date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230519010534.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) def extract_json_values(input_str): results = [] while input_str: try: value = json.loads(input_str) input_str = "" except json.decoder.JSONDecodeError as exc: if str(exc).startswith("Expecting value"): input_str = input_str[exc.pos+1:] continue elif str(exc).startswith("Extra data"): value = json.loads(input_str[:exc.pos]) input_str = input_str[exc.pos:] results.append(value) return results #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") print(result_from_chatgpt) file_path = "gpt_out.txt" #parsed_articles = json.loads(result_from_chatgpt) #Logging file_path = "output_gpt.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) #st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"]) #TODO : Do a google search limited to the websited given, of the articles, get their content #TODO : Add a field to ask a quetion (maybe multiple choice field) #TODO : Ask the article and the question to Chatgpt #TODO : Display results to the user #TODO :
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Do not mix the date with the reading time. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518162731.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate #Setup env vars : load_dotenv() def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 5. In Json format. No Other text.\ webpage : \"{webpage}\"", ) llm = OpenAI(temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") st.write(result_from_chatgpt)
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 5. In Json format. No Other text. webpage : \"{webpage}\"" ]
2024-01-10
ilisparrow/llm_tests
.history~scrapping_20230518172729.py
from bs4 import BeautifulSoup from bs4.element import Comment import urllib.request import streamlit as st import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.prompts import PromptTemplate import json from dotenv import dotenv_values #Setup env vars : load_dotenv() HARD_LIMIT_CHAR = 10000 env_vars = dotenv_values(".env") def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def text_from_html(body): soup = BeautifulSoup(body, 'html.parser') texts = soup.findAll(text=True) visible_texts = filter(tag_visible, texts) return u" ".join(t.strip() for t in visible_texts) #TODO : DO URL Check and show message when not valid #Web Scrapping and url_to_watch = st.text_input("Input your url here","https://laion.ai/blog/")#UI html = urllib.request.urlopen(url_to_watch).read() text_from_webpage = text_from_html(html) #TODO : Fixe this limit, in a smarter way text_from_webpage = text_from_webpage[:HARD_LIMIT_CHAR] #Logging file_path = "output.txt" with open(file_path, "w") as file: file.write(text_from_webpage) print("Variable content saved to the file:", file_path) #LLM part #if st.button('Analyze'): prompt = PromptTemplate( input_variables=["webpage"], template="In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. \ webpage : \"{webpage}\"", ) llm = OpenAI(openai_api_key=env_vars['OPENAI_API_KEY'],temperature=0.9) prompt_to_send = prompt.format(webpage=text_from_webpage) result_from_chatgpt = llm(prompt_to_send).replace("\n", "") file_path = "gpt_out.txt" with open(file_path, "w") as file: file.write(result_from_chatgpt) print("Variable content saved to the file:", file_path) parsed_articles = json.loads(result_from_chatgpt) json_object = json.dumps(parsed_articles, indent=4) # Writing to sample.json with open("sample.json", "w") as outfile: outfile.write(json_object) st.json(parsed_articles) for article in parsed_articles: print(article["title"]) st.header(article["title"]) st.text(article["date"])
[ "In this web page, can you find a pattern, list all the articles and their publication dates. Limit yourself to the first 3. In Json format, using these keys \"title\", \"date\". No Other text. webpage : \"{webpage}\"" ]
2024-01-10
victoireladreit/epf-ptp-docker-chatgpt-lab-main
hello.py
from flask import Flask,request import os import openai app = Flask(__name__) openai.api_key = os.environ.get('OPENAI_KEY') @app.route('/') def index(): return "<h1>Hello, World!</h1>" @app.route('/chatgpt') def chatgpt(): args = request.args message =args.get("message") print(message) completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": message}] ) return completion['choices'][0]['message']['content'] @app.route('/generate_code') def generate_code(): # get user input language = request.args.get('language') content = request.args.get('content') # create code using OpenAI completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": f"Generate {language} code: {content}"}] ) return completion['choices'][0]['message']['content']
[ "Generate PLACEHOLDER code: PLACEHOLDER" ]
2024-01-10
bettkipkemoi/meme_generator
meme.py
import streamlit as st import requests import openai import random st.set_page_config(page_title="Meme Generator", page_icon=":laughing:") # Set your Unsplash API key here UNSPLASH_API_KEY = "YOUR_API_KEY" # Set your OpenAI GPT-3 API key here GPT3_API_KEY = "YOUR_API_KEY" # Function to generate a meme caption using GPT-3 def generate_meme_caption(prompt): openai.api_key = GPT3_API_KEY response = openai.Completion.create( engine="davinci", prompt=prompt, max_tokens=30, ) return response.choices[0].text # Function to fetch a random image from Unsplash def get_random_image(query): headers = { "Authorization": f"Client-ID {UNSPLASH_API_KEY}", } params = { "query": query, "per_page": 1, } response = requests.get("https://api.unsplash.com/photos/random", headers=headers, params=params) if response.status_code == 200: return response.json() else: return None # Streamlit UI st.title("Meme Generator") st.sidebar.title("Generate Your Meme") # Input for the meme topic meme_topic = st.sidebar.text_input("Meme Topic", "funny cats") # Button to generate a meme if st.sidebar.button("Generate Meme"): # Fetch a random image image_data = get_random_image(meme_topic) if image_data: image_url = image_data["urls"]["regular"] st.image(image_url, caption="Your Random Image") # Generate a meme caption meme_caption = generate_meme_caption(f"Create a meme about {meme_topic}.") st.write("Meme Caption:", meme_caption) else: st.warning("Unable to fetch an image. Please try again with a different topic.") # Add a footer st.sidebar.markdown("Created by Your Name") # Run the app if __name__ == '__main__': st.write("Welcome to the Meme Generator!")
[]
2024-01-10
silasfelinus/serendipity
wip~chatbot~messaging_manager.py
#./app/chatbot/messaging_manager.py from app.chatbot.prompt_builder import PromptBuilder import openai import requests class MessagingManager: def __init__(self, bot_config): self.bot_config = bot_config self.api_key = self.bot_config.get_api_key() def send_message(self, message, chatbot_id): headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {self.api_key}' } payload = { 'prompt': message, 'temperature': self.bot_config.get_config('temperature'), 'max_tokens': self.bot_config.get_config('max_tokens'), 'top_p': self.bot_config.get_config('top_p'), 'frequency_penalty': self.bot_config.get_config('frequency_penalty'), 'presence_penalty': self.bot_config.get_config('presence_penalty'), 'stop': self.bot_config.get_config('stop') } response = requests.post( f'https://api.openai.com/v1/chatbots/{chatbot_id}/messages', headers=headers, json=payload ) response_data = response.json() if response.status_code != 200: error_message = response_data.get('error', {}).get('message', 'Unknown error') raise ValueError(f'Failed to send message to chatbot: {error_message}') return response_data['choices'][0]['text']
[]
2024-01-10
OlivierDehaene/langchain
langchain~text_splitter.py
"""Functionality for splitting text.""" from __future__ import annotations import logging from abc import ABC, abstractmethod from typing import Any, Callable, Iterable, List, Optional from langchain.docstore.document import Document logger = logging.getLogger() class TextSplitter(ABC): """Interface for splitting text into chunks.""" def __init__( self, chunk_size: int = 4000, chunk_overlap: int = 200, length_function: Callable[[str], int] = len, ): """Create a new TextSplitter.""" if chunk_overlap > chunk_size: raise ValueError( f"Got a larger chunk overlap ({chunk_overlap}) than chunk size " f"({chunk_size}), should be smaller." ) self._chunk_size = chunk_size self._chunk_overlap = chunk_overlap self._length_function = length_function @abstractmethod def split_text(self, text: str) -> List[str]: """Split text into multiple components.""" def create_documents( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> List[Document]: """Create documents from a list of texts.""" _metadatas = metadatas or [{}] * len(texts) documents = [] for i, text in enumerate(texts): for chunk in self.split_text(text): documents.append(Document(page_content=chunk, metadata=_metadatas[i])) return documents def _join_docs(self, docs: List[str], separator: str) -> Optional[str]: text = separator.join(docs) text = text.strip() if text == "": return None else: return text def _merge_splits(self, splits: Iterable[str], separator: str) -> List[str]: # We now want to combine these smaller pieces into medium size # chunks to send to the LLM. docs = [] current_doc: List[str] = [] total = 0 for d in splits: _len = self._length_function(d) if total + _len >= self._chunk_size: if total > self._chunk_size: logger.warning( f"Created a chunk of size {total}, " f"which is longer than the specified {self._chunk_size}" ) if len(current_doc) > 0: doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) # Keep on popping if: # - we have a larger chunk than in the chunk overlap # - or if we still have any chunks and the length is long while total > self._chunk_overlap or ( total + _len > self._chunk_size and total > 0 ): total -= self._length_function(current_doc[0]) current_doc = current_doc[1:] current_doc.append(d) total += _len doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) return docs @classmethod def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter: """Text splitter that uses HuggingFace tokenizer to count length.""" try: from transformers import PreTrainedTokenizerBase if not isinstance(tokenizer, PreTrainedTokenizerBase): raise ValueError( "Tokenizer received was not an instance of PreTrainedTokenizerBase" ) def _huggingface_tokenizer_length(text: str) -> int: return len(tokenizer.encode(text)) except ImportError: raise ValueError( "Could not import transformers python package. " "Please it install it with `pip install transformers`." ) return cls(length_function=_huggingface_tokenizer_length, **kwargs) @classmethod def from_tiktoken_encoder( cls, encoding_name: str = "gpt2", **kwargs: Any ) -> TextSplitter: """Text splitter that uses tiktoken encoder to count length.""" try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate max_tokens_for_prompt. " "Please it install it with `pip install tiktoken`." ) # create a GPT-3 encoder instance enc = tiktoken.get_encoding(encoding_name) def _tiktoken_encoder(text: str) -> int: return len(enc.encode(text)) return cls(length_function=_tiktoken_encoder, **kwargs) class CharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters.""" def __init__(self, separator: str = "\n\n", **kwargs: Any): """Create a new TextSplitter.""" super().__init__(**kwargs) self._separator = separator def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. if self._separator: splits = text.split(self._separator) else: splits = list(text) return self._merge_splits(splits, self._separator) class TokenTextSplitter(TextSplitter): """Implementation of splitting text that looks at tokens.""" def __init__(self, encoding_name: str = "gpt2", **kwargs: Any): """Create a new TextSplitter.""" super().__init__(**kwargs) try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to for TokenTextSplitter. " "Please it install it with `pip install tiktoken`." ) # create a GPT-3 encoder instance self._tokenizer = tiktoken.get_encoding(encoding_name) def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = [] input_ids = self._tokenizer.encode(text) start_idx = 0 cur_idx = min(start_idx + self._chunk_size, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] while start_idx < len(input_ids): splits.append(self._tokenizer.decode(chunk_ids)) start_idx += self._chunk_size - self._chunk_overlap cur_idx = min(start_idx + self._chunk_size, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] return splits class RecursiveCharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters. Recursively tries to split by different characters to find one that works. """ def __init__(self, separators: Optional[List[str]] = None, **kwargs: Any): """Create a new TextSplitter.""" super().__init__(**kwargs) self._separators = separators or ["\n\n", "\n", " ", ""] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" final_chunks = [] # Get appropriate separator to use separator = self._separators[-1] for _s in self._separators: if _s == "": separator = _s break if _s in text: separator = _s break # Now that we have the separator, split the text if separator: splits = text.split(separator) else: splits = list(text) # Now go merging things, recursively splitting longer texts. _good_splits = [] for s in splits: if len(s) < self._chunk_size: _good_splits.append(s) else: if _good_splits: merged_text = self._merge_splits(_good_splits, separator) final_chunks.extend(merged_text) _good_splits = [] other_info = self.split_text(s) final_chunks.extend(other_info) if _good_splits: merged_text = self._merge_splits(_good_splits, separator) final_chunks.extend(merged_text) return final_chunks class NLTKTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using NLTK.""" def __init__(self, separator: str = "\n\n", **kwargs: Any): """Initialize the NLTK splitter.""" super().__init__(**kwargs) try: from nltk.tokenize import sent_tokenize self._tokenizer = sent_tokenize except ImportError: raise ImportError( "NLTK is not installed, please install it with `pip install nltk`." ) self._separator = separator def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. splits = self._tokenizer(text) return self._merge_splits(splits, self._separator) class SpacyTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using Spacy.""" def __init__( self, separator: str = "\n\n", pipeline: str = "en_core_web_sm", **kwargs: Any ): """Initialize the spacy text splitter.""" super().__init__(**kwargs) try: import spacy except ImportError: raise ImportError( "Spacy is not installed, please install it with `pip install spacy`." ) self._tokenizer = spacy.load(pipeline) self._separator = separator def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = (str(s) for s in self._tokenizer(text).sents) return self._merge_splits(splits, self._separator)
[]
2024-01-10
OlivierDehaene/langchain
langchain~chains~loading.py
"""Functionality for loading chains.""" import json from pathlib import Path from typing import Any, Union import yaml from langchain.chains.api.base import APIChain from langchain.chains.base import Chain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain from langchain.chains.combine_documents.refine import RefineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.hyde.base import HypotheticalDocumentEmbedder from langchain.chains.llm import LLMChain from langchain.chains.llm_bash.base import LLMBashChain from langchain.chains.llm_checker.base import LLMCheckerChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.llm_requests import LLMRequestsChain from langchain.chains.pal.base import PALChain from langchain.chains.qa_with_sources.base import QAWithSourcesChain from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain from langchain.chains.sql_database.base import SQLDatabaseChain from langchain.chains.vector_db_qa.base import VectorDBQA from langchain.llms.loading import load_llm, load_llm_from_config from langchain.prompts.loading import load_prompt, load_prompt_from_config from langchain.utilities.loading import try_load_from_hub URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/chains/" def _load_llm_chain(config: dict, **kwargs: Any) -> LLMChain: """Load LLM chain from config dict.""" if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") return LLMChain(llm=llm, prompt=prompt, **config) def _load_hyde_chain(config: dict, **kwargs: Any) -> HypotheticalDocumentEmbedder: """Load hypothetical document embedder chain from config dict.""" if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "embeddings" in kwargs: embeddings = kwargs.pop("embeddings") else: raise ValueError("`embeddings` must be present.") return HypotheticalDocumentEmbedder( llm_chain=llm_chain, base_embeddings=embeddings, **config ) def _load_stuff_documents_chain(config: dict, **kwargs: Any) -> StuffDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) else: raise ValueError( "One of `document_prompt` or `document_prompt_path` must be present." ) return StuffDocumentsChain( llm_chain=llm_chain, document_prompt=document_prompt, **config ) def _load_map_reduce_documents_chain( config: dict, **kwargs: Any ) -> MapReduceDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "combine_document_chain" in config: combine_document_chain_config = config.pop("combine_document_chain") combine_document_chain = load_chain_from_config(combine_document_chain_config) elif "combine_document_chain_path" in config: combine_document_chain = load_chain(config.pop("combine_document_chain_path")) else: raise ValueError( "One of `combine_document_chain` or " "`combine_document_chain_path` must be present." ) if "collapse_document_chain" in config: collapse_document_chain_config = config.pop("collapse_document_chain") if collapse_document_chain_config is None: collapse_document_chain = None else: collapse_document_chain = load_chain_from_config( collapse_document_chain_config ) elif "collapse_document_chain_path" in config: collapse_document_chain = load_chain(config.pop("collapse_document_chain_path")) return MapReduceDocumentsChain( llm_chain=llm_chain, combine_document_chain=combine_document_chain, collapse_document_chain=collapse_document_chain, **config, ) def _load_llm_bash_chain(config: dict, **kwargs: Any) -> LLMBashChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) return LLMBashChain(llm=llm, prompt=prompt, **config) def _load_llm_checker_chain(config: dict, **kwargs: Any) -> LLMCheckerChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "create_draft_answer_prompt" in config: create_draft_answer_prompt_config = config.pop("create_draft_answer_prompt") create_draft_answer_prompt = load_prompt_from_config( create_draft_answer_prompt_config ) elif "create_draft_answer_prompt_path" in config: create_draft_answer_prompt = load_prompt( config.pop("create_draft_answer_prompt_path") ) if "list_assertions_prompt" in config: list_assertions_prompt_config = config.pop("list_assertions_prompt") list_assertions_prompt = load_prompt_from_config(list_assertions_prompt_config) elif "list_assertions_prompt_path" in config: list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path")) if "check_assertions_prompt" in config: check_assertions_prompt_config = config.pop("check_assertions_prompt") check_assertions_prompt = load_prompt_from_config( check_assertions_prompt_config ) elif "check_assertions_prompt_path" in config: check_assertions_prompt = load_prompt( config.pop("check_assertions_prompt_path") ) if "revised_answer_prompt" in config: revised_answer_prompt_config = config.pop("revised_answer_prompt") revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config) elif "revised_answer_prompt_path" in config: revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path")) return LLMCheckerChain( llm=llm, create_draft_answer_prompt=create_draft_answer_prompt, list_assertions_prompt=list_assertions_prompt, check_assertions_prompt=check_assertions_prompt, revised_answer_prompt=revised_answer_prompt, **config, ) def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) return LLMMathChain(llm=llm, prompt=prompt, **config) def _load_map_rerank_documents_chain( config: dict, **kwargs: Any ) -> MapRerankDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") return MapRerankDocumentsChain(llm_chain=llm_chain, **config) def _load_pal_chain(config: dict, **kwargs: Any) -> PALChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") return PALChain(llm=llm, prompt=prompt, **config) def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain: if "initial_llm_chain" in config: initial_llm_chain_config = config.pop("initial_llm_chain") initial_llm_chain = load_chain_from_config(initial_llm_chain_config) elif "initial_llm_chain_path" in config: initial_llm_chain = load_chain(config.pop("initial_llm_chain_path")) else: raise ValueError( "One of `initial_llm_chain` or `initial_llm_chain_config` must be present." ) if "refine_llm_chain" in config: refine_llm_chain_config = config.pop("refine_llm_chain") refine_llm_chain = load_chain_from_config(refine_llm_chain_config) elif "refine_llm_chain_path" in config: refine_llm_chain = load_chain(config.pop("refine_llm_chain_path")) else: raise ValueError( "One of `refine_llm_chain` or `refine_llm_chain_config` must be present." ) if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) return RefineDocumentsChain( initial_llm_chain=initial_llm_chain, refine_llm_chain=refine_llm_chain, document_prompt=document_prompt, **config, ) def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain: if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config) def _load_sql_database_chain(config: dict, **kwargs: Any) -> SQLDatabaseChain: if "database" in kwargs: database = kwargs.pop("database") else: raise ValueError("`database` must be present.") if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) return SQLDatabaseChain(database=database, llm=llm, prompt=prompt, **config) def _load_vector_db_qa_with_sources_chain( config: dict, **kwargs: Any ) -> VectorDBQAWithSourcesChain: if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQAWithSourcesChain( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA: if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQA( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_api_chain(config: dict, **kwargs: Any) -> APIChain: if "api_request_chain" in config: api_request_chain_config = config.pop("api_request_chain") api_request_chain = load_chain_from_config(api_request_chain_config) elif "api_request_chain_path" in config: api_request_chain = load_chain(config.pop("api_request_chain_path")) else: raise ValueError( "One of `api_request_chain` or `api_request_chain_path` must be present." ) if "api_answer_chain" in config: api_answer_chain_config = config.pop("api_answer_chain") api_answer_chain = load_chain_from_config(api_answer_chain_config) elif "api_answer_chain_path" in config: api_answer_chain = load_chain(config.pop("api_answer_chain_path")) else: raise ValueError( "One of `api_answer_chain` or `api_answer_chain_path` must be present." ) if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") else: raise ValueError("`requests_wrapper` must be present.") return APIChain( api_request_chain=api_request_chain, api_answer_chain=api_answer_chain, requests_wrapper=requests_wrapper, **config, ) def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") return LLMRequestsChain( llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config ) else: return LLMRequestsChain(llm_chain=llm_chain, **config) type_to_loader_dict = { "api_chain": _load_api_chain, "hyde_chain": _load_hyde_chain, "llm_chain": _load_llm_chain, "llm_bash_chain": _load_llm_bash_chain, "llm_checker_chain": _load_llm_checker_chain, "llm_math_chain": _load_llm_math_chain, "llm_requests_chain": _load_llm_requests_chain, "pal_chain": _load_pal_chain, "qa_with_sources_chain": _load_qa_with_sources_chain, "stuff_documents_chain": _load_stuff_documents_chain, "map_reduce_documents_chain": _load_map_reduce_documents_chain, "map_rerank_documents_chain": _load_map_rerank_documents_chain, "refine_documents_chain": _load_refine_documents_chain, "sql_database_chain": _load_sql_database_chain, "vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain, "vector_db_qa": _load_vector_db_qa, } def load_chain_from_config(config: dict, **kwargs: Any) -> Chain: """Load chain from Config Dict.""" if "_type" not in config: raise ValueError("Must specify a chain Type in config") config_type = config.pop("_type") if config_type not in type_to_loader_dict: raise ValueError(f"Loading {config_type} chain not supported") chain_loader = type_to_loader_dict[config_type] return chain_loader(config, **kwargs) def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain: """Unified method for loading a chain from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_chain_from_file, "chains", {"json", "yaml"}, **kwargs ): return hub_result else: return _load_chain_from_file(path, **kwargs) def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain: """Load chain from file.""" # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") # Load the chain from the config now. return load_chain_from_config(config, **kwargs)
[ "list_assertions_prompt", "create_draft_answer_prompt", "revised_answer_prompt", "revised_answer_prompt_path", "document_prompt", "create_draft_answer_prompt_path", "check_assertions_prompt", "document_prompt_path", "prompt_path", "check_assertions_prompt_path", "list_assertions_prompt_path" ]
2024-01-10
OlivierDehaene/langchain
langchain~vectorstores~milvus.py
"""Wrapper around the Milvus vector database.""" from __future__ import annotations import uuid from typing import Any, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance class Milvus(VectorStore): """Wrapper around the Milvus vector database.""" def __init__( self, embedding_function: Embeddings, connection_args: dict, collection_name: str, text_field: str, ): """Initialize wrapper around the milvus vector database. In order to use this you need to have `pymilvus` installed and a running Milvus instance. See the following documentation for how to run a Milvus instance: https://milvus.io/docs/install_standalone-docker.md Args: embedding_function (Embeddings): Function used to embed the text connection_args (dict): Arguments for pymilvus connections.connect() collection_name (str): The name of the collection to search. text_field (str): The field in Milvus schema where the original text is stored. """ try: from pymilvus import Collection, DataType, connections except ImportError: raise ValueError( "Could not import pymilvus python package. " "Please it install it with `pip install pymilvus`." ) # Connecting to Milvus instance if not connections.has_connection("default"): connections.connect(**connection_args) self.embedding_func = embedding_function self.collection_name = collection_name self.text_field = text_field self.auto_id = False self.primary_field = None self.vector_field = None self.fields = [] self.col = Collection(self.collection_name) schema = self.col.schema # Grabbing the fields for the existing collection. for x in schema.fields: self.fields.append(x.name) if x.auto_id: self.fields.remove(x.name) if x.is_primary: self.primary_field = x.name if x.dtype == DataType.FLOAT_VECTOR or x.dtype == DataType.BINARY_VECTOR: self.vector_field = x.name # Default search params when one is not provided. self.index_params = { "IVF_FLAT": {"params": {"nprobe": 10}}, "IVF_SQ8": {"params": {"nprobe": 10}}, "IVF_PQ": {"params": {"nprobe": 10}}, "HNSW": {"params": {"ef": 10}}, "RHNSW_FLAT": {"params": {"ef": 10}}, "RHNSW_SQ": {"params": {"ef": 10}}, "RHNSW_PQ": {"params": {"ef": 10}}, "IVF_HNSW": {"params": {"nprobe": 10, "ef": 10}}, "ANNOY": {"params": {"search_k": 10}}, } def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, partition_name: Optional[str] = None, timeout: Optional[int] = None, ) -> List[str]: """Insert text data into Milvus. When using add_texts() it is assumed that a collecton has already been made and indexed. If metadata is included, it is assumed that it is ordered correctly to match the schema provided to the Collection and that the embedding vector is the first schema field. Args: texts (Iterable[str]): The text being embedded and inserted. metadatas (Optional[List[dict]], optional): The metadata that corresponds to each insert. Defaults to None. partition_name (str, optional): The partition of the collection to insert data into. Defaults to None. timeout: specified timeout. Returns: List[str]: The resulting keys for each inserted element. """ insert_dict: Any = {self.text_field: list(texts)} try: insert_dict[self.vector_field] = self.embedding_func.embed_documents( list(texts) ) except NotImplementedError: insert_dict[self.vector_field] = [ self.embedding_func.embed_query(x) for x in texts ] # Collect the metadata into the insert dict. if len(self.fields) > 2 and metadatas is not None: for d in metadatas: for key, value in d.items(): if key in self.fields: insert_dict.setdefault(key, []).append(value) # Convert dict to list of lists for insertion insert_list = [insert_dict[x] for x in self.fields] # Insert into the collection. res = self.col.insert( insert_list, partition_name=partition_name, timeout=timeout ) # Flush to make sure newly inserted is immediately searchable. self.col.flush() return res.primary_keys def _worker_search( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> Tuple[List[float], List[Tuple[Document, Any, Any]]]: # Load the collection into memory for searching. self.col.load() # Decide to use default params if not passed in. if param is None: index_type = self.col.indexes[0].params["index_type"] param = self.index_params[index_type] # Embed the query text. data = [self.embedding_func.embed_query(query)] # Determine result metadata fields. output_fields = self.fields[:] output_fields.remove(self.vector_field) # Perform the search. res = self.col.search( data, self.vector_field, param, k, expr=expr, output_fields=output_fields, partition_names=partition_names, round_decimal=round_decimal, timeout=timeout, **kwargs, ) # Organize results. ret = [] for result in res[0]: meta = {x: result.entity.get(x) for x in output_fields} ret.append( ( Document(page_content=meta.pop(self.text_field), metadata=meta), result.distance, result.id, ) ) return data[0], ret def similarity_search_with_score( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Perform a search on a query string and return results. Args: query (str): The text being searched. k (int, optional): The amount of results ot return. Defaults to 4. param (dict, optional): The search params for the specified index. Defaults to None. expr (str, optional): Filtering expression. Defaults to None. partition_names (List[str], optional): Partitions to search through. Defaults to None. round_decimal (int, optional): Round the resulting distance. Defaults to -1. timeout (int, optional): Amount to wait before timeout error. Defaults to None. kwargs: Collection.search() keyword arguments. Returns: List[float], List[Tuple[Document, any, any]]: search_embedding, (Document, distance, primary_field) results. """ _, result = self._worker_search( query, k, param, expr, partition_names, round_decimal, timeout, **kwargs ) return [(x, y) for x, y, _ in result] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Perform a search and return results that are reordered by MMR. Args: query (str): The text being searched. k (int, optional): How many results to give. Defaults to 4. fetch_k (int, optional): Total results to select k from. Defaults to 20. param (dict, optional): The search params for the specified index. Defaults to None. expr (str, optional): Filtering expression. Defaults to None. partition_names (List[str], optional): What partitions to search. Defaults to None. round_decimal (int, optional): Round the resulting distance. Defaults to -1. timeout (int, optional): Amount to wait before timeout error. Defaults to None. Returns: List[Document]: Document results for search. """ data, res = self._worker_search( query, fetch_k, param, expr, partition_names, round_decimal, timeout, **kwargs, ) # Extract result IDs. ids = [x for _, _, x in res] # Get the raw vectors from Milvus. vectors = self.col.query( expr=f"{self.primary_field} in {ids}", output_fields=[self.primary_field, self.vector_field], ) # Reorganize the results from query to match result order. vectors = {x[self.primary_field]: x[self.vector_field] for x in vectors} search_embedding = data ordered_result_embeddings = [vectors[x] for x in ids] # Get the new order of results. new_ordering = maximal_marginal_relevance( np.array(search_embedding), ordered_result_embeddings, k=k ) # Reorder the values and return. ret = [] for x in new_ordering: if x == -1: break else: ret.append(res[x][0]) return ret def similarity_search( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search against the query string. Args: query (str): The text to search. k (int, optional): How many results to return. Defaults to 4. param (dict, optional): The search params for the index type. Defaults to None. expr (str, optional): Filtering expression. Defaults to None. partition_names (List[str], optional): What partitions to search. Defaults to None. round_decimal (int, optional): What decimal point to round to. Defaults to -1. timeout (int, optional): How long to wait before timeout error. Defaults to None. Returns: List[Document]: Document results for search. """ _, docs_and_scores = self._worker_search( query, k, param, expr, partition_names, round_decimal, timeout, **kwargs ) return [doc for doc, _, _ in docs_and_scores] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> Milvus: """Create a Milvus collection, indexes it with HNSW, and insert data. Args: texts (List[str]): Text to insert. embedding (Embeddings): Embedding function to use. metadatas (Optional[List[dict]], optional): Dict metatadata. Defaults to None. Returns: VectorStore: The Milvus vector store. """ try: from pymilvus import ( Collection, CollectionSchema, DataType, FieldSchema, connections, ) from pymilvus.orm.types import infer_dtype_bydata except ImportError: raise ValueError( "Could not import pymilvus python package. " "Please it install it with `pip install pymilvus`." ) # Connect to Milvus instance if not connections.has_connection("default"): connections.connect(**kwargs.get("connection_args", {"port": 19530})) # Determine embedding dim embeddings = embedding.embed_query(texts[0]) dim = len(embeddings) # Generate unique names primary_field = "c" + str(uuid.uuid4().hex) vector_field = "c" + str(uuid.uuid4().hex) text_field = "c" + str(uuid.uuid4().hex) collection_name = "c" + str(uuid.uuid4().hex) fields = [] # Determine metadata schema if metadatas: # Check if all metadata keys line up key = metadatas[0].keys() for x in metadatas: if key != x.keys(): raise ValueError( "Mismatched metadata. " "Make sure all metadata has the same keys and datatype." ) # Create FieldSchema for each entry in singular metadata. for key, value in metadatas[0].items(): # Infer the corresponding datatype of the metadata dtype = infer_dtype_bydata(value) if dtype == DataType.UNKNOWN: raise ValueError(f"Unrecognized datatype for {key}.") elif dtype == DataType.VARCHAR: # Find out max length text based metadata max_length = 0 for subvalues in metadatas: max_length = max(max_length, len(subvalues[key])) fields.append( FieldSchema(key, DataType.VARCHAR, max_length=max_length + 1) ) else: fields.append(FieldSchema(key, dtype)) # Find out max length of texts max_length = 0 for y in texts: max_length = max(max_length, len(y)) # Create the text field fields.append( FieldSchema(text_field, DataType.VARCHAR, max_length=max_length + 1) ) # Create the primary key field fields.append( FieldSchema(primary_field, DataType.INT64, is_primary=True, auto_id=True) ) # Create the vector field fields.append(FieldSchema(vector_field, DataType.FLOAT_VECTOR, dim=dim)) # Create the schema for the collection schema = CollectionSchema(fields) # Create the collection collection = Collection(collection_name, schema) # Index parameters for the collection index = { "index_type": "HNSW", "metric_type": "L2", "params": {"M": 8, "efConstruction": 64}, } # Create the index collection.create_index(vector_field, index) # Create the VectorStore milvus = cls( embedding, kwargs.get("connection_args", {"port": 19530}), collection_name, text_field, ) # Add the texts. milvus.add_texts(texts, metadatas) return milvus
[]
2024-01-10
alanrios2001/PORT_NOIE
OIE~datasets~translate.py
from src.conll2bioes import Conversor import os import spacy from tqdm.auto import tqdm from main import criar_conll import typer from deep_translator import GoogleTranslator import json import pathlib from diskcache import Cache from OIE.datasets.validated_splits.contractions import transform_portuguese_contractions, clean_extraction from OIE.final.matcher import OIE_Match import openai import httpx import time app = typer.Typer() class LoadDataset: def __init__(self, dataset_path: str, dataset_name: str, out_path: str ): self.dataset_name = dataset_name self.dataset_path = dataset_path with open(self.dataset_path +"/"+ self.dataset_name, "r", encoding="utf-8") as f: data = f.read() # selecionando apenas exts com arg0 rel e arg1 data = data.split("\n\t") data_norm = [] for ext in data: if "ARG5" not in ext: if "ARG4" not in ext: if "ARG3" not in ext: if "ARG2" not in ext: if "ARG1" in ext: if "V" in ext: if "ARG0" in ext: data_norm.append(ext) path = out_path + "/mod" pathlib.Path(path).mkdir(parents=True, exist_ok=True) with open(path + "/" + dataset_name, "a", encoding="utf-8") as f: raw = data_norm raw = "\n\t".join(raw) f.write(raw) Conversor(path+"/", dataset_name, out_path) class ArgsRel2: def __init__(self): self.provavel_rel = [] self.alinhamentos = [] try: self.nlp = spacy.load("pt_core_news_lg") except: os.system("python -m spacy download pt_core_news_lg") self.nlp = spacy.load("pt_core_news_lg") def root_parse(self, doc_dict, root_idx): #encontra centro da extração pelo root for idx in doc_dict: pos = doc_dict[idx]["pos"] dep = doc_dict[idx]["dep"] if (pos == "VERB" and dep == "ROOT") and (idx != 0 and idx != len(doc_dict) - 1):#restringe primeiro e último caracter da frase inteira self.provavel_rel.append("VERB") return (idx, idx) root_idx = self.verb_parse(doc_dict, root_idx) return root_idx def verb_parse(self, doc_dict, root_idx): #encontra centro da extração pelo root for idx in doc_dict: pos = doc_dict[idx]["pos"] dep = doc_dict[idx]["dep"] if (pos == "VERB" and (dep == "xcomp" or dep == "acl" or dep == "acl:relacl")) and (idx != 0 and idx != len(doc_dict) - 1):#restringe primeiro e último caracter da frase inteira self.provavel_rel.append("VERB") return (idx, idx) root_idx = self.aux_parse(doc_dict, root_idx) return root_idx def aux_parse(self, doc_dict, root_idx): #encontra centro da extração pelo root for idx in doc_dict: pos = doc_dict[idx]["pos"] dep = doc_dict[idx]["dep"] if (pos == "AUX" and dep == "ROOT") and (idx != 0 and idx != len(doc_dict) - 1):#restringe primeiro e último caracter da frase inteira self.provavel_rel.append("AUX") return (idx, idx) root_idx = self.aux_parse2(doc_dict, root_idx) return root_idx def aux_parse2(self, doc_dict, root_idx): #encontra centro da extração pelo root for idx in doc_dict: pos = doc_dict[idx]["pos"] dep = doc_dict[idx]["dep"] if (pos == "AUX" and dep == "cop") and (idx != 0 and idx != len(doc_dict) - 1):#restringe primeiro e último caracter da frase inteira self.provavel_rel.append("AUX") return (idx, idx) root_idx = self.noun_parse(doc_dict, root_idx) return root_idx def noun_parse(self, doc_dict, root_idx): #encontra centro da extração pelo root for idx in doc_dict: pos = doc_dict[idx]["pos"] dep = doc_dict[idx]["dep"] if (pos == "NOUN" and dep == "ROOT") and (idx != 0 and idx != len(doc_dict) - 1):#restringe primeiro e último caracter da frase inteira self.provavel_rel.append("NOUN") return (idx, idx) return root_idx def get_args_rel(self, ext, sent): self.alinhamentos = [] doc = self.nlp(ext) doc_dict = {} i = 0 for token in doc: doc_dict[i] = {"text": token.text, "pos": token.pos_, "dep": token.dep_} i += 1 root_idx = (None, None) self.provavel_rel = [] root_idx = self.root_parse(doc_dict, root_idx) if len(self.provavel_rel)>0 and self.provavel_rel[0] == "VERB": if root_idx[0]-1 != 0: if doc_dict[root_idx[0]-1]["pos"] in ["AUX",'ADV']: root_idx = (root_idx[0]-1, root_idx[1]) #verificando elementos que compoem a rel depois do centro if root_idx != (None, None): for j in range(root_idx[1]+1, len(doc_dict)): pos = doc_dict[j]["pos"] self.provavel_rel.append(pos) adp_idxs = [] for idx, pos_ in enumerate(self.provavel_rel[1:-1]): if pos_ in ['ADJ','ADV','NOUN', 'VERB','ADV']: continue elif pos_ == 'ADP': adp_idxs.append(idx+1) continue else: break adp_idxs.append(0) for idx in adp_idxs: arg1 = "" rel = "" arg2 = "" if root_idx != (None, None): new_root_idx = (root_idx[0],root_idx[1]+idx) j = new_root_idx[0] while j <= new_root_idx[1]: rel += doc_dict[j]["text"] + " " j += 1 for idx in doc_dict: token = doc_dict[idx]["text"] if idx < new_root_idx[0]: arg1 += token + " " if idx > new_root_idx[1]: arg2 += token + " " self.alinhamentos.append((arg1,rel,arg2)) return self.alinhamentos class ArgsRel: def __init__(self): self.current_root_sint = None self.alinhamentos = [] try: self.nlp = spacy.load("pt_core_news_lg") except: os.system("python -m spacy download pt_core_news_lg") self.nlp = spacy.load("pt_core_news_lg") def root_parse(self, doc_dict, root_idx): #encontra centro da extração pelo root for idx in doc_dict: pos = doc_dict[idx]["pos"] dep = doc_dict[idx]["dep"] if (pos == "VERB" and dep == "ROOT") and (idx != 0 and idx != len(doc_dict) - 1): root_idx = (idx, idx) self.current_root_sint = "VERB-ROOT" break if root_idx == (None, None): root_idx = self.aux_parse(doc_dict, root_idx) return root_idx def aux_parse(self, doc_dict, root_idx): #encontra centro da extração pelo root for idx in doc_dict: pos = doc_dict[idx]["pos"] dep = doc_dict[idx]["dep"] if (pos == "AUX" and dep == "cop") and (idx != 0 and idx != len(doc_dict) - 1): root_idx = (idx, idx) self.current_root_sint = "AUX-cop" break elif (pos == "AUX" and dep == "ROOT") and (idx != 0 and idx != len(doc_dict) - 1): root_idx = (idx, idx) self.current_root_sint = "AUX-ROOT" break if root_idx == (None, None): root_idx = self.x_comp_parse(doc_dict, root_idx) return root_idx def x_comp_parse(self, doc_dict, root_idx): #encontra centro da extração pelo root for idx in doc_dict: pos = doc_dict[idx]["pos"] dep = doc_dict[idx]["dep"] if (pos == "VERB" and dep == "xcomp" and (idx != 0 and idx != len(doc_dict) - 1)): root_idx = (idx, idx) self.current_root_sint = "VERB-xcomp" break elif (pos == "VERB" and dep == "acl" and (idx != 0 and idx != len(doc_dict) - 1)): root_idx = (idx, idx) self.current_root_sint = "VERB-acl" break elif (pos == "VERB" and dep == "acl:relcl" and (idx != 0 and idx != len(doc_dict) - 1)): root_idx = (idx, idx) self.current_root_sint = "VERB-acl:relacl" break if root_idx == (None, None): root_idx = self.noun_root_parse(doc_dict, root_idx) return root_idx def noun_root_parse(self, doc_dict, root_idx): #encontra centro da extração pelo root for idx in doc_dict: pos = doc_dict[idx]["pos"] dep = doc_dict[idx]["dep"] if (pos == "NOUN" and dep == "ROOT" and (idx != 0 and idx != len(doc_dict) - 1)): root_idx = (idx, idx) self.current_root_sint = "NOUN-ROOT" break return root_idx def get_args_rel(self, ext, sent): self.alinhamentos = [] doc = self.nlp(ext) doc_dict = {} i = 0 for token in doc: doc_dict[i] = {"text": token.text, "pos": token.pos_, "dep": token.dep_} i += 1 arg1 = "" rel = "" arg2 = "" root_idx = (None, None) self.current_root_sint = None root_idx = self.root_parse(doc_dict, root_idx) #verificando elementos que compoem a rel antes do centro if root_idx != (None, None): before_root_pos_dep = "" for i in range(0, root_idx[0]): pos = doc_dict[i]["pos"] dep = doc_dict[i]["dep"] before_root_pos_dep += pos + "-" + dep + ", " before_root_pos_dep = before_root_pos_dep[:-2] splited = before_root_pos_dep.split(", ") if self.current_root_sint == "NOUN-ROOT": if "PRON-expl" in before_root_pos_dep and splited[-1] == "PRON-expl": if root_idx[0]-1 > 0: root_idx = (root_idx[0]-1, root_idx[1]) else: root_idx = (root_idx[0], root_idx[1]) if "AUX-cop" in before_root_pos_dep and splited[-1] == "AUX-cop": if root_idx[0]-1 > 0: root_idx = (root_idx[0]-1, root_idx[1]) else: root_idx = (root_idx[0], root_idx[1]) elif "AUX-cop, ADV-advmod" in before_root_pos_dep and splited[-1] == "ADV-advmod": if root_idx[0]-2 > 0: root_idx = (root_idx[0]-2, root_idx[1]) else: root_idx = (root_idx[0]-1, root_idx[1]) elif "ADV-advmod" in before_root_pos_dep and splited[-1] == "ADV-advmod": if root_idx[0]-1 > 0: root_idx = (root_idx[0]-1, root_idx[1]) else: root_idx = (root_idx[0], root_idx[1]) elif "AUX-aux" in before_root_pos_dep and splited[-1] == "AUX-aux": if root_idx[0]-1 > 0: root_idx = (root_idx[0]-1, root_idx[1]) else: root_idx = (root_idx[0], root_idx[1]) elif "AUX-aux:pass" in before_root_pos_dep and splited[-1] == "AUX-aux:pass": if root_idx[0]-1 > 0: root_idx = (root_idx[0]-1, root_idx[1]) else: root_idx = (root_idx[0], root_idx[1]) elif "AUX-aux:pass" in before_root_pos_dep and splited[-1] == "AUX-aux:pass": if root_idx[0]-1 > 0: root_idx = (root_idx[0]-1, root_idx[1]) else: root_idx = (root_idx[0], root_idx[1]) elif "ADV-advmod, PRON-obj" in before_root_pos_dep and splited[-1] == "PRON-obj": if root_idx[0]-2 > 0: root_idx = (root_idx[0]-2, root_idx[1]) else: root_idx = (root_idx[0]-1, root_idx[1]) elif "AUX-cop, ADP-case" in before_root_pos_dep and splited[-1] == "ADP-case": if root_idx[0]-2 > 0: root_idx = (root_idx[0]-2, root_idx[1]) else: root_idx = (root_idx[0]-1, root_idx[1]) elif "AUX-cop, DET-det" in before_root_pos_dep and splited[-1] == "DET-det": if root_idx[0]-2 > 0: root_idx = (root_idx[0]-2, root_idx[1]) else: root_idx = (root_idx[0]-1, root_idx[1]) #verificando elementos que compoem a rel depois do centro if root_idx != (None, None): after_root_pos_dep = "" for i in range(root_idx[1]+1, len(doc_dict)): pos = doc_dict[i]["pos"] dep = doc_dict[i]["dep"] after_root_pos_dep += pos + "-" + dep + ", " after_root_pos_dep = after_root_pos_dep[:-2] splited = after_root_pos_dep.split(", ") if self.current_root_sint == "AUX-cop": if "DET-det, NOUN-ROOT, ADJ-amod, ADP-case" in after_root_pos_dep and splited[0] == "DET-det": if root_idx[1]+4 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+4) else: root_idx = (root_idx[0], root_idx[1]) if "ADP-case, DET-det, ADV-obl, VERB-xcomp" in after_root_pos_dep and splited[0] == "ADP-case": if root_idx[1]+4 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+4) else: root_idx = (root_idx[0], root_idx[1]+3) elif "ADJ-amod, ADP-case" in after_root_pos_dep and splited[0] == "ADJ-amod": if root_idx[1]+2 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+2) else: root_idx = (root_idx[0], root_idx[1]+1) elif "VERB-xcomp, DET-det, NOUN-obj, ADP-case" in after_root_pos_dep and splited[0] == "VERB-xcomp": if root_idx[1]+4 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+4) else: root_idx = (root_idx[0], root_idx[1]+3) elif "VERB-xcomp, SCONJ-mark, VERB-xcomp, ADP-case" in after_root_pos_dep and splited[0] == "VERB-xcomp": if root_idx[1]+4 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+4) else: root_idx = (root_idx[0], root_idx[1]+3) elif "VERB-xcomp, ADP-case" in after_root_pos_dep and splited[0] == "VERB-xcomp": if root_idx[1]+2 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+2) else: root_idx = (root_idx[0], root_idx[1]+1) elif "VERB-xcomp, VERB-xcomp" in after_root_pos_dep and splited[0] == "VERB-xcomp": if root_idx[1]+2 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+2) else: root_idx = (root_idx[0], root_idx[1]+1) elif "VERB-xcomp, SCONJ-mark, VERB-xcomp" in after_root_pos_dep and splited[0] == "VERB-xcomp": if root_idx[1]+3 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+3) else: root_idx = (root_idx[0], root_idx[1]+2) elif "VERB-xcomp, VERB-xcomp, DET-det, NOUN-obj, ADP-case" in after_root_pos_dep and splited[0] == "VERB-xcomp": if root_idx[1]+5 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+5) else: root_idx = (root_idx[0], root_idx[1]+4) elif "ADJ-amod, ADP-case" in after_root_pos_dep and splited[0] == "ADJ-amod": if root_idx[1]+2 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+2) else: root_idx = (root_idx[0], root_idx[1]+1) elif "ADV-advmod, ADP-case" in after_root_pos_dep and splited[0] == "ADV-advmod": if root_idx[1]+2 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+2) else: root_idx = (root_idx[0], root_idx[1]+1) elif "ADP-case, NOUN-obj, ADP-case" in after_root_pos_dep and splited[0] == "ADP-case": if root_idx[1]+3 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+3) else: root_idx = (root_idx[0], root_idx[1]+2) elif "ADV-advmod, ADV-advmod, SCONJ-dep" in after_root_pos_dep and splited[0] == "ADV-advmod": if root_idx[1]+3 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+3) else: root_idx = (root_idx[0], root_idx[1]+2) elif "VERB-xcomp" in after_root_pos_dep and splited[0] == "VERB-xcomp": if root_idx[1]+1 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+1) else: root_idx = (root_idx[0], root_idx[1]) elif "ADP-case" in after_root_pos_dep and splited[0] == "ADP-case": if root_idx[1]+1 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+1) else: root_idx = (root_idx[0], root_idx[1]) elif "AUX-cop" in after_root_pos_dep and splited[0] == "AUX-cop": if root_idx[1]+1 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+1) else: root_idx = (root_idx[0], root_idx[1]) elif "DET-case" in after_root_pos_dep and splited[0] == "DET-case": if root_idx[1]+1 < len(doc_dict) - 1: root_idx = (root_idx[0], root_idx[1]+1) else: root_idx = (root_idx[0], root_idx[1]) j = root_idx[0] if root_idx != (None, None): while j <= root_idx[1]: rel += doc_dict[j]["text"] + " " j += 1 for idx in doc_dict: token = doc_dict[idx]["text"] if idx < root_idx[0]: arg1 += token + " " if idx > root_idx[1]: arg2 += token + " " self.alinhamentos.append((arg1, rel, arg2)) return self.alinhamentos class ArgsRel3: def __init__(self): self.provavel_rel = [] self.alinhamentos = [] self.matcher = OIE_Match() try: self.nlp = spacy.load("pt_core_news_lg") except: os.system("python -m spacy download pt_core_news_lg") self.nlp = spacy.load("pt_core_news_lg") def get_args_rel(self, ext, sent): self.alinhamentos = [] pos = [] ext_list = ext.split(" ") sent_list = sent.split(" ") sent_doc = self.nlp(sent) # permutando relações # Começa com o maior tamanho de subsequência e vai diminuindo for length in range(len(ext_list) - 2, 0, -1): for start in range(1, len(ext_list) - length): end = start + length rel = ext_list[start:end] idx = (start, end) arg0 = " ".join(ext_list[:idx[0]]) arg1 = " ".join(ext_list[idx[1]:len(sent_list)]) rel = " ".join(rel) valid = self.matcher.match(sent, arg0, rel, arg1) if valid[3]: # colhe pos da relação do alinhamento, o pos usado é o da sent nos tokens da ext aux = [] aux_dep = [] cur_ext = [] cur_dep = [] for span in valid[:-1]: span_tk = sent_doc[span[0]:span[1] + 1] for token in span_tk: aux.append(token.pos_) aux_dep.append(token.dep_) cur_ext.append(aux) cur_dep.append(aux_dep) aux = [] aux_dep = [] pos.append(((arg0, rel, arg1), cur_ext, cur_dep)) # utiliza regras no pos da relação para filtrar alinhamentos ali_gerado = ((arg0, rel, arg1), cur_ext, cur_dep) rel_pos = ali_gerado[1][1] rel_dep = ali_gerado[2][1] inicio = [[rel_pos[0], rel_dep[0]]] meio = [] for x, y in zip(rel_pos[1:-1], rel_dep[1:-1]): meio.append([x, y]) fim = [[rel_pos[-1], rel_dep[-1]]] first = False middle = False middle_counter = 0 # inicio for i, tags in enumerate(inicio): p_tag = tags[0] p_dep = tags[1] if p_tag == "ADV" and i == 0 and len(rel_pos) > 1 and rel_pos[1] in ['VERB', 'AUX']: first = True if len(rel_pos) == 2: self.alinhamentos.append(ali_gerado[0]) return self.alinhamentos elif p_tag == "ADV" and i == 0 and len(rel_pos) > 1 and rel_pos[1] == 'PRON': first = True elif p_tag == "PRON" and i == 0 and len(rel_pos) > 1 and rel_pos[1] in ['VERB', 'AUX']: first = True if len(rel_pos) == 2: self.alinhamentos.append(ali_gerado[0]) return self.alinhamentos elif p_tag == "AUX" and i == 0: first = True if len(rel_pos) == 1: self.alinhamentos.append(ali_gerado[0]) return self.alinhamentos elif (p_tag == "VERB" and p_dep == "ROOT") and i == 0: first = True if len(rel_pos) == 1: self.alinhamentos.append(ali_gerado[0]) return self.alinhamentos elif p_tag == "VERB" and i == 0: first = True if len(rel_pos) == 1: self.alinhamentos.append(ali_gerado[0]) return self.alinhamentos # meio for i, tags in enumerate(meio): p_tag = tags[0] if p_tag in ['ADJ', 'NOUN', 'VERB', "AUX", "DET", "PRON", "SCONJ", "PROPN"] and first: middle_counter += 1 if middle_counter == len(meio): middle = True # fim for i, tags in enumerate(fim): p_tag = tags[0] if len(rel_pos) == 2 and p_tag == "VERB" and first: self.alinhamentos.append(ali_gerado[0]) return self.alinhamentos elif len(rel_pos) == 2 and p_tag == "AUX" and first: self.alinhamentos.append(ali_gerado[0]) return self.alinhamentos elif len(rel_pos) == 2 and p_tag == "ADP" and first: self.alinhamentos.append(ali_gerado[0]) return self.alinhamentos elif len(rel_pos) > 2 and p_tag in ["ADP", "VERB", "AUX"] and first and middle: self.alinhamentos.append(ali_gerado[0]) return self.alinhamentos if len(self.alinhamentos) == 0: self.alinhamentos.append((" ", " ", " ")) return self.alinhamentos class Translators: def __init__(self, google: bool): if not google: #openai.api_key = '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' self.prompt_tradução = "Por favor, traduza as seguintes sentenças do inglês para o português. Além disso, identifique e traduza os fatos específicos dentro de cada sentença. Certifique-se de que os fatos traduzidos sejam adaptados para corresponder diretamente à sua representação na sentença traduzida, se baseie nos seguintes exemplos:\n\n" \ "EXEMPLOS DE ENTRADA E SAÍDA:\n\n" \ "(entrada):\n" \ "SENTENÇA: The dog is walking through the park, he is very happy.