column if we increase the xyz param to 2?\n Planner: ### 1) we use function change_param to change the xyz parameter to 2 .\n 2) we use function analyze_dataframe to get the max value of A column. ###\n ", "Answer the question based only on the following context:\n {context}\n\n Question: {question}\n " ]
2024-01-10
rororowyourboat/CadCAD_GPT_experiments
examples~infinite_runner~cadcad_gpt.py
import openai import json import os import pandas as pd from radcad import Experiment from radcad.engine import Engine #importing radcad model from models folder from infinite_runner_radcad import model, simulation, experiment from langchain.agents import create_pandas_dataframe_agent from langchain.chat_models import ChatOpenAI from langchain.agents.agent_types import AgentType # from langchain.agents.agent_types import AgentType from langchain.llms import OpenAI from langchain.prompts import ChatPromptTemplate from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.schema.runnable import RunnablePassthrough, RunnableLambda from langchain.schema.output_parser import StrOutputParser with open('docs.txt', 'r') as file: docs = file.read().replace('\n', '') ########################## # Tool kit # tools in the tool kit df = pd.DataFrame(experiment.run()) def change_param(param,value): '''Changes the value of a parameter in the model''' # simulation.model.initial_state.update({ # }) value = float(value) simulation.model.params.update({ param: [value] }) experiment = Experiment(simulation) experiment.engine = Engine() result = experiment.run() # Convert the results to a pandas DataFrame globals()['df'] = pd.DataFrame(result) return f'new {param} value is {value} and the simulation dataframe is updated' def model_info(param): '''Returns the information about the model''' if param == 'all': return simulation.model.params elif param in simulation.model.params: return f'{param} = {simulation.model.params[param]}' else: return f'{param} is not a parameter of the model' # pandas agent as a tool def analyze_dataframe(question): '''Analyzes the dataframe and returns the answer to the question''' # pandas_agent = agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df, verbose=True) pandas_agent = create_pandas_dataframe_agent(ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613"), df, verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, ) answer = pandas_agent.run(question) return answer def model_documentation(question): '''Returns the documentation of the model''' vectorstore = FAISS.from_texts([docs], embedding=OpenAIEmbeddings()) retriever = vectorstore.as_retriever() template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI() chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | model | StrOutputParser() ) info = chain.invoke(question) return info def A_B_test(param,param2,metric): '''Runs an A/B test on the model''' return 'A/B test is running' # tool descriptions function_descriptions_multiple = [ { "name": "change_param", "description": "Changes the parameter of the cadcad simulation and returns dataframe as a global object. The parameter must be in this list:" + str(model.params.keys()), "parameters": { "type": "object", "properties": { "param": { "type": "string", "description": "parameter to change. choose from the list" + str(model.params.keys()), }, "value": { "type": "string", "description": "value to change the parameter to, eg. 0.1", }, }, "required": ["param", "value"], }, }, { "name": "model_info", "description": "quantitative values of current state of the simulation parameters. If no param is specified the argument should be 'all'", "parameters": { "type": "object", "properties": { "param": { "type": "string", "description": "type of information to print. choose from the list: " + str(model.params.keys()), }, }, "required": ["param"], }, }, { "name": "analyze_dataframe", "description": "Use this whenever a quantitative question is asked about the dataframe. The question should be taken exactly as asked by the user", "parameters": { "type": "object", "properties": { "question": { "type": "string", "description": "The question asked by user that can be answered by an LLM dataframe agent", }, }, "required": ["question"], }, }, { "name": "model_documentation", "description": "use when asked about documentation of the model has information about what the model is, assumptions made, mathematical specs, differential model specs etc.", "parameters": { "type": "object", "properties": { "question": { "type": "string", "description": "The question asked by user that can be answered by an LLM dataframe agent", }, }, "required": ["question"], }, } ] ################## # Agents def planner_agent(prompt): """Give LLM a given prompt and get an answer.""" completion = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=[ { "role": "system", "content": ''' You will be provided with a question by the user that is trying to run a cadcad python model. Your job is to provide the set of actions to take to get to the answer using only the functions available. These are the functions available to you: {function_descriptions_multiple}. always remember to start and end plan with ###. Dont give the user any information other than the plan and only use the functions to get to the solution. User: whats the current value of xyz? Planner: ### 1) we use the function model_info to fetch the xyz parameter ### User: What is the current value of all params? Planner: ### 1) we use the function model_info to fetch all the parameters ### User: What are the assumptions in this model? Planner: ### 1) use the function model_documentation to fetch the assumptions in this model. ### User: What are the metrics and params in the model? Planner: ### 1) use the function model_documentation to fetch the metrics and params in the model. ### User: What are the columns in the dataframe? Planner: ### 1) use the function analyze_dataframe to fetch the columns in the dataframe. ### User: What would happen to the A column at the end of the simulation if my xyz param was 20? Planner: ### 1) we use function change_param to change the xyz parameter to 20 .\n 2) we use function analyze_dataframe to get the A at the end of the simulation. ### USer: What is the current value of my xyz param? can you change it to 50 and tell me what the A column at the end of the simulation would be? Planner: ### 1) we use function model_info to fetch the crash_chance parameter. \n 2) we use function change_param to change the xyz parameter to 50 .\n 3) we use function analyze_dataframe to get the A at the end of the simulation. ### ''' }, { "role": "user", "content": prompt } ], ) output = completion.choices[0].message return output def executor_agent(prompt): """Give LLM a given prompt and get an answer.""" completion = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=[{"role": "user", "content": prompt}], # add function calling functions=function_descriptions_multiple, function_call="auto", # specify the function call ) output = completion.choices[0].message return output ###################### # utils # plan parser function which takes a string and returns a list of functions to call. It uses the \n as a delimiter to split the string into a list of functions to call. def plan_parser(plan): plan = plan.split('###')[1] plans = plan.split('\n') # plans = [x.strip() for x in plans] #strip the blank space before and after the sentences # plans = [x.strip() for x in plans if x.strip() != ''] return plans # pritn with colors def print_color(string, color): print("\033["+color+"m"+string+"\033[0m") ####################### # orchestration pipeline # def orchestrator_pipeline(user_input): # plan = planner_agent(user_input).content # plan_list = plan_parser(plan) # print_color("Planner Agent:", "32") # print('I have made a plan to follow: \n') # for plan in plan_list: # print(plan) # print('\n') # for plan in plan_list: # print_color("Executor Agent:", "31") # print('Thought: My task is to', plan) # answer = executor_agent(plan) # print('Action: I should call', answer.function_call.name,'function with these' , json.loads(answer.function_call.arguments),'arguments') # if answer.function_call.name == 'analyze_dataframe': # print_color("Analyzer Agent:", "34") # print('Observation: ', eval(answer.function_call.name)(**json.loads(answer.function_call.arguments))) def cadcad_gpt(user_input): plan = planner_agent(user_input).content plan_list = plan_parser(plan) print_color("Planner Agent:", "32") print('I have made a plan to follow: \n') for plan in plan_list: print(plan) print('\n') for plan in plan_list: print_color("Executor Agent:", "31") print('Thought: My task is to', plan) answer = executor_agent(plan) print('Action: I should call', answer.function_call.name,'function with these' , json.loads(answer.function_call.arguments),'arguments') if answer.function_call.name == 'analyze_dataframe': print_color("Analyzer Agent:", "34") print('Observation: ', eval(answer.function_call.name)(**json.loads(answer.function_call.arguments))) # user_prompt = "whats the current value of crash chance?" # print(executor_agent(user_prompt))
[ "\n You will be provided with a question by the user that is trying to run a cadcad python model. Your job is to provide the set of actions to take to get to the answer using only the functions available.\n These are the functions available to you: {function_descriptions_multiple}. always remember to start and end plan with ###. Dont give the user any information other than the plan and only use the functions to get to the solution.\n\n User: whats the current value of xyz?\n Planner: ### 1) we use the function model_info to fetch the xyz parameter ###\n User: What is the current value of all params?\n Planner: ### 1) we use the function model_info to fetch all the parameters ###\n User: What are the assumptions in this model?\n Planner: ### 1) use the function model_documentation to fetch the assumptions in this model. ###\n User: What are the metrics and params in the model?\n Planner: ### 1) use the function model_documentation to fetch the metrics and params in the model. ###\n User: What are the columns in the dataframe?\n Planner: ### 1) use the function analyze_dataframe to fetch the columns in the dataframe. ###\n User: What would happen to the A column at the end of the simulation if my xyz param was 20?\n Planner: ### 1) we use function change_param to change the xyz parameter to 20 .\n 2) we use function analyze_dataframe to get the A at the end of the simulation. ###\n USer: What is the current value of my xyz param? can you change it to 50 and tell me what the A column at the end of the simulation would be?\n Planner: ### 1) we use function model_info to fetch the crash_chance parameter. \n 2) we use function change_param to change the xyz parameter to 50 .\n 3) we use function analyze_dataframe to get the A at the end of the simulation. ###\n ", "Answer the question based only on the following context:\n {context}\n\n Question: {question}\n " ]
2024-01-10
rororowyourboat/CadCAD_GPT_experiments
cadcad_gpt~orchestration.py
# create an cadcad-gpt agent class which takes in the model, simulation, experiment, doc string and can return the experiment.run() function import openai # tool descriptions function_descriptions_multiple = [ { "name": "change_param", "description": "Changes the parameter of the cadcad simulation and returns dataframe as a global object. The parameter must be in this list:" + str(model.params.keys()), "parameters": { "type": "object", "properties": { "param": { "type": "string", "description": "parameter to change. choose from the list" + str(model.params.keys()), }, "value": { "type": "string", "description": "value to change the parameter to, eg. 0.1", }, }, "required": ["param", "value"], }, }, { "name": "model_info", "description": "quantitative values of current state of the simulation parameters.", "parameters": { "type": "object", "properties": { "param": { "type": "string", "description": "type of information to print. choose from the list: " + str(model.params.keys()), }, }, "required": ["param"], }, }, { "name": "analyze_dataframe", "description": "Use this whenever a quantitative question is asked about the dataframe", "parameters": { "type": "object", "properties": { "question": { "type": "string", "description": "The question asked by user that can be answered by an LLM dataframe agent", }, }, "required": ["question"], }, }, { "name": "model_documentation", "description": "use when asked about documentation of the model has information about what the model is, assumptions made, mathematical specs, differential model specs etc.", "parameters": { "type": "object", "properties": { "question": { "type": "string", "description": "The question asked by user that can be answered by an LLM dataframe agent", }, }, "required": ["question"], }, } ] class CadcadGPTAgent: def __init__(self, model, simulation, experiment, docstring): self.model = model self.simulation = simulation self.experiment = experiment self.docstring = docstring def run(self): df1 = pd.DataFrame(self.experiment.run()) return df1 def executor_agent(self, prompt, function_descriptions = function_descriptions_multiple): """Give LLM a given prompt and get an answer.""" completion = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=[{"role": "user", "content": prompt}], # add function calling functions=function_descriptions_multiple, function_call="auto", # specify the function call ) output = completion.choices[0].message return output def planner_agent(self, prompt): """Give LLM a given prompt and get an answer.""" completion = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=[ { "role": "system", "content": ''' You will be provided with a question by the user that is trying to run a cadcad python model. Your job is to provide the set of actions to take to get to the answer using only the functions available. For example, if the user asks "if my crash chance parameter was 0.2, what would the avg coins be at the end of the simulation?" you reply with "### 1) we use the function change_param to change the crash chance parameter to 0.2,\n 2) use the function analyze_dataframe to get the avg coins at the end of the simulation. ###" if the user asks "what would happen to the coins at the end of the simulation if my crash chance param was 10 perc lower?" you reply with "### 1) find out the current value of crash chance param using the model_info function,\n 2) we use function change_param to change the crash chance parameter to 0.1*crash_chance .\n 3) we use function analyze_dataframe to get the avg coins at the end of the simulation. ###" If the user asks "what is the documentation of the model?" you reply with "### use the function model_documentation to get the documentation of the model. ### These are the functions available to you: {function_descriptions_multiple}. always remember to start and end plan with ###. Dont give the user any information other than the plan and only use the functions to get to the solution. ''' }, { "role": "user", "content": prompt } ], ) output = completion.choices[0].message return output
[ "\n You will be provided with a question by the user that is trying to run a cadcad python model. Your job is to provide the set of actions to take to get to the answer using only the functions available.\n For example, if the user asks \"if my crash chance parameter was 0.2, what would the avg coins be at the end of the simulation?\" you reply with \"### 1) we use the function change_param to change the crash chance parameter to 0.2,\n 2) use the function analyze_dataframe to get the avg coins at the end of the simulation. ###\" \n if the user asks \"what would happen to the coins at the end of the simulation if my crash chance param was 10 perc lower?\" you reply with \"### 1) find out the current value of crash chance param using the model_info function,\n 2) we use function change_param to change the crash chance parameter to 0.1*crash_chance .\n 3) we use function analyze_dataframe to get the avg coins at the end of the simulation. ###\"\n If the user asks \"what is the documentation of the model?\" you reply with \"### use the function model_documentation to get the documentation of the model. ###\n These are the functions available to you: {function_descriptions_multiple}. always remember to start and end plan with ###. Dont give the user any information other than the plan and only use the functions to get to the solution.\n " ]
2024-01-10
Rocinate/autoTranscript
server~controller~transcriptController.py
from openai import OpenAI from models import db, Transcript from configs import UPLOAD_FOLDER client = OpenAI() def summary_extraction(transcript): response = client.chat.completions.create( model="gpt-3.5-turbo", temperature=0, n=1, messages=[ { "role": "system", "content": "You are a highly skilled AI trained in language comprehension and summarization. I would like you to read the following text and summarize it into a concise abstract paragraph. Aim to retain the most important points, providing a coherent and readable summary that could help a person understand the main points of the discussion without needing to read the entire text. Please avoid unnecessary details or tangential points. Please use less than 30 words.", }, {"role": "user", "content": transcript}, ], ) return response.choices[0].message.content def key_points_extraction(transcript): response = client.chat.completions.create( model="gpt-3.5-turbo", temperature=0, n=1, messages=[ { "role": "system", "content": "You are a proficient AI with a specialty in distilling information into key points. Based on the following text, identify and list the main points that were discussed or brought up. These should be the most important ideas, findings, or topics that are crucial to the essence of the discussion. Your goal is to provide a list that someone could read to quickly understand what was talked about. Please use less than 30 words.", }, {"role": "user", "content": transcript}, ], ) return response.choices[0].message.content def action_item_extraction(transcript): response = client.chat.completions.create( model="gpt-3.5-turbo", temperature=0, n=1, messages=[ { "role": "system", "content": "You are an AI expert in analyzing conversations and extracting action items. Please review the text and identify any tasks, assignments, or actions that were agreed upon or mentioned as needing to be done. These could be tasks assigned to specific individuals, or general actions that the group has decided to take. Please list these action items clearly and concisely. Please use less than 30 words.", }, {"role": "user", "content": transcript}, ], ) return response.choices[0].message.content def sentiment_analysis(transcript): response = client.chat.completions.create( model="gpt-3.5-turbo", temperature=0, n=1, messages=[ { "role": "system", "content": "As an AI with expertise in language and emotion analysis, your task is to analyze the sentiment of the following text. Please consider the overall tone of the discussion, the emotion conveyed by the language used, and the context in which words and phrases are used. Indicate whether the sentiment is generally positive, negative, or neutral, and provide brief explanations for your analysis where possible. Please use less than 30 words.", }, {"role": "user", "content": transcript}, ], ) return response.choices[0].message.content function_map = { "keyIdentification": key_points_extraction, "actionExtraction": action_item_extraction, "summary": summary_extraction, "sentiment": sentiment_analysis, } def create_task(id: int): try: print(f"create task {id}") from app import app with app.app_context(): transcript = Transcript.query.filter_by(id=id).first() # if audio file is provided, convert it to text if transcript.audio_name: text = audio2text(transcript.audio_name) transcript.content = text # commit first incase the task is running for a long time db.session.commit() # run the task result = run_task(transcript) if not result: transcript.status = "Failed" else: # update the transcript status transcript.status = "Finished" # save the transcript update db.session.commit() except Exception as e: print(e) return False return True def audio2text(audio_name): file = open(UPLOAD_FOLDER + "/" + audio_name, "rb") if not file: return None response = client.audio.transcriptions.create( file=file, model="whisper-1", response_format="text", language="en" ) return response # run task and update the transcript def run_task(transcript: Transcript): # check if the task is valid if transcript.task not in function_map: return False transcript.analysis = function_map[transcript.task](transcript.content) return True
[ "You are a proficient AI with a specialty in distilling information into key points. Based on the following text, identify and list the main points that were discussed or brought up. These should be the most important ideas, findings, or topics that are crucial to the essence of the discussion. Your goal is to provide a list that someone could read to quickly understand what was talked about. Please use less than 30 words.", "You are an AI expert in analyzing conversations and extracting action items. Please review the text and identify any tasks, assignments, or actions that were agreed upon or mentioned as needing to be done. These could be tasks assigned to specific individuals, or general actions that the group has decided to take. Please list these action items clearly and concisely. Please use less than 30 words.", "As an AI with expertise in language and emotion analysis, your task is to analyze the sentiment of the following text. Please consider the overall tone of the discussion, the emotion conveyed by the language used, and the context in which words and phrases are used. Indicate whether the sentiment is generally positive, negative, or neutral, and provide brief explanations for your analysis where possible. Please use less than 30 words.", "You are a highly skilled AI trained in language comprehension and summarization. I would like you to read the following text and summarize it into a concise abstract paragraph. Aim to retain the most important points, providing a coherent and readable summary that could help a person understand the main points of the discussion without needing to read the entire text. Please avoid unnecessary details or tangential points. Please use less than 30 words." ]
2024-01-10
ashishjsharda/OpenAIExamples
example2.py
import openai #you can use any oen of [davinci,babbage,curie,ada] models def query_gpt(prompt, model="text-curie-001", max_tokens=10): openai.api_key = 'your open api key' # Making a request to the model response = openai.Completion.create( engine=model, prompt=prompt, max_tokens=max_tokens ) return response.choices[0].text.strip() prompt = "Translate the following English text to French: 'Hello, how are you?'" response = query_gpt(prompt) print(response)
[ "Translate the following English text to French: 'Hello, how are you?'" ]
2024-01-10
thaitran/PatentGen
app.py
import anthropic from docx import Document import gradio as gr import os import platform import tempfile # Run in debugging mode on Mac OS if platform.system() == "Darwin": DEBUG = True else: DEBUG = False # Turn on auth if PATENTGEN_USERNAME and PATENTGEN_PASSWORD are set USERNAME = os.environ.get("PATENTGEN_USERNAME") PASSWORD = os.environ.get("PATENTGEN_PASSWORD") MAX_TOKENS = 1000 SYSTEM_MESSAGE = "You are the world's best patent attorney. You are drafting a US patent application based on the attached transcript of an invention disclosure meeting." CLAIMS_PROMPT = "Draft The Claims section with 10 claims. Only return the Claims and nothing else." TITLE_PROMPT = "Draft the title for this patent application. Only return the Title and nothing else." TECHFIELD_PROMPT = "Draft the Technical Field section. Only return the Technical Field and nothing else." BACKGROUND_PROMPT = "Draft the Background section with 3 paragraphs. Only return the Background and nothing else." EMBODIMENTS_PROMPT = "Draft the Summary of Example Embodiments section with 3 example embodiments. Only return the embodiments and nothing else." DRAWINGS_PROMPT = "Draft the Brief Description of the Drawings section. Only return the Drawings and nothing else." def generate(new_user_message, history=[], temperature=1): if 'ANTHROPIC_API_KEY' not in os.environ: raise Exception("This model will be run from www.anthropic.com - Please obtain an API key from https://console.anthropic.com/account/keys and then set the following environment variable before running this app:\n```\nexport ANTHROPIC_API_KEY=<your key>\n```") client = anthropic.Anthropic() prompt = SYSTEM_MESSAGE + "\n" for user_message, assistant_response in history: if user_message.strip() and assistant_response.strip(): prompt += anthropic.HUMAN_PROMPT + user_message + "\n" + anthropic.AI_PROMPT + assistant_response + "\n" prompt += anthropic.HUMAN_PROMPT + new_user_message + anthropic.AI_PROMPT if DEBUG: print(prompt) print("----------------------------------") stream = client.completions.create( model="claude-2", prompt=prompt, temperature=temperature, max_tokens_to_sample=MAX_TOKENS, stream=True ) return stream def gen_section_fn(index): def gen_section(transcript_file, *args): prompt_list = list(args) new_user_message = prompt_list[index] prompt_list[index] = "" messages = [] if not transcript_file: raise gr.Error("Please upload a transcript of the invention disclosure meeting first!") with open(transcript_file.name, 'r') as f: transcript = f.read() if transcript: messages.append((transcript, "Thank you, I will use this as background info when drafting the patent application.")) for i in range(0, len(prompt_list), 2): messages.append((prompt_list[i], prompt_list[i+1])) response = "" stream = generate(new_user_message, history=messages) for chunk in stream: response += chunk.completion yield response return response return gen_section def gen_word_doc(claims_gen, title_gen, techfield_gen, background_gen, embodiments_gen, drawings_gen): doc = Document() temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.docx') temp_path = temp_file.name doc.add_heading('TITLE', level=1) doc.add_paragraph(title_gen) doc.add_heading('TECHNICAL FIELD', level=1) doc.add_paragraph(techfield_gen) doc.add_heading('BACKGROUND', level=1) doc.add_paragraph(background_gen) doc.add_heading('SUMMARY OF EXAMPLE EMBODIMENTS', level=1) doc.add_paragraph(embodiments_gen) doc.add_heading('BRIEF DESCRIPTION OF THE DRAWINGS', level=1) doc.add_paragraph(drawings_gen) doc.add_heading('CLAIMS', level=1) doc.add_paragraph(claims_gen) doc.save(temp_path) return temp_path with gr.Blocks() as demo: transcript = gr.File(label="Transcript of invention disclosure meeting") claims_prompt = gr.Textbox(label="Prompt", value=CLAIMS_PROMPT, interactive=True) claims_gen = gr.Textbox(lines=5, label="Claims", interactive=True, show_copy_button=True) claims_button = gr.Button(value="Generate Claims") title_prompt = gr.Textbox(label="Prompt", value=TITLE_PROMPT, interactive=True) title_gen = gr.Textbox(lines=1, label="Title", interactive=True, show_copy_button=True) title_button = gr.Button(value="Generate Title") techfield_prompt = gr.Textbox(label="Prompt", value=TECHFIELD_PROMPT, interactive=True) techfield_gen = gr.Textbox(lines=5, label="Technical Field", interactive=True, show_copy_button=True) techfield_button = gr.Button(value="Generate Technical Field") background_prompt = gr.Textbox(label="Prompt", value=BACKGROUND_PROMPT, interactive=True) background_gen = gr.Textbox(lines=5, label="Background", interactive=True, show_copy_button=True) background_button = gr.Button(value="Generate Background") embodiments_prompt = gr.Textbox(label="Prompt", value=EMBODIMENTS_PROMPT, interactive=True) embodiments_gen = gr.Textbox(lines=5, label="Embodiments", interactive=True, show_copy_button=True) embodiments_button = gr.Button(value="Generate Embodiments") drawings_prompt = gr.Textbox(label="Prompt", value=DRAWINGS_PROMPT, interactive=True) drawings_gen = gr.Textbox(lines=5, label="Drawings", interactive=True, show_copy_button=True) drawings_button = gr.Button(value="Generate Drawings") word_doc = gr.File(label="Output Word Doc") combine_button = gr.Button(value="Combine All Sections Into Word Doc", variant="primary") inputs = [ transcript, claims_prompt, claims_gen, # 0 title_prompt, title_gen, # 2 techfield_prompt, techfield_gen, # 4 background_prompt, background_gen, # 6 embodiments_prompt, embodiments_gen, # 8 drawings_prompt, drawings_gen, # 10 ] claims_button.click(gen_section_fn(0), inputs=inputs, outputs=claims_gen) title_button.click(gen_section_fn(2), inputs=inputs, outputs=title_gen) techfield_button.click(gen_section_fn(4), inputs=inputs, outputs=techfield_gen) background_button.click(gen_section_fn(6), inputs=inputs, outputs=background_gen) embodiments_button.click(gen_section_fn(8), inputs=inputs, outputs=embodiments_gen) drawings_button.click(gen_section_fn(10), inputs=inputs, outputs=drawings_gen) combine_button.click( gen_word_doc, inputs=[ claims_gen, title_gen, techfield_gen, background_gen, embodiments_gen, drawings_gen ], outputs=word_doc ) if USERNAME and PASSWORD: demo.queue().launch(auth=(USERNAME, PASSWORD), share=False, debug=DEBUG) else: demo.queue().launch(share=False, debug=DEBUG)
[ "Draft the Summary of Example Embodiments section with 3 example embodiments. Only return the embodiments and nothing else.", "\n", "['PLACEHOLDER']", "PLACEHOLDER\n", "Draft the Technical Field section. Only return the Technical Field and nothing else.", "Draft The Claims section with 10 claims. Only return the Claims and nothing else.", "Draft the title for this patent application. Only return the Title and nothing else.", "Draft the Background section with 3 paragraphs. Only return the Background and nothing else.", "Draft the Brief Description of the Drawings section. Only return the Drawings and nothing else." ]
2024-01-10
sil-ai/ChatTRE
api.py
