date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518172538.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt.split('[')[1]) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518175218.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://www.nytimes.com/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"published\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["published"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"published\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518171745.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:15000] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.write(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623010531.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input_example = "https://news.yahoo.com" # url_input_example = "https://laion.ai/blog/" # OK # url_input_example = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input_example = "https://www.theguardian.com/international" #OK # url_input_example = "https://www.bloomberg.com/europe" #NOK # url_input_example = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK ### USER INPUT HERE if validators.url(url_input_example): url_to_watch = st.text_input("Input your URL here", url_input_example) ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") st.header("ERROR : The URL is not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" topic_of_interest = st.text_input("What is your topic of interest ?","Ukraine War")#UI empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists #else: print("not relevant") empty_list.append(new_item) output_json = json.dumps(empty_list, indent=4) ### UI OUTPUT HERE st.json(output_json) for j in output_json: print(j) # st.header(article["title"]) # st.text(article["date"]) with open("output.json", "w") as outfile: outfile.write(output_json)
[ "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "sentence1", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518164950.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) for article in parsed_articles: print(article["title"]) #st.write(article["title"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518164841.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) for article in parsed_articles: st.write(article["title"]) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518175426.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://www.lemonde.fr/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518175655.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623005856.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input = "https://news.yahoo.com" # url_input = "https://laion.ai/blog/" # OK # url_input = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input = "https://www.theguardian.com/international" #OK # url_input = "https://www.bloomberg.com/europe" #NOK # url_input = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK ### USER INPUT HERE if validators.url(url_input): url_to_watch = st.text_input("Input your URL here", url_input) ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" topic_of_interest = "Ukraine War" empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists #else: print("not relevant") empty_list.append(new_item) output_json = json.dumps(empty_list, indent=4) ### UI OUTPUT HERE with open("output.json", "w") as outfile: outfile.write(output_json)
[ "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "sentence1", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518171512.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:15000] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518180554.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518172459.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt.split('[')[1]) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160851.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(webpage="colorful socks") result_from_chatgpt = llm(prompt_to_send) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}", "colorful socks" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160703.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template=r"In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(product="colorful socks") result_from_chatgpt = llm(prompt_to_send) st.write(result_from_chatgpt)
[ "colorful socks", "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \\n webpage : {webpage}" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623010835.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input_example = "https://news.yahoo.com" # url_input_example = "https://laion.ai/blog/" # OK # url_input_example = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input_example = "https://www.theguardian.com/international" #OK # url_input_example = "https://www.bloomberg.com/europe" #NOK # url_input_example = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK url_to_watch = st.text_input("Input your URL here", url_input_example) topic_of_interest = st.text_input("What is your topic of interest ?","Ukraine War")#UI ### USER INPUT HERE if validators.url(url_input_example): ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") st.header("ERROR : The URL is not valid") ### UI OUTPUT HERE #st.write("URL not valid") if st.button("Process"): prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists #else: print("not relevant") empty_list.append(new_item) output_json = json.dumps(empty_list, indent=4) ### UI OUTPUT HERE st.json(output_json) for j in output_json: print(j) # st.header(article["title"]) # st.text(article["date"]) with open("output.json", "w") as outfile: outfile.write(output_json)
[ "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "sentence1", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518161350.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text.\ webpage : {webpage}", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. webpage : {webpage}" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518171523.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:15000] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518170605.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.title(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518175014.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://www.nytimes.com/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
scrapping.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values from googlesearch import search #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #st.json(parsed_articles) text_to_watch_for = st.text_input("What should we look for ?","ex. investments or Taiwan")#UI for article in parsed_articles: print("--------------------------") print(article["title"]) query = article["title"] for j in search(query, tld="co.in", num=1, stop=1, pause=2): print(j) st.header(article["title"]) st.text(article["date"]) #TODO : Do a google search limited to the websited given, of the articles, get their content #TODO : Add a field to ask a quetion (maybe multiple choice field) #TODO : Ask the article and the question to Chatgpt #TODO : Display results to the user #TODO :
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623004823.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env")