\n" \ "FATO: The dog is very happy.\n" \ "(saida):\n" \ "SENTENÇA: O cachorro está andando pelo parque, ele está muito feliz.\n" \ "FATO: O cachorro está muito feliz.\n\n" \ "(entrada):\n" \ "SENTENÇA: He made a midnight requisition of all the printers he could lay hands on so that he could monitor all the telephone lines coming into the lab 's computers .\n" \ "FATO: telephone lines coming the lab 's computers \n" \ "(saida):\n" \ "SENTENÇA: Ele fez uma requisição à meia-noite de todas as impressoras que conseguiu encontrar para poder monitorar todas as linhas telefônicas que chegam aos computadores do laboratório.\n" \ "FATO: linhas telefônicas chegam aos computadores do laboratório.\n\n" \ "(entrada):\n" \ "SENTENÇA: The campaign , which started last week and runs through Nov. 23 , with funds earmarked for both the quake and Hugo , `` was Barry 's idea , '' a spokeswoman says .\n" \ "FATO: The campaign started last week \n" \ "(saida):\n" \ "SENTENÇA: A campanha, que começou na semana passada e vai até o dia 23 de novembro, com fundos destinados tanto para o terremoto quanto para o Hugo, 'foi ideia de Barry', disse uma porta-voz.\n" \ "FATO: A campanha começou na semana passada.\n\n" \ "(entrada):\n" \ "SENTENÇA: So far , Nissan 's new - model successes are mostly specialized vehicles with limited sales potential .\n" \ "FATO: Nissan 's new - model successes specialized limited sales potential \n" \ "(saida):\n" \ "SENTENÇA: Até agora, os sucessos dos novos modelos da Nissan são principalmente veículos especializados com potencial de venda limitado.\n" \ "FATO: Os sucessos dos novos modelos da Nissan são principalmente com potencial de venda limitado.\n" #print(self.prompt_tradução) else: self.google_translator = GoogleTranslator(source="en", target="pt") def batch_google(self, txt): txt = self.google_translator.translate(txt) return txt def gpt(self, sent, ext): response = openai.ChatCompletion.create( model="gpt-3.5-turbo", temperature=5, messages=[ {"role": "system", "content": self.prompt_tradução}, {"role": "user", "content": f"SENTENÇA: {sent}"}, {"role": "user", "content": f"FATO: {ext}"} ] ) sentence = response['choices'][0]['message']['content'].split("\n")[0].split(": ")[-1] extraction = response['choices'][0]['message']['content'].split("\n")[-1].split(": ")[-1] #print("sentence: ", sentence) #print("extraction: ", extraction) return sentence, extraction def gptv2(self, sent, ext): url = "http://43.153.203.236:3001/api/chat" headers = { "content-type": "application/json" } data = { "model": { "id": "gpt-3.5-turbo", "name": "GPT-3.5", "maxLength": 12000, "tokenLimit": 3000 }, "temperature": 2, "messages": [ {"role": "system", "content": "Você é um tradutor de textos de ingles para portugues brasileiro."}, {"role": "user", "content": self.prompt_tradução}, {"role": "user", "content": f"SENTENÇA: {sent}"}, {"role": "user", "content": f"FATO: {ext}"} ] } response = httpx.post(url, headers=headers, data=json.dumps(data)) sentence = response.text.split("\n")[0].split(": ")[-1] extraction = response.text.split("\n")[-1].split(": ")[-1] if len(sentence) == 0 or len(extraction) == 0: print("erro na tradução, tentando novamente") return self.gptv2(sent, ext) return sentence, extraction def da_vinci(self, sent, ext): pass class TranslateDataset: def __init__(self, dataset_dir: str, dataset_name: str, out_path: str, batch_size: int, google: bool, debug: bool = False ): self.batch_size = batch_size self.google = google self.debug = debug self.dataset_dir = dataset_dir self.dataset_name = dataset_name self.out_path = out_path self.translators = Translators(google) self.matcher = OIE_Match(sequential=True) self.argreleng = ArgsRel() self.freezed = [] self.counter = 0 def debugging(self, sentence, ext, raw_sent, raw_ext): alignments = self.argreleng.get_args_rel(ext) for alignment in alignments: arg0_trad = alignment[0] rel_trad = alignment[1] arg1_trad = alignment[2] print("\nDebugging") print(f"sent: {sentence}") print(f"raw_sent: {raw_sent}") print(f"ext: {ext}") print(f"raw_ext: {raw_ext}") print(f"arg0: {arg0_trad}") print(f"rel: {rel_trad}") print(f"arg1: {arg1_trad}\n") def save_dict(self, data_dict): path = self.out_path+"/saida_match" pathlib.Path(path).mkdir(parents=True, exist_ok=True) with open(self.out_path+"/saida_match/json_dump.json", "a", encoding="utf-8") as f: f.write(json.dumps(data_dict)) def save_dict_threads(self, n_parts: int): data_dict = {} for i in range(n_parts): with open(f"{self.out_path}/align/data_dict{i}.json", "r", encoding="utf-8") as f: data = json.load(f) data_dict.update(data) self.save_dict(data_dict) def save_translate(self, data): path = self.out_path+"/translate" pathlib.Path(path).mkdir(parents=True, exist_ok=True) with open(self.out_path+"/translate/translate.json", "a", encoding="utf-8") as f: open(self.out_path + "/translate/translate.json", "w", encoding="utf-8").close() f.write(json.dumps(data)) def load_dataset(self): # estrutura o dataset em um dicionario with open(f"{self.out_path}/conll2bioes_output/{self.dataset_name.replace('.conll', '.txt')}", "r", encoding="utf-8") as f: data = f.read() data = data.split("\n\t") data = [ext.split("\n") for ext in data] if self.debug: data = data[:32] for ext in data: for i in range(len(ext)): ext[i] = ext[i].split("\t") dataset = [] sents = [] exts = [] for ext in tqdm(data, desc="Carregando dataset"): sentence = "" arg0 = "" rel = "" arg1 = "" for e in ext: if e != [""]: sentence += e[0] + " " if "ARG0" in e[8]: arg0 += e[0] + " " if "ARG1" in e[8]: arg1 += e[0] + " " if "V" in e[8]: rel += e[0] + " " ext = arg0 + rel + arg1 sents.append(sentence) exts.append(ext) dataset.append(sents) dataset.append(exts) return dataset def half_translated(self): try: open(f"{self.out_path}/translate/translate.json", "r", encoding="utf-8") return True except: return False def translate_google(self, cache_dir: str): cache = Cache(cache_dir) dataset = self.load_dataset() #traduz dataset all_sent = [] all_ext = [] raw_sent = [] raw_ext = [] for i in tqdm(range(len(dataset[0])), desc=f"Traduzindo dataset"): if dataset[0][i] in cache: sent = cache[dataset[0][i]] else: sent = self.translators.batch_google(dataset[0][i]) cache[dataset[0][i]] = sent if dataset[1][i] in cache: ext = cache[dataset[1][i]] else: ext = self.translators.batch_google(dataset[1][i]) cache[dataset[1][i]] = ext all_sent.append(sent) all_ext.append(ext) raw_sent.append(dataset[0][i]) raw_ext.append(dataset[1][i]) cache.clear() cache.close() trans_dict = {"sent": all_sent, "ext": all_ext, "raw_sent": raw_sent, "raw_ext": raw_ext} self.save_translate(trans_dict) def translate_gpt(self, dataset=None): if dataset is None: dataset = self.load_dataset() # traduz dataset all_sent = [] all_ext = [] raw_sent = [] raw_ext = [] if self.half_translated(): with open(f"{self.out_path}/translate/translate.json", "r", encoding="utf-8") as f: data = json.load(f) all_sent = data["sent"] all_ext = data["ext"] raw_sent = data["raw_sent"] raw_ext = data["raw_ext"] i = len(all_sent) else: i = 0 while i < len(dataset[0]): try: sent, ext = self.translators.gptv2(dataset[0][i], dataset[1][i]) all_sent.append(sent) all_ext.append(ext) raw_sent.append(dataset[0][i]) raw_ext.append(dataset[1][i]) os.system("cls") print(f"{i/len(dataset[0])*100:.2f}% concluído ||| {i}/{len(dataset[0])}") trans_dict = {"sent": all_sent, "ext": all_ext, "raw_sent": raw_sent, "raw_ext": raw_ext} self.save_translate(trans_dict) i+=1 except: print("provavelmente o modelo está sobrecarregado, tentando novamente") trans_dict = {"sent": all_sent, "ext": all_ext, "raw_sent": raw_sent, "raw_ext": raw_ext} self.save_translate(trans_dict) def save_translate_thread(self, data, part: int): path = self.out_path + f"/translate" pathlib.Path(path).mkdir(parents=True, exist_ok=True) with open(self.out_path + f"/translate/translate{part}.json", "a", encoding="utf-8") as f: open(self.out_path + f"/translate/translate{part}.json", "w", encoding="utf-8").close() f.write(json.dumps(data)) def half_translated_thread(self, part: int): try: open(f"{self.out_path}/translate/translate{part}.json", "r", encoding="utf-8") return True except: return False def thread_gpt(self, part: int, dataset=None): #TODO: dividir em micro_funções if dataset is None: dataset = self.load_dataset() # traduz dataset all_sent = [] all_ext = [] raw_sent = [] raw_ext = [] if self.half_translated_thread(part): with open(f"{self.out_path}/translate/translate{part}.json", "r", encoding="utf-8") as f: data = json.load(f) all_sent = data["sent"] all_ext = data["ext"] raw_sent = data["raw_sent"] raw_ext = data["raw_ext"] i = len(all_sent) else: i = 0 while i < len(dataset[0]): try: sent, ext = self.translators.gptv2(dataset[0][i], dataset[1][i]) if sent == "Error" or ext == "Error": print(f"thread {part} freezou, esperando 30 segundos") self.freezed.append(part) time.sleep(30) print(f"thread {part} liberada") self.freezed.remove(part) raise Exception("Error") all_sent.append(sent) all_ext.append(ext) raw_sent.append(dataset[0][i]) raw_ext.append(dataset[1][i]) os.system("cls") print(f"{i / len(dataset[0]) * 100:.2f}% concluído ||| {i}/{len(dataset[0])} ||| Thread: {part} ||| Freezed: {self.freezed}") trans_dict = {"sent": all_sent, "ext": all_ext, "raw_sent": raw_sent, "raw_ext": raw_ext} self.save_translate_thread(trans_dict, part) i += 1 except: print("provavelmente o modelo está sobrecarregado, tentando novamente") trans_dict = {"sent": all_sent, "ext": all_ext, "raw_sent": raw_sent, "raw_ext": raw_ext} self.save_translate_thread(trans_dict, part) def merge_translate_parts(self, total_parts:int): all_sent = [] all_ext = [] raw_sent = [] raw_ext = [] with open(self.out_path + f"/translate/translate.json", "a", encoding="utf-8") as f: for part in range(total_parts): with open(self.out_path + f"/translate/translate{part}.json", "r", encoding="utf-8") as f2: data = json.load(f2) all_sent.extend(data["sent"]) all_ext.extend(data["ext"]) raw_sent.extend(data["raw_sent"]) raw_ext.extend(data["raw_ext"]) trans_dict = {"sent": all_sent, "ext": all_ext, "raw_sent": raw_sent, "raw_ext": raw_ext} f.write(json.dumps(trans_dict)) def create_dict(self, translate = None, part = None): argsRel_eng = ArgsRel3() if translate is None: with open(self.out_path + "/translate/translate.json", "r", encoding="utf-8") as f: data = json.load(f) else: data = translate all_sent = data["sent"] all_ext = data["ext"] raw_sent = data["raw_sent"] raw_ext = data["raw_ext"] if self.debug: for sent, ext, rs, re in zip(all_sent, all_ext, raw_sent, raw_ext): if not self.google: self.debugging(sent, ext, rs, re) else: self.debugging(sent, ext, rs, re) data_dict = {} #identifica elementos da tripla traduzida e armazena em um dicionario counter = 0 for sample in tqdm(zip(all_sent, all_ext), total=len(all_sent)): curr_ext = sample[1] if curr_ext[-1] == ".": curr_ext = curr_ext[:-1] alignments = argsRel_eng.get_args_rel(transform_portuguese_contractions(curr_ext), transform_portuguese_contractions(sample[0])) for ali in alignments: arg0_trad, rel_trad, arg1_trad = ali if len(alignments) > 1: match = self.matcher.match(transform_portuguese_contractions(sample[0]), transform_portuguese_contractions(arg0_trad), transform_portuguese_contractions(rel_trad), transform_portuguese_contractions(arg1_trad) ) if match[3] == True: data_dict[str(self.counter)] = {"ID": self.counter, "sent": transform_portuguese_contractions(sample[0]), "ext": [{"arg1": transform_portuguese_contractions(arg0_trad), "rel": transform_portuguese_contractions(rel_trad), "arg2": transform_portuguese_contractions(arg1_trad)}]} self.counter += 1 break else: data_dict[str(self.counter)] = {"ID": self.counter, "sent": transform_portuguese_contractions(sample[0]), "ext": [{"arg1": transform_portuguese_contractions(arg0_trad), "rel": transform_portuguese_contractions(rel_trad), "arg2": transform_portuguese_contractions(arg1_trad)}]} self.counter += 1 #print(f"{self.counter / (len(all_sent) * 6):.2f}% concluído ||| {self.counter}/{len(all_sent)*6} ||| thread: {part}") if part is not None: path = self.out_path + f"/align/" pathlib.Path(path).mkdir(parents=True, exist_ok=True) with open(self.out_path + f"/align/data_dict{part}.json", "a", encoding="utf-8") as f: f.write(json.dumps(data_dict)) else: #salva dicionario self.save_dict(data_dict) def create_dict_thread(self, translate = None, part = None): argsRel_eng = ArgsRel3() if translate is None: with open(self.out_path + "/translate/translate.json", "r", encoding="utf-8") as f: data = json.load(f) else: data = translate all_sent = data["sent"] all_ext = data["ext"] raw_sent = data["raw_sent"] raw_ext = data["raw_ext"] if self.debug: for sent, ext, rs, re in zip(all_sent, all_ext, raw_sent, raw_ext): if not self.google: self.debugging(sent, ext, rs, re) else: self.debugging(sent, ext, rs, re) data_dict = {} #identifica elementos da tripla traduzida e armazena em um dicionario counter = 0 for sample in zip(all_sent, all_ext): curr_ext = sample[1] if curr_ext[-1] == ".": curr_ext = curr_ext[:-1] alignments = argsRel_eng.get_args_rel(transform_portuguese_contractions(curr_ext), transform_portuguese_contractions(sample[0])) for ali in alignments: arg0_trad, rel_trad, arg1_trad = ali if len(alignments) > 1: match = self.matcher.match(transform_portuguese_contractions(sample[0]), transform_portuguese_contractions(arg0_trad), transform_portuguese_contractions(rel_trad), transform_portuguese_contractions(arg1_trad) ) if match[3] == True: data_dict[str(self.counter)] = {"ID": self.counter, "sent": transform_portuguese_contractions(sample[0]), "ext": [{"arg1": transform_portuguese_contractions(arg0_trad), "rel": transform_portuguese_contractions(rel_trad), "arg2": transform_portuguese_contractions(arg1_trad)}]} self.counter += 1 break else: data_dict[str(self.counter)] = {"ID": self.counter, "sent": transform_portuguese_contractions(sample[0]), "ext": [{"arg1": transform_portuguese_contractions(arg0_trad), "rel": transform_portuguese_contractions(rel_trad), "arg2": transform_portuguese_contractions(arg1_trad)}]} self.counter += 1 print(f"{(self.counter / (len(all_sent) * 6))*100:.2f}% concluído ||| {self.counter}/{len(all_sent)*6} ||| thread: {part}") if part is not None: path = self.out_path + f"/align/" pathlib.Path(path).mkdir(parents=True, exist_ok=True) with open(self.out_path + f"/align/data_dict{part}.json", "a", encoding="utf-8") as f: f.write(json.dumps(data_dict)) else: #salva dicionario self.save_dict(data_dict) def run(batch_size: int, dataset_dir: str, dataset_name: str, test_size: float, dev_size: float, translated: bool, debug: bool = False, use_google: bool = True, sequential: bool = True, cache_dir: str = "cache" ): converted = True OUT_NAME = dataset_name.replace(".conll", "") INPUT_PATH = "" path = "outputs"+"/"+OUT_NAME pathlib.Path(path).mkdir(parents=True, exist_ok=True) json_dir = path+"/saida_match" pathlib.Path(json_dir).mkdir(parents=True, exist_ok=True) if use_google or debug: batch_size = 1 trans_eng = TranslateDataset(dataset_dir, dataset_name, path, debug=debug, batch_size=batch_size, google=use_google) if translated: pass else: if use_google: LoadDataset(dataset_dir, dataset_name, path) print("Traduzindo com Google") trans_eng.translate_google(cache_dir=cache_dir) else: LoadDataset(dataset_dir, dataset_name, path) print("Traduzindo com ChatGPT") trans_eng.translate_gpt() trans_eng.create_dict() criar_conll(OUT_NAME, INPUT_PATH, test_size, dev_size, converted=converted, sequential=sequential)
[ "SENTENÇA: PLACEHOLDER", "application/json", "FATO: PLACEHOLDER", "Você é um tradutor de textos de ingles para portugues brasileiro." ]
2024-01-10
RUCAIBox/LLMRank
llmrank~model~rank.py
import os.path as osp import torch import openai import time import asyncio import numpy as np from tqdm import tqdm from recbole.model.abstract_recommender import SequentialRecommender from utils import dispatch_openai_requests, dispatch_single_openai_requests class Rank(SequentialRecommender): def __init__(self, config, dataset): super().__init__(config, dataset) self.config = config self.max_tokens = config['max_tokens'] self.api_model_name = config['api_name'] openai.api_key = config['api_key'] openai.api_base = config['api_base'] self.api_batch = config['api_batch'] self.async_dispatch = config['async_dispatch'] self.temperature = config['temperature'] self.max_his_len = config['max_his_len'] self.recall_budget = config['recall_budget'] self.boots = config['boots'] self.data_path = config['data_path'] self.dataset_name = dataset.dataset_name self.id_token = dataset.field2id_token['item_id'] self.item_text = self.load_text() self.logger.info(f'Avg. t = {np.mean([len(_) for _ in self.item_text])}') self.fake_fn = torch.nn.Linear(1, 1) def load_text(self): token_text = {} item_text = ['[PAD]'] feat_path = osp.join(self.data_path, f'{self.dataset_name}.item') if self.dataset_name == 'ml-1m': with open(feat_path, 'r', encoding='utf-8') as file: file.readline() for line in file: item_id, movie_title, release_year, genre = line.strip().split('\t') token_text[item_id] = movie_title for i, token in enumerate(self.id_token): if token == '[PAD]': continue raw_text = token_text[token] if raw_text.endswith(', The'): raw_text = 'The ' + raw_text[:-5] elif raw_text.endswith(', A'): raw_text = 'A ' + raw_text[:-3] item_text.append(raw_text) return item_text elif self.dataset_name == 'Games': with open(feat_path, 'r', encoding='utf-8') as file: file.readline() for line in file: item_id, title = line.strip().split('\t') token_text[item_id] = title for i, token in enumerate(self.id_token): if token == '[PAD]': continue raw_text = token_text[token] item_text.append(raw_text) return item_text else: raise NotImplementedError() def predict_on_subsets(self, interaction, idxs): """ Main function to rank with LLMs :param interaction: :param idxs: item id retrieved by candidate generation models [batch_size, candidate_size] :return: """ origin_batch_size = idxs.shape[0] if self.boots: """ bootstrapping is adopted to alleviate position bias `fix_enc` is invalid in this case""" idxs = np.tile(idxs, [self.boots, 1]) np.random.shuffle(idxs.T) batch_size = idxs.shape[0] pos_items = interaction[self.POS_ITEM_ID] prompt_list = [] for i in tqdm(range(batch_size)): user_his_text, candidate_text, candidate_text_order, candidate_idx = self.get_batch_inputs(interaction, idxs, i) prompt = self.construct_prompt(self.dataset_name, user_his_text, candidate_text_order) prompt_list.append([{'role': 'user', 'content': prompt}]) openai_responses = self.dispatch_openai_api_requests(prompt_list, batch_size) scores = torch.full((idxs.shape[0], self.n_items), -10000.) for i, openai_response in enumerate(tqdm(openai_responses)): user_his_text, candidate_text, candidate_text_order, candidate_idx = self.get_batch_inputs(interaction, idxs, i) response = openai_response['choices'][0]['message']['content'] response_list = response.split('\n') self.logger.info(prompt_list[i]) self.logger.info(response) self.logger.info(f'Here are candidates: {candidate_text}') self.logger.info(f'Here are answer: {response_list}') if self.dataset_name == 'ml-1m': rec_item_idx_list = self.parsing_output_text(scores, i, response_list, idxs, candidate_text) else: rec_item_idx_list = self.parsing_output_indices(scores, i, response_list, idxs, candidate_text) if int(pos_items[i % origin_batch_size]) in candidate_idx: target_text = candidate_text[candidate_idx.index(int(pos_items[i % origin_batch_size]))] try: ground_truth_pr = rec_item_idx_list.index(target_text) self.logger.info(f'Ground-truth [{target_text}]: Ranks {ground_truth_pr}') except: self.logger.info(f'Fail to find ground-truth items.') print(target_text) print(rec_item_idx_list) if self.boots: scores = scores.view(self.boots,-1,scores.size(-1)) scores = scores.sum(0) return scores def get_batch_inputs(self, interaction, idxs, i): user_his = interaction[self.ITEM_SEQ] user_his_len = interaction[self.ITEM_SEQ_LEN] origin_batch_size = user_his.size(0) real_his_len = min(self.max_his_len, user_his_len[i % origin_batch_size].item()) user_his_text = [str(j) + '. ' + self.item_text[user_his[i % origin_batch_size, user_his_len[i % origin_batch_size].item() - real_his_len + j].item()] \ for j in range(real_his_len)] candidate_text = [self.item_text[idxs[i,j]] for j in range(idxs.shape[1])] candidate_text_order = [str(j) + '. ' + self.item_text[idxs[i,j].item()] for j in range(idxs.shape[1])] candidate_idx = idxs[i].tolist() return user_his_text, candidate_text, candidate_text_order, candidate_idx def construct_prompt(self, dataset_name, user_his_text, candidate_text_order): if dataset_name == 'ml-1m': prompt = f"I've watched the following movies in the past in order:\n{user_his_text}\n\n" \ f"Now there are {self.recall_budget} candidate movies that I can watch next:\n{candidate_text_order}\n" \ f"Please rank these {self.recall_budget} movies by measuring the possibilities that I would like to watch next most, according to my watching history. Please think step by step.\n" \ f"Please show me your ranking results with order numbers. Split your output with line break. You MUST rank the given candidate movies. You can not generate movies that are not in the given candidate list." elif dataset_name == 'Games': prompt = f"I've purchased the following products in the past in order:\n{user_his_text}\n\n" \ f"Now there are {self.recall_budget} candidate products that I can consider to purchase next:\n{candidate_text_order}\n" \ f"Please rank these {self.recall_budget} products by measuring the possibilities that I would like to purchase next most, according to the given purchasing records. Please think step by step.\n" \ f"Please only output the order numbers after ranking. Split these order numbers with line break." else: raise NotImplementedError(f'Unknown dataset [{dataset_name}].') return prompt def dispatch_openai_api_requests(self, prompt_list, batch_size): openai_responses = [] self.logger.info('Launch OpenAI APIs') if self.async_dispatch: self.logger.info('Asynchronous dispatching OpenAI API requests.') for i in tqdm(range(0, batch_size, self.api_batch)): while True: try: openai_responses += asyncio.run( dispatch_openai_requests(prompt_list[i:i+self.api_batch], self.api_model_name, self.temperature) ) break except Exception as e: print(f'Error {e}, retry batch {i // self.api_batch} at {time.ctime()}', flush=True) time.sleep(20) else: self.logger.info('Dispatching OpenAI API requests one by one.') for message in tqdm(prompt_list): openai_responses.append(dispatch_single_openai_requests(message, self.api_model_name, self.temperature)) self.logger.info('Received OpenAI Responses') return openai_responses def parsing_output_text(self, scores, i, response_list, idxs, candidate_text): rec_item_idx_list = [] found_item_cnt = 0 for j, item_detail in enumerate(response_list): if len(item_detail) < 1: continue if item_detail.endswith('candidate movies:'): continue pr = item_detail.find('. ') if item_detail[:pr].isdigit(): item_name = item_detail[pr + 2:] else: item_name = item_detail matched_name = None for candidate_text_single in candidate_text: if candidate_text_single in item_name: if candidate_text_single in rec_item_idx_list: break rec_item_idx_list.append(candidate_text_single) matched_name = candidate_text_single break if matched_name is None: continue candidate_pr = candidate_text.index(matched_name) scores[i, idxs[i, candidate_pr]] = self.recall_budget - found_item_cnt found_item_cnt += 1 return rec_item_idx_list def parsing_output_indices(self, scores, i, response_list, idxs, candidate_text): rec_item_idx_list = [] found_item_cnt = 0 for j, item_detail in enumerate(response_list): if len(item_detail) < 1: continue if not item_detail.isdigit(): continue pr = int(item_detail) if pr >= self.recall_budget: continue matched_name = candidate_text[pr] if matched_name in rec_item_idx_list: continue rec_item_idx_list.append(matched_name) scores[i, idxs[i, pr]] = self.recall_budget - found_item_cnt found_item_cnt += 1 if len(rec_item_idx_list) >= self.recall_budget: break return rec_item_idx_list
[ "I've watched the following movies in the past in order:\nPLACEHOLDER\n\n", "Please show me your ranking results with order numbers. Split your output with line break. You MUST rank the given candidate movies. You can not generate movies that are not in the given candidate list.", "[]", "Please only output the order numbers after ranking. Split these order numbers with line break.", "I've purchased the following products in the past in order:\nPLACEHOLDER\n\n" ]
2024-01-10
approximatelabs/datadm
datadm~agents~cotmultistep.py
import guidance from datadm.agent import Agent from datadm.conversation import clean_conversation_list base_prompt = ''' {{#user~}} You are a helpful AI code-writing assistant, the perfect data analyst who is jovial, fun and writes great code to solve data problems! Answer my questions with both text describing your plan (but not an answer), and then the code in markdown that will be executed! * Use `print` to show results. * Don't answer the question directly, instead suggest how you will solve the problem, then write in a ```python markdown block, the code you will use to solve the problem. * For plotting, please use `matplotlib`. use `plt.show()` to display the plot to the user. {{~/user}} {{#each conversation}} {{#if (equal this.role 'user')}} {{#user~}} {{this.content}} {{~/user}} {{/if}} {{#if (equal this.role 'assistant')}} {{#assistant~}} {{this.content}} {{~/assistant}} {{/if}} {{/each}} ''' precode_prompt = ''' {{#assistant~}} {{gen "thoughts" temperature=0.1 max_tokens=120 stop=["```", "<|end|>"]}} ```python {{gen "code" temperature=0.0 max_tokens=800 stop=["```", "<|end|>"]}} {{~/assistant}} ''' postcode_prompt = ''' {{#assistant~}} Looking at the executed results above, we can see {{gen "summary" temperature=0.0 max_tokens=120 stop=["```", "<|end|>"]}} {{~/assistant}} ''' class CoTMultiStep(Agent): is_local = True def _bot(self, repl, conversation, llm): starting_convo = conversation tries = 0 while tries < 2: precode = guidance(base_prompt + precode_prompt, llm=llm) for result in precode(conversation=clean_conversation_list(starting_convo), silent=True, stream=True): resolved_content = result.get('thoughts') or '' resolved_content += '\n```python\n'+(result.get('code') or '')+'\n```' resolved_convo = starting_convo + [{'role': 'assistant', 'content': resolved_content}] yield resolved_convo starting_convo += [{'role': 'assistant', 'content': resolved_content}] exec_result = repl.exec(result['code']) starting_convo += [{'role': 'assistant', 'content': exec_result}] yield starting_convo if exec_result['tracebacks']: tries += 1 continue break postcode = guidance(base_prompt + postcode_prompt, llm=llm) for result in postcode(conversation=clean_conversation_list(starting_convo), silent=True, stream=True): yield starting_convo + [{'role': 'assistant', 'content': f'Looking at the executed results above, we can see {result.get("summary") or ""}'}]
[ "\n{{#user~}}\nYou are a helpful AI code-writing assistant, the perfect data analyst who is jovial, fun and writes great code to solve data problems!\n\nAnswer my questions with both text describing your plan (but not an answer), and then the code in markdown that will be executed!\n\n* Use `print` to show results.\n* Don't answer the question directly, instead suggest how you will solve the problem, then write in a ```python markdown block, the code you will use to solve the problem.\n* For plotting, please use `matplotlib`. use `plt.show()` to display the plot to the user.\n{{~/user}}\n{{#each conversation}}\n{{#if (equal this.role 'user')}}\n{{#user~}}\n{{this.content}}\n{{~/user}}\n{{/if}}\n{{#if (equal this.role 'assistant')}}\n{{#assistant~}}\n{{this.content}}\n{{~/assistant}}\n{{/if}}\n{{/each}}\n", "\n{{#assistant~}}\n{{gen \"thoughts\" temperature=0.1 max_tokens=120 stop=[\"```\", \"<|end|>\"]}}\n```python\n{{gen \"code\" temperature=0.0 max_tokens=800 stop=[\"```\", \"<|end|>\"]}}\n{{~/assistant}}\n", "\n{{#assistant~}}\nLooking at the executed results above, we can see {{gen \"summary\" temperature=0.0 max_tokens=120 stop=[\"```\", \"<|end|>\"]}}\n{{~/assistant}}\n" ]
2024-01-10
approximatelabs/datadm
datadm~backend.py
import guidance from transformers import AutoModelForCausalLM, AutoTokenizer import os # TODO: fix this to check devices and packages to dynamically adjust available LLMs and models try: import accelerate local_available = True except ImportError: local_available = False class StarChat(guidance.llms.Transformers): def __init__(self, model_path=None, revision=None, **kwargs): import torch tokenizer = AutoTokenizer.from_pretrained(model_path, device_map='auto', revision=revision) model = AutoModelForCausalLM.from_pretrained(model_path, device_map='auto', torch_dtype=torch.bfloat16, revision=revision) model.eval() super().__init__(model, tokenizer=tokenizer, device_map='auto', **kwargs) @staticmethod def role_start(role): return f"<|{role}|>" @staticmethod def role_end(role): return '<|end|>' class BackendLLMManager(): OPENAI_MODELS = ['gpt-3.5-turbo', 'gpt-4', 'gpt-3.5-turbo-16k', 'gpt-4-32k'] def __init__(self): self.llms = {} if local_available: self.llms['starchat-alpha-cuda'] = {'state': 'unloaded', 'llm': None, 'mode': 'cuda', 'model_path': 'HuggingFaceH4/starchat-alpha', 'revision': '5058bd8557100137ade3c459bfc8100e90f71ec7'} self.llms['starchat-beta-cuda'] = {'state': 'unloaded', 'llm': None, 'mode': 'cuda', 'model_path': 'HuggingFaceH4/starchat-beta', 'revision': 'b1bcda690655777373f57ea6614eb095ec2c886f'} for model_name in self.OPENAI_MODELS: self.llms[model_name] = {'state': 'unloaded', 'llm': None, 'mode': 'api'} def load(self, llm_name): if self.llms[llm_name]['state'] == 'unloaded': self.llms[llm_name]['state'] = 'loading' if llm_name in ['starchat-alpha-cuda', 'starchat-beta-cuda']: self.llms[llm_name]['llm'] = StarChat(**self.llms[llm_name]) elif llm_name in self.OPENAI_MODELS: if 'OPENAI_API_KEY' not in os.environ: self.llms[llm_name]['state'] = 'error' raise RuntimeError("OPENAI_API_KEY not found in environment") self.llms[llm_name]['llm'] = guidance.llms.OpenAI(llm_name) else: self.llms[llm_name]['state'] = 'error' raise RuntimeError(f"LLM {llm_name} not supported") self.llms[llm_name]['state'] = 'ready' return self.model_status(llm_name) def unload(self, llm_name): if llm_name in self.llms: self.llms[llm_name]['state'] = 'unloaded' self.llms[llm_name]['llm'] = None def model_status(self, llm_name): state = self.llms[llm_name]['state'] return [(llm_name, state)] llm_manager = BackendLLMManager()
[]
2024-01-10
approximatelabs/datadm
datadm~agents~baseline.py
import guidance import re from datadm.agent import Agent from datadm.conversation import clean_conversation_list base_prompt = ''' {{#user~}} You are a helpful AI code-writing assistant, the perfect data analyst who is jovial, fun and writes great code to solve data problems! Answer my questions with both text describing your plan (but not an answer), and then the code in markdown that will be executed! * Use `print` to show results. * Don't answer the question directly, instead suggest how you will solve the problem, then write in a ```python markdown block, the code you will use to solve the problem. * For plotting, please use `matplotlib`. use `plt.show()` to display the plot to the user. {{~/user}} {{#each conversation}} {{#if (equal this.role 'user')}} {{#user~}} {{this.content}} {{~/user}} {{/if}} {{#if (equal this.role 'assistant')}} {{#assistant~}} {{this.content}} {{~/assistant}} {{/if}} {{/each}} ''' gensponse = ''' {{#assistant~}} {{gen "response" temperature=0.5 max_tokens=800}} {{~/assistant}} ''' def extract_all_code_blocks(text): starts = [m.start() for m in re.finditer('```', text)] output = "" for i in range(0, len(starts), 2): res = text[starts[i]+3:starts[i+1]] if res.startswith('python'): res = res[6:] output += res return output class Baseline(Agent): def _bot(self, repl, conversation, llm): starting_convo = conversation tries = 0 while tries < 2: precode = guidance(base_prompt + gensponse, llm=llm) for result in precode(conversation=clean_conversation_list(starting_convo), silent=True, stream=True): yield starting_convo + [{'role': 'assistant', 'content': result.get('response') or ''}] starting_convo += [{'role': 'assistant', 'content': result.get('response')}] exec_result = repl.exec(extract_all_code_blocks(result['response'])) starting_convo += [{'role': 'assistant', 'content': exec_result}] yield starting_convo if exec_result['tracebacks']: tries += 1 continue break
[ "\n{{#user~}}\nYou are a helpful AI code-writing assistant, the perfect data analyst who is jovial, fun and writes great code to solve data problems!\n\nAnswer my questions with both text describing your plan (but not an answer), and then the code in markdown that will be executed!\n\n* Use `print` to show results.\n* Don't answer the question directly, instead suggest how you will solve the problem, then write in a ```python markdown block, the code you will use to solve the problem.\n* For plotting, please use `matplotlib`. use `plt.show()` to display the plot to the user.\n{{~/user}}\n{{#each conversation}}\n{{#if (equal this.role 'user')}}\n{{#user~}}\n{{this.content}}\n{{~/user}}\n{{/if}}\n{{#if (equal this.role 'assistant')}}\n{{#assistant~}}\n{{this.content}}\n{{~/assistant}}\n{{/if}}\n{{/each}}\n", "response" ]
2024-01-10
tomasonjo/NeoGPT-Recommender
app~graph2text.py
import os import openai openai.api_key = os.environ.get('OPENAI_KEY') system = f""" You are an assistant that helps to generate text to form nice and human understandable answers based. The latest prompt contains the information, and you need to generate a human readable response based on the given information. Make it sound like the information are coming from an AI assistant, but don't add any information. Do not add any additional information that is not explicitly provided in the latest prompt. I repeat, do not add any information that is not explicitly given. """ def generate_response(messages): messages = [ {"role": "system", "content": system} ] + messages print(messages) # Make a request to OpenAI completions = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, temperature=0.0 ) response = completions.choices[0].message.content print(response) # If the model apologized, remove the first line or sentence if "apologi" in response: if "\n" in response: response = " ".join(response.split("\n")[1:]) else: response = " ".join(response.split(".")[1:]) return response if __name__ == '__main__': data = [{'actor': 'Sigourney Weaver', 'role': "Witch"}, {'actor': 'Holly Hunter', "role": "Assassin"}, { 'actor': 'Dermot Mulroney'}, {'actor': 'William McNamara'}] print(generate_response([{'role': 'user', 'content': str(data)}]))
[ "[\n {\"role\": \"system\", \"content\": system}\n ] + messages", "\nYou are an assistant that helps to generate text to form nice and human understandable answers based.\nThe latest prompt contains the information, and you need to generate a human readable response based on the given information.\nMake it sound like the information are coming from an AI assistant, but don't add any information.\nDo not add any additional information that is not explicitly provided in the latest prompt.\nI repeat, do not add any information that is not explicitly given.\n" ]
2024-01-10
tomasonjo/NeoGPT-Recommender
app~english2cypher.py
import os import openai from retry import retry from training import examples openai.api_key = os.environ.get('OPENAI_KEY') system = f""" You are an assistant with an ability to generate Cypher queries based off example Cypher queries. Example Cypher queries are: \n {examples} \n Do not response with any explanation or any other information except the Cypher query. You do not ever apologize and strictly generate cypher statements based of the provided Cypher examples. You need to update the database using an appropriate Cypher statement when a user mentions their likes or dislikes, or what they watched already. Do not provide any Cypher statements that can't be inferred from Cypher examples. Inform the user when you can't infer the cypher statement due to the lack of context of the conversation and state what is the missing context. """ @retry(tries=2, delay=5) def generate_cypher(messages): messages = [ {"role": "system", "content": system} ] + messages print(messages) # Make a request to OpenAI completions = openai.ChatCompletion.create( model="gpt-4", messages=messages, temperature=0.0 ) response = completions.choices[0].message.content # Sometime the models bypasses system prompt and returns # data based on previous dialogue history if not "MATCH" in response and "{" in response: raise Exception( "GPT bypassed system message and is returning response based on previous conversation history" + response) # If the model apologized, remove the first line if "apologi" in response: response = " ".join(response.split("\n")[1:]) # Sometime the model adds quotes around Cypher when it wants to explain stuff if "`" in response: response = response.split("```")[1].strip("`") print(response) return response if __name__ == '__main__': print(generate_cypher([{'role': 'user', 'content': 'What are some good cartoon?'}, {'role': 'assistant', 'content': 'Shrek 3'}, {'role': 'user', 'content': 'Which actors appeared in it?'} ])) print(generate_cypher([{'role': 'user', 'content': 'What are some good cartoon?'}, {'role': 'assistant', 'content': 'Shrek 3'}, {'role': 'user', 'content': 'Who was the first person on the moon?'} ]))
[ "Who was the first person on the moon?", "\nYou are an assistant with an ability to generate Cypher queries based off example Cypher queries.\nExample Cypher queries are: \n PLACEHOLDER \n\nDo not response with any explanation or any other information except the Cypher query.\nYou do not ever apologize and strictly generate cypher statements based of the provided Cypher examples.\nYou need to update the database using an appropriate Cypher statement when a user mentions their likes or dislikes, or what they watched already.\nDo not provide any Cypher statements that can't be inferred from Cypher examples.\nInform the user when you can't infer the cypher statement due to the lack of context of the conversation and state what is the missing context.\n", "What are some good cartoon?", "[\n {\"role\": \"system\", \"content\": system}\n ] + messages", "Which actors appeared in it?", "Shrek 3" ]
2024-01-10
pkt1583/openai-samples
End_to_end_Solutions~AOAIVirtualAssistant~src~botapp~tasks~auto_insurance.py
import os from data.chat_sessions.contracts.chat_session import DialogClassification from data.chat_sessions.contracts.chat_session import ChatSession from data.faqs.contracts.faq import InsuranceType from cognition.openai.model_manager import OpenAIModelManager from utilities.model_input_convertor import ModelInputConvertor from data.user_profiles.api.manager_flat import UserProfileManagerFlat from data.faqs.api.manager import FAQManager from config import DefaultConfig class AutoInsurance: def __init__(self, **kwargs): self.database_name = DefaultConfig.COSMOS_DB_NAME self.user_profile_container_name = DefaultConfig.COSMOS_DB_USER_PROFILE_CONTAINER_NAME self.faq_container_name = DefaultConfig.COSMOS_DB_FAQ_CONTAINER_NAME self.name = "auto-insurance" self.user_profile_manager = UserProfileManagerFlat(self.database_name, self.user_profile_container_name) self.faq_manager = FAQManager(self.database_name, self.faq_container_name) def run(self, conversation: ChatSession, user_id: str): open_ai_config = {'api-key': DefaultConfig.OPENAI_RESOURCE_KEY, 'resource-name': DefaultConfig.OPENAI_RESOURCE_NAME, 'deployment-name': DefaultConfig.OPENAI_CHATGPT_DEPLOYMENT_NAME, 'api-version': DefaultConfig.OPENAI_API_VERSION } config_file_path = os.path.join(os.getcwd(), 'cognition', 'config.yml') auto_insurance_model = OpenAIModelManager(config_file_path, self.name, open_ai_config) filtered_transcript = conversation.get_transcript({'classification': DialogClassification.auto_insurance.value}) model_converted_transcript = ModelInputConvertor.model_input_convertor(filtered_transcript) relevant_info = self.faq_manager.get_faqs(InsuranceType.auto).info.relevant_info user_info = self.user_profile_manager.get_user_profile(user_id).__str__() return auto_insurance_model.generate_dialog({"<CONTEXT>": model_converted_transcript, "<CONTENT_A>": user_info, "<CONTENT_B>": relevant_info})
[]
2024-01-10
eggressive/corise-frontend
podcast_backend.py