import os from typing import Optional import json import uuid from pathlib import Path from pydantic import BaseModel import openai import torch from transformers import BertTokenizerFast, BertModel import chromadb from chromadb.config import Settings import cohere from fastapi import FastAPI # import modal from translate import translate_text # image = ( # modal.Image.debian_slim() # .pip_install( # "chromadb", # "fastapi", # "pydantic", # "openai==0.27.2", # "torch", # "transformers", # "google-cloud-translate", # "cohere", # ).copy( # mount=modal.Mount.from_local_file( # local_path=Path("iso639-1.json"), remote_path=Path('iso639-1.json') # ), # ).copy( # mount=modal.Mount.from_local_dir( # local_path=Path(".chromadb/"), remote_path=Path('.chromadb/') # ), # ) # ) # stub = modal.Stub("chatTRE-api-server", image=image) app = FastAPI() # @stub.function() # @modal.asgi_app() # def fastapi_app(): llm = 'chatgpt' # llm = 'cohere' embeddings = None # Use default chromadb embeddings # embeddings = 'labse' # Use labse embeddings # llm API key setup if llm == 'cohere': co = cohere.Client(os.environ["COHERE_KEY"]) elif llm == 'chatgpt': openai.api_key = os.environ.get("OPENAI_KEY") if embeddings and embeddings.lower() == 'labse': cache_path = 'bert_cache/' tokenizer = BertTokenizerFast.from_pretrained('setu4993/LaBSE', cache_dir=cache_path) model = BertModel.from_pretrained('setu4993/LaBSE', cache_dir=cache_path).eval() with open('iso639-1.json') as f: iso_639_1 = json.load(f) # Vector store (assuming the .chromadb directory already exists. If not, run db.py first) client = chromadb.Client(Settings( chroma_db_impl="duckdb+parquet", persist_directory=".chromadb" )) if embeddings and embeddings.lower() == 'labse': collection = client.get_collection("tyndale-labse") else: collection = client.get_collection("tyndale") state_dict = {} # @stub.function() def get_embeddings(query, tokenizer, model): # Only needed if using labse embeddings query_input = tokenizer(query, return_tensors="pt", padding=False, truncation=True) with torch.no_grad(): query_output = model(**query_input) embedding = query_output.pooler_output.tolist()[0] return embedding # @stub.function() def add_text(text, state): query_text = '\n'.join([x[0] + '/n' + x[1][:50] + '\n' for x in state]) + text # Add the previous queries and answers to the search query print(f'{query_text=}') translation_response = translate_text(query_text) english_query_text = translation_response.translations[0].translated_text query_language_code = translation_response.translations[0].detected_language_code query_language = iso_639_1[query_language_code] print(f'{query_language=}') print(f'{english_query_text=}') # Get the context from chroma if embeddings: query_embeddings = get_embeddings(query_text, tokenizer, model) results = collection.query( query_embeddings=query_embeddings, n_results=10 ) else: # Use default chromadb embeddings results = collection.query( query_texts=[english_query_text], n_results=10 ) # Prompt. context = '[' for i in range(len(results['documents'][0])): print(results['metadatas'][0][i]) context += "{source:" + results['metadatas'][0][i]['citation'] + ', text: ' + results['documents'][0][i] + '}' + ',' context += ']' + '\n' print(f'{context=}') # Construct prompt. chat_prefix = "The following is a conversation with an AI assistant for Bible translators. The assistant is" chat_prefix += f" helpful, creative, clever, and very friendly. The assistant only responds in the {query_language} language.\n" prompt = ( chat_prefix + f'Read the paragraph below and answer the question, using only the information in the context delimited by triple backticks. Answer only in the {query_language} language. ' f'At the end of your answer, include the source of each context text that you used. You may use more than one, and include the sources of all those you used. ' # f' Respond in the following format:' + '{' + # '"answer":<answer>, "sources": [<keys>]' + '}' + f'If the question cannot be answered based on the context alone, write "Sorry i had trouble answering this question, based on the information i found\n' f"\n" f"Context:\n" f"```{ context }```\n" f"\n" ) if len(state) > 0: if len(state) > 3: trim_state = state[-3:] else: trim_state = state for exchange in trim_state: prompt += "\nHuman: " + exchange[0] + "\nAI: " + exchange[1] prompt += "\nHuman: " + text + "\nAI: " else: prompt += "\nHuman: " + text + "\nAI: " print(f'{prompt=}') if llm == 'cohere': # Get the completion from co:here. response = co.generate(model='xlarge', prompt=prompt, max_tokens=200, temperature=0) answer = response.generations[0].text elif llm == 'chatgpt': #ChatGPT reponse response = openai.ChatCompletion.create( model="gpt-3.5-turbo", temperature=0, messages=[{"role": "user", "content": prompt}] ) answer = response['choices'][0]["message"]["content"] else: print("No LLM specified") return '', state print(f'{answer=}') state.append((text, answer)) return answer, state class TextIn(BaseModel): text: str chat_id: Optional[str] = None class TextOut(BaseModel): text: str chat_id: str # @stub.function() @app.post("/ask", response_model=TextOut) def ask(input: TextIn): print(f'{input=}') if input.chat_id is None or input.chat_id == '': input.chat_id = str(uuid.uuid4()) state_dict[input.chat_id] = [] text, state_dict[input.chat_id] = add_text(input.text, state_dict.get(input.chat_id, [])) print(f'{text=}') print(f'{state_dict[input.chat_id]=}') return {'text': text, 'chat_id': input.chat_id}
[ "\nHuman: PLACEHOLDER\nAI: ", "PLACEHOLDERRead the paragraph below and answer the question, using only the information in the context delimited by triple backticks. Answer only in the PLACEHOLDER language. At the end of your answer, include the source of each context text that you used. You may use more than one, and include the sources of all those you used. If the question cannot be answered based on the context alone, write \"Sorry i had trouble answering this question, based on the information i found\n\nContext:\n```PLACEHOLDER```\n\n", "\nHuman: PLACEHOLDER\nAI: PLACEHOLDER" ]
2024-01-10
5l1v3r1/modelscope
modelscope~models~cv~image_probing_model~backbone.py
# The implementation is adopted from OpenAI-CLIP, # made pubicly available under the MIT License at https://github.com/openai/CLIP import math import sys from collections import OrderedDict from functools import reduce from operator import mul import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from PIL import Image from torchvision import models from .utils import convert_weights, load_pretrained class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed # after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, # and the subsequent convolution has stride 1 self.downsample = nn.Sequential( OrderedDict([('-1', nn.AvgPool2d(stride)), ('0', nn.Conv2d( inplanes, planes * self.expansion, 1, stride=1, bias=False)), ('1', nn.BatchNorm2d(planes * self.expansion))])) def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter( torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) x = x + self.positional_embedding[:, None, :].to(x.dtype) x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat( [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False) return x[0] class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential( OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)), ('gelu', QuickGELU()), ('c_proj', nn.Linear(d_model * 4, d_model))])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to( dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn( x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor, idx): features = {} x_norm = self.ln_1(x) features['layer_{}_pre_attn'.format(idx)] = x_norm.permute(1, 0, 2) attn = self.attention(x_norm) features['layer_{}_attn'.format(idx)] = attn.permute(1, 0, 2) x = x + attn mlp = self.mlp(self.ln_2(x)) features['layer_{}_mlp'.format(idx)] = mlp.permute(1, 0, 2) x = x + mlp return x, features class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.ModuleList() for i in range(layers): block = ResidualAttentionBlock(width, heads, attn_mask) self.resblocks.append(block) def forward(self, x: torch.Tensor): features = {} for idx, block in enumerate(self.resblocks): x, block_feats = block(x, idx) features.update(block_feats) return x, features class VisualTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() print(input_resolution, patch_size, width, layers, heads, output_dim) self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d( in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width**-0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn( (input_resolution // patch_size)**2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor, return_all=True): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] zeros = torch.zeros( x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device) # shape = [*, grid ** 2 + 1, width] x = torch.cat([self.class_embedding.to(x.dtype) + zeros, x], dim=1) x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x, features = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if return_all: features['pre_logits'] = x return features if self.proj is not None: x = x @ self.proj return x class CLIPNet(nn.Module): def __init__(self, arch_name, pretrained, **kwargs): super(CLIPNet, self).__init__() if arch_name == 'CLIP_ViTB32': self.clip = VisualTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512) elif arch_name in ('CLIP_ViTB16', 'CLIP_ViTB16_FP16'): self.clip = VisualTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512) elif arch_name in ('CLIP_ViTL14', 'CLIP_ViTL14_FP16'): self.clip = VisualTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768) else: raise KeyError(f'Unsupported arch_name for CLIP, {arch_name}') def forward(self, input_data): output = self.clip(input_data) return output def CLIP(arch_name='CLIP_RN50', use_pretrain=False, load_from='', state_dict=None, **kwargs): model = CLIPNet(arch_name=arch_name, pretrained=None, **kwargs) if use_pretrain: if arch_name.endswith('FP16'): convert_weights(model.clip) load_pretrained(model.clip, state_dict, load_from) return model class ProbingModel(torch.nn.Module): def __init__(self, feat_size, num_classes): super(ProbingModel, self).__init__() self.linear = torch.nn.Linear(feat_size, num_classes) def forward(self, x): return self.linear(x)
[]
2024-01-10
jonfernandes/2022-cohere-hackathon-team-turing
ChatApp~ai_manager.py
import re import pandas as pd from collections import namedtuple import cohere from annoy import AnnoyIndex import numpy as np import datetime from pathlib import Path import json from conversant.prompt_chatbot import PromptChatbot import time with open(f'{str(Path.cwd())}/ChatApp/COHERE_API_KEY.json', 'rt') as file: content = json.load(file) API_KEY = content['API_KEY'] class AIManager: def __init__(self, API_KEY): pd.set_option('max_colwidth', None) self.co = cohere.Client(API_KEY) self.create_products() self.generate_kb() self.bot = PromptChatbot.from_persona("customer_support_bot", self.co, '.') def generate_summary(self, chat_log): prompt='Summarize this dialogue:\nCustomer: Hi\nCustomer Support: hi. what can i help you with today?\nCustomer: What is the height at the back in cm for the Rowlinson Timber Cold Frame?\nCustomer Support: 38cm\nCustomer: What is the width in cm for the Rowlinson Timber Cold Frame?\nCustomer Support: 102cm\nCustomer: Thanks.\nTLDR: A customer wants the dimensions of a Rowlinson Timber Cold Frame\n--\nSummarize this dialogue:\nCustomer: Hi\nCustomer Support: hi. How can I assist you today?\nCustomer: The lid for the Halls Standard Cold Frame is very weak. What is it made of?\nCustomer Support: Polycarbonate.\nCustomer: It will only last a few months. How do I return it and get a refund, please?\nTLDR: The customer wants to return an item and get a refund as they think the material it is made of is very weak.\n--\nSummarize this dialogue:\nCustomer: Hi\nCustomer Support: hi. How can I help you today?\nCustomer: What wood is the Rowlinson cold frame made out of?\nCustomer Support: Softwood.\nCustomer: That\'s too flimsy and won\'t last. I want to return it and get a refund. How do I do that?\nTLDR: A customer wants to return an item as they are not happy with the material it is made of.\n--\nSummarize this dialogue:\nCustomer: Hi\nCustomer Support: hi. How can I help you today?\nCustomer: What is the height at the back of the Halls Standard Cold Frame in inches?\nCustomer Support: 28cm\nCustomer: That\'s too short. I want to return it and get a refund. How do I do that?\nTLDR: A customer wants to return an item as it is too short for their needs.\n--\nSummarize this dialogue:\n' chat_log = chat_log + '\nTLDR:' prompt += chat_log response = self.co.generate( model='xlarge', prompt=prompt, max_tokens=20, temperature=0.6, k=0, p=1, frequency_penalty=0, presence_penalty=0, stop_sequences=["--"], return_likelihoods='NONE') return response.generations[0].text def generate_kb(self): self.kb = pd.DataFrame({'question': []}) for product in self.products: response = self.co.generate( model='xlarge', prompt=product.prompt, max_tokens=200, temperature=0.3, k=0, p=0.75, frequency_penalty=0, presence_penalty=0, stop_sequences=[], return_likelihoods='NONE') results = response.generations[0].text df = self.generate_df(results) self.kb = pd.concat([self.kb, df], axis=0).reset_index(drop=True) def sentiment_analysis(self, chat): from cohere.classify import Example examples=[Example("The order came 5 days early. I really liked it.", "positive"), Example("The item exceeded my expectations", "positive"), Example("I ordered more for my friends", "positive"), Example("I would buy this again", "positive"), Example("I would recommend this to others", "positive"), Example("The package was damaged", "negative"), Example("The order is 5 days late", "negative"), Example("The order was incorrect", "negative"), Example("I want to return my item. It does not work.", "negative"), Example("The item\'s material feels low quality", "negative"), Example("The product was okay", "neutral"), Example("I received five items in total", "neutral"), Example("I bought it from the website", "neutral"), Example("I used the product this morning", "neutral"), Example("The product arrived yesterday", "neutral")] inputs = [chat] response = self.co.classify( model='medium', inputs=inputs, examples=examples) return response.classifications ''' output_filename = f'{datetime.datetime.today():%Y-%m-%d-%H%M}.txt' with open(Path().cwd()/'ChatApp'/'call_logs'/f'{output_filename}', 'wt') as file: file.write('Support call worker\nCustomer ID\nCall sentiment: {response.classifications}\nConfidence') ''' def answer_message(self, msg: str, n_top: int = 3) -> list[str]: kb_df = self.query_using_semantic_search(msg) #gen = self.generate_using_dialog(msg) while True: # Need to do this as a workaround as it takes approx. 4s for gen to get a response. gen = self.generate_using_conversant(msg) #print(f'gen --> {gen}') if gen: break time.sleep(2) result_df = kb_df.append(pd.DataFrame.from_dict({'question': [gen], "distance": [1]}), ignore_index=True) return result_df.sort_values("distance") def create_products(self): product = namedtuple('product', ['name', 'prompt']) data = [{'name': 'Halls Standard Cold Frame', 'prompt': 'Generate questions from this text: \n\nProduct: Halls Standard Cold Frame\nSturdy Aluminium Framework - rot and rust proof, maintenance free. \n\nAvailable With Two Types Of Glazing - choose from either 3mm Toughened Glass (if broken this glass granulates removing any danger of injury) or Polycarbonate (which is virtually unbreakable). Glazing is for all sides and the top of the cold frame.\n \nDimensions With Toughened Glass :\nWidth – 4ft 3in (129cm)\nDepth – 2ft 1in (63cm)\nHeight at the back – 1ft 3in (38cm) sloping to 1ft 1in (33cm) at the front\n\nDimensions With Polycarbonate :\nWidth – 3ft 3in (99cm)\nDepth – 2ft (60cm)\nHeight at the back – 1ft 4in (40cm) \n \nTwo Sliding, Hinged Lids - allow access to all areas of the cold frame. They also enable you to alter ventilation to your plants.\n\nDelivery - delivered direct from the manufacturers please allow up to 4-6 weeks for delivery.\n--\nQuestion: What is the delivery period for the Halls Standard Cold Frame?\nAnswer: 4-6 weeks\n--\nQuestion: What is the width in cm for the Halls Standard toughened glass Cold Frame?\nAnswer: 129cm\n--\nQuestion: What is the depth for the toughened glass in feet and inches for the Halls Standard Cold Frame?\nAnswer: 2ft 1in\n--\nQuestion: What is the height at the back in cm for the Halls Standard Polycarbonate Cold Frame?\nAnswer: 40cm\n--\nQuestion: What is the height at the front in feet and inches for the Halls Standard toughened glass Cold Frame?\nAnswer: 1ft 1in\n--\nQuestion: What is the width for the polycarbonate in cm for the Halls Standard Cold Frame?\nAnswer: 99cm\n--\nQuestion: What is the depth for the polycarbonate in feet and inches for the Halls Standard Cold Frame?\nAnswer: 2ft\n--\nQuestion: What is the height at the back in cm for the Halls Standard Cold Frame?\nAnswer: 1ft 4in\n--\nQuestion: What is the height at the front in cm for the Halls Standard Cold Frame?\nAnswer: 1ft 1in\n--\nQuestion: What is the height at the back in cm for the Halls Standard Cold Frame?\nAnswer: 1\n--\n'}, {'name': 'Rowlinson Timber Coldframe', 'prompt': 'Generate questions from this text: \n\nProduct: Rowlinson Timber Coldframe\n\nFSC Pressure Treated 19mm Softwood Frame - manufactured from FSC certified timber from sustainable sources. It has been pressure treated against rot. You can stain or paint the frame to match your garden if required. \n \nTwo Independently Opening Lids - allowing easy access to the plants in your cold frame. Supplied complete with wooden stays, with two height setting, to allow excellent ventilation. The lid is glazed with clear styrene plastic, allowing excellent light transmission and is virtually unbreakable.\n\nDimensions :\nWidth - 3ft 4in / 102cm \nDepth - 2ft 8in / 81cm \nHeight at back - 1ft 3in / 38cm\nHeight at front - 11in / 29cm\n\nSelf Assembly\nThis cold frame is delivered as pre assembled panels which simply need screwing together. The lid is supplied fully glazed and should be screwed into place together with the stays provided. You will need a cross-head screwdriver during construction.\n\nDelivery : please allow up to 14 working days for delivery.\n--\nQuestion: What is the delivery period for the Rowlinson Timber Cold Frame?\nAnswer: Up to 14 working days\n--\nQuestion: What is the width in inches for the Rowlinson Timber Cold Frame?\nAnswer: 3ft 4in\n--\nQuestion: What is the height at the back in cm for the Rowlinson Timber Cold Frame?\nAnswer: 38cm\n--\nQuestion: What wood is the Rowlinson cold frame made out of?\nAnswer: Softwood\n--\n'}, {'name': 'Haxnicks Grower Frame Polythene Cover', 'prompt': 'Generate questions from this text: \n\nProduct: Haxnicks Grower Frame Polythene Cover\n\nShaped to easily fit over the Grower Frame to create a protected space that will retain warmth and humidity for quicker plant growth.\nFour zips on the sides of the cover lets you easily access all areas of the area under cover.\nRoll up insect proof ventilation panels at either end of the cover allow air to circulate whilst preventing insects from getting to your plants.\nSize: 9’8\" long x 3’3\" wide x 3’3\" high (3 metres x 1 metre x 1 metre)\n--\nQuestion: How long is the Haxnicks Grower Frame Polythene Cover in feet and inches?\nAnswer: 9’8\"\n--\nQuestion: What is the width of the Haxnicks Grower Frame Polythene Cover in metres?\nAnswer: 1 metre\n--\nQuestion: How high is the Haxnicks Grower Frame Polythene Cover in feet and inches?\nAnswer: 3’3\"\n--\n'},] self.products = [product(**item) for item in data] def generate_df(self, results): question = [] answer = [] results = re.sub('\n',' ', results) results = results.split('--') results = [result.strip() for result in results] for result in results: if 'Question' in result: out = re.findall(r'Question: (.*?)? Answer: (.*?)$',result) for item in out: if item: q, a = item question.append(q + ' ' + a) return pd.DataFrame({'question': question}) def query_using_semantic_search(self, query): df = self.kb embeds = self.co.embed(texts=list(df['question']), model="large", truncate="LEFT").embeddings embeds = np.array(embeds) num_entries, num_dimensions = embeds.shape search_index = AnnoyIndex(num_dimensions, 'angular') for i in range(len(embeds)): search_index.add_item(i, embeds[i]) search_index.build(10) search_index.save('test.ann') query_embed = self.co.embed(texts=[query], model='large', truncate='LEFT').embeddings similar_item_ids = search_index.get_nns_by_vector(query_embed[0], 2, include_distances=True) return pd.DataFrame({'question': df.loc[similar_item_ids[0], 'question'], 'distance': similar_item_ids[1]}) def generate_using_conversant(self, dialog): #bot = PromptChatbot.from_persona("customer_support_bot", co, '.') return self.bot.reply(f'{dialog}') def generate_using_dialog(self, dialog): promt_text = f"""You are a customer support agent responding to a customer. -- Customer: Hello. Agent: Hello, what can I help you with today? -- Customer: {dialog} Agent:""" response = self.co.generate( model='xlarge', prompt=promt_text, max_tokens=15, temperature=0.3, k=0, p=0.75, frequency_penalty=0, presence_penalty=0, stop_sequences=["--"], return_likelihoods='NONE') return response.generations[0].text.split("--")[0].strip() if __name__ == "__main__": aiManager = AIManager(API_KEY) msg = 'What is the height at the back in cm for the Halls Standard Cold Frame' response = aiManager.answer_message(msg) print(response)
[ "Summarize this dialogue:\nCustomer: Hi\nCustomer Support: hi. what can i help you with today?\nCustomer: What is the height at the back in cm for the Rowlinson Timber Cold Frame?\nCustomer Support: 38cm\nCustomer: What is the width in cm for the Rowlinson Timber Cold Frame?\nCustomer Support: 102cm\nCustomer: Thanks.\nTLDR: A customer wants the dimensions of a Rowlinson Timber Cold Frame\n--\nSummarize this dialogue:\nCustomer: Hi\nCustomer Support: hi. How can I assist you today?\nCustomer: The lid for the Halls Standard Cold Frame is very weak. What is it made of?\nCustomer Support: Polycarbonate.\nCustomer: It will only last a few months. How do I return it and get a refund, please?\nTLDR: The customer wants to return an item and get a refund as they think the material it is made of is very weak.\n--\nSummarize this dialogue:\nCustomer: Hi\nCustomer Support: hi. How can I help you today?\nCustomer: What wood is the Rowlinson cold frame made out of?\nCustomer Support: Softwood.\nCustomer: That's too flimsy and won't last. I want to return it and get a refund. How do I do that?\nTLDR: A customer wants to return an item as they are not happy with the material it is made of.\n--\nSummarize this dialogue:\nCustomer: Hi\nCustomer Support: hi. How can I help you today?\nCustomer: What is the height at the back of the Halls Standard Cold Frame in inches?\nCustomer Support: 28cm\nCustomer: That's too short. I want to return it and get a refund. How do I do that?\nTLDR: A customer wants to return an item as it is too short for their needs.\n--\nSummarize this dialogue:\n", "chat_logc808616f-ba73-40cb-8d8d-68ed0feac20e\nTLDR:" ]
2024-01-10
bclark86/uplimit-openai-app
podcast_backend.py
import modal def download_whisper(): # Load the Whisper model import os import whisper print ("Download the Whisper model") # Perform download only once and save to Container storage whisper._download(whisper._MODELS["medium"], '/content/podcast/', False) stub = modal.Stub("corise-podcast-project") corise_image = modal.Image.debian_slim().pip_install("feedparser", "https://github.com/openai/whisper/archive/9f70a352f9f8630ab3aa0d06af5cb9532bd8c21d.tar.gz", "requests", "ffmpeg", "openai", "tiktoken", "wikipedia", "ffmpeg-python").apt_install("ffmpeg").run_function(download_whisper) @stub.function(image=corise_image, gpu="any", timeout=600) def get_transcribe_podcast(rss_url, local_path): print ("Starting Podcast Transcription Function") print ("Feed URL: ", rss_url) print ("Local Path:", local_path) # Read from the RSS Feed URL import feedparser intelligence_feed = feedparser.parse(rss_url) podcast_title = intelligence_feed['feed']['title'] episode_title = intelligence_feed.entries[0]['title'] episode_image = intelligence_feed['feed']['image'].href for item in intelligence_feed.entries[0].links: if (item['type'] == 'audio/mpeg'): episode_url = item.href episode_name = "podcast_episode.mp3" print ("RSS URL read and episode URL: ", episode_url) # Download the podcast episode by parsing the RSS feed from pathlib import Path p = Path(local_path) p.mkdir(exist_ok=True) print ("Downloading the podcast episode") import requests with requests.get(episode_url, stream=True) as r: r.raise_for_status() episode_path = p.joinpath(episode_name) with open(episode_path, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) print ("Podcast Episode downloaded") # Load the Whisper model import os import whisper # Load model from saved location print ("Load the Whisper model") model = whisper.load_model('medium', device='cuda', download_root='/content/podcast/') # Perform the transcription print ("Starting podcast transcription") result = model.transcribe(local_path + episode_name) # Return the transcribed text print ("Podcast transcription completed, returning results...") output = {} output['podcast_title'] = podcast_title output['episode_title'] = episode_title output['episode_image'] = episode_image output['episode_transcript'] = result['text'] return output @stub.function(image=corise_image, secret=modal.Secret.from_name("my-openai-secret")) def get_podcast_summary(podcast_transcript): import openai ## ADD YOUR LOGIC HERE TO RETURN THE SUMMARY OF THE PODCAST USING OPENAI instructPrompt = """ Condense this podcast transcript into a one-page summary that is suitable for business professionals to understand: """ request = instructPrompt + podcast_transcript chatOutput = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": request} ] ) podcastSummary = chatOutput.choices[0].message.content return podcastSummary @stub.function(image=corise_image, secret=modal.Secret.from_name("my-openai-secret")) def get_podcast_guest(podcast_transcript): import openai import wikipedia import json ## ADD YOUR LOGIC HERE TO RETURN THE PODCAST GUEST INFORMATION request = podcast_transcript[:5000] completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": request}], functions=[ { "name": "get_podcast_guest_information", "description": "Identify the name of the guest appearing in the podcast", "parameters": { "type": "object", "properties": { "guest_name": { "type": "string", "description": "Name of the guest", }, "unit": {"type": "string"}, }, "required": ["guest_name"], }, } ], function_call={"name": "get_podcast_guest_information"} ) podcastGuest = "" response_message = completion["choices"][0]["message"] if response_message.get("function_call"): function_name = response_message["function_call"]["name"] function_args = json.loads(response_message["function_call"]["arguments"]) podcastGuest=function_args.get("guest_name") return podcastGuest @stub.function(image=corise_image, secret=modal.Secret.from_name("my-openai-secret")) def get_podcast_highlights(podcast_transcript): import openai ### ADD YOUR LOGIC HERE TO RETURN THE HIGHLIGHTS OF THE PODCAST instructPrompt = """ We want to extract some key moments in the podcast.\n These are typically interesting insights from the guest or critical questions that the host might have put forward.\n It could also be a discussion on a hot topic or controversial opinion. Provide 5 to 10 key moments in the form of verbatims. Transcript: """ request = instructPrompt + podcast_transcript chatOutput = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": request} ] ) podcastHighlights = chatOutput.choices[0].message.content return podcastHighlights @stub.function(image=corise_image, secret=modal.Secret.from_name("my-openai-secret"), timeout=1200) def process_podcast(url, path): output = {} podcast_details = get_transcribe_podcast.call(url, path) podcast_summary = get_podcast_summary.call(podcast_details['episode_transcript']) podcast_guest = get_podcast_guest.call(podcast_details['episode_transcript']) podcast_highlights = get_podcast_highlights.call(podcast_details['episode_transcript']) output['podcast_details'] = podcast_details output['podcast_summary'] = podcast_summary output['podcast_guest'] = podcast_guest output['podcast_highlights'] = podcast_highlights return output @stub.local_entrypoint() def test_method(url, path): output = {} podcast_details = get_transcribe_podcast.call(url, path) print ("Podcast Summary: ", get_podcast_summary.call(podcast_details['episode_transcript'])) print ("Podcast Guest Information: ", get_podcast_guest.call(podcast_details['episode_transcript'])) print ("Podcast Highlights: ", get_podcast_highlights.call(podcast_details['episode_transcript']))
[ "\n Condense this podcast transcript into a one-page summary that is suitable for business professionals to understand: \n ", "\n We want to extract some key moments in the podcast.\n \n These are typically interesting insights from the guest or critical questions that the host might have put forward.\n\n It could also be a discussion on a hot topic or controversial opinion.\n\n Provide 5 to 10 key moments in the form of verbatims. \n\n Transcript: \n ", "You are a helpful assistant." ]
2024-01-10
ArtificiallyInteresting/AnimalPicker
animalLlm.py
from langchain.chat_models import ChatOpenAI from langchain import PromptTemplate from langchain import LLMChain from langchain.prompts.chat import ( SystemMessagePromptTemplate, ) from langchain.memory import ChatMessageHistory, ConversationBufferMemory from langchain.schema.messages import ( SystemMessage, AIMessage, HumanMessage ) from dotenv import load_dotenv load_dotenv() def generateQuestions(thing, names, descriptions): llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) template='''You are a question generating bot. Users are going to be given a quiz to determine which {thing} they are. Come up with exactly 5 questions that we could ask the user to determine which {thing} they are. These are the choices:\n''' for i in range(len(names)): template += "{names[" + str(i) + "]}: {" + "descriptions[" + str(i) + "]}\n" prompt=PromptTemplate( input_variables=["thing", "names", "descriptions"], template=template, ) chain = LLMChain(llm=llm, prompt=prompt) output = chain.run(thing=thing, names=names, descriptions=descriptions) #Validation here? questions = output.split("\n") return questions def analyzeAnswers(thing, names, descriptions, questions, answers): history = ChatMessageHistory() template = "You are a funny and interesting chatbot analyzing the answers to a quiz to determine which {thing} the user is. The user will end up being one of these things: \n " for i in range(len(names)): template += names[i] + ": " + descriptions[i] + " \n " # systemMessage = SystemMessagePromptTemplate.from_template(template=template, thing=thing, names=names, descriptions=descriptions) template += "The user has already answered 5 questions to determine which {thing} they are, and their answers are as follows: \n " # systemContent = template.format(thing=thing) # systemMessage = SystemMessage(content=systemContent) print(template) # history.add_message(systemMessage) for i in range(len(questions)): history.add_message(AIMessage(content="Question " + str(i) + ": " + questions[i])) history.add_message(HumanMessage(content=answers[i])) history.add_message(AIMessage(content="Alright! The results are in! And the {thing} you are is...".format(thing=thing))) memory = ConversationBufferMemory(return_messages=True) memory.load_memory_variables(inputs=history) llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) prompt = PromptTemplate( input_variables=["thing"], template=template ) chain = LLMChain(llm=llm, memory=memory, prompt=prompt) output = chain.run(thing=thing) return output if __name__ == "__main__": thing = "animal" names = ["lion", "penguin"] descriptions = ["brave and fiersome", "cold and silly"] # questions = generateQuestions(thing, names, descriptions) # print(questions) questions = ['1. Are you more inclined towards being brave and fierce, or do you tend to be more cautious and silly in your actions?', '2. Do you prefer warmer climates or are you more comfortable in colder environments?', '3. Are you known for your bravery and leadership qualities, or do you often find yourself being silly and making others laugh?', '4. Are you more comfortable in social situations, enjoying the company of others, or do you prefer solitude and quiet moments?', '5. When faced with challenges, do you tend to face them head-on with courage, or do you prefer to take a more cautious and calculated approach?'] answers = ["brave and fierce", "colder environments", "bravery and leadership qualities", "enjoying the company of others", "head-on with courage"] answers = analyzeAnswers(thing, names, descriptions, questions, answers) print(answers)