[]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518175055.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://www.nytimes.com/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "")1 print(result_from_chatgpt) file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518172650.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt.split('\\[')[1]) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160126.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) file_path = "output.txt" # Open the file in write mode and write the text content with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[ "What is a good name for a company that makes {product}?" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623005130.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title): search = article_title url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0.9) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] prompt_news = "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) parsed_articles = json.loads(result_from_chatgpt) for article in parsed_articles: print("--------------------------") print(article["title"]) query = article["title"] for j in search(query, tld="co.in", num=1, stop=1, pause=2): print(j) st.header(article["title"]) st.text(article["date"]) st.json(json.dumps(json.loads(result_from_chatgpt), indent=4))
[ "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text.", "\"{prompt_text}\" webpage : \"{webpage}\"", "prompt_text" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518175539.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://www.latimes.com/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160235.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[ "What is a good name for a company that makes {product}?" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160157.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Web Scrapping file_path = "output.txt" # Open the file in write mode and write the text content with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[ "What is a good name for a company that makes {product}?" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623010123.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input = "https://news.yahoo.com" # url_input = "https://laion.ai/blog/" # OK # url_input = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input = "https://www.theguardian.com/international" #OK # url_input = "https://www.bloomberg.com/europe" #NOK # url_input = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK ### USER INPUT HERE if validators.url(url_input): url_to_watch = st.text_input("Input your URL here", url_input) ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" topic_of_interest = st.text_input("What is your topic of interest ?","Ukraine War")#UI empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists #else: print("not relevant") empty_list.append(new_item) output_json = json.dumps(empty_list, indent=4) st.json(output_json) ### UI OUTPUT HERE with open("output.json", "w") as outfile: outfile.write(output_json)
[ "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "sentence1", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623004953.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title): search = article_title url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0.9) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] prompt_news = "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) print(json.dumps(json.loads(result_from_chatgpt), indent=4)) #print(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text.", "\"{prompt_text}\" webpage : \"{webpage}\"", "prompt_text" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518170516.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.title(article["title"]) st.title(article["title"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518170209.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() print(dotenv_values(".env")) def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key="OPENAI_API_KEY",temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) #st.write(article["title"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518174625.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518175100.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://www.nytimes.com/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518171509.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way lst = text_from_webpage[:15000] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623005939.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input = "https://news.yahoo.com" # url_input = "https://laion.ai/blog/" # OK # url_input = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input = "https://www.theguardian.com/international" #OK # url_input = "https://www.bloomberg.com/europe" #NOK # url_input = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK ### USER INPUT HERE if validators.url(url_input): url_to_watch = st.text_input("Input your URL here", url_input) ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" topic_of_interest = "Ukraine War" empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists #else: print("not relevant") empty_list.append(new_item) output_json = json.dumps(empty_list, indent=4) st.json(output_json) ### UI OUTPUT HERE with open("output.json", "w") as outfile: outfile.write(output_json)
[ "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "sentence1", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518175347.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://www.nytimes.com/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160748.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(product="colorful socks") result_from_chatgpt = llm(prompt_to_send) st.write(result_from_chatgpt)
[ "colorful socks", "What is a good name for a company that makes {product}?" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518164708.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_data = json.loads(result_from_chatgpt) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623005121.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title): search = article_title url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0.9) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] prompt_news = "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) parsed_articles = json.loads(result_from_chatgpt) for article in parsed_articles: print("--------------------------") print(article["title"]) query = article["title"] for j in search(query, tld="co.in", num=1, stop=1, pause=2): print(j) st.header(article["title"]) st.text(article["date"]) st.json(json.dumps(json.loads(result_from_chatgpt), indent=4)) print(json.dumps(json.loads(result_from_chatgpt), indent=4)) #print(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text.", "\"{prompt_text}\" webpage : \"{webpage}\"", "prompt_text" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160321.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles, and their publication dates. in Json format. webpage : {webpage}?",) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[ "In this web page, can you find a pattern, list all the articles, and their publication dates. in Json format. webpage : {webpage}?" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160230.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" # Open the file in write mode and write the text content with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[ "What is a good name for a company that makes {product}?" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160012.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) file_path = "output.txt" # Open the file in write mode and write the text content with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623005115.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title): search = article_title url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0.9) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] prompt_news = "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) parsed_articles = json.loads(result_from_chatgpt) st.json(json.dumps(json.loads(result_from_chatgpt), indent=4)) for article in parsed_articles: print("--------------------------") print(article["title"]) query = article["title"] for j in search(query, tld="co.in", num=1, stop=1, pause=2): print(j) st.header(article["title"]) st.text(article["date"]) print(json.dumps(json.loads(result_from_chatgpt), indent=4)) #print(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text.", "\"{prompt_text}\" webpage : \"{webpage}\"", "prompt_text" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518155958.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) file_path = "output.txt" # Open the file in write mode and write the text content with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518175213.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://www.nytimes.com/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"published\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"published\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518170857.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \'date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", 'date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518165443.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) #st.write(article["title"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518164849.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) for article in parsed_articles: st.write(article["title"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623005639.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title): search = article_title url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0.9) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] prompt_news = "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) parsed_articles = json.loads(result_from_chatgpt) for article in parsed_articles: print("--------------------------") print(article["title"]) query = article["title"] for j in search(query, tld="co.in", num=1, stop=1, pause=2): print(j) st.header(article["title"]) st.text(article["date"]) st.json(json.dumps(json.loads(result_from_chatgpt), indent=4))
[ "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text.", "\"{prompt_text}\" webpage : \"{webpage}\"", "prompt_text" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518170900.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160858.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518161605.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text.\ webpage : {webpage}", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. webpage : {webpage}" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160336.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. in Json format. webpage : {webpage}",) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[ "In this web page, can you find a pattern, list all the articles and their publication dates. in Json format. webpage : {webpage}" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160114.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) file_path = "output.txt" # Open the file in write mode and write the text content with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518161229.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text.\ webpage : {webpage}", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. webpage : {webpage}" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518161842.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518171759.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:15000] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518175241.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://www.nytimes.com/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518171250.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) print(f'AAAAAAAAAAAAAAAAAAAAAAAAAAa {len(text_from_webpage)}') #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623005032.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title): search = article_title url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0.9) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] prompt_news = "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) st.json(json.dumps(json.loads(result_from_chatgpt), indent=4)) print(json.dumps(json.loads(result_from_chatgpt), indent=4)) #print(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text.", "\"{prompt_text}\" webpage : \"{webpage}\"", "prompt_text" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160408.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. in Json format. webpage : {webpage}",) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(product="colorful socks") print(llm(prompt_to_send)) st.write('The current movie title is')
[ "colorful socks", "In this web page, can you find a pattern, list all the articles and their publication dates. in Json format. webpage : {webpage}" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518164332.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 5. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 5. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518170632.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160929.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. webpage : {webpage}", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. webpage : {webpage}" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160939.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text.\ webpage : {webpage}", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. webpage : {webpage}" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518172742.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518172653.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt.split('\\[')[1]) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518165318.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) #st.write(article["title"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160327.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles, and their publication dates. in Json format. webpage : {webpage}",) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[ "In this web page, can you find a pattern, list all the articles, and their publication dates. in Json format. webpage : {webpage}" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230519010102.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"]) #TODO : Do a google search limited to the websited given, of the articles, get their content #TODO : Add a field to ask a quetion (maybe multiple choice field) #TODO : Ask the article and the question to Chatgpt #TODO : Display results to the user #TODO :