import modal def download_whisper(): # Load the Whisper model import os import whisper print ("Download the Whisper model") # Perform download only once and save to Container storage whisper._download(whisper._MODELS["medium"], '/content/podcast/', False) stub = modal.Stub("corise-podcast-project") corise_image = modal.Image.debian_slim().pip_install("feedparser", "https://github.com/openai/whisper/archive/9f70a352f9f8630ab3aa0d06af5cb9532bd8c21d.tar.gz", "requests", "ffmpeg", "openai", "tiktoken", "wikipedia", "ffmpeg-python").apt_install("ffmpeg").run_function(download_whisper) @stub.function(image=corise_image, gpu="any", timeout=600) def get_transcribe_podcast(rss_url, local_path): print ("Starting Podcast Transcription Function") print ("Feed URL: ", rss_url) print ("Local Path:", local_path) # Read from the RSS Feed URL import feedparser intelligence_feed = feedparser.parse(rss_url) podcast_title = intelligence_feed['feed']['title'] episode_title = intelligence_feed.entries[0]['title'] episode_image = intelligence_feed['feed']['image'].href for item in intelligence_feed.entries[0].links: if (item['type'] == 'audio/mpeg'): episode_url = item.href episode_name = "podcast_episode.mp3" print ("RSS URL read and episode URL: ", episode_url) # Download the podcast episode by parsing the RSS feed from pathlib import Path p = Path(local_path) p.mkdir(exist_ok=True) print ("Downloading the podcast episode") import requests with requests.get(episode_url, stream=True) as r: r.raise_for_status() episode_path = p.joinpath(episode_name) with open(episode_path, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) print ("Podcast Episode downloaded") # Load the Whisper model import os import whisper # Load model from saved location print ("Load the Whisper model") model = whisper.load_model('medium', device='cuda', download_root='/content/podcast/') # Perform the transcription print ("Starting podcast transcription") result = model.transcribe(local_path + episode_name) # Return the transcribed text print ("Podcast transcription completed, returning results...") output = {} output['podcast_title'] = podcast_title output['episode_title'] = episode_title output['episode_image'] = episode_image output['episode_transcript'] = result['text'] return output @stub.function(image=corise_image, secret=modal.Secret.from_name("dd-openai-secret")) def get_podcast_summary(podcast_transcript): import openai import tiktoken # Tokenize encoding enc = tiktoken.encoding_for_model("gpt-4") token_count = len(enc.encode(podcast_transcript)) print ("Number of tokens in input prompt in gpt-4", token_count) instructPrompt = """ I am providing you with a transcription of a podcast. Write an entertaining summary of the podcast in the tone of Joe Rogan. """ # Assuming podcast_transcript variable is already defined: request = instructPrompt + podcast_transcript chatOutput = openai.ChatCompletion.create(model="gpt-4", messages=[{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": request} ] ) podcastSummary = chatOutput.choices[0].message.content print("Podcast Summary", podcastSummary) return podcastSummary @stub.function(image=corise_image, secret=modal.Secret.from_name("dd-openai-secret")) def get_podcast_guest(podcast_transcript): import openai import wikipedia import json request = podcast_transcript[:5500] try: completion = openai.ChatCompletion.create( model="gpt-4", messages=[{"role": "user", "content": request}], functions=[ { "name": "get_podcast_guest_information", "description": "Get information on the podcast guest using their full name and the name of the organization they are part of to search for them on Wikipedia or Google", "parameters": { "type": "object", "properties": { "guest_name": { "type": "string", "description": "The full name of the guest who is speaking in the podcast", }, "guest_organization": { "type": "string", "description": "The full name of the organization that the podcast guest belongs to or runs", }, "guest_title": { "type": "string", "description": "The title, designation or role of the podcast guest in their organization", }, }, "required": ["guest_name"], }, } ], function_call={"name": "get_podcast_guest_information"} ) except Exception as e: return f"Error fetching characters from model: {str(e)}" response_message = completion["choices"][0]["message"] podcastGuest = [] if response_message.get("function_call"): function_args = json.loads(response_message["function_call"]["arguments"]) characters = function_args.get("characters", []) for character in characters: character_name = character.get("character_name", "") podcastGuest.append(character) return podcastGuest @stub.function(image=corise_image, secret=modal.Secret.from_name("dd-openai-secret")) def get_podcast_highlights(podcast_transcript): import openai instructPrompt = """ I am providing you with a transcription of a podcast. Provide highlights of the podcast episode. * The host, [host name], interviewed [guest name], an expert on [guest's expertise]. * [guest name] shared some fascinating insights on [topic of discussion]. * Some of the key takeaways from the episode include: * [Key takeaway 1] * [Key takeaway 2] * [Key takeaway 3] """ request = instructPrompt + podcast_transcript try: # Make the API call to get highlights chatOutput = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": request} ] ) podcastHighlights = chatOutput.choices[0].message.content except Exception as e: return f"An error occurred while fetching podcast highlights: {str(e)}" return podcastHighlights @stub.function(image=corise_image, secret=modal.Secret.from_name("dd-openai-secret"), timeout=1200) def process_podcast(url, path): output = {} podcast_details = get_transcribe_podcast.call(url, path) podcast_summary = get_podcast_summary.call(podcast_details['episode_transcript']) podcast_guest = get_podcast_guest.call(podcast_details['episode_transcript']) podcast_highlights = get_podcast_highlights.call(podcast_details['episode_transcript']) output['podcast_details'] = podcast_details output['podcast_summary'] = podcast_summary output['podcast_guest'] = podcast_guest output['podcast_highlights'] = podcast_highlights return output @stub.local_entrypoint() def test_method(url, path): output = {} podcast_details = get_transcribe_podcast.call(url, path) print ("Podcast Summary: ", get_podcast_summary.call(podcast_details['episode_transcript'])) print ("Podcast Guest Information: ", get_podcast_guest.call(podcast_details['episode_transcript'])) print ("Podcast Highlights: ", get_podcast_highlights.call(podcast_details['episode_transcript']))
[ "\n I am providing you with a transcription of a podcast. \n Provide highlights of the podcast episode.\n\n * The host, [host name], interviewed [guest name], an expert on [guest's expertise].\n * [guest name] shared some fascinating insights on [topic of discussion].\n * Some of the key takeaways from the episode include:\n * [Key takeaway 1]\n * [Key takeaway 2]\n * [Key takeaway 3]\n ", "You are a helpful assistant.", "\n I am providing you with a transcription of a podcast.\n Write an entertaining summary of the podcast in the tone of Joe Rogan.\n " ]
2024-01-10
TravinDSO/GPT_Terminal_Public
api~question_processing.py
import os import gc import gzip import json import math import logging import time import tkinter as tk import xml.etree.ElementTree as ET from datetime import datetime from box_sdk_gen.ccg_auth import CCGConfig,BoxCCGAuth from box_sdk_gen.developer_token_auth import BoxDeveloperTokenAuth from box_sdk_gen.client import BoxClient from notion_client import Client as NotionClient from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.chat_models import ChatOpenAI from langchain.document_loaders import SeleniumURLLoader, CSVLoader, NotionDBLoader from langchain.callbacks import get_openai_callback # Process the question and return the answer # Also perform the indexing of the documents if needed def process_question(total_docs_var,max_tokens_var,query_temp,openai_status_var,doc_text,env_file,data_use, query, prompt_style, data_folder,reindex=False,chat_history=[]): query_temp = query_temp.get() max_tokens = int(float(max_tokens_var.get())) doc_text.insert(tk.END, "Using environment file: " + env_file + "\n") doc_text.insert(tk.END, "Using data folder: " + data_folder + "\n") doc_text.update() load_dotenv(env_file, override=True) # Load the OPENAI environment variables from the .env file depending on use_azure use_azure = os.getenv("USE_AZURE") if use_azure.lower() == "true": USE_AZURE = True os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = os.getenv("AZURE_OPENAI_API_ENDPOINT") os.environ["OPENAI_API_KEY"] = os.getenv("AZURE_OPENAI_API_KEY") EMBEDDINGS_MODEL = os.getenv("AZURE_EMBEDDINGS_MODEL") AZURE_OPENAI_API_MODEL = os.getenv("AZURE_OPENAI_API_MODEL") OpenAIEmbeddings.deployment = os.getenv("AZURE_OPENAI_API_MODEL") else: USE_AZURE = False os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") EMBEDDINGS_MODEL = os.getenv("EMBEDDINGS_MODEL") OPENAI_API_MODEL = os.getenv("OPENAI_API_MODEL") # Load the NOTION environment variables from the .env file depending on use_notion use_notion = os.getenv("USE_NOTION") if use_notion.lower() == "true": USE_NOTION = True NOTION_TOKEN = os.getenv("NOTION_API_KEY") DATABASE_ID = os.getenv("NOTION_DATABASE_ID") else: USE_NOTION = False # Load the BOX environment variables from the .env file depending on use_notion use_box = os.getenv("USE_BOX") if use_box.lower() == "true": USE_BOX = True BOX_TOKEN = os.getenv("BOX_TOKEN") BOX_FOLDER_ID = os.getenv("BOX_FOLDER_ID") else: USE_BOX = False # Text splitter for splitting the text into chunks class CustomTextSplitter(CharacterTextSplitter): def __init__(self, separators, *args, **kwargs): super().__init__(*args, **kwargs) self.separators = separators def split_text(self, text): import re chunks = [] pattern = '|'.join(map(re.escape, self.separators)) splits = re.split(pattern, text) return self._merge_splits(splits, self.separators[0]) previous_logging_level = logging.getLogger().getEffectiveLevel() # Temporarily set the logging level to suppress warnings logging.getLogger().setLevel(logging.ERROR) # Set to logging.ERROR to suppress warnings if USE_AZURE: llm = ChatOpenAI(max_tokens=max_tokens,deployment_id=AZURE_OPENAI_API_MODEL,temperature=query_temp,top_p=1,frequency_penalty=0,presence_penalty=0) else: llm = ChatOpenAI(max_tokens=max_tokens,model_name=OPENAI_API_MODEL,temperature=query_temp,top_p=1,frequency_penalty=0,presence_penalty=0) prompt_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. The System defines the personality and instructions to modify the response. System: {prompt_style} Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" doc_chain = load_qa_chain(llm, chain_type="stuff") logging.getLogger().setLevel(previous_logging_level) chain_path = os.path.join(data_folder, 'chain.json') docsearch_path = os.path.join(data_folder, 'docsearch') url_file = os.path.join(data_folder, 'urls.txt') wurl_file = os.path.join(data_folder, 'wurls.txt') # A URL that will be walked to find more URLs and content compressed_raw_text_file = os.path.join(data_folder, 'temporary_cached_data.gz') add_docsearch_file = os.path.join(data_folder, 'add_docsearch.json') if os.path.exists(compressed_raw_text_file): os.remove(compressed_raw_text_file) if not os.path.exists(url_file): with open(url_file, 'w') as f: f.write('http://travin.com/blank') # Index the documents if needed # Do this if the chain file doesn't exist or if reindex is True # Do not index if data_use is 0 (no data query) if (not os.path.exists(chain_path) or reindex) and data_use > 0: skipped_path = "" openai_status_var.set("Reindexing documents...") with gzip.open(compressed_raw_text_file, 'wt', encoding='utf-8') as f: for root, _, files in os.walk(data_folder): for file in files: if file.endswith('.pdf'): pdf_path = os.path.join(root, file) doc_text.insert(tk.END, f"Parsing: {pdf_path}\n") doc_text.update() doc_text.see(tk.END) reader = PdfReader(pdf_path) for i, page in enumerate(reader.pages): text = page.extract_text() if text: f.write(text) # Release memory after processing each PDF del reader gc.collect() elif file.endswith('.csv'): csv_path = os.path.join(root, file) doc_text.insert(tk.END, f"Parsing: {csv_path}\n") doc_text.update() doc_text.see(tk.END) reader = CSVLoader(csv_path) data = reader.load() for i, row in enumerate(data): if row: f.write(row.page_content) # Release memory after processing each csv del reader gc.collect() elif file.endswith('.txt'): txt_path = os.path.join(root, file) doc_text.insert(tk.END, f"Parsing: {txt_path}\n") doc_text.update() doc_text.see(tk.END) with open(txt_path, 'r', encoding='utf-8') as txt_file: txt_text = txt_file.read() f.write(txt_text) elif file.endswith('.xml'): xml_path = os.path.join(root, file) doc_text.insert(tk.END, f"Parsing: {xml_path}\n") doc_text.update() doc_text.see(tk.END) # Create a context for iteratively parsing the XML file context = ET.iterparse(xml_path, events=('start', 'end')) context = iter(context) # Process the XML file chunk by chunk for event, elem in context: if event == 'end': # Write the text content of the current element to the gz file if elem.text: f.write(elem.text) # Clean up the processed element to save memory elem.clear() else: skipped_path = skipped_path + "--" + os.path.join(root, file) + "\n" if skipped_path: doc_text.insert(tk.END, f"Unsupported Files:\n{skipped_path}\n") doc_text.update() doc_text.see(tk.END) if url_file and os.path.exists(url_file): with open(url_file, 'r') as url_file_obj: url_list = [line.strip() for line in url_file_obj] url_loader = SeleniumURLLoader(urls=url_list) url_loader.headless = True url_loader.continue_on_failure = True url_loader.arguments = ['--disable-gpu','--log-level=3'] url_data = url_loader.load() for i, data in enumerate(url_data): text = data.page_content f.write(text) if USE_BOX: if os.getenv("BOX_DEVELOPER_TOKEN"): box_auth: BoxDeveloperTokenAuth = BoxDeveloperTokenAuth(token=BOX_TOKEN) else: if os.getenv("BOX_ENTERPRISE_ID"): box_oauth_config = CCGConfig( client_id=os.getenv("BOX_CLIENT_ID"), client_secret=os.getenv("BOX_CLIENT_SECRET"), enterprise_id=os.getenv("BOX_ENTERPRISE_ID") ) else: box_oauth_config = CCGConfig( client_id=os.getenv("BOX_CLIENT_ID"), client_secret=os.getenv("BOX_CLIENT_SECRET"), user_id=os.getenv("BOX_USER_ID") ) box_auth = BoxCCGAuth(config=box_oauth_config) box_client: BoxClient = BoxClient(auth=box_auth) for box_item in box_client.folders.get_folder_items(BOX_FOLDER_ID).entries: boxfile_ext = box_item.name.split('.')[-1] if boxfile_ext in ['vtt', 'txt', 'boxnote']: boxfile_is_readable = True else: boxfile_is_readable = False if box_item.type == 'file' and boxfile_is_readable: try: box_file = box_client.downloads.download_file(box_item.id).read() if boxfile_ext == 'boxnote': boxfile_data = json.loads(box_file.decode('utf-8')) # Get the lastEditTimestamp value timestamp_in_millis = boxfile_data.get('lastEditTimestamp') if timestamp_in_millis: timestamp_in_seconds = timestamp_in_millis / 1000 boxfile_timestamp = datetime.fromtimestamp(timestamp_in_seconds).strftime('%Y-%m-%d %H:%M:%S') boxfile_text = boxfile_data.get('atext', {}).get('text', '') f.write("Note name:" + box_item.name + " Date of note:" + boxfile_timestamp + " Note:" + boxfile_text) elif boxfile_ext in ['vtt', 'txt']: boxfile_text = box_file.decode('utf-8') f.write("File name:" + box_item.name + " File Text:" + boxfile_text) doc_text.insert(tk.END, f"Loaded box file: {box_item.name}\n") doc_text.update() doc_text.see(tk.END) except Exception as e: doc_text.insert(tk.END, f"Failed to load box file {box_item.name}: {e}\n") doc_text.update() doc_text.see(tk.END) time.sleep(1) # Rate limit pause if USE_NOTION: notion_loader = NotionDBLoader( integration_token=NOTION_TOKEN, database_id=DATABASE_ID, request_timeout_sec=10, # optional, defaults to 10 ) try: notion_page_summaries = notion_loader._retrieve_page_summaries() except Exception as e: doc_text.insert(tk.END, f"Failed to load notion pages: {e}\n") doc_text.update() doc_text.see(tk.END) openai_status_var.set("Failed to load notion pages: " + str(e)) notion_metadata_client = NotionClient(auth=NOTION_TOKEN) for each_page in notion_page_summaries: attempt = 0 while attempt < 2: try: # https://developers.notion.com/reference/block page_blocks = notion_loader.load_page(each_page) page_metadata = notion_metadata_client.pages.retrieve(each_page['id']) page_content = page_blocks.page_content # Get page text from the page blocks page_name = page_blocks.metadata['name'] try: page_due = page_metadata['properties']['Due']['date'] except: page_due = None try: page_status = page_metadata['properties']['Status']['select']['name'] except: page_status = None try: page_labels = page_metadata['properties']['Label']['multi_select'][0]['name'] except: page_labels = None # Write the page text to the gz file write_str = '' if page_name: write_str += f"Page Title:{page_name}\n" if page_due: write_str += f"|Page Date Due:{page_due}\n" if page_status: write_str += f"|Page Status:{page_status}\n" if page_labels: write_str += f"|Page Labels:{page_labels}\n" if page_content: write_str += f"|Page Content:{page_content}\n" f.write(write_str) if attempt == 0: doc_text.insert(tk.END, f"Loaded page: {page_name}\n") else: doc_text.insert(tk.END, f"Surccessfly loaded page: {page_name} after retry\n") doc_text.update() doc_text.see(tk.END) break # if successful, break out of the while loop except Exception as e: attempt += 1 doc_text.insert(tk.END, f"Attempt {attempt} failed to load page {each_page['id']} : {e}\n") doc_text.update() doc_text.see(tk.END) if attempt >= 2: #print(f"Failed to load page {page_id} after {attempt} attempts") doc_text.insert(tk.END, f"Failed to load page {each_page['id']} after {attempt} attempts\n") doc_text.update() doc_text.see(tk.END) if (not os.path.exists(chain_path) or reindex) and data_use > 0: # Initialize an empty list to store processed text chunks processed_texts_cache = [] #Need to replace the magic numbers with variables and include them in the environment file with gzip.open(compressed_raw_text_file, 'rt', encoding='utf-8') as f: text_splitter = CustomTextSplitter( separators=['\n', '. '], chunk_size=1000, chunk_overlap=100, length_function=len, ) current_chunk = '' for line in f: current_chunk += line if len(current_chunk) >= text_splitter._chunk_size: # Corrected attribute name # Process the current chunk processed_chunk = text_splitter.split_text(current_chunk) # Append the processed chunk to the cache processed_texts_cache.extend(processed_chunk) # Keep the chunk_overlap part of the current chunk for the next iteration current_chunk = current_chunk[-text_splitter._chunk_overlap:] # Corrected attribute name # Process the remaining part of the last chunk if current_chunk: processed_chunk = text_splitter.split_text(current_chunk) processed_texts_cache.extend(processed_chunk) os.remove(compressed_raw_text_file) if USE_AZURE: embeddings = OpenAIEmbeddings(model=EMBEDDINGS_MODEL,chunk_size=16) else: embeddings = OpenAIEmbeddings(model=EMBEDDINGS_MODEL,chunk_size=500) docsearch = FAISS.from_texts(processed_texts_cache, embeddings) docsearch.save_local(docsearch_path) doc_chain.save(chain_path) elif data_use > 0: if USE_AZURE: embeddings = OpenAIEmbeddings(model=EMBEDDINGS_MODEL,chunk_size=16) else: embeddings = OpenAIEmbeddings(model=EMBEDDINGS_MODEL,chunk_size=500) docsearch = FAISS.load_local(docsearch_path, embeddings) if data_use > 0: # Load additional docsearch instances and combine them if os.path.exists(add_docsearch_file): with open(add_docsearch_file, 'r') as f: add_docsearch_config = json.load(f) additional_folders = add_docsearch_config.get('additional_folders', []) for folder in additional_folders: additional_docsearch_path = os.path.join(folder, 'docsearch') if os.path.exists(additional_docsearch_path): #print(f"Loading additional docsearch from {additional_docsearch_path}") additional_docsearch = FAISS.load_local(additional_docsearch_path, embeddings) docsearch.merge_from(additional_docsearch) else: doc_text.insert(tk.END, "Additional docsearch path " + additional_docsearch_path + " does not exist" + "\n") doc_text.update() doc_text.see(tk.END) openai_status = "" if query != '': total_tokens = "" openai_status = "" answer = "" if prompt_style: question = f"'role': 'system', 'content':{prompt_style}\n'role': 'system', 'user'{query}" else: question = f"{query}" if data_use == 1: number_of_docs = int(float(total_docs_var.get())) docs = docsearch.similarity_search(query, k=number_of_docs) with get_openai_callback() as cb: try: answer = doc_chain.run(input_documents=docs, question=question) except Exception as e: if "maximum context length" in str(e): try: #Rate limit pause time.sleep(5) # Extract max_context_length max_context_length = int(str(e).split("maximum context length is ")[1].split(" tokens.")[0]) # Extract num_tokens num_tokens = int(str(e).split("you requested ")[1].split(" tokens")[0]) number_of_docs = calculate_num_docs(num_tokens, max_context_length) docs = docsearch.similarity_search(query, k=number_of_docs) answer = doc_chain.run(input_documents=docs, question=question) openai_status += "Maximum tokens exceeded. Temporary reduced documents to " + str(number_of_docs) + " | " except: try: #Rate limit pause time.sleep(5) adjusted_number_of_docs = float(total_docs_var.get()) * 0.5 number_of_docs = (int(adjusted_number_of_docs)) docs = docsearch.similarity_search(query, k=number_of_docs) answer = doc_chain.run(input_documents=docs, question=question) openai_status += "Maximum tokens exceeded. Temporary reduced documents to " + str(number_of_docs) + " | " except: try: #Rate limit pause time.sleep(5) number_of_docs = 5 docs = docsearch.similarity_search(query, k=number_of_docs) answer = doc_chain.run(input_documents=docs, question=question) openai_status += "Maximum tokens exceeded. Temporary reduced documents to 5. | " except: doc_text.insert(tk.END, "Error: " + str(e) + "\n") doc_text.update() answer = "" openai_status += "Error: " + str(e) + " | " total_tokens = cb.total_tokens elif data_use == 2: number_of_docs = int(float(total_docs_var.get())) docs = docsearch.similarity_search_with_score(query, k=number_of_docs) answer = "" else: # Initialize an empty lists to store processed text chunks docs = [] with get_openai_callback() as cb: try: answer = doc_chain.run(input_documents=docs, question=question) except Exception as e: print(e) answer = "" total_tokens = cb.total_tokens if total_tokens: openai_status += "Total tokens used: " + str(total_tokens) return answer, docs, openai_status else: return "", None, openai_status def calculate_num_docs(num_tokens, max_context_length): num_docs = 1000 ratio = max_context_length / num_tokens num_docs = math.floor(ratio * num_docs) num_docs = num_docs // 10 * 10 # round down to nearest 10 num_docs = num_docs - 5 # subtract 5 to be safe return num_docs
[ "Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. The System defines the personality and instructions to modify the response.\n System: {prompt_style}\n Chat History:\n {chat_history}\n Follow Up Input: {question}\n Standalone question:" ]
2024-01-10
bigcode-project/bigcode-evaluation-harness
bigcode_eval~tasks~humanevalpack_openai.py
"""Testing from datasets import load_dataset ds = load_dataset("bigcode/humaneval-x-bugs", "python")["test"] idx = 0 def get_prompt_base(doc, language="python"): # See # https://github.com/roG0d/CodeGeeX/blob/f66205b5f615a4eead9c26d7ec297e14738ea18d/codegeex/benchmark/evaluate_humaneval_x.py#L78 # https://github.com/THUDM/CodeGeeX/pull/76#issuecomment-1500653190 if language == "rust": main = "fn main(){}\n" prompt_base = main + doc["declaration"] + doc["prompt"] else: prompt_base = doc["prompt"] return prompt_base prompt_base = get_prompt_base(ds[idx], language="python") messages = [ { "role": "user", "content": ds[idx]["instruction"], }, { "role": "assistant", "content": prompt_base, }, ] gpt-4-0613 response = openai.ChatCompletion.create( model="gpt-4-0613", messages=messages ) """ import os import openai import jsonlines import termcolor from cdifflib import CSequenceMatcher from camel_converter import to_snake from datasets import load_dataset from typing import List from tqdm import tqdm _CITATION = """ @article{muennighoff2023octopack, title={OctoPack: Instruction Tuning Code Large Language Models}, author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre}, journal={arXiv preprint arXiv:2308.07124}, year={2023} } """ LANGUAGE_TO_NAME = { "python": "Python", "cpp": "C++", "js": "JavaScript", "java": "Java", "go": "Go", "rust": "Rust", } def get_prompt_base(doc, language): # See # https://github.com/roG0d/CodeGeeX/blob/f66205b5f615a4eead9c26d7ec297e14738ea18d/codegeex/benchmark/evaluate_humaneval_x.py#L78 # https://github.com/THUDM/CodeGeeX/pull/76#issuecomment-1500653190 if language == "rust": main = "fn main(){}\n" prompt_base = main + doc["declaration"] else: prompt_base = doc["declaration"] return prompt_base def get_prompt_synthesize(doc, language="python"): # addon = f"Start your code with:\n{get_prompt_base(sample, language)}" # return doc["instruction"] + "\n" + addon # Results in worse performance for GPT4 return doc["instruction"] # Problem: Difficult for problems that have helper functions def get_base_prompt_fix(doc, language="python", mode="tests"): if language == "rust": if mode == "tests": return "fn main(){}\n" + doc["declaration"] elif mode == "docs": return "fn main(){}\n" + doc["declaration"] + doc["prompt"] else: raise ValueError else: if mode == "tests": return doc["declaration"] elif mode == "docs": return doc["prompt"] else: raise ValueError def get_prompt_fix(doc, language="python", mode="tests"): prompt_base = get_base_prompt_fix(doc, language, mode) func = prompt_base + doc["buggy_solution"] instruction = f'Fix bugs in {doc["entry_point"]}.' return func + "\n" + instruction def get_prompt_explain_desc(doc, language="python"): if language == "rust": main = "fn main(){}\n" prompt_base = main + doc["declaration"] else: prompt_base = doc["declaration"] docstring_len = len(doc["docstring"]) instruction = f"Provide a concise natural language description of the code using at most {docstring_len} characters." func = prompt_base + doc["canonical_solution"] return instruction + "\n" + func, docstring_len def get_prompt_explain_syn(sample, desc, language="python"): instruction = f"Write functional code in {LANGUAGE_TO_NAME[language]} according to the description." addon = f"Start your code with:\n{get_prompt_base(sample, language)}" return desc + "\n" + instruction + "\n" + addon class ParseError(Exception): pass class ContentParser: @staticmethod def _entry_point_variations(entry_point: str) -> List[str]: # NOTE: workaround dataset's bug with entry point naming return [ entry_point, to_snake(entry_point), entry_point[0].lower() + entry_point[1:], ] def __call__(self, prompt: str, content: str, entry_point: str): # NOTE: Model doesn't follow instructions directly: # adds description of change and sometimes fixes # typos, or other "bugs" in description. if "```" in content: content = content.split("```")[1] # first parse with assumption that content has description matcher = CSequenceMatcher(None, prompt, content) tag, _, _, j1, j2 = matcher.get_opcodes()[-1] if tag == "insert": return content[j1:j2] # second parse content with assumption that model wrote code without description for entry_point in self._entry_point_variations(entry_point): if entry_point in content: content = content.split(entry_point)[-1] return "".join(content.splitlines(keepends=True)[1:]) raise ParseError(f"Prompt is not in content:\n{content}") class ChatWrapper: def __init__(self, model: str): self._model = model def __call__(self, prompt: str, n: int) -> str: messages = [ { "role": "user", "content": prompt, } ] while True: try: response = openai.ChatCompletion.create( model=self._model, messages=messages, temperature=0.2, top_p=0.95, n=n ) content_list = list() for i in range(n): message = response["choices"][i]["message"] assert message["role"] == "assistant" content_list.append(message["content"]) return content_list except Exception as e: print("API EXCEPTION:", e) if __name__ == '__main__': TIMES = 1 VERBOSE = True LANGUAGE = "python" MODEL = "gpt-4-0613" TASK = "humanevalsynthesize" # Load descriptions if TASK == "humanevalexplainsynthesize": with jsonlines.open(f"completions_{LANGUAGE}_humanevalexplaindescribe.jsonl", "r") as f: descriptions = [line["raw_generation"][0] for line in f] openai.organization = os.getenv("OPENAI_ORGANIZATION") openai.api_key = os.getenv("OPENAI_API_KEY") samples = [s for s in load_dataset("bigcode/humanevalpack", LANGUAGE)["test"]] chat_wrapper = ChatWrapper(MODEL) parse_errors = 0 parser = ContentParser() for idx, sample in enumerate(tqdm(samples)): if TASK == "humanevalfix": prompt = get_prompt_fix(sample, language=LANGUAGE, mode="tests") elif TASK == "humanevalsynthesize": prompt = get_prompt_synthesize(sample, language=LANGUAGE) elif TASK == "humanevalexplaindescribe": prompt, docstring_len = get_prompt_explain_desc(sample, language=LANGUAGE) gen = chat_wrapper(prompt, TIMES) sample["raw_generation"] = gen sample["generation"] = [gen_item[:docstring_len] for gen_item in gen] continue elif TASK == "humanevalexplainsynthesize": desc = descriptions[idx] prompt = get_prompt_explain_syn(sample, desc, language=LANGUAGE) if VERBOSE: print(f"Processing {sample['task_id']} ({idx + 1}/{len(samples)}))...") sample["raw_generation"] = chat_wrapper(prompt, TIMES) try: sample["generation"] = [parser(prompt, generation_item, sample["entry_point"]) for generation_item in sample["raw_generation"]] except ParseError as e: parse_errors += 1 print("PARSE EXCEPTION:", e) sample["generation"] = [""] if VERBOSE: for i in range(TIMES): print(termcolor.colored(sample["entry_point"], "yellow", attrs=["bold"])) print(termcolor.colored(prompt, "yellow")) print(termcolor.colored(sample["canonical_solution"], "red")) print(termcolor.colored(sample["generation"][i], "green")+"\n\n") if VERBOSE: print("parse error rate:", parse_errors / len(samples)) results_filename = f"completions_{LANGUAGE}_{TASK}.jsonl" with jsonlines.open(results_filename, "w") as writer: writer.write_all(samples)
[ "declaration", "PLACEHOLDERPLACEHOLDER" ]
2024-01-10
HugoC28/reading-trainer
backend~controllers~readingComprehension.py
from dotenv import load_dotenv from openai import AzureOpenAI import re import json from flask import jsonify from utils import text_endpoint, dalle_endpoint, azure_api_key, words, marks import requests load_dotenv() def parse_text_to_object(text): print(text) # Split the input string into parts using the "STORY:", "PROMPT:", "QUESTION:", and "ANSWERS:" markers parts = [part.strip() for part in text.split("STORY:")[1:]] # Extract title of the story fpart = text.split("STORY:")[0] title = fpart.split("TITLE:")[1] # Create a list of dictionaries result = {} for index, part in enumerate(parts): story, rest = part.split("PROMPT:") prompt, rest = rest.split("QUESTION:") question, rest = rest.split("TRUE_ANSWER:") true_answer, rest = rest.split("POSSIBLE_ANSWERS:") answers = [ans.replace(">","").strip() for ans in rest.strip().split('\n') if ans.strip()] # Construct the dictionary result_dict = { 'story': story.strip(), 'prompt': prompt.strip(), 'question': question.strip(), 'true_answer': true_answer.strip(), 'answers': answers } # Append the dictionary to the result list result[index] = result_dict # For an standar structure on excersices, they will be a dictionary of two fields, # "Type", wich is obvious and "Exercise", which is the original content and "Title", # to give a title to the story for displaying purposes exercise = { "Type":"Reading Comprehension", "Exercise": result, "Title":title.strip() } return exercise def generateComprehensionTest(selected_topic, nbr_parts, difficulty): messages = [{"role":"system","content":"You are a reading exercise generator, adapted for a 9 years old child with language impairments."}] # The difficult words can be maybe asked from the user in the UI? prompt = f'''Compose a short and engaging story for a 9-year-old child with reading difficulties, centered around {selected_topic}. The story should be a {marks[difficulty-1]} level for a 9-year-old child. The sentences should be simple, with clear and consistent structure. Ensure that the text is cohesive and forms an engaging narrative about {selected_topic}, including aspects of their appearance, behavior, and environment. This story must contain {nbr_parts} parts, each part should be approximately {words[difficulty-1]} words. For each part, give on DALL-E prompts that describes the related part. Be consistent with the prompts and always describe the characters in the same way. Also add for each of those part one Multiple Choice Question of difficulty {marks[difficulty-1]} related to the part, to test the child's text comprehension. Try not to ask questions that can be answered only with the generated image, to really test child's text comprehension.\nYou must follow this exact structure, with i from 1 to {nbr_parts}, don't add any other details such as specific separators, part titles, transitions or advices :\nSTORY: <story's part i>\nPROMPT: <DALL-E script for part i>\nQUESTION: <MCQ question for part i>\nTRUE_ANSWER: <the true answer among the 4 possible answers>\nPOSSIBLE_ANSWERS: <4 possible answers for part i (containing TRUE_ANSWER, with the exact same syntax (letters and punctuation), at a random position, different for each question), separated by \n >\n Start the response with TITLE:<title of the story>''' messages.append({"role":"user","content":prompt}) # Try to generate the exercise and prompts with gpt 4 in this try block. try: textClient = AzureOpenAI( api_version="2023-12-01-preview", api_key=azure_api_key, azure_endpoint=text_endpoint ) response = textClient.chat.completions.create( model="gpt-4", # model = "deployment_name". messages=messages ) chatGPTReply = response.choices[0].message.content parsedText = parse_text_to_object(chatGPTReply) except requests.RequestException as e: print(f"Error in generating the exercise and prompts: {e}") return jsonify({"error": "Internal Server Error"}), 500 # Try to generate the images in this try block. try: # Diffenrent models have different endpoints dalleClient = AzureOpenAI( api_version="2023-12-01-preview", api_key=azure_api_key, azure_endpoint=dalle_endpoint ) # Loop through the prompts and sentences and generate the images for key, value in parsedText["Exercise"].items(): print(key, value) result = dalleClient.images.generate( #model= "dall-e-3", # the name of your DALL-E 3 deployment prompt= value["prompt"]+"Use a cartoon style.", n=1 ) json_response = json.loads(result.model_dump_json()) image_url = json_response["data"][0]["url"] # extract image URL from response parsedText["Exercise"][key]["url"] = image_url except Exception as e: print(f"Error in generating the images: {e}") return jsonify({"error": "Internal Server Error"}), 500 print(parsedText) return jsonify(parsedText), 200
[ "You are a reading exercise generator, adapted for a 9 years old child with language impairments.", "f'''Compose a short and engaging story for a 9-year-old child with reading difficulties, centered around {selected_topic}. The story should be a {marks[difficulty-1]} level for a 9-year-old child. The sentences should be simple, with clear and consistent structure. Ensure that the text is cohesive and forms an engaging narrative about {selected_topic}, including aspects of their appearance, behavior, and environment. This story must contain {nbr_parts} parts, each part should be approximately {words[difficulty-1]} words. For each part, give on DALL-E prompts that describes the related part. Be consistent with the prompts and always describe the characters in the same way. Also add for each of those part one Multiple Choice Question of difficulty {marks[difficulty-1]} related to the part, to test the child's text comprehension. Try not to ask questions that can be answered only with the generated image, to really test child's text comprehension.\\nYou must follow this exact structure, with i from 1 to {nbr_parts}, don't add any other details such as specific separators, part titles, transitions or advices :\\nSTORY: <story's part i>\\nPROMPT: <DALL-E script for part i>\\nQUESTION: <MCQ question for part i>\\nTRUE_ANSWER: <the true answer among the 4 possible answers>\\nPOSSIBLE_ANSWERS: <4 possible answers for part i (containing TRUE_ANSWER, with the exact same syntax (letters and punctuation), at a random position, different for each question), separated by \\n >\\n Start the response with TITLE:<title of the story>" ]
2024-01-10
HugoC28/reading-trainer
backend~controllers~vocabularyBuilding.py
from dotenv import load_dotenv from openai import AzureOpenAI import re import json from flask import jsonify from utils import text_endpoint, dalle_endpoint, azure_api_key, marks, words import requests load_dotenv() def parse_story_prompt(text): # Regular expressions to match the title, story parts, and prompts title_pattern = r"Title: \"([^\"]+)\"" story_pattern = r"Story Part (\d+): \"([^\"]+)\"" prompt_pattern = r"Prompt for DALLE \(Part (\d+)\): \"([^\"]+)\"" # Extract title title_match = re.search(title_pattern, text) title = title_match.group(1) if title_match else None # Extract story parts and prompts stories = re.findall(story_pattern, text) prompts = re.findall(prompt_pattern, text) # Convert stories and prompts into a dictionary exercises = {} for story_part, story_text in stories: corresponding_prompt = next((prompt_text for part, prompt_text in prompts if part == story_part), None) exercises[story_part] = {"story": story_text, "prompt": corresponding_prompt} # Construct the final data structure data = { "Type":"Vocabulary Building", "Title": title, "Exercise": exercises} return data #messages = [{"role":"system","content":"You are a reading exercise generator who is used to generate Vocabulary texts: They are texts with a controlled vocabulary, made in order for the patient to learn and remember certain words that are difficult to them. "}] def generateVocabularyText(selected_topic, exercise_number, difficulty): messages = [{"role":"system","content":"You are a reading exercise generator who is used to generate Vocabulary texts: They are texts with a controlled vocabulary, made in order for the patient to learn and remember certain words that are difficult to them. "}] prompt = f'''Generate a reading exercise and a image prompt on the difficult words {selected_topic}. The exercise should consist of {exercise_number} parts, each with a controlled vocabulary suited for the {marks[difficulty-1]} level. Repeat the difficult words several time in the exercise. The text in each part should be approximately {words[difficulty-1]} words.\n\n For each part of the exercise, also provide a descriptive prompt for image generator to create an image that visually represents the story part.\n\n Format your response as follows:\n\n Title: "Title of the story"\nStory Part 1: "Generated story part 1"\n Prompt for DALLE (Part 1): "Image prompt describing story part 1"\n...\nStory Part {exercise_number}: "Generated story part {exercise_number}"\nPrompt for DALLE (Part {exercise_number}): "Image prompt describing story part {exercise_number}"''' messages.append({"role":"user","content":prompt}) # Try to generate the exercise and prompts with gpt 4 in this try block. try: textClient = AzureOpenAI( api_version="2023-12-01-preview", api_key=azure_api_key, azure_endpoint=text_endpoint ) print(messages) response = textClient.chat.completions.create( model="gpt-4", # model = "deployment_name". messages=messages ) chatGPTReply = response.choices[0].message.content parsedText = parse_story_prompt(chatGPTReply) except requests.RequestException as e: print(f"Error in generating the exercise and prompts: {e}") return jsonify({"error": "Internal Server Error"}), 500 # Try to generate the images in this try block. try: # Diffenrent models have different endpoints dalleClient = AzureOpenAI( api_version="2023-12-01-preview", api_key=azure_api_key, azure_endpoint=dalle_endpoint ) # Loop through the prompts and sentences and generate the images for key, value in parsedText["Exercise"].items(): result = dalleClient.images.generate( #model= "dall-e-3", # the name of your DALL-E 3 deployment prompt= value["prompt"]+"Use a cartoon style.", n=1 ) print(result) json_response = json.loads(result.model_dump_json()) image_url = json_response["data"][0]["url"] # extract image URL from response parsedText["Exercise"][key]["url"] = image_url except Exception as e: print(f"Error in generating the images: {e}") return jsonify({"error": "Internal Server Error"}), 500 print("========================================\n") print("Parsed Text:") print(parsedText["Exercise"]) return jsonify(parsedText), 200
[ "f'''Generate a reading exercise and a image prompt on the difficult words {selected_topic}. The exercise should consist of {exercise_number} parts, each with a controlled vocabulary suited for the {marks[difficulty-1]} level. Repeat the difficult words several time in the exercise. The text in each part should be approximately {words[difficulty-1]} words.\\n\\n For each part of the exercise, also provide a descriptive prompt for image generator to create an image that visually represents the story part.\\n\\n Format your response as follows:\\n\\n Title: \"Title of the story\"\\nStory Part 1: \"Generated story part 1\"\\n Prompt for DALLE (Part 1): \"Image prompt describing story part 1\"\\n...\\nStory Part {exercise_number}: \"Generated story part {exercise_number}\"\\nPrompt for DALLE (Part {exercise_number}): \"Image prompt describing story part {exercise_number}", "You are a reading exercise generator who is used to generate Vocabulary texts: They are texts with a controlled vocabulary, made in order for the patient to learn and remember certain words that are difficult to them. ", "Prompt for DALLE \\(Part (\\d+)\\): \\\"([^\\\"]+)\\\"" ]
2024-01-10
gloveboxes/azure-openai-service-proxy
examples~python~openai_sdk_0.28.x~azure_openai_functions.py
""" Test Azure OpenAI Functions API """ # See documentation at https://gloveboxes.github.io/azure-openai-service-proxy/category/developer-endpoints/ import os import openai from dotenv import load_dotenv load_dotenv() ENDPOINT_URL = os.environ.get("ENDPOINT_URL") API_KEY = os.environ.get("API_KEY") API_VERSION = "2023-09-01-preview" DEPLOYMENT_NAME = "gpt-3.5-turbo" openai.api_type = "azure" openai.api_key = API_KEY openai.api_base = ENDPOINT_URL openai.api_version = API_VERSION messages = [ { "role": "system", "content": ( "Don't make assumptions about what values to plug into functions. " "Ask for clarification if a user request is ambiguous." ), }, {"role": "user", "content": "What's the weather like today in seattle"}, ] functions = [ { "name": "get_current_weather", "description": "Get the current weather", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location.", }, }, "required": ["location", "format"], }, }, { "name": "get_n_day_weather_forecast", "description": "Get an N-day weather forecast", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location.", }, "num_days": { "type": "integer", "description": "The number of days to forecast", }, }, "required": ["location", "format", "num_days"], }, }, ] completion = openai.ChatCompletion.create( deployment_id=DEPLOYMENT_NAME, messages=messages, functions=functions, ) print(completion) print() print(completion.choices[0].finish_reason) print(completion.choices[0].message.function_call)
[ "What's the weather like today in seattle", "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous." ]
2024-01-10
gloveboxes/azure-openai-service-proxy
src~proxy~app~images.py
""" Images Generations API for Dall-e models""" import logging from enum import Enum from typing import Any from fastapi import HTTPException from pydantic import BaseModel from .configuration import OpenAIConfig from .openai_async import OpenAIAsyncManager OPENAI_IMAGES_GENERATIONS_API_VERSION = "2023-12-01-preview" logging.basicConfig(level=logging.WARNING) class ResponseFormat(Enum): """Response Format""" URL = "url" BASE64 = "b64_json" class ImageSize(Enum): """Image Size""" IS_1024X1024 = "1024x1024" IS_1792X1024 = "1792x1024" IS_1024X1792 = "1024x1792" class ImageQuality(Enum): """Image Quality""" HD = "hd" STANDARD = "standard" class ImageStyle(Enum): """Image Style""" VIVID = "vivid" NATURAL = "natural" class ImagesRequest(BaseModel): """OpenAI Images Generations Request""" prompt: str # response_format: ResponseFormat = ResponseFormat.URL n: int = 1 size: ImageSize = ImageSize.IS_1024X1024 quality: ImageQuality = ImageQuality.HD style: ImageStyle = ImageStyle.VIVID api_version: str = OPENAI_IMAGES_GENERATIONS_API_VERSION class Images: """OpenAI Images Generations Manager""" def __init__(self, openai_config: OpenAIConfig): """init in memory session manager""" self.openai_config = openai_config self.logger = logging.getLogger(__name__) def report_exception(self, message: str, http_status_code: int) -> Any: """report exception""" self.logger.warning(msg=f"{message}") raise HTTPException( status_code=http_status_code, detail=message, ) def validate_input(self, images: ImagesRequest): """validate input""" # do some basic input validation if not images.prompt: return self.report_exception("Oops, no prompt.", 400) if len(images.prompt) > 1000: return self.report_exception("Oops, prompt is too long. The maximum length is 1000 characters.", 400) # check the image_count is 1 if images.n and images.n != 1: return self.report_exception("Oops, image_count must be 1.", 400) # check the image_size is between 256x256, 512x512, 1024x1024 if images.size and images.size not in ImageSize: return self.report_exception("Oops, image_size must be 1792x1024, 1024x1792, 1024x1024.", 400) if images.quality and images.quality not in ImageQuality: return self.report_exception("Oops, image_quality must be hd, standard.", 400) if images.style and images.style not in ImageStyle: return self.report_exception("Oops, image_style must be vivid, natural.", 400) async def call_openai_images_generations(self, images: ImagesRequest) -> Any: """call openai with retry""" self.validate_input(images) deployment = await self.openai_config.get_deployment() openai_request = { "prompt": images.prompt, "size": images.size.value, "n": images.n, "quality": images.quality.value, "style": images.style.value, } url = ( f"https://{deployment.resource_name}.openai.azure.com/openai/deployments/" f"{deployment.deployment_name}/images/generations" f"?api-version={images.api_version}" ) async_mgr = OpenAIAsyncManager(deployment) response = await async_mgr.async_post(openai_request, url) response_json = response.json() return response_json, response.status_code
[]
2024-01-10
gloveboxes/azure-openai-service-proxy
src~proxy~app~chat_completions.py