[ "descriptions", "thing", "You are a funny and interesting chatbot analyzing the answers to a quiz to determine which {thing} the user is. The user will end up being one of these things: \n ", "names", ": ", "Question ", " \n ", "{names[PLACEHOLDER]}: {descriptions[PLACEHOLDER]}\n", "Alright! The results are in! And the PLACEHOLDER you are is...", "You are a question generating bot. Users are going to be given a quiz to determine which {thing} they are. Come up with exactly 5 questions that we could ask the user to determine which {thing} they are. These are the choices:\n", "The user has already answered 5 questions to determine which {thing} they are, and their answers are as follows: \n " ]
2024-01-10
berksengul17/langchain-virtual-assistant
virtual-assistant.py
import keyboard import os import tempfile from dotenv import load_dotenv import openai import sounddevice as sd import soundfile as sf from elevenlabs import generate, play, set_api_key from langchain.agents import initialize_agent, load_tools from langchain.agents.agent_toolkits import ZapierToolkit from langchain.llms import OpenAI from langchain.memory import ConversationBufferMemory from langchain.utilities.zapier import ZapierNLAWrapper load_dotenv() set_api_key(os.environ['ELEVEN_LABS_API_KEY']) openai.api_key = os.environ['OPENAI_API_KEY'] duration = 5 fs = 44100 channels = 1 def record_audio(duration, fs, channels): print("Recording...") recording = sd.rec(int(duration * fs), samplerate=fs, channels=channels) sd.wait() print("Finished recording.") return recording def transcribe_audio(recording, fs): with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio: sf.write(temp_audio.name, recording, fs) temp_audio.close() with open(temp_audio.name, "rb") as audio_file: transcript = openai.Audio.transcribe("whisper-1", audio_file) os.remove(temp_audio.name) return transcript["text"].strip() def play_generated_audio(text, voice="Bella", model="eleven_monolingual_v1"): audio = generate(text=text, voice=voice, model=model) play(audio) if __name__ == '__main__': llm = OpenAI(temperature=0.6) memory = ConversationBufferMemory(memory_key="chat_history") zapier = ZapierNLAWrapper(zapier_nla_api_key=os.environ['ZAPIER_API_KEY']) toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier) tools = toolkit.get_tools() + load_tools(["human"]) agent = initialize_agent(tools, llm, memory=memory, agent="conversational-react-description", verbose=True) while True: # print("Press spacebar to start recording.") # keyboard.wait("space") # recorded_audio = record_audio(duration, fs, channels) # message = transcribe_audio(recorded_audio, fs) message = input("You: ") assistant_message = agent.run(message) play_generated_audio(assistant_message)
[]
2024-01-10
reedington/QUFIK_TUNGA
detect_and_fix_bugs.py
from openai import OpenAI from dotenv import load_dotenv, dotenv_values load_dotenv() client = OpenAI(api_key=dotenv_values(".env")["OPENAI_API_KEY"]) def detect_and_fix_bugs(code_base, language): # Define an initial message from the user messages = [ { "role": "user", "content": "Say this is a test", } ] # Define messages as a list with a single initial message dictionary code_base = code_base language = language if code_base: # Append the user's new message to the messages list messages.append({'role': 'user', 'content': f'Please review the following {language} code and identify any bugs or potential issues. If you find any errors, please suggest a fix or improvements to the code: {code_base}'}) # Create a chat completion using the AI model (assuming 'client' is initialized elsewhere) chat_completion = client.chat.completions.create( messages=messages, # Pass the list of messages model="gpt-4" # Use the GPT-4 model for generating a response ) # Retrieve the response content from the chat completion # Note: Make sure 'chat_completion' contains the response object with 'choices' available reply = chat_completion.choices[0].message.content # Add the assistant's response to the messages list messages.append({"role": "assistant", "content": reply}) return reply
[ "Please review the following PLACEHOLDER code and identify any bugs or potential issues. If you find any errors, please suggest a fix or improvements to the code: PLACEHOLDER", "Say this is a test" ]
2024-01-10
keatonminor/GitPractice
Jarvis.py
import openai import speech_recognition as sr import pyttsx3 engine = pyttsx3.init() engine.setProperty('rate', 160) engine.setProperty('pitch', 0.8) recognizer = sr.Recognizer() openai.api_key = "" prompt= "hello there, in obi wan voice" def create_response(text): response = openai.Completion.create( model="text-davinci-003", prompt=("Answer like the rapper drake." + str(text)), #prompt= ("Answer in the style of nietzsche but be bitter." + str(text)), temperature=0.9, max_tokens=200, top_p=1, frequency_penalty=0, presence_penalty=0 ) return response.choices[0].text ###trying to make a function that will continue to chat with the user while True: # Set up the microphone and listen for the user's voice with sr.Microphone() as source: print("Say something:") audio = recognizer.listen(source) # Convert the audio to text try: text = recognizer.recognize_google(audio) print(f"You said: {text}") if "Jarvis" in text: # Respond to the user saying "Jarvis" engine.say("Yes, what can I do for you sir?") engine.runAndWait() # Listen for the user's next instructions with sr.Microphone() as source: audio = recognizer.listen(source) text = recognizer.recognize_google(audio) print(f"You said: {text}") response=(create_response(text)) engine.say(response) print(response) engine.runAndWait() engine.stop() break # Do something with the instructions (e.g., perform a task, etc.) except sr.UnknownValueError: print("Sorry, I couldn't understand what you said.") except sr.RequestError as e: print("Sorry, there was an error processing your request: " + str(e)) # engine.say(create_response(text)) # engine.runAndWait() # engine.stop()
[ "Answer like the rapper drake.PLACEHOLDER", "hello there, in obi wan voice" ]
2024-01-10
Terieyenike/prompt-llms
project_streamlit_custom_chatgpt~project_streamlit_custom_chatgpt.py
from langchain.chat_models import ChatOpenAI from langchain.schema import( SystemMessage, HumanMessage, AIMessage ) import streamlit as st from streamlit_chat import message # loading the OpenAI api key from .env (OPENAI_API_KEY="sk-********") from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(), override=True) st.set_page_config( page_title='You Custom Assistant', page_icon='🤖' ) st.subheader('Your Custom ChatGPT 🤖') chat = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5) # creating the messages (chat history) in the Streamlit session state if 'messages' not in st.session_state: st.session_state.messages = [] # creating the sidebar with st.sidebar: # streamlit text input widget for the system message (role) system_message = st.text_input(label='System role') # streamlit text input widget for the user message user_prompt = st.text_input(label='Send a message') if system_message: if not any(isinstance(x, SystemMessage) for x in st.session_state.messages): st.session_state.messages.append( SystemMessage(content=system_message) ) # st.write(st.session_state.messages) # if the user entered a question if user_prompt: st.session_state.messages.append( HumanMessage(content=user_prompt) ) with st.spinner('Working on your request ...'): # creating the ChatGPT response response = chat(st.session_state.messages) # adding the response's content to the session state st.session_state.messages.append(AIMessage(content=response.content)) # st.session_state.messages # message('this is chatgpt', is_user=False) # message('this is the user', is_user=True) # adding a default SystemMessage if the user didn't entered one if len(st.session_state.messages) >= 1: if not isinstance(st.session_state.messages[0], SystemMessage): st.session_state.messages.insert(0, SystemMessage(content='You are a helpful assistant.')) # displaying the messages (chat history) for i, msg in enumerate(st.session_state.messages[1:]): if i % 2 == 0: message(msg.content, is_user=True, key=f'{i} + 🤓') # user's question else: message(msg.content, is_user=False, key=f'{i} + 🤖') # ChatGPT response # run the app: streamlit run ./project_streamlit_custom_chatgpt.py
[ "You are a helpful assistant.", "Send a message" ]
2024-01-10
Terieyenike/prompt-llms
llm_question_answering_app~chat_with_documents.py
import streamlit as st from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma # loading PDF, DOCX and TXT files as LangChain Documents def load_document(file): import os name, extension = os.path.splitext(file) if extension == '.pdf': from langchain.document_loaders import PyPDFLoader print(f'Loading {file}') loader = PyPDFLoader(file) elif extension == '.docx': from langchain.document_loaders import Docx2txtLoader print(f'Loading {file}') loader = Docx2txtLoader(file) elif extension == '.txt': from langchain.document_loaders import TextLoader loader = TextLoader(file) else: print('Document format is not supported!') return None data = loader.load() return data # splitting data in chunks def chunk_data(data, chunk_size=256, chunk_overlap=20): from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) chunks = text_splitter.split_documents(data) return chunks # create embeddings using OpenAIEmbeddings() and save them in a Chroma vector store def create_embeddings(chunks): embeddings = OpenAIEmbeddings() vector_store = Chroma.from_documents(chunks, embeddings) return vector_store def ask_and_get_answer(vector_store, q, k=3): from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=1) retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': k}) chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever) answer = chain.run(q) return answer # calculate embedding cost using tiktoken def calculate_embedding_cost(texts): import tiktoken enc = tiktoken.encoding_for_model('text-embedding-ada-002') total_tokens = sum([len(enc.encode(page.page_content)) for page in texts]) # print(f'Total Tokens: {total_tokens}') # print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}') return total_tokens, total_tokens / 1000 * 0.0004 # clear the chat history from streamlit session state def clear_history(): if 'history' in st.session_state: del st.session_state['history'] if __name__ == "__main__": import os # loading the OpenAI api key from .env from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(), override=True) st.image('img.png') st.subheader('LLM Question-Answering Application 🤖') with st.sidebar: # text_input for the OpenAI API key (alternative to python-dotenv and .env) api_key = st.text_input('OpenAI API Key:', type='password') if api_key: os.environ['OPENAI_API_KEY'] = api_key # file uploader widget uploaded_file = st.file_uploader('Upload a file:', type=['pdf', 'docx', 'txt']) # chunk size number widget chunk_size = st.number_input('Chunk size:', min_value=100, max_value=2048, value=512, on_change=clear_history) # k number input widget k = st.number_input('k', min_value=1, max_value=20, value=3, on_change=clear_history) # add data button widget add_data = st.button('Add Data', on_click=clear_history) if uploaded_file and add_data: # if the user browsed a file with st.spinner('Reading, chunking and embedding file ...'): # writing the file from RAM to the current directory on disk bytes_data = uploaded_file.read() file_name = os.path.join('./', uploaded_file.name) with open(file_name, 'wb') as f: f.write(bytes_data) data = load_document(file_name) chunks = chunk_data(data, chunk_size=chunk_size) st.write(f'Chunk size: {chunk_size}, Chunks: {len(chunks)}') tokens, embedding_cost = calculate_embedding_cost(chunks) st.write(f'Embedding cost: ${embedding_cost:.4f}') # creating the embeddings and returning the Chroma vector store vector_store = create_embeddings(chunks) # saving the vector store in the streamlit session state (to be persistent between reruns) st.session_state.vs = vector_store st.success('File uploaded, chunked and embedded successfully.') # user's question text input widget q = st.text_input('Ask a question about the content of your file:') if q: # if the user entered a question and hit enter standard_answer = "Answer only based on the text you received as input. Don't search external sources. " \ "If you can't answer then return `I DONT KNOW`." q = f"{q} {standard_answer}" if 'vs' in st.session_state: # if there's the vector store (user uploaded, split and embedded a file) vector_store = st.session_state.vs st.write(f'k: {k}') answer = ask_and_get_answer(vector_store, q, k) # text area widget for the LLM answer st.text_area('LLM Answer: ', value=answer) st.divider() # if there's no chat history in the session state, create it if 'history' not in st.session_state: st.session_state.history = '' # the current question and answer value = f'Q: {q} \nA: {answer}' st.session_state.history = f'{value} \n {"-" * 100} \n {st.session_state.history}' h = st.session_state.history # text area widget for the chat history st.text_area(label='Chat History', value=h, key='history', height=400) # run the app: streamlit run ./chat_with_documents.py
[]
2024-01-10
Entegre77/CodeMaster
prototype.py
# Import the necessary modules import openai import autogpt # Set up the GPT-3.5 powered Agents agent_manager = autogpt.agent_manager.AgentManager() # Define a function to perform a web search @agent_manager.agent def search(query): response = openai.Completion.create( engine="text-davinci-002", prompt=f"Perform a web search for {query}.", max_tokens=1024, n=1, stop=None, temperature=0.5, ) return response.choices[0].text # Define a function to create a new file @agent_manager.agent def create_file(filename): with open(filename, "w") as f: f.write("") return f"Successfully created file {filename}." # Define a function to append text to a file @agent_manager.agent def append_to_file(filename, text): with open(filename, "a") as f: f.write(text) return f"Successfully appended text to file {filename}." # Define a function to read a file @agent_manager.agent def read_file(filename): with open(filename, "r") as f: text = f.read() return text # Define a function to list files in a directory @agent_manager.agent def list_files(directory): import os files = os.listdir(directory) return files # Define a function to delete a file @agent_manager.agent def delete_file(filename): import os os.remove(filename) return f"Successfully deleted file {filename}."
[ "Perform a web search for PLACEHOLDER." ]
2024-01-10
MLeidel/GptGUI
gptgui.py
''' gptgui.py 1.3 by Michael Leidel remarks: modified API for openai >=1.3.3 ''' import os import sys import time import signal import configparser import subprocess import webbrowser import markdown from tkinter.font import Font from tkinter import messagebox from ttkbootstrap import * from ttkbootstrap.constants import * from ttkbootstrap.tooltip import ToolTip import datetime from openai import OpenAI # for subprocess to exec gptopt.py PY = "python3" # Linux # PY = "pythonw" # Windows class Application(Frame): ''' main class docstring ''' def __init__(self, parent): Frame.__init__(self, parent) self.pack(fill=BOTH, expand=True, padx=4, pady=4) self.Saved = True # get settings from ini file config = configparser.ConfigParser() config.read('gptgui.ini') self.MyTheme = config['Main']['theme'] self.MyPath = config['Main']['path'] self.MyFntQryF = config['Main']['fontqryfam'] self.MyFntQryZ = config['Main']['fontqrysiz'] self.MyFntGptF = config['Main']['fontgptfam'] self.MyFntGptZ = config['Main']['fontgptsiz'] self.MyModel = config['Main']['engine'] self.MyTemp = config['Main']['temperature'] self.MyTokens = config['Main']['tokens'] self.MyKey = config['Main']['gptkey'] self.MyTime = config['Main']['showtime'] self.MySave = config['Main']['autosave'] self.MyEditor = config['Main']['editor'] self.MyFile = config['Main']['tempfile'] self.MySystem = config['Main']['system'] self.TOPFRAME = int(config['Main']['top_frame']) if len(self.MyKey) < 16: self.MyKey = os.environ.get(self.MyKey) # Using ENV var instead of actual key string. self.create_widgets() def create_widgets(self): ''' creates GUI for app ''' # expand widget to fill the grid self.columnconfigure(1, weight=1, pad=5) self.columnconfigure(2, weight=1, pad=5) self.rowconfigure(2, weight=1, pad=5) self.query = Text(self) self.query.grid(row=1, column=1, columnspan=2, sticky='nsew') efont = Font(family=self.MyFntQryF, size=self.MyFntQryZ) self.query.configure(font=efont) self.query.config(wrap="word", # wrap=NONE undo=True, # Tk 8.4 width=50, height=self.TOPFRAME, padx=5, # inner margin #insertbackground='#000', # cursor color tabs=(efont.measure(' ' * 4),)) self.scrolly = Scrollbar(self, orient=VERTICAL, command=self.query.yview) self.scrolly.grid(row=1, column=3, sticky='ns') # use nse self.query['yscrollcommand'] = self.scrolly.set self.txt = Text(self) self.txt.grid(row=2, column=1, columnspan=2, sticky='nsew') efont = Font(family=self.MyFntGptF, size=self.MyFntGptZ) self.txt.configure(font=efont) self.txt.config(wrap="word", # wrap=NONE undo=True, # Tk 8.4 width=50, height=12, padx=5, # inner margin #insertbackground='#000', # cursor color tabs=(efont.measure(' ' * 4),)) self.scrolly = Scrollbar(self, orient=VERTICAL, command=self.txt.yview) self.scrolly.grid(row=2, column=3, sticky='ns') # use nse self.txt['yscrollcommand'] = self.scrolly.set # BUTTON FRAME btn_frame = Frame(self) btn_frame.grid(row=4, column=1, sticky='w') self.clear = Button(btn_frame, text='Clear', command=self.on_clear_all) self.clear.grid(row=1, column=2, sticky='w', pady=(5, 0), padx=(5, 7)) self.save = Button(btn_frame, text='Save', command=self.on_save_file) self.save.grid(row=1, column=3, sticky='w', pady=(5, 0), padx=5) self.view = Button(btn_frame, text='View', command=self.on_view_file) self.view.grid(row=1, column=4, sticky='w', pady=(5, 0)) self.purge = Button(btn_frame, text='Purge', command=self.on_purge) self.purge.grid(row=1, column=5, sticky='w', pady=(5, 0), padx=5) self.open = Button(btn_frame, text='Text', command=self.on_md_open) self.open.grid(row=1, column=6, sticky='w', pady=(5, 0), padx=5) self.md = Button(btn_frame, text='Html', command=self.on_md_render) self.md.grid(row=1, column=7, sticky='w', pady=(5, 0), padx=(0, 5)) self.opts = Button(btn_frame, text='Options', command=self.options) self.opts.grid(row=1, column=8, sticky='w', pady=(5, 0), padx=5) self.sub = Button(btn_frame, text='Submit Query (Ctrl-g)', command=self.on_submit, width=35) self.sub.grid(row=1, column=9, sticky='w', pady=(5, 0), padx=(20, 0)) # END BUTTON FRAME cls = Button(self, text='Close', command=self.exit_program) cls.grid(row=4, column=2, columnspan=2, sticky='e', pady=(5,0), padx=5) # Popup menus - for self.query Text widgets self.popup_query = Menu(tearoff=0, title="title") self.popup_query.add_command(label="Copy", command=lambda: self.popquery(1)) self.popup_query.add_command(label="Paste", command=lambda: self.popquery(2)) self.popup_query.add_separator() self.popup_query.add_command(label="Copy All", command=lambda: self.popquery(3)) self.popup_query.add_separator() self.popup_query.add_command(label="Larger", command=lambda: self.popquery(4)) self.popup_query.add_command(label="Smaller", command=lambda: self.popquery(5)) self.popup_query.add_separator() self.popup_query.add_command(label="Browser", command=lambda: self.popquery(6)) self.query.bind("<Button-3>", self.do_pop_query) # Popup menus - for self.txt Text widgets self.popup_txt = Menu(tearoff=0, title="title") self.popup_txt.add_command(label="Copy", command=lambda: self.poptxt(1)) self.popup_txt.add_command(label="Paste", command=lambda: self.poptxt(2)) self.popup_txt.add_separator() self.popup_txt.add_command(label="Copy All", command=lambda: self.poptxt(3)) self.txt.bind("<Button-3>", self.do_pop_txt) # Bindings root.bind("<Control-t>", self.show_tokens) # Show result tokens in title root.bind("<Control-m>", self.on_toggle_time) # time elapsed toggle root.bind("<Control-h>", self.on_kb_help) # show hotkey help root.bind("<Control-q>", self.exit_program) # Close button root.bind("<Control-s>", self.on_save_file) # Save button root.bind("<Control-g>", self.on_submit) # Submit Query button root.bind("<Control-Return>", self.on_submit) # Submit Query button root.bind("<Control-Shift-S>", self.speak_text) # speak query response root.bind("<Escape>", self.speak_text_cancel) # stop speaking # ToolTips ToolTip(self.clear, text="Erase window text", bootstyle=(INFO, INVERSE), wraplength=140) ToolTip(self.view, text="View saved text in window", bootstyle=(INFO, INVERSE), wraplength=140) ToolTip(self.save, text="Append current text", bootstyle=(INFO, INVERSE), wraplength=140) ToolTip(self.purge, text="Remove all saved text", bootstyle=(INFO, INVERSE), wraplength=140) ToolTip(self.sub, text="Ctrl-Enter to Append", bootstyle=(INFO, INVERSE), wraplength=140) ToolTip(self.md, text="markdown to browser", bootstyle=(INFO, INVERSE), wraplength=140) ToolTip(self.open, text="markdown to text editor", bootstyle=(INFO, INVERSE), wraplength=140) if self.MySave == "1": self.save.config(text="Auto Save", bootstyle="default-outline") self.query.focus_set() # check if query entered on command line # if it query entered on command line # then execute it immediately if len(sys.argv) > 1: query = " ".join(sys.argv[1:]) self.query.insert("1.0", query) self.on_submit() else: self.txt.delete("1.0", END) self.txt.insert("1.0", "Ctrl-h for help") #---------------------------------------------------------------------- def on_submit(self, e=None): ''' Query OpenAI Gpt engine and display response in Text widgit''' if e is None: renderStyle = "X" else: renderStyle = e.keysym # "Return" means append to Output Text start = time.time() # time the Gpt retrival querytext = self.query.get("1.0", END) if len(querytext) < 4: return if self.MySave == "0": self.save.configure(bootstyle=DEFAULT) # new - not been saved self.Saved = False # get the Gpt key from the ini value try: client = OpenAI( api_key = self.MyKey # openai API ) except Exception as e: messagebox.showerror("Could Not Read Key file", "Did you enter your Gpt Key?") return # openai API request code try: response = client.chat.completions.create( model=self.MyModel, max_tokens=int(self.MyTokens), temperature=float(self.MyTemp), messages=[{"role": "system", "content": self.MySystem}, {"role": "user", "content" : querytext.strip()} ] ) # display Gpt response in Text widget output = response.choices[0].message.content # collect response token info self.length = len(output) self.completion = response.usage.completion_tokens self.total = response.usage.total_tokens self.prompt = response.usage.prompt_tokens # # display response text if self.MyTime == "1" : self.elapsed = (time.time() - start) output = f"elapsed time: {round(self.elapsed, 5)}\n-----\n" + output if renderStyle != "Return": self.txt.delete("1.0", END) self.txt.insert("1.0", output) else: # self.txt.mark_set(INSERT, END) self.txt.insert(END, output) # on Auto Save do the save if self.MySave == "1": self.on_save_file() except Exception as e: messagebox.showerror("Problems", e) print("Key=", self.MyKey) def on_purge(self): ''' User is purging the query-save file ''' if not os.path.isfile(self.MyPath): messagebox.showwarning(self.MyPath, "Empty - No File to purge") return ret = messagebox.askokcancel("Purge", "Delete All Saved Queries?") if ret is True: os.remove(self.MyPath) messagebox.showinfo("Purge", "Saved Queries Deleted.") def on_clear_all(self): ''' User is clearning the GUI fields ''' if self.Saved is False: if messagebox.askokcancel('GptGUI', 'Last response not saved - continue?') is False: return self.txt.delete("1.0", END) self.query.delete("1.0", END) self.save.configure(bootstyle=DEFAULT) # new - not been saved self.Saved = True def on_save_file(self, e=None): ''' Save the current query and result to user file (MyPath) ''' resp = self.txt.get("1.0", END).strip() qury = self.query.get("1.0", END).strip() if qury == "" or resp == "": # make sure there is a query present return try: msg = " \ncompletion tokens: " + str(self.completion) + \ " \ntotal tokens: " + str(self.total) + \ " \nprompt tokens: " + str(self.prompt) + "\n-----\n" with open(self.MyPath, "a") as fout: fout.write(str(now.strftime("%Y-%m-%d %H:%M \n"))) fout.write(qury + " \nengine: " + MyModel) fout.write(msg) fout.write(resp.strip() + "\n\n---\n\n") except Exception as e: messagebox.showerror("Save Query Problem", e) if self.MySave == "0": # Auto Save is off # indicate that a "save" has processed self.save.configure(bootstyle="default-outline") self.Saved = True def on_view_file(self): ''' View the user saved queries file ''' if not os.path.isfile(self.MyPath): messagebox.showwarning(self.MyPath, "Empty - No File") return if self.Saved is False: if messagebox.askokcancel('GptGUI', 'Last response not saved - continue?') is False: return # Either the user has or has-not saved the current query reponse. # Therefore, set the "Save" button back to DEFAULT because # if the response was not saved prior, then it is just lost. self.Saved = True self.save.configure(bootstyle=DEFAULT) self.txt.delete("1.0", END) with open(self.MyPath, "r") as fin: self.txt.insert("1.0", fin.read()) self.query.delete("1.0", END) def options(self, e=None): ''' Launch Options program and exit this program ''' subprocess.call([PY, "gptopt.py"]) # re-read configuration config = configparser.ConfigParser() config.read('gptgui.ini') self.MyTheme = config['Main']['theme'] self.MyPath = config['Main']['path'] self.MyFntQryF = config['Main']['fontqryfam'] self.MyFntQryZ = config['Main']['fontqrysiz'] self.MyFntGptF = config['Main']['fontgptfam'] self.MyFntGptZ = config['Main']['fontgptsiz'] self.MyModel = config['Main']['engine'] self.MyTemp = config['Main']['temperature'] self.MyTokens = config['Main']['tokens'] self.MyKey = config['Main']['gptkey'] self.MyTime = config['Main']['showtime'] self.MySave = config['Main']['autosave'] self.MyEditor = config['Main']['editor'] self.MyFile = config['Main']['tempfile'] self.MySystem = config['Main']['system'] self.TOPFRAME = int(config['Main']['top_frame']) if len(self.MyKey) < 16: self.MyKey = os.environ.get(self.MyKey) # Using ENV var instead of actual key string. # re-set the items and change font/size efont = Font(family=self.MyFntQryF, size=self.MyFntQryZ) self.query.configure(font=efont, height=self.TOPFRAME) efont = Font(family=self.MyFntGptF, size=self.MyFntGptZ) self.txt.configure(font=efont) style = Style() style = Style(theme=self.MyTheme) MyTitle = "GptGUI (OpenAI) " + self.MyModel + " " + str(self.MyTokens) + " " + str(self.MyTemp) root.title(MyTitle) def show_tokens(self, e=None): ''' show response tokens ''' msg = "text length: " + str(self.length) + \ "\ncompletion tokens: " + str(self.completion) + \ "\ntotal tokens: " + str(self.total) + \ "\nprompt tokens: " + str(self.prompt) if self.MyTime == "1": msg += "\nResponse Time Elapsed: " + str(self.elapsed) messagebox.showinfo("GptGUI Response Tokens", msg) def on_toggle_time(self, e=None): ''' Toggles the showing of the response time ''' if self.MyTime == "1": self.MyTime = "0" else: self.MyTime = "1" messagebox.showinfo("Toggle Show Elapsed Time", " Set to " + self.MyTime + " ") def getmdtext(self): ''' get all or selected text ''' if self.txt.tag_ranges("sel"): text = self.txt.selection_get() else: # Select All self.txt.focus() self.txt.tag_add(SEL, '1.0', END) self.txt.mark_set(INSERT, '1.0') self.txt.see(INSERT) if self.txt.tag_ranges("sel"): text = self.txt.selection_get() self.txt.tag_remove(SEL, "1.0", END) return text def on_md_open(self, e=None): ''' open txt (MD) in your text editor ''' text = self.getmdtext() filename = os.getcwd() + '/' + self.MyFile print(filename) with open(filename, 'w') as f: f.write(text) print(filename, self.MyEditor) subprocess.Popen([self.MyEditor, filename]) def on_md_render(self, e=None): ''' render txt (MD) to html and show window ''' text = self.getmdtext() # convert MD to HTML H = markdown.markdown(text, extensions=['fenced_code']) # write to file filename = os.getcwd() + '/' + self.MyFile + '.html' print(filename) with open(filename, 'w') as f: f.write(H) # open file in browser webbrowser.open_new_tab('file:///' + filename) def speak_text(self, e=None): ''' Speak the query response text ''' text = self.getmdtext() # get selected or all text self.espeak_proc = subprocess.Popen(["espeak-ng", text]) def speak_text_cancel(self, e=None): ''' cancel the currently speaking text ''' self.espeak_proc.send_signal(signal.SIGINT) def on_kb_help(self, e=None): ''' display hot keys message ''' msg = ''' <Ctrl-t> View response metrics\n <Ctrl-m> Temporarily Toggle\n show-elapsed-time\n <Ctrl-h> This HotKey help\n <Ctrl-q> Close Program\n No Prompt\n <Ctrl-s> Save output (Button)\n <Ctrl-g> Submit Query (Button)\n <Ctrl-Enter> Submit & Append\n <Ctrl-Shift-S> Speak the Text\n <Escape> Cancel Speaking Text\n ''' messagebox.showinfo("Hot Keys Help", msg) def do_pop_query(self, event): ''' handles right-click for context menu ''' try: self.popup_query.tk_popup(event.x_root, event.y_root, 0) except: self.popup_query.grab_release() def do_pop_txt(self, event): ''' handles right-click for context menu ''' try: self.popup_txt.tk_popup(event.x_root, event.y_root, 0) except: self.popup_txt.grab_release() def popquery(self, n): ''' Routes query Text context menu actions ''' if n == 1: # Copy root.clipboard_clear() # clear clipboard contents if self.query.tag_ranges("sel"): root.clipboard_append(self.query.selection_get()) # append new value to clipbaord elif n == 2: # Paste inx = self.query.index(INSERT) try: self.query.insert(inx, root.clipboard_get()) except Exception as e: return elif n == 3: # Copy All self.query.focus() self.query.tag_add(SEL, '1.0', END) self.query.mark_set(INSERT, '1.0') self.query.see(INSERT) root.clipboard_clear() # clear clipboard contents if self.query.tag_ranges("sel"): # append new value to clipbaord root.clipboard_append(self.query.selection_get()) self.query.tag_remove(SEL, "1.0", END) elif n == 4: # larger self.TOPFRAME += 2 self.query.config(height=self.TOPFRAME) elif n == 5: # smaller if self.TOPFRAME > 3: self.TOPFRAME -= 2 self.query.config(height=self.TOPFRAME) else: # 6 search = self.query.selection_get() webbrowser.open("https://duckduckgo.com/?q=" + search) def poptxt(self, n): ''' Routes txt Text context menu actions ''' if n == 1: # Copy root.clipboard_clear() # clear clipboard contents root.clipboard_append(self.txt.selection_get()) # append new value to clipbaord elif n == 2: # Paste inx = self.txt.index(INSERT) self.txt.insert(inx, root.clipboard_get()) else: # Select All self.txt.focus() self.txt.tag_add(SEL, '1.0', END) self.txt.mark_set(INSERT, '1.0') self.txt.see(INSERT) root.clipboard_clear() # clear clipboard contents if self.txt.tag_ranges("sel"): # append new value to clipbaord root.clipboard_append(self.txt.selection_get()) self.txt.tag_remove(SEL, "1.0", END) def exit_program(self, e=None): ''' Only exit program without prompt if 1. Ctrl-q was hit OR 2. Both Text frames are empty ''' resp = self.txt.get("1.0", END).strip() qury = self.query.get("1.0", END).strip() if resp == "" and qury == "": save_location() sys.exit() if e is None: # ctrl-q avoids this message if messagebox.askokcancel('GptGUI', 'Did you want to close the app?') is False: return save_location() #------------------------------------------------------------ # SAVE GEOMETRY INFO AND EXIT def save_location(e=None): ''' executes at WM_DELETE_WINDOW event - see below Also called from self.exit_program. Save window geometry before destruction ''' with open("winfo", "w") as fout: fout.write(root.geometry()) root.destroy() # used for saving queries with date and time now = datetime.datetime.now() # get options that go into the window creation and title config = configparser.ConfigParser() config.read('gptgui.ini') MyTheme = config['Main']['theme'] MyModel = config['Main']['engine'] MyTemp = config['Main']['temperature'] MyTokens = config['Main']['tokens'] # define main window MyTitle = "GptGUI (OpenAI 1.3.3) " + MyModel + " " + str(MyTokens) root = Window(MyTitle, MyTheme, iconphoto="icon.png") # change working directory to path for this file p = os.path.realpath(__file__) os.chdir(os.path.dirname(p)) # ACCESS GEOMETRY INFO if os.path.isfile("winfo"): with open("winfo") as f: lcoor = f.read() root.geometry(lcoor.strip()) else: root.geometry("675x505") # WxH+left+top root.protocol("WM_DELETE_WINDOW", save_location) # TO SAVE GEOMETRY INFO root.minsize(875, 325) # width, height Sizegrip(root).place(rely=1.0, relx=1.0, x=0, y=0, anchor='se') Application(root) root.mainloop()