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623010227.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input_example = "https://news.yahoo.com" # url_input_example = "https://laion.ai/blog/" # OK # url_input_example = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input_example = "https://www.theguardian.com/international" #OK # url_input_example = "https://www.bloomberg.com/europe" #NOK # url_input_example = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK ### USER INPUT HERE if validators.url(url_input_example): url_to_watch = st.text_input("Input your URL here", url_input_example) ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" topic_of_interest = st.text_input("What is your topic of interest ?","Ukraine War")#UI empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists #else: print("not relevant") empty_list.append(new_item) output_json = json.dumps(empty_list, indent=4) st.json(output_json) ### UI OUTPUT HERE with open("output.json", "w") as outfile: outfile.write(output_json)
[ "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "sentence1", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623010114.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input = "https://news.yahoo.com" # url_input = "https://laion.ai/blog/" # OK # url_input = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input = "https://www.theguardian.com/international" #OK # url_input = "https://www.bloomberg.com/europe" #NOK # url_input = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK ### USER INPUT HERE if validators.url(url_input): url_to_watch = st.text_input("Input your URL here", url_input) ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" topic_of_interest = "Ukraine War" text_to_watch_for = st.text_input("What is your topic of interest ?","Ukraine War")#UI empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists #else: print("not relevant") empty_list.append(new_item) output_json = json.dumps(empty_list, indent=4) st.json(output_json) ### UI OUTPUT HERE with open("output.json", "w") as outfile: outfile.write(output_json)
[ "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "sentence1", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518172707.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt.split('\\[')[0]) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518171321.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://www.lemonde.fr/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) print(f'AAAAAAAAAAAAAAAAAAAAAAAAAAa {len(text_from_webpage)}') #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518180145.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160144.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) file_path = "output.txt" # Open the file in write mode and write the text content with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) st.write('The current movie title is')
[ "What is a good name for a company that makes {product}?" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623005656.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/") ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] prompt_news = "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) parsed_articles = json.loads(result_from_chatgpt) for article in parsed_articles: print("--------------------------") print(article["title"]) query = article["title"] for j in search(query, tld="co.in", num=1, stop=1, pause=2): print(j) st.header(article["title"]) st.text(article["date"]) st.json(json.dumps(json.loads(result_from_chatgpt), indent=4))
[ "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "In this web page, can you find a pattern, list all the article titles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text.", "sentence1", "prompt_text", "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n " ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518170334.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.write(article["title"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518170351.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.write(article["title"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518164523.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518163237.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 5. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 5. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230519010612.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"]) #TODO : Do a google search limited to the websited given, of the articles, get their content #TODO : Add a field to ask a quetion (maybe multiple choice field) #TODO : Ask the article and the question to Chatgpt #TODO : Display results to the user #TODO :
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623010721.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input_example = "https://news.yahoo.com" # url_input_example = "https://laion.ai/blog/" # OK # url_input_example = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input_example = "https://www.theguardian.com/international" #OK # url_input_example = "https://www.bloomberg.com/europe" #NOK # url_input_example = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK url_to_watch = st.text_input("Input your URL here", url_input_example) ### USER INPUT HERE if validators.url(url_input_example): ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") st.header("ERROR : The URL is not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" topic_of_interest = st.text_input("What is your topic of interest ?","Ukraine War")#UI empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists #else: print("not relevant") empty_list.append(new_item) output_json = json.dumps(empty_list, indent=4) ### UI OUTPUT HERE st.json(output_json) for j in output_json: print(j) # st.header(article["title"]) # st.text(article["date"]) with open("output.json", "w") as outfile: outfile.write(output_json)
[ "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "sentence1", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623010745.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input_example = "https://news.yahoo.com" # url_input_example = "https://laion.ai/blog/" # OK # url_input_example = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input_example = "https://www.theguardian.com/international" #OK # url_input_example = "https://www.bloomberg.com/europe" #NOK # url_input_example = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK url_to_watch = st.text_input("Input your URL here", url_input_example) topic_of_interest = st.text_input("What is your topic of interest ?","Ukraine War")#UI ### USER INPUT HERE if validators.url(url_input_example): ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") st.header("ERROR : The URL is not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists #else: print("not relevant") empty_list.append(new_item) output_json = json.dumps(empty_list, indent=4) ### UI OUTPUT HERE st.json(output_json) for j in output_json: print(j) # st.header(article["title"]) # st.text(article["date"]) with open("output.json", "w") as outfile: outfile.write(output_json)