""" Chat Completions API """ import logging from typing import Any from fastapi import HTTPException from pydantic import BaseModel from .configuration import OpenAIConfig from .openai_async import OpenAIAsyncManager OPENAI_CHAT_COMPLETIONS_API_VERSION = "2023-09-01-preview" OPENAI_CHAT_COMPLETIONS_EXTENSIONS_API_VERSION = "2023-08-01-preview" logging.basicConfig(level=logging.WARNING) class ChatCompletionsRequest(BaseModel): """OpenAI Chat Request""" messages: list[dict[str, str]] dataSources: list[Any] | None = None max_tokens: int = None temperature: float = None n: int | None = None stream: bool = False top_p: float | None = None stop: str | list[str] | None = None frequency_penalty: float | None = None presence_penalty: float | None = None functions: list[dict[str, Any]] | None = None function_call: str | dict[str, str] | None = None api_version: str | None = None extensions: bool = False class ChatCompletions: """OpenAI Chat Completions Manager""" def __init__(self, openai_config: OpenAIConfig): """init in memory session manager""" self.openai_config = openai_config self.logger = logging.getLogger(__name__) def __throw_validation_error(self, message: str, status_code: int): """throw validation error""" raise HTTPException( status_code=status_code, detail=message, ) def validate_input(self, chat: ChatCompletionsRequest): """validate input""" # do some basic input validation # check the max_tokens is between 1 and 4096 if chat.max_tokens is not None and not 1 <= chat.max_tokens <= 4096: self.__throw_validation_error("Oops, max_tokens must be between 1 and 4096.", 400) if chat.n is not None and not 1 <= chat.n <= 10: self.__throw_validation_error("Oops, n must be between 1 and 10.", 400) # check the temperature is between 0 and 1 if chat.temperature is not None and not 0 <= chat.temperature <= 1: self.__throw_validation_error("Oops, temperature must be between 0 and 1.", 400) # check the top_p is between 0 and 1 if chat.top_p is not None and not 0 <= chat.top_p <= 1: self.__throw_validation_error("Oops, top_p must be between 0 and 1.", 400) # check the frequency_penalty is between 0 and 1 if chat.frequency_penalty is not None and not 0 <= chat.frequency_penalty <= 1: self.__throw_validation_error("Oops, frequency_penalty must be between 0 and 1.", 400) # check the presence_penalty is between 0 and 1 if chat.presence_penalty is not None and not 0 <= chat.presence_penalty <= 1: self.__throw_validation_error("Oops, presence_penalty must be between 0 and 1.", 400) async def call_openai_chat_completion( self, chat: ChatCompletionsRequest, ) -> Any: """call openai with retry""" self.validate_input(chat) deployment = await self.openai_config.get_deployment() # if dataSources are provided, use the extensions API if chat.extensions: api_version = chat.api_version or OPENAI_CHAT_COMPLETIONS_EXTENSIONS_API_VERSION url = ( f"https://{deployment.resource_name}.openai.azure.com/openai/deployments/" f"{deployment.deployment_name}/extensions/chat/completions" f"?api-version={api_version}" ) else: api_version = chat.api_version or OPENAI_CHAT_COMPLETIONS_API_VERSION url = ( f"https://{deployment.resource_name}.openai.azure.com/openai/deployments/" f"{deployment.deployment_name}/chat/completions" f"?api-version={api_version}" ) del chat.extensions del chat.api_version openai_request = {} for key, value in chat.__dict__.items(): if value is not None: openai_request[key] = value async_mgr = OpenAIAsyncManager(deployment) if chat.stream: (response, status_code) = await async_mgr.async_post_streaming(openai_request, url) else: (response, status_code) = await async_mgr.async_openai_post(openai_request, url) response["model"] = deployment.friendly_name return response, status_code
[]
2024-01-10
gloveboxes/azure-openai-service-proxy
examples~python~openai_sdk_0.28.x~azure_openai_completions.py
""" Test completions with azure openai """ # See documentation at https://gloveboxes.github.io/azure-openai-service-proxy/category/developer-endpoints/ import os import openai from dotenv import load_dotenv load_dotenv() ENDPOINT_URL = os.environ.get("ENDPOINT_URL") API_KEY = os.environ.get("API_KEY") API_VERSION = "2023-09-01-preview" DEPLOYMENT_NAME = "davinci-002" ENGINE_NAME = "text-davinci-002-prod" openai.api_type = "azure" openai.api_key = API_KEY openai.api_base = ENDPOINT_URL openai.api_version = API_VERSION response = openai.Completion.create(engine=ENGINE_NAME, prompt="This is a test", max_tokens=5) print(response)
[ "This is a test" ]
2024-01-10
gloveboxes/azure-openai-service-proxy
examples~python~openai_sdk_0.28.x~azure_openai_chat.py
""" Test Azure OpenAI Chat Completions API """ # See documentation at https://gloveboxes.github.io/azure-openai-service-proxy/category/developer-endpoints/ import os import openai from dotenv import load_dotenv load_dotenv() ENDPOINT_URL = os.environ.get("ENDPOINT_URL") API_KEY = os.environ.get("API_KEY") API_VERSION = "2023-09-01-preview" DEPLOYMENT_NAME = "gpt-3.5-turbo" openai.api_type = "azure" openai.api_key = API_KEY openai.api_base = ENDPOINT_URL openai.api_version = API_VERSION MESSAGES = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"}, { "role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020.", }, {"role": "user", "content": "Where was it played?"}, ] completion = openai.ChatCompletion.create( deployment_id=DEPLOYMENT_NAME, messages=MESSAGES, ) print(completion) print() print(completion.choices[0].message.content)
[ "Where was it played?", "You are a helpful assistant.", "The Los Angeles Dodgers won the World Series in 2020.", "Who won the world series in 2020?" ]
2024-01-10
gloveboxes/azure-openai-service-proxy
examples~python~openai_sdk_0.28.x~azure_openai_embeddings.py
""" Test Azure OpenAI Embeddings API """ # See documentation at https://gloveboxes.github.io/azure-openai-service-proxy/category/developer-endpoints/ import os import openai from dotenv import load_dotenv load_dotenv() ENDPOINT_URL = os.environ.get("ENDPOINT_URL") API_KEY = os.environ.get("API_KEY") API_VERSION = "2023-08-01-preview" DEPLOYMENT_NAME = "text-embedding-ada-002" openai.api_type = "azure" openai.api_key = API_KEY openai.api_base = ENDPOINT_URL content = ( "This stunning leather wrap bracelet will add a touch of bohemian flair to your outfit." "The bracelet features a braided leather band in a rich brown color, adorned with turquoise beads and silver charms. " # noqa: E501 "The bracelet wraps around your wrist multiple times, creating a layered look that is eye-catching and stylish. " "The bracelet is adjustable and has a button closure for a secure fit. " "This leather wrap bracelet is the perfect accessory for any occasion, " "whether you want to dress up a casual outfit or add some color to a formal one." ) query_embeddings = openai.Embedding.create( engine=DEPLOYMENT_NAME, input=str(content), encoding_format="float", api_version="2023-08-01-preview", ) print(query_embeddings) print(query_embeddings.data[0].embedding)
[]
2024-01-10
gloveboxes/azure-openai-service-proxy
examples~python~openai_sdk_1.x~azure_openai_chat_streaming_your_data.py
""" Test Azure OpenAI Chat Completions Stream API """ # Create a new Azure Cognitive Search index and load an index with Azure content # https://microsoftlearning.github.io/mslearn-knowledge-mining/Instructions/Labs/10-vector-search-exercise.html # https://learn.microsoft.com/en-us/azure/ai-services/openai/use-your-data-quickstart?tabs=command-line%2Cpython-new&pivots=programming-language-python#create-the-python-app import os import time from dotenv import load_dotenv from openai import AzureOpenAI load_dotenv() ENDPOINT_URL = os.environ.get("ENDPOINT_URL") API_KEY = os.environ.get("API_KEY") AZURE_AI_SEARCH_ENDPOINT = os.environ.get("AZURE_AI_SEARCH_ENDPOINT") AZURE_AI_SEARCH_KEY = os.environ.get("AZURE_AI_SEARCH_KEY") AZURE_AI_SEARCH_INDEX_NAME = os.environ.get("AZURE_AI_SEARCH_INDEX_NAME") API_VERSION = "2023-09-01-preview" MODEL_NAME = "gpt-35-turbo" client = AzureOpenAI( base_url=f"{ENDPOINT_URL}/openai/deployments/deployment/extensions", api_key=API_KEY, api_version=API_VERSION, ) messages = [ { "role": "user", "content": ("What are the differences between Azure Machine Learning " "and Azure AI services?"), }, ] body = { "dataSources": [ { "type": "AzureCognitiveSearch", "parameters": { "endpoint": AZURE_AI_SEARCH_ENDPOINT, "key": AZURE_AI_SEARCH_KEY, "indexName": AZURE_AI_SEARCH_INDEX_NAME, }, } ] } response = client.chat.completions.create( model="gpt-3.5-turbo", messages=messages, extra_body=body, stream=True, max_tokens=100, ) # turn off print buffering # https://stackoverflow.com/questions/107705/disable-output-buffering for chunk in response: if chunk.choices and len(chunk.choices) > 0: content = chunk.choices[0].delta.content if content: print(content, end="", flush=True) # delay to simulate real-time chat time.sleep(0.05) print()
[ "What are the differences between Azure Machine Learning and Azure AI services?" ]
2024-01-10
gloveboxes/azure-openai-service-proxy
examples~python~openai_sdk_1.x~azure_openai_chat_streaming.py
""" Test Azure OpenAI Chat Completions Stream API """ import os import time from dotenv import load_dotenv from openai import AzureOpenAI load_dotenv() ENDPOINT_URL = os.environ.get("ENDPOINT_URL") API_KEY = os.environ.get("API_KEY") API_VERSION = "2023-09-01-preview" MODEL_NAME = "text-davinci-002" client = AzureOpenAI( base_url=ENDPOINT_URL, api_key=API_KEY, api_version=API_VERSION, ) MESSAGES = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"}, { "role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020.", }, {"role": "user", "content": "Where was it played?"}, ] response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What is the meaning of life!"}, ], stream=True, max_tokens=100, ) for chunk in response: if chunk.choices and len(chunk.choices) > 0: content = chunk.choices[0].delta.content if content: print(content, end="", flush=True) # delay to simulate real-time chat time.sleep(0.05) print()
[ "Where was it played?", "Who won the world series in 2020?", "What is the meaning of life!", "You are a helpful assistant.", "The Los Angeles Dodgers won the World Series in 2020." ]
2024-01-10
gloveboxes/azure-openai-service-proxy
examples~python~openai_sdk_0.28.x~azure_openai_langchain.py
""" Test langchain with azure openai """ # See documentation at https://gloveboxes.github.io/azure-openai-service-proxy/category/developer-endpoints/ import os import openai from dotenv import load_dotenv from langchain.llms import AzureOpenAI load_dotenv() ENDPOINT_URL = os.environ.get("ENDPOINT_URL") API_KEY = os.environ.get("API_KEY") API_VERSION = "2023-09-01-preview" DEPLOYMENT_NAME = "davinci-002" openai.api_type = "azure" openai.api_key = API_KEY openai.api_base = ENDPOINT_URL openai.api_version = API_VERSION llm = AzureOpenAI( deployment_name=DEPLOYMENT_NAME, openai_api_version=API_VERSION, openai_api_key=API_KEY, ) print(llm("Tell me a joke"))
[]
2024-01-10
gloveboxes/azure-openai-service-proxy
src~proxy~app~image_generation.py
""" Images Generations API """ import logging import os from enum import Enum from typing import Any from fastapi import HTTPException, Request, Response from pydantic import BaseModel from .configuration import OpenAIConfig from .openai_async import OpenAIAsyncManager OPENAI_IMAGES_GENERATIONS_API_VERSION = "2023-06-01-preview" logging.basicConfig(level=logging.WARNING) class ResponseFormat(Enum): """Response Format""" URL = "url" BASE64 = "b64_json" class ImageSize(Enum): """Image Size""" IS_256X256 = "256x256" IS_512X512 = "512x512" IS_1024X1024 = "1024x1024" class DalleTimeoutError(Exception): """Raised when the Dalle request times out""" class ImagesGenerationsRequst(BaseModel): """OpenAI Images Generations Request""" prompt: str response_format: ResponseFormat = ResponseFormat.URL n: int = 1 size: ImageSize = ImageSize.IS_1024X1024 user: str = None api_version: str = OPENAI_IMAGES_GENERATIONS_API_VERSION class ImagesGenerations: """OpenAI Images Generations Manager""" def __init__(self, openai_config: OpenAIConfig): """init in memory session manager""" self.openai_config = openai_config self.logger = logging.getLogger(__name__) def report_exception(self, message: str, http_status_code: int) -> Any: """report exception""" self.logger.warning(msg=f"{message}") raise HTTPException( status_code=http_status_code, detail=message, ) def validate_input(self, images: ImagesGenerationsRequst): """validate input""" # do some basic input validation if not images.prompt: return self.report_exception("Oops, no prompt.", 400) if len(images.prompt) > 1000: return self.report_exception("Oops, prompt is too long. The maximum length is 1000 characters.", 400) # check the image_count is between 1 and 5 if images.n and not 1 <= images.n <= 5: return self.report_exception("Oops, image_count must be between 1 and 5 inclusive.", 400) # check the image_size is between 256x256, 512x512, 1024x1024 if images.size and images.size not in ImageSize: return self.report_exception("Oops, image_size must be 256x256, 512x512, 1024x1024.", 400) # check the response_format is url or base64 if images.response_format and images.response_format not in ResponseFormat: return self.report_exception("Oops, response_format must be url or b64_json.", 400) async def call_openai_images_generations( self, images: ImagesGenerationsRequst, request: Request, response: Response ) -> Any: """call openai with retry""" self.validate_input(images) deployment = await self.openai_config.get_deployment() openai_request = { "prompt": images.prompt, "n": images.n, "size": images.size.value, "response_format": images.response_format.value, } url = ( f"https://{deployment.resource_name}.openai.azure.com" "/openai/images/generations:submit" f"?api-version={images.api_version}" ) async_mgr = OpenAIAsyncManager(deployment) dalle_response = await async_mgr.async_post(openai_request, url) if "operation-location" in dalle_response.headers: original_location = dalle_response.headers["operation-location"] port = f":{request.url.port}" if request.url.port else "" original_location_suffix = original_location.split("/openai", 1)[1] if os.environ.get("ENVIRONMENT") == "development": proxy_location = ( f"http://{request.url.hostname}{port}" f"/api/v1/{deployment.friendly_name}/openai{original_location_suffix}" ) else: proxy_location = ( f"https://{request.url.hostname}{port}" f"/api/v1/{deployment.friendly_name}/openai{original_location_suffix}" ) response.headers.append("operation-location", proxy_location) return dalle_response.json(), dalle_response.status_code async def call_openai_images_get( self, friendly_name: str, image_id: str, api_version: str = OPENAI_IMAGES_GENERATIONS_API_VERSION, ): """call openai with retry""" deployment = await self.openai_config.get_deployment_by_friendly_name(friendly_name) if deployment is None: return self.report_exception("Oops, failed to find service to generate image.", 404) url = ( f"https://{deployment.resource_name}.openai.azure.com" f"/openai/operations/images/{image_id}" f"?api-version={api_version}" ) async_mgr = OpenAIAsyncManager(deployment) dalle_response = await async_mgr.async_get(url) return dalle_response.json(), dalle_response.status_code
[]
2024-01-10
gloveboxes/azure-openai-service-proxy
src~proxy~app~routes~request_manager.py
""" Request Manager base class """ from fastapi import APIRouter, FastAPI, HTTPException, Request # pylint: disable=E0402 from ..authorize import Authorize, AuthorizeResponse from ..configuration import OpenAIConfig from ..management import DeploymentClass from ..rate_limit import RateLimit class RequestManager: """Request Manager base class""" def __init__( self, *, app: FastAPI, authorize: Authorize, connection_string: str, prefix: str, tags: list[str], deployment_class: DeploymentClass, request_class_mgr, ): self.app = app self.authorize = authorize self.prefix = prefix self.tags = tags self.deployment_class = deployment_class openai_config = OpenAIConfig( connection_string=connection_string, model_class=deployment_class, ) self.request_class_mgr = request_class_mgr(openai_config) self.router = APIRouter() self.rate_limit = RateLimit() async def authorize_request(self, deployment_id: str, request: Request) -> (AuthorizeResponse): """authorize request""" authorize_response = await self.authorize.authorize_api_access( headers=request.headers, deployment_id=deployment_id, request_class=self.deployment_class, ) if self.rate_limit.is_call_rate_exceeded(authorize_response.user_token): raise HTTPException( status_code=429, detail="Rate limit exceeded. Try again in 10 seconds", ) return authorize_response
[]
2024-01-10
TheQuantumFractal/DocumentationRAG
services.py
import pinecone import os from langchain.llms import Modal from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Pinecone pinecone.init( api_key=os.environ['PINECONE_API_KEY'], environment='gcp-starter' ) model = Modal(endpoint_url=os.environ['MODAL_ENDPOINT_URL']) INDEX_NAME = 'modal' embeddings = OpenAIEmbeddings() docsearch = Pinecone.from_existing_index(INDEX_NAME, embeddings)
[]
2024-01-10
AchintyaX/Topic_modelling
clean_tweets.py
from sklearn.feature_extraction.text import CountVectorizer from gensim.corpora import Dictionary from gensim.models.ldamodel import LdaModel from gensim.models import CoherenceModel from nltk.corpus import stopwords from nltk.tokenize import RegexpTokenizer from datetime import datetime import nltk nltk.download('stopwords') import pandas as pd import re import math def clean_tweets(df, tweet_col='text', ): df_copy = df.copy() # drop rows with empty values df_copy.dropna(inplace=True) # lower the tweets df_copy['preprocessed_' + tweet_col] = df_copy[tweet_col].str.lower() # filter out stop words and URLs en_stop_words = set(stopwords.words('english')) extended_stop_words = en_stop_words | \ { '&amp;', 'rt', 'th','co', 're', 've', 'kim', 'daca' } url_re = '(https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\.[^\s]{2,}|www\.[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\.[^\s]{2,}|https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9]+\.[^\s]{2,}|www\.[a-zA-Z0-9]+\.[^\s]{2,})' df_copy['preprocessed_' + tweet_col] = df_copy['preprocessed_' + tweet_col].apply(lambda row: ' '.join([word for word in row.split() if (not word in extended_stop_words) and (not re.match(url_re, word))])) # tokenize the tweets tokenizer = RegexpTokenizer('[a-zA-Z]\w+\'?\w*') df_copy['tokenized_' + tweet_col] = df_copy['preprocessed_' + tweet_col].apply(lambda row: tokenizer.tokenize(row)) return df_copy
[]
2024-01-10
e-cal/gpt-cfa
evaluate_few_shot_l2.py
import argparse import json import os import time import openai import pandas as pd from tqdm import tqdm # ------------------------------------------------------------------------------ # Parseargs # ------------------------------------------------------------------------------ argparser = argparse.ArgumentParser() argparser.add_argument( "-f", "--file", type=str, required=True, help="path to json exam file with questions and answers", ) argparser.add_argument( "-m", "--model", type=str, default="gpt-3.5-turbo-16k", help="gpt model to use (gpt-3.5-turbo or gpt-4)", ) argparser.add_argument( "-t", "--temp", type=float, default=0.0, help="temperature to use for gpt response (default 0.0)", ) argparser.add_argument( "-o", "--output", type=str, required=True, help="path to output the attempt's csv file", ) argparser.add_argument( "-c", "--chain_of_thought", action="store_true", help="enable chain-of-thought prompting", ) argparser.add_argument( "-fsr", "--few_shot_random", action="store_true", help="use questions sampled randomly as few shot learning", ) argparser.add_argument( "-fst", "--few_shot_topic", action="store_true", help="use questions sampled from each topic as few shot learning", ) argparser.add_argument( "-n", "--n_shots", type=int, help="number of shots to use for few shot learning" ) args = argparser.parse_args() model = args.model temp = args.temp if os.path.exists(args.output): print(f"output file {args.output} already exists") overwrite = input("overwrite? (y/n): ") if overwrite.lower() != "y": exit(0) # ------------------------------------------------------------------------------ # Get key # ------------------------------------------------------------------------------ try: openai.api_key = os.getenv("OPENAI_API_KEY") except: print("No OpenAI key found") exit(1) # ------------------------------------------------------------------------------ # System prompt # ------------------------------------------------------------------------------ # oneshot_nofunc_prompt = f"""You are a CFA (chartered financial analyst) taking a test to evaluate your knowledge of finance. # You will be given a question along with three possible answers (A, B, and C). # Before answering, you should think through the question step-by-step. # Explain your reasoning at each step towards answering the question. # If calculation is required, do each step of the calculation as a step in your reasoning. # Finally, indicate the correct answer (A, B, or C) in double brackets. # Question: # Phil Jones, CFA, has just finished researching Alpha One Inc. and is about to issue an unfavorable report on the company. His manager does not want him to state any adverse opinions about Alpha One, as it could adversely affect their firm’s relations with the company, which is an important investment banking client. Which of the following actions by the manager most likely violates Standard I (B): Independence and Objectivity? # A. Putting Alpha One on a restricted list # B. Asking Jones to issue a favorable report # C. Asking Jones to only state facts about the company # Thinking: # - The CFA Institute's Standard I (B): Independence and Objectivity states that a CFA charterholder or candidate must use reasonable care and judgment to achieve and maintain independence and objectivity in their professional activities. They must not offer, solicit, or accept any gift, benefit, compensation, or consideration that reasonably could be expected to compromise their own or another’s independence and objectivity. # - In this case, the manager is trying to influence Phil's research report on Alpha One Inc. due to the company's relationship with their firm. This is a clear attempt to compromise Phil's independence and objectivity in his professional activities. # - Therefore, the manager's action of trying to prevent Phil from issuing an unfavorable report on Alpha One Inc. most likely violates Standard I (B): Independence and Objectivity. # [[B]]""" thinking_prompt = "" if args.chain_of_thought: thinking_prompt = """ Before answering, you should think through the question step-by-step. Explain your reasoning at each step towards answering the question. If calculation is required, do each step of the calculation as a step in your reasoning. """ func_prompt = f"""You are a CFA (chartered financial analyst) taking a test to evaluate your knowledge of finance. You will be given a question along with three possible answers (A, B, and C). {thinking_prompt} Indicate the correct answer (A, B, or C).""" sys_prompt = func_prompt answer_func = { "name": "answer_question", "description": "Answer a multiple choice question on finance", "parameters": { "type": "object", "properties": { "answer": { "type": "string", "description": "The answer to the question", "enum": ["A", "B", "C"], }, }, "required": ["answer"], }, } if args.chain_of_thought: answer_func["description"] = "Think through and " + answer_func["description"] answer_func["parameters"]["required"].append("thinking") answer_func["parameters"]["properties"]["thinking"] = { "type": "array", "items": { "type": "string", "description": "Thought and/or calculation for a step in the process of answering the question", }, "description": "Step by step thought process and calculations towards answering the question", } if args.few_shot_random or args.few_shot_topic: if args.few_shot_random: sampling_type = "fsr" else: sampling_type = "fst" if args.chain_of_thought: if "level_1" in args.file: file_path = f"prompts/l1/{sampling_type}_cot_{args.n_shots}_shot_prompts.json" else: file_path = f"prompts/l2/{sampling_type}_cot_{args.n_shots}_shot_prompts.json" else: if "level_1" in args.file: file_path = f"prompts/l1/{sampling_type}_{args.n_shots}_shot_prompts.json" else: file_path = f"prompts/l2/{sampling_type}_{args.n_shots}_shot_prompts.json" with open(file_path, "r") as json_file: few_shot_prompts = json.load(json_file) print(f"Few shot prompts: {len(few_shot_prompts)}") def ask_gpt(question): out = None function_response = None for _ in range(5): try: messages = [ { "role": "system", "content": sys_prompt, } ] messages.extend(few_shot_prompts) messages.append( { "role": "user", "content": question, } ) res = openai.ChatCompletion.create( model=model, temperature=temp, messages=messages, functions=[answer_func], function_call={"name": "answer_question"}, ) ans = res.choices[0].message.to_dict()["function_call"]["arguments"] # type: ignore # ans = ans.replace("\\", "") # ans = ans.replace(u'\u2013', u'') # ans = ans.replace(u'U+2013', u'') answer = ans.split("'answer': ")[-1].split(",")[0].strip() thinking = ans.split("'thinking': ")[-1].strip() if args.chain_of_thought: answer = answer[1:-1] thinking = thinking[1:-2] else: answer = answer[1:-2] thinking = "" out = {"answer": answer, "thinking": thinking} return out except Exception as e: print(f"Failed request: {e}") time.sleep(5) continue return {"thinking": "", "answer": "N"} exam = pd.read_json(args.file) answers = pd.DataFrame( columns=[ "case", "question", "chapter_name", "choice_a", "choice_b", "choice_c", "answer", "guess", "correct", ] ) correct = 0 pbar = tqdm(exam.iterrows(), total=len(exam)) i: int for i, row in pbar: # type: ignore for rowq in row["cfa2_cbt_questions"]: question = f"""Case: {row["case"]} Question: {rowq["question"]} A. {rowq["choice_a"]} B. {rowq["choice_b"]} C. {rowq["choice_c"]}""" row_ans = { "case": row["case"], "question": rowq["question"], "chapter_name": rowq["chapter_name"], "choice_a": rowq["choice_a"], "choice_b": rowq["choice_b"], "choice_c": rowq["choice_c"], "answer": rowq["answer"] } gpt_ans = ask_gpt(question) row_ans["guess"] = gpt_ans["answer"] if gpt_ans["answer"].lower() == rowq["answer"][-1]: correct += 1 row_ans["correct"] = "yes" else: row_ans["correct"] = "no" answers = pd.concat([answers, pd.DataFrame([row_ans])], ignore_index=True) pbar.set_postfix({"score": f"{correct}/{i+1} {correct/(i+1) * 100:.2f}%"}) print(f"Score: {correct}/{len(answers)} {correct/len(answers) * 100}%") print(f"{len(answers[answers['guess'] == 'N'])} failed requests") answers.to_csv(args.output, index=False)
[ "You are a CFA (chartered financial analyst) taking a test to evaluate your knowledge of finance.\nYou will be given a question along with three possible answers (A, B, and C).\nPLACEHOLDER\nIndicate the correct answer (A, B, or C).", "\n Before answering, you should think through the question step-by-step.\n Explain your reasoning at each step towards answering the question.\n If calculation is required, do each step of the calculation as a step in your reasoning.\n " ]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C01L04~moderation.py
import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("moderation") ic(task.data) # Check text snippets via OpenAI moderation API result_list = [] for text in task.data["input"]: moderation_response = openai.Moderation.create( input=text, ) ic(moderation_response) flagged = moderation_response["results"][0]["flagged"] result_list.append(int(flagged)) # Post an answer response = client.post_answer(task, result_list) ic(response)
[]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C04L04~ownapi.py
import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("ownapi") ic(task.data) # Get API URL from environment variables api_url = os.environ.get("API_URL") assistant_endpoint = f"{api_url}/assistant" response = client.post_answer(task, assistant_endpoint) ic(response)
[]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C01L05~liar.py
import json import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("liar") ic(task.data) # Define question, send it and get the answer question = "Is the GTX 1080Ti a Nvidia graphics card?" response = client.send_question(task, {"question": question}) ic(response) # Guardrail guardrail_msg = """ You are a guardrail that checks if the provided answer is on topic. If the answer is not on topic, return "NO" else return "YES". The current question is: {question} """ guardrail_completion = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": guardrail_msg.format(question=question)}, {"role": "user", "content": response["answer"]}, ], max_tokens=300, ) ic(guardrail_completion) guardrail_answer = guardrail_completion["choices"][0]["message"]["content"] # Post an answer response = client.post_answer(task, guardrail_answer) ic(response)
[ "answer" ]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C02L02~inprompt.py
import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("inprompt") ic(task.data) # Parse the input data and create a dictionary to look up the text snippets by name name_information = {} for text in task.data["input"]: name = text.split(" ")[0] name_information[name] = text # Find out the name of the person that the question is about system_msg = "Based on the provided question, what is the name of the person that the question is about?" question = task.data["question"] name_completion = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": system_msg}, {"role": "user", "content": question}, ], max_tokens=100, ) # Add information about the person/name to the system message name = name_completion["choices"][0]["message"]["content"] system_msg = f"Answer a question about the person using the following facts: {name_information[name]}" # Ask a question about the person and get the answer question_completion = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": name_information[name]}, {"role": "user", "content": question}, ], max_tokens=200, ) answer = question_completion["choices"][0]["message"]["content"] # Post an answer response = client.post_answer(task, answer) ic(response)
[]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C04L03~gnome.py
import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("gnome") ic(task.data) # Define the system system_msg = """ Your task is to analyze a provided image. The image may or may not contain a gnome. If it does contain a gnome, you should return the color of the gnomes hat in polish (e.g. czerwona, niebieska etc.). If it does not contain a gnome, just return 'ERROR', nothing else. """ gnome_analyzer = openai.chat.completions.create( model="gpt-4-vision-preview", messages=[ {"role": "system", "content": system_msg}, { "role": "user", "content": [ {"type": "image_url", "image_url": task.data["url"]}, ], }, ], ) # Extract the color of the gnome hat answer = gnome_analyzer.choices[0].message.content ic(answer) # Post answer response = client.post_answer(task, answer) ic(response)
[ "\nYour task is to analyze a provided image. The image may or may not contain a gnome.\nIf it does contain a gnome, you should return the color of the gnomes hat in polish (e.g. czerwona, niebieska etc.).\nIf it does not contain a gnome, just return 'ERROR', nothing else.\n" ]
2024-01-10
Korred/ai_devs_2.0
python~api~router.py
import openai from config import settings from fastapi import APIRouter from pydantic import BaseModel # Define models class Question(BaseModel): question: str class Reply(BaseModel): reply: str # Setup API v1 router v1 = APIRouter(prefix="/api/v1") # Set OpenAI API key openai.api_key = settings.openai_api_key # Example assistant endpoint that uses GPT-4 to answer questions @v1.post("/assistant") def assistant(request: Question) -> Reply: completion = openai.chat.completions.create( model="gpt-4", messages=[ {"role": "user", "content": request.question}, ], max_tokens=200, ) answer = completion.choices[0].message.content return Reply(reply=answer)
[]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C03L05~people.py
import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient import httpx # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("people") ic(task.data) # Extract question question = task.data["question"] # Extract the name of the person from the question (reverse diminutive form) system_msg = """ Extract the name and surname of the person from the question provided to you. Ensure to transform the name into its full form / non-diminutive form e.g. "Krzysiek" -> "Krzysztof" "Tomek" -> "Tomasz" "Jarek" -> "Jarosław" "Kasia" -> "Katarzyna" Return the name and surname in the following format: "Name Surname" """ extracted_name = ( openai.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": system_msg}, {"role": "user", "content": question}, ], max_tokens=100, ) .choices[0] .message.content ) ic(extracted_name) # Load the list of names and information about then response = httpx.get(task.data["data"]) # Create a dictionary of names names = {f"{entry['imie']} {entry['nazwisko']}": entry for entry in response.json()} person = names[extracted_name] system_msg = f""" Use the following facts about the person to answer the questions provided to you: Name: {person['imie']} Surname: {person['nazwisko']} General information: {person['o_mnie']} Age: {person['wiek']} Favourite Kapitan Bomba character: {person['ulubiona_postac_z_kapitana_bomby']} Favourite TV series: {person['ulubiony_serial']} Favourite movie: {person['ulubiony_film']} Favourite colour: {person['ulubiony_kolor']} Answer in Polish. """ answer = ( openai.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": system_msg}, {"role": "user", "content": question}, ], max_tokens=200, ) .choices[0] .message.content ) ic(answer) response = client.post_answer(task, answer) ic(response)
[]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C01L04~blogger.py
import json import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("blogger") ic(task.data) # Get chapter topics and format user message user_msg = "\n".join([f"{i+1}) {chapter}" for i, chapter in enumerate(task.data["blog"])]) # Create system message system_msg = """ Act as a blogger and generate a blog post about pizza with chapters that will be provided as a list. For each provided chapter, write 5-6 sentences that explain and describe the topic, providing insightful information and specific proportions e.g. how much flour is needed to make a pizza. Return all the chapters as a JSON list of strings where every chapter is just one string. Remember to write in Polish. """ # Get the completion completion = openai.ChatCompletion.create( model="gpt-4", messages=[{"role": "system", "content": system_msg}, {"role": "user", "content": user_msg}], max_tokens=1000, ) ic(completion) # Get the chapters text (use json.loads to parse the JSON string returned in the content field) chapters_text = json.loads(completion["choices"][0]["message"]["content"]) # Post an answer response = client.post_answer(task, chapters_text) ic(response)
[ "\nAct as a blogger and generate a blog post about pizza with chapters that will be provided as a list.\nFor each provided chapter, write 5-6 sentences that explain and describe the topic,\nproviding insightful information and specific proportions e.g. how much flour is needed to make a pizza. \n\nReturn all the chapters as a JSON list of strings where every chapter is just one string.\n\nRemember to write in Polish.\n" ]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C03L03~whoami.py
import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Define a list of facts hints = [] for i in range(10): # Get a task task = client.get_task("whoami") ic(task.data) # Extract hint hint = task.data["hint"] # Translate hint translation_msg = f"Translate the following from Polish to English (only return the translation and nothing else): {hint}" translation = openai.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "user", "content": translation_msg}, ], max_tokens=100, ) eng_hint = translation.choices[0].message.content ic(eng_hint) hints.append(eng_hint) # Try to figure out "who am I?" hints_str = "\n".join([f"- {hint}" for hint in hints]) whoami_msg = f""" Your task is to answer the question "Who am I?". To answer this question, you can use the following hints: {hints_str} If the hints are not enough, just answer with "I don't know" and nothing else. """ whoami = openai.chat.completions.create( model="gpt-4", messages=[ {"role": "user", "content": whoami_msg}, ], max_tokens=400, ) answer = whoami.choices[0].message.content ic(answer) if answer != "I don't know": # Post an answer response = client.post_answer(task, answer) ic(response) break
[ "\n Your task is to answer the question \"Who am I?\".\n To answer this question, you can use the following hints:\n PLACEHOLDER\n\n If the hints are not enough, just answer with \"I don't know\" and nothing else.\n ", "Translate the following from Polish to English (only return the translation and nothing else): PLACEHOLDER" ]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C04L01~knowledge.py
import json import os import httpx import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("knowledge") ic(task.data) # Define function specifications functions = [ { "type": "function", "function": { "name": "returnMiddleExchangeRate", "description": "Returns the middle exchange rate of a foreign currency", "parameters": { "type": "object", "properties": { "currency": { "type": "string", "description": "Foreign currency in ISO 4217 format (e.g. USD, EUR, GBP, etc.)", }, }, }, "required": ["currency"], }, }, { "type": "function", "function": { "name": "returnCountryInformation", "description": "Returns information about a country", "parameters": { "type": "object", "properties": { "country": { "type": "string", "description": "English name of the country in lower case (e.g. spain, france, germany, etc.)", }, "information_type": { "type": "string", "description": "Type of information to return (e.g. population, area, capital, etc.)", }, }, }, "required": ["country"], }, }, { "type": "function", "function": { "name": "answerGeneralQuestion", "description": "Default function to answer general questions. Used when no other function can be used to answer the question.", "parameters": { "type": "object", "properties": { "answer": { "type": "string", "description": "Answer to a general question based on your knowledge.", }, }, }, "required": ["answer"], }, }, ] # Figure out which function to use to answer the question response = openai.chat.completions.create( model="gpt-4", messages=[ {"role": "user", "content": task.data["question"]}, ], tools=functions, max_tokens=200, ) ic(response) # Sometimes the function call is not recognized by the model # In that case just return the content of the message if response.choices[0].message.tool_calls: function_name = response.choices[0].message.tool_calls[0].function.name arguments = json.loads(response.choices[0].message.tool_calls[0].function.arguments) if function_name == "returnMiddleExchangeRate": rates = httpx.get( f"https://api.nbp.pl/api/exchangerates/rates/a/{arguments['currency']}" ).json() current_rate = rates["rates"][0]["mid"] answer = current_rate elif function_name == "returnCountryInformation": # fetch country data from api response = httpx.get( f"https://restcountries.com/v3.1/name/{arguments['country']}" ) country_data = response.json()[0] if arguments["information_type"] == "population": answer = country_data["population"] elif arguments["information_type"] == "capital": # translate capital to Polish capital = country_data["capital"][0] answer = ( openai.chat.completions.create( model="gpt-4", messages=[ { "role": "user", "content": f'Translate "{capital}" to Polish.', }, ], max_tokens=10, ) .choices[0] .message.content ) else: answer = arguments["answer"] else: answer = response.choices[0].message.content ic(answer) response = client.post_answer(task, answer) ic(response)
[ "question", "Translate \"PLACEHOLDER\" to Polish." ]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C02L05~functions.py
import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("functions") ic(task.data) # Define a function specification function = { "name": "addUser", "description": "Adds a new user", "parameters": { "type": "object", "properties": { "name": { "type": "string", "description": "User name", }, "surname": { "type": "string", "description": "User surname", }, "year": { "type": "integer", "description": "User birth year", }, }, }, "required": ["name", "surname", "year"], } # Post an answer response = client.post_answer(task, function) ic(response)
[]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C03L04~search.py
import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient from qdrant_client import QdrantClient from qdrant_client.models import Distance, VectorParams, PointStruct import httpx COLLECTION_NAME = "ai_devs_newsletter" OPENAI_EMBEDDING_SIZE = 1536 # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get task task = client.get_task("search") ic(task.data) # Get question and create its embedding question = task.data["question"] question_embedding = ( openai.embeddings.create( input=question, model="text-embedding-ada-002", ) .data[0] .embedding ) # Extract url from task msg url = task.data["msg"].split(" - ")[1] # Get json from url response = httpx.get(url) data = response.json() # Initialize Qdrant client q_client = QdrantClient(path="db/qdrant/") # Chek if collection already exists try: collection_info = q_client.get_collection(COLLECTION_NAME) except ValueError: # Create collection as it does not exist q_client.create_collection( collection_name=COLLECTION_NAME, vectors_config=VectorParams( size=OPENAI_EMBEDDING_SIZE, distance=Distance.COSINE, on_disk=True ), ) # Fetch collection info again collection_info = q_client.get_collection(COLLECTION_NAME) # Check if documents are already indexed if collection_info.points_count == 0: ic("Indexing documents...") points = [] # Get embeddings for each article for i, entry in enumerate(data): ic(f"Indexing document {i}...") vector = ( openai.embeddings.create( input=entry["info"], model="text-embedding-ada-002", ) .data[0] .embedding ) points.append( PointStruct( id=i, vector=vector, payload={ "url": entry["url"], "title": entry["title"], "date": entry["date"], }, ) ) ic("Inserting documents into Qdrant...") q_client.upsert( collection_name=COLLECTION_NAME, points=points, wait=True, ) # Refresh task as the above operation takes some time # and the token most likely expired task = client.get_task("search") # Now that we have indexed documents, we can search for the answer ic("Searching for answer...") search_results = q_client.search( collection_name=COLLECTION_NAME, query_vector=question_embedding, limit=1, ) ic(search_results) answer = search_results[0].payload["url"] # Post an answer response = client.post_answer(task, answer) ic(response)
[]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C03L01~rodo.py
import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("rodo") ic(task.data) # Get the system message system_msg = task.data["msg"] # Define a question question = """ Please tell me about yourself. However please replace all personal information with placeholders. Use the following placeholders: - name -> %imie% - surname -> %nazwisko% - city -> %miasto% - kraj -> %kraj% - job -> %zawod% Examples: - replace "Peter Parker" with "%imie% %nazwisko%" - replace "New York" with "%miasto%" - replace "USA" with "%kraj%" - replace "photographer" or "band member", "personal guard" with "%zawod%" """ # Define chat completion completion = openai.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": system_msg}, {"role": "user", "content": question}, ], max_tokens=300, ) ic(completion) # Post an answer response = client.post_answer(task, question) ic(response)
[ "\nPlease tell me about yourself. However please replace all personal information with placeholders.\nUse the following placeholders:\n- name -> %imie%\n- surname -> %nazwisko%\n- city -> %miasto%\n- kraj -> %kraj%\n- job -> %zawod%\n\nExamples:\n- replace \"Peter Parker\" with \"%imie% %nazwisko%\"\n- replace \"New York\" with \"%miasto%\"\n- replace \"USA\" with \"%kraj%\"\n- replace \"photographer\" or \"band member\", \"personal guard\" with \"%zawod%\"\n" ]
2024-01-10
Korred/ai_devs_2.0
python~ai_devs~tasks~C03L02~scraper.py
import os import openai from dotenv import load_dotenv from icecream import ic from utils.client import AIDevsClient from tenacity import retry, wait_exponential import requests @retry(wait=wait_exponential()) def fetch_txt(url): ic("Fetching text...") # Set User-Agent header to avoid 403 error (bot detection) # https://www.whatismybrowser.com/guides/the-latest-user-agent/edge headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36 Edg/120.0.2210.91" } r = requests.get(url, headers=headers) r.raise_for_status() return r.text # Load environment variables from .env file load_dotenv() # Set OpenAI API key openai.api_key = os.environ.get("OPENAI_API_KEY") # Get API key from environment variables aidevs_api_key = os.environ.get("AIDEVS_API_KEY") # Create a client instance client = AIDevsClient(aidevs_api_key) # Get a task task = client.get_task("scraper") ic(task.data) # Get text URL text_url = task.data["input"] # Fetch text but retry if it fails text = fetch_txt(text_url) # Define system message msg = task.data["msg"] system_msg = f""" {msg} To answer the question, you can use the following text as context: {text} """ # Define chat question question = task.data["question"] # Define chat completion completion = openai.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": system_msg}, {"role": "user", "content": question}, ], max_tokens=400, ) ic(completion) answer = completion.choices[0].message.content # Post an answer response = client.post_answer(task, answer) ic(response)
[ "\nPLACEHOLDER\n\nTo answer the question, you can use the following text as context:\nPLACEHOLDER\n" ]
2024-01-10
PrefectHQ/prefect-openai
tests~test_credentials.py
from prefect_openai.credentials import OpenAICredentials def test_openai_credentials_get_client(): credentials = OpenAICredentials(api_key="api_key", organization="my_org") assert credentials.api_key.get_secret_value() == "api_key" assert credentials.organization == "my_org" client = credentials.get_client() assert client.api_key == "api_key" assert client.organization == "my_org"
[]
2024-01-10
PrefectHQ/prefect-openai
prefect_openai~credentials.py
"""Module for authenticating with OpenAI.""" from types import ModuleType from typing import Optional import openai from prefect.blocks.abstract import CredentialsBlock from pydantic import VERSION as PYDANTIC_VERSION if PYDANTIC_VERSION.startswith("2."): from pydantic.v1 import Field, SecretStr else: from pydantic import Field, SecretStr class OpenAICredentials(CredentialsBlock): """ Credentials used to authenticate with OpenAI. Attributes: api_key: The API key used to authenticate with OpenAI. Example: Load a configured block: ```python from prefect_openai import OpenAICredentials credentials = OpenAICredentials.load("BLOCK_NAME") ``` Get the OpenAPI client: ```python from prefect_openai import OpenAICredentials credentials = OpenAICredentials.load("BLOCK_NAME") client = credentials.get_client() ``` """ _block_type_name = "OpenAI Credentials" _logo_url = "https://cdn.sanity.io/images/3ugk85nk/production/760539393a7dbf93a143fb01c2a8b0fe7157a8d8-247x250.png" # noqa _documentation_url = "https://prefecthq.github.io/prefect-openai/credentials/#prefect_openai.credentials.OpenAICredentials" # noqa api_key: SecretStr = Field( default=..., title="API Key", description="The API key used to authenticate with OpenAI.", ) organization: Optional[str] = Field( default=None, title="Organization", description="Specify which organization is used for an API request.", ) def get_client(self) -> ModuleType: """ Gets the OpenAPI client. Returns: The OpenAPI client. """ openai.api_key = self.api_key.get_secret_value() openai.organization = self.organization return openai
[]
2024-01-10
PrefectHQ/prefect-openai
tests~conftest.py
import pytest from prefect.testing.utilities import AsyncMock, MagicMock, prefect_test_harness from prefect_openai.credentials import OpenAICredentials @pytest.fixture(scope="session", autouse=True) def prefect_db(): """ Sets up test harness for temporary DB during test runs. """ with prefect_test_harness(): yield @pytest.fixture(autouse=True) def reset_object_registry(): """ Ensures each test has a clean object registry. """ from prefect.context import PrefectObjectRegistry with PrefectObjectRegistry(): yield async def mock_acreate(prompt, **kwargs): result = MagicMock(prompt=prompt) for k, v in kwargs.items(): setattr(result, k, v) return result @pytest.fixture def mock_openai_credentials(monkeypatch) -> OpenAICredentials: mock_model = AsyncMock(name="mock_model") mock_block_load = AsyncMock() mock_block_load.return_value = mock_model mock_model.acreate.side_effect = mock_acreate monkeypatch.setattr("openai.Completion", mock_model) monkeypatch.setattr("openai.Image", mock_model) monkeypatch.setattr( "prefect_openai.completion.CompletionModel.load", mock_block_load ) return OpenAICredentials( api_key="my_api_key", _mock_model=mock_model, _mock_block_load=mock_block_load )
[]
2024-01-10
aquigni/Chancellerite
transformations~py~transform_proverbs.py