[]
2024-01-10
jario-jin/SpireView
utils~detector~common_replay_buffer.py
#code from openai #https://github.com/openai/baselines/blob/master/baselines/deepq/replay_buffer.py import numpy as np import random import operator class SegmentTree(object): def __init__(self, capacity, operation, neutral_element): """Build a Segment Tree data structure. https://en.wikipedia.org/wiki/Segment_tree Can be used as regular array, but with two important differences: a) setting item's value is slightly slower. It is O(lg capacity) instead of O(1). b) user has access to an efficient `reduce` operation which reduces `operation` over a contiguous subsequence of items in the array. Paramters --------- capacity: int Total size of the array - must be a power of two. operation: lambda obj, obj -> obj and operation for combining elements (eg. sum, max) must for a mathematical group together with the set of possible values for array elements. neutral_element: obj neutral element for the operation above. eg. float('-inf') for max and 0 for sum. """ assert capacity > 0 and capacity & (capacity - 1) == 0, "capacity must be positive and a power of 2." self._capacity = capacity self._value = [neutral_element for _ in range(2 * capacity)] self._operation = operation def _reduce_helper(self, start, end, node, node_start, node_end): if start == node_start and end == node_end: return self._value[node] mid = (node_start + node_end) // 2 if end <= mid: return self._reduce_helper(start, end, 2 * node, node_start, mid) else: if mid + 1 <= start: return self._reduce_helper(start, end, 2 * node + 1, mid + 1, node_end) else: return self._operation( self._reduce_helper(start, mid, 2 * node, node_start, mid), self._reduce_helper(mid + 1, end, 2 * node + 1, mid + 1, node_end) ) def reduce(self, start=0, end=None): """Returns result of applying `self.operation` to a contiguous subsequence of the array. self.operation(arr[start], operation(arr[start+1], operation(... arr[end]))) Parameters ---------- start: int beginning of the subsequence end: int end of the subsequences Returns ------- reduced: obj result of reducing self.operation over the specified range of array elements. """ if end is None: end = self._capacity if end < 0: end += self._capacity end -= 1 return self._reduce_helper(start, end, 1, 0, self._capacity - 1) def __setitem__(self, idx, val): # index of the leaf idx += self._capacity self._value[idx] = val idx //= 2 while idx >= 1: self._value[idx] = self._operation( self._value[2 * idx], self._value[2 * idx + 1] ) idx //= 2 def __getitem__(self, idx): assert 0 <= idx < self._capacity return self._value[self._capacity + idx] class SumSegmentTree(SegmentTree): def __init__(self, capacity): super(SumSegmentTree, self).__init__( capacity=capacity, operation=operator.add, neutral_element=0.0 ) def sum(self, start=0, end=None): """Returns arr[start] + ... + arr[end]""" return super(SumSegmentTree, self).reduce(start, end) def find_prefixsum_idx(self, prefixsum): """Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. Parameters ---------- perfixsum: float upperbound on the sum of array prefix Returns ------- idx: int highest index satisfying the prefixsum constraint """ assert 0 <= prefixsum <= self.sum() + 1e-5 idx = 1 while idx < self._capacity: # while non-leaf if self._value[2 * idx] > prefixsum: idx = 2 * idx else: prefixsum -= self._value[2 * idx] idx = 2 * idx + 1 return idx - self._capacity class MinSegmentTree(SegmentTree): def __init__(self, capacity): super(MinSegmentTree, self).__init__( capacity=capacity, operation=min, neutral_element=float('inf') ) def min(self, start=0, end=None): """Returns min(arr[start], ..., arr[end])""" return super(MinSegmentTree, self).reduce(start, end) class ReplayBuffer(object): def __init__(self, size): """Create Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. """ self._storage = [] self._maxsize = size self._next_idx = 0 def __len__(self): return len(self._storage) def push(self, state, action, reward, next_state, done): data = (state, action, reward, next_state, done) if self._next_idx >= len(self._storage): self._storage.append(data) else: self._storage[self._next_idx] = data self._next_idx = (self._next_idx + 1) % self._maxsize def _encode_sample(self, idxes): obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], [] for i in idxes: data = self._storage[i] obs_t, action, reward, obs_tp1, done = data obses_t.append(np.array(obs_t, copy=False)) actions.append(np.array(action, copy=False)) rewards.append(reward) obses_tp1.append(np.array(obs_tp1, copy=False)) dones.append(done) return np.array(obses_t), np.array(actions), np.array(rewards), np.array(obses_tp1), np.array(dones) def sample(self, batch_size): """Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. """ idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)] return self._encode_sample(idxes) class PrioritizedReplayBuffer(ReplayBuffer): def __init__(self, size, alpha): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 def push(self, *args, **kwargs): """See ReplayBuffer.store_effect""" idx = self._next_idx super(PrioritizedReplayBuffer, self).push(*args, **kwargs) self._it_sum[idx] = self._max_priority ** self._alpha self._it_min[idx] = self._max_priority ** self._alpha def _sample_proportional(self, batch_size): res = [] for _ in range(batch_size): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage) - 1) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res def sample(self, batch_size, beta): """Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage)) ** (-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage)) ** (-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) self._it_sum[idx] = priority ** self._alpha self._it_min[idx] = priority ** self._alpha self._max_priority = max(self._max_priority, priority)
[]
2024-01-10
vmurahari3/QualEval
utils~misc_utils.py
import openai import numpy as np import random def authenticate(args): with open(args.api_key) as f: api_key = f.readlines()[0].strip() openai.api_key = api_key return api_key def seed_function(args): random.seed(args.seed) np.random.seed(args.seed) def get_prompt( args, train_dataset, instruction_template, demonstration_template, demonstration_sep="\n", ): if not args.few_shot: prompt = instruction_template else: # Include examples in the prompt assert ( train_dataset is not None ), "Want to do few-shot, but no train dataset provided" # Sample some examples from the train dataset collated_demonstrations = "" cols = train_dataset.column_names for example_id in range(len(train_dataset[cols[0]])): example = {col: train_dataset[col][example_id] for col in cols} cur_demonstration = demonstration_template.format(**example) collated_demonstrations = ( collated_demonstrations + demonstration_sep + cur_demonstration ) prompt = "{}\n{}".format(instruction_template, collated_demonstrations) return prompt, collated_demonstrations
[ "PLACEHOLDER\n" ]
2024-01-10
vmurahari3/QualEval
get_dashboard.py
from utils.args import add_args from utils.plotting_utils import vconcat_resize from utils.misc_utils import authenticate, seed_function import logging import os import pandas as pd import numpy as np import inflect import openai import random import matplotlib.pyplot as plt from matplotlib import rcParams, font_manager import matplotlib as mpl import seaborn as sns import argparse import json from scipy.optimize import linear_sum_assignment, linprog from PIL import Image import cv2 import zipfile from utils.templates import PROFICIENCY_METRICS, LABEL_KEY, TASK_INSTRUCTIONS inflect_engine = inflect.engine() font_size = 26 # Create a Matplotlib Font object from our `.ttf` file font = font_manager.FontEntry(fname=str("fonts/Roboto-Regular.ttf"), name="roboto") # Register this object with Matplotlib's ttf list font_manager.fontManager.ttflist.append(font) rc = {} rc["font.family"] = "roboto" rcParams.update(rc) PROFICIENCY_FILTER_THRESHOLD = {} PROFICIENCY_FILTER_THRESHOLD["mbpp"] = 1 PROFICIENCY_FILTER_THRESHOLD["knkarthick_dialogsum"] = 0.25 PROFICIENCY_FILTER_THRESHOLD["mmlu_biology"] = 1 CLASSIFICATION_TASKS = ["mmlu_biology", "medmcqa"] # pretty labels PRETTY_LABELS = {} PRETTY_LABELS["mbpp"] = {} PRETTY_LABELS["mbpp"]["subtask"] = { "Parse natural language description": "Parse Description", "Understand test cases": "Understand Test Cases", "Handle data types and structures": "Handle Data Types", "Implement mathematical operations": "Implement Math Operations", "Handling loops and conditionals": "Handle Loops/If-Else", "Manage variable assignments and data manipulation": "Variable Assignments", "Implement algorithmic operations": "Implement Algorithms", "Handle exception and error cases": "Handle Exceptions & Errors", "Optimize for efficiency and readability": "Optimize for Efficiency", "Validate against test cases": "Validate Against Test Cases", "Generate Python syntax": "Generate Python Syntax", "Manipulate arrays and lists": "Manipulate Arrays & Lists", "Handle edge cases or special scenarios": "Handle Edge Cases", "Extract and store arrays from function parameters": "Extract & Store Arrays", } PRETTY_LABELS["mbpp"]["domain"] = { "Mathematical Operations": "Mathematical Operations", "String Manipulation": "String Manip.", "List Manipulation": "List Manip.", "Conditional Statements": "Conditional Statements", "Data Processing": "Data Processing", "Sorting": "Sorting", "Number Manipulation": "Number Manip.", "Tuple Manipulation": "Tuple Manip.", "Boolean Operations": "Bool Operations", "Geometric Calculations": "Geometric Calculations", "Text Pattern Matching": "Text Pattern Matching", "Array Manipulation": "Array Manip.", "File Handling": "File Handling", "Data Validation": "Data Validation", "Sequence Analysis": "Sequence Analysis", } PRETTY_LABELS["knkarthick_dialogsum"] = {} PRETTY_LABELS["knkarthick_dialogsum"]["subtask"] = { "Identifying the participants in the conversation": "Identify the participants", "Understanding the topic of discussion": "Understand the topic", "Extracting key information or important details": "Extract key information", "Summarizing the conversation concisely": "Summarize concisely", "Recognizing the roles and relationships of the speakers": "Recognize roles", "Comprehending specific statements or questions": "Comprehend specific statements", "Interpreting instructions or suggestions": "Interpret instructions/suggestions", "Identifying requests for information or clarification": "Identify requests for information", "Extracting important information and questions": "Extract important questions", "Understanding the conversational context": "Understand conversational context", "Recognizing the main topic of conversation": "Recognize main topic", "Noting suggestions, recommendations, or solutions proposed": "Note suggestions/solution", "Extracting information about language proficiency or qualifications": "Extract language proficiency", "Recognizing and interpreting emotions": "Recognize & interpret emotions", "Extracting relevant details": "Extract relevant details", } PRETTY_LABELS["knkarthick_dialogsum"]["domain"] = { "Dating and relationships": "Dating & relationships", "Outdoor activities and sports": "Outdoor activities", "Career and job interviews": "Career & job interviews", "Food and restaurant ordering": "Food & restaurant ordering", "Environmental issues and pollution": "Environmental issues", "Social interactions and personal relationships": "Social interactions", "Leisure and recreation": "Leisure & recreation", "Employment and professional skills": "Employment & professional skills", "Food and hospitality": "Food & hospitality", "Environmental conservation and sustainability": "Environmental sustainability", "Movie preferences and plans": "Movie preferences & plans", "Sports and live events": "Sports & live events", "Fashion and clothing choices": "Fashion & clothing choices", "Education": "Education", "Work environment": "Work environment", } PRETTY_LABELS["mmlu_biology"] = {} PRETTY_LABELS["mmlu_biology"]["subtask"] = { "Understanding and interpreting clinical information": "Interpret clinical info", "Identifying and categorizing symptoms, conditions, and diseases": "Identify symptoms", "Analyzing and processing medical test results": "Analyze medical tests", "Recommending appropriate treatments and interventions based on patient-specific factors": "Recommend appropriate treatment", "Providing accurate and relevant information to healthcare professionals and patients": "Provide acc. info", "Understanding and interpreting multiple choice questions": "Interpret multiple-choice ques.", "Analyzing and selecting the correct answer choice": "Analyze answer choice", "Recognizing key terms and concepts in clinical biology": "Recognize concepts", "Identifying patterns and relationships between questions and answers": "Identify patterns b/w Ques. and Ans.", "Retaining and applying knowledge from example data to new questions and answers": "Apply knowledge", "Understanding and classifying pH levels": "Understanding and classifying pH levels", "Providing information and reminders about medication administration and potential side effects": "Providing information and reminders about medication administration and potential side effects", "Suggesting the appropriate size of cannula for specific medical interventions such as blood transfusions": "Suggesting the appropriate size of cannula for specific medical interventions", "Applying domain-specific knowledge to select the most appropriate answer choice": "Apply domain-specific knowledge", "Identifying potential drug interactions": "Identify potential drug interactions", } PRETTY_LABELS["mmlu_biology"]["domain"] = { "Cell Biology": "Cell Biology", "Neurology": "Neurology", "Biochemistry": "Biochemistry", "Physiology": "Physiology", "Pharmacology": "Pharmacology", "Clinical biology": "Clinical biology", "Diagnostic tests": "Diagnostic tests", "Treatment options": "Treatment options", "Anatomy and physiology": "Anatomy & physiology", "Medical procedures and interventions": "Medical procedures", "Genetics and heredity": "Genetics and heredity", "Dermatology": "Dermatology", "Urology": "Urology", "Respiratory medicine": "Respiratory medicine", "Wound healing and surgery": "Wound healing & surgery", } def get_dataset_assignment_LP( args, all_category_elements_importance_scores, ground_truth_scores, categories, max_assignments_per_data_point=2, slack=0.1, ): assignments = {} for category in categories: # filter based on category category_gt_scores = ground_truth_scores[ ground_truth_scores["category_type"] == category ] # if we don't have a complete graph (scores for some missing categories), do a join and assign a -1 score to missing categories # Fill missing values with default score default_score = -1 category_gt_scores["score"] = category_gt_scores["score"].fillna(default_score) category_gt_scores_pivoted = category_gt_scores.pivot( index="id", columns="category", values="score" ).fillna(default_score) category_gt_scores_np = category_gt_scores_pivoted.values num_data_points, num_category_elements = category_gt_scores_np.shape # duplicate the columns based on the importance scores category_elements_importance_scores = all_category_elements_importance_scores[ category ] # align the importance scores categories with the columns of the gt scores category_elements_importance_scores = ( category_elements_importance_scores.reindex( category_gt_scores_pivoted.columns ) ) category_elements_importance_scores_np = ( category_elements_importance_scores.values ) category_elements_importance_scores_np = ( category_elements_importance_scores_np / np.sum(category_elements_importance_scores_np) ) num_slots_per_category_element = np.floor( category_elements_importance_scores_np * num_data_points ).astype(int) # the number of slots might not add up to the number of data points # distrbute the remaining slots randomly num_slots_remaining = num_data_points - np.sum(num_slots_per_category_element) if num_slots_remaining > 0: num_slots_per_category_element = ( num_slots_per_category_element + np.random.multinomial( num_slots_remaining, np.ones(num_category_elements) / num_category_elements, ) ) num_slots_per_category_element = ( num_slots_per_category_element * max_assignments_per_data_point ) # add some slack assert slack >= 0 and slack <= 1 num_slots_per_category_element_ub = num_slots_per_category_element + np.floor( slack * num_slots_per_category_element ) num_slots_per_category_element_lb = num_slots_per_category_element - np.floor( slack * num_slots_per_category_element ) # construct the linear program # decision variables # x_ij = 1 if category element j is assigned to data point i # x_ij = 0 otherwise # objective function # max sum_i sum_j x_ij * score_ij # i = [1, num_data_points] # j = [1, num_category_elements] # constraints # sum_j x_ij = 2 for all i # sum_i x_ij = num_slots_per_category_element[j] * (1 +- slack) for all j # flexible solver # x_ij = {0,1} # score_ij = [1,5] num_category_elements = category_gt_scores_np.shape[1] num_data_points = category_gt_scores_np.shape[0] # cost vector c = category_gt_scores_np.flatten() A = np.zeros( ( num_data_points + num_category_elements + num_category_elements, num_data_points * num_category_elements, ) ) b = np.zeros(num_data_points + num_category_elements + num_category_elements) # constraint 1 for i in range(num_data_points): A[i, i * num_category_elements : (i + 1) * num_category_elements] = 1 b[i] = max_assignments_per_data_point # constraint 2 -- upper bound for j in range(num_category_elements): A[num_data_points + j, j::num_category_elements] = 1 b[num_data_points + j] = num_slots_per_category_element_ub[j] # constraint 2 -- lower bound for j in range(num_category_elements): A[ num_data_points + num_category_elements + j, j::num_category_elements ] = -1 b[ num_data_points + num_category_elements + j ] = -num_slots_per_category_element_lb[j] # solve the linear program res = linprog(-c, A_ub=A, b_ub=b, bounds=(0, 1), integrality=1) # get the assignments reshaped_assignments = res.x.reshape(num_data_points, num_category_elements) assert np.all( np.logical_or(reshaped_assignments == 0, reshaped_assignments == 1) ) assignment = {} for j in range(num_category_elements): non_zeros_data_points = np.nonzero(reshaped_assignments[:, j] == 1) assignment[ category_gt_scores_pivoted.columns[j] ] = category_gt_scores_pivoted.index[non_zeros_data_points].tolist() assert ( len(assignment[category_gt_scores_pivoted.columns[j]]) <= num_slots_per_category_element_ub[j] ) assert ( len(assignment[category_gt_scores_pivoted.columns[j]]) >= num_slots_per_category_element_lb[j] ) print( "Number of assignments for category element", category_gt_scores_pivoted.columns[j], f"{len(assignment[category_gt_scores_pivoted.columns[j]])} {num_slots_per_category_element_ub[j]} {num_slots_per_category_element_lb[j]}", ) assignments[category] = assignment return assignments def preprocessing(args, all_scores_generations, all_scores_gt, proficiency_scores): categories = args.categories.split(",") # rename the columns to category for category in categories: category_df = all_scores_generations[category] category_df.rename(columns={category: "category"}, inplace=True) category_df["category_type"] = category category_df_gt = all_scores_gt[category] category_df_gt.rename(columns={category: "category"}, inplace=True) category_df_gt["category_type"] = category # merge all categories into a single dataframe all_scores_generations_merged = pd.concat(all_scores_generations.values()) all_scores_gt_merged = pd.concat(all_scores_gt.values()) # assert no empty generations, and assert scores in range [0,5] assert np.all(all_scores_generations_merged["generation"] != "") assert np.all(all_scores_gt_merged["generation"] != "") assert np.all(all_scores_generations_merged["score"] >= 0) assert np.all(all_scores_generations_merged["score"] <= 5) assert np.all(all_scores_gt_merged["score"] >= 0) assert np.all(all_scores_gt_merged["score"] <= 5) assert len(all_scores_generations_merged) == len(all_scores_gt_merged) # assert number of unique ids in generations and gt are the same # assert number of unique ids in proficiency scores and gt are the same assert np.all( np.unique(all_scores_generations_merged["id"].values) == np.unique(all_scores_gt_merged["id"].values) ) assert np.all( np.unique(all_scores_generations_merged["id"].values) == np.unique(proficiency_scores.index.values) ) pruned_category_elements = {} for category in categories: category_df_gt = all_scores_gt_merged[ all_scores_gt_merged["category_type"] == category ] # find mean score for different elements in the category with pd groupby grouped_category_df_gt = category_df_gt.groupby(category_df_gt["category"]) scores_per_category_type = grouped_category_df_gt["score"].mean() top_10_category_elements = scores_per_category_type.sort_values(ascending=False) top_10_category_elements = top_10_category_elements[:10] top_10_category_elements.index = top_10_category_elements.index.str.split( ":" ).str.get(0) pruned_category_elements[category] = top_10_category_elements # prune the generation score to only contain the top 10 category elements pruned_generation_scores = [] for category in categories: category_df = all_scores_generations_merged[ all_scores_generations_merged["category_type"] == category ] category_df["category"] = category_df["category"].str.split(":").str.get(0) category_df = category_df[ category_df["category"].isin(pruned_category_elements[category].index) ] pruned_generation_scores.append(category_df) # pruned GT scores as well pruned_gt_scores = [] for category in categories: category_df = all_scores_gt_merged[ all_scores_gt_merged["category_type"] == category ] category_df["category"] = category_df["category"].str.split(":").str.get(0) category_df = category_df[ category_df["category"].isin(pruned_category_elements[category].index) ] pruned_gt_scores.append(category_df) # merge all categories into a single dataframe all_scores_gt_merged_pruned = pd.concat(pruned_gt_scores) all_scores_generations_merged_pruned = pd.concat(pruned_generation_scores) return ( all_scores_generations_merged_pruned, all_scores_gt_merged_pruned, pruned_category_elements, ) def get_gt_breakdown(args, all_scores_gt): categories = args.categories.split(",") fig, axes = plt.subplots(nrows=1, ncols=len(categories), figsize=(40, 9)) # visualize the scores for these category elements for i, category in enumerate(categories): category_df_gt = all_scores_gt[all_scores_gt["category_type"] == category] # find mean score for different elements in the category with pd groupby grouped_category_df_gt = category_df_gt.groupby(category_df_gt["category"]) scores_per_category_type = grouped_category_df_gt["score"].mean() # setting title etc. scores_per_category_type = scores_per_category_type.sort_values(ascending=True) qualitative_colors = sns.color_palette("husl", 10) sns.set_theme(style="white") sns.set_palette(qualitative_colors) sns.set_style("white") labels = scores_per_category_type.index labels_split = [] for label in labels: label = label.strip() if args.pretty_plot: label = PRETTY_LABELS[args.task_name][category][label] else: label_words = label.split() label = "\n".join( [ " ".join(label_words[: len(label_words) // 2]), " ".join(label_words[len(label_words) // 2 :]), ] ) labels_split.append(label) axes[i].pie( x=scores_per_category_type.values, labels=labels_split, colors=qualitative_colors, autopct="%1.0f%%", startangle=90, textprops={"fontsize": font_size}, pctdistance=0.80, explode=[0.05] * len(scores_per_category_type), ) # add labels axes[i].set_title( f"{inflect_engine.plural_noun(category.capitalize())}", fontsize=1.5 * font_size, ) hole = plt.Circle((0, 0), 0.65, facecolor="white") axes[i].add_patch(hole) # save the scores for each category element scores_per_category_type.to_csv( os.path.join( args.input_dir_generation_scores, f"gt_scores_per_category_element_{category}.csv", ) ) fig.suptitle("Prior over categories", fontsize=2 * font_size) plt.tight_layout(h_pad=2, w_pad=2, pad=2) plt.savefig( os.path.join(args.input_dir_generation_scores, "gt_breakdown.pdf"), dpi=300, transparent=True, ) plt.savefig( os.path.join(args.input_dir_generation_scores, "gt_breakdown.png"), dpi=300, transparent=True, ) def get_correlation_breakdown( args, all_scores_generations, all_scores_gt, proficiency_scores ): # initialize the reportcard plot categories = args.categories.split(",") fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(15, 12)) # visualize the scores for these category elements color_dict = {"subtask": ["#ffc8c8", "#ff5858"], "domain": ["#bbdefb", "#2196f3"]} for i, category in enumerate(["subtask"]): generation_correlations = {} category_df_gt = all_scores_gt[all_scores_gt["category_type"] == category] category_df_generations = all_scores_generations[ all_scores_generations["category_type"] == category ] # iterate over the category elements # for each category element, find the correlation between the gt and generation scores for category_element in category_df_gt["category"].unique(): # filter based on category element category_element_df_gt = category_df_gt[ category_df_gt["category"] == category_element ] category_element_df_generations = category_df_generations[ category_df_generations["category"] == category_element ] # sort both the dataframes based on the id category_element_df_gt = category_element_df_gt.sort_values(by="id") category_element_df_generations = ( category_element_df_generations.sort_values(by="id") ) # group by id to get proficiency score for each generation category_element_df_generations = category_element_df_generations.join( proficiency_scores, on="id", how="inner", rsuffix="_proficiency", ) filter_index = ( category_element_df_generations["proficiency_score"] >= PROFICIENCY_FILTER_THRESHOLD[args.task_name] ) category_element_df_generations = category_element_df_generations[ filter_index ] category_element_df_gt = category_element_df_gt[ category_element_df_gt["id"].isin( category_element_df_generations["id"].values ) ] assert np.all( category_element_df_gt["id"].values == category_element_df_generations["id"].values ) # filter based on proficiency scores num_intersection = np.sum( np.abs( category_element_df_gt["score"].values - category_element_df_generations["score"].values ) >= 2 ) correlation = num_intersection / len(category_element_df_gt) generation_correlations[category_element] = correlation # plot the scores for each category element generation_correlations = pd.DataFrame.from_dict( generation_correlations, orient="index" ) generation_correlations.columns = ["score"] # sort based on score before plotting generation_correlations = generation_correlations.sort_values( by="score", ascending=True ) if args.pretty_plot: # remove the two rows in the middle of the data frame middle_index = len(generation_correlations) // 2 generation_correlations = pd.concat( [ generation_correlations.iloc[: middle_index - 1], generation_correlations.iloc[middle_index + 1 :], ] ) labels = generation_correlations.index labels_split = [] for label in labels: label = label.strip() if args.pretty_plot: label = PRETTY_LABELS[args.task_name][category][label] else: label_words = label.split() label = "\n".join( [ " ".join(label_words[: len(label_words) // 2]), " ".join(label_words[len(label_words) // 2 :]), ] ) labels_split.append(label) # find mean score for different elements in the category with pd groupby # rotate xticks qualitative_colors = sns.color_palette("Set2", 10) sns.set_theme(style="white") sns.set_palette(qualitative_colors) sns.set_style("white") colours = color_dict[category] cmap = mpl.colors.LinearSegmentedColormap.from_list( "colour_map", colours, N=256 ) norm = mpl.colors.Normalize( generation_correlations["score"].min(), generation_correlations["score"].max(), ) # linearly normalizes data into the [0.0, 1.0] interval bar_plot = sns.barplot( ax=axes, x=labels_split, y=generation_correlations["score"], palette=cmap(norm(generation_correlations["score"])), linewidth=2, ) # add labels axes.tick_params(axis="y", labelsize=font_size) axes.set_ylabel("Distance", fontsize=font_size, labelpad=20) axes.set_ylim( max(generation_correlations["score"].min() - 0.05, 0), # min(generation_correlations["score"].max(), 1), 1, ) xlabels = axes.get_xticklabels() axes.spines[["right", "top", "left"]].set_visible(False) axes.spines["bottom"].set_linewidth(1.5) axes.spines["bottom"].set_color("grey") # loop through bars and add annotations for j, bar in enumerate(bar_plot.patches): # Get the x-coordinate of the bar x = bar.get_x() # Get the y-coordinate of the bar y = bar.get_y() # add the text axes.text( x=x + bar.get_width() / 2, y=y + bar.get_height() + 0.01, s=xlabels[j].get_text(), ha="center", va="bottom", fontsize=font_size, rotation=90, multialignment="left", ) axes.set_xticklabels([]) # save the scores for each category element generation_correlations.to_csv( os.path.join( args.input_dir_generation_scores, f"generation_correlations_{category}.csv", ) ) fig.suptitle( "Alignment between usage of skills", fontsize=1.5 * font_size, ) plt.tight_layout(h_pad=2, w_pad=2, pad=2) plt.savefig( os.path.join(args.input_dir_generation_scores, "correlation_breakdown.pdf"), dpi=300, transparent=True, ) plt.savefig( os.path.join(args.input_dir_generation_scores, "correlation_breakdown.png"), dpi=300, transparent=True, ) def