[ "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "sentence1", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623010413.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input_example = "https://news.yahoo.com" # url_input_example = "https://laion.ai/blog/" # OK # url_input_example = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input_example = "https://www.theguardian.com/international" #OK # url_input_example = "https://www.bloomberg.com/europe" #NOK # url_input_example = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK ### USER INPUT HERE if validators.url(url_input_example): url_to_watch = st.text_input("Input your URL here", url_input_example) ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") st.header("ERROR : The URL is not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" topic_of_interest = st.text_input("What is your topic of interest ?","Ukraine War")#UI empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists #else: print("not relevant") empty_list.append(new_item) output_json = json.dumps(empty_list, indent=4) st.json(output_json) ### UI OUTPUT HERE with open("output.json", "w") as outfile: outfile.write(output_json)
[ "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "sentence1", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518164833.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) for article in parsed_articles : st.write(article["title"]) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518170321.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) #st.write(article["title"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
gui.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators import hashlib ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input_example = "https://news.yahoo.com" # url_input_example = "https://laion.ai/blog/" # OK # url_input_example = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input_example = "https://www.theguardian.com/international" #OK # url_input_example = "https://www.bloomberg.com/europe" #NOK # url_input_example = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK key_pass = st.text_input("Input your keypass here") password_is_correct = False; hashed = hashlib.md5(key_pass.encode()) if hashed.hexdigest() == "a525a0ff61ed4cd44e2068f7c71cad4b": password_is_correct = True; url_to_watch = st.text_input("Input your URL here", url_input_example) topic_of_interest = st.text_input("What is your topic of interest ?","Ukraine War")#UI ### USER INPUT HERE if validators.url(url_input_example): ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") st.header("ERROR : The URL is not valid") ### UI OUTPUT HERE #st.write("URL not valid") if st.button("Process") and password_is_correct: prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #with open('final_output.json', 'w') as f: # print("The json file is created") ### USER INPUT HERE #topic_of_interest = "Should AI be open sourced?" empty_list = [] i = 0 for item in json.loads(result_from_chatgpt_processed): i+=1 output_filename = "article_text"+str(i)+".txt" article_title = item['title'] article_link = get_link_based_on_article_name_via_google(article_title, url_to_watch) new_item = { 'title': item['title'], 'metadata': item['metadata'], 'link': article_link, } relation_exists = prompt_similarity_to_llm_response(article_title,topic_of_interest) if relation_exists == "strongly agree" or relation_exists == "agree" : article_text = process_website(article_link, output_filename) # Summarize article prompt_article = "Summarize the following text in 3 sentences: " article_summary = prompt_to_llm_response(article_text,prompt_article) # Answer the question prompt_content = "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence".format(topic_of_interest) user_question_answer = prompt_to_llm_response(article_text,prompt_content) new_item["summary"]=article_summary new_item["answer"]=user_question_answer new_item["related?"]=relation_exists empty_list.append(new_item) #else: print("not relevant") output_json = json.dumps(empty_list, indent=4) ### UI OUTPUT HERE if len(empty_list)==0: st.text("No relevant article found") else: st.text("Here are the articles related to the question above, in the latest five articles.") st.json(output_json) for j in output_json: pass #print(j) # st.header(article["title"]) # st.text(article["date"]) with open("output.json", "w") as outfile: outfile.write(output_json)
[ "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "sentence2", "\"{prompt_text}\" webpage : \"{webpage}\"", "If user input is a question provide an answer, otherwise summarise content relevant to the input topic. Answer in one sentence", "prompt_text", "sentence1", "Summarize the following text in 3 sentences: ", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160630.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(product="colorful socks") result_from_chatgpt = llm(prompt_to_send) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}", "colorful socks" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160426.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. webpage : {webpage}",) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(product="colorful socks") print(llm(prompt_to_send)) st.write('The current movie title is')
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. webpage : {webpage}", "colorful socks" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160744.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}", ) prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(product="colorful socks") result_from_chatgpt = llm(prompt_to_send) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}", "colorful socks", "What is a good name for a company that makes {product}?" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623005851.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input = "https://news.yahoo.com" # url_input = "https://laion.ai/blog/" # OK # url_input = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input = "https://www.theguardian.com/international" #OK # url_input = "https://www.bloomberg.com/europe" #NOK # url_input = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK ### USER INPUT HERE if validators.url(url_input): url_to_watch = st.text_input("Input your URL here", url_input) ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) file_path = "gpt_out.txt" parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path)
[ "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "\"{prompt_text}\" webpage : \"{webpage}\"", "sentence2", "prompt_text", "sentence1", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518171723.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:15000] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160457.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}",) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(product="colorful socks") result_from_chatgpt = llm(prompt_to_send)) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}", "colorful socks" ]