import os from dotenv import load_dotenv from openai import OpenAI # Load environment variables from .env file load_dotenv() # API key, set it in .env (remember to add .env to .gitignore) client = OpenAI() def transform_proverb(proverb, index, total): print(f"Processing {index}/{total}") # Only print the counter try: completion = client.chat.completions.create( model="gpt-4-1106-preview", messages=[ {"role": "system", "content": "Вы работаете в роли переводчика, который переформулирует поговорки в максимально бюрократический канцеляритный стиль. Пример: «Цыплят по осени считают» превратится в «Подсчет прироста домашней птицы производится после завершения сезона сельскохозяйственных работ»."}, {"role": "user", "content": f"Переформулируйте поговорку, без заключения её в кавычки и без печати в ответе исходной: '{proverb}'"} ] ) transformed = completion.choices[0].message.content.strip() return transformed except Exception as e: print(f"Error with proverb '{proverb}': {e}") return None # Reading proverbs from file with open("../txt/proverbs.txt", "r") as file: proverbs = [line.strip() for line in file if line.strip()] total_proverbs = len(proverbs) transformed_proverbs = [transform_proverb(proverb, index+1, total_proverbs) for index, proverb in enumerate(proverbs)] # Writing result to file with open("../txt/transformed_proverbs.txt", "w") as file: for proverb in transformed_proverbs: if proverb is not None: file.write(proverb + "\n") else: file.write("Transformation Failed\n")
[ "Вы работаете в роли переводчика, который переформулирует поговорки в максимально бюрократический канцеляритный стиль. Пример: «Цыплят по осени считают» превратится в «Подсчет прироста домашней птицы производится после завершения сезона сельскохозяйственных работ».", "Переформулируйте поговорку, без заключения её в кавычки и без печати в ответе исходной: 'PLACEHOLDER'" ]
2024-01-10
sweepai/sweep
tests~notebooks~asst.py
import openai from openai import OpenAI client = OpenAI() INSTRUCTIONS = """\ You are a brilliant and meticulous engineer assigned to write code to complete the user's request. You specialize in Python programming. # Instructions Extract code verbatim from the snippets above using EXTRACT sections. These snippets will be used later to refactor the code according to the user request. * Choose specific and informative names for these functions under new_function_name. * We must copy the code verbatim, so any extra leading or trailing code will cause us to fail. * The code must be extracted in contiguous blocks. * Keep whitespace and comments. * Extracted functions should be roughly 25 lines unless the function behavior dictates otherwise. Respond in the following format: <contextual_request_analysis> Analyze the user request to identify each section of the code that should be extracted. These sections should not overlap. For each new function outline the first and last few lines of code that should be extracted. </contextual_request_analysis> <new_function_names> "new_function_name" ... </new_function_names> <extractions> ``` <<<<<<< EXTRACT first few lines to be extracted from original_code ... last few lines to be extracted from original_code >>>>>>> ... ``` </extractions>""" my_assistant = openai.beta.assistants.create( instructions=INSTRUCTIONS, name="Python Coding Assistant", tools=[{"type": "code_interpreter"}], model="gpt-4-1106-preview", ) thread = client.beta.threads.create() EXTRACTION_USER_MSG = """\ # Repo & Issue Metadata Repo: privateGPT - Interact with your documents using the power of GPT, 100% privately, no data leaks Issue Title: refactor the retrieve_relevant function in private_gpt/server/chunks/chunks_service.py to become more modular Choose parts of functions that can be extracted to reduce the complexity of the code. If a single function would be too large, refactor it into multiple smaller subfunctions. Issue Description: # Code File path: private_gpt/server/chunks/chunks_service.py <original_code> from typing import TYPE_CHECKING from injector import inject, singleton from llama_index import ServiceContext, StorageContext, VectorStoreIndex from llama_index.schema import NodeWithScore from pydantic import BaseModel, Field from private_gpt.components.embedding.embedding_component import EmbeddingComponent from private_gpt.components.llm.llm_component import LLMComponent from private_gpt.components.node_store.node_store_component import NodeStoreComponent from private_gpt.components.vector_store.vector_store_component import ( VectorStoreComponent, ) from private_gpt.open_ai.extensions.context_filter import ContextFilter from private_gpt.server.ingest.ingest_service import IngestedDoc if TYPE_CHECKING: from llama_index.schema import RelatedNodeInfo class Chunk(BaseModel): object: str = Field(enum=["context.chunk"]) score: float = Field(examples=[0.023]) document: IngestedDoc text: str = Field(examples=["Outbound sales increased 20%, driven by new leads."]) previous_texts: list[str] | None = Field( examples=[["SALES REPORT 2023", "Inbound didn't show major changes."]] ) next_texts: list[str] | None = Field( examples=[ [ "New leads came from Google Ads campaign.", "The campaign was run by the Marketing Department", ] ] ) @singleton class ChunksService: @inject def __init__( self, llm_component: LLMComponent, vector_store_component: VectorStoreComponent, embedding_component: EmbeddingComponent, node_store_component: NodeStoreComponent, ) -> None: self.vector_store_component = vector_store_component self.storage_context = StorageContext.from_defaults( vector_store=vector_store_component.vector_store, docstore=node_store_component.doc_store, index_store=node_store_component.index_store, ) self.query_service_context = ServiceContext.from_defaults( llm=llm_component.llm, embed_model=embedding_component.embedding_model ) def _get_sibling_nodes_text( self, node_with_score: NodeWithScore, related_number: int, forward: bool = True ) -> list[str]: explored_nodes_texts = [] current_node = node_with_score.node for _ in range(related_number): explored_node_info: RelatedNodeInfo | None = ( current_node.next_node if forward else current_node.prev_node ) if explored_node_info is None: break explored_node = self.storage_context.docstore.get_node( explored_node_info.node_id ) explored_nodes_texts.append(explored_node.get_content()) current_node = explored_node return explored_nodes_texts def retrieve_relevant( self, text: str, context_filter: ContextFilter | None = None, limit: int = 10, prev_next_chunks: int = 0, ) -> list[Chunk]: index = VectorStoreIndex.from_vector_store( self.vector_store_component.vector_store, storage_context=self.storage_context, service_context=self.query_service_context, show_progress=True, ) vector_index_retriever = self.vector_store_component.get_retriever( index=index, context_filter=context_filter, similarity_top_k=limit ) nodes = vector_index_retriever.retrieve(text) nodes.sort(key=lambda n: n.score or 0.0, reverse=True) retrieved_nodes = [] for node in nodes: doc_id = node.node.ref_doc_id if node.node.ref_doc_id is not None else "-" retrieved_nodes.append( Chunk( object="context.chunk", score=node.score or 0.0, document=IngestedDoc( object="ingest.document", doc_id=doc_id, doc_metadata=node.metadata, ), text=node.get_content(), previous_texts=self._get_sibling_nodes_text( node, prev_next_chunks, False ), next_texts=self._get_sibling_nodes_text(node, prev_next_chunks), ) ) return retrieved_nodes </original_code> # Instructions Extract code verbatim from the snippets above using EXTRACT sections. These snippets will be used later to refactor the code according to the user request. * Choose specific and informative names for these functions under new_function_name. * We must copy the code verbatim, so any extra leading or trailing code will cause us to fail. * The code must be extracted in contiguous blocks. * Keep whitespace and comments. * Extracted functions should be roughly 25 lines unless the function behavior dictates otherwise. Respond in the following format: <contextual_request_analysis> First, determine the function(s) you want to make more modular. Analyze the user request to identify each section of the code that should be extracted. These sections should not overlap. For each new function outline the first and last few lines of code that should be extracted. </contextual_request_analysis> <new_function_names> "new_function_name" ... </new_function_names> <extractions> ``` <<<<<<< EXTRACT first few lines to be extracted from original_code ... last few lines to be extracted from original_code >>>>>>> ... ``` </extractions>""" message = client.beta.threads.messages.create( thread_id=thread.id, role="user", content=EXTRACTION_USER_MSG, ) run = client.beta.threads.runs.create(thread_id=thread.id, assistant_id=my_assistant.id) run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id) messages = client.beta.threads.messages.list(thread_id=thread.id) latest_message = messages.data[0].content[0].text.value import pdb pdb.set_trace() run
[]
2024-01-10
sweepai/sweep
tests~archive~test_scraper.py
import os import openai from llama_index import GPTVectorStoreIndex, download_loader openai.api_key = os.environ.get("OPENAI_API_KEY") SimpleWebPageReader = download_loader("SimpleWebPageReader") loader = SimpleWebPageReader() url = "https://modal.com/docs/guide/continuous-deployment#github-actions" documents = loader.load_data(urls=[url]) document = documents[0] index = GPTVectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(streaming=True) query_engine.query( "Extract the entire example yaml from the html." ).print_response_stream()
[]
2024-01-10
sweepai/sweep
tests~archive~test_langchain_chunker.py
from langchain.text_splitter import Language, RecursiveCharacterTextSplitter python_text = ''' import io import os import zipfile import openai import requests from loguru import logger from sweepai.core.gha_extraction import GHAExtractor from sweepai.events import CheckRunCompleted from sweepai.handlers.on_comment import on_comment from sweepai.utils.config.client import SweepConfig, get_gha_enabled from sweepai.utils.github_utils import get_github_client, get_token openai.api_key = os.environ.get("OPENAI_API_KEY") log_message = """GitHub actions yielded the following error. {error_logs} This is likely a linting or type-checking issue with the source code but if you are updating the GitHub Actions or versioning, this could be an issue with the GitHub Action yaml files.""" def download_logs(repo_full_name: str, run_id: int, installation_id: int): headers = { "Accept": "application/vnd.github+json", "Authorization": f"Bearer {get_token(installation_id)}", "X-GitHub-Api-Version": "2022-11-28" } response = requests.get(f"https://api.github.com/repos/{repo_full_name}/actions/runs/{run_id}/logs", headers=headers) logs_str = "" if response.status_code == 200: zip_file = zipfile.ZipFile(io.BytesIO(response.content)) for file in zip_file.namelist(): if "/" not in file: with zip_file.open(file) as f: logs_str += f.read().decode("utf-8") else: logger.warning(f"Failed to download logs for run id: {run_id}") return logs_str def clean_logs(logs_str: str): log_list = logs_str.split("\n") truncated_logs = [log[log.find(" ") + 1:] for log in log_list] patterns = [ # for docker "Already exists", "Pulling fs layer", "Waiting", "Download complete", "Verifying Checksum", "Pull complete", # For github "remote: Counting objects", "remote: Compressing objects:", "Receiving objects:", "Resolving deltas:" ] return "\n".join([log.strip() for log in truncated_logs if not any(pattern in log for pattern in patterns)]) def on_check_suite(request: CheckRunCompleted): logger.info(f"Received check run completed event for {request.repository.full_name}") g = get_github_client(request.installation.id) repo = g.get_repo(request.repository.full_name) if not get_gha_enabled(repo): logger.info(f"Skipping github action for {request.repository.full_name} because it is not enabled") return None pr = repo.get_pull(request.check_run.pull_requests[0].number) num_pr_commits = len(list(pr.get_commits())) if num_pr_commits > 20: logger.info(f"Skipping github action for PR with {num_pr_commits} commits") return None logger.info(f"Running github action for PR with {num_pr_commits} commits") logs = download_logs( request.repository.full_name, request.check_run.run_id, request.installation.id ) if not logs: return None logs = clean_logs(logs) extractor = GHAExtractor() logger.info(f"Extracting logs from {request.repository.full_name}, logs: {logs}") problematic_logs = extractor.gha_extract(logs) if problematic_logs.count("\n") > 15: problematic_logs += "\n\nThere are a lot of errors. This is likely a larger issue with the PR and not a small linting/type-checking issue." comments = list(pr.get_issue_comments()) if len(comments) >= 2 and problematic_logs == comments[-1].body and comments[-2].body == comments[-1].body: comment = pr.as_issue().create_comment(log_message.format(error_logs=problematic_logs) + "\n\nI'm getting the same errors 3 times in a row, so I will stop working on fixing this PR.") logger.warning("Skipping logs because it is duplicated") raise Exception("Duplicate error logs") print(problematic_logs) comment = pr.as_issue().create_comment(log_message.format(error_logs=problematic_logs)) on_comment( repo_full_name=request.repository.full_name, repo_description=request.repository.description, comment=problematic_logs, pr_path=None, pr_line_position=None, username=request.sender.login, installation_id=request.installation.id, pr_number=request.check_run.pull_requests[0].number, comment_id=comment.id, repo=repo, ) return {"success": True} ''' python_splitter = RecursiveCharacterTextSplitter.from_language( language=Language.PYTHON, chunk_size=1500, chunk_overlap=0 ) python_docs = python_splitter.create_documents([python_text]) # [print(document.page_content + "\n\n===========\n\n") for document in python_docs] # quit() js_text = """ import { Document, BaseNode } from "../Node"; import { v4 as uuidv4 } from "uuid"; import { BaseRetriever } from "../Retriever"; import { ServiceContext } from "../ServiceContext"; import { StorageContext } from "../storage/StorageContext"; import { BaseDocumentStore } from "../storage/docStore/types"; import { VectorStore } from "../storage/vectorStore/types"; import { BaseIndexStore } from "../storage/indexStore/types"; import { BaseQueryEngine } from "../QueryEngine"; import { ResponseSynthesizer } from "../ResponseSynthesizer"; /** * The underlying structure of each index. */ export abstract class IndexStruct { indexId: string; summary?: string; constructor(indexId = uuidv4(), summary = undefined) { this.indexId = indexId; this.summary = summary; } toJson(): Record<string, unknown> { return { indexId: this.indexId, summary: this.summary, }; } getSummary(): string { if (this.summary === undefined) { throw new Error("summary field of the index dict is not set"); } return this.summary; } } export enum IndexStructType { SIMPLE_DICT = "simple_dict", LIST = "list", } export class IndexDict extends IndexStruct { nodesDict: Record<string, BaseNode> = {}; docStore: Record<string, Document> = {}; // FIXME: this should be implemented in storageContext type: IndexStructType = IndexStructType.SIMPLE_DICT; getSummary(): string { if (this.summary === undefined) { throw new Error("summary field of the index dict is not set"); } return this.summary; } addNode(node: BaseNode, textId?: string) { const vectorId = textId ?? node.id_; this.nodesDict[vectorId] = node; } toJson(): Record<string, unknown> { return { ...super.toJson(), nodesDict: this.nodesDict, type: this.type, }; } } export function jsonToIndexStruct(json: any): IndexStruct { if (json.type === IndexStructType.LIST) { const indexList = new IndexList(json.indexId, json.summary); indexList.nodes = json.nodes; return indexList; } else if (json.type === IndexStructType.SIMPLE_DICT) { const indexDict = new IndexDict(json.indexId, json.summary); indexDict.nodesDict = json.nodesDict; return indexDict; } else { throw new Error(`Unknown index struct type: ${json.type}`); } } export class IndexList extends IndexStruct { nodes: string[] = []; type: IndexStructType = IndexStructType.LIST; addNode(node: BaseNode) { this.nodes.push(node.id_); } toJson(): Record<string, unknown> { return { ...super.toJson(), nodes: this.nodes, type: this.type, }; } } export interface BaseIndexInit<T> { serviceContext: ServiceContext; storageContext: StorageContext; docStore: BaseDocumentStore; vectorStore?: VectorStore; indexStore?: BaseIndexStore; indexStruct: T; } /** * Indexes are the data structure that we store our nodes and embeddings in so * they can be retrieved for our queries. */ export abstract class BaseIndex<T> { serviceContext: ServiceContext; storageContext: StorageContext; docStore: BaseDocumentStore; vectorStore?: VectorStore; indexStore?: BaseIndexStore; indexStruct: T; constructor(init: BaseIndexInit<T>) { this.serviceContext = init.serviceContext; this.storageContext = init.storageContext; this.docStore = init.docStore; this.vectorStore = init.vectorStore; this.indexStore = init.indexStore; this.indexStruct = init.indexStruct; } /** * Create a new retriever from the index. * @param retrieverOptions */ abstract asRetriever(options?: any): BaseRetriever; /** * Create a new query engine from the index. It will also create a retriever * and response synthezier if they are not provided. * @param options you can supply your own custom Retriever and ResponseSynthesizer */ abstract asQueryEngine(options?: { retriever?: BaseRetriever; responseSynthesizer?: ResponseSynthesizer; }): BaseQueryEngine; } export interface VectorIndexOptions { nodes?: BaseNode[]; indexStruct?: IndexDict; indexId?: string; serviceContext?: ServiceContext; storageContext?: StorageContext; } export interface VectorIndexConstructorProps extends BaseIndexInit<IndexDict> { vectorStore: VectorStore; } """ js_splitter = RecursiveCharacterTextSplitter.from_language( language=Language.JS, chunk_size=1500, chunk_overlap=0 ) js_docs = js_splitter.create_documents([js_text]) [print(document.page_content + "\n\n========\n") for document in js_docs]
[]
2024-01-10
sweepai/sweep
tests~archive~test_api.py
# import openai # import asyncio # from fastapi import Body, FastAPI # from pydantic import BaseModel # from sweepai.core.chat import ChatGPT # app = FastAPI() # tasks = {} # async def background_task(name: str): # # import os # # print(os.getpid()) # # import random # # print(random.random()) # import os, hashlib # random_bytes = os.urandom(16) # hash_obj = hashlib.sha256(random_bytes) # hash_hex = hash_obj.hexdigest() # print(hash_hex) # print("Starting background task") # for i in range(1, 6): # print(f"Task {name} running ({i}/5)...") # await asyncio.sleep(1) # print(f"Task {name} completed.") # class Task(BaseModel): # name: str # @app.post("/start") # async def start_task(request: Task): # task = asyncio.create_task(background_task(request.name)) # tasks[request.name] = task # return {"message": "Task started"} # @app.post("/cancel") # async def cancel_task(request: Task): # task = tasks.get(request.name) # if task: # task.cancel() # return {"message": "Task canceled"} # return {"message": "Task not found"} import multiprocessing import time from fastapi import FastAPI app = FastAPI() processes_dict = {} def long_task(key): for i in range(100): print(f"{key}", i) time.sleep(1) def start_task(key): print(processes_dict) if key in processes_dict: processes_dict[key].terminate() processes_dict[key].join() print("Terminated ", key) process = multiprocessing.Process(target=long_task, args=(key,)) processes_dict[key] = process process.start() return {"status": "started"} def cancel_task(key): if key in processes_dict: process = processes_dict[key] process.terminate() process.join() del processes_dict[key] return {"status": "cancelled"} return {"status": "not_found"} @app.post("/start/{key}") async def start_task_endpoint(key: str): return start_task(key) @app.post("/cancel/{key}") async def cancel_task_endpoint(key: str): return cancel_task(key)
[]
2024-01-10
sweepai/sweep
sweepai~core~vector_db.py
import json import re import time from functools import lru_cache from typing import Generator, List import numpy as np import replicate import requests from deeplake.core.vectorstore.deeplake_vectorstore import ( # pylint: disable=import-error VectorStore, ) from loguru import logger from redis import Redis from sentence_transformers import SentenceTransformer # pylint: disable=import-error from tqdm import tqdm from sweepai.config.client import SweepConfig, get_blocked_dirs from sweepai.config.server import ( BATCH_SIZE, HUGGINGFACE_TOKEN, HUGGINGFACE_URL, REDIS_URL, REPLICATE_API_KEY, REPLICATE_DEPLOYMENT_URL, SENTENCE_TRANSFORMERS_MODEL, VECTOR_EMBEDDING_SOURCE, ) from sweepai.core.entities import Snippet from sweepai.core.lexical_search import prepare_index_from_snippets, search_index from sweepai.core.repo_parsing_utils import repo_to_chunks from sweepai.logn.cache import file_cache from sweepai.utils.event_logger import posthog from sweepai.utils.github_utils import ClonedRepo from sweepai.utils.hash import hash_sha256 from sweepai.utils.progress import TicketProgress from sweepai.utils.scorer import compute_score, get_scores MODEL_DIR = "/tmp/cache/model" DEEPLAKE_DIR = "/tmp/cache/" timeout = 60 * 60 # 30 minutes CACHE_VERSION = "v1.0.14" MAX_FILES = 500 redis_client = Redis.from_url(REDIS_URL) def download_models(): from sentence_transformers import ( # pylint: disable=import-error SentenceTransformer, ) model = SentenceTransformer(SENTENCE_TRANSFORMERS_MODEL, cache_folder=MODEL_DIR) def init_deeplake_vs(repo_name): deeplake_repo_path = f"mem://{int(time.time())}{repo_name}" deeplake_vector_store = VectorStore( path=deeplake_repo_path, read_only=False, overwrite=False ) return deeplake_vector_store def parse_collection_name(name: str) -> str: # Replace any non-alphanumeric characters with hyphens name = re.sub(r"[^\w-]", "--", name) # Ensure the name is between 3 and 63 characters and starts/ends with alphanumeric name = re.sub(r"^(-*\w{0,61}\w)-*$", r"\1", name[:63].ljust(3, "x")) return name def embed_huggingface(texts): """Embeds a list of texts using Hugging Face's API.""" for i in range(3): try: headers = { "Authorization": f"Bearer {HUGGINGFACE_TOKEN}", "Content-Type": "application/json", } response = requests.post( HUGGINGFACE_URL, headers=headers, json={"inputs": texts} ) return response.json()["embeddings"] except requests.exceptions.RequestException as e: logger.exception( f"Error occurred when sending request to Hugging Face endpoint: {e}" ) def embed_replicate(texts: List[str], timeout=180) -> List[np.ndarray]: client = replicate.Client(api_token=REPLICATE_API_KEY) deployment = client.deployments.get(REPLICATE_DEPLOYMENT_URL) e = None for i in range(3): try: prediction = deployment.predictions.create( input={"text_batch": json.dumps(texts)}, timeout=timeout ) prediction.wait() outputs = prediction.output break except Exception: logger.exception(f"Replicate timeout: {e}") else: raise Exception(f"Replicate timeout") return [output["embedding"] for output in outputs] @lru_cache(maxsize=64) def embed_texts(texts: tuple[str]): logger.info( f"Computing embeddings for {len(texts)} texts using {VECTOR_EMBEDDING_SOURCE}..." ) match VECTOR_EMBEDDING_SOURCE: case "sentence-transformers": sentence_transformer_model = SentenceTransformer( SENTENCE_TRANSFORMERS_MODEL, cache_folder=MODEL_DIR ) vector = sentence_transformer_model.encode( texts, show_progress_bar=True, batch_size=BATCH_SIZE ) return vector case "openai": from openai import OpenAI client = OpenAI() embeddings = [] for batch in tqdm(chunk(texts, batch_size=BATCH_SIZE), disable=False): try: response = client.embeddings.create( input=batch, model="text-embedding-ada-002" ) embeddings.extend([r["embedding"] for r in response["data"]]) except SystemExit: raise SystemExit except Exception: logger.exception("Failed to get embeddings for batch") logger.error(f"Failed to get embeddings for {batch}") return embeddings case "huggingface": if HUGGINGFACE_URL and HUGGINGFACE_TOKEN: embeddings = [] for batch in tqdm(chunk(texts, batch_size=BATCH_SIZE), disable=False): embeddings.extend(embed_huggingface(texts)) return embeddings else: raise Exception("Hugging Face URL and token not set") case "replicate": if REPLICATE_API_KEY: embeddings = [] for batch in tqdm(chunk(texts, batch_size=BATCH_SIZE)): embeddings.extend(embed_replicate(batch)) return embeddings else: raise Exception("Replicate URL and token not set") case "none": return [[0.5]] * len(texts) case _: raise Exception("Invalid vector embedding mode") logger.info( f"Computed embeddings for {len(texts)} texts using {VECTOR_EMBEDDING_SOURCE}" ) def embedding_function(texts: list[str]): # For LRU cache to work return embed_texts(tuple(texts)) def get_deeplake_vs_from_repo( cloned_repo: ClonedRepo, sweep_config: SweepConfig = SweepConfig(), ): deeplake_vs = None repo_full_name = cloned_repo.repo_full_name repo = cloned_repo.repo commits = repo.get_commits() commit_hash = commits[0].sha logger.info(f"Downloading repository and indexing for {repo_full_name}...") start = time.time() logger.info("Recursively getting list of files...") blocked_dirs = get_blocked_dirs(repo) sweep_config.exclude_dirs.extend(blocked_dirs) file_list, snippets, index = prepare_lexical_search_index( cloned_repo, sweep_config, repo_full_name, TicketProgress(tracking_id="none") ) # scoring for vector search files_to_scores = compute_vector_search_scores(file_list, cloned_repo) collection_name, documents, ids, metadatas = prepare_documents_metadata_ids( snippets, cloned_repo, files_to_scores, start, repo_full_name ) deeplake_vs = deeplake_vs or compute_deeplake_vs( collection_name, documents, ids, metadatas, commit_hash ) return deeplake_vs, index, len(documents) def prepare_documents_metadata_ids( snippets, cloned_repo, files_to_scores, start, repo_full_name ): documents = [] metadatas = [] ids = [] for snippet in snippets: documents.append(snippet.get_snippet(add_ellipsis=False, add_lines=False)) metadata = { "file_path": snippet.file_path[len(cloned_repo.cached_dir) + 1 :], "start": snippet.start, "end": snippet.end, "score": files_to_scores[snippet.file_path], } metadatas.append(metadata) gh_file_path = snippet.file_path[len("repo") :] ids.append(f"{gh_file_path}:{snippet.start}:{snippet.end}") logger.info(f"Getting list of all files took {time.time() - start}") logger.info(f"Received {len(documents)} documents from repository {repo_full_name}") collection_name = parse_collection_name(repo_full_name) return collection_name, documents, ids, metadatas def compute_vector_search_scores(file_list, cloned_repo): files_to_scores = {} score_factors = [] for file_path in tqdm(file_list): if not redis_client: score_factor = compute_score( file_path[len(cloned_repo.cached_dir) + 1 :], cloned_repo.git_repo ) score_factors.append(score_factor) continue cache_key = hash_sha256(file_path) + CACHE_VERSION try: cache_value = redis_client.get(cache_key) except Exception as e: logger.exception(e) cache_value = None if cache_value is not None: score_factor = json.loads(cache_value) score_factors.append(score_factor) else: score_factor = compute_score( file_path[len(cloned_repo.cached_dir) + 1 :], cloned_repo.git_repo ) score_factors.append(score_factor) redis_client.set(cache_key, json.dumps(score_factor)) # compute all scores all_scores = get_scores(score_factors) files_to_scores = { file_path[len(cloned_repo.cached_dir) + 1 :]: score for file_path, score in zip(file_list, all_scores) } return files_to_scores def prepare_lexical_search_index( cloned_repo, sweep_config, repo_full_name, ticket_progress: TicketProgress | None = None, ): snippets, file_list = repo_to_chunks(cloned_repo.cached_dir, sweep_config) logger.info(f"Found {len(snippets)} snippets in repository {repo_full_name}") # prepare lexical search index = prepare_index_from_snippets( snippets, len_repo_cache_dir=len(cloned_repo.cached_dir) + 1, ticket_progress=ticket_progress, ) return file_list, snippets, index def compute_deeplake_vs(collection_name, documents, ids, metadatas, sha): if len(documents) > 0: logger.info(f"Computing embeddings with {VECTOR_EMBEDDING_SOURCE}...") # Check cache here for all documents embeddings = [None] * len(documents) # if len(documents) > 10000: if redis_client: cache_keys = [ hash_sha256(doc) + SENTENCE_TRANSFORMERS_MODEL + VECTOR_EMBEDDING_SOURCE + CACHE_VERSION for doc in documents ] cache_values = redis_client.mget(cache_keys) for idx, value in enumerate(cache_values): if value is not None: arr = json.loads(value) if isinstance(arr, list): embeddings[idx] = np.array(arr, dtype=np.float32) logger.info( f"Found {len([x for x in embeddings if x is not None])} embeddings in cache" ) indices_to_compute = [idx for idx, x in enumerate(embeddings) if x is None] documents_to_compute = [documents[idx] for idx in indices_to_compute] logger.info(f"Computing {len(documents_to_compute)} embeddings...") computed_embeddings = embedding_function(documents_to_compute) logger.info(f"Computed {len(computed_embeddings)} embeddings") for idx, embedding in zip(indices_to_compute, computed_embeddings): embeddings[idx] = embedding embeddings = convert_to_numpy_array(embeddings, documents) deeplake_vs = init_deeplake_vs(collection_name) deeplake_vs.add(text=ids, embedding=embeddings, metadata=metadatas) logger.info("Added embeddings to cache") if redis_client and len(documents_to_compute) > 0: logger.info(f"Updating cache with {len(computed_embeddings)} embeddings") cache_keys = [ hash_sha256(doc) + SENTENCE_TRANSFORMERS_MODEL + VECTOR_EMBEDDING_SOURCE + CACHE_VERSION for doc in documents_to_compute ] redis_client.mset( { key: json.dumps( embedding.tolist() if isinstance(embedding, np.ndarray) else embedding ) for key, embedding in zip(cache_keys, computed_embeddings) } ) return deeplake_vs def convert_to_numpy_array(embeddings, documents): try: embeddings = np.array(embeddings, dtype=np.float32) except SystemExit: raise SystemExit except: logger.exception( "Failed to convert embeddings to numpy array, recomputing all of them" ) embeddings = embedding_function(documents) embeddings = np.array(embeddings, dtype=np.float32) return embeddings def compute_embeddings(documents): if len(documents) > 0: logger.info(f"Computing embeddings with {VECTOR_EMBEDDING_SOURCE}...") # Check cache here for all documents embeddings = [None] * len(documents) if redis_client: cache_keys = [ hash_sha256(doc) + SENTENCE_TRANSFORMERS_MODEL + VECTOR_EMBEDDING_SOURCE + CACHE_VERSION for doc in documents ] cache_values = redis_client.mget(cache_keys) for idx, value in enumerate(cache_values): if value is not None: arr = json.loads(value) if isinstance(arr, list): embeddings[idx] = np.array(arr, dtype=np.float32) logger.info( f"Found {len([x for x in embeddings if x is not None])} embeddings in cache" ) indices_to_compute = [idx for idx, x in enumerate(embeddings) if x is None] documents_to_compute = [documents[idx] for idx in indices_to_compute] logger.info(f"Computing {len(documents_to_compute)} embeddings...") computed_embeddings = embedding_function(documents_to_compute) logger.info(f"Computed {len(computed_embeddings)} embeddings") for idx, embedding in zip(indices_to_compute, computed_embeddings): embeddings[idx] = embedding embeddings = convert_to_numpy_array(embeddings, documents) return embeddings, documents_to_compute, computed_embeddings, embedding @file_cache(ignore_params=["cloned_repo", "sweep_config", "token"]) def get_relevant_snippets( cloned_repo: ClonedRepo, query: str, username: str | None = None, sweep_config: SweepConfig = SweepConfig(), lexical=True, ): repo_name = cloned_repo.repo_full_name installation_id = cloned_repo.installation_id logger.info("Getting query embedding...") query_embedding = embedding_function([query]) # pylint: disable=no-member logger.info("Starting search by getting vector store...") deeplake_vs, lexical_index, num_docs = get_deeplake_vs_from_repo( cloned_repo, sweep_config=sweep_config ) content_to_lexical_score = search_index(query, lexical_index) logger.info(f"Found {len(content_to_lexical_score)} lexical results") logger.info(f"Searching for relevant snippets... with {num_docs} docs") results = {"metadata": [], "text": []} try: results = deeplake_vs.search(embedding=query_embedding, k=num_docs) except SystemExit: raise SystemExit except Exception: logger.exception("Exception occurred while fetching relevant snippets") logger.info("Fetched relevant snippets...") if len(results["text"]) == 0: logger.info(f"Results query {query} was empty") logger.info(f"Results: {results}") if username is None: username = "anonymous" posthog.capture( username, "failed", { "reason": "Results query was empty", "repo_name": repo_name, "installation_id": installation_id, "query": query, }, ) return [] metadatas = results["metadata"] code_scores = [metadata["score"] for metadata in metadatas] lexical_scores = [] for metadata in metadatas: key = f"{metadata['file_path']}:{str(metadata['start'])}:{str(metadata['end'])}" if key in content_to_lexical_score: lexical_scores.append(content_to_lexical_score[key]) else: lexical_scores.append(0.3) vector_scores = results["score"] combined_scores = [ code_score * 4 + vector_score + lexical_score * 2.5 # increase weight of lexical search for code_score, vector_score, lexical_score in zip( code_scores, vector_scores, lexical_scores ) ] combined_list = list(zip(combined_scores, metadatas)) sorted_list = sorted(combined_list, key=lambda x: x[0], reverse=True) sorted_metadatas = [metadata for _, metadata in sorted_list] relevant_paths = [metadata["file_path"] for metadata in sorted_metadatas] logger.info("Relevant paths: {}".format(relevant_paths[:5])) return [ Snippet( content="", start=metadata["start"], end=metadata["end"], file_path=file_path, ) for metadata, file_path in zip(sorted_metadatas, relevant_paths) ][:num_docs] def chunk(texts: List[str], batch_size: int) -> Generator[List[str], None, None]: """ Split a list of texts into batches of a given size for embed_texts. Args: ---- texts (List[str]): A list of texts to be chunked into batches. batch_size (int): The maximum number of texts in each batch. Yields: ------ Generator[List[str], None, None]: A generator that yields batches of texts as lists. Example: ------- texts = ["text1", "text2", "text3", "text4", "text5"] batch_size = 2 for batch in chunk(texts, batch_size): print(batch) # Output: # ['text1', 'text2'] # ['text3', 'text4'] # ['text5'] """ texts = [text[:4096] if text else " " for text in texts] for text in texts: assert isinstance(text, str), f"Expected str, got {type(text)}" assert len(text) <= 4096, f"Expected text length <= 4096, got {len(text)}" for i in range(0, len(texts), batch_size): yield texts[i : i + batch_size] if i + batch_size < len(texts) else texts[i:]
[]
2024-01-10
sweepai/sweep
tests~archive~test_cst_splitter.py
python_code = ''' import io import os import zipfile import openai import requests from loguru import logger from sweepai.core.gha_extraction import GHAExtractor from sweepai.events import CheckRunCompleted from sweepai.handlers.on_comment import on_comment from sweepai.utils.config.client import SweepConfig, get_gha_enabled from sweepai.utils.github_utils import get_github_client, get_token openai.api_key = os.environ.get("OPENAI_API_KEY") log_message = """GitHub actions yielded the following error. {error_logs} This is likely a linting or type-checking issue with the source code but if you are updating the GitHub Actions or versioning, this could be an issue with the GitHub Action yaml files.""" def download_logs(repo_full_name: str, run_id: int, installation_id: int): headers = { "Accept": "application/vnd.github+json", "Authorization": f"Bearer {get_token(installation_id)}", "X-GitHub-Api-Version": "2022-11-28" } response = requests.get(f"https://api.github.com/repos/{repo_full_name}/actions/runs/{run_id}/logs", headers=headers) logs_str = "" if response.status_code == 200: zip_file = zipfile.ZipFile(io.BytesIO(response.content)) for file in zip_file.namelist(): if "/" not in file: with zip_file.open(file) as f: logs_str += f.read().decode("utf-8") else: logger.warning(f"Failed to download logs for run id: {run_id}") return logs_str def clean_logs(logs_str: str): log_list = logs_str.split("\\n") truncated_logs = [log[log.find(" ") + 1:] for log in log_list] patterns = [ # for docker "Already exists", "Pulling fs layer", "Waiting", "Download complete", "Verifying Checksum", "Pull complete", # For github "remote: Counting objects", "remote: Compressing objects:", "Receiving objects:", "Resolving deltas:" ] return "\\n".join([log.strip() for log in truncated_logs if not any(pattern in log for pattern in patterns)]) def on_check_suite(request: CheckRunCompleted): logger.info(f"Received check run completed event for {request.repository.full_name}") g = get_github_client(request.installation.id) repo = g.get_repo(request.repository.full_name) if not get_gha_enabled(repo): logger.info(f"Skipping github action for {request.repository.full_name} because it is not enabled") return None pr = repo.get_pull(request.check_run.pull_requests[0].number) num_pr_commits = len(list(pr.get_commits())) if num_pr_commits > 20: logger.info(f"Skipping github action for PR with {num_pr_commits} commits") return None logger.info(f"Running github action for PR with {num_pr_commits} commits") logs = download_logs( request.repository.full_name, request.check_run.run_id, request.installation.id ) if not logs: return None logs = clean_logs(logs) extractor = GHAExtractor() logger.info(f"Extracting logs from {request.repository.full_name}, logs: {logs}") problematic_logs = extractor.gha_extract(logs) if problematic_logs.count("\\n") > 15: problematic_logs += "\\n\\nThere are a lot of errors. This is likely a larger issue with the PR and not a small linting/type-checking issue." comments = list(pr.get_issue_comments()) if len(comments) >= 2 and problematic_logs == comments[-1].body and comments[-2].body == comments[-1].body: comment = pr.as_issue().create_comment(log_message.format(error_logs=problematic_logs) + "\\n\\nI'm getting the same errors 3 times in a row, so I will stop working on fixing this PR.") logger.warning("Skipping logs because it is duplicated") raise Exception("Duplicate error logs") print(problematic_logs) comment = pr.as_issue().create_comment(log_message.format(error_logs=problematic_logs)) on_comment( repo_full_name=request.repository.full_name, repo_description=request.repository.description, comment=problematic_logs, pr_path=None, pr_line_position=None, username=request.sender.login, installation_id=request.installation.id, pr_number=request.check_run.pull_requests[0].number, comment_id=comment.id, repo=repo, ) return {"success": True} ''' js_text = """ import { Document, BaseNode } from "../Node"; import { v4 as uuidv4 } from "uuid"; import { BaseRetriever } from "../Retriever"; import { ServiceContext } from "../ServiceContext"; import { StorageContext } from "../storage/StorageContext"; import { BaseDocumentStore } from "../storage/docStore/types"; import { VectorStore } from "../storage/vectorStore/types"; import { BaseIndexStore } from "../storage/indexStore/types"; import { BaseQueryEngine } from "../QueryEngine"; import { ResponseSynthesizer } from "../ResponseSynthesizer"; /** * The underlying structure of each index. */ export abstract class IndexStruct { indexId: string; summary?: string; constructor(indexId = uuidv4(), summary = undefined) { this.indexId = indexId; this.summary = summary; } toJson(): Record<string, unknown> { return { indexId: this.indexId, summary: this.summary, }; } getSummary(): string { if (this.summary === undefined) { throw new Error("summary field of the index dict is not set"); } return this.summary; } } export enum IndexStructType { SIMPLE_DICT = "simple_dict", LIST = "list", } export class IndexDict extends IndexStruct { nodesDict: Record<string, BaseNode> = {}; docStore: Record<string, Document> = {}; // FIXME: this should be implemented in storageContext type: IndexStructType = IndexStructType.SIMPLE_DICT; getSummary(): string { if (this.summary === undefined) { throw new Error("summary field of the index dict is not set"); } return this.summary; } addNode(node: BaseNode, textId?: string) { const vectorId = textId ?? node.id_; this.nodesDict[vectorId] = node; } toJson(): Record<string, unknown> { return { ...super.toJson(), nodesDict: this.nodesDict, type: this.type, }; } } export function jsonToIndexStruct(json: any): IndexStruct { if (json.type === IndexStructType.LIST) { const indexList = new IndexList(json.indexId, json.summary); indexList.nodes = json.nodes; return indexList; } else if (json.type === IndexStructType.SIMPLE_DICT) { const indexDict = new IndexDict(json.indexId, json.summary); indexDict.nodesDict = json.nodesDict; return indexDict; } else { throw new Error(`Unknown index struct type: ${json.type}`); } } export class IndexList extends IndexStruct { nodes: string[] = []; type: IndexStructType = IndexStructType.LIST; addNode(node: BaseNode) { this.nodes.push(node.id_); } toJson(): Record<string, unknown> { return { ...super.toJson(), nodes: this.nodes, type: this.type, }; } } export interface BaseIndexInit<T> { serviceContext: ServiceContext; storageContext: StorageContext; docStore: BaseDocumentStore; vectorStore?: VectorStore; indexStore?: BaseIndexStore; indexStruct: T; } /** * Indexes are the data structure that we store our nodes and embeddings in so * they can be retrieved for our queries. */ export abstract class BaseIndex<T> { serviceContext: ServiceContext; storageContext: StorageContext; docStore: BaseDocumentStore; vectorStore?: VectorStore; indexStore?: BaseIndexStore; indexStruct: T; constructor(init: BaseIndexInit<T>) { this.serviceContext = init.serviceContext; this.storageContext = init.storageContext; this.docStore = init.docStore; this.vectorStore = init.vectorStore; this.indexStore = init.indexStore; this.indexStruct = init.indexStruct; } /** * Create a new retriever from the index. * @param retrieverOptions */ abstract asRetriever(options?: any): BaseRetriever; /** * Create a new query engine from the index. It will also create a retriever * and response synthezier if they are not provided. * @param options you can supply your own custom Retriever and ResponseSynthesizer */ abstract asQueryEngine(options?: { retriever?: BaseRetriever; responseSynthesizer?: ResponseSynthesizer; }): BaseQueryEngine; } export interface VectorIndexOptions { nodes?: BaseNode[]; indexStruct?: IndexDict; indexId?: string; serviceContext?: ServiceContext; storageContext?: StorageContext; } export interface VectorIndexConstructorProps extends BaseIndexInit<IndexDict> { vectorStore: VectorStore; } """ # if __name__ == "__main__": # chunks, metadata, _id = chunker.call(js_text, "main.py") # for chunk in chunks: # print(chunk + "\n\n==========\n")
[]
2024-01-10
sweepai/sweep
sweepai~agents~assistant_wrapper.py