get_proficiency_breakdown(args, all_scores_gt, proficiency_scores): # initialize the reportcard plot # get the LP assignments categories = args.categories.split(",") fig, axes = plt.subplots(ncols=len(categories), figsize=(30, 18), sharey=True) categories_importance_scores = {} for category in categories: category_df_gt = all_scores_gt[all_scores_gt["category_type"] == category] # find mean score for different elements in the category with pd groupby grouped_category_df_gt = category_df_gt.groupby(category_df_gt["category"]) scores_per_category_type = grouped_category_df_gt["score"].mean() categories_importance_scores[category] = scores_per_category_type dataset_assignments = get_dataset_assignment_LP( args, categories_importance_scores, all_scores_gt, categories, max_assignments_per_data_point=2, ) color_dict = {"subtask": ["#F4D941", "#EC8235"], "domain": ["#bbdefb", "#2196f3"]} # now we have the assignments for each category element for i, category in enumerate(categories): cur_assignment = dataset_assignments[category] generation_scores_with_assignments = {} qualitative_samples = pd.DataFrame() for category_element in cur_assignment: # filter based on assignments # the index of proficiency scores is the id cur_proficiency_scores = proficiency_scores[ proficiency_scores.index.isin(cur_assignment[category_element]) ] generation_scores_with_assignments[category_element] = [ cur_proficiency_scores["proficiency_score"].mean(), len(cur_proficiency_scores), ] # output some qualitative samples # get the top 3 and bottom 3 generations for each category element top_generations = cur_proficiency_scores.sort_values( by="proficiency_score", ascending=False )[:3] top_generations["category_element"] = category_element bottom_generations = cur_proficiency_scores.sort_values( by="proficiency_score", ascending=True )[:3] bottom_generations["category_element"] = category_element qualitative_samples = pd.concat( [qualitative_samples, top_generations, bottom_generations] ) # average the scores for each category element given the assignments # plot the scores for each category element generation_scores_with_assignments_df = pd.DataFrame.from_dict( generation_scores_with_assignments, orient="index" ) generation_scores_with_assignments_df.columns = ["score", "num_samples"] # sort based on score before plotting generation_scores_with_assignments_df = ( generation_scores_with_assignments_df.sort_values( by="score", ascending=True ) ) generation_scores_with_assignments_df.to_csv( os.path.join( args.input_dir_generation_scores, f"generation_scores_with_assignments_{category}.csv", ) ) if args.pretty_plot: # remove the two rows in the middle of the data frame middle_index = len(generation_scores_with_assignments_df) // 2 generation_scores_with_assignments_df = pd.concat( [ generation_scores_with_assignments_df.iloc[: middle_index - 1], generation_scores_with_assignments_df.iloc[middle_index + 1 :], ] ) labels = generation_scores_with_assignments_df.index labels_split = [] for label in labels: label = label.strip() if args.pretty_plot: label = PRETTY_LABELS[args.task_name][category][label] else: label_words = label.split() label = "\n".join( [ " ".join(label_words[: len(label_words) // 2]), " ".join(label_words[len(label_words) // 2 :]), ] ) labels_split.append(label) qualitative_colors = sns.color_palette("Set2", 10) sns.set_theme(style="white") sns.set_palette(qualitative_colors) sns.set_style("white") colours = color_dict[category] cmap = mpl.colors.LinearSegmentedColormap.from_list( "colour_map", colours, N=256 ) norm = mpl.colors.Normalize( generation_scores_with_assignments_df["score"].min(), generation_scores_with_assignments_df["score"].max(), ) # linearly normalizes data into the [0.0, 1.0] interval sns.barplot( ax=axes[i], x=labels_split, y=generation_scores_with_assignments_df["score"], capsize=10, errwidth=10, palette=cmap(norm(generation_scores_with_assignments_df["score"])), ) # add labels axes[i].tick_params(axis="y", labelsize=font_size * 1.3) axes[i].set_title( f"{inflect_engine.plural_noun(category.capitalize())}", fontsize=font_size * 1.9, ) ylabel = args.proficiency_metric axes[i].set_ylabel(ylabel, ha="center", fontsize=font_size * 1.4, labelpad=20) axes[i].set_ylim( max(generation_scores_with_assignments_df["score"].min() - 0.1, 0), min(generation_scores_with_assignments_df["score"].max() + 0.1, 1), ) xlabels = axes[i].get_xticklabels() axes[i].set_xticklabels( xlabels, rotation=90, ha="center", fontsize=font_size * 1.6, multialignment="right", ) axes[i].spines[["right", "top", "left"]].set_visible(False) axes[i].spines["bottom"].set_linewidth(1.5) axes[i].spines["bottom"].set_color("grey") # store the qualitative samples qualitative_samples.to_csv( os.path.join( args.input_dir_generation_scores, f"qualitative_samples_{category}.csv", ) ) # dump the LP assignments index_2_category_element = {} for category_element in cur_assignment: for index in cur_assignment[category_element]: if index not in index_2_category_element: index_2_category_element[index] = [] index_2_category_element[index].append(category_element) index_2_category_element_df = pd.DataFrame.from_dict( index_2_category_element, orient="index" ) index_2_category_element_df = index_2_category_element_df.join( proficiency_scores_df, how="inner" ) index_2_category_element_df = index_2_category_element_df.sort_index() index_2_category_element_df.to_csv( os.path.join( args.input_dir_generation_scores, f"index_2_category_element_{category}.csv", ) ) fig.suptitle("Proficiency by category", fontsize=2 * font_size, font="roboto") plt.tight_layout(h_pad=2, w_pad=2, pad=2) plt.savefig( os.path.join(args.input_dir_generation_scores, "proficiency_breakdown.pdf"), dpi=300, transparent=True, ) plt.savefig( os.path.join(args.input_dir_generation_scores, "proficiency_breakdown.png"), dpi=300, transparent=True, ) def get_nl_summary(args): # show the list of categories and category elements # list the breakdown of the category elements as json # list the breakdown of the proficiency scores as json # list the breakdown of the correlation scores as json if they exist # prompt the model to generate a NL summary task_instruction = TASK_INSTRUCTIONS[args.task_name] categories = args.categories.split(",") gt_breakdown = {} proficiency_scores = {} correlation_scores = {} category_elements = {} for category in categories: # load the ground truth breakdown gt_breakdown[category] = pd.read_csv( os.path.join( args.input_dir_generation_scores, f"gt_scores_per_category_element_{category}.csv", ), ) proficiency_scores[category] = pd.read_csv( os.path.join( args.input_dir_generation_scores, f"generation_scores_with_assignments_{category}.csv", ), ) if os.path.exists( os.path.join( args.input_dir_generation_scores, f"generation_correlations_{category}.csv", ), ): correlation_scores[category] = pd.read_csv( os.path.join( args.input_dir_generation_scores, f"generation_correlations_{category}.csv", ), ) category_elements[category] = ( gt_breakdown[category]["category"].unique().tolist() ) # prepare the dataframes for the NL summary proficiency_scores[category] = proficiency_scores[category].set_index( "Unnamed: 0" ) proficiency_scores[category] = proficiency_scores[category]["score"].to_dict() gt_breakdown[category] = gt_breakdown[category].set_index("category") gt_breakdown[category] = gt_breakdown[category]["score"].to_dict() if category in correlation_scores: correlation_scores[category] = correlation_scores[category].set_index( "Unnamed: 0" ) correlation_scores[category] = correlation_scores[category][ "score" ].to_dict() # compose request to LLM task_instruction_message = f"A machine learning model is tasked with the following task: \n f{task_instruction}" category_list = { category: "\n".join(category_elements[category]) for category in categories } category_message = [ f"These are the {inflect_engine.plural_noun(category)} for the task:\n {category_list[category]}" for category in categories ] category_message = "\n\n".join(category_message) gt_breakdown_message = [ f"In the evaluation data, these are the importance scores of the {inflect_engine.plural_noun(category)}:\n {json.dumps(gt_breakdown[category])}" for category in categories ] gt_breakdown_message = "\n\n".join(gt_breakdown_message) proficiency_scores_message = [ f"The following scores show how well the model performs on the {inflect_engine.plural_noun(category)}: {json.dumps(proficiency_scores[category])}" for category in categories ] proficiency_scores_message = "\n\n".join(proficiency_scores_message) if args.task_name not in CLASSIFICATION_TASKS: correlation_scores_message = [ f"The following distance demonstrates how much the {inflect_engine.plural_noun(category)} are actually used for generating the output when they are requried to generate the input. Therefore, a low distance implies that the model is utilizing the category when it needs to: {json.dumps(correlation_scores[category])}. [Important] Lower distance implies the {category} is leveraged when it needs to be used." for category in ["subtask"] ] correlation_scores_message = "\n\n".join(correlation_scores_message) else: correlation_scores_message = "" summarization_message = "Given the above information, please write a brief summary highlighting important information. Please be precise and concise but please be comprehensive." system_prompt = "Given a holistic picture of the performance of a machine learning model, you are asked to summarize the model's overall performance." try: response = openai.ChatCompletion.create( model=args.model, messages=[ {"role": "system", "content": system_prompt}, { "role": "user", "content": task_instruction_message, }, { "role": "user", "content": category_message, }, { "role": "user", "content": gt_breakdown_message, }, { "role": "user", "content": proficiency_scores_message, }, { "role": "user", "content": correlation_scores_message, }, { "role": "user", "content": summarization_message, }, ], temperature=args.temperature, max_tokens=1700, top_p=args.top_p, frequency_penalty=args.frequency_penalty, presence_penalty=args.presence_penalty, ) except: print( "exception encountered while creating pruned set of categories, skipping this iteration" ) return if ( "error" in response or "choices" not in response or len(response["choices"]) == 0 ): return response_text = response["choices"][0]["message"]["content"] # save the response with open( os.path.join(args.input_dir_generation_scores, "NLsummary.txt"), "w" ) as f: f.write(response_text) print(response_text) # save the response as an image fig, ax = plt.subplots(figsize=(24, 12)) ax.text( 0.5, 0.5, response_text, horizontalalignment="center", verticalalignment="center", fontsize=0.9 * font_size, wrap=True, font="roboto", multialignment="left", backgroundcolor="lavender", ) ax.axis("off") plt.tight_layout(h_pad=2, w_pad=2, pad=2) plt.savefig( os.path.join(args.input_dir_generation_scores, "NLsummary.pdf"), dpi=300, transparent=True, ) plt.savefig( os.path.join(args.input_dir_generation_scores, "NLsummary.png"), dpi=300, transparent=True, ) def get_reportcard(args, all_scores_generations, all_scores_gt, proficiency_scores): # initialize the reportcard plot categories = args.categories.split(",") # preprocessing all_scores_generations, all_scores_gt, pruned_category_elements = preprocessing( args, all_scores_generations, all_scores_gt, proficiency_scores ) # get the gt breakdown get_gt_breakdown(args, all_scores_gt) # get the proficiency scores for each category element get_proficiency_breakdown(args, all_scores_gt, proficiency_scores) # get correlation between gt and generation scores for each category elements if args.task_name not in CLASSIFICATION_TASKS: get_correlation_breakdown( args, all_scores_generations, all_scores_gt, proficiency_scores ) # get the NL summary get_nl_summary(args) # concatenate the different images into a single reportcard # load images with cv2 all_images = [] gt_breakdown_image = cv2.imread( os.path.join(args.input_dir_generation_scores, "gt_breakdown.png") ) proficiency_breakdown_image = cv2.imread( os.path.join(args.input_dir_generation_scores, "proficiency_breakdown.png") ) all_images.append(gt_breakdown_image) all_images.append(proficiency_breakdown_image) if args.task_name not in CLASSIFICATION_TASKS: correlation_breakdown_image = cv2.imread( os.path.join(args.input_dir_generation_scores, "correlation_breakdown.png") ) correlation_image_dummy = ( np.ones( ( correlation_breakdown_image.shape[0], correlation_breakdown_image.shape[1] // 2, 3, ) ).astype(np.uint8) * 255 ) # horizontal concatenation of correlation breakdown and dummy image correlation_breakdown_image = np.concatenate( ( correlation_image_dummy, correlation_breakdown_image, correlation_image_dummy, ), axis=1, ) all_images.append(correlation_breakdown_image) nl_summary = cv2.imread( os.path.join(args.input_dir_generation_scores, "NLsummary.png") ) all_images.append(nl_summary) img_resize = vconcat_resize(all_images) cv2.imwrite( os.path.join(args.input_dir_generation_scores, "reportcard.png"), img_resize ) # convert the reportcard to pdf img = Image.open( os.path.join(args.input_dir_generation_scores, "reportcard.png") ).convert("RGB") img.save( os.path.join(args.input_dir_generation_scores, "reportcard.pdf"), save_all=True, ) # dump a zip file with all the data zipf = zipfile.ZipFile( os.path.join(args.input_dir_generation_scores, "reportcard.zip"), "w" ) with zipf: zipf.write( os.path.join(args.input_dir_generation_scores, "reportcard.pdf"), "dashboard.pdf", ) zipf.write( os.path.join(args.input_dir_generation_scores, "gt_breakdown.pdf"), "prior_over_categories.pdf", ) zipf.write( os.path.join(args.input_dir_generation_scores, "proficiency_breakdown.pdf"), "proficiency_over_categories.pdf", ) if args.task_name not in CLASSIFICATION_TASKS: zipf.write( os.path.join( args.input_dir_generation_scores, "correlation_breakdown.pdf" ), "distance_bw_GT_and_Output.pdf", ) zipf.write( os.path.join(args.input_dir_generation_scores, "NLsummary.pdf"), "summary.pdf", ) zipf.write( os.path.join(args.input_dir_generation_scores, "NLsummary.txt"), "summary.txt", ) # also add the data files for category in categories: zipf.write( os.path.join( args.input_dir_generation_scores, f"gt_scores_per_category_element_{category}.csv", ), f"prior_over_category_elements_{category}.csv", ) zipf.write( os.path.join( args.input_dir_generation_scores, f"generation_scores_with_assignments_{category}.csv", ), f"proficiency_over_category_elements_{category}.csv", ) if args.task_name not in CLASSIFICATION_TASKS: if category == "subtask": zipf.write( os.path.join( args.input_dir_generation_scores, f"generation_correlations_{category}.csv", ), f"distance_bw_GT_and_Output_{category}.csv", ) if __name__ == "__main__": # get the model generation prompts parser = argparse.ArgumentParser() parser.add_argument( "--categories", type=str, default="subtask,domain", help="Categories to use for the reportcard", ) parser.add_argument( "--input_dir_generation_scores", type=str, default="", help="Input directory for finding the generation scores", ) parser.add_argument( "--generation_file", type=str, default="", help="Input file for finding the generations", ) parser.add_argument( "--proficiency_metric", type=str, default="", help="Proficiency metric to use for the reportcard", ) parser.add_argument( "--input_dir_gt_scores", type=str, default="", help="Input directory for finding the ground truth scores", ) parser.add_argument( "--pretty_plot", action="store_true", help="Whether to use pretty plots or not", ) parser = add_args(parser) args = parser.parse_args() if args.debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=args.logging_level) # Random seed seed_function(args) api_key = authenticate(args) all_scores_generations = {} all_scores_gt = {} # load both the generation scores and the ground truth scores for category in args.categories.split(","): # get the generation score for this category generation_score_file = os.path.join( args.input_dir_generation_scores, f"{category}_scores.csv" ) generation_scores = pd.read_csv(generation_score_file) # get the ground truth score for this category gt_score_file = os.path.join(args.input_dir_gt_scores, f"{category}_scores.csv") gt_scores = pd.read_csv(gt_score_file) # add to the dictionary all_scores_generations[category] = generation_scores all_scores_gt[category] = gt_scores # load the proficiency scores from the generation jsonl file proficiency_scores = {} proficiency_metric = "" with open(args.generation_file) as f: assert ( args.proficiency_metric in PROFICIENCY_METRICS[args.task_name] ), "Proficiency metric not supported" proficiency_metric = f"generation_{args.proficiency_metric}" for line in f: line = json.loads(line) proficiency_scores[line["id"]] = line # convert the proficiency scores to a dataframe proficiency_scores_df = pd.DataFrame.from_dict(proficiency_scores, orient="index") # rename the column proficiency_scores_df = proficiency_scores_df.rename( columns={proficiency_metric: "proficiency_score"} ) # get the reportcard get_reportcard(args, all_scores_generations, all_scores_gt, proficiency_scores_df)
[ "Given a holistic picture of the performance of a machine learning model, you are asked to summarize the model's overall performance." ]
2024-01-10
vmurahari3/QualEval
score_categories.py
import re # Insert code for taking arguments from command line import argparse import openai import os import json import asyncio from api_request_parallel_processor import process_api_requests_from_file from utils.args import add_args from utils.misc_utils import authenticate import random import pandas as pd from utils.templates import SCORING_PROMPTS, SYSTEM_PROMPTS, CLASSIFICATION_TASKS def score_generation(args, generations, category, category_dataset, scoring_prompt): # score each element in category_dataset with every generation # generate a pandas dataframe with the scores # return the dataframe # get the prompt task_instruction = category_dataset[0]["task_instruction"] header_prompt = f"Good Job, we will now present the output generation from the language model. \n" # system prompt system_prompt = SYSTEM_PROMPTS[args.task_name] # generate scores for all prompts if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) generated_samples = [] num_api_epochs = 0 failed_to_match = 0 id_to_generation_index = {g["id"]: i for i, g in enumerate(generations)} cur_generations = generations while num_api_epochs < 30 and len(cur_generations) > 0: # generate prompts for all categories and generations failed_to_match = 0 prompt_file_path = os.path.join( args.output_dir, f"prompt_score_{category}_{num_api_epochs}.jsonl" ) metadata_file_path = os.path.join( args.output_dir, f"metadata_score_{category}_{num_api_epochs}.jsonl" ) response_file_path = os.path.join( args.output_dir, f"response_score_{category}_{num_api_epochs}.jsonl" ) if args.delete_old_responses: if os.path.exists(response_file_path): os.remove(response_file_path) failed_to_match = 0 all_prompts = [] for generation in cur_generations: category_prompt = "\n".join([c[category] for c in category_dataset]) # don't include the generation in the prompt for classification tasks if ( args.task_name in CLASSIFICATION_TASKS or not args.use_output_for_scoring ): prompt = ( header_prompt + scoring_prompt + f"\n Make sure to score all {len(category_dataset)} {category} \n" + f"{category}:\n{category_prompt}" ) else: prompt = ( header_prompt + scoring_prompt + f"\n Make sure to score all {len(category_dataset)} {category} \n" + f"{category}:\n{category_prompt} \n Output: {generation[args.generation_field]} \n" ) all_prompts.append( { "prompt": prompt, "generation": generation, "category_type": category, "id": generation["id"], } ) with open(prompt_file_path, "w") as f, open( metadata_file_path, "w" ) as metadata_f: for prompt in all_prompts: cur_input = prompt["generation"][args.input_field] formatted_request = { "model": "gpt-3.5-turbo-16k", "messages": [ {"role": "system", "content": system_prompt}, { "role": "user", "content": f"This is the input text: {cur_input} \n. This is the task instruction given to a language model: {task_instruction} \n", }, { "role": "user", "content": f"Please understand and note the above input and the task instruction.", }, {"role": "user", "content": prompt["prompt"]}, ], "temperature": args.temperature, "max_tokens": 1000, "top_p": args.top_p, "frequency_penalty": args.frequency_penalty, "presence_penalty": args.presence_penalty, } metadata = { "generation": prompt["generation"][args.generation_field], "id": prompt["id"], } f.write(json.dumps(formatted_request)) f.write("\n") metadata_f.write(json.dumps(metadata)) metadata_f.write("\n") request_url = "https://api.openai.com/v1/chat/completions" # Make API calls asyncio.run( process_api_requests_from_file( prompt_file_path, response_file_path, request_url, args.api_key, args.max_requests_per_minute, args.max_tokens_per_minute, "cl100k_base", args.max_attempts, args.logging_level, metadata_file_path, ) ) # process the responses and save them in the data directory error_generations = [] regex_template = r".*Score:\s*(?P<score>\d+)(?P<explanation>[\s|\S]*)" # for failed examples, refire the api call with open(response_file_path, "r") as f: api_responses = [json.loads(line) for line in f] for api_response in api_responses: metadata = api_response[2] api_response = api_response[1] if "error" in api_response or "choices" not in api_response: print("Failed to generate response") failed_to_match += 1 error_generations.append( generations[id_to_generation_index[metadata["id"]]] ) continue # parse the response with regex filtering response_text = api_response["choices"][0]["message"]["content"] response_scores = response_text.split("\n") # remove empty scores response_scores = [ s for s in response_scores if s and "score:" in s.lower() and "evidence" in s.lower() ] if len(response_scores) != len(category_dataset): print("Failed to match example: {}".format(response_text)) print( f"Number of scores {len(response_scores)} does not match number of category items {len(category_dataset)}" ) failed_to_match += 1 error_generations.append( generations[id_to_generation_index[metadata["id"]]] ) continue explanation = "" cur_example_scores = [] for ex_id, ex in enumerate(response_scores): match = re.match(regex_template, ex) if match and "score" in match.groupdict(): score = match.group("score").strip() if "explanation" in match.groupdict(): explanation = match.group("explanation").strip() else: print("Failed to match example: {}".format(response_text)) error_generations.append( generations[id_to_generation_index[metadata["id"]]] ) failed_to_match += 1 break output_example = { "generation": metadata["generation"], category: category_dataset[ex_id][category], "score": score, "id": metadata["id"], "explanation": explanation, } cur_example_scores.append(output_example) if len(cur_example_scores) == len(category_dataset): generated_samples.extend(cur_example_scores) cur_generations = error_generations num_api_epochs += 1 print("Failed to match {} examples".format(failed_to_match)) print("Retrying with {} examples".format(len(cur_generations))) print("Number of api epochs: {}".format(num_api_epochs)) print("Finished all epochs. Failed to match {} examples".format(failed_to_match)) # deal with the remaining examples assert len(cur_generations) == 0, "All examples could not be processed" output_df = pd.DataFrame.from_dict(generated_samples) return output_df # input json files and extract the generation_field # score the generation_field; def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_field", type=str, help="The key in input file for input text", ) parser.add_argument( "--generation_field", type=str, help="The key in input file for generations", ) parser.add_argument( "--generation_file", type=str, help="The generation file path, expecting a jsonl file", ) parser.add_argument( "--subtask_file", default="", type=str, help="The subtask file path, expecting a jsonl file", ) parser.add_argument( "--domain_file", default="", type=str, help="The domain file path, expecting a jsonl file", ) parser.add_argument( "--use_output_for_scoring", default=1, type=int, help="Whether to use the output for scoring", ) parser = add_args(parser) args = parser.parse_args() api_key = authenticate(args) args.api_key = api_key # load a jsonl file with open(args.generation_file, "r") as f: generations = [json.loads(line) for line in f] categories = ["subtask", "domain"] for category in categories: scoring_prompt = SCORING_PROMPTS[args.task_name][category] # load options for the category if category == "subtask": category_file = args.subtask_file elif category == "domain": category_file = args.domain_file # load category file jsonl with open(category_file, "r") as f: category_dataset = [json.loads(line) for line in f] score_df = score_generation( args, generations, category, category_dataset, scoring_prompt ) # store the scores in args.output_dir if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) output_score_file = os.path.join(args.output_dir, f"{category}_scores.csv") score_df.to_csv(output_score_file) if __name__ == "__main__": main()
[ ".*Score:\\s*(?P<score>\\d+)(?P<explanation>[\\s|\\S]*)", "\n", "Good Job, we will now present the output generation from the language model. \n", "\n Make sure to score all 1 PLACEHOLDER \n", "PLACEHOLDERPLACEHOLDER\n Make sure to score all 1 PLACEHOLDER \nPLACEHOLDER:\nPLACEHOLDER", "This is the input text: PLACEHOLDER \n. This is the task instruction given to a language model: PLACEHOLDER \n", "Please understand and note the above input and the task instruction.", "[]", "prompt_score_PLACEHOLDER_PLACEHOLDER.jsonl" ]
2024-01-10
16dprice/kanga_data_gathering
send_prompt.py
import openai openai.api_key = "MESSAGE DJ OR KATIE FOR THIS" def send_prompt(prompt, model, num_completions=1): completion = openai.Completion.create( model=model, prompt=prompt, max_tokens=40, temperature=0.9, frequency_penalty=1.5, presence_penalty=1.5, n=num_completions, stop=["\n"] ) return completion sample_prompt = """The following is a conversation between Robin and Ted. Ted has been angry lately and is upset about the cereal he has that is too sugary. Robin attempts to be compassionate and console Ted. Ted: This cereal is too sugary! I'm totally unsatisfied with it. Robin: I'm sorry Ted. Is there anything I can do about it? Ted: I wish you could just get me better cereal. This cereal is terrible. Robin:"""
[ "The following is a conversation between Robin and Ted. Ted has been angry lately and is upset about the cereal he has that is too sugary. Robin attempts to be compassionate and console Ted.\n\nTed: This cereal is too sugary! I'm totally unsatisfied with it.\nRobin: I'm sorry Ted. Is there anything I can do about it?\nTed: I wish you could just get me better cereal. This cereal is terrible.\nRobin:" ]
2024-01-10
amitlals/Azure-Cognitive-Search-Azure-OpenAI-Accelerator-BING-API
apps~frontend~pages~1_Search.py
import streamlit as st import urllib import os import re import time import random from collections import OrderedDict from openai.error import OpenAIError from langchain.docstore.document import Document from langchain.chat_models import AzureChatOpenAI from utils import ( get_search_results, order_search_results, model_tokens_limit, num_tokens_from_docs, embed_docs, search_docs, get_answer, ) st.set_page_config(page_title="GPT Smart Search", page_icon="📖", layout="wide") # Add custom CSS styles to adjust padding st.markdown(""" <style> .block-container { padding-top: 1rem; padding-bottom: 0rem; } </style> """, unsafe_allow_html=True) st.header("GPT Smart Search Engine") def clear_submit(): st.session_state["submit"] = False with st.sidebar: st.markdown("""# Instructions""") st.markdown(""" Ask a question that you think can be answered with the information in about 10k Arxiv Computer Science publications from 2020-2021 or in 52k Medical Covid-19 Publications from 2020. For example: - What are markov chains? - List the authors that talk about Boosting Algorithms - How does random forest work? - What kind of problems can I solve with reinforcement learning? Give me some real life examples - What kind of problems Turing Machines solve? - What are the main risk factors for Covid-19? - What medicine reduces inflammation in the lungs? - Why Covid doesn't affect kids that much compared to adults? \nYou will notice that the answers to these questions are diferent from the open ChatGPT, since these papers are the only possible context. This search engine does not look at the open internet to answer these questions. If the context doesn't contain information, the engine will respond: I don't know. """) coli1, coli2= st.columns([3,1]) with coli1: query = st.text_input("Ask a question to your enterprise data lake", value= "What is CLP?", on_change=clear_submit) with coli2: language= st.selectbox('Answer language',('English', 'Spanish', 'French', 'German', 'Portuguese', 'Italian'), index=0) # options = ['English', 'Spanish', 'Portuguese', 'French', 'Russian'] # selected_language = st.selectbox('Answer Language:', options, index=0) button = st.button('Search') if (not os.environ.get("AZURE_SEARCH_ENDPOINT")) or (os.environ.get("AZURE_SEARCH_ENDPOINT") == ""): st.error("Please set your AZURE_SEARCH_ENDPOINT on your Web App Settings") elif (not os.environ.get("AZURE_SEARCH_KEY")) or (os.environ.get("AZURE_SEARCH_KEY") == ""): st.error("Please set your AZURE_SEARCH_ENDPOINT on your Web App Settings") elif (not os.environ.get("AZURE_OPENAI_ENDPOINT")) or (os.environ.get("AZURE_OPENAI_ENDPOINT") == ""): st.error("Please set your AZURE_OPENAI_ENDPOINT on your Web App Settings") elif (not os.environ.get("AZURE_OPENAI_API_KEY")) or (os.environ.get("AZURE_OPENAI_API_KEY") == ""): st.error("Please set your AZURE_OPENAI_API_KEY on your Web App Settings") elif (not os.environ.get("DATASOURCE_SAS_TOKEN")) or (os.environ.get("DATASOURCE_SAS_TOKEN") == ""): st.error("Please set your DATASOURCE_SAS_TOKEN on your Web App Settings") else: os.environ["OPENAI_API_BASE"] = os.environ.get("AZURE_OPENAI_ENDPOINT") os.environ["OPENAI_API_KEY"] = os.environ.get("AZURE_OPENAI_API_KEY") os.environ["OPENAI_API_VERSION"] = os.environ["AZURE_OPENAI_API_VERSION"] os.environ["OPENAI_API_TYPE"] = "azure" MODEL = os.environ.get("AZURE_OPENAI_MODEL_NAME") llm = AzureChatOpenAI(deployment_name=MODEL, temperature=0, max_tokens=500) if button or st.session_state.get("submit"): if not query: st.error("Please enter a question!") else: # Azure Search try: index1_name = "cogsrch-index-files" index2_name = "cogsrch-index-csv" indexes = [index1_name, index2_name] agg_search_results = get_search_results(query, indexes) ordered_results = order_search_results(agg_search_results, reranker_threshold=1) st.session_state["submit"] = True # Output Columns placeholder = st.empty() except Exception as e: st.markdown("Not data returned from Azure Search, check connection..") st.markdown(e) if "ordered_results" in locals(): try: docs = [] for key,value in ordered_results.items(): for page in value["chunks"]: docs.append(Document(page_content=page, metadata={"source": value["location"]})) add_text = "Reading the source documents to provide the best answer... ⏳" if "add_text" in locals(): with st.spinner(add_text): if(len(docs)>0): tokens_limit = model_tokens_limit(MODEL) num_tokens = num_tokens_from_docs(docs) if num_tokens > tokens_limit: index = embed_docs(docs) top_docs = search_docs(index,query) num_tokens = num_tokens_from_docs(top_docs) chain_type = "map_reduce" if num_tokens > tokens_limit else "stuff" else: top_docs = docs chain_type = "stuff" answer = get_answer(llm=llm, docs=top_docs, query=query, language=language, chain_type=chain_type) else: answer = {"output_text":"No results found" } else: answer = {"output_text":"No results found" } with placeholder.container(): st.markdown("#### Answer") split_word = "Source" split_regex = re.compile(f"{split_word}s:?\\W*", re.IGNORECASE) answer_text = split_regex.split(answer["output_text"])[0] st.markdown(answer_text) try: sources_list = split_regex.split(answer["output_text"])[1].replace(" ","").split(",") #sources_list = answer["output_text"].split("SOURCES:")[1].replace(" ","").split(",") sources_markdown = "Sources: " for index, value in enumerate(sources_list): sources_markdown += "[[" + str(index+1) + "]](" + value + os.environ.get("DATASOURCE_SAS_TOKEN") + ")" st.markdown(sources_markdown) except Exception as e: st.markdown("Sources: N/A") st.markdown("---") st.markdown("#### Search Results") if(len(docs)>0): for key, value in ordered_results.items(): url = value['location'] + os.environ.get("DATASOURCE_SAS_TOKEN") title = str(value['title']) if (value['title']) else value['name'] score = str(round(value['score']*100/4,2)) st.markdown("[" + title + "](" + url + ")" + " (Score: " + score + "%)") st.markdown(value["caption"]) st.markdown("---") except OpenAIError as e: st.error(e)