2024-01-10
ilisparrow/llm_tests
.history~gui_20230623005814.py
## IMPORTS from bs4 import BeautifulSoup # Importing BeautifulSoup for HTML parsing from bs4.element import Comment # Importing Comment class for extracting comments from HTML import urllib.request # Importing urllib.request for making HTTP requests import streamlit as st # Importing streamlit for building interactive web apps import os # Importing os for accessing operating system functionalities from dotenv import load_dotenv # Importing load_dotenv for loading environment variables from langchain.llms import OpenAI # Importing OpenAI class from langchain.llms module from langchain.prompts import PromptTemplate # Importing PromptTemplate class from langchain.prompts module import json # Importing json module for working with JSON data from dotenv import dotenv_values # Importing dotenv_values for loading environment variables from .env file from googlesearch import search # Importing search function from googlesearch module import requests # Importing requests module for making HTTP requests import unicodedata import validators ## SETUP ENVIRONMENT VARIABLES load_dotenv() env_vars = dotenv_values(".env") ## Define system relevant input data for application HARD_LIMIT_CHAR = 10000 ## Functions def tag_visible(element): excluded_tags = ['a', 'style', 'script', 'head', 'title', 'meta', '[document]'] if element.parent.name in excluded_tags: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.find_all(text=tag_visible) visible_texts = [t.strip() for t in texts if t.strip()] return " ".join(visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results ## Process website and save content to file def process_website(url, output_file_name): html = urllib.request.urlopen(url).read() text_from_webpage = text_from_html(html) text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] # Logging file_path = output_file_name with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) return text_from_webpage def get_link_based_on_article_name_via_google(article_title, url_to_watch): search = article_title + " " + url_to_watch url = 'https://www.google.com/search' headers = { 'Accept' : '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82', } parameters = {'q': search} content = requests.get(url, headers = headers, params = parameters).text soup = BeautifulSoup(content, 'html.parser') search = soup.find(id = 'search') first_link = search.find('a') article_link= first_link['href'] return first_link['href'] def prompt_to_llm_response(text_from_webpage, prompt_input): prompt = PromptTemplate( input_variables=["webpage", "prompt_text"], template="\"{prompt_text}\" \ webpage : \"{webpage}\"", ) prompt_to_send = prompt.format(webpage=text_from_webpage, prompt_text=prompt_input) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","") return result_from_chatgpt def prompt_similarity_to_llm_response(sentence1, sentence2): prompt = PromptTemplate( input_variables=["sentence1", "sentence2"], template=""" Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? Answer with one of [strongly agree, agree, disagree, strongly disagree] only. Sentence 1: {sentence1} Sentence 2: {sentence2} """, ) prompt_to_send = prompt.format(sentence1=sentence1, sentence2=sentence2) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'], temperature=0) result_from_chatgpt = llm(prompt_to_send).replace("\n", "").replace("Answer:","").lower() return result_from_chatgpt ## Web Scrapping url_input = "https://news.yahoo.com" # url_input = "https://laion.ai/blog/" # OK # url_input = "https://www.euronews.com/tag/artificial-intelligence" # NOK # url_input = "https://www.theguardian.com/international" #OK # url_input = "https://www.bloomberg.com/europe" #NOK # url_input = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en" # OK ### USER INPUT HERE if validators.url(url_input): url_to_watch = st.text_input("Input your URL here", url_input) ## Process website and save content to file text_from_webpage = process_website(url_to_watch, "output.txt") text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] else: print("URL not valid") ### UI OUTPUT HERE #st.write("URL not valid") prompt_news = "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." result_from_chatgpt = prompt_to_llm_response(text_from_webpage,prompt_news) result_from_chatgpt_processed = result_from_chatgpt.encode('ascii', 'ignore') print(json.dumps(json.loads(result_from_chatgpt_processed), indent=4)) #print(result_from_chatgpt) for article in result_from_chatgpt_processed: print("--------------------------") print(article["title"]) query = article["title"] for j in search(query, tld="co.in", num=1, stop=1, pause=2): print(j) st.header(article["title"]) st.text(article["date"]) st.json(json.dumps(json.loads(result_from_chatgpt), indent=4))
[ "\n Compare the content of the following two sentences. Could sentence 1 be relevant for a person interested in sentence 2? \n Answer with one of [strongly agree, agree, disagree, strongly disagree] only.\n\n Sentence 1: {sentence1}\n Sentence 2: {sentence2}\n ", "\"{prompt_text}\" webpage : \"{webpage}\"", "sentence2", "prompt_text", "sentence1", "Below is an html version of a news website. It contains news articles. Find the titles of news articles on this website. Do not make up article titles. List all the article titles and their metadata if it exists like date or author. Limit yourself to the first 5. In JSON format, using these keys \"title\", \"metadata\". No Other text." ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518160432.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text) print("Variable content saved to the file:", file_path) #LLM part prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}",) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(product="colorful socks") print(llm(prompt_to_send)) st.write('The current movie title is')
[ "In this web page, can you find a pattern, list all the articles and their publication dates. In Json format. No Other text. \n webpage : {webpage}", "colorful socks" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518163144.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 5. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.7) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 5. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518164423.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518170200.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json #Setup env vars : load_dotenv() print(dotenv_values(".env")) def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key="OPENAI_API_KEY",temperature=0.0) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) load_dotenv() parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) for article in parsed_articles: print(article["title"]) #st.write(article["title"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 2. In Json format. No Other text. webpage : \"{webpage}\"" ]