import json import os import re import time from pathlib import Path from typing import Callable from loguru import logger from openai import OpenAI from openai.pagination import SyncCursorPage from openai.types.beta.threads.thread_message import ThreadMessage from pydantic import BaseModel from sweepai.agents.assistant_functions import raise_error_schema from sweepai.config.server import IS_SELF_HOSTED, OPENAI_API_KEY from sweepai.core.entities import AssistantRaisedException, Message from sweepai.utils.chat_logger import ChatLogger from sweepai.utils.event_logger import posthog client = OpenAI(api_key=OPENAI_API_KEY, timeout=90) if OPENAI_API_KEY else None def openai_retry_with_timeout(call, *args, num_retries=3, timeout=5, **kwargs): """ Pass any OpenAI client call and retry it num_retries times, incorporating timeout into the call. Usage: run = openai_retry_with_timeout(client.beta.threads.runs.submit_tool_outputs, thread_id=thread.id, run_id=run.id, tool_outputs=tool_outputs, num_retries=3, timeout=10) Parameters: call (callable): The OpenAI client call to be retried. *args: Positional arguments for the callable. num_retries (int): The number of times to retry the call. timeout (int): The timeout value to be applied to the call. **kwargs: Keyword arguments for the callable. Returns: The result of the OpenAI client call. """ error_message = None for attempt in range(num_retries): try: return call(*args, **kwargs, timeout=timeout) except Exception as e: logger.error(f"Retry {attempt + 1} failed with error: {e}") error_message = str(e) raise Exception( f"Maximum retries reached. The call failed for call {error_message}" ) save_ticket_progress_type = Callable[[str, str, str], None] class AssistantResponse(BaseModel): messages: SyncCursorPage[ThreadMessage] assistant_id: str run_id: str thread_id: str allowed_exts = [ "c", "cpp", "csv", "docx", "html", "java", "json", "md", "pdf", "php", "pptx", "py", "rb", "tex", "txt", "css", "jpeg", "jpg", "js", "gif", "png", "tar", "ts", "xlsx", "xml", "zip", ] def get_json_messages( thread_id: str, run_id: str, assistant_id: str, ): assistant = openai_retry_with_timeout( client.beta.assistants.retrieve, assistant_id=assistant_id, ) messages = openai_retry_with_timeout( client.beta.threads.messages.list, thread_id=thread_id, ) run_steps = openai_retry_with_timeout( client.beta.threads.runs.steps.list, run_id=run_id, thread_id=thread_id ) system_message_json = { "role": "system", "content": assistant.instructions, } messages_json = [system_message_json] for message in messages: if message.role == "user": messages_json.append( { "role": "user", "content": message.content[0].text.value, } ) for message_obj in list(run_steps.data)[:0:-1]: if message_obj.type == "message_creation": message_id = message_obj.step_details.message_creation.message_id thread_messages = openai_retry_with_timeout( client.beta.threads.messages.retrieve, message_id=message_id, thread_id=thread_id, ) message_content = thread_messages.content[0].text.value messages_json.append( { "role": "assistant", "content": message_content, } ) # TODO: handle annotations elif message_obj.type == "tool_calls": for tool_call in message_obj.step_details.tool_calls: if tool_call.type == "code_interpreter": code_interpreter = tool_call.code_interpreter input_ = code_interpreter.input if not input_: continue input_content = f"Code interpreter input:\n```\n{input_}\n```" messages_json.append( { "role": "assistant", "content": input_content, } ) outputs = code_interpreter.outputs output = outputs[0].logs if outputs else "__No output__" output_content = f"Code interpreter output:\n```\n{output}\n```" messages_json.append( { "role": "user", "content": output_content, } ) else: function = tool_call.function input_content = f"Function call of {function.name}:\n```\n{function.arguments}\n```" messages_json.append( { "role": "assistant", "content": input_content, } ) if function.output: output_content = ( f"Function output:\n```\n{function.output}\n```" ) messages_json.append( { "role": "user", "content": output_content, } ) return messages_json def run_until_complete( thread_id: str, run_id: str, assistant_id: str, model: str = "gpt-4-1106-preview", chat_logger: ChatLogger | None = None, sleep_time: int = 3, max_iterations: int = 200, save_ticket_progress: save_ticket_progress_type | None = None, ): message_strings = [] json_messages = [] try: for i in range(max_iterations): run = openai_retry_with_timeout( client.beta.threads.runs.retrieve, thread_id=thread_id, run_id=run_id, ) if run.status == "completed": logger.info(f"Run completed with {run.status}") break elif run.status in ("cancelled", "cancelling", "failed", "expired"): logger.info(f"Run completed with {run.status}") raise Exception( f"Run failed assistant_id={assistant_id}, run_id={run_id}, thread_id={thread_id}" ) elif run.status == "requires_action": tool_calls = [ tool_call for tool_call in run.required_action.submit_tool_outputs.tool_calls ] if any( [ tool_call.function.name == raise_error_schema["name"] for tool_call in tool_calls ] ): arguments_parsed = json.loads(tool_calls[0].function.arguments) raise AssistantRaisedException(arguments_parsed["message"]) tool_outputs = [] for tool_call in tool_calls: try: tool_call_arguments = re.sub( r"\\+'", "", tool_call.function.arguments ) function_input: dict = json.loads(tool_call_arguments) except: logger.warning( f"Could not parse function arguments: {tool_call_arguments}" ) tool_outputs.append( { "tool_call_id": tool_call.id, "output": "FAILURE: Could not parse function arguments.", } ) continue tool_output = yield tool_call.function.name, function_input tool_output_formatted = { "tool_call_id": tool_call.id, "output": tool_output, } tool_outputs.append(tool_output_formatted) run = openai_retry_with_timeout( client.beta.threads.runs.submit_tool_outputs, thread_id=thread_id, run_id=run.id, tool_outputs=tool_outputs, ) if save_ticket_progress is not None: save_ticket_progress( assistant_id=assistant_id, thread_id=thread_id, run_id=run_id, ) messages = openai_retry_with_timeout( client.beta.threads.messages.list, thread_id=thread_id, ) current_message_strings = [ message.content[0].text.value for message in messages.data ] if message_strings != current_message_strings and current_message_strings: logger.info(run.status) logger.info(current_message_strings[0]) message_strings = current_message_strings json_messages = get_json_messages( thread_id=thread_id, run_id=run_id, assistant_id=assistant_id, ) if chat_logger is not None: chat_logger.add_chat( { "model": model, "messages": json_messages, "output": message_strings[0], "thread_id": thread_id, "run_id": run_id, "max_tokens": 1000, "temperature": 0, } ) else: if i % 5 == 0: logger.info(run.status) time.sleep(sleep_time) except (KeyboardInterrupt, SystemExit): client.beta.threads.runs.cancel(thread_id=thread_id, run_id=run_id) logger.warning(f"Run cancelled: {run_id}") raise SystemExit if save_ticket_progress is not None: save_ticket_progress( assistant_id=assistant_id, thread_id=thread_id, run_id=run_id, ) for json_message in json_messages: logger.info(json_message["content"]) return client.beta.threads.messages.list( thread_id=thread_id, ) def openai_assistant_call_helper( request: str, instructions: str | None = None, additional_messages: list[Message] = [], file_paths: list[str] = [], # use either file_paths or file_ids uploaded_file_ids: list[str] = [], tools: list[dict[str, str]] = [{"type": "code_interpreter"}], model: str = "gpt-4-1106-preview", sleep_time: int = 3, chat_logger: ChatLogger | None = None, assistant_id: str | None = None, assistant_name: str | None = None, save_ticket_progress: save_ticket_progress_type | None = None, ): file_ids = [] if not uploaded_file_ids else uploaded_file_ids file_object = None if not file_ids: for file_path in file_paths: if not any(file_path.endswith(extension) for extension in allowed_exts): os.rename(file_path, file_path + ".txt") file_path += ".txt" file_object = client.files.create( file=Path(file_path), purpose="assistants" ) file_ids.append(file_object.id) logger.debug(instructions) # always create new one assistant = openai_retry_with_timeout( client.beta.assistants.create, name=assistant_name, instructions=instructions, tools=tools, model=model, ) thread = client.beta.threads.create() if file_ids: logger.info("Uploading files...") client.beta.threads.messages.create( thread_id=thread.id, role="user", content=request, file_ids=file_ids, ) if file_ids: logger.info("Files uploaded") for message in additional_messages: client.beta.threads.messages.create( thread_id=thread.id, role="user", content=message.content, ) run = client.beta.threads.runs.create( thread_id=thread.id, assistant_id=assistant.id, instructions=instructions, model=model, ) if len(tools) > 1: return run_until_complete( thread_id=thread.id, run_id=run.id, model=model, chat_logger=chat_logger, assistant_id=assistant.id, sleep_time=sleep_time, save_ticket_progress=save_ticket_progress, ) for file_id in file_ids: client.files.delete(file_id=file_id) return ( assistant.id, run.id, thread.id, ) # Split in two so it can be cached def openai_assistant_call( request: str, instructions: str | None = None, additional_messages: list[Message] = [], file_paths: list[str] = [], uploaded_file_ids: list[str] = [], tools: list[dict[str, str]] = [{"type": "code_interpreter"}], model: str = "gpt-4-1106-preview", sleep_time: int = 3, chat_logger: ChatLogger | None = None, assistant_id: str | None = None, assistant_name: str | None = None, save_ticket_progress: save_ticket_progress_type | None = None, ): model = ( "gpt-3.5-turbo-1106" if (chat_logger is None or chat_logger.use_faster_model()) and not IS_SELF_HOSTED else "gpt-4-1106-preview" ) posthog.capture( chat_logger.data.get("username") if chat_logger is not None else "anonymous", "call_assistant_api", { "query": request, "model": model, }, ) retries = range(3) for _ in retries: try: response = openai_assistant_call_helper( request=request, instructions=instructions, additional_messages=additional_messages, file_paths=file_paths, uploaded_file_ids=uploaded_file_ids, tools=tools, model=model, sleep_time=sleep_time, chat_logger=chat_logger, assistant_id=assistant_id, assistant_name=assistant_name, save_ticket_progress=save_ticket_progress, ) if len(tools) > 1: return response (assistant_id, run_id, thread_id) = response messages = client.beta.threads.messages.list( thread_id=thread_id, ) return AssistantResponse( messages=messages, assistant_id=assistant_id, run_id=run_id, thread_id=thread_id, ) except AssistantRaisedException as e: logger.warning(e.message) except Exception as e: logger.error(e) raise e
[]
2024-01-10
sweepai/sweep
tests~archive~delete_old_files.py
from openai import OpenAI from sweepai.config.server import OPENAI_API_KEY client = OpenAI(api_key=OPENAI_API_KEY) if OPENAI_API_KEY else None all_files = client.files.list() for file in all_files: client.files.delete(file.id) file_mb = file.bytes / 1e6 print(f"Deleted {file.id} which used {file_mb} megabytes")
[]
2024-01-10
sweepai/sweep
sweepai~core~context_pruning.py
import json import re import time from attr import dataclass from loguru import logger from openai.types.beta.thread import Thread from openai.types.beta.threads.run import Run from sweepai.agents.assistant_wrapper import client, openai_retry_with_timeout from sweepai.config.server import IS_SELF_HOSTED from sweepai.core.entities import Snippet from sweepai.utils.chat_logger import ChatLogger, discord_log_error from sweepai.utils.code_tree import CodeTree from sweepai.utils.event_logger import posthog from sweepai.utils.github_utils import ClonedRepo from sweepai.utils.progress import AssistantConversation, TicketProgress from sweepai.utils.tree_utils import DirectoryTree ASSISTANT_MAX_CHARS = 4096 * 4 * 0.95 # ~95% of 4k tokens sys_prompt = """You are a brilliant engineer assigned to the following Github issue. You must gather ALL RELEVANT information from the codebase that allows you to completely solve the issue. It is very important that you get this right and do not miss any relevant lines of code. ## Instructions You initially start with no snippets and will use the store_file_snippet and expand_directory to add snippets to the context. You will iteratively use the file_search, preview_file and view_file_snippet tools to help you find the relevant snippets to store. You are provided "Relevant Snippets", which are snippets relevant to the user request. These snippets are retrieved by a lexical search over the codebase, but are NOT in the context initially. You will do this by using the following process for every relevant file: 1. First use the preview_file tool to preview all files that are relevant, starting with file paths and entities mentioned in "User Request", then those in "Relevant Snippets". For example, if the class foo.bar.Bar was mentioned, be sure to preview foo/bar.py. If the file is irrelevant, move onto the next file. If you don't know the full file path, use file_search with the file name. 2. If the file seems relevant, use the view_file_snippet tool to view specific line numbers of a file. We want to find all line numbers relevant to solve the user request. So if the surrounding lines are relevant, use the view_file_snippet tool again with a larger span to view the surrounding lines. Repeat this process until you are certain you have the maximal relevant span. 3. Finally, when you are certain you have the maximal relevant span, use the store_file_snippet and expand_directory tools to curate the optimal context (snippets_in_repo and repo_tree) until they allow you to completely solve the user request. If you don't know the correct line numbers, complete step one until you find the exact line numbers. Repeat this process until you have the perfect context to solve the user request. Ensure you have checked ALL files referenced in the user request.""" unformatted_user_prompt = """\ <repo_tree> {repo_tree} </repo_tree> ## Relevant Snippets Here are potentially relevant snippets in the repo in decreasing relevance that you should use the preview_file tool for: {snippets_in_repo} ## User Request {query}""" functions = [ { "name": "file_search", "parameters": { "type": "object", "properties": { "file_path": { "type": "string", "description": "The search query. You can search like main.py to find src/main.py.", }, "justification": { "type": "string", "description": "Justification for searching for the file.", }, }, "required": ["snippet_path", "justification"], }, "description": "Use this to find the most similar file paths to the search query.", }, { "name": "preview_file", "parameters": { "type": "object", "properties": { "file_path": { "type": "string", "description": "File path to preview.", }, "justification": { "type": "string", "description": "Justification for previewing the file.", }, }, "required": ["snippet_path", "justification"], }, "description": "Use this to read the summary of the file. Use this tool before viewing a snippet. This is used for exploration only and does not affect the snippets. After using this tool, use the view_file_snippet tool to view specific line numbers of a file to find the exact line numbers to store to solve the user request.", }, { "name": "view_file_snippet", "parameters": { "type": "object", "properties": { "file_path": { "type": "string", "description": "File or directory to store.", }, "start_line": { "type": "integer", "description": "Start line of the snippet.", }, "end_line": { "type": "integer", "description": "End line of the snippet.", }, "justification": { "type": "string", "description": "Justification for viewing the file_path.", }, }, "required": ["file_path", "start_line", "end_line", "justification"], }, "description": "Use this to view a section of a snippet. You may use this tool multiple times to view multiple snippets. After you are finished using this tool, you may use the view_file_snippet to view the surrounding lines or the store_file_snippet tool to store the snippet to solve the user request.", }, { "name": "store_file_snippet", "parameters": { "type": "object", "properties": { "file_path": { "type": "string", "description": "File or directory to store.", }, "start_line": { "type": "integer", "description": "Start line of the snippet.", }, "end_line": { "type": "integer", "description": "End line of the snippet.", }, "justification": { "type": "string", "description": "Justification for why file_path is relevant and why the surrounding lines are irrelevant by indicating what functions are in the surrounding lines and what they do.", }, }, "required": ["file_path", "start_line", "end_line", "justification"], }, "description": "Use this to store a snippet. Only store paths you are CERTAIN are relevant and sufficient to solving the user request and be precise with the line numbers, and provides an entire coherent section of code. Make sure to store ALL of the files that are referenced in the issue title or description. You may store multiple snippets with the same file path.", }, { "name": "expand_directory", "parameters": { "type": "object", "properties": { "directory_path": { "type": "string", "description": "Directory to expand", }, "justification": { "type": "string", "description": "Justification for expanding the directory.", }, }, "required": ["directory_path", "justification"], }, "description": "Expand an existing directory that is closed. This is used for exploration only and does not affect the snippets. If you expand a directory, you automatically expand all of its subdirectories, so do not list its subdirectories. Store all files or directories that are referenced in the issue title or descriptions.", }, ] tools = [{"type": "function", "function": function} for function in functions] @staticmethod def can_add_snippet(snippet: Snippet, current_snippets: list[Snippet]): return ( len(snippet.xml) + sum([len(snippet.xml) for snippet in current_snippets]) <= ASSISTANT_MAX_CHARS ) @dataclass class RepoContextManager: dir_obj: DirectoryTree current_top_tree: str snippets: list[Snippet] snippet_scores: dict[str, float] cloned_repo: ClonedRepo current_top_snippets: list[Snippet] = [] @property def top_snippet_paths(self): return [snippet.file_path for snippet in self.current_top_snippets] def remove_all_non_kept_paths(self, paths_to_keep: list[str]): self.current_top_snippets = [ snippet for snippet in self.current_top_snippets if any( snippet.file_path.startswith(path_to_keep) for path_to_keep in paths_to_keep ) ] self.dir_obj.remove_all_not_included(paths_to_keep) def expand_all_directories(self, directories_to_expand: list[str]): self.dir_obj.expand_directory(directories_to_expand) def is_path_valid(self, path: str, directory: bool = False): if directory: return any(snippet.file_path.startswith(path) for snippet in self.snippets) return any(snippet.file_path == path for snippet in self.snippets) def format_context( self, unformatted_user_prompt: str, query: str, ): new_top_snippets: list[Snippet] = [] for snippet in self.current_top_snippets: if can_add_snippet(snippet, new_top_snippets): new_top_snippets.append(snippet) self.current_top_snippets = new_top_snippets top_snippets_str = [ f"- {snippet.denotation}" for snippet in self.current_top_snippets ] [snippet.file_path for snippet in self.current_top_snippets] snippets_in_repo_str = "\n".join(top_snippets_str) logger.info(f"Snippets in repo:\n{snippets_in_repo_str}") repo_tree = str(self.dir_obj) user_prompt = unformatted_user_prompt.format( query=query, snippets_in_repo=snippets_in_repo_str, repo_tree=repo_tree, ) return user_prompt def get_highest_scoring_snippet(self, file_path: str) -> Snippet: snippet_key = ( lambda snippet: f"{snippet.file_path}:{snippet.start}:{snippet.end}" ) filtered_snippets = [ snippet for snippet in self.snippets if snippet.file_path == file_path and snippet not in self.current_top_snippets ] if not filtered_snippets: return None highest_scoring_snippet = max( filtered_snippets, key=lambda snippet: self.snippet_scores[snippet_key(snippet)] if snippet_key(snippet) in self.snippet_scores else 0, ) return highest_scoring_snippet def add_snippets(self, snippets_to_add: list[Snippet]): self.dir_obj.add_file_paths([snippet.file_path for snippet in snippets_to_add]) for snippet in snippets_to_add: self.current_top_snippets.append(snippet) # @file_cache(ignore_params=["repo_context_manager", "ticket_progress", "chat_logger"]) def get_relevant_context( query: str, repo_context_manager: RepoContextManager, ticket_progress: TicketProgress | None = None, chat_logger: ChatLogger = None, ): modify_iterations: int = 2 model = ( "gpt-3.5-turbo-1106" if (chat_logger is None or chat_logger.use_faster_model()) and not IS_SELF_HOSTED else "gpt-4-1106-preview" ) posthog.capture( chat_logger.data.get("username") if chat_logger is not None else "anonymous", "call_assistant_api", { "query": query, "model": model, }, ) try: user_prompt = repo_context_manager.format_context( unformatted_user_prompt=unformatted_user_prompt, query=query, ) assistant = openai_retry_with_timeout( client.beta.assistants.create, name="Relevant Files Assistant", instructions=sys_prompt, tools=tools, model=model, ) thread = openai_retry_with_timeout(client.beta.threads.create) _ = openai_retry_with_timeout( client.beta.threads.messages.create, thread.id, role="user", content=f"{user_prompt}", ) run = openai_retry_with_timeout( client.beta.threads.runs.create, thread_id=thread.id, assistant_id=assistant.id, ) old_top_snippets = [ snippet for snippet in repo_context_manager.current_top_snippets ] modify_context(thread, run, repo_context_manager, ticket_progress) if len(repo_context_manager.current_top_snippets) == 0: repo_context_manager.current_top_snippets = old_top_snippets discord_log_error(f"Context manager empty ({ticket_progress.tracking_id})") return repo_context_manager except Exception as e: logger.exception(e) return repo_context_manager def update_assistant_conversation( run: Run, thread: Thread, ticket_progress: TicketProgress, repo_context_manager: RepoContextManager, ): assistant_conversation = AssistantConversation.from_ids( assistant_id=run.assistant_id, run_id=run.id, thread_id=thread.id, ) if ticket_progress: if assistant_conversation: ticket_progress.search_progress.pruning_conversation = ( assistant_conversation ) ticket_progress.search_progress.repo_tree = str(repo_context_manager.dir_obj) ticket_progress.search_progress.final_snippets = ( repo_context_manager.current_top_snippets ) ticket_progress.save() def modify_context( thread: Thread, run: Run, repo_context_manager: RepoContextManager, ticket_progress: TicketProgress, ) -> bool | None: max_iterations = 90 directories_to_expand = [] repo_context_manager.current_top_snippets = [] initial_file_paths = repo_context_manager.top_snippet_paths paths_to_add = [] for iter in range(max_iterations): run = openai_retry_with_timeout( client.beta.threads.runs.retrieve, thread_id=thread.id, run_id=run.id, ) if iter % 5 == 0: update_assistant_conversation( run, thread, ticket_progress, repo_context_manager ) logger.info("iteration: " + str(iter)) if run.status == "completed" or run.status == "failed": break if ( run.status != "requires_action" or run.required_action is None or run.required_action.submit_tool_outputs is None or run.required_action.submit_tool_outputs.tool_calls is None ): time.sleep(3) continue tool_calls = run.required_action.submit_tool_outputs.tool_calls tool_outputs = [] for tool_call in tool_calls: try: tool_call_arguments = re.sub(r"\\+'", "", tool_call.function.arguments) function_input = json.loads(tool_call_arguments) except: logger.warning( f"Could not parse function arguments: {tool_call_arguments}" ) tool_outputs.append( { "tool_call_id": tool_call.id, "output": "FAILURE: Could not parse function arguments.", } ) continue current_top_snippets_string = "\n".join( [ "- " + snippet.xml for snippet in repo_context_manager.current_top_snippets ] ) logger.info(f"Tool Call: {tool_call.function.name} {function_input}") function_path_or_dir = function_input.get( "file_path" ) or function_input.get("directory_path") valid_path = False output = "" if tool_call.function.name == "file_search": error_message = "" try: similar_file_paths = "\n".join( [ f"- {path}" for path in repo_context_manager.cloned_repo.get_similar_file_paths( function_path_or_dir ) ] ) valid_path = True except: similar_file_paths = "" error_message = "FAILURE: This file path does not exist." if error_message: output = error_message else: output = ( f"SUCCESS: Here are the most similar file paths to {function_path_or_dir}:\n{similar_file_paths}" if valid_path else "FAILURE: This file path does not exist. Please try a new path." ) elif tool_call.function.name == "view_file_snippet": error_message = "" for key in ["start_line", "end_line"]: if key not in function_input: logger.warning( f"Key {key} not in function input {function_input}" ) error_message = "FAILURE: Please provide a start and end line." start_line = int(function_input["start_line"]) end_line = int(function_input["end_line"]) try: file_contents = repo_context_manager.cloned_repo.get_file_contents( function_path_or_dir ) valid_path = True except: file_contents = "" similar_file_paths = "\n".join( [ f"- {path}" for path in repo_context_manager.cloned_repo.get_similar_file_paths( function_path_or_dir ) ] ) error_message = f"FAILURE: This file path does not exist. Did you mean:\n{similar_file_paths}" if start_line >= end_line: error_message = "FAILURE: Start line must be less than end line." if error_message: output = error_message else: end_line = min(end_line, len(file_contents.splitlines())) logger.info(f"start_line: {start_line}, end_line: {end_line}") selected_file_contents = "" lines = file_contents.splitlines() expansion_width = 25 start_index = max(0, start_line - expansion_width) for i, line in enumerate(lines[start_index:start_line]): selected_file_contents += f"{i + start_index} | {line}\n" selected_file_contents += "\n===START OF SNIPPET===\n" for i, line in enumerate(lines[start_line:end_line]): selected_file_contents += f"{i + start_line} | {line}\n" selected_file_contents += "\n===END OF SNIPPET===\n" for i, line in enumerate( lines[end_line : end_line + expansion_width] ): selected_file_contents += f"{i + end_line} | {line}\n" output = ( f'Here are the contents of `{function_path_or_dir}:{start_line}:{end_line}`\n```\n{selected_file_contents}\n```\nCheck if there is additional relevant context surrounding the snippet BETWEEN the START and END tags necessary to solve the user request. If so, call view_file_snippet again with a larger span. If you are CERTAIN this snippet is COMPLETELY SUFFICIENT and RELEVANT, and no surrounding lines provide ANY additional relevant context, call store_file_snippet with the same parameters ({{"file_path": "{function_path_or_dir}", "start_line": "{start_line}", "end_line": "{end_line}"}}).' if valid_path else "FAILURE: This file path does not exist. Please try a new path." ) elif tool_call.function.name == "store_file_snippet": error_message = "" for key in ["start_line", "end_line"]: if key not in function_input: logger.warning( f"Key {key} not in function input {function_input}" ) error_message = "FAILURE: Please provide a start and end line." start_line = int(function_input["start_line"]) end_line = int(function_input["end_line"]) if end_line - start_line > 1000: error_message = ( "FAILURE: Please provide a snippet of 1000 lines or less." ) if start_line >= end_line: error_message = "FAILURE: Start line must be less than end line." try: file_contents = repo_context_manager.cloned_repo.get_file_contents( function_path_or_dir ) valid_path = True except: file_contents = "" similar_file_paths = "\n".join( [ f"- {path}" for path in repo_context_manager.cloned_repo.get_similar_file_paths( function_path_or_dir ) ] ) error_message = f"FAILURE: This file path does not exist. Did you mean:\n{similar_file_paths}" if error_message: output = error_message else: end_line = min(end_line, len(file_contents.splitlines())) logger.info(f"start_line: {start_line}, end_line: {end_line}") snippet = Snippet( file_path=function_path_or_dir, start=start_line, end=end_line, content=file_contents, ) repo_context_manager.add_snippets([snippet]) paths_to_add.append(function_path_or_dir) output = ( f"SUCCESS: {function_path_or_dir} was added with contents\n```\n{snippet.xml}\n```. Here are the current selected snippets:\n{current_top_snippets_string}" if valid_path else "FAILURE: This file path does not exist. Please try a new path." ) elif tool_call.function.name == "expand_directory": valid_path = repo_context_manager.is_path_valid( function_path_or_dir, directory=True ) repo_context_manager.expand_all_directories([function_path_or_dir]) dir_string = str(repo_context_manager.dir_obj) output = ( f"SUCCESS: New repo_tree\n{dir_string}" if valid_path else "FAILURE: Invalid directory path. Please try a new path." ) if valid_path: directories_to_expand.append(function_path_or_dir) elif tool_call.function.name == "preview_file": error_message = "" try: code = repo_context_manager.cloned_repo.get_file_contents( function_path_or_dir ) valid_path = True except: code = "" similar_file_paths = "\n".join( [ f"- {path}" for path in repo_context_manager.cloned_repo.get_similar_file_paths( function_path_or_dir ) ] ) error_message = f"FAILURE: This file path does not exist. Did you mean:\n{similar_file_paths}" if error_message: output = error_message else: file_preview = CodeTree.from_code(code).get_preview() output = f"SUCCESS: Previewing file {function_path_or_dir}:\n\n{file_preview}" else: output = f"FAILURE: Invalid tool name {tool_call.function.name}" logger.info(output) logger.info("Current top snippets:") for snippet in repo_context_manager.current_top_snippets: logger.info(snippet.denotation) logger.info("Paths to add:") for snippet in paths_to_add: logger.info(snippet) tool_outputs.append( { "tool_call_id": tool_call.id, "output": output, } ) justification = ( function_input["justification"] if "justification" in function_input else "" ) logger.info( f"Tool Call: {tool_call.function.name} {function_path_or_dir} {justification} Valid Tool Call: {valid_path}" ) run = openai_retry_with_timeout( client.beta.threads.runs.submit_tool_outputs, thread_id=thread.id, run_id=run.id, tool_outputs=tool_outputs, ) else: logger.warning( f"Context pruning iteration taking too long. Status: {run.status}" ) assistant_conversation = AssistantConversation.from_ids( assistant_id=run.assistant_id, run_id=run.id, thread_id=thread.id, ) if ticket_progress: if assistant_conversation: ticket_progress.search_progress.pruning_conversation = ( assistant_conversation ) ticket_progress.save() logger.info( f"Context Management End:\npaths_to_add: {paths_to_add}\ndirectories_to_expand: {directories_to_expand}" ) if directories_to_expand: repo_context_manager.expand_all_directories(directories_to_expand) logger.info( f"Context Management End:\ncurrent snippet paths: {repo_context_manager.top_snippet_paths}" ) paths_changed = set(initial_file_paths) != set( repo_context_manager.top_snippet_paths ) repo_context_manager.current_top_snippets = [ snippet for snippet in repo_context_manager.current_top_snippets if snippet.file_path != "sweep.yaml" ] # if the paths have not changed or all tools were empty, we are done return not (paths_changed and (paths_to_add or directories_to_expand)) if __name__ == "__main__": import os from sweepai.utils.ticket_utils import prep_snippets installation_id = os.environ["INSTALLATION_ID"] cloned_repo = ClonedRepo("sweepai/sweep", installation_id, "main") query = ( "allow sweep.yaml to be read from the user/organization's .github repository" ) # golden response is # sweepai/handlers/create_pr.py:401-428 # sweepai/config/client.py:178-282 ticket_progress = TicketProgress( tracking_id="test", ) repo_context_manager = prep_snippets(cloned_repo, query, ticket_progress) rcm = get_relevant_context( query, repo_context_manager, ticket_progress, chat_logger=ChatLogger({"username": "wwzeng1"}), ) for snippet in rcm.current_top_snippets: print(snippet.denotation)
[ "<repo_tree>\n{repo_tree}\n</repo_tree>\n\n## Relevant Snippets\nHere are potentially relevant snippets in the repo in decreasing relevance that you should use the preview_file tool for:\n{snippets_in_repo}\n\n## User Request\n{query}", "You are a brilliant engineer assigned to the following Github issue. You must gather ALL RELEVANT information from the codebase that allows you to completely solve the issue. It is very important that you get this right and do not miss any relevant lines of code.\n\n## Instructions\nYou initially start with no snippets and will use the store_file_snippet and expand_directory to add snippets to the context. You will iteratively use the file_search, preview_file and view_file_snippet tools to help you find the relevant snippets to store.\n\nYou are provided \"Relevant Snippets\", which are snippets relevant to the user request. These snippets are retrieved by a lexical search over the codebase, but are NOT in the context initially.\n\nYou will do this by using the following process for every relevant file:\n\n1. First use the preview_file tool to preview all files that are relevant, starting with file paths and entities mentioned in \"User Request\", then those in \"Relevant Snippets\". For example, if the class foo.bar.Bar was mentioned, be sure to preview foo/bar.py. If the file is irrelevant, move onto the next file. If you don't know the full file path, use file_search with the file name.\n2. If the file seems relevant, use the view_file_snippet tool to view specific line numbers of a file. We want to find all line numbers relevant to solve the user request. So if the surrounding lines are relevant, use the view_file_snippet tool again with a larger span to view the surrounding lines. Repeat this process until you are certain you have the maximal relevant span.\n3. Finally, when you are certain you have the maximal relevant span, use the store_file_snippet and expand_directory tools to curate the optimal context (snippets_in_repo and repo_tree) until they allow you to completely solve the user request. If you don't know the correct line numbers, complete step one until you find the exact line numbers.\n\nRepeat this process until you have the perfect context to solve the user request. Ensure you have checked ALL files referenced in the user request." ]
2024-01-10
sweepai/sweep
tests~archive~test_naive_chunker.py
from sweepai.utils.utils import chunk_code file_contents = r"""\ # TODO: Add file validation import math import re import traceback import openai import github from github import GithubException, BadCredentialsException from tabulate import tabulate from tqdm import tqdm from sweepai.logn import logger, LogTask from sweepai.core.context_pruning import ContextPruning from sweepai.core.documentation_searcher import extract_relevant_docs from sweepai.core.entities import ( ProposedIssue, SandboxResponse, Snippet, NoFilesException, SweepContext, MaxTokensExceeded, EmptyRepository, ) from sweepai.core.external_searcher import ExternalSearcher from sweepai.core.slow_mode_expand import SlowModeBot from sweepai.core.sweep_bot import SweepBot from sweepai.core.prompts import issue_comment_prompt # from sandbox.sandbox_utils import Sandbox from sweepai.handlers.create_pr import ( create_pr_changes, create_config_pr, safe_delete_sweep_branch, ) from sweepai.handlers.on_comment import on_comment from sweepai.handlers.on_review import review_pr from sweepai.utils.buttons import create_action_buttons from sweepai.utils.chat_logger import ChatLogger from sweepai.config.client import ( SweepConfig, get_documentation_dict, ) from sweepai.config.server import ( ENV, MONGODB_URI, OPENAI_API_KEY, GITHUB_BOT_USERNAME, GITHUB_LABEL_NAME, OPENAI_USE_3_5_MODEL_ONLY, WHITELISTED_REPOS, ) from sweepai.utils.ticket_utils import * from sweepai.utils.event_logger import posthog from sweepai.utils.github_utils import ClonedRepo, get_github_client from sweepai.utils.prompt_constructor import HumanMessagePrompt from sweepai.utils.search_utils import search_snippets from sweepai.utils.tree_utils import DirectoryTree openai.api_key = OPENAI_API_KEY @LogTask() def on_ticket( title: str, summary: str, issue_number: int, issue_url: str, username: str, repo_full_name: str, repo_description: str, installation_id: int, comment_id: int = None, edited: bool = False, ): ( title, slow_mode, do_map, subissues_mode, sandbox_mode, fast_mode, lint_mode, ) = strip_sweep(title) # Flow: # 1. Get relevant files # 2: Get human message # 3. Get files to change # 4. Get file changes # 5. Create PR summary = summary or "" summary = re.sub( "<details (open)?>\n<summary>Checklist</summary>.*", "", summary, flags=re.DOTALL, ).strip() summary = re.sub("Checklist:\n\n- \[[ X]\].*", "", summary, flags=re.DOTALL).strip() repo_name = repo_full_name user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) current_issue = repo.get_issue(number=issue_number) assignee = current_issue.assignee.login if current_issue.assignee else None if assignee is None: assignee = current_issue.user.login chat_logger = ( ChatLogger( { "repo_name": repo_name, "title": title, "summary": summary, "issue_number": issue_number, "issue_url": issue_url, "username": username if not username.startswith("sweep") else assignee, "repo_full_name": repo_full_name, "repo_description": repo_description, "installation_id": installation_id, "type": "ticket", "mode": ENV, "comment_id": comment_id, "edited": edited, } ) if MONGODB_URI else None ) if chat_logger: is_paying_user = chat_logger.is_paying_user() is_trial_user = chat_logger.is_trial_user() use_faster_model = OPENAI_USE_3_5_MODEL_ONLY or chat_logger.use_faster_model(g) else: is_paying_user = True is_trial_user = False use_faster_model = False if fast_mode: use_faster_model = True sweep_context = SweepContext.create( username=username, issue_url=issue_url, use_faster_model=use_faster_model, is_paying_user=is_paying_user, repo=repo, token=user_token, ) logger.print(sweep_context) if not comment_id and not edited and chat_logger: chat_logger.add_successful_ticket( gpt3=use_faster_model ) # moving higher, will increment the issue regardless of whether it's a success or not organization, repo_name = repo_full_name.split("/") metadata = { "issue_url": issue_url, "repo_full_name": repo_full_name, "organization": organization, "repo_name": repo_name, "repo_description": repo_description, "username": username, "comment_id": comment_id, "title": title, "installation_id": installation_id, "function": "on_ticket", "edited": edited, "model": "gpt-3.5" if use_faster_model else "gpt-4", "tier": "pro" if is_paying_user else "free", "mode": ENV, "slow_mode": slow_mode, "do_map": do_map, "subissues_mode": subissues_mode, "sandbox_mode": sandbox_mode, "fast_mode": fast_mode, } # logger.bind(**metadata) posthog.capture(username, "started", properties=metadata) logger.info(f"Getting repo {repo_full_name}") if current_issue.state == "closed": logger.warning(f"Issue {issue_number} is closed") posthog.capture(username, "issue_closed", properties=metadata) return {"success": False, "reason": "Issue is closed"} current_issue.edit(body=summary) item_to_react_to = ( current_issue.get_comment(comment_id) if comment_id else current_issue ) replies_text = "" comments = list(current_issue.get_comments()) if comment_id: logger.info(f"Replying to comment {comment_id}...") replies_text = "\nComments:\n" + "\n".join( [ issue_comment_prompt.format( username=comment.user.login, reply=comment.body, ) for comment in comments if comment.user.type == "User" ] ) summary = summary if summary else "" prs = repo.get_pulls( state="open", sort="created", base=SweepConfig.get_branch(repo) ) for pr in prs: # Check if this issue is mentioned in the PR, and pr is owned by bot # This is done in create_pr, (pr_description = ...) if ( pr.user.login == GITHUB_BOT_USERNAME and f"Fixes #{issue_number}.\n" in pr.body ): success = safe_delete_sweep_branch(pr, repo) eyes_reaction = item_to_react_to.create_reaction("eyes") # If SWEEP_BOT reacted to item_to_react_to with "rocket", then remove it. reactions = item_to_react_to.get_reactions() for reaction in reactions: if reaction.content == "rocket" and reaction.user.login == GITHUB_BOT_USERNAME: item_to_react_to.delete_reaction(reaction.id) # Removed 1, 3 progress_headers = [ None, "Step 1: 🔎 Searching", "Step 2: ⌨️ Coding", "Step 3: 🔁 Code Review", ] config_pr_url = None # Find the first comment made by the bot issue_comment = None tickets_allocated = 5 if is_trial_user: tickets_allocated = 15 if is_paying_user: tickets_allocated = 500 ticket_count = ( max(tickets_allocated - chat_logger.get_ticket_count(), 0) if chat_logger else 999 ) daily_ticket_count = ( (3 - chat_logger.get_ticket_count(use_date=True) if not use_faster_model else 0) if chat_logger else 999 ) model_name = "GPT-3.5" if use_faster_model else "GPT-4" payment_link = "https://buy.stripe.com/00g5npeT71H2gzCfZ8" daily_message = ( f" and {daily_ticket_count} for the day" if not is_paying_user and not is_trial_user else "" ) user_type = "💎 Sweep Pro" if is_paying_user else "⚡ Sweep Free Trial" gpt_tickets_left_message = ( f"{ticket_count} GPT-4 tickets left for the month" if not is_paying_user else "unlimited GPT-4 tickets" ) payment_message = ( f"{user_type}: I used {model_name} to create this ticket. You have {gpt_tickets_left_message}{daily_message}." + ( f" For more GPT-4 tickets, visit [our payment portal.]({payment_link})" if not is_paying_user else "" ) ) payment_message_start = ( f"{user_type}: I'm creating this ticket using {model_name}. You have {gpt_tickets_left_message}{daily_message}." + ( f" For more GPT-4 tickets, visit [our payment portal.]({payment_link})" if not is_paying_user else "" ) ) def get_comment_header(index, errored=False, pr_message="", done=False): config_pr_message = ( "\n" + f"* Install Sweep Configs: [Pull Request]({config_pr_url})" if config_pr_url is not None else "" ) # Why is this so convoluted # config_pr_message = " To retrigger Sweep, edit the issue.\n" + config_pr_message actions_message = create_action_buttons( [ "↻ Restart Sweep", ] ) if index < 0: index = 0 if index == 4: return pr_message + f"\n\n---\n{actions_message}" + config_pr_message total = len(progress_headers) index += 1 if done else 0 index *= 100 / total index = int(index) index = min(100, index) if errored: return ( f"![{index}%](https://progress-bar.dev/{index}/?&title=Errored&width=600)" + f"\n\n---\n{actions_message}" ) return ( f"![{index}%](https://progress-bar.dev/{index}/?&title=Progress&width=600)" + ("\n" + stars_suffix if index != -1 else "") + "\n" + payment_message_start # + f"\n\n---\n{actions_message}" + config_pr_message ) # Find Sweep's previous comment logger.print("USERNAME", GITHUB_BOT_USERNAME) for comment in comments: logger.print("COMMENT", comment.user.login) if comment.user.login == GITHUB_BOT_USERNAME: logger.print("Found comment") issue_comment = comment try: config = SweepConfig.get_config(repo) except EmptyRepository as e: logger.info("Empty repo") first_comment = ( "Sweep is currently not supported on empty repositories. Please add some" f" code to your repository and try again.\n{sep}##" f" {progress_headers[1]}\n{bot_suffix}{discord_suffix}" ) if issue_comment is None: issue_comment = current_issue.create_comment(first_comment) else: issue_comment.edit(first_comment) return {"success": False} cloned_repo = ClonedRepo( repo_full_name, installation_id=installation_id, token=user_token ) num_of_files = cloned_repo.get_num_files_from_repo() time_estimate = math.ceil(3 + 5 * num_of_files / 1000) indexing_message = ( "I'm searching for relevant snippets in your repository. If this is your first" " time using Sweep, I'm indexing your repository. This may take up to" f" {time_estimate} minutes. I'll let you know when I'm done." ) first_comment = ( f"{get_comment_header(0)}\n{sep}I am currently looking into this ticket! I" " will update the progress of the ticket in this comment. I am currently" f" searching through your code, looking for relevant snippets.\n{sep}##" f" {progress_headers[1]}\n{indexing_message}{bot_suffix}{discord_suffix}" ) if issue_comment is None: issue_comment = current_issue.create_comment(first_comment) else: issue_comment.edit(first_comment) # Comment edit function past_messages = {} current_index = 0 # Random variables to save in case of errors table = None # Show plan so user can finetune prompt def edit_sweep_comment(message: str, index: int, pr_message="", done=False): nonlocal current_index, user_token, g, repo, issue_comment # -1 = error, -2 = retry # Only update the progress bar if the issue generation errors. errored = index == -1 if index >= 0: past_messages[index] = message current_index = index agg_message = None # Include progress history # index = -2 is reserved for for i in range( current_index + 2 ): # go to next header (for Working on it... text) if i == 0 or i >= len(progress_headers): continue # skip None header header = progress_headers[i] if header is not None: header = "## " + header + "\n" else: header = "No header\n" msg = header + (past_messages.get(i) or "Working on it...") if agg_message is None: agg_message = msg else: agg_message = agg_message + f"\n{sep}" + msg suffix = bot_suffix + discord_suffix if errored: agg_message = ( "## ❌ Unable to Complete PR" + "\n" + message + "\n\nFor bonus GPT-4 tickets, please report this bug on" " **[Discord](https://discord.com/invite/sweep-ai)**." ) if table is not None: agg_message = ( agg_message + f"\n{sep}Please look at the generated plan. If something looks" f" wrong, please add more details to your issue.\n\n{table}" ) suffix = bot_suffix # don't include discord suffix for error messages # Update the issue comment try: issue_comment.edit( f"{get_comment_header(current_index, errored, pr_message, done=done)}\n{sep}{agg_message}{suffix}" ) except BadCredentialsException: logger.error("Bad credentials, refreshing token") _user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) issue_comment = repo.get_issue(current_issue.number) issue_comment.edit( f"{get_comment_header(current_index, errored, pr_message, done=done)}\n{sep}{agg_message}{suffix}" ) if len(title + summary) < 20: logger.info("Issue too short") edit_sweep_comment( ( "Please add more details to your issue. I need at least 20 characters" " to generate a plan." ), -1, ) return {"success": True} if ( repo_name.lower() not in WHITELISTED_REPOS and not is_paying_user and not is_trial_user ): if ("sweep" in repo_name.lower()) or ("test" in repo_name.lower()): logger.info("Test repository detected") edit_sweep_comment( ( "Sweep does not work on test repositories. Please create an issue" " on a real repository. If you think this is a mistake, please" " report this at https://discord.gg/sweep." ), -1, ) return {"success": False} if lint_mode: # Get files to change # Create new branch # Send request to endpoint for file_path in []: SweepBot.run_sandbox( repo.html_url, file_path, None, user_token, only_lint=True ) logger.info("Fetching relevant files...") try: snippets, tree = search_snippets( cloned_repo, f"{title}\n{summary}\n{replies_text}", num_files=num_of_snippets_to_query, ) assert len(snippets) > 0 except SystemExit: raise SystemExit except Exception as e: trace = traceback.format_exc() logger.error(e) logger.error(trace) edit_sweep_comment( ( "It looks like an issue has occurred around fetching the files." " Perhaps the repo has not been initialized. If this error persists" f" contact [email protected].\n\n> @{username}, please edit the issue" " description to include more details and I will automatically" " relaunch." ), -1, ) log_error( is_paying_user, is_trial_user, username, issue_url, "File Fetch", str(e) + "\n" + traceback.format_exc(), priority=1, ) raise e snippets = post_process_snippets( snippets, max_num_of_snippets=2 if use_faster_model else 5 ) if not repo_description: repo_description = "No description provided." message_summary = summary + replies_text external_results = ExternalSearcher.extract_summaries(message_summary) if external_results: message_summary += "\n\n" + external_results user_dict = get_documentation_dict(repo) docs_results = "" try: docs_results = extract_relevant_docs( title + message_summary, user_dict, chat_logger ) if docs_results: message_summary += "\n\n" + docs_results except SystemExit: raise SystemExit except Exception as e: logger.error(f"Failed to extract docs: {e}") human_message = HumanMessagePrompt( repo_name=repo_name, issue_url=issue_url, username=username, repo_description=repo_description.strip(), title=title, summary=message_summary, snippets=snippets, tree=tree, ) context_pruning = ContextPruning(chat_logger=chat_logger) ( snippets_to_ignore, excluded_dirs, ) = context_pruning.prune_context( # TODO, ignore directories human_message, repo=repo ) snippets = post_process_snippets( snippets, max_num_of_snippets=5, exclude_snippets=snippets_to_ignore ) dir_obj = DirectoryTree() dir_obj.parse(tree) dir_obj.remove_multiple(excluded_dirs) tree = str(dir_obj) logger.info(f"New snippets: {snippets}") logger.info(f"New tree: {tree}") human_message = HumanMessagePrompt( repo_name=repo_name, issue_url=issue_url, username=username, repo_description=repo_description.strip(), title=title, summary=message_summary, snippets=snippets, tree=tree, ) sweep_bot = SweepBot.from_system_message_content( human_message=human_message, repo=repo, is_reply=bool(comments), chat_logger=chat_logger, sweep_context=sweep_context, ) # Check repository for sweep.yml file. sweep_yml_exists = False for content_file in repo.get_contents(""): if content_file.name == "sweep.yaml": sweep_yml_exists = True break # If sweep.yaml does not exist, then create a new PR that simply creates the sweep.yaml file. if not sweep_yml_exists: try: logger.info("Creating sweep.yaml file...") config_pr = create_config_pr(sweep_bot) config_pr_url = config_pr.html_url edit_sweep_comment(message="", index=-2) except SystemExit: raise SystemExit except Exception as e: logger.error( "Failed to create new branch for sweep.yaml file.