[]
2024-01-10
mosaicml/llm-foundry
llmfoundry~models~inference_api_wrapper~openai_causal_lm.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 """Implements a OpenAI chat and causal LM inference API wrappers.""" import logging import os import random from time import sleep from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union import torch from composer.core.types import Batch from composer.utils.import_helpers import MissingConditionalImportError from transformers import AutoTokenizer log = logging.getLogger(__name__) from llmfoundry.models.inference_api_wrapper.interface import \ InferenceAPIEvalWrapper __all__ = [ 'OpenAICausalLMEvalWrapper', 'OpenAIChatAPIEvalWrapper', ] if TYPE_CHECKING: from openai.types.chat.chat_completion import ChatCompletion from openai.types.completion import Completion from openai.types.completion_choice import Logprobs MAX_RETRIES = 10 class OpenAIEvalInterface(InferenceAPIEvalWrapper): def __init__(self, model_cfg: Dict, tokenizer: AutoTokenizer) -> None: super().__init__(model_cfg, tokenizer) assert os.getenv( 'OPENAI_API_KEY' ) is not None, 'No OpenAI API Key found. Ensure it is saved as an environmental variable called OPENAI_API_KEY.' try: import openai except ImportError as e: raise MissingConditionalImportError( extra_deps_group='openai', conda_package='openai', conda_channel='conda-forge') from e self.client = openai.OpenAI() self.model_name = model_cfg['version'] def generate_completion(self, prompt: str, num_tokens: int): raise NotImplementedError() def process_result(self, completion): # pyright: ignore raise NotImplementedError() def get_next_token_logit_tensor(self, prompt: str, num_tokens: int = 1): completion = self.try_generate_completion(prompt, num_tokens) return self.process_result(completion) def try_generate_completion(self, prompt: str, num_tokens: int): try: from openai import APITimeoutError, RateLimitError except ImportError as e: raise MissingConditionalImportError( extra_deps_group='openai', conda_package='openai', conda_channel='conda-forge') from e tries = 0 completion = None delay = 1 while tries < MAX_RETRIES: tries += 1 try: completion = self.generate_completion(prompt, num_tokens) break except RateLimitError as e: if 'You exceeded your current quota' in str( e._message): # pyright: ignore raise e delay *= 2 * (1 + random.random()) sleep(delay) continue except APITimeoutError as e: delay *= 2 * (1 + random.random()) sleep(delay) continue return completion class OpenAIChatAPIEvalWrapper(OpenAIEvalInterface): def __init__(self, model_cfg: Dict, tokenizer: AutoTokenizer) -> None: super().__init__(model_cfg, tokenizer) self.generate_completion = lambda prompt, num_tokens: self.client.chat.completions.create( model=self.model_name, messages=[{ 'role': 'system', 'content': model_cfg.get('system_role_prompt', 'Please complete the following text: ') }, { 'role': 'user', 'content': prompt }], max_tokens=num_tokens, temperature=0.0) def retokenize(self, tokens: List[int], cont_idxs: List[int]): """Chat API will never respond with a word-initial space. If the continuation tokens begin with a word initial space, we need to re-tokenize with the space removed. """ original_len = len(tokens) retokenized_continuation = self.tokenizer( self.tokenizer.decode(tokens[cont_idxs[0]:cont_idxs[-1] + 1]).strip())['input_ids'] # replace the original continuation with the retokenized continuation + padding padding = [tokens[-1]] * ( len(tokens) - len(tokens[:cont_idxs[0]] + retokenized_continuation)) tokens = tokens[:cont_idxs[0]] + retokenized_continuation + padding if len(tokens) > original_len: # this only happens if we were already at max seq len and the continuation got LARGER tokens = tokens[-original_len:] cont_idxs = list( range(original_len - len(retokenized_continuation), original_len)) else: cont_idxs = list( range(cont_idxs[0], cont_idxs[0] + len(retokenized_continuation))) return torch.tensor(tokens), torch.tensor(cont_idxs) def rebatch(self, batch: Batch): """Chat API tokenization has different behavior than GPT3. Model responses will never begin with spaces even if the continuation is expected to, so we need to retokenize the input to account for that. """ new_batch: Dict[str, Union[List[torch.Tensor], torch.Tensor]] = { 'input_ids': [], 'continuation_indices': [], 'labels': [] } for tokens, cont_idxs in zip(batch['input_ids'], batch['continuation_indices']): tokens, cont_idxs = self.retokenize(tokens.tolist(), cont_idxs.tolist()) assert isinstance(new_batch['input_ids'], list) new_batch['input_ids'].append(tokens) assert isinstance(new_batch['labels'], list) new_batch['labels'].append(tokens) assert isinstance(new_batch['continuation_indices'], list) new_batch['continuation_indices'].append(cont_idxs) new_batch.update({ k: torch.stack(new_batch[k]) # pyright: ignore for k in ['input_ids', 'labels'] }) new_batch.update({k: v for k, v in batch.items() if k not in new_batch}) return new_batch def eval_forward(self, batch: Batch, outputs: Optional[Any] = None): # Override the base class because Chat's API always strips spacing from model outputs resulting in different tokens # than what the continuation would expect. # Get around this issue by retokenizing the batch to remove spacing from the continuation as well as # decoding the whole continuation at once. padding_tok = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id else self.tokenizer.eos_token_id output_logits_batch = [] batch = self.rebatch(batch) for tokens, cont_idxs in zip(batch['input_ids'], batch['continuation_indices']): seqlen = tokens.shape[0] tokens = tokens.tolist() cont_idxs = cont_idxs.tolist() expected_cont_tokens = tokens[cont_idxs[0]:cont_idxs[-1] + 1] output_logits = torch.nn.functional.one_hot( torch.tensor(tokens[1:cont_idxs[0]]), num_classes=self.tokenizer.vocab_size) prompt = self.tokenizer.decode(tokens[:cont_idxs[0]]) next_logit_tensor = self.get_next_token_logit_tensor( prompt, num_tokens=len(expected_cont_tokens)) if next_logit_tensor is not None: output_logits = torch.cat([output_logits, next_logit_tensor]) padding = torch.nn.functional.one_hot( torch.full((seqlen - output_logits.shape[0],), padding_tok), num_classes=self.tokenizer.vocab_size) output_logits = torch.cat([output_logits, padding]) output_logits_batch.append(output_logits) return torch.stack(output_logits_batch).to(batch['input_ids'].device) def process_result(self, completion: Optional['ChatCompletion']): if completion is None: raise ValueError("Couldn't generate model output") if len(completion.choices) > 0: tensors = [] for t in self.tokenizer( completion.choices[0].message.content)['input_ids']: tensors.append( self.tokenizer.construct_logit_tensor( {self.tokenizer.decode([t]): 0.0})) if len(tensors) == 0: return None return torch.stack(tensors) else: # the model sometimes stops early even though we are still requesting tokens! # not sure if there's a fix return None class OpenAICausalLMEvalWrapper(OpenAIEvalInterface): def __init__(self, model_cfg: Dict, tokenizer: AutoTokenizer) -> None: super().__init__(model_cfg, tokenizer) # TODO: this will be deprecated self.generate_completion = lambda prompt, num_tokens: self.client.completions.create( model=self.model_name, prompt=prompt, max_tokens=num_tokens, logprobs=5, temperature=0.0) def process_result(self, completion: Optional['Completion']): if completion is None: raise ValueError("Couldn't generate model output") if TYPE_CHECKING: assert isinstance(completion, Completion) assert isinstance(completion.choices[0].logprobs, Logprobs) assert isinstance(completion.choices[0].logprobs.top_logprobs, list) if len(completion.choices[0].logprobs.top_logprobs[0]) > 0: tensor = self.tokenizer.construct_logit_tensor( dict(completion.choices[0].logprobs.top_logprobs[0])) return tensor else: # the model sometimes stops early even though we are still requesting tokens! # not sure if there's a fix return None
[ "system_role_prompt", "Please complete the following text: " ]
2024-01-10
BruceChar/rust-exercise
poker~.chat~workflows~auto_command~action~ask_codebase~handler.py
import os import re import sys import json import tempfile import uuid from chat.ask_codebase.store.qdrant import QdrantWrapper as Q, get_client from chat.ask_codebase.indexing.embedding import EmbeddingWrapper as E from langchain.embeddings import HuggingFaceEmbeddings from chat.ask_codebase.indexing.loader.file import ( FileLoader, FileSource, gen_local_reference_maker, ) from chat.util.misc import is_source_code from chat.ask_codebase.chains.simple_qa import SimpleQA from chat.ask_codebase.chains.stuff_dc_qa import StuffDocumentCodeQa def get_app_data_dir(app_name): home = os.path.expanduser("~") if os.name == "nt": # For Windows appPath = os.path.join(home, "AppData", "Roaming", app_name) else: # For Unix and Linux appPath = os.path.join(home, ".local", "share", app_name) if not os.path.exists(appPath): os.makedirs(appPath) return appPath supportedFileTypes = [] STORAGE_FILE = os.path.join(get_app_data_dir("devchat"), "qdrant_storage2") SOURCE_NAME = "" def query(question: str): try: client = get_client(mode=STORAGE_FILE) q = Q.reuse( source_name=SOURCE_NAME, embedding_cls=HuggingFaceEmbeddings, client=client, ) chain = StuffDocumentCodeQa(q) _, docs = chain.run(question) for d in docs: print(d.metadata.get('filepath')) print(d.page_content) sys.exit(0) except Exception as e: print(e) sys.exit(1) if __name__ == "__main__": try: if os.path.exists(".chat/askcode.json"): with open(".chat/askcode.json", "r") as f: askcode_data = json.load(f) SOURCE_NAME = askcode_data.get("SOURCE_NAME", str(uuid.uuid4())) else: SOURCE_NAME = str(uuid.uuid4()) with open(".chat/askcode.json", "w+") as f: json.dump({"SOURCE_NAME": SOURCE_NAME}, f) query(sys.argv[1]) sys.exit(0) except Exception as e: print(e) sys.exit(1)
[]
2024-01-10
UCDAyoung/poetUsingOpenAI
sample01.py
# GPT시인 # ver 0.9 import openai import streamlit as st #기본적으로 설정해야하는 부분 openai.api_key = '8a8e7d4d1700468f9bcafc6f48a89216' openai.api_base = 'https://helloairad.openai.azure.com/' openai.api_type = 'azure' openai.api_version = '2023-05-15' st.header('# welcome to ChatGPT',divider = 'rainbow') st.write() name = st.text_input('작가명을 입력하세요') st.write(name+'## 작가님 안녕하세요') subject = st.text_input('시의 주제를 입력하세요') st.write(subject) content = st.text_input('추가로 하고 싶은 이야기를 입력하세요') st.write(content) button_click = st.button('시 생성') if(button_click): with st.spinner('Wait for it....'): result =openai.ChatCompletion.create( engine='devmodel', messages=[ {'role':'system','content':'You are a helpful assistant'}, {'role':'user','content':'작가의 이름은 홍길동' + name}, {'role':'user','content':'시의 주제는 코딩'+subject }, {'role':'user','content':content}, {'role':'user','content':'위의 내용으로 시를 생성해줘'} ] ) st.divider() st.write('# Result') st.write(result.choices[0].message.content) print(result)
[ "작가의 이름은 홍길동PLACEHOLDER", "You are a helpful assistant", "위의 내용으로 시를 생성해줘", "시의 주제는 코딩PLACEHOLDER" ]
2024-01-10
michaelfdickey/OpenAI-API-with-Python-Bootcamp
openai_api~02-12_model-completions.py
import openai import os import getpass key = getpass.getpass(prompt='Enter your OpenAI API key: ') openai.api_key = key openai.api_key = '' #prompt = input('Enter your text: ') prompt = 'give me a motto for a futuristic motorcycle company' # roles => system, user, assistant messages = [ {'role': 'system', 'content':'you are a good and smart assistant'}, {'role': 'user', 'content':prompt}, ] response = openai.ChatCompletion.create( model = 'gpt-3.5-turbo', messages = messages, temperature = 1, top_p = 0.8, max_tokens = 1000, n = 2 ) print(response['choices'][0]['message']['content']) print(response['choices'][1]['message']['content'])
[ "you are a good and smart assistant", "give me a motto for a futuristic motorcycle company" ]
2024-01-10
michaelfdickey/OpenAI-API-with-Python-Bootcamp
openai_api~02-09_making-chatGPT-requests.py
import openai import os import getpass key = getpass.getpass(prompt='Enter your OpenAI API key: ') openai.api_key = key # prompt user to enter their text #prompt = input('Enter your text: ') #print('prompt is: ', repr(prompt)) prompt = 'tell me the name of the largest city in the world' # roles => system, user, assistant messages = [ {'role': 'system', 'content':'Answer as detailed as possible, also while rhyming as much as possible.'}, {'role': 'user', 'content':prompt}, ] response = openai.ChatCompletion.create( model = 'gpt-3.5-turbo', messages = messages, temperature = 0.8, max_tokens = 1000 ) """ #openai.Completion.create() # will take some paramaters and return a response object response = openai.Completion.create( model='text-davinci-003', prompt=prompt, temperature=0.8, # controls the randomness of the output, the higher the temp the more random. 0-2 default is 1. 0 is deterministic max_tokens=1000 # max generated for completion, 4096 is the max, input and output count to this limit ) """ #print(response) print(response['choices'][0]['message']['content'])
[ "Answer as detailed as possible, also while rhyming as much as possible.", "tell me the name of the largest city in the world" ]
2024-01-10
michaelfdickey/OpenAI-API-with-Python-Bootcamp
openai_api~02_06-installing_and_authenticating.py
import openai import os import getpass key = getpass.getpass(prompt='Enter your OpenAI API key: ') openai.api_key = key # prompt user to enter their text prompt = input('Enter your text: ') print('prompt is: ', repr(prompt)) #openai.Completion.create() # will take some paramaters and return a response object response = openai.Completion.create( model='text-davinci-003', prompt=prompt, temperature=0.8, # controls the randomness of the output, the higher the temp the more random. 0-2 default is 1. 0 is deterministic max_tokens=1000 # max generated for completion, 4096 is the max, input and output count to this limit ) #print(response) print(response['choices'][0]['text'])
[ "Enter your text: " ]
2024-01-10
123-code/Python-Experiments
EntityExtraction.py
from langchain.chat_models import ChatOpenAI from langchain.chains import create_tagging_chain, create_tagging_chain_pydantic from langchain.prompts import ChatPromptTemplate import os from neo4j import GraphDatabase import glob from pydantic import BaseModel openai_api_key=os.getenv("OPENAI_API_KEY") schema = { "properties":{ "skills":{"type":"string"}, } } llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") chain = create_tagging_chain(schema, llm) def extract_entities(folder): files = glob.glob(f'data/{folder}/*') system_msg = "You are a helpful IT-project and account management expert who extracts information from documents." print(len(files)) results = [] for file in files: with open(file) as f: text = f.read() result = chain.run(text) results.append(result) return results print(extract_entities('people_profiles'))
[]
2024-01-10
mivanovitch/superagent
app~lib~vectorstores~pinecone.py
import pinecone from decouple import config from langchain.vectorstores.pinecone import Pinecone pinecone.init( api_key=config("PINECONE_API_KEY"), # find at app.pinecone.io environment=config("PINECONE_ENVIRONMENT"), # next to api key in console ) pinecone.Index("superagent") class PineconeVectorstore: def __init__(self): pass def from_documents(self, docs, embeddings, index_name, namespace): Pinecone.from_documents( docs, embeddings, index_name="superagent", namespace=namespace ) def from_existing_index(self, embeddings, namespace): return Pinecone.from_existing_index( "superagent", embedding=embeddings, namespace=namespace )
[]
2024-01-10
safeisrisky/nlp-tasks-demo
apps~2_nlp_spacy.py
import streamlit as st import pandas as pd import openai import json import utils from utils import get_message from utils import get_system_prompt, get_companies_prompt, get_non_companies_prompt import spacy_streamlit as ss import spacy if not utils.check_password(): st.stop() nlp_tasks_menu = [ "Tokenization", "Word2Vec", "Named Entity Recognition", "Dependency Parser and POS", "Similarity", ] nlp_models_menu = ["en_core_web_sm", "en_core_web_md", "en_core_web_lg"] @st.cache_resource def get_nlp_model(model_type): "Loading NLP Model" nlp = spacy.load(model_type) return nlp def main(): if "nlp_model" not in st.session_state: st.session_state.nlp_model = "en_core_web_sm" if "rawtext" not in st.session_state: st.session_state.rawtext = None model_choice = st.sidebar.selectbox("NLP Model", nlp_models_menu) st.session_state.nlp_model = model_choice nlp = get_nlp_model(st.session_state.nlp_model) choice = st.sidebar.selectbox("Menu", nlp_tasks_menu) if choice == "Tokenization": st.subheader("Tokenization") input_tok = st.text_area("Enter Text", value=st.session_state.rawtext) st.session_state.rawtext = input_tok tok_button = st.button("Tokenize") if st.session_state.rawtext: docx = nlp(st.session_state.rawtext) ss.visualize_tokens(docx) elif choice == "Named Entity Recognition": st.subheader("Named Entity Recognition") input_ner = st.text_area("Enter Text", value=st.session_state.rawtext) st.session_state.rawtext = input_ner ner_button = st.button("NER") if st.session_state.rawtext: docx = nlp(st.session_state.rawtext) ss.visualize_ner(docx) elif choice == "Dependency Parser and POS": st.subheader("Dependency Parser and POS Tagging") input_dep = st.text_area("Enter Text", value=st.session_state.rawtext) st.session_state.rawtext = input_dep dep_button = st.button("Go") if st.session_state.rawtext: docx = nlp(st.session_state.rawtext) ss.visualize_parser(docx) elif choice == "Similarity": text1 = "The Company went bankrupt" text2 = "The company was involved in a financial scandal" ss.visualize_similarity(nlp, (text1, text2)) elif choice == "Word2Vec": word_vec_input = st.text_input("Enter a word or phrase") tokens = nlp(word_vec_input) for token in tokens: st.write("Token:", token.text, "Vector Shape:", token.vector.shape) st.write(pd.DataFrame(token.vector)) main()
[]
2024-01-10
safeisrisky/nlp-tasks-demo
apps~1_nlp_llm.py
import streamlit as st import pandas as pd import openai import json import utils from utils import get_message from utils import get_system_prompt, get_companies_prompt, get_non_companies_prompt if not utils.check_password(): st.stop() st.title("NLP Tasks using LLM") if "jsonresp" not in st.session_state: st.session_state.jsonresp = None openai.api_key = st.secrets["OPENAI_API_KEY"] app_password = st.secrets["APP_PASSWORD"] client = openai.OpenAI() openai_model = "gpt-4-1106-preview" if "openai_model" not in st.session_state: st.session_state["openai_model"] = openai_model if "messages" not in st.session_state: st.session_state.messages = [] system_prompt = get_system_prompt() st.session_state.messages.append(get_message("system", system_prompt)) companies_prompt = get_companies_prompt() st.session_state.messages.append(get_message("user", companies_prompt)) for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) if prompt := st.chat_input("Please enter"): st.chat_message("user").markdown(prompt) st.session_state.messages.append(get_message("user", prompt)) with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" stream = client.chat.completions.create( model=st.session_state["openai_model"], response_format={"type": "json_object"}, messages=st.session_state.messages, stream=True, ) for response in stream: full_response += response.choices[0].delta.content or "" message_placeholder.write(full_response + "▌") try: json_resp = json.loads(full_response)["data"] message_placeholder.json(json_resp) st.session_state.jsonresp = json_resp except: message_placeholder.write(full_response) st.session_state.jsonresp = full_response st.session_state.messages.append(get_message("assistant", full_response)) with st.expander("LLM Results"): if st.session_state.jsonresp is not None: try: st.dataframe(pd.DataFrame(st.session_state.jsonresp)) except: st.write(st.session_state.jsonresp)
[]
2024-01-10
implementation-matters/code-for-paper
src~policy_gradients~torch_utils.py
import torch as ch from torch.distributions.categorical import Categorical import numpy as np ''' Common functions/utilities implemented in PyTorch Sorted into categories: - General functions - Actor-critic helpers - Policy gradient (PPO/TRPO) helpers - Normalization helpers - Neural network helpers - Initialization helpers ''' ######################## ### GENERAL UTILITY FUNCTIONS: # Parameters, unroll, cu_tensorize, cpu_tensorize, shape_equal_cmp, # shape_equal, scat, determinant, safe_op_or_neg_one ######################## CKPTS_TABLE = 'checkpoints' class Parameters(): ''' Parameters class, just a nice way of accessing a dictionary > ps = Parameters({"a": 1, "b": 3}) > ps.A # returns 1 > ps.B # returns 3 ''' def __init__(self, params): self.params = params def __getattr__(self, x): return self.params[x.lower()] def unroll(*tensors): ''' Utility function unrolling a list of tensors Inputs: - tensors; all arguments should be tensors (at least 2D)))) Returns: - The same tensors but with the first two dimensions flattened ''' rets = [] for t in tensors: assert len(t.shape) >= 2 new_shape = [t.shape[0]*t.shape[1]] + list(t.shape[2:]) rets.append(t.contiguous().view(new_shape)) return rets def cu_tensorize(t): ''' Utility function for turning arrays into cuda tensors Inputs: - t, list Returns: - Tensor version of t ''' return ch.tensor(t).float().cuda() def cpu_tensorize(t): ''' Utility function for turning arrays into cpu tensors Inputs: - t, list Returns: - Tensor version of t ''' return ch.tensor(t).float() def gpu_mapper(): return ch.device('cuda:0') if not cpu else ch.device('cpu') def shape_equal_cmp(*args): ''' Checks that the shapes of the passed arguments are equal Inputs: - All arguments should be tensors Returns: - True if all arguments have the same shape, else ValueError ''' for i in range(len(args)-1): if args[i].shape != args[i+1].shape: s = "\n".join([str(x.shape) for x in args]) raise ValueError("Expected equal shapes. Got:\n%s" % s) return True def shape_equal(a, *args): ''' Checks that a group of tensors has a required shape Inputs: - a, required shape for all the tensors - Rest of the arguments are tensors Returns: - True if all tensors are of shape a, otherwise ValueError ''' for arg in args: if list(arg.shape) != list(a): if len(arg.shape) != len(a): raise ValueError("Expected shape: %s, Got shape %s" \ % (str(a), str(arg.shape))) for i in range(len(arg.shape)): if a[i] == -1 or a[i] == arg.shape[i]: continue raise ValueError("Expected shape: %s, Got shape %s" \ % (str(a), str(arg.shape))) return shape_equal_cmp(*args) def scat(a, b, axis): ''' Set-or-Cat (scat) Circumventing a PyTorch bug that auto-squeezes empty tensors. Inputs: a - A torch tensor, or None b - A torch tensor, can not be None axis - Axis to concat with Returns: - b if a is None, otherwise b concatted to a ''' if a is None: return b return ch.cat((a, b), axis) def determinant(mat): ''' Returns the determinant of a diagonal matrix Inputs: - mat, a diagonal matrix Returns: - The determinant of mat, aka product of the diagonal ''' return ch.exp(ch.log(mat).sum()) def safe_op_or_neg_one(maybe_empty, op): ''' Performs an operation on a tensor which may be empty. Returns -1 if the tensor is empty, and returns the result of the op otherwise. Inputs: - maybe_empty, tensor which may be empty - op, an operation (tensor) -> (object) to perform Returns: - -1 if tensor is empty otherwise op(maybe_empty) ''' if maybe_empty.nelement() == 0: return -1. else: return op(maybe_empty) ######################## ### ACTOR-CRITIC HELPERS: # discount_path, get_path_indices, select_prob_dists ######################## # Can be used to convert rewards into discounted returns: # ret[i] = sum of t = i to T of gamma^(t-i) * rew[t] def discount_path(path, h): ''' Given a "path" of items x_1, x_2, ... x_n, return the discounted path, i.e. X_1 = x_1 + h*x_2 + h^2 x_3 + h^3 x_4 X_2 = x_2 + h*x_3 + h^2 x_4 + h^3 x_5 etc. Can do (more efficiently?) w SciPy. Python here for readability Inputs: - path, list/tensor of floats - h, discount rate Outputs: - Discounted path, as above ''' curr = 0 rets = [] for i in range(len(path)): curr = curr*h + path[-1-i] rets.append(curr) rets = ch.stack(list(reversed(rets)), 0) return rets def get_path_indices(not_dones): """ Returns list of tuples of the form: (agent index, time index start, time index end + 1) For each path seen in the not_dones array of shape (# agents, # time steps) E.g. if we have an not_dones of composition: tensor([[1, 1, 0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 0, 1, 1, 0, 1, 1, 0, 1]], dtype=torch.uint8) Then we would return: [(0, 0, 3), (0, 3, 10), (1, 0, 3), (1, 3, 5), (1, 5, 9), (1, 9, 10)] """ indices = [] num_timesteps = not_dones.shape[1] for actor in range(not_dones.shape[0]): last_index = 0 for i in range(num_timesteps): if not_dones[actor, i] == 0.: indices.append((actor, last_index, i + 1)) last_index = i + 1 if last_index != num_timesteps: indices.append((actor, last_index, num_timesteps)) return indices def select_prob_dists(pds, selected=None, detach=True): ''' Given a tensor/tuple probability distributions, and some indices, select a subset of the distributions `pds`s according to the indices `selected`. Inputs: - pds: list of propo ''' if type(pds) is tuple: if selected is not None: tup = (pds[0][selected], pds[1]) else: tup = pds return tuple(x.detach() if detach else x for x in tup) out = pds[selected] if selected is not None else pds return out.detach() if detach else out ######################## ### POLICY GRADIENT HELPERS: # vjp, jvp, cg_solve, backtracking_line_search ######################## def vjp(f_x, theta, v, create=True): ''' Vector-jacobian product Calculates v^TJ, or J^T v, using standard backprop Input: - f_x, function of which we want the Jacobian - theta, variable with respect to which we want Jacobian - v, vector that we want multiplied by the Jacobian Returns: - J^T @ v, without using n^2 space ''' grad_list = ch.autograd.grad(f_x, theta, v, retain_graph=True, create_graph=create) return ch.nn.utils.parameters_to_vector(grad_list) def jvp(f_x, theta, v): ''' Jacobian-vector product Calculate the Jacobian-vector product, see https://j-towns.github.io/2017/06/12/A-new-trick.html for math Input: - f_x, function of which we want the Jacobian - theta, variable with respect to which we want Jacobian - v, vector that we want multiplied by the Jacobian Returns: - J @ v, without using n^2 space ''' w = ch.ones_like(f_x, requires_grad=True) JTw = vjp(f_x, theta, w) return vjp(JTw, w, v) def cg_solve(fvp_func, b, nsteps): ''' Conjugate Gradients Algorithm Solves Hx = b, where H is the Fisher matrix and b is known Input: - fvp_func, a callable function returning Fisher-vector product - b, the RHS of the above - nsteps, the number of steps on CG to take Returns: - An approximate solution x of Hx = b ''' # Initialize the solution, residual, direction vectors x = ch.zeros(b.size()) r = b.clone() p = b.clone() new_rnorm = ch.dot(r,r) for _ in range(nsteps): rnorm = new_rnorm fvp = fvp_func(p) alpha = rnorm / ch.dot(p, fvp) x += alpha * p r -= alpha * fvp new_rnorm = ch.dot(r, r) ratio = new_rnorm / rnorm p = r + ratio * p return x def backtracking_line_search(f, x, expected_improve_rate, num_tries=10, accept_ratio=.1): ''' Backtracking Line Search Inputs: - f, function for improvement of the objective - x, biggest step to try (successively halved) - num_tries, number of times to try halving x before giving up - accept_ratio, how much of the expected improve rate we have to improve by ''' # f gives improvement for i in range(num_tries): scaling = 2**(-i) scaled = x * scaling improve = f(scaled) expected_improve = expected_improve_rate * scaling if improve/expected_improve > accept_ratio and improve > 0: print("We good! %f" % (scaling,)) return scaled return 0. ######################## ### NORMALIZATION HELPERS: # RunningStat, ZFilter, StateWithTime ######################## class RunningStat(object): ''' Keeps track of first and second moments (mean and variance) of a streaming time series. Taken from https://github.com/joschu/modular_rl Math in http://www.johndcook.com/blog/standard_deviation/ ''' def __init__(self, shape): self._n = 0 self._M = np.zeros(shape) self._S = np.zeros(shape) def push(self, x): x = np.asarray(x) assert x.shape == self._M.shape self._n += 1 if self._n == 1: self._M[...] = x else: oldM = self._M.copy() self._M[...] = oldM + (x - oldM) / self._n self._S[...] = self._S + (x - oldM) * (x - self._M) @property def n(self): return self._n @property def mean(self): return self._M @property def var(self): return self._S / (self._n - 1) if self._n > 1 else np.square(self._M) @property def std(self): return np.sqrt(self.var) @property def shape(self): return self._M.shape class Identity: ''' A convenience class which simply implements __call__ as the identity function ''' def __call__(self, x, *args, **kwargs): return x def reset(self): pass class RewardFilter: """ Incorrect reward normalization [copied from OAI code] update return divide reward by std(return) without subtracting and adding back mean """ def __init__(self, prev_filter, shape, gamma, clip=None): assert shape is not None self.gamma = gamma self.prev_filter = prev_filter self.rs = RunningStat(shape) self.ret = np.zeros(shape) self.clip = clip def __call__(self, x, **kwargs): x = self.prev_filter(x, **kwargs) self.ret = self.ret * self.gamma + x self.rs.push(self.ret) x = x / (self.rs.std + 1e-8) if self.clip: x = np.clip(x, -self.clip, self.clip) return x def reset(self): self.ret = np.zeros_like(self.ret) self.prev_filter.reset() class ZFilter: """ y = (x-mean)/std using running estimates of mean,std """ def __init__(self, prev_filter, shape, center=True, scale=True, clip=None): assert shape is not None self.center = center self.scale = scale self.clip = clip self.rs = RunningStat(shape) self.prev_filter = prev_filter def __call__(self, x, **kwargs): x = self.prev_filter(x, **kwargs) self.rs.push(x) if self.center: x = x - self.rs.mean if self.scale: if self.center: x = x / (self.rs.std + 1e-8) else: diff = x - self.rs.mean diff = diff/(self.rs.std + 1e-8) x = diff + self.rs.mean if self.clip: x = np.clip(x, -self.clip, self.clip) return x def reset(self): self.prev_filter.reset() class StateWithTime: ''' Keeps track of the time t in an environment, and adds t/T as a dimension to the state, where T is the time horizon, given at initialization. ''' def __init__(self, prev_filter, horizon): self.counter = 0 self.horizon = horizon self.prev_filter = prev_filter def __call__(self, x, reset=False, count=True, **kwargs): x = self.prev_filter(x, **kwargs) self.counter += 1 if count else 0 self.counter = 0 if reset else self.counter return np.array(list(x) + [self.counter/self.horizon,]) def reset(self): self.prev_filter.reset() # TODO: redo this in a not fucked way (ie using python language features) class Trajectories: def __init__(self, states=None, rewards=None, returns=None, not_dones=None, actions=None, action_log_probs=None, advantages=None, unrolled=False, values=None): self.states = states self.rewards = rewards self.returns = returns self.values = values self.not_dones = not_dones self.actions = actions self.action_log_probs = action_log_probs self.advantages = advantages self.unrolled = unrolled # this is disgusting and we should fix it if states is not None: num_saps = states.shape[0] assert states is None or states.shape[0] == num_saps assert rewards is None or rewards.shape[0] == num_saps assert returns is None or returns.shape[0] == num_saps assert values is None or values.shape[0] == num_saps assert not_dones is None or not_dones.shape[0] == num_saps assert actions is None or actions.shape[0] == num_saps assert action_log_probs is None or action_log_probs.shape[0] == num_saps assert advantages is None or advantages.shape[0] == num_saps self.size = num_saps def unroll(self): assert not self.unrolled return self.tensor_op(unroll, should_wrap=False) def tensor_op(self, lam, should_wrap=True): if should_wrap: def op(*args): return [lam(v) for v in args] else: op = lam tt = op(self.states, self.rewards, self.returns, self.not_dones) tt2 = op(self.actions, self.action_log_probs, self.advantages) values, = op(self.values) ts = Trajectories(states=tt[0], rewards=tt[1], returns=tt[2], not_dones=tt[3], actions=tt2[0], action_log_probs=tt2[1], advantages=tt2[2], values=values, unrolled=True) return ts ######################## ### NEURAL NETWORK HELPERS: # orthogonal_init ######################## def orthogonal_init(tensor, gain=1): ''' Fills the input `Tensor` using the orthogonal initialization scheme from OpenAI Args: tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2` gain: optional scaling factor Examples: >>> w = torch.empty(3, 5) >>> orthogonal_init(w) ''' if tensor.ndimension() < 2: raise ValueError("Only tensors with 2 or more dimensions are supported") rows = tensor.size(0) cols = tensor[0].numel() flattened = tensor.new(rows, cols).normal_(0, 1) if rows < cols: flattened.t_() # Compute the qr factorization u, s, v = ch.svd(flattened, some=True) if rows < cols: u.t_() q = u if tuple(u.shape) == (rows, cols) else v with ch.no_grad(): tensor.view_as(q).copy_(q) tensor.mul_(gain) return tensor
[]
2024-01-10
jmichaux/gym-robotics
gym_robotics~envs~base_env.py
""" Adopted from OpenAI gym https://github.com/openai/gym/blob/master/gym/envs/robotics/robot_env.py """ import numpy as np import gym from gym import error, spaces from gym.utils import seeding class BaseEnv(gym.GoalEnv): def __init__(self, n_actions, discrete_actions, n_substeps): self.seed() self.goal = self._sample_goal() self.discrete_actions = discrete_actions self.action_space = self._set_action_space(n_actions) self.observation_space = self._set_observation_space() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): if self.discrete_actions: pass else: action = np.clip(action, self.action_space.low, self.action_space.high) self._apply_action(action) obs = self._get_obs() done = False info = { 'is_success': self._is_success(obs['achieved_goal'], self.goal) } reward = self.compute_reward(obs['achieved_goal'], self.goal, info) return obs, reward, done, info def reset(self): """Resets the environment """ raise NotImplementedError() def initial_setup(self): """Initial environment setup """ raise NotImplementedError() def _get_obs(self): """Returns the observation. """ raise NotImplementedError() def _set_observation_space(self): """Returns the observation space """ raise NotImplementedError() def _set_action_space(self): """Returns the action space """ raise NotImplementedError() def _apply_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _is_success(self, achieved_goal, desired_goal): """Indicates whether or not the achieved goal successfully achieved the desired goal. """ raise NotImplementedError() def _sample_goal(self): """Samples a new goal and returns it. """ raise NotImplementedError() def _env_setup(self, sim, arm, initial_pose): """Initial configuration of the environment. Can be used to choose configure initial state, choose robot arm, choose simulation, load objects, and extract information from the simulation. """ return def _viewer_setup(self): """Initial configuration of the viewer. Can be used to set the camera position, for example. """ pass def _render_callback(self): """A custom callback that is called before rendering. Can be used to implement custom visualizations. """ pass def _step_callback(self): """A custom callback that is called after stepping the simulation. Can be used to enforce additional constraints on the simulation state. """ pass
[]
2024-01-10
kesamet/ai-assistant
src~agents.py
from langchain.agents import AgentType, initialize_agent from langchain.memory import ConversationBufferWindowMemory from langchain.schema import HumanMessage, AIMessage from langchain_google_genai import GoogleGenerativeAI from src.tools import ( search_tool, wikipedia_tool, wolfram_tool, calculator_tool, newsapi_tool, ) LLM = GoogleGenerativeAI(model="models/text-bison-001", temperature=0.0) MEMORY_BUFFER_WINDOW = 10 def build_agent(messages: list): memory = _build_memory(messages) agent = initialize_agent( [search_tool, wikipedia_tool, wolfram_tool, calculator_tool, newsapi_tool], LLM, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, max_iterations=3, memory=memory, ) return agent def _build_memory(messages: list): memory = ConversationBufferWindowMemory( k=MEMORY_BUFFER_WINDOW, memory_key="chat_history", return_messages=True ) for message in messages[-MEMORY_BUFFER_WINDOW:]: if isinstance(message, AIMessage): memory.chat_memory.add_ai_message(message.content) elif isinstance(message, HumanMessage): memory.chat_memory.add_user_message(message.content) return memory
[]
2024-01-10
kesamet/ai-assistant
src~tools~yahoo_finance.py
from typing import Optional from requests.exceptions import HTTPError, ReadTimeout from urllib3.exceptions import ConnectionError from langchain.callbacks.manager import CallbackManagerForToolRun from langchain.tools.base import BaseTool class YahooFinanceTool(BaseTool): """Tool that searches financial data on Yahoo Finance.""" name: str = "yahoo_finance" description: str = ( "Useful for when you need to find financial data about a public company. " "Input should be a company ticker. For example, AAPL for Apple, MSFT for Microsoft." ) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Yahoo Finance News tool.""" try: import yfinance except ImportError: raise ImportError( "Could not import yfinance python package. " "Please install it with `pip install yfinance`." ) try: company = yfinance.Ticker(query) except (HTTPError, ReadTimeout, ConnectionError): return f"Company ticker {query} not found." try: df = company.history() except (HTTPError, ReadTimeout, ConnectionError): return f"No data found for company that searched with {query} ticker." if df.empty: return f"No news found for company that searched with {query} ticker." return df
[]
2024-01-10
kesamet/ai-assistant
src~mistral.py
import logging import os from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.llms.ctransformers import CTransformers from src import CFG logging.basicConfig(level=logging.INFO) def load_mistral() -> CTransformers: """Load mistral model.""" logging.info("Loading mistral model ...") model = CTransformers( model=os.path.join(CFG.MODELS_DIR, CFG.MISTRAL.MODEL_PATH), model_type=CFG.MISTRAL.MODEL_TYPE, config={ "max_new_tokens": CFG.MAX_NEW_TOKENS, "temperature": CFG.TEMPERATURE, "repetition_penalty": CFG.REPETITION_PENALTY, "context_length": CFG.CONTEXT_LENGTH, }, callbacks=[StreamingStdOutCallbackHandler()], ) logging.info("Model loaded") return model
[]
2024-01-10
kesamet/ai-assistant
src~llama2.py
import logging import os from typing import List, Union from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.llms.ctransformers import CTransformers from langchain.schema import SystemMessage, HumanMessage, AIMessage from src import CFG logging.basicConfig(level=logging.INFO) def load_llama2() -> CTransformers: """Load Llama-2 model.""" logging.info("Loading llama2 model ...") model = CTransformers( model=os.path.join(CFG.MODELS_DIR, CFG.LLAMA2.MODEL_PATH), model_type=CFG.LLAMA2.MODEL_TYPE, config={ "max_new_tokens": CFG.MAX_NEW_TOKENS, "temperature": CFG.TEMPERATURE, "repetition_penalty": CFG.REPETITION_PENALTY, "context_length": CFG.CONTEXT_LENGTH, }, callbacks=[StreamingStdOutCallbackHandler()], ) logging.info("Model loaded") return model def llama2_prompt(messages: List[Union[SystemMessage, HumanMessage, AIMessage]]) -> str: """Convert the messages to Llama2 compliant format.""" messages = _convert_langchainschema_to_dict(messages) B_INST = "[INST]" E_INST = "[/INST]" B_SYS = "<<SYS>>\n" E_SYS = "\n<</SYS>>\n\n" BOS = "<s>" EOS = "</s>" DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. \ Always answer as helpfully as possible, while being safe. Please ensure that your responses \ are socially unbiased and positive in nature. If a question does not make any sense, \ or is not factually coherent, explain why instead of answering something not correct.""" if messages[0]["role"] != "system": messages = [ { "role": "system", "content": DEFAULT_SYSTEM_PROMPT, } ] + messages messages = [ { "role": messages[1]["role"], "content": B_SYS + messages[0]["content"] + E_SYS + messages[1]["content"], } ] + messages[2:] messages_list = [ f"{BOS}{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} {EOS}" for prompt, answer in zip(messages[::2], messages[1::2]) ] messages_list.append(f"{BOS}{B_INST} {(messages[-1]['content']).strip()} {E_INST}") return "".join(messages_list) def _convert_langchainschema_to_dict( messages: List[Union[SystemMessage, HumanMessage, AIMessage]] ) -> List[dict]: """ Convert the chain of chat messages in list of langchain.schema format to list of dictionary format. """ _messages = [] for message in messages: if isinstance(message, SystemMessage): _messages.append({"role": "system", "content": message.content}) elif isinstance(message, HumanMessage): _messages.append({"role": "user", "content": message.content}) elif isinstance(message, AIMessage): _messages.append({"role": "assistant", "content": message.content}) return _messages
[ "content", "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct." ]
2024-01-10
kesamet/ai-assistant
streamlit_app~vision_assistant.py
import base64 import requests import streamlit as st from langchain.schema import HumanMessage, AIMessage from src import CFG from streamlit_app import get_http_status from streamlit_app.utils import set_container_width API_URL = f"http://{CFG.HOST}:{CFG.PORT_LLAVA}" # sliding window of the most recent interactions MEMORY_BUFFER_WINDOW = 6 def init_sess_state() -> None: clear_button = st.sidebar.button("Clear Conversation", key="vision_assistant") if clear_button or "llava_messages" not in st.session_state: # llava_messages used in model st.session_state.llava_messages = [ { "role": "system", "content": "You are an assistant who perfectly describes images.", } ] # chv_messages used for displaying st.session_state.chv_messages = [] # image st.session_state.image_bytes = None def buffer_window_memory(messages: list) -> list: """ Sliding window of the most recent interactions older interactions will not be sent to LLM except for system and first user and assistant interaction to retain context """ return messages[:3] + messages[3:][-MEMORY_BUFFER_WINDOW:] def get_output(messages: list) -> str: headers = {"Content-Type": "application/json"} response = requests.post(API_URL, headers=headers, json={"inputs": messages}) return response.json()["choices"][0]["message"] def vision_assistant(): set_container_width("80%") st.sidebar.title("Vision Assistant") st.sidebar.info( "Vision Assistant is powered by [LLaVA](https://llava-vl.github.io/)." ) st.sidebar.info(f"Running on {CFG.DEVICE}") get_http_status(API_URL) uploaded_file = st.sidebar.file_uploader( "Upload your image", type=["png", "jpg", "jpeg"], accept_multiple_files=False ) init_sess_state() _img_bytes = uploaded_file or st.session_state.image_bytes if _img_bytes is None: st.info("Upload an image first.") return c0, c1 = st.columns(2) c0.image(_img_bytes) st.session_state.image_bytes = _img_bytes img_b64 = base64.b64encode(_img_bytes.getvalue()).decode("utf-8") with c1: # Display chat history for message in st.session_state.chv_messages: if isinstance(message, HumanMessage): with st.chat_message("user"): st.markdown(message.content) elif isinstance(message, AIMessage): with st.chat_message("assistant"): st.markdown(message.content) if user_input := st.chat_input("Your input"): with c1.chat_message("user"): st.markdown(user_input) if len(st.session_state.llava_messages) == 1: message = { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_b64}"}, }, {"type": "text", "text": user_input}, ], } else: message = {"role": "user", "content": user_input} st.session_state.llava_messages.append(message) st.session_state.llava_messages = buffer_window_memory( st.session_state.llava_messages ) st.session_state.chv_messages.append(HumanMessage(content=user_input)) with c1.chat_message("assistant"): with st.spinner("Thinking ..."): message = get_output(st.session_state.llava_messages) st.markdown(message["content"]) st.session_state.llava_messages.append(message) st.session_state.chv_messages.append(AIMessage(content=message["content"]))
[ "[{'type': 'image_url', 'image_url': {'url': ''}}, {'type': 'text', 'text': PLACEHOLDER}]", "content", "You are an assistant who perfectly describes images." ]
2024-01-10
kesamet/ai-assistant
src~tools~newsapi.py
import os from typing import Optional from langchain.callbacks.manager import CallbackManagerForToolRun from langchain.tools.base import BaseTool SOURCES = "bbc-news,the-verge,the-wall-street-journal" class NewsAPITool(BaseTool): """Tool that searches news using News API.""" name: str = "news" description: str = ( "Useful when you need to get top headlines from major news sources " "such as BBC News and Wall Street Journal." ) top_k: int = 10 """The number of results to return.""" def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use NewsAPI tool.""" try: from newsapi import NewsApiClient except ImportError: raise ImportError( "Could not import yfinance python package. " "Please install it with `pip install newsapi-python`." ) try: newsapi = NewsApiClient(api_key=os.environ["NEWSAPI_API_KEY"]) except KeyError: raise ("NEWSAPI_API_KEY is not found in environ.") top_headlines = newsapi.get_top_headlines(q=query, sources=SOURCES) result = "\n\n".join( [ "\n".join([n["title"], n["description"]]) for n in top_headlines["articles"] ] ) if not result: return f"No news found for '{query}'." return result
[]
2024-01-10
kesamet/ai-assistant
streamlit_app~code_assistant.py
import requests import streamlit as st from langchain.schema import HumanMessage, AIMessage from src import CFG from src.codellama import get_prompt from streamlit_app import get_http_status API_URL = f"http://{CFG.HOST}:{CFG.PORT_CODELLAMA}" def init_messages() -> None: clear_button = st.sidebar.button("Clear Conversation", key="code_assistant") if clear_button or "ca_messages" not in st.session_state: st.session_state.ca_messages = [] def get_answer(inputs: str) -> str: payload = {"inputs": get_prompt(inputs)} headers = {"Content-Type": "application/json"} response = requests.post(API_URL, headers=headers, json=payload) return response.json()["content"] def code_assistant(): st.sidebar.title("Code Assistant") st.sidebar.info("Code Assistant is powered by CodeLlama.") st.sidebar.info(f"Running on {CFG.DEVICE}") get_http_status(API_URL) init_messages() # Display chat history for message in st.session_state.ca_messages: if isinstance(message, HumanMessage): with st.chat_message("user"): st.markdown(message.content) elif isinstance(message, AIMessage): with st.chat_message("assistant"): st.markdown(message.content) if user_input := st.chat_input("Your input"): with st.chat_message("user"): st.markdown(user_input) st.session_state.ca_messages.append(HumanMessage(content=user_input)) with st.chat_message("assistant"): with st.spinner("Thinking ..."): answer = get_answer(user_input) st.markdown(answer) st.session_state.ca_messages.append(AIMessage(content=answer))
[]
2024-01-10
kesamet/ai-assistant
src~codellama.py
import logging import os from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.llms.ctransformers import CTransformers from src import CFG logging.basicConfig(level=logging.INFO) def load_codellama() -> CTransformers: """Load codellama model.""" logging.info("Loading codellama model ...") model = CTransformers( model=os.path.join(CFG.MODELS_DIR, CFG.CODELLAMA.MODEL_PATH), model_type=CFG.CODELLAMA.MODEL_TYPE, config={ "max_new_tokens": CFG.MAX_NEW_TOKENS, "temperature": CFG.TEMPERATURE, "repetition_penalty": CFG.REPETITION_PENALTY, "context_length": CFG.CONTEXT_LENGTH, }, callbacks=[StreamingStdOutCallbackHandler()], ) logging.info("Model loaded") return model def get_prompt(query: str) -> str: """ Generate a prompt based on Llama-2 prompt template. Args: query (str): The coding problem. Returns: str: The prompt. """ template = """[INST] Write code to solve the following coding problem that obeys \ the constraints and passes the example test cases. Please wrap your code answer \ using ```: {query} [/INST]""" return template.format(query=query)
[ "[INST] Write code to solve the following coding problem that obeys the constraints and passes the example test cases. Please wrap your code answer using ```:\n{query}\n[/INST]" ]
2024-01-10
kesamet/ai-assistant
streamlit_app~ai_agents.py
import streamlit as st from langchain.schema import HumanMessage, AIMessage from src.agents import build_agent def init_messages() -> None: clear_button = st.sidebar.button("Clear Conversation", key="ai_agents") if clear_button or "aa_messages" not in st.session_state: st.session_state.aa_messages = [] def get_output(user_input: str, messages: list) -> str: agent = build_agent(messages) try: return agent.run(user_input) except Exception: return "GoogleGenerativeAI is not available. Did you provide an API key?" def ai_agents(): st.sidebar.title("AI Agents") st.sidebar.info( "AI Assistant is powered by text-bison and has access to wikipedia, search, " "News API, Wolfram and calculator tools." ) init_messages() # Display chat history for message in st.session_state.aa_messages: if isinstance(message, HumanMessage): with st.chat_message("user"): st.markdown(message.content) elif isinstance(message, AIMessage): with st.chat_message("assistant"): st.markdown(message.content) if user_input := st.chat_input("Your input"): with st.chat_message("user"): st.markdown(user_input) with st.chat_message("assistant"): with st.spinner("Thinking ..."): output = get_output(user_input, st.session_state.aa_messages) st.markdown(output) st.session_state.aa_messages.append(HumanMessage(content=user_input)) st.session_state.aa_messages.append(AIMessage(content=output))
[]
2024-01-10
tayanzhuifeng/DocsGPT
scripts~parser~py2doc.py
import os import ast import tiktoken from pathlib import Path from langchain.llms import OpenAI from langchain.prompts import PromptTemplate def find_files(directory): files_list = [] for root, dirs, files in os.walk(directory): for file in files: if file.endswith('.py'): files_list.append(os.path.join(root, file)) return files_list def extract_functions(file_path): with open(file_path, 'r') as file: source_code = file.read() functions = {} tree = ast.parse(source_code) for node in ast.walk(tree): if isinstance(node, ast.FunctionDef): func_name = node.name func_def = ast.get_source_segment(source_code, node) functions[func_name] = func_def return functions def extract_classes(file_path): with open(file_path, 'r') as file: source_code = file.read() classes = {} tree = ast.parse(source_code) for node in ast.walk(tree): if isinstance(node, ast.ClassDef): class_name = node.name function_names = [] for subnode in ast.walk(node): if isinstance(subnode, ast.FunctionDef): function_names.append(subnode.name) classes[class_name] = ", ".join(function_names) return classes def extract_functions_and_classes(directory): files = find_files(directory) functions_dict = {} classes_dict = {} for file in files: functions = extract_functions(file) if functions: functions_dict[file] = functions classes = extract_classes(file) if classes: classes_dict[file] = classes return functions_dict, classes_dict def parse_functions(functions_dict, formats, dir): c1 = len(functions_dict) for i, (source, functions) in enumerate(functions_dict.items(), start=1): print(f"Processing file {i}/{c1}") source_w = source.replace(dir+"/", "").replace("."+formats, ".md") subfolders = "/".join(source_w.split("/")[:-1]) Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True) for j, (name, function) in enumerate(functions.items(), start=1): print(f"Processing function {j}/{len(functions)}") prompt = PromptTemplate( input_variables=["code"], template="Code: \n{code}, \nDocumentation: ", ) llm = OpenAI(temperature=0) response = llm(prompt.format(code=function)) mode = "a" if Path(f"outputs/{source_w}").exists() else "w" with open(f"outputs/{source_w}", mode) as f: f.write(f"\n\n# Function name: {name} \n\nFunction: \n```\n{function}\n```, \nDocumentation: \n{response}") def parse_classes(classes_dict, formats, dir): c1 = len(classes_dict) for i, (source, classes) in enumerate(classes_dict.items()): print(f"Processing file {i+1}/{c1}") source_w = source.replace(dir+"/", "").replace("."+formats, ".md") subfolders = "/".join(source_w.split("/")[:-1]) Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True) for name, function_names in classes.items(): print(f"Processing Class {i+1}/{c1}") prompt = PromptTemplate( input_variables=["class_name", "functions_names"], template="Class name: {class_name} \nFunctions: {functions_names}, \nDocumentation: ", ) llm = OpenAI(temperature=0) response = llm(prompt.format(class_name=name, functions_names=function_names)) with open(f"outputs/{source_w}", "a" if Path(f"outputs/{source_w}").exists() else "w") as f: f.write(f"\n\n# Class name: {name} \n\nFunctions: \n{function_names}, \nDocumentation: \n{response}") def transform_to_docs(functions_dict, classes_dict, formats, dir): docs_content = ''.join([str(key) + str(value) for key, value in functions_dict.items()]) docs_content += ''.join([str(key) + str(value) for key, value in classes_dict.items()]) num_tokens = len(tiktoken.get_encoding("cl100k_base").encode(docs_content)) total_price = ((num_tokens / 1000) * 0.02) print(f"Number of Tokens = {num_tokens:,d}") print(f"Approx Cost = ${total_price:,.2f}") user_input = input("Price Okay? (Y/N)\n").lower() if user_input == "y" or user_input == "": if not Path("outputs").exists(): Path("outputs").mkdir() parse_functions(functions_dict, formats, dir) parse_classes(classes_dict, formats, dir) print("All done!") else: print("The API was not called. No money was spent.")
[ "Code: \n{code}, \nDocumentation: ", "functions_names", "class_name", "Class name: {class_name} \nFunctions: {functions_names}, \nDocumentation: " ]
2024-01-10
tayanzhuifeng/DocsGPT
scripts~code_docs_gen.py
from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import pickle import dotenv import tiktoken import sys from argparse import ArgumentParser import ast dotenv.load_dotenv() ps = list(Path("inputs").glob("**/*.py")) data = [] sources = [] for p in ps: with open(p) as f: data.append(f.read()) sources.append(p) # with open('inputs/client.py', 'r') as f: # tree = ast.parse(f.read()) # print(tree) def get_functions_in_class(node): functions = [] functions_code = [] for child in node.body: if isinstance(child, ast.FunctionDef): functions.append(child.name) functions_code.append(ast.unparse(child)) return functions, functions_code def get_classes_and_functions(source_code): tree = ast.parse(source_code) classes = {} for node in tree.body: if isinstance(node, ast.ClassDef): class_name = node.name function_name, function = get_functions_in_class(node) # join function name and function code functions = dict(zip(function_name, function)) classes[class_name] = functions return classes structure_dict = {} c1 = 0 for code in data: classes = get_classes_and_functions(ast.parse(code)) source = str(sources[c1]) structure_dict[source] = classes c1 += 1 # save the structure dict as json import json with open('structure_dict.json', 'w') as f: json.dump(structure_dict, f) # llm = OpenAI(temperature=0) # prompt = PromptTemplate( # input_variables=["code"], # template="Code: {code}, Documentation: ", # ) # # print(prompt.format(code="print('hello world')")) # print(llm(prompt.format(code="print('hello world')"))) if not Path("outputs").exists(): Path("outputs").mkdir() c1 = len(structure_dict) c2 = 0 for source, classes in structure_dict.items(): c2 += 1 print(f"Processing file {c2}/{c1}") f1 = len(classes) f2 = 0 for class_name, functions in classes.items(): f2 += 1 print(f"Processing class {f2}/{f1}") source_w = source.replace("inputs/", "") source_w = source_w.replace(".py", ".txt") if not Path(f"outputs/{source_w}").exists(): with open(f"outputs/{source_w}", "w") as f: f.write(f"Class: {class_name}") else: with open(f"outputs/{source_w}", "a") as f: f.write(f"\n\nClass: {class_name}") # append class name to the front for function in functions: b1 = len(functions) b2 = 0 print(f"Processing function {b2}/{b1}") b2 += 1 prompt = PromptTemplate( input_variables=["code"], template="Code: \n{code}, \nDocumentation: ", ) llm = OpenAI(temperature=0) response = llm(prompt.format(code=functions[function])) if not Path(f"outputs/{source_w}").exists(): with open(f"outputs/{source_w}", "w") as f: f.write(f"Function: {functions[function]}, \nDocumentation: {response}") else: with open(f"outputs/{source_w}", "a") as f: f.write(f"\n\nFunction: {functions[function]}, \nDocumentation: {response}")
[ "Code: \n{code}, \nDocumentation: " ]
2024-01-10
tayanzhuifeng/DocsGPT
application~parser~py2doc.py
import os import ast import tiktoken from pathlib import Path from langchain.llms import OpenAI from langchain.prompts import PromptTemplate def find_files(directory): files_list = [] for root, dirs, files in os.walk(directory): for file in files: if file.endswith('.py'): files_list.append(os.path.join(root, file)) return files_list def extract_functions(file_path): with open(file_path, 'r') as file: source_code = file.read() functions = {} tree = ast.parse(source_code) for node in ast.walk(tree): if isinstance(node, ast.FunctionDef): func_name = node.name func_def = ast.get_source_segment(source_code, node) functions[func_name] = func_def return functions def extract_classes(file_path): with open(file_path, 'r') as file: source_code = file.read() classes = {} tree = ast.parse(source_code) for node in ast.walk(tree): if isinstance(node, ast.ClassDef): class_name = node.name function_names = [] for subnode in ast.walk(node): if isinstance(subnode, ast.FunctionDef): function_names.append(subnode.name) classes[class_name] = ", ".join(function_names) return classes def extract_functions_and_classes(directory): files = find_files(directory) functions_dict = {} classes_dict = {} for file in files: functions = extract_functions(file) if functions: functions_dict[file] = functions classes = extract_classes(file) if classes: classes_dict[file] = classes return functions_dict, classes_dict def parse_functions(functions_dict, formats, dir): c1 = len(functions_dict) for i, (source, functions) in enumerate(functions_dict.items(), start=1): print(f"Processing file {i}/{c1}") source_w = source.replace(dir+"/", "").replace("."+formats, ".md") subfolders = "/".join(source_w.split("/")[:-1]) Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True) for j, (name, function) in enumerate(functions.items(), start=1): print(f"Processing function {j}/{len(functions)}") prompt = PromptTemplate( input_variables=["code"], template="Code: \n{code}, \nDocumentation: ", ) llm = OpenAI(temperature=0) response = llm(prompt.format(code=function)) mode = "a" if Path(f"outputs/{source_w}").exists() else "w" with open(f"outputs/{source_w}", mode) as f: f.write(f"\n\n# Function name: {name} \n\nFunction: \n```\n{function}\n```, \nDocumentation: \n{response}") def parse_classes(classes_dict, formats, dir): c1 = len(classes_dict) for i, (source, classes) in enumerate(classes_dict.items()): print(f"Processing file {i+1}/{c1}") source_w = source.replace(dir+"/", "").replace("."+formats, ".md") subfolders = "/".join(source_w.split("/")[:-1]) Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True) for name, function_names in classes.items(): print(f"Processing Class {i+1}/{c1}") prompt = PromptTemplate( input_variables=["class_name", "functions_names"], template="Class name: {class_name} \nFunctions: {functions_names}, \nDocumentation: ", ) llm = OpenAI(temperature=0) response = llm(prompt.format(class_name=name, functions_names=function_names)) with open(f"outputs/{source_w}", "a" if Path(f"outputs/{source_w}").exists() else "w") as f: f.write(f"\n\n# Class name: {name} \n\nFunctions: \n{function_names}, \nDocumentation: \n{response}") def transform_to_docs(functions_dict, classes_dict, formats, dir): docs_content = ''.join([str(key) + str(value) for key, value in functions_dict.items()]) docs_content += ''.join([str(key) + str(value) for key, value in classes_dict.items()]) num_tokens = len(tiktoken.get_encoding("cl100k_base").encode(docs_content)) total_price = ((num_tokens / 1000) * 0.02) print(f"Number of Tokens = {num_tokens:,d}") print(f"Approx Cost = ${total_price:,.2f}") user_input = input("Price Okay? (Y/N)\n").lower() if user_input == "y" or user_input == "": if not Path("outputs").exists(): Path("outputs").mkdir() parse_functions(functions_dict, formats, dir) parse_classes(classes_dict, formats, dir) print("All done!") else: print("The API was not called. No money was spent.")