\n", e, traceback.format_exc(), ) else: logger.info("sweep.yaml file already exists.") try: # ANALYZE SNIPPETS newline = "\n" edit_sweep_comment( "I found the following snippets in your repository. I will now analyze" " these snippets and come up with a plan." + "\n\n" + create_collapsible( "Some code snippets I looked at (click to expand). If some file is" " missing from here, you can mention the path in the ticket" " description.", "\n".join( [ f"https://github.com/{organization}/{repo_name}/blob/{repo.get_commits()[0].sha}/{snippet.file_path}#L{max(snippet.start, 1)}-L{min(snippet.end, snippet.content.count(newline) - 1)}\n" for snippet in snippets ] ), ) + ( create_collapsible( "I also found the following external resources that might be helpful:", f"\n\n{external_results}\n\n", ) if external_results else "" ) + (f"\n\n{docs_results}\n\n" if docs_results else ""), 1, ) if do_map: subissues: list[ProposedIssue] = sweep_bot.generate_subissues() edit_sweep_comment( f"I'm creating the following subissues:\n\n" + "\n\n".join( [ f"#{subissue.title}:\n" + blockquote(subissue.body) for subissue in subissues ] ), 2, ) for subissue in tqdm(subissues): subissue.issue_id = repo.create_issue( title="Sweep: " + subissue.title, body=subissue.body + f"\n\nParent issue: #{issue_number}", assignee=username, ).number subissues_checklist = "\n\n".join( [ f"- [ ] #{subissue.issue_id}\n\n" + blockquote(f"**{subissue.title}**\n{subissue.body}") for subissue in subissues ] ) current_issue.edit( body=summary + "\n\n---\n\nChecklist:\n\n" + subissues_checklist ) edit_sweep_comment( f"I finished creating the subissues! Track them at:\n\n" + "\n".join(f"* #{subissue.issue_id}" for subissue in subissues), 3, done=True, ) edit_sweep_comment(f"N/A", 4) edit_sweep_comment(f"I finished creating all the subissues.", 5) return {"success": True} # COMMENT ON ISSUE # TODO: removed issue commenting here logger.info("Fetching files to modify/create...") file_change_requests, plan = sweep_bot.get_files_to_change() if not file_change_requests: if len(title + summary) < 60: edit_sweep_comment( ( "Sorry, I could not find any files to modify, can you please" " provide more details? Please make sure that the title and" " summary of the issue are at least 60 characters." ), -1, ) else: edit_sweep_comment( ( "Sorry, I could not find any files to modify, can you please" " provide more details?" ), -1, ) raise Exception("No files to modify.") sweep_bot.summarize_snippets() file_change_requests = sweep_bot.validate_file_change_requests( file_change_requests ) table = tabulate( [ [ f"`{file_change_request.filename}`", file_change_request.instructions_display.replace( "\n", "<br/>" ).replace("```", "\\```"), ] for file_change_request in file_change_requests ], headers=["File Path", "Proposed Changes"], tablefmt="pipe", ) # edit_sweep_comment( # "From looking through the relevant snippets, I decided to make the" # " following modifications:\n\n" + table + "\n\n", # 2, # ) # TODO(lukejagg): Generate PR after modifications are made # CREATE PR METADATA logger.info("Generating PR...") pull_request = sweep_bot.generate_pull_request() # pull_request_content = pull_request.content.strip().replace("\n", "\n>") # pull_request_summary = f"**{pull_request.title}**\n`{pull_request.branch_name}`\n>{pull_request_content}\n" # edit_sweep_comment( # ( # "I have created a plan for writing the pull request. I am now working" # " my plan and coding the required changes to address this issue. Here" # f" is the planned pull request:\n\n{pull_request_summary}" # ), # 3, # ) logger.info("Making PR...") files_progress: list[tuple[str, str, str, str]] = [ ( file_change_request.filename, file_change_request.instructions_display, "⏳ In Progress", "", ) for file_change_request in file_change_requests ] checkboxes_progress: list[tuple[str, str, str]] = [ (file_change_request.filename, file_change_request.instructions, " ") for file_change_request in file_change_requests ] checkboxes_contents = "\n".join( [ create_checkbox(f"`{filename}`", blockquote(instructions), check == "X") for filename, instructions, check in checkboxes_progress ] ) checkboxes_collapsible = create_collapsible( "Checklist", checkboxes_contents, opened=True ) issue = repo.get_issue(number=issue_number) issue.edit(body=summary + "\n\n" + checkboxes_collapsible) delete_branch = False generator = create_pr_changes( # make this async later file_change_requests, pull_request, sweep_bot, username, installation_id, issue_number, chat_logger=chat_logger, ) edit_sweep_comment(checkboxes_contents, 2) response = {"error": NoFilesException()} for item in generator: if isinstance(item, dict): response = item break file_change_request, changed_file, sandbox_response, commit = item sandbox_response: SandboxResponse | None = sandbox_response format_exit_code = ( lambda exit_code: "✓" if exit_code == 0 else f"❌ (`{exit_code}`)" ) logger.print(sandbox_response) error_logs = ( ( create_collapsible( "Sandbox Execution Logs", blockquote( "\n\n".join( [ create_collapsible( f"<code>{execution.command.format(file_path=file_change_request.filename)}</code> {i + 1}/{len(sandbox_response.executions)} {format_exit_code(execution.exit_code)}", f"<pre>{clean_logs(execution.output)}</pre>", i == len(sandbox_response.executions) - 1, ) for i, execution in enumerate( sandbox_response.executions ) if len(sandbox_response.executions) > 0 # And error code check ] ) ), opened=True, ) ) if sandbox_response else "" ) if changed_file: logger.print("Changed File!") commit_hash = ( commit.sha if commit is not None else repo.get_branch(pull_request.branch_name).commit.sha ) commit_url = f"https://github.com/{repo_full_name}/commit/{commit_hash}" checkboxes_progress = [ ( ( f"`{filename}` ✅ Commit [`{commit_hash[:7]}`]({commit_url})", blockquote(instructions) + error_logs, "X", ) if file_change_request.filename == filename else (filename, instructions, progress) ) for filename, instructions, progress in checkboxes_progress ] else: logger.print("Didn't change file!") checkboxes_progress = [ ( ( f"`{filename}` ❌ Failed", blockquote(instructions) + error_logs, "X", ) if file_change_request.filename == filename else (filename, instructions, progress) ) for filename, instructions, progress in checkboxes_progress ] checkboxes_contents = "\n".join( [ checkbox_template.format( check=check, filename=filename, instructions=instructions, ) for filename, instructions, check in checkboxes_progress ] ) checkboxes_collapsible = collapsible_template.format( summary="Checklist", body=checkboxes_contents, opened="open", ) issue = repo.get_issue(number=issue_number) issue.edit(body=summary + "\n\n" + checkboxes_collapsible) logger.info(files_progress) logger.info(f"Edited {file_change_request.filename}") edit_sweep_comment(checkboxes_contents, 2) if not response.get("success"): raise Exception(f"Failed to create PR: {response.get('error')}") pr_changes = response["pull_request"] edit_sweep_comment( "I have finished coding the issue. I am now reviewing it for completeness.", 3, ) change_location = f" [`{pr_changes.pr_head}`](https://github.com/{repo_full_name}/commits/{pr_changes.pr_head}).\n\n" review_message = "Here are my self-reviews of my changes at" + change_location lint_output = None try: current_issue.delete_reaction(eyes_reaction.id) except: pass changes_required = False try: # Todo(lukejagg): Pass sandbox linter results to review_pr # CODE REVIEW changes_required, review_comment = review_pr( repo=repo, pr=pr_changes, issue_url=issue_url, username=username, repo_description=repo_description, title=title, summary=summary, replies_text=replies_text, tree=tree, lint_output=lint_output, plan=plan, # plan for the PR chat_logger=chat_logger, ) # Todo(lukejagg): Execute sandbox after each iteration lint_output = None review_message += ( f"Here is the {ordinal(1)} review\n" + blockquote(review_comment) + "\n\n" ) if changes_required: edit_sweep_comment( review_message + "\n\nI'm currently addressing these suggestions.", 3, ) logger.info(f"Addressing review comment {review_comment}") on_comment( repo_full_name=repo_full_name, repo_description=repo_description, comment=review_comment, username=username, installation_id=installation_id, pr_path=None, pr_line_position=None, pr_number=None, pr=pr_changes, chat_logger=chat_logger, repo=repo, ) except SystemExit: raise SystemExit except Exception as e: logger.error(traceback.format_exc()) logger.error(e) if changes_required: edit_sweep_comment( review_message + "\n\nI finished incorporating these changes.", 3, ) else: edit_sweep_comment( f"I have finished reviewing the code for completeness. I did not find errors for {change_location}.", 3, ) is_draft = config.get("draft", False) try: pr = repo.create_pull( title=pr_changes.title, body=pr_changes.body, head=pr_changes.pr_head, base=SweepConfig.get_branch(repo), draft=is_draft, ) except GithubException as e: is_draft = False pr = repo.create_pull( title=pr_changes.title, body=pr_changes.body, head=pr_changes.pr_head, base=SweepConfig.get_branch(repo), draft=is_draft, ) pr.add_to_labels(GITHUB_LABEL_NAME) current_issue.create_reaction("rocket") logger.info("Running github actions...") try: if is_draft: logger.info("Skipping github actions because PR is a draft") else: commit = pr.get_commits().reversed[0] check_runs = commit.get_check_runs() for check_run in check_runs: check_run.rerequest() except SystemExit: raise SystemExit except Exception as e: logger.error(e) # Completed code review edit_sweep_comment( review_message + "\n\nSuccess! 🚀", 4, pr_message=( f"## Here's the PR! [{pr.html_url}]({pr.html_url}).\n{payment_message}" ), done=True, ) logger.info("Add successful ticket to counter") except MaxTokensExceeded as e: logger.info("Max tokens exceeded") log_error( is_paying_user, is_trial_user, username, issue_url, "Max Tokens Exceeded", str(e) + "\n" + traceback.format_exc(), priority=2, ) if chat_logger.is_paying_user(): edit_sweep_comment( ( f"Sorry, I could not edit `{e.filename}` as this file is too long." " We are currently working on improved file streaming to address" " this issue.\n" ), -1, ) else: edit_sweep_comment( ( f"Sorry, I could not edit `{e.filename}` as this file is too" " long.\n\nIf this file is incorrect, please describe the desired" " file in the prompt. However, if you would like to edit longer" " files, consider upgrading to [Sweep Pro](https://sweep.dev/) for" " longer context lengths.\n" ), -1, ) delete_branch = True raise e except NoFilesException as e: logger.info("Sweep could not find files to modify") log_error( is_paying_user, is_trial_user, username, issue_url, "Sweep could not find files to modify", str(e) + "\n" + traceback.format_exc(), priority=2, ) edit_sweep_comment( ( "Sorry, Sweep could not find any appropriate files to edit to address" " this issue. If this is a mistake, please provide more context and I" f" will retry!\n\n> @{username}, please edit the issue description to" " include more details about this issue." ), -1, ) delete_branch = True raise e except openai.error.InvalidRequestError as e: logger.error(traceback.format_exc()) logger.error(e) edit_sweep_comment( ( "I'm sorry, but it looks our model has ran out of context length. We're" " trying to make this happen less, but one way to mitigate this is to" " code smaller files. If this error persists report it at" " https://discord.gg/sweep." ), -1, ) log_error( is_paying_user, is_trial_user, username, issue_url, "Context Length", str(e) + "\n" + traceback.format_exc(), priority=2, ) posthog.capture( username, "failed", properties={ "error": str(e), "reason": "Invalid request error / context length", **metadata, }, ) delete_branch = True raise e except SystemExit: raise SystemExit except Exception as e: logger.error(traceback.format_exc()) logger.error(e) # title and summary are defined elsewhere if len(title + summary) < 60: edit_sweep_comment( ( "I'm sorry, but it looks like an error has occurred due to" " insufficient information. Be sure to create a more detailed issue" " so I can better address it. If this error persists report it at" " https://discord.gg/sweep." ), -1, ) else: edit_sweep_comment( ( "I'm sorry, but it looks like an error has occurred. Try changing" " the issue description to re-trigger Sweep. If this error persists" " contact [email protected]." ), -1, ) log_error( is_paying_user, is_trial_user, username, issue_url, "Workflow", str(e) + "\n" + traceback.format_exc(), priority=1, ) posthog.capture( username, "failed", properties={"error": str(e), "reason": "Generic error", **metadata}, ) raise e else: try: item_to_react_to.delete_reaction(eyes_reaction.id) item_to_react_to.create_reaction("rocket") except SystemExit: raise SystemExit except Exception as e: logger.error(e) finally: cloned_repo.delete() if delete_branch: try: if pull_request.branch_name.startswith("sweep"): repo.get_git_ref(f"heads/{pull_request.branch_name}").delete() else: raise Exception( f"Branch name {pull_request.branch_name} does not start with sweep/" ) except SystemExit: raise SystemExit except Exception as e: logger.error(e) logger.error(traceback.format_exc()) logger.print("Deleted branch", pull_request.branch_name) posthog.capture(username, "success", properties={**metadata}) logger.info("on_ticket success") return {"success": True} """ chunks = chunk_code(file_contents, "api.py", 10000, 200) # with open('output.csv', 'w', newline='') as file: # writer = csv.writer(file) # for chunk in chunks: # writer.writerow([chunk.content]) metadata = """Repo: sweepai/sweep: Sweep: AI-powered Junior Developer for small features and bug fixes. Issue Url: https://github.com/sweepai/sweep/issues/1648 Username: wwzeng1""" issue = """Move any code that can be moved out of on_ticket.py into ticket_utils.py Don't move the core logic, just any helper methods, like ones that edit sweeps comment""" # dic = [x for x in range(100)] # def chat(index, content): # chat = ChatGPT.from_system_message_string(summarize_snippet_system_prompt, chat_logger=None) # f = chat.chat( # summarize_snippet_prompt.format( # code=content, # metadata=metadata, # issue=issue, # ), # model="gpt-3.5-turbo-16k-0613" # ) # dic[index] = content # return f # threads = [] # for index, content in enumerate(chunks): # import threading # t = threading.Thread(target=chat, args=(index, content.content,)) # t.start() # threads.append(t) # for i, t in enumerate(threads): # print(i) # t.join() # dic = [] # from tqdm import tqdm # for chunk in tqdm(chunks): # chat = ChatGPT.from_system_message_string(summarize_snippet_system_prompt, chat_logger=None) # f = chat.chat( # summarize_snippet_prompt.format( # code=chunk.content, # metadata=metadata, # issue=issue, # ), # model="gpt-3.5-turbo-16k-0613", # temperature=0.1 # ) # dic.append(f) # print("=====================================") # print(dic) # import json # ls = json.load(open("tests/summaries.json", "r")) # for chunk in ls: # print(chunk + "\n\n========================\n\n") # Read all thread info sequentially # for t in threads: # x = t.join() # summary.append(x) for i, chunk in enumerate(chunks): print( f"""<chunk number="{i}" start="{chunk.start}" end="{chunk.end}"> {chunk.content} </chunk>""" )
[]
2024-01-10
sweepai/sweep
sweepai~handlers~create_pr.py
""" create_pr is a function that creates a pull request from a list of file change requests. It is also responsible for handling Sweep config PR creation. """ import datetime from typing import Generator import openai from github.Commit import Commit from github.Repository import Repository from sweepai.config.client import DEFAULT_RULES_STRING, SweepConfig, get_blocked_dirs from sweepai.config.server import ( ENV, GITHUB_BOT_USERNAME, GITHUB_CONFIG_BRANCH, GITHUB_DEFAULT_CONFIG, GITHUB_LABEL_NAME, MONGODB_URI, ) from sweepai.core.entities import ( FileChangeRequest, MaxTokensExceeded, MockPR, PullRequest, ) from sweepai.core.sweep_bot import SweepBot from sweepai.logn import logger from sweepai.utils.chat_logger import ChatLogger from sweepai.utils.event_logger import posthog from sweepai.utils.github_utils import ClonedRepo, get_github_client from sweepai.utils.str_utils import UPDATES_MESSAGE num_of_snippets_to_query = 10 max_num_of_snippets = 5 INSTRUCTIONS_FOR_REVIEW = """\ ### 💡 To get Sweep to edit this pull request, you can: * Comment below, and Sweep can edit the entire PR * Comment on a file, Sweep will only modify the commented file * Edit the original issue to get Sweep to recreate the PR from scratch""" def create_pr_changes( file_change_requests: list[FileChangeRequest], pull_request: PullRequest, sweep_bot: SweepBot, username: str, installation_id: int, issue_number: int | None = None, sandbox=None, chat_logger: ChatLogger = None, base_branch: str = None, ) -> Generator[tuple[FileChangeRequest, int, Commit], None, dict]: # Flow: # 1. Get relevant files # 2: Get human message # 3. Get files to change # 4. Get file changes # 5. Create PR chat_logger = ( chat_logger if chat_logger is not None else ChatLogger( { "username": username, "installation_id": installation_id, "repo_full_name": sweep_bot.repo.full_name, "title": pull_request.title, "summary": "", "issue_url": "", } ) if MONGODB_URI else None ) sweep_bot.chat_logger = chat_logger organization, repo_name = sweep_bot.repo.full_name.split("/") metadata = { "repo_full_name": sweep_bot.repo.full_name, "organization": organization, "repo_name": repo_name, "repo_description": sweep_bot.repo.description, "username": username, "installation_id": installation_id, "function": "create_pr", "mode": ENV, "issue_number": issue_number, } posthog.capture(username, "started", properties=metadata) try: logger.info("Making PR...") pull_request.branch_name = sweep_bot.create_branch( pull_request.branch_name, base_branch=base_branch ) completed_count, fcr_count = 0, len(file_change_requests) blocked_dirs = get_blocked_dirs(sweep_bot.repo) for ( file_change_request, changed_file, sandbox_error, commit, file_change_requests, ) in sweep_bot.change_files_in_github_iterator( file_change_requests, pull_request.branch_name, blocked_dirs, ): completed_count += changed_file logger.info(f"Completed {completed_count}/{fcr_count} files") yield file_change_request, changed_file, sandbox_error, commit, file_change_requests if completed_count == 0 and fcr_count != 0: logger.info("No changes made") posthog.capture( username, "failed", properties={ "error": "No changes made", "reason": "No changes made", **metadata, }, ) # If no changes were made, delete branch commits = sweep_bot.repo.get_commits(pull_request.branch_name) if commits.totalCount == 0: branch = sweep_bot.repo.get_git_ref(f"heads/{pull_request.branch_name}") branch.delete() return # Include issue number in PR description if issue_number: # If the #issue changes, then change on_ticket (f'Fixes #{issue_number}.\n' in pr.body:) pr_description = ( f"{pull_request.content}\n\nFixes" f" #{issue_number}.\n\n---\n\n{UPDATES_MESSAGE}\n\n---\n\n{INSTRUCTIONS_FOR_REVIEW}" ) else: pr_description = f"{pull_request.content}" pr_title = pull_request.title if "sweep.yaml" in pr_title: pr_title = "[config] " + pr_title except MaxTokensExceeded as e: logger.error(e) posthog.capture( username, "failed", properties={ "error": str(e), "reason": "Max tokens exceeded", **metadata, }, ) raise e except openai.BadRequestError as e: logger.error(e) posthog.capture( username, "failed", properties={ "error": str(e), "reason": "Invalid request error / context length", **metadata, }, ) raise e except Exception as e: logger.error(e) posthog.capture( username, "failed", properties={ "error": str(e), "reason": "Unexpected error", **metadata, }, ) raise e posthog.capture(username, "success", properties={**metadata}) logger.info("create_pr success") result = { "success": True, "pull_request": MockPR( file_count=completed_count, title=pr_title, body=pr_description, pr_head=pull_request.branch_name, base=sweep_bot.repo.get_branch( SweepConfig.get_branch(sweep_bot.repo) ).commit, head=sweep_bot.repo.get_branch(pull_request.branch_name).commit, ), } yield result # Doing this because sometiems using StopIteration doesn't work, kinda jank tho tbh return def safe_delete_sweep_branch( pr, # Github PullRequest repo: Repository, ) -> bool: """ Safely delete Sweep branch 1. Only edited by Sweep 2. Prefixed by sweep/ """ pr_commits = pr.get_commits() pr_commit_authors = set([commit.author.login for commit in pr_commits]) # Check if only Sweep has edited the PR, and sweep/ prefix if ( len(pr_commit_authors) == 1 and GITHUB_BOT_USERNAME in pr_commit_authors and pr.head.ref.startswith("sweep") ): branch = repo.get_git_ref(f"heads/{pr.head.ref}") # pr.edit(state='closed') branch.delete() return True else: # Failed to delete branch as it was edited by someone else return False def create_config_pr( sweep_bot: SweepBot | None, repo: Repository = None, cloned_repo: ClonedRepo = None ): if repo is not None: # Check if file exists in repo try: repo.get_contents("sweep.yaml") return except SystemExit: raise SystemExit except Exception: pass title = "Configure Sweep" branch_name = GITHUB_CONFIG_BRANCH if sweep_bot is not None: branch_name = sweep_bot.create_branch(branch_name, retry=False) try: # commit_history = [] # if cloned_repo is not None: # commit_history = cloned_repo.get_commit_history( # limit=1000, time_limited=False # ) # commit_string = "\n".join(commit_history) # sweep_yaml_bot = SweepYamlBot() # generated_rules = sweep_yaml_bot.get_sweep_yaml_rules( # commit_history=commit_string # ) sweep_bot.repo.create_file( "sweep.yaml", "Create sweep.yaml", GITHUB_DEFAULT_CONFIG.format( branch=sweep_bot.repo.default_branch, additional_rules=DEFAULT_RULES_STRING, ), branch=branch_name, ) sweep_bot.repo.create_file( ".github/ISSUE_TEMPLATE/sweep-template.yml", "Create sweep template", SWEEP_TEMPLATE, branch=branch_name, ) except SystemExit: raise SystemExit except Exception as e: logger.error(e) else: # Create branch based on default branch branch = repo.create_git_ref( ref=f"refs/heads/{branch_name}", sha=repo.get_branch(repo.default_branch).commit.sha, ) try: # commit_history = [] # if cloned_repo is not None: # commit_history = cloned_repo.get_commit_history( # limit=1000, time_limited=False # ) # commit_string = "\n".join(commit_history) # sweep_yaml_bot = SweepYamlBot() # generated_rules = sweep_yaml_bot.get_sweep_yaml_rules( # commit_history=commit_string # ) repo.create_file( "sweep.yaml", "Create sweep.yaml", GITHUB_DEFAULT_CONFIG.format( branch=repo.default_branch, additional_rules=DEFAULT_RULES_STRING ), branch=branch_name, ) repo.create_file( ".github/ISSUE_TEMPLATE/sweep-template.yml", "Create sweep template", SWEEP_TEMPLATE, branch=branch_name, ) except SystemExit: raise SystemExit except Exception as e: logger.error(e) repo = sweep_bot.repo if sweep_bot is not None else repo # Check if the pull request from this branch to main already exists. # If it does, then we don't need to create a new one. if repo is not None: pull_requests = repo.get_pulls( state="open", sort="created", base=SweepConfig.get_branch(repo) if sweep_bot is not None else repo.default_branch, head=branch_name, ) for pr in pull_requests: if pr.title == title: return pr logger.print("Default branch", repo.default_branch) logger.print("New branch", branch_name) pr = repo.create_pull( title=title, body="""🎉 Thank you for installing Sweep! We're thrilled to announce the latest update for Sweep, your AI junior developer on GitHub. This PR creates a `sweep.yaml` config file, allowing you to personalize Sweep's performance according to your project requirements. ## What's new? - **Sweep is now configurable**. - To configure Sweep, simply edit the `sweep.yaml` file in the root of your repository. - If you need help, check out the [Sweep Default Config](https://github.com/sweepai/sweep/blob/main/sweep.yaml) or [Join Our Discord](https://discord.gg/sweep) for help. If you would like me to stop creating this PR, go to issues and say "Sweep: create an empty `sweep.yaml` file". Thank you for using Sweep! 🧹""".replace( " ", "" ), head=branch_name, base=SweepConfig.get_branch(repo) if sweep_bot is not None else repo.default_branch, ) pr.add_to_labels(GITHUB_LABEL_NAME) return pr def add_config_to_top_repos(installation_id, username, repositories, max_repos=3): user_token, g = get_github_client(installation_id) repo_activity = {} for repo_entity in repositories: repo = g.get_repo(repo_entity.full_name) # instead of using total count, use the date of the latest commit commits = repo.get_commits( author=username, since=datetime.datetime.now() - datetime.timedelta(days=30), ) # get latest commit date commit_date = datetime.datetime.now() - datetime.timedelta(days=30) for commit in commits: if commit.commit.author.date > commit_date: commit_date = commit.commit.author.date # since_date = datetime.datetime.now() - datetime.timedelta(days=30) # commits = repo.get_commits(since=since_date, author="lukejagg") repo_activity[repo] = commit_date # print(repo, commits.totalCount) logger.print(repo, commit_date) sorted_repos = sorted(repo_activity, key=repo_activity.get, reverse=True) sorted_repos = sorted_repos[:max_repos] # For each repo, create a branch based on main branch, then create PR to main branch for repo in sorted_repos: try: logger.print("Creating config for", repo.full_name) create_config_pr( None, repo=repo, cloned_repo=ClonedRepo( repo_full_name=repo.full_name, installation_id=installation_id, token=user_token, ), ) except SystemExit: raise SystemExit except Exception as e: logger.print(e) logger.print("Finished creating configs for top repos") def create_gha_pr(g, repo): # Create a new branch branch_name = "sweep/gha-enable" branch = repo.create_git_ref( ref=f"refs/heads/{branch_name}", sha=repo.get_branch(repo.default_branch).commit.sha, ) # Update the sweep.yaml file in this branch to add "gha_enabled: True" sweep_yaml_content = ( repo.get_contents("sweep.yaml", ref=branch_name).decoded_content.decode() + "\ngha_enabled: True" ) repo.update_file( "sweep.yaml", "Enable GitHub Actions", sweep_yaml_content, repo.get_contents("sweep.yaml", ref=branch_name).sha, branch=branch_name, ) # Create a PR from this branch to the main branch pr = repo.create_pull( title="Enable GitHub Actions", body="This PR enables GitHub Actions for this repository.", head=branch_name, base=repo.default_branch, ) return pr SWEEP_TEMPLATE = """\ name: Sweep Issue title: 'Sweep: ' description: For small bugs, features, refactors, and tests to be handled by Sweep, an AI-powered junior developer. labels: sweep body: - type: textarea id: description attributes: label: Details description: Tell Sweep where and what to edit and provide enough context for a new developer to the codebase placeholder: | Unit Tests: Write unit tests for <FILE>. Test each function in the file. Make sure to test edge cases. Bugs: The bug might be in <FILE>. Here are the logs: ... Features: the new endpoint should use the ... class from <FILE> because it contains ... logic. Refactors: We are migrating this function to ... version because ..."""
[ "name: Sweep Issue\ntitle: 'Sweep: '\ndescription: For small bugs, features, refactors, and tests to be handled by Sweep, an AI-powered junior developer.\nlabels: sweep\nbody:\n - type: textarea\n id: description\n attributes:\n label: Details\n description: Tell Sweep where and what to edit and provide enough context for a new developer to the codebase\n placeholder: |\n Unit Tests: Write unit tests for <FILE>. Test each function in the file. Make sure to test edge cases.\n Bugs: The bug might be in <FILE>. Here are the logs: ...\n Features: the new endpoint should use the ... class from <FILE> because it contains ... logic.\n Refactors: We are migrating this function to ... version because ..." ]
2024-01-10
sweepai/sweep
sweepai~utils~progress.py
from __future__ import annotations from enum import Enum from threading import Thread from openai import OpenAI from openai.types.beta.threads.runs.code_tool_call import CodeToolCall from openai.types.beta.threads.runs.function_tool_call import FunctionToolCall from pydantic import BaseModel, Field from sweepai.config.server import MONGODB_URI, OPENAI_API_KEY from sweepai.core.entities import FileChangeRequest, Snippet from sweepai.utils.chat_logger import discord_log_error, global_mongo_client class AssistantAPIMessageRole(Enum): SYSTEM = "system" USER = "user" ASSISTANT = "assistant" CODE_INTERPRETER_INPUT = "code_interpreter_input" CODE_INTERPRETER_OUTPUT = "code_interpreter_output" FUNCTION_CALL_INPUT = "function_call_input" FUNCTION_CALL_OUTPUT = "function_call_output" class AssistantAPIMessage(BaseModel): class Config: use_enum_values = True role: AssistantAPIMessageRole content: str = "" class AssistantStatus(Enum): QUEUED = "queued" IN_PROGRESS = "in_progress" REQUIRES_ACTION = "requires_action" CANCELLING = "cancelling" CANCELLED = "cancelled" FAILED = "failed" COMPLETED = "completed" EXPIRED = "expired" class AssistantConversation(BaseModel): messages: list[AssistantAPIMessage] = [] is_active: bool = True status: AssistantStatus = "in_progress" assistant_id: str = "" run_id: str = "" thread_id: str = "" class Config: use_enum_values = True @classmethod def from_ids( cls, assistant_id: str, run_id: str, thread_id: str, ) -> AssistantConversation | None: client = OpenAI(api_key=OPENAI_API_KEY) try: assistant = client.beta.assistants.retrieve( assistant_id=assistant_id, timeout=1.5 ) run = client.beta.threads.runs.retrieve( run_id=run_id, thread_id=thread_id, timeout=1.5 ) message_objects = client.beta.threads.runs.steps.list( run_id=run_id, thread_id=thread_id, timeout=1.5 ).data except: return None messages: list[AssistantAPIMessage] = [ AssistantAPIMessage( role=AssistantAPIMessageRole.SYSTEM, content=assistant.instructions, ) ] for message_obj in list(message_objects)[::-1]: if message_obj.type == "message_creation": message_id = message_obj.step_details.message_creation.message_id try: message_content = ( client.beta.threads.messages.retrieve( message_id=message_id, thread_id=thread_id, timeout=1.5 ) .content[0] .text.value ) except: return None messages.append( AssistantAPIMessage( role=AssistantAPIMessageRole.ASSISTANT, content=message_content, ) ) # TODO: handle annotations elif message_obj.type == "tool_calls": for tool_call in message_obj.step_details.tool_calls: if isinstance(tool_call, CodeToolCall): code_interpreter = tool_call.code_interpreter input_ = code_interpreter.input if not input_: continue messages.append( AssistantAPIMessage( role=AssistantAPIMessageRole.CODE_INTERPRETER_INPUT, content=input_, ) ) outputs = code_interpreter.outputs output = outputs[0].logs if outputs else "__No output__" messages.append( AssistantAPIMessage( role=AssistantAPIMessageRole.CODE_INTERPRETER_OUTPUT, content=output, ) ) elif isinstance(tool_call, FunctionToolCall): messages.append( AssistantAPIMessage( role=AssistantAPIMessageRole.FUNCTION_CALL_INPUT, content=tool_call.function.arguments, ) ) messages.append( AssistantAPIMessage( role=AssistantAPIMessageRole.FUNCTION_CALL_OUTPUT, content=tool_call.function.output or "__No output__", ) ) return cls( messages=messages, status=run.status, is_active=run.status not in ("succeeded", "failed"), assistant_id=assistant_id, run_id=run_id, thread_id=thread_id, ) def update_from_ids( self, assistant_id: str, run_id: str, thread_id: str, ) -> AssistantConversation: assistant_conversation = AssistantConversation.from_ids( assistant_id=assistant_id, run_id=run_id, thread_id=thread_id ) if not assistant_conversation: return self self.messages = assistant_conversation.messages self.is_active = assistant_conversation.is_active self.status = assistant_conversation.status return self class TicketProgressStatus(Enum): SEARCHING = "searching" PLANNING = "planning" CODING = "coding" COMPLETE = "complete" ERROR = "error" class SearchProgress(BaseModel): class Config: use_enum_values = True indexing_progress: int = 0 indexing_total: int = 0 rephrased_query: str = "" retrieved_snippets: list[Snippet] = [] final_snippets: list[Snippet] = [] pruning_conversation: AssistantConversation = AssistantConversation() pruning_conversation_counter: int = 0 repo_tree: str = "" class PlanningProgress(BaseModel): assistant_conversation: AssistantConversation = AssistantConversation() file_change_requests: list[FileChangeRequest] = [] class CodingProgress(BaseModel): file_change_requests: list[FileChangeRequest] = [] assistant_conversations: list[AssistantConversation] = [] class PaymentContext(BaseModel): use_faster_model: bool = True pro_user: bool = True daily_tickets_used: int = 0 monthly_tickets_used: int = 0 class TicketContext(BaseModel): title: str = "" description: str = "" repo_full_name: str = "" issue_number: int = 0 branch_name: str = "" is_public: bool = True pr_id: int = -1 start_time: int = 0 done_time: int = 0 payment_context: PaymentContext = PaymentContext() class TicketProgress(BaseModel): tracking_id: str username: str = "" context: TicketContext = TicketContext() status: TicketProgressStatus = TicketProgressStatus.SEARCHING search_progress: SearchProgress = SearchProgress() planning_progress: PlanningProgress = PlanningProgress() coding_progress: CodingProgress = CodingProgress() prev_dict: dict = Field(default_factory=dict) error_message: str = "" class Config: use_enum_values = True @classmethod def load(cls, tracking_id: str) -> TicketProgress: if MONGODB_URI is None: return None db = global_mongo_client["progress"] collection = db["ticket_progress"] doc = collection.find_one({"tracking_id": tracking_id}) return cls(**doc) def _save(self): try: if MONGODB_URI is None: return None if self.dict() == self.prev_dict: return current_dict = self.dict() del current_dict["prev_dict"] self.prev_dict = current_dict db = global_mongo_client["progress"] collection = db["ticket_progress"] collection.update_one( {"tracking_id": self.tracking_id}, {"$set": current_dict}, upsert=True ) except Exception as e: discord_log_error(str(e) + "\n\n" + str(self.tracking_id)) def save(self): thread = Thread(target=self._save) thread.start() def create_index(): # killer code to make everything way faster db = global_mongo_client["progress"] collection = db["ticket_progress"] collection.create_index("tracking_id", unique=True) if __name__ == "__main__": ticket_progress = TicketProgress(tracking_id="test") ticket_progress.error_message = ( "I'm sorry, but it looks like an error has occurred due to" + " a planning failure. Please create a more detailed issue" + " so I can better address it. Alternatively, reach out to Kevin or William for help at" + " https://discord.gg/sweep." ) ticket_progress.status = TicketProgressStatus.ERROR ticket_progress.save() # new_ticket_progress = TicketProgress.load("test") # print(new_ticket_progress) # assert new_ticket_progress == ticket_progress
[ "__No output__" ]
2024-01-10
sweepai/sweep
tests~archive~test_external_search.py
import os import openai from sweepai.core.external_searcher import ExternalSearcher openai.api_key = os.environ.get("OPENAI_API_KEY") problem = """ ## Sweep: Scaffold tests in generated SDK We recently introduced simple test scaffolding in [fern-python](https://github.com/fern-api/fern-python/pull/296). We should do something similar here, potentially with `jest`. Previous PR: This adds pytest to the list of dev dependencies, as well as creates a tests/ directory with a simple no-op test. The generated test includes the syntax required for skipping tests (via @pytest.mark.skip) to demonstrate the pytest import. We also include a link to the pytest docs for the user to learn more. """ print(ExternalSearcher.extract_summaries(problem))
[]
2024-01-10
sweepai/sweep
tests~archive~test_match.py
from sweepai.utils.search_and_replace import score_multiline haystack = r""" # TODO: Add file validation import math import re import traceback import openai import github from github import GithubException, BadCredentialsException from tabulate import tabulate from tqdm import tqdm from sweepai.logn import logger, LogTask from sweepai.core.context_pruning import ContextPruning from sweepai.core.documentation_searcher import extract_relevant_docs from sweepai.core.entities import ( ProposedIssue, SandboxResponse, Snippet, NoFilesException, SweepContext, MaxTokensExceeded, EmptyRepository, ) from sweepai.core.external_searcher import ExternalSearcher from sweepai.core.slow_mode_expand import SlowModeBot from sweepai.core.sweep_bot import SweepBot from sweepai.core.prompts import issue_comment_prompt # from sandbox.sandbox_utils import Sandbox from sweepai.handlers.create_pr import ( create_pr_changes, create_config_pr, safe_delete_sweep_branch, ) from sweepai.handlers.on_comment import on_comment from sweepai.handlers.on_review import review_pr from sweepai.utils.buttons import create_action_buttons from sweepai.utils.chat_logger import ChatLogger from sweepai.config.client import ( SweepConfig, get_documentation_dict, ) from sweepai.config.server import ( ENV, MONGODB_URI, OPENAI_API_KEY, GITHUB_BOT_USERNAME, GITHUB_LABEL_NAME, OPENAI_USE_3_5_MODEL_ONLY, WHITELISTED_REPOS, ) from sweepai.utils.ticket_utils import * from sweepai.utils.event_logger import posthog from sweepai.utils.github_utils import ClonedRepo, get_github_client from sweepai.utils.prompt_constructor import HumanMessagePrompt from sweepai.utils.search_utils import search_snippets from sweepai.utils.tree_utils import DirectoryTree openai.api_key = OPENAI_API_KEY def center(text: str) -> str: return f"<div align='center'>{text}</div>" @LogTask() def on_ticket( title: str, summary: str, issue_number: int, issue_url: str, username: str, repo_full_name: str, repo_description: str, installation_id: int, comment_id: int = None, edited: bool = False, ): ( title, slow_mode, do_map, subissues_mode, sandbox_mode, fast_mode, lint_mode, ) = strip_sweep(title) # Flow: # 1. Get relevant files # 2: Get human message # 3. Get files to change # 4. Get file changes # 5. Create PR summary = summary or "" summary = re.sub( "<details (open)?>\n<summary>Checklist</summary>.*", "", summary, flags=re.DOTALL, ).strip() summary = re.sub( "---\s+Checklist:\n\n- \[[ X]\].*", "", summary, flags=re.DOTALL ).strip() repo_name = repo_full_name user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) current_issue = repo.get_issue(number=issue_number) assignee = current_issue.assignee.login if current_issue.assignee else None if assignee is None: assignee = current_issue.user.login chat_logger = ( ChatLogger( { "repo_name": repo_name, "title": title, "summary": summary, "issue_number": issue_number, "issue_url": issue_url, "username": username if not username.startswith("sweep") else assignee, "repo_full_name": repo_full_name, "repo_description": repo_description, "installation_id": installation_id, "type": "ticket", "mode": ENV, "comment_id": comment_id, "edited": edited, } ) if MONGODB_URI else None ) if chat_logger: is_paying_user = chat_logger.is_paying_user() is_trial_user = chat_logger.is_trial_user() use_faster_model = OPENAI_USE_3_5_MODEL_ONLY or chat_logger.use_faster_model(g) else: is_paying_user = True is_trial_user = False use_faster_model = False if fast_mode: use_faster_model = True sweep_context = SweepContext.create( username=username, issue_url=issue_url, use_faster_model=use_faster_model, is_paying_user=is_paying_user, repo=repo, token=user_token, ) logger.print(sweep_context) if not comment_id and not edited and chat_logger: chat_logger.add_successful_ticket( gpt3=use_faster_model ) # moving higher, will increment the issue regardless of whether it's a success or not organization, repo_name = repo_full_name.split("/") metadata = { "issue_url": issue_url, "repo_full_name": repo_full_name, "organization": organization, "repo_name": repo_name, "repo_description": repo_description, "username": username, "comment_id": comment_id, "title": title, "installation_id": installation_id, "function": "on_ticket", "edited": edited, "model": "gpt-3.5" if use_faster_model else "gpt-4", "tier": "pro" if is_paying_user else "free", "mode": ENV, "slow_mode": slow_mode, "do_map": do_map, "subissues_mode": subissues_mode, "sandbox_mode": sandbox_mode, "fast_mode": fast_mode, } # logger.bind(**metadata) posthog.capture(username, "started", properties=metadata) logger.info(f"Getting repo {repo_full_name}") if current_issue.state == "closed": logger.warning(f"Issue {issue_number} is closed") posthog.capture(username, "issue_closed", properties=metadata) return {"success": False, "reason": "Issue is closed"} current_issue.edit(body=summary) item_to_react_to = ( current_issue.get_comment(comment_id) if comment_id else current_issue ) replies_text = "" comments = list(current_issue.get_comments()) if comment_id: logger.info(f"Replying to comment {comment_id}...") replies_text = "\nComments:\n" + "\n".join( [ issue_comment_prompt.format( username=comment.user.login, reply=comment.body, ) for comment in comments if comment.user.type == "User" ] ) summary = summary if summary else "" prs = repo.get_pulls( state="open", sort="created", base=SweepConfig.get_branch(repo) ) for pr in prs: # Check if this issue is mentioned in the PR, and pr is owned by bot # This is done in create_pr, (pr_description = ...) if ( pr.user.login == GITHUB_BOT_USERNAME and f"Fixes #{issue_number}.\n" in pr.body ): success = safe_delete_sweep_branch(pr, repo) eyes_reaction = item_to_react_to.create_reaction("eyes") # If SWEEP_BOT reacted to item_to_react_to with "rocket", then remove it. reactions = item_to_react_to.get_reactions() for reaction in reactions: if reaction.content == "rocket" and reaction.user.login == GITHUB_BOT_USERNAME: item_to_react_to.delete_reaction(reaction.id) # Removed 1, 3 progress_headers = [ None, "Step 1: 🔎 Searching", "Step 2: ⌨️ Coding", "Step 3: 🔁 Code Review", ] config_pr_url = None # Find the first comment made by the bot issue_comment = None tickets_allocated = 5 if is_trial_user: tickets_allocated = 15 if is_paying_user: tickets_allocated = 500 ticket_count = ( max(tickets_allocated - chat_logger.get_ticket_count(), 0) if chat_logger else 999 ) daily_ticket_count = ( (3 - chat_logger.get_ticket_count(use_date=True) if not use_faster_model else 0) if chat_logger else 999 ) model_name = "GPT-3.5" if use_faster_model else "GPT-4" payment_link = "https://buy.stripe.com/00g5npeT71H2gzCfZ8" daily_message = ( f" and {daily_ticket_count} for the day" if not is_paying_user and not is_trial_user else "" ) user_type = "💎 Sweep Pro" if is_paying_user else "⚡ Sweep Free Trial" gpt_tickets_left_message = ( f"{ticket_count} GPT-4 tickets left for the month" if not is_paying_user else "unlimited GPT-4 tickets" ) payment_message = ( f"{user_type}: I used {model_name} to create this ticket. You have {gpt_tickets_left_message}{daily_message}." + ( f" For more GPT-4 tickets, visit [our payment portal.]({payment_link})" if not is_paying_user else "" ) ) payment_message_start = ( f"{user_type}: I'm creating this ticket using {model_name}. You have {gpt_tickets_left_message}{daily_message}." + ( f" For more GPT-4 tickets, visit [our payment portal.]({payment_link})" if not is_paying_user else "" ) ) def get_comment_header(index, errored=False, pr_message="", done=False): config_pr_message = ( "\n" + f"* Install Sweep Configs: [Pull Request]({config_pr_url})" if config_pr_url is not None else "" ) actions_message = create_action_buttons( [ "↻ Restart Sweep", ] ) if index < 0: index = 0 if index == 4: return pr_message + f"\n\n---\n{actions_message}" + config_pr_message total = len(progress_headers) index += 1 if done else 0 index *= 100 / total index = int(index) index = min(100, index) if errored: pbar = f"\n\n<img src='https://progress-bar.dev/{index}/?&title=Errored&width=600' alt='{index}%' />" return ( f"{center(sweeping_gif)}<br/>{center(pbar)}\n\n" + f"\n\n---\n{actions_message}" ) pbar = f"\n\n<img src='https://progress-bar.dev/{index}/?&title=Progress&width=600' alt='{index}%' />" return ( f"{center(sweeping_gif)}<br/>{center(pbar)}" + ("\n" + stars_suffix if index != -1 else "") + "\n" + payment_message_start + config_pr_message + f"\n\n---\n{actions_message}" ) # Find Sweep's previous comment logger.print("USERNAME", GITHUB_BOT_USERNAME) for comment in comments: logger.print("COMMENT", comment.user.login) if comment.user.login == GITHUB_BOT_USERNAME: logger.print("Found comment") issue_comment = comment try: config = SweepConfig.get_config(repo) except EmptyRepository as e: logger.info("Empty repo") first_comment = ( "Sweep is currently not supported on empty repositories. Please add some" f" code to your repository and try again.\n{sep}##" f" {progress_headers[1]}\n{bot_suffix}{discord_suffix}" ) if issue_comment is None: issue_comment = current_issue.create_comment(first_comment) else: issue_comment.edit(first_comment) return {"success": False} cloned_repo = ClonedRepo( repo_full_name, installation_id=installation_id, token=user_token ) num_of_files = cloned_repo.get_num_files_from_repo() time_estimate = math.ceil(3 + 5 * num_of_files / 1000) indexing_message = ( "I'm searching for relevant snippets in your repository. If this is your first" " time using Sweep, I'm indexing your repository. This may take up to" f" {time_estimate} minutes. I'll let you know when I'm done." ) first_comment = ( f"{get_comment_header(0)}\n{sep}I am currently looking into this ticket! I" " will update the progress of the ticket in this comment. I am currently" f" searching through your code, looking for relevant snippets.\n{sep}##" f" {progress_headers[1]}\n{indexing_message}{bot_suffix}{discord_suffix}" ) if issue_comment is None: issue_comment = current_issue.create_comment(first_comment) else: issue_comment.edit(first_comment) # Comment edit function past_messages = {} current_index = 0 # Random variables to save in case of errors table = None # Show plan so user can finetune prompt def edit_sweep_comment(message: str, index: int, pr_message="", done=False): nonlocal current_index, user_token, g, repo, issue_comment # -1 = error, -2 = retry # Only update the progress bar if the issue generation errors. errored = index == -1 if index >= 0: past_messages[index] = message current_index = index agg_message = None # Include progress history # index = -2 is reserved for for i in range( current_index + 2 ): # go to next header (for Working on it... text) if i == 0 or i >= len(progress_headers): continue # skip None header header = progress_headers[i] if header is not None: header = "## " + header + "\n" else: header = "No header\n" msg = header + (past_messages.get(i) or "Working on it...") if agg_message is None: agg_message = msg else: agg_message = agg_message + f"\n{sep}" + msg suffix = bot_suffix + discord_suffix if errored: agg_message = ( "## ❌ Unable to Complete PR" + "\n" + message + "\n\nFor bonus GPT-4 tickets, please report this bug on" " **[Discord](https://discord.com/invite/sweep-ai)**." ) if table is not None: agg_message = ( agg_message + f"\n{sep}Please look at the generated plan. If something looks" f" wrong, please add more details to your issue.\n\n{table}" ) suffix = bot_suffix # don't include discord suffix for error messages # Update the issue comment try: issue_comment.edit( f"{get_comment_header(current_index, errored, pr_message, done=done)}\n{sep}{agg_message}{suffix}" ) except BadCredentialsException: logger.error("Bad credentials, refreshing token") _user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) issue_comment = repo.get_issue(current_issue.number) issue_comment.edit( f"{get_comment_header(current_index, errored, pr_message, done=done)}\n{sep}{agg_message}{suffix}" ) if len(title + summary) < 20: logger.info("Issue too short") edit_sweep_comment( ( "Please add more details to your issue. I need at least 20 characters" " to generate a plan." ), -1, ) return {"success": True} if ( repo_name.lower() not in WHITELISTED_REPOS and not is_paying_user and not is_trial_user ): if ("sweep" in repo_name.lower()) or ("test" in repo_name.lower()): logger.info("Test repository detected") edit_sweep_comment( ( "Sweep does not work on test repositories. Please create an issue" " on a real repository. If you think this is a mistake, please" " report this at https://discord.gg/sweep." ), -1, ) return {"success": False} if lint_mode: # Get files to change # Create new branch # Send request to endpoint for file_path in []: SweepBot.run_sandbox( repo.html_url, file_path, None, user_token, only_lint=True ) logger.info("Fetching relevant files...") try: snippets, tree = search_snippets( cloned_repo, f"{title}\n{summary}\n{replies_text}", num_files=num_of_snippets_to_query, ) assert len(snippets) > 0 except SystemExit: raise SystemExit except Exception as e: trace = traceback.format_exc() logger.error(e) logger.error(trace) edit_sweep_comment( ( "It looks like an issue has occurred around fetching the files." " Perhaps the repo has not been initialized. If this error persists" f" contact [email protected].\n\n> @{username}, editing this issue description to include more details will automatically make me relaunch." ), -1, ) log_error( is_paying_user, is_trial_user, username, issue_url, "File Fetch", str(e) + "\n" + traceback.format_exc(), priority=1, ) raise e snippets = post_process_snippets( snippets, max_num_of_snippets=2 if use_faster_model else 5 ) if not repo_description: repo_description = "No description provided." message_summary = summary + replies_text external_results = ExternalSearcher.extract_summaries(message_summary) if external_results: message_summary += "\n\n" + external_results user_dict = get_documentation_dict(repo) docs_results = "" try: docs_results = extract_relevant_docs( title + message_summary, user_dict, chat_logger ) if docs_results: message_summary += "\n\n" + docs_results except SystemExit: raise SystemExit except Exception as e: logger.error(f"Failed to extract docs: {e}") human_message = HumanMessagePrompt( repo_name=repo_name, issue_url=issue_url, username=username, repo_description=repo_description.strip(), title=title, summary=message_summary, snippets=snippets, tree=tree, ) context_pruning = ContextPruning(chat_logger=chat_logger) ( snippets_to_ignore, excluded_dirs, ) = context_pruning.prune_context( # TODO, ignore directories human_message, repo=repo ) snippets = post_process_snippets( snippets, max_num_of_snippets=5, exclude_snippets=snippets_to_ignore ) dir_obj = DirectoryTree() dir_obj.parse(tree) dir_obj.remove_multiple(excluded_dirs) tree = str(dir_obj) logger.info(f"New snippets: {snippets}") logger.info(f"New tree: {tree}") human_message = HumanMessagePrompt( repo_name=repo_name, issue_url=issue_url, username=username, repo_description=repo_description.strip(), title=title, summary=message_summary, snippets=snippets, tree=tree, ) _user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) sweep_bot = SweepBot.from_system_message_content( human_message=human_message, repo=repo, is_reply=bool(comments), chat_logger=chat_logger, sweep_context=sweep_context, cloned_repo=cloned_repo, ) # Check repository for sweep.yml file. sweep_yml_exists = False for content_file in repo.get_contents(""): if content_file.name == "sweep.yaml": sweep_yml_exists = True break # If sweep.yaml does not exist, then create a new PR that simply creates the sweep.yaml file. if not sweep_yml_exists: """ needle = r""" def get_comment_header(index, errored=False, pr_message="", done=False): ... return ( f"{center(sweeping_gif)}<br/>{center(pbar)}" + ("\n" + stars_suffix if index != -1 else "") + "\n" + payment_message_start + config_pr_message + f"\n\n---\n{actions_message}" ) """.strip( "\n" ) matched_section = r""" def get_comment_header(index, errored=False, pr_message="", done=False): config_pr_message = ( "\n" + f"* Install Sweep Configs: [Pull Request]({config_pr_url})" if config_pr_url is not None else "" ) actions_message = create_action_buttons( [ "↻ Restart Sweep", ] ) if index < 0: index = 0 if index == 4: return pr_message + f"\n\n---\n{actions_message}" + config_pr_message total = len(progress_headers) index += 1 if done else 0 index *= 100 / total index = int(index) index = min(100, index) if errored: pbar = f"\n\n<img src='https://progress-bar.dev/{index}/?&title=Errored&width=600' alt='{index}%' />" return ( f"{center(sweeping_gif)}<br/>{center(pbar)}\n\n" + f"\n\n---\n{actions_message}" ) pbar = f"\n\n<img src='https://progress-bar.dev/{index}/?&title=Progress&width=600' alt='{index}%' />" return ( f"{center(sweeping_gif)}<br/>{center(pbar)}" + ("\n" + stars_suffix if index != -1 else "") + "\n" + payment_message_start + config_pr_message + f"\n\n---\n{actions_message}" ) """.strip( "\n" ) score = score_multiline(needle.splitlines(), matched_section.splitlines()) print(score) # best_match = find_best_match(needle, haystack) # print("\n".join(haystack.splitlines()[best_match.start : best_match.end]))