[ "Code: \n{code}, \nDocumentation: ", "functions_names", "class_name", "Class name: {class_name} \nFunctions: {functions_names}, \nDocumentation: " ]
2024-01-10
VarunThejaT/palate
speech_to_text~audio_to_text.py
from pydub import AudioSegment import math import openai import os import tiktoken from dotenv import load_dotenv load_dotenv() from nr_openai_observability import monitor monitor.initialization() def num_tokens_from_string(string: str, encoding_name: str) -> int: """Returns the number of tokens in a text string.""" encoding = tiktoken.get_encoding(encoding_name) num_tokens = len(encoding.encode(string)) return num_tokens # Set up the OpenAI API client openai.api_key = os.getenv("OPENAI_API_KEY") file_location = "/home/varun/Downloads/TheTimFerrissShow_Eric Cressey.mp3" file_stats = os.stat(file_location) print(file_stats) print(f'File Size in Bytes is {file_stats.st_size}') sound = AudioSegment.from_mp3(file_location) MBBytes=2**20 num_slices=math.ceil(file_stats.st_size/MBBytes/25) print(f"num slices: {num_slices}") #whisper transcription_arr = [] slice_len = len(sound) / num_slices for i in range(num_slices): if i==num_slices-1: new = sound[i*slice_len:] else: new = sound[i*slice_len:(i+1)*slice_len] # writing mp3 files is a one liner new.export("file_"+ str(i) +".mp3", format="mp3") file = open("file_"+ str(i) +".mp3", "rb") print("calling whisper API") part_transcription = openai.Audio.transcribe("whisper-1", file) transcription_arr.append(part_transcription.text) #Full text full_transcription = "".join(transcription_arr) words_of_transcription = full_transcription.split(" ") GPT_slices=math.ceil(num_tokens_from_string(str(full_transcription), "cl100k_base")/3000) #summarize full text summarization=[] for i in range(GPT_slices): messages = [ {"role": "system", "content": "You are a summarization machine for a podcast."} ] message="Convert the text given by ```" + full_transcription[i*len(full_transcription)//GPT_slices:(i+1)*len(full_transcription)//GPT_slices] + " ``` into a " + str(2000//GPT_slices) + " word text" if message: messages.append( {"role": "user", "content": message}, ) print("Calling chatgpt") chat = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) reply = chat.choices[0].message.content print("Number of words:" + str(len(reply.split()))) print(f"ChatGPT: {reply}") messages.append({"role": "assistant", "content": reply}) summarization.append(reply) summary = "".join(summarization) words_of_summary = summary.split(" ") mins = 5 summarization=[] messages = [ {"role": "system", "content": "You are a text to podcast machine."} ] message="Can you give me a text that is written in a way that David Attenborough would read it? Start with a catch phrase and mention 'Palate' as Sponsor. Make the podcast "+ str(mins*132) +" words long. \\ Content: ```" + summary + "```" if message: messages.append( {"role": "user", "content": message}, ) print("Calling chatgpt") chat = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) reply = chat.choices[0].message.content print("Number of words:" + str(len(reply.split()))) print(f"ChatGPT: {reply}") #write to text with open('TheTimFerrissShow_Eric_Cressey_'+ str(mins) +'_mins.txt', 'w') as f: f.write(reply)
[ "You are a text to podcast machine.", "You are a summarization machine for a podcast." ]
2024-01-10
VarunThejaT/palate
speech_to_text~text_to_text.py
import math import requests import tiktoken from newspaper import fulltext import openai from dotenv import load_dotenv load_dotenv() # Set up the OpenAI API client openai.api_key = os.getenv("OPENAI_API_KEY") html = requests.get("https://www.brookings.edu/research/how-artificial-intelligence-is-transforming-the-world/").text text=fulltext(html) full_transcription = text print(full_transcription) def num_tokens_from_string(string: str, encoding_name: str) -> int: """Returns the number of tokens in a text string.""" encoding = tiktoken.get_encoding(encoding_name) num_tokens = len(encoding.encode(string)) return num_tokens GPT_slices = math.ceil(num_tokens_from_string(str(text), "cl100k_base")/3000) GPT_slices summarization=[] for i in range(GPT_slices): messages = [ {"role": "system", "content": "You are a summarization machine for a podcast."} ] message = "Convert the text given by ```" + text[i*len(text)//GPT_slices:(i+1)*len(full_transcription)//GPT_slices] + " ``` into a " + str(2000//GPT_slices) + " word text" if message: messages.append( {"role": "user", "content": message}, ) chat = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) reply = chat.choices[0].message.content messages.append({"role": "assistant", "content": reply}) summarization.append(reply) summary = "".join(summarization) words_of_summary = summary.split(" ") mins=3 messages = [ {"role": "system", "content": "You are a text to podcast machine."} ] message="Can you give me a text that is written in a way that David Attenborough would read it? Start with a catch phrase and mention 'Palate' as Sponsor. Make the podcast "+ str(mins*132) +" words long. \\ Content: ```" + summary + "```" if message: messages.append( {"role": "user", "content": message}, ) chat = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) reply = chat.choices[0].message.content print("Number of words:" + str(len(reply.split()))) print(f"ChatGPT: {reply}") messages.append({"role": "assistant", "content": reply}) with open('david_AI_article_'+ str(mins) +'_mins.txt', 'w') as f: f.write(reply)
[ "You are a text to podcast machine.", "You are a summarization machine for a podcast." ]
2024-01-10
VarunThejaT/palate
speech_to_text~whisper_api_usage.py
import os import openai from dotenv import load_dotenv load_dotenv() # Set up the OpenAI API client openai.api_key = os.getenv("OPENAI_API_KEY") file = open("/home/varun/Downloads/TheTimFerrissShow_Eric Cressey.mp3", "rb") transcription = openai.Audio.transcribe("whisper-1", file) print(transcription)
[]
2024-01-10
VarunThejaT/palate
speech_to_text~new_relic_example.py
import os import openai from dotenv import load_dotenv from nr_openai_observability import monitor load_dotenv() monitor.initialization() # Set up the OpenAI API client openai.api_key = os.getenv("OPENAI_API_KEY") file = open("/home/varun/Downloads/david.mp3", "rb") transcription = openai.Audio.transcribe("whisper-1", file) print(transcription) # import os # import openai # from nr_openai_observability import monitor # from dotenv import load_dotenv # load_dotenv() # os.environ["NEW_RELIC_LICENSE_KEY"] = "40efa7bf334917db4467aba7398ff2d7267aNRAL" # monitor.initialization() # openai.api_key = os.getenv("OPENAI_API_KEY") # openai.Completion.create( # model="text-davinci-003", # prompt="What is Observability?", # max_tokens=20, # temperature=0 # )
[]
2024-01-10
RekhuGopal/OpenAIHacks
QnA~QnA.py
import os import openai os.environ["OPENAI_API_KEY"] = "Your Open AI API Key" openai.api_key = os.getenv("OPENAI_API_KEY") response = openai.Completion.create( model="text-davinci-003", prompt="Q: who is elon musk?\n A:", temperature=0, max_tokens=100, top_p=1, frequency_penalty=0.0, presence_penalty=0.0, stop=["\n"] ) #print(response) print(response['choices'][0]['text'])
[ "Q: who is elon musk?\n A:" ]
2024-01-10
RekhuGopal/OpenAIHacks
DALL-E-2~VariationImage.py
import os import openai os.environ["OPENAI_API_KEY"] = "Your Open AI API Key" openai.api_key = os.getenv("OPENAI_API_KEY") response = openai.Image.create_variation( image=open("corgi_and_cat_paw.png", "rb"), n=1, size="1024x1024" ) image_url = response['data'][0]['url']
[]
2024-01-10
RekhuGopal/OpenAIHacks
DALL-E-2~EditImage.py
import os import openai os.environ["OPENAI_API_KEY"] = "Your Open AI API Key" openai.api_key = os.getenv("OPENAI_API_KEY") response = openai.Image.create_edit( image=open("sunlit_lounge.png", "rb"), mask=open("mask.png", "rb"), prompt="A sunlit indoor lounge area with a pool containing a flamingo", n=1, size="1024x1024" ) image_url = response['data'][0]['url']
[]
2024-01-10
5l1v3r1/GPT-Autonomous-SearchAgent
research_agent_custom.py
import openai import arxiv # Set up the OpenAI API openai.api_key = "sk-" # Replace the string content with your OpenAI API key """ Wrap the OpenAI API call in this function """ def getResponse(prompt): response = openai.ChatCompletion.create( model="gpt-3.5-turbo", temperature=0, # We want consistent behavior, so we set a very low temperature messages=[ {"role": "system", "content": "You're a helpful assistant. Carefully follow the user's instructions."}, {"role": "user", "content": prompt} ] ) response = str(response['choices'][0]['message']['content']) return response """ Use GPT to determine the action to take by giving it the objective, memory, and tools. If it think it has finished the objective, just give the answer. If it needs more info, it will pick the tool to get the relevant information based on the tool description. """ def determineAction(objective, memory, tools): formattedPrompt = f"""Determine if the following memory is enough to answer\n the user's objective. Your past actions are stored in the memory for reference\n If it is enough, answer the question in the format: 'FINAL ANSWER: '. \n If the memory is not enough, you can use a tool in the available tools section\n to get more information. When using a tool you should use this format: \n 'USE :'. If no tool can help you achieve the user's \n objective, then answer 'FINAL: CANNOT ANSWER'. ```Objective Answer: {objective} ``` ```Memory {memory} ``` ```Available Tools {tools} ``` """ response = getResponse(formattedPrompt) (finished, result, memory) = parseResponse(response, memory, tools) return (finished, result, memory) """ Parse the response from GPT to determine if the objective is finished. If it is finished, just give the final answer. If the objective cannot be finished with the context and tools, it will say it cannot answer If GPT picks a tool, execute the tool and save the result of the tool in memory. """ def parseResponse(response, memory, tools): finished = False if response.startswith('FINAL ANSWER:'): finished = True memory.append(response) return (finished, response, memory) elif response == 'FINAL: CANNOT ANSWER': finished = True memory.append(response) return (finished, response, memory) elif response.startswith('USE:'): # split the string using ':' as the delimiter parsed_str = response.split(':') # 'USE: searchArxiv with the search key word "ReAct reasoning and acting in language models" to gather more information.' # get the tool name and parameter tool_name = parsed_str[1].split(" ")[1] parameter = parsed_str[1] print("THOUGHT: " + response) memory.append("THOUGHT: " + response) result = executeTool(tool_name, parameter, tools) new_memory = "OBSERVATION: " + str(result) print(new_memory) memory.append(new_memory) return (finished, result, memory) """ Execute the tool that GPT picks using the parameter it gives. Returns the execution result so that GPT can have the relevant info. """ def executeTool(tool_name, parameter, tools): # Find the tool with the given name tool = None for t in tools: if t['tool_name'] == tool_name: tool = t break # If the tool is found, execute its function with the given parameter if tool: return tool['function_name'](parameter) else: return "Tool not found" """ Wrap the search arxiv function as a tool for GPT Input is a search keyword Output is a list of dictionaries with title, published date, authors, and summary of papers """ def searchArxiv(keyword): # Perform a search with the given query search = arxiv.Search(query=keyword, max_results=3) # Get the metadata for each result and extract relevant information results = [] for result in search.results(): title = result.title published_date = result.published.strftime("%Y-%m-%d") authors = ", ".join(author.name for author in result.authors) summary = result.summary # Store the extracted information as a dictionary results.append(( "title: " + title, "published_date: " + published_date, "authors: " + authors, "summary: " + summary )) # Return the list of tuples containing the result information return results """ Initialize memory, tools for the GPT agent. Ask for a user objective and let it run iteratively untill the objective is achieved. As a safety measure, it will also stop after 5 iterations just in case things go wrong. """ def startAgent(): objective = input("What is your research question? ") # For simplicity, we will just use a list to store every thing. # For production, you will probably use vector databases. memory = [] tools = [{'tool_name': 'searchArxiv', 'description': """You can use this tool to search for scientific papers on Arxiv. The response will have title, author, published date, and summary.""", 'function_name': searchArxiv, 'parameter': 'search key word'}] n = 0 while True: (finished, result, memory) = determineAction(objective, memory, tools) n += 1 if finished: print(result) return if n > 2: print("Ended for reaching limit.") return # What is ReAct reasoning and acting in language models? startAgent()
[ "You're a helpful assistant. Carefully follow the user's instructions.", "Determine if the following memory is enough to answer\n\n the user's objective. Your past actions are stored in the memory for reference\n\n If it is enough, answer the question in the format: 'FINAL ANSWER: '. \n\n If the memory is not enough, you can use a tool in the available tools section\n\n to get more information. When using a tool you should use this format: \n\n 'USE :'. If no tool can help you achieve the user's \n\n objective, then answer 'FINAL: CANNOT ANSWER'.\n\n ```Objective\n Answer: PLACEHOLDER\n ```\n\n ```Memory\n PLACEHOLDER\n ```\n\n ```Available Tools\n PLACEHOLDER\n ```\n\n " ]
2024-01-10
5l1v3r1/GPT-Autonomous-SearchAgent
research_agent_langchain.py
# langchan research agent import openai from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.agents import Tool from langchain.chat_models import ChatOpenAI from langchain.utilities import ArxivAPIWrapper # Set up the OpenAI API openai.api_key = "sk-" # Replace the string content with your OpenAI API key llm = ChatOpenAI(temperature=0) # Initialize the LLM to be used arxiv = ArxivAPIWrapper() arxiv_tool = Tool( name="arxiv_search", description="Search on arxiv. The tool can search a keyword on arxiv for the top papers. It will return publishing date, title, authors, and summary of the papers.", func=arxiv.run ) tools = [arxiv_tool] agent_chain = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, ) agent_chain.run("What is ReAct reasoning and acting in language models?")
[]
2024-01-10
zhch158/langchain-Study
study~study01.py
import os from utils import setup_workdir from utils import env from langchain.llms import OpenAI import openai question = "What would be a good company name for a company that makes colorful socks?" # context = "" # model="text-davinci-003" # max_tokens=150 # response = openai.Completion.create( # prompt=f"Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext: {context}\n\n---\n\nQuestion: {question}\nAnswer:", # temperature=0, # max_tokens=max_tokens, # top_p=1, # frequency_penalty=0, # presence_penalty=0, # stop=None, # model=model, # ) # print(response) llm = OpenAI(temperature=0) print(llm(question))
[]
2024-01-10
zhch158/langchain-Study
study~datalevel.py
import os from langchain.chat_models import ChatOpenAI as OpenAI import openai from langchain.embeddings import HuggingFaceEmbeddings from llama_index import LLMPredictor, SimpleDirectoryReader, VectorStoreIndex, LangchainEmbedding, ServiceContext, Document import logging import sys # 从同级目录下的utils目录中导入setup_workdir和setup_env函数 # sys.path.insert(0, os.path.expanduser("~")+"/langchain-ChatGLM") sys.path.insert(0, os.path.dirname(__file__) + "/..") from utils.base import setup_env, setup_workdir LOG_FORMAT = "%(levelname) -5s %(asctime)s" "-1d: %(message)s" logging.basicConfig(stream=sys.stdout, level=logging.DEBUG, format=LOG_FORMAT, encoding='utf-8') # logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) # get_data_level函数说明如下: # 1. 从data_level.txt中读取数据,每一行为一个文档,每个文档之间用\n\n分割 # 2. 通过LangchainEmbedding加载模型,这里使用的是sentence-transformers/paraphrase-multilingual-mpnet-base-v2 # 3. 通过VectorStoreIndex.from_documents构建索引 # 4. 通过index.as_query_engine构建query_engine # 5. 通过query_engine.query(query)进行查询 def get_data_level(query): # define LLM model llm_model = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo-0613", max_tokens=2048)) # embed_model = LangchainEmbedding( # HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")) embed_model = LangchainEmbedding( HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")) service_context = ServiceContext.from_defaults( embed_model=embed_model, llm_predictor=llm_model, ) # documents = SimpleDirectoryReader(input_files=['data_level.txt']).load_data() texts = open('data_level.txt', 'r', encoding='utf-8').read().split('\n\n') # 生成Document对象,过滤空文档 documents = list() for text in texts: text=text.strip() if text != '': documents.append(Document(text)) index = VectorStoreIndex.from_documents(documents, service_context=service_context) # index.storage_context.persist() query_engine = index.as_query_engine(similarity_top_k=3) result = query_engine.query(query) return result if __name__ == '__main__': # os.environ['OPENAI_API_KEY'] = "" # openai.api_key = os.environ['OPENAI_API_KEY'] setup_workdir(os.path.dirname(__file__)) setup_env() query = "请说明客户信息表中,身份证号,吸烟史,是否患有糖尿病等属性属于什么安全级别?" results = get_data_level(query) print("======================") print(results)
[]
2024-01-10
GAIR-NLP/factool
factool~knowledge_qa~google_serper.py
# The following code was adapted from https://github.com/hwchase17/langchain/blob/master/langchain/utilities/google_serper.py """Util that calls Google Search using the Serper.dev API.""" import pdb import requests import asyncio import aiohttp import yaml import os from factool.env_config import factool_env_config # env # serper_api_key = factool_env_config.serper_api_key class GoogleSerperAPIWrapper(): """Wrapper around the Serper.dev Google Search API. You can create a free API key at https://serper.dev. To use, you should have the environment variable ``SERPER_API_KEY`` set with your API key, or pass `serper_api_key` as a named parameter to the constructor. Example: .. code-block:: python from langchain import GoogleSerperAPIWrapper google_serper = GoogleSerperAPIWrapper() """ def __init__(self, snippet_cnt = 10) -> None: self.k = snippet_cnt self.gl = "us" self.hl = "en" self.serper_api_key = os.environ.get("SERPER_API_KEY", None) assert self.serper_api_key is not None, "Please set the SERPER_API_KEY environment variable." assert self.serper_api_key != '', "Please set the SERPER_API_KEY environment variable." async def _google_serper_search_results(self, session, search_term: str, gl: str, hl: str) -> dict: headers = { "X-API-KEY": self.serper_api_key or "", "Content-Type": "application/json", } params = {"q": search_term, "gl": gl, "hl": hl} async with session.post( "https://google.serper.dev/search", headers=headers, params=params, raise_for_status=True ) as response: return await response.json() def _parse_results(self, results): snippets = [] if results.get("answerBox"): answer_box = results.get("answerBox", {}) if answer_box.get("answer"): element = {"content":answer_box.get("answer"),"source":"None"} return [element] elif answer_box.get("snippet"): element = {"content":answer_box.get("snippet").replace("\n", " "),"source":"None"} return [element] elif answer_box.get("snippetHighlighted"): element = {"content":answer_box.get("snippetHighlighted"),"source":"None"} return [element] if results.get("knowledgeGraph"): kg = results.get("knowledgeGraph", {}) title = kg.get("title") entity_type = kg.get("type") if entity_type: element = {"content":f"{title}: {entity_type}","source":"None"} snippets.append(element) description = kg.get("description") if description: element = {"content":description,"source":"None"} snippets.append(element) for attribute, value in kg.get("attributes", {}).items(): element = {"content":f"{attribute}: {value}","source":"None"} snippets.append(element) for result in results["organic"][: self.k]: if "snippet" in result: element = {"content":result["snippet"],"source":result["link"]} snippets.append(element) for attribute, value in result.get("attributes", {}).items(): element = {"content":f"{attribute}: {value}","source":result["link"]} snippets.append(element) if len(snippets) == 0: element = {"content":"No good Google Search Result was found","source":"None"} return [element] # keep only the first k snippets snippets = snippets[:int(self.k / 2)] return snippets async def parallel_searches(self, search_queries, gl, hl): async with aiohttp.ClientSession() as session: tasks = [self._google_serper_search_results(session, query, gl, hl) for query in search_queries] search_results = await asyncio.gather(*tasks, return_exceptions=True) return search_results async def run(self, queries): """Run query through GoogleSearch and parse result.""" flattened_queries = [] for sublist in queries: if sublist is None: sublist = ['None', 'None'] for item in sublist: flattened_queries.append(item) results = await self.parallel_searches(flattened_queries, gl=self.gl, hl=self.hl) snippets_list = [] for i in range(len(results)): snippets_list.append(self._parse_results(results[i])) snippets_split = [snippets_list[i] + snippets_list[i+1] for i in range(0, len(snippets_list), 2)] return snippets_split if __name__ == "__main__": search = GoogleSerperAPIWrapper() print(asyncio.run(search.run("What is the capital of the United States?")))
[ "\n", "snippet", "snippetHighlighted", " ", "PLACEHOLDER: PLACEHOLDER", "answer", "No good Google Search Result was found" ]
2024-01-10
GAIR-NLP/factool
factool~utils~base~pipeline.py
import yaml from factool.utils.openai_wrapper import OpenAIChat import os import pathlib class pipeline(): def __init__(self, domain, foundation_model): #if foundation_model == 'gpt-3.5-turbo' or foundation_model == 'gpt-4': self.company = 'openai' self.chat = OpenAIChat(model_name=foundation_model) self.prompts_path = os.path.join(os.path.dirname(pathlib.Path(__file__)), "../prompts/") with open(os.path.join(self.prompts_path, "self_check.yaml"), 'r') as file: data = yaml.load(file, Loader=yaml.FullLoader) self.self_check_prompt = data[domain]
[]
2024-01-10
GAIR-NLP/factool
factool~utils~claim_extractor.py
import os import pathlib import openai import yaml import json import asyncio from tqdm import tqdm from factool.env_config import factool_env_config # env # openai.api_key = factool_env_config.openai_api_key config = { 'model_name': 'gpt-3.5-turbo', 'max_tokens': 2000, 'temperature': 0.0, 'top_p': 1, 'frequency_penalty': 0.0, 'presence_penalty': 0.0, 'n': 1 } # Make api calls asynchronously async def run_api(messages): async def single_run(message): output = openai.ChatCompletion.create( model=config['model_name'], messages=message, max_tokens=config['max_tokens'], temperature=config['temperature'], top_p=config['top_p'], frequency_penalty=config['frequency_penalty'], presence_penalty=config['presence_penalty'], n=config['n'], ) return output.choices[0].message.content.strip() responses = [single_run(messages[index]) for index in range(len(messages))] return await asyncio.gather(*responses) # Import data from scientific.json scientific_list = [] with open("../datasets/scientific/scientific.json", "r") as f: data = json.load(f) for dict_data in data: cur_dict = {'dataset_name': 'scientific', 'question': dict_data["question"], 'factual_response': dict_data['factual_response']} scientific_list.append(cur_dict) # Apply template prompt with open("./prompts/claim_extraction.yaml") as f: data = yaml.load(f, Loader=yaml.FullLoader) prompt = data['scientific'] messages_list = [ [ {"role": "system", "content": prompt['system']}, {"role": "user", "content": prompt['user'].format(input=sample['factual_response'])}, ] for sample in scientific_list ] assert len(messages_list) == len(scientific_list), "The data length is different" # Run the API to get the output print("begin claims extraction...") results = asyncio.run(run_api(messages_list)) for i in range(len(scientific_list)): scientific_list[i]["claims"] = results[i] with open('../datasets/scientific/scientific_claims.json', 'w') as f: json.dump(scientific_list, f, indent=4) """ The scientific_claims.json file saved by the above code may have format problems, here are some adjustments """ with open("../datasets/scientific/scientific_claims.json", "r") as f: data = json.load(f) for data_i in tqdm(data, total=len(data)): try: data_i["claims"] = json.loads(data_i["claims"].strip()) except: print(data_i["claims"]) continue with open("../datasets/scientific/scientific_claims.json", "w") as f: json.dump(data, f, indent=4)
[ "scientific", "factual_response" ]
2024-01-10
evanwrm/solidchain
apps~api~src~solidchain~utils~callbacks.py
import sys from typing import Any, Dict, List, Union from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import AgentAction, AgentFinish, LLMResult class FastAPIStreamCallbackHandler(BaseCallbackHandler): """Callback handler for streaming. Only works with LLMs that support streaming.""" @property def always_verbose(self) -> bool: """Whether to call verbose callbacks even if verbose is False.""" return True def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Run when LLM starts running.""" def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run on new LLM token. Only available when streaming is enabled.""" sys.stdout.write(token) sys.stdout.flush() def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" def on_llm_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Run when LLM errors.""" def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Run when chain starts running.""" def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends running.""" def on_chain_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Run when chain errors.""" def on_tool_start( self, serialized: Dict[str, Any], action: AgentAction, **kwargs: Any ) -> None: """Run when tool starts running.""" def on_tool_end(self, output: str, **kwargs: Any) -> None: """Run when tool ends running.""" def on_tool_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Run when tool errors.""" def on_text(self, text: str, **kwargs: Any) -> None: """Run on arbitrary text.""" def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Run on agent end."""
[]
2024-01-10
evanwrm/solidchain
apps~api~src~solidchain~api~api_v1~routes~causal.py
from importlib.metadata import version from typing import Any, List, Optional from fastapi import APIRouter, Body, Depends from fastapi.responses import StreamingResponse from langchain.agents import initialize_agent from langchain.agents.load_tools import get_all_tool_names, load_tools from langchain.agents.tools import Tool from langchain.chains import ConversationChain, VectorDBQA from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.chains.summarize import load_summarize_chain from pydantic import BaseModel from sqlalchemy.orm import Session from solidchain.api.dependencies import get_db from solidchain.configs.config import settings from solidchain.models.vectorstore import VectorStore from solidchain.schemas.agents import Agent, AgentTool from solidchain.schemas.chains import SummarizeChainType from solidchain.schemas.text_generation import ( CausalGeneration, CausalModel, StreamingCausalGeneration, ) from solidchain.schemas.vectorstore import VectorStore as VectorStoreSchema from solidchain.utils import utils as sc_utils from solidchain.utils.embeddings import get_embeddings_instance from solidchain.utils.encoding import serialize_response from solidchain.utils.llms import get_llm_instance from solidchain.utils.vectorstores import get_vectorstore_instance router = APIRouter() @router.post("/generate", response_model=CausalGeneration) def generate( *, text: str = Body(), modelName: CausalModel = Body("text-curie-001"), temperature: float = Body(0.7), maxTokens: int = Body(1024), streaming: bool = Body(False), ) -> Any: llm_cls = get_llm_instance(llm_type=modelName) llm = llm_cls( model_name=modelName, temperature=temperature, max_tokens=maxTokens, streaming=streaming, openai_api_key=settings.OPENAI_API_KEY, ) if streaming: def streaming_response(): try: generator = llm.stream(text) for output in generator: generation = StreamingCausalGeneration( text=output["choices"][0]["text"] ) yield generation.json() except Exception as e: generation = StreamingCausalGeneration(text=llm(text)) yield generation.json() return StreamingResponse(streaming_response()) else: output = llm(text) generation = CausalGeneration( text=output.strip(), ) return generation @router.post("/qa", response_model=CausalGeneration) def qa( *, db: Session = Depends(get_db), text: str = Body(), modelName: CausalModel = Body("text-curie-001"), temperature: float = Body(0.7), maxTokens: int = Body(1024), agent: Agent = Body("zero-shot-react-description"), agentPath: str = Body(None), agentTools: List[str] = Body(["serpapi", "llm-math"]), chainType: SummarizeChainType = Body("stuff"), ) -> Any: llm_cls = get_llm_instance(llm_type=modelName) llm = llm_cls( model_name=modelName, temperature=temperature, max_tokens=maxTokens, openai_api_key=settings.OPENAI_API_KEY, ) if agent or agentPath: base_tools = set(agentTools) & set(get_all_tool_names()) vector_tools = set(agentTools) - base_tools tools = load_tools( base_tools, llm=llm, serpapi_api_key=settings.SERPAPI_API_KEY ) if vector_tools: vectorstores: List[VectorStoreSchema] = ( db.query(VectorStore) .filter(VectorStore.vectorstoreId.in_(vector_tools)) .all() ) for vectorstore_data in vectorstores: embeddings = get_embeddings_instance(vectorstore_data.embeddingsType) vectorstore = get_vectorstore_instance( vectorstore_data.vectorDb, persist_directory=vectorstore_data.index.path, embedding_function=embeddings, ) vectorstore_qachain = VectorDBQA.from_chain_type( llm=llm, chain_type=chainType, vectorstore=vectorstore ) tool = Tool( name=vectorstore_data.name, description=vectorstore_data.description, func=vectorstore_qachain.run, ) tools.append(tool) if agent: agent_executor = initialize_agent( tools=tools, llm=llm, agent=agent, max_iterations=5, early_stopping_method="generate", return_intermediate_steps=True, ) output = agent_executor(text) elif agentPath: agent_executor = initialize_agent( tools=tools, llm=llm, agent_path=agentPath, max_iterations=5, early_stopping_method="generate", return_intermediate_steps=True, ) output = agent_executor(text) else: output = llm(text) generation = CausalGeneration( text=output["output"].strip(), steps=output["intermediate_steps"] ) return generation @router.post("/summarize", response_model=CausalGeneration) def summarize( *, text: str = Body(), modelName: CausalModel = Body("text-curie-001"), temperature: float = Body(0.7), maxTokens: int = Body(1024), chainType: SummarizeChainType = Body("stuff"), ) -> Any: llm_cls = get_llm_instance(llm_type=modelName) llm = llm_cls( model_name=modelName, temperature=temperature, max_tokens=maxTokens, openai_api_key=settings.OPENAI_API_KEY, ) chain = load_summarize_chain(llm=llm, chain_type=chainType) output = chain.run(text) generation = CausalGeneration( text=output.strip(), ) return generation @router.post("/conversational", response_model=CausalGeneration) def conversational( *, text: str = Body(), modelName: CausalModel = Body("gpt-3.5-turbo"), temperature: float = Body(0.7), maxTokens: int = Body(1024), ) -> Any: llm_cls = get_llm_instance(llm_type=modelName) llm = llm_cls( model_name=modelName, temperature=temperature, max_tokens=maxTokens, openai_api_key=settings.OPENAI_API_KEY, ) chain = ConversationChain(llm=llm, memory=ConversationBufferMemory()) output = chain.run(text) generation = CausalGeneration( text=output.strip(), ) return generation
[]
2024-01-10
evanwrm/solidchain
apps~api~src~solidchain~utils~llms.py
from langchain.llms import OpenAI, OpenAIChat from solidchain.configs.config import settings from solidchain.schemas.text_generation import CausalModel def get_llm_instance (llm_type: CausalModel): match llm_type: case CausalModel.TEXT_DAVINCI_003 | CausalModel.TEXT_CURIE_001 | CausalModel.TEXT_BABBAGE_001 | CausalModel.TEXT_ADA_001: llm= OpenAI case CausalModel.GPT_3_5_TURBO: llm= OpenAIChat case _: raise NotImplementedError return llm
[]