[]
2024-01-10
sweepai/sweep
tests~archive~test_diff_parsing3.py
from sweepai.utils.diff import generate_new_file_from_patch old_file = r""" # TODO: Add file validation import math import re import traceback import openai from github import GithubException from loguru import logger from tabulate import tabulate from tqdm import tqdm from sweepai.core.context_pruning import ContextPruning from sweepai.core.documentation_searcher import extract_relevant_docs from sweepai.core.entities import ( ProposedIssue, SandboxResponse, Snippet, NoFilesException, SweepContext, MaxTokensExceeded, EmptyRepository, ) from sweepai.core.external_searcher import ExternalSearcher from sweepai.core.slow_mode_expand import SlowModeBot from sweepai.core.sweep_bot import SweepBot from sweepai.core.prompts import issue_comment_prompt # from sandbox.sandbox_utils import Sandbox from sweepai.handlers.create_pr import ( create_pr_changes, create_config_pr, safe_delete_sweep_branch, ) from sweepai.handlers.on_comment import on_comment from sweepai.handlers.on_review import review_pr from sweepai.utils.chat_logger import ChatLogger, discord_log_error from sweepai.config.client import ( UPDATES_MESSAGE, SweepConfig, get_documentation_dict, ) from sweepai.config.server import ( ENV, MONGODB_URI, OPENAI_API_KEY, GITHUB_BOT_USERNAME, GITHUB_LABEL_NAME, OPENAI_USE_3_5_MODEL_ONLY, WHITELISTED_REPOS, ) from sweepai.utils.event_logger import posthog from sweepai.utils.github_utils import ClonedRepo, get_github_client from sweepai.utils.prompt_constructor import HumanMessagePrompt from sweepai.utils.search_utils import search_snippets openai.api_key = OPENAI_API_KEY sep = "\n---\n" bot_suffix_starring = ( "⭐ If you are enjoying Sweep, please [star our" " repo](https://github.com/sweepai/sweep) so more people can hear about us!" ) bot_suffix = ( f"\n{sep}\n{UPDATES_MESSAGE}\n{sep} 💡 To recreate the pull request edit the issue" " title or description. To tweak the pull request, leave a comment on the pull request." ) discord_suffix = f"\n<sup>[Join Our Discord](https://discord.com/invite/sweep)" stars_suffix = ( "⭐ In the meantime, consider [starring our repo](https://github.com/sweepai/sweep)" " so more people can hear about us!" ) checkbox_template = "- [{check}] {filename}\n{instructions}\n" num_of_snippets_to_query = 30 total_number_of_snippet_tokens = 15_000 num_full_files = 2 ordinal = lambda n: str(n) + ( "th" if 4 <= n <= 20 else {1: "st", 2: "nd", 3: "rd"}.get(n % 10, "th") ) SLOW_MODE = False SLOW_MODE = True def clean_logs(logs: str): cleaned_logs = re.sub(r"\x1b\[.*?[@-~]", "", logs.replace("```", "\`\`\`")) cleaned_logs = cleaned_logs or "(nothing was outputted)" return cleaned_logs def post_process_snippets( snippets: list[Snippet], max_num_of_snippets: int = 5, exclude_snippets: list[str] = [], ): snippets = [ snippet for snippet in snippets if not any( snippet.file_path.endswith(ext) for ext in SweepConfig().exclude_exts ) ] snippets = [ snippet for snippet in snippets if not any( snippet.file_path == exclude_file for exclude_file in exclude_snippets ) ] for snippet in snippets[:num_full_files]: snippet = snippet.expand() # snippet fusing i = 0 while i < len(snippets): j = i + 1 while j < len(snippets): if snippets[i] ^ snippets[j]: # this checks for overlap snippets[i] = snippets[i] | snippets[j] # merging snippets.pop(j) else: j += 1 i += 1 # truncating snippets based on character length result_snippets = [] total_length = 0 for snippet in snippets: total_length += len(snippet.get_snippet()) if total_length > total_number_of_snippet_tokens * 5: break result_snippets.append(snippet) return result_snippets[:max_num_of_snippets] def create_collapsible(summary: str, body: str, opened: bool = False): return collapsible_template.format( summary=summary, body=body, opened="open" if opened else "" ) def blockquote(text: str): return f"<blockquote>{text}</blockquote>" if text else "" def create_checkbox(title: str, body: str, checked: bool = False): return checkbox_template.format( check="X" if checked else " ", filename=title, instructions=body ) def strip_sweep(text: str): return ( re.sub( r"^[Ss]weep\s?(\([Ss]low\))?(\([Mm]ap\))?(\([Ff]ast\))?\s?:", "", text ).lstrip(), re.search(r"^[Ss]weep\s?\([Ss]low\)", text) is not None, re.search(r"^[Ss]weep\s?\([Mm]ap\)", text) is not None, re.search(r"^[Ss]weep\s?\([Ss]ubissues?\)", text) is not None, re.search(r"^[Ss]weep\s?\([Ss]andbox?\)", text) is not None, re.search(r"^[Ss]weep\s?\([Ff]ast\)", text) is not None, re.search(r"^[Ss]weep\s?\([Ll]int\)", text) is not None, ) def on_ticket( title: str, summary: str, issue_number: int, issue_url: str, username: str, repo_full_name: str, repo_description: str, installation_id: int, comment_id: int = None, edited: bool = False, ): ( title, slow_mode, do_map, subissues_mode, sandbox_mode, fast_mode, lint_mode, ) = strip_sweep(title) # Flow: # 1. Get relevant files # 2: Get human message # 3. Get files to change # 4. Get file changes # 5. Create PR summary = summary or "" summary = re.sub( "<details (open)?>\n<summary>Checklist</summary>.*", "", summary, flags=re.DOTALL, ).strip() summary = re.sub("Checklist:\n\n- \[[ X]\].*", "", summary, flags=re.DOTALL).strip() repo_name = repo_full_name user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) current_issue = repo.get_issue(number=issue_number) assignee = current_issue.assignee.login if current_issue.assignee else None if assignee is None: assignee = current_issue.user.login chat_logger = ( ChatLogger( { "repo_name": repo_name, "title": title, "summary": summary, "issue_number": issue_number, "issue_url": issue_url, "username": username if not username.startswith("sweep") else assignee, "repo_full_name": repo_full_name, "repo_description": repo_description, "installation_id": installation_id, "type": "ticket", "mode": ENV, "comment_id": comment_id, "edited": edited, } ) if MONGODB_URI else None ) if chat_logger: is_paying_user = chat_logger.is_paying_user() is_trial_user = chat_logger.is_trial_user() use_faster_model = OPENAI_USE_3_5_MODEL_ONLY or chat_logger.use_faster_model(g) else: is_paying_user = True is_trial_user = False use_faster_model = False if fast_mode: use_faster_model = True sweep_context = SweepContext.create( username=username, issue_url=issue_url, use_faster_model=use_faster_model, is_paying_user=is_paying_user, repo=repo, token=user_token, ) print(sweep_context) if not comment_id and not edited and chat_logger: chat_logger.add_successful_ticket( gpt3=use_faster_model ) # moving higher, will increment the issue regardless of whether it's a success or not organization, repo_name = repo_full_name.split("/") metadata = { "issue_url": issue_url, "repo_full_name": repo_full_name, "organization": organization, "repo_name": repo_name, "repo_description": repo_description, "username": username, "comment_id": comment_id, "title": title, "installation_id": installation_id, "function": "on_ticket", "edited": edited, "model": "gpt-3.5" if use_faster_model else "gpt-4", "tier": "pro" if is_paying_user else "free", "mode": ENV, "slow_mode": slow_mode, "do_map": do_map, "subissues_mode": subissues_mode, "sandbox_mode": sandbox_mode, "fast_mode": fast_mode, } logger.bind(**metadata) posthog.capture(username, "started", properties=metadata) logger.info(f"Getting repo {repo_full_name}") if current_issue.state == "closed": logger.warning(f"Issue {issue_number} is closed") posthog.capture(username, "issue_closed", properties=metadata) return {"success": False, "reason": "Issue is closed"} current_issue.edit(body=summary) item_to_react_to = ( current_issue.get_comment(comment_id) if comment_id else current_issue ) replies_text = "" comments = list(current_issue.get_comments()) if comment_id: logger.info(f"Replying to comment {comment_id}...") replies_text = "\nComments:\n" + "\n".join( [ issue_comment_prompt.format( username=comment.user.login, reply=comment.body, ) for comment in comments if comment.user.type == "User" ] ) summary = summary if summary else "" prs = repo.get_pulls( state="open", sort="created", base=SweepConfig.get_branch(repo) ) for pr in prs: # Check if this issue is mentioned in the PR, and pr is owned by bot # This is done in create_pr, (pr_description = ...) if ( pr.user.login == GITHUB_BOT_USERNAME and f"Fixes #{issue_number}.\n" in pr.body ): success = safe_delete_sweep_branch(pr, repo) eyes_reaction = item_to_react_to.create_reaction("eyes") # If SWEEP_BOT reacted to item_to_react_to with "rocket", then remove it. reactions = item_to_react_to.get_reactions() for reaction in reactions: if reaction.content == "rocket" and reaction.user.login == GITHUB_BOT_USERNAME: item_to_react_to.delete_reaction(reaction.id) # Removed 1, 3 progress_headers = [ None, "Step 1: 📍 Planning", "Step 2: ⌨️ Coding", "Step 3: 🔁 Code Review", ] config_pr_url = None # Find the first comment made by the bot issue_comment = None tickets_allocated = 5 if is_trial_user: tickets_allocated = 15 if is_paying_user: tickets_allocated = 500 ticket_count = ( max(tickets_allocated - chat_logger.get_ticket_count(), 0) if chat_logger else 999 ) daily_ticket_count = ( (2 - chat_logger.get_ticket_count(use_date=True) if not use_faster_model else 0) if chat_logger else 999 ) model_name = "GPT-3.5" if use_faster_model else "GPT-4" payment_link = "https://buy.stripe.com/00g5npeT71H2gzCfZ8" daily_message = ( f" and {daily_ticket_count} for the day" if not is_paying_user and not is_trial_user else "" ) user_type = "💎 Sweep Pro" if is_paying_user else "⚡ Sweep Free Trial" gpt_tickets_left_message = ( f"{ticket_count} GPT-4 tickets left for the month" if not is_paying_user else "unlimited GPT-4 tickets" ) payment_message = ( f"{user_type}: I used {model_name} to create this ticket. You have {gpt_tickets_left_message}{daily_message}." + ( f" For more GPT-4 tickets, visit [our payment portal.]({payment_link})" if not is_paying_user else "" ) ) payment_message_start = ( f"{user_type}: I'm creating this ticket using {model_name}. You have {gpt_tickets_left_message}{daily_message}." + ( f" For more GPT-4 tickets, visit [our payment portal.]({payment_link})" if not is_paying_user else "" ) ) def get_comment_header(index, errored=False, pr_message="", done=False): config_pr_message = ( "\n" + f"* Install Sweep Configs: [Pull Request]({config_pr_url})" if config_pr_url is not None else "" ) config_pr_message = " To retrigger Sweep, edit the issue.\n" + config_pr_message if index < 0: index = 0 if index == 4: return pr_message + config_pr_message total = len(progress_headers) + 1 index += 1 if done else 0 index *= 100 / total index = int(index) index = min(100, index) if errored: return f"![{index}%](https://progress-bar.dev/{index}/?&title=Errored&width=600)" return ( f"![{index}%](https://progress-bar.dev/{index}/?&title=Progress&width=600)" + ("\n" + stars_suffix if index != -1 else "") + "\n" + payment_message_start + config_pr_message ) # Find Sweep's previous comment print("USERNAME", GITHUB_BOT_USERNAME) for comment in comments: print("COMMENT", comment.user.login) if comment.user.login == GITHUB_BOT_USERNAME: print("Found comment") issue_comment = comment try: config = SweepConfig.get_config(repo) except EmptyRepository as e: logger.info("Empty repo") first_comment = ( "Sweep is currently not supported on empty repositories. Please add some" f" code to your repository and try again.\n{sep}##" f" {progress_headers[1]}\n{bot_suffix}{discord_suffix}" ) if issue_comment is None: issue_comment = current_issue.create_comment(first_comment) else: issue_comment.edit(first_comment) return {"success": False} cloned_repo = ClonedRepo( repo_full_name, installation_id=installation_id, token=user_token ) num_of_files = cloned_repo.get_num_files_from_repo() time_estimate = math.ceil(3 + 5 * num_of_files / 1000) indexing_message = ( "I'm searching for relevant snippets in your repository. If this is your first" " time using Sweep, I'm indexing your repository. This may take up to" f" {time_estimate} minutes. I'll let you know when I'm done." ) first_comment = ( f"{get_comment_header(0)}\n{sep}I am currently looking into this ticket! I" " will update the progress of the ticket in this comment. I am currently" f" searching through your code, looking for relevant snippets.\n{sep}##" f" {progress_headers[1]}\n{indexing_message}{bot_suffix}{discord_suffix}" ) if issue_comment is None: issue_comment = current_issue.create_comment(first_comment) else: issue_comment.edit(first_comment) # Comment edit function past_messages = {} current_index = 0 # Random variables to save in case of errors table = None # Show plan so user can finetune prompt def edit_sweep_comment(message: str, index: int, pr_message="", done=False): nonlocal current_index # -1 = error, -2 = retry # Only update the progress bar if the issue generation errors. errored = index == -1 if index >= 0: past_messages[index] = message current_index = index agg_message = None # Include progress history # index = -2 is reserved for for i in range( current_index + 2 ): # go to next header (for Working on it... text) if i == 0 or i >= len(progress_headers): continue # skip None header header = progress_headers[i] if header is not None: header = "## " + header + "\n" else: header = "No header\n" msg = header + (past_messages.get(i) or "Working on it...") if agg_message is None: agg_message = msg else: agg_message = agg_message + f"\n{sep}" + msg suffix = bot_suffix + discord_suffix if errored: agg_message = ( "## ❌ Unable to Complete PR" + "\n" + message + "\n\nFor bonus GPT-4 tickets, please report this bug on" " **[Discord](https://discord.com/invite/sweep-ai)**." ) if table is not None: agg_message = ( agg_message + f"\n{sep}Please look at the generated plan. If something looks" f" wrong, please add more details to your issue.\n\n{table}" ) suffix = bot_suffix # don't include discord suffix for error messages # Update the issue comment issue_comment.edit( f"{get_comment_header(current_index, errored, pr_message, done=done)}\n{sep}{agg_message}{suffix}" ) if len(title + summary) < 20: logger.info("Issue too short") edit_sweep_comment( ( "Please add more details to your issue. I need at least 20 characters" " to generate a plan." ), -1, ) return {"success": True} if ( repo_name.lower() not in WHITELISTED_REPOS and not is_paying_user and not is_trial_user ): if ("sweep" in repo_name.lower()) or ("test" in repo_name.lower()): logger.info("Test repository detected") edit_sweep_comment( ( "Sweep does not work on test repositories. Please create an issue" " on a real repository. If you think this is a mistake, please" " report this at https://discord.gg/sweep." ), -1, ) return {"success": False} def log_error(error_type, exception, priority=0): nonlocal is_paying_user, is_trial_user if is_paying_user or is_trial_user: if priority == 1: priority = 0 elif priority == 2: priority = 1 prefix = "" if is_trial_user: prefix = " (TRIAL)" if is_paying_user: prefix = " (PRO)" content = ( f"**{error_type} Error**{prefix}\n{username}:" f" {issue_url}\n```{exception}```" ) discord_log_error(content, priority=priority) if lint_mode: # Get files to change # Create new branch # Send request to endpoint for file_path in []: SweepBot.run_sandbox( repo.html_url, file_path, None, user_token, only_lint=True ) logger.info("Fetching relevant files...") try: snippets, tree = search_snippets( cloned_repo, f"{title}\n{summary}\n{replies_text}", num_files=num_of_snippets_to_query, ) assert len(snippets) > 0 except Exception as e: trace = traceback.format_exc() logger.error(e) logger.error(trace) edit_sweep_comment( ( "It looks like an issue has occurred around fetching the files." " Perhaps the repo has not been initialized. If this error persists" f" contact [email protected].\n\n> @{username}, please edit the issue" " description to include more details and I will automatically" " relaunch." ), -1, ) log_error("File Fetch", str(e) + "\n" + traceback.format_exc(), priority=1) raise e snippets = post_process_snippets( snippets, max_num_of_snippets=2 if use_faster_model else 5 ) if not repo_description: repo_description = "No description provided." message_summary = summary + replies_text external_results = ExternalSearcher.extract_summaries(message_summary) if external_results: message_summary += "\n\n" + external_results user_dict = get_documentation_dict(repo) docs_results = "" try: docs_results = extract_relevant_docs( title + message_summary, user_dict, chat_logger ) if docs_results: message_summary += "\n\n" + docs_results except Exception as e: logger.error(f"Failed to extract docs: {e}") human_message = HumanMessagePrompt( repo_name=repo_name, issue_url=issue_url, username=username, repo_description=repo_description.strip(), title=title, summary=message_summary, snippets=snippets, tree=tree, ) if SLOW_MODE: context_pruning = ContextPruning(chat_logger=chat_logger) ( snippets_to_ignore, _, ) = context_pruning.prune_context( # TODO, ignore directories human_message, repo=repo ) snippets = post_process_snippets( snippets, max_num_of_snippets=5, exclude_snippets=snippets_to_ignore ) logger.info(f"New snippets: {snippets}") logger.info(f"New tree: {tree}") human_message = HumanMessagePrompt( repo_name=repo_name, issue_url=issue_url, username=username, repo_description=repo_description.strip(), title=title, summary=message_summary, snippets=snippets, tree=tree, ) sweep_bot = SweepBot.from_system_message_content( human_message=human_message, repo=repo, is_reply=bool(comments), chat_logger=chat_logger, sweep_context=sweep_context, ) # Check repository for sweep.yml file. sweep_yml_exists = False for content_file in repo.get_contents(""): if content_file.name == "sweep.yaml": sweep_yml_exists = True break # If sweep.yaml does not exist, then create a new PR that simply creates the sweep.yaml file. if not sweep_yml_exists: try: logger.info("Creating sweep.yaml file...") config_pr = create_config_pr(sweep_bot) config_pr_url = config_pr.html_url edit_sweep_comment(message="", index=-2) except Exception as e: logger.error( "Failed to create new branch for sweep.yaml file.\n", e, traceback.format_exc(), ) else: logger.info("sweep.yaml file already exists.") try: # ANALYZE SNIPPETS newline = "\n" edit_sweep_comment( "I found the following snippets in your repository. I will now analyze" " these snippets and come up with a plan." + "\n\n" + create_collapsible( "Some code snippets I looked at (click to expand). If some file is" " missing from here, you can mention the path in the ticket" " description.", "\n".join( [ f"https://github.com/{organization}/{repo_name}/blob/{repo.get_commits()[0].sha}/{snippet.file_path}#L{max(snippet.start, 1)}-L{min(snippet.end, snippet.content.count(newline) - 1)}\n" for snippet in snippets ] ), ) + ( "I also found the following external resources that might be" f" helpful:\n\n{external_results}\n\n" if external_results else "" ) + (f"\n\n{docs_results}\n\n" if docs_results else ""), 1, ) if do_map: subissues: list[ProposedIssue] = sweep_bot.generate_subissues() edit_sweep_comment( f"I'm creating the following subissues:\n\n" + "\n\n".join( [ f"#{subissue.title}:\n" + blockquote(subissue.body) for subissue in subissues ] ), 2, ) for subissue in tqdm(subissues): subissue.issue_id = repo.create_issue( title="Sweep: " + subissue.title, body=subissue.body + f"\n\nParent issue: #{issue_number}", assignee=username, ).number subissues_checklist = "\n\n".join( [ f"- [ ] #{subissue.issue_id}\n\n" + blockquote(f"**{subissue.title}**\n{subissue.body}") for subissue in subissues ] ) current_issue.edit( body=summary + "\n\n---\n\nChecklist:\n\n" + subissues_checklist ) edit_sweep_comment( f"I finished creating the subissues! Track them at:\n\n" + "\n".join(f"* #{subissue.issue_id}" for subissue in subissues), 3, done=True, ) edit_sweep_comment(f"N/A", 4) edit_sweep_comment(f"I finished creating all the subissues.", 5) return {"success": True} # COMMENT ON ISSUE # TODO: removed issue commenting here logger.info("Fetching files to modify/create...") file_change_requests, plan = sweep_bot.get_files_to_change() if not file_change_requests: if len(title + summary) < 60: edit_sweep_comment( ( "Sorry, I could not find any files to modify, can you please" " provide more details? Please make sure that the title and" " summary of the issue are at least 60 characters." ), -1, ) else: edit_sweep_comment( ( "Sorry, I could not find any files to modify, can you please" " provide more details?" ), -1, ) raise Exception("No files to modify.") sweep_bot.summarize_snippets() file_change_requests = sweep_bot.validate_file_change_requests( file_change_requests ) table = tabulate( [ [ f"`{file_change_request.filename}`", file_change_request.instructions_display.replace( "\n", "<br/>" ).replace("```", "\\```"), ] for file_change_request in file_change_requests ], headers=["File Path", "Proposed Changes"], tablefmt="pipe", ) edit_sweep_comment( "From looking through the relevant snippets, I decided to make the" " following modifications:\n\n" + table + "\n\n", 2, ) # TODO(lukejagg): Generate PR after modifications are made # CREATE PR METADATA logger.info("Generating PR...") pull_request = sweep_bot.generate_pull_request() pull_request_content = pull_request.content.strip().replace("\n", "\n>") pull_request_summary = f"**{pull_request.title}**\n`{pull_request.branch_name}`\n>{pull_request_content}\n" # edit_sweep_comment( # ( # "I have created a plan for writing the pull request. I am now working" # " my plan and coding the required changes to address this issue. Here" # f" is the planned pull request:\n\n{pull_request_summary}" # ), # 3, # ) logger.info("Making PR...") files_progress: list[tuple[str, str, str, str]] = [ ( file_change_request.filename, file_change_request.instructions_display, "⏳ In Progress", "", ) for file_change_request in file_change_requests ] checkboxes_progress: list[tuple[str, str, str]] = [ (file_change_request.filename, file_change_request.instructions, " ") for file_change_request in file_change_requests ] checkboxes_contents = "\n".join( [ create_checkbox(f"`{filename}`", blockquote(instructions), check == "X") for filename, instructions, check in checkboxes_progress ] ) checkboxes_collapsible = create_collapsible( "Checklist", checkboxes_contents, opened=True ) issue = repo.get_issue(number=issue_number) issue.edit(body=summary + "\n\n" + checkboxes_collapsible) delete_branch = False generator = create_pr_changes( # make this async later file_change_requests, pull_request, sweep_bot, username, installation_id, issue_number, chat_logger=chat_logger, ) edit_sweep_comment(checkboxes_contents, 2) response = {"error": NoFilesException()} for item in generator: if isinstance(item, dict): response = item break file_change_request, changed_file, sandbox_response, commit = item sandbox_response: SandboxResponse | None = sandbox_response format_exit_code = ( lambda exit_code: "✅" if exit_code == 0 else f"❌ (`{exit_code}`)" ) print(sandbox_response) error_logs = ( ( create_collapsible( "Sandbox Execution Logs", "\n\n".join( [ create_collapsible( f"<code>{execution.command.format(file_path=file_change_request.filename)}</code> {i + 1}/{len(sandbox_response.executions)} {format_exit_code(execution.exit_code)}", f"<pre>{clean_logs(execution.output)}</pre>", i == len(sandbox_response.executions) - 1, ) for i, execution in enumerate( sandbox_response.executions ) if len(sandbox_response.executions) > 0 # And error code check ] ), opened=True, ) ) if sandbox_response else "" ) if changed_file: print("Changed File!") commit_hash = ( commit.sha if commit is not None else repo.get_branch(pull_request.branch_name).commit.sha ) commit_url = f"https://github.com/{repo_full_name}/commit/{commit_hash}" checkboxes_progress = [ ( ( f"`{filename}` ✅ Commit [`{commit_hash[:7]}`]({commit_url})", blockquote(instructions) + error_logs, "X", ) if file_change_request.filename == filename else (filename, instructions, progress) ) for filename, instructions, progress in checkboxes_progress ] else: print("Didn't change file!") checkboxes_progress = [ ( ( f"`{filename}` ❌ Failed", blockquote(instructions) + error_logs, "X", ) if file_change_request.filename == filename else (filename, instructions, progress) ) for filename, instructions, progress in checkboxes_progress ] checkboxes_contents = "\n".join( [ checkbox_template.format( check=check, filename=filename, instructions=instructions, ) for filename, instructions, check in checkboxes_progress ] ) checkboxes_collapsible = collapsible_template.format( summary="Checklist", body=checkboxes_contents, opened="open", ) issue = repo.get_issue(number=issue_number) issue.edit(body=summary + "\n\n" + checkboxes_collapsible) logger.info(files_progress) logger.info(f"Edited {file_change_request.filename}") edit_sweep_comment(checkboxes_contents, 2) if not response.get("success"): raise Exception(f"Failed to create PR: {response.get('error')}") pr_changes = response["pull_request"] edit_sweep_comment( "I have finished coding the issue. I am now reviewing it for completeness.", 3, ) review_message = ( "Here are my self-reviews of my changes at" f" [`{pr_changes.pr_head}`](https://github.com/{repo_full_name}/commits/{pr_changes.pr_head}).\n\n" ) lint_output = None try: current_issue.delete_reaction(eyes_reaction.id) except: pass try: # Todo(lukejagg): Pass sandbox linter results to review_pr # CODE REVIEW changes_required, review_comment = review_pr( repo=repo, pr=pr_changes, issue_url=issue_url, username=username, repo_description=repo_description, title=title, summary=summary, replies_text=replies_text, tree=tree, lint_output=lint_output, chat_logger=chat_logger, ) # Todo(lukejagg): Execute sandbox after each iteration lint_output = None review_message += ( f"Here is the {ordinal(1)} review\n" + blockquote(review_comment) + "\n\n" ) edit_sweep_comment( review_message + "\n\nI'm currently addressing these suggestions.", 3, ) logger.info(f"Addressing review comment {review_comment}") if changes_required: on_comment( repo_full_name=repo_full_name, repo_description=repo_description, comment=review_comment, username=username, installation_id=installation_id, pr_path=None, pr_line_position=None, pr_number=None, pr=pr_changes, chat_logger=chat_logger, repo=repo, ) except Exception as e: logger.error(traceback.format_exc()) logger.error(e) edit_sweep_comment( review_message + "\n\nI finished incorporating these changes.", 3, ) is_draft = config.get("draft", False) try: pr = repo.create_pull( title=pr_changes.title, body=pr_changes.body, head=pr_changes.pr_head, base=SweepConfig.get_branch(repo), draft=is_draft, ) except GithubException as e: is_draft = False pr = repo.create_pull( title=pr_changes.title, body=pr_changes.body, head=pr_changes.pr_head, base=SweepConfig.get_branch(repo), draft=is_draft, ) pr.add_to_labels(GITHUB_LABEL_NAME) current_issue.create_reaction("rocket") logger.info("Running github actions...") try: if is_draft: logger.info("Skipping github actions because PR is a draft") else: commit = pr.get_commits().reversed[0] check_runs = commit.get_check_runs() for check_run in check_runs: check_run.rerequest() except Exception as e: logger.error(e) # Completed code review edit_sweep_comment( review_message + "\n\nSuccess! 🚀", 4, pr_message=( f"## Here's the PR! [{pr.html_url}]({pr.html_url}).\n{payment_message}" ), done=True, ) logger.info("Add successful ticket to counter") except MaxTokensExceeded as e: logger.info("Max tokens exceeded") log_error( "Max Tokens Exceeded", str(e) + "\n" + traceback.format_exc(), priority=2, ) if chat_logger.is_paying_user(): edit_sweep_comment( ( f"Sorry, I could not edit `{e.filename}` as this file is too long." " We are currently working on improved file streaming to address" " this issue.\n" ), -1, ) else: edit_sweep_comment( ( f"Sorry, I could not edit `{e.filename}` as this file is too" " long.\n\nIf this file is incorrect, please describe the desired" " file in the prompt. However, if you would like to edit longer" " files, consider upgrading to [Sweep Pro](https://sweep.dev/) for" " longer context lengths.\n" ), -1, ) delete_branch = True raise e except NoFilesException as e: logger.info("Sweep could not find files to modify") log_error( "Sweep could not find files to modify", str(e) + "\n" + traceback.format_exc(), priority=2, ) edit_sweep_comment( ( "Sorry, Sweep could not find any appropriate files to edit to address" " this issue. If this is a mistake, please provide more context and I" f" will retry!\n\n> @{username}, please edit the issue description to" " include more details about this issue." ), -1, ) delete_branch = True raise e except openai.error.InvalidRequestError as e: logger.error(traceback.format_exc()) logger.error(e) edit_sweep_comment( ( "I'm sorry, but it looks our model has ran out of context length. We're" " trying to make this happen less, but one way to mitigate this is to" " code smaller files. If this error persists report it at" " https://discord.gg/sweep." ), -1, ) log_error( "Context Length", str(e) + "\n" + traceback.format_exc(), priority=2, ) posthog.capture( username, "failed", properties={ "error": str(e), "reason": "Invalid request error / context length", **metadata, }, ) delete_branch = True raise e except Exception as e: logger.error(traceback.format_exc()) logger.error(e) # title and summary are defined elsewhere if len(title + summary) < 60: edit_sweep_comment( ( "I'm sorry, but it looks like an error has occurred due to" " insufficient information. Be sure to create a more detailed issue" " so I can better address it. If this error persists report it at" " https://discord.gg/sweep." ), -1, ) else: edit_sweep_comment( ( "I'm sorry, but it looks like an error has occurred. Try changing" " the issue description to re-trigger Sweep. If this error persists" " contact [email protected]." ), -1, ) log_error("Workflow", str(e) + "\n" + traceback.format_exc(), priority=1) posthog.capture( username, "failed", properties={"error": str(e), "reason": "Generic error", **metadata}, ) raise e else: try: item_to_react_to.delete_reaction(eyes_reaction.id) item_to_react_to.create_reaction("rocket") except Exception as e: logger.error(e) finally: cloned_repo.delete() if delete_branch: try: if pull_request.branch_name.startswith("sweep"): repo.get_git_ref(f"heads/{pull_request.branch_name}").delete() else: raise Exception( f"Branch name {pull_request.branch_name} does not start with sweep/" ) except Exception as e: logger.error(e) logger.error(traceback.format_exc()) print("Deleted branch", pull_request.branch_name) posthog.capture(username, "success", properties={**metadata}) logger.info("on_ticket success") return {"success": True} """ code_replaces = """ ``` <<<< ORIGINAL def clean_logs(logs: str): cleaned_logs = re.sub(r"\x1b\[.*?[@-~]", "", logs.replace("```", "\`\`\`")) cleaned_logs = cleaned_logs or "(nothing was outputted)" return cleaned_logs ==== def clean_logs(logs: str): cleaned_logs = re.sub(r"\x1b\[.*?[@-~]", "", logs.replace("```", "\`\`\`")) cleaned_logs = cleaned_logs or "(nothing was outputted)" cleaned_logs = re.sub('\n{2,}', '\n', cleaned_logs) return cleaned_logs >>>> UPDATED ``` """ if __name__ == "__main__": print(generate_new_file_from_patch(code_replaces, old_file)[0][:3000]) # generate_new_file_from_patch(code_replaces, old_file)[0]
[]
2024-01-10
sweepai/sweep
tests~search~test_lexical_search.py
from sweepai.core.lexical_search import tokenize_call file_contents = """\ # TODO: Add file validation import math import re import traceback import openai import github from github import GithubException, BadCredentialsException from tabulate import tabulate from tqdm import tqdm from sweepai.logn import logger, LogTask from sweepai.core.context_pruning import ContextPruning from sweepai.core.documentation_searcher import extract_relevant_docs from sweepai.core.entities import ( ProposedIssue, SandboxResponse, Snippet, NoFilesException, SweepContext, MaxTokensExceeded, EmptyRepository, ) from sweepai.core.external_searcher import ExternalSearcher from sweepai.core.slow_mode_expand import SlowModeBot from sweepai.core.sweep_bot import SweepBot from sweepai.core.prompts import issue_comment_prompt # from sandbox.sandbox_utils import Sandbox from sweepai.handlers.create_pr import ( create_pr_changes, create_config_pr, safe_delete_sweep_branch, ) from sweepai.handlers.on_comment import on_comment from sweepai.handlers.on_review import review_pr from sweepai.utils.buttons import create_action_buttons from sweepai.utils.chat_logger import ChatLogger from sweepai.config.client import ( SweepConfig, get_documentation_dict, ) from sweepai.config.server import ( ENV, MONGODB_URI, OPENAI_API_KEY, GITHUB_BOT_USERNAME, GITHUB_LABEL_NAME, OPENAI_USE_3_5_MODEL_ONLY, WHITELISTED_REPOS, ) from sweepai.utils.ticket_utils import * from sweepai.utils.event_logger import posthog from sweepai.utils.github_utils import ClonedRepo, get_github_client from sweepai.utils.prompt_constructor import HumanMessagePrompt from sweepai.utils.search_utils import search_snippets from sweepai.utils.tree_utils import DirectoryTree openai.api_key = OPENAI_API_KEY @LogTask() def on_ticket( title: str, summary: str, issue_number: int, issue_url: str, username: str, repo_full_name: str, repo_description: str, installation_id: int, comment_id: int = None, edited: bool = False, ): ( title, slow_mode, do_map, subissues_mode, sandbox_mode, fast_mode, lint_mode, ) = strip_sweep(title) # Flow: # 1. Get relevant files # 2: Get human message # 3. Get files to change # 4. Get file changes # 5. Create PR summary = summary or "" summary = re.sub( "<details (open)?>\n<summary>Checklist</summary>.*", "", summary, flags=re.DOTALL, ).strip() summary = re.sub("Checklist:\n\n- \[[ X]\].*", "", summary, flags=re.DOTALL).strip() repo_name = repo_full_name user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) current_issue = repo.get_issue(number=issue_number) assignee = current_issue.assignee.login if current_issue.assignee else None if assignee is None: assignee = current_issue.user.login chat_logger = ( ChatLogger( { "repo_name": repo_name, "title": title, "summary": summary, "issue_number": issue_number, "issue_url": issue_url, "username": username if not username.startswith("sweep") else assignee, "repo_full_name": repo_full_name, "repo_description": repo_description, "installation_id": installation_id, "type": "ticket", "mode": ENV, "comment_id": comment_id, "edited": edited, } ) if MONGODB_URI else None ) if chat_logger: is_paying_user = chat_logger.is_paying_user() is_trial_user = chat_logger.is_trial_user() use_faster_model = OPENAI_USE_3_5_MODEL_ONLY or chat_logger.use_faster_model(g) else: is_paying_user = True is_trial_user = False use_faster_model = False if fast_mode: use_faster_model = True sweep_context = SweepContext.create( username=username, issue_url=issue_url, use_faster_model=use_faster_model, is_paying_user=is_paying_user, repo=repo, token=user_token, ) logger.print(sweep_context) if not comment_id and not edited and chat_logger: chat_logger.add_successful_ticket( gpt3=use_faster_model ) # moving higher, will increment the issue regardless of whether it's a success or not organization, repo_name = repo_full_name.split("/") metadata = { "issue_url": issue_url, "repo_full_name": repo_full_name, "organization": organization, "repo_name": repo_name, "repo_description": repo_description, "username": username, "comment_id": comment_id, "title": title, "installation_id": installation_id, "function": "on_ticket", "edited": edited, "model": "gpt-3.5" if use_faster_model else "gpt-4", "tier": "pro" if is_paying_user else "free", "mode": ENV, "slow_mode": slow_mode, "do_map": do_map, "subissues_mode": subissues_mode, "sandbox_mode": sandbox_mode, "fast_mode": fast_mode, } # logger.bind(**metadata) posthog.capture(username, "started", properties=metadata) logger.info(f"Getting repo {repo_full_name}") if current_issue.state == "closed": logger.warning(f"Issue {issue_number} is closed") posthog.capture(username, "issue_closed", properties=metadata) return {"success": False, "reason": "Issue is closed"} current_issue.edit(body=summary) item_to_react_to = ( current_issue.get_comment(comment_id) if comment_id else current_issue ) replies_text = "" comments = list(current_issue.get_comments()) if comment_id: logger.info(f"Replying to comment {comment_id}...") replies_text = "\nComments:\n" + "\n".join( [ issue_comment_prompt.format( username=comment.user.login, reply=comment.body, ) for comment in comments if comment.user.type == "User" ] ) summary = summary if summary else "" prs = repo.get_pulls( state="open", sort="created", base=SweepConfig.get_branch(repo) ) for pr in prs: # Check if this issue is mentioned in the PR, and pr is owned by bot # This is done in create_pr, (pr_description = ...) if ( pr.user.login == GITHUB_BOT_USERNAME and f"Fixes #{issue_number}.\n" in pr.body ): success = safe_delete_sweep_branch(pr, repo) eyes_reaction = item_to_react_to.create_reaction("eyes") # If SWEEP_BOT reacted to item_to_react_to with "rocket", then remove it. reactions = item_to_react_to.get_reactions() for reaction in reactions: if reaction.content == "rocket" and reaction.user.login == GITHUB_BOT_USERNAME: item_to_react_to.delete_reaction(reaction.id) # Removed 1, 3 progress_headers = [ None, "Step 1: 🔎 Searching", "Step 2: ⌨️ Coding", "Step 3: 🔁 Code Review", ] config_pr_url = None # Find the first comment made by the bot issue_comment = None tickets_allocated = 5 if is_trial_user: tickets_allocated = 15 if is_paying_user: tickets_allocated = 500 ticket_count = ( max(tickets_allocated - chat_logger.get_ticket_count(), 0) if chat_logger else 999 ) daily_ticket_count = ( (3 - chat_logger.get_ticket_count(use_date=True) if not use_faster_model else 0) if chat_logger else 999 ) model_name = "GPT-3.5" if use_faster_model else "GPT-4" payment_link = "https://buy.stripe.com/00g5npeT71H2gzCfZ8" daily_message = ( f" and {daily_ticket_count} for the day" if not is_paying_user and not is_trial_user else "" ) user_type = "💎 Sweep Pro" if is_paying_user else "⚡ Sweep Free Trial" gpt_tickets_left_message = ( f"{ticket_count} GPT-4 tickets left for the month" if not is_paying_user else "unlimited GPT-4 tickets" ) payment_message = ( f"{user_type}: I used {model_name} to create this ticket. You have {gpt_tickets_left_message}{daily_message}." + ( f" For more GPT-4 tickets, visit [our payment portal.]({payment_link})" if not is_paying_user else "" ) ) payment_message_start = ( f"{user_type}: I'm creating this ticket using {model_name}. You have {gpt_tickets_left_message}{daily_message}." + ( f" For more GPT-4 tickets, visit [our payment portal.]({payment_link})" if not is_paying_user else "" ) ) def get_comment_header(index, errored=False, pr_message="", done=False): config_pr_message = ( "\n" + f"* Install Sweep Configs: [Pull Request]({config_pr_url})" if config_pr_url is not None else "" ) # Why is this so convoluted # config_pr_message = " To retrigger Sweep, edit the issue.\n" + config_pr_message actions_message = create_action_buttons( [ "Restart Sweep", ] ) if index < 0: index = 0 if index == 4: return pr_message + f"\n\n---\n{actions_message}" + config_pr_message total = len(progress_headers) index += 1 if done else 0 index *= 100 / total index = int(index) index = min(100, index) if errored: return ( f"![{index}%](https://progress-bar.dev/{index}/?&title=Errored&width=600)" + f"\n\n---\n{actions_message}" ) return ( f"![{index}%](https://progress-bar.dev/{index}/?&title=Progress&width=600)" + ("\n" + stars_suffix if index != -1 else "") + "\n" + payment_message_start # + f"\n\n---\n{actions_message}" + config_pr_message ) # Find Sweep's previous comment logger.print("USERNAME", GITHUB_BOT_USERNAME) for comment in comments: logger.print("COMMENT", comment.user.login) if comment.user.login == GITHUB_BOT_USERNAME: logger.print("Found comment") issue_comment = comment try: config = SweepConfig.get_config(repo) except EmptyRepository as e: logger.info("Empty repo") first_comment = ( "Sweep is currently not supported on empty repositories. Please add some" f" code to your repository and try again.\n{sep}##" f" {progress_headers[1]}\n{bot_suffix}{discord_suffix}" ) if issue_comment is None: issue_comment = current_issue.create_comment(first_comment) else: issue_comment.edit(first_comment) return {"success": False} cloned_repo = ClonedRepo( repo_full_name, installation_id=installation_id, token=user_token ) num_of_files = cloned_repo.get_num_files_from_repo() time_estimate = math.ceil(3 + 5 * num_of_files / 1000) indexing_message = ( "I'm searching for relevant snippets in your repository. If this is your first" " time using Sweep, I'm indexing your repository. This may take up to" f" {time_estimate} minutes. I'll let you know when I'm done." ) first_comment = ( f"{get_comment_header(0)}\n{sep}I am currently looking into this ticket! I" " will update the progress of the ticket in this comment. I am currently" f" searching through your code, looking for relevant snippets.\n{sep}##" f" {progress_headers[1]}\n{indexing_message}{bot_suffix}{discord_suffix}" ) if issue_comment is None: issue_comment = current_issue.create_comment(first_comment) else: issue_comment.edit(first_comment) # Comment edit function past_messages = {} current_index = 0 # Random variables to save in case of errors table = None # Show plan so user can finetune prompt def edit_sweep_comment(message: str, index: int, pr_message="", done=False): nonlocal current_index, user_token, g, repo, issue_comment # -1 = error, -2 = retry # Only update the progress bar if the issue generation errors. errored = index == -1 if index >= 0: past_messages[index] = message current_index = index agg_message = None # Include progress history # index = -2 is reserved for for i in range( current_index + 2 ): # go to next header (for Working on it... text) if i == 0 or i >= len(progress_headers): continue # skip None header header = progress_headers[i] if header is not None: header = "## " + header + "\n" else: header = "No header\n" msg = header + (past_messages.get(i) or "Working on it...") if agg_message is None: agg_message = msg else: agg_message = agg_message + f"\n{sep}" + msg suffix = bot_suffix + discord_suffix if errored: agg_message = ( "## ❌ Unable to Complete PR" + "\n" + message + "\n\nFor bonus GPT-4 tickets, please report this bug on" " **[Discord](https://discord.com/invite/sweep-ai)**." ) if table is not None: agg_message = ( agg_message + f"\n{sep}Please look at the generated plan. If something looks" f" wrong, please add more details to your issue.\n\n{table}" ) suffix = bot_suffix # don't include discord suffix for error messages # Update the issue comment try: issue_comment.edit( f"{get_comment_header(current_index, errored, pr_message, done=done)}\n{sep}{agg_message}{suffix}" ) except BadCredentialsException: logger.error("Bad credentials, refreshing token") _user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) issue_comment = repo.get_issue(current_issue.number) issue_comment.edit( f"{get_comment_header(current_index, errored, pr_message, done=done)}\n{sep}{agg_message}{suffix}" ) if len(title + summary) < 20: logger.info("Issue too short") edit_sweep_comment( ( "Please add more details to your issue. I need at least 20 characters" " to generate a plan." ), -1, ) return {"success": True} if ( repo_name.lower() not in WHITELISTED_REPOS and not is_paying_user and not is_trial_user ): if ("sweep" in repo_name.lower()) or ("test" in repo_name.lower()): logger.info("Test repository detected") edit_sweep_comment( ( "Sweep does not work on test repositories. Please create an issue" " on a real repository. If you think this is a mistake, please" " report this at https://discord.gg/sweep." ), -1, ) return {"success": False} if lint_mode: # Get files to change # Create new branch # Send request to endpoint for file_path in []: SweepBot.run_sandbox( repo.html_url, file_path, None, user_token, only_lint=True ) logger.info("Fetching relevant files...") try: snippets, tree = search_snippets( cloned_repo, f"{title}\n{summary}\n{replies_text}", num_files=num_of_snippets_to_query, ) assert len(snippets) > 0 except SystemExit: raise SystemExit except Exception as e: trace = traceback.format_exc() logger.error(e) logger.error(trace) edit_sweep_comment( ( "It looks like an issue has occurred around fetching the files." " Perhaps the repo has not been initialized. If this error persists" f" contact [email protected].\n\n> @{username}, please edit the issue" " description to include more details and I will automatically" " relaunch." ), -1, ) log_error( is_paying_user, is_trial_user, username, issue_url, "File Fetch", str(e) + "\n" + traceback.format_exc(), priority=1, ) raise e snippets = post_process_snippets( snippets, max_num_of_snippets=2 if use_faster_model else 5 ) if not repo_description: repo_description = "No description provided." message_summary = summary + replies_text external_results = ExternalSearcher.extract_summaries(message_summary) if external_results: message_summary += "\n\n" + external_results user_dict = get_documentation_dict(repo) docs_results = "" try: docs_results = extract_relevant_docs( title + message_summary, user_dict, chat_logger ) if docs_results: message_summary += "\n\n" + docs_results except SystemExit: raise SystemExit except Exception as e: logger.error(f"Failed to extract docs: {e}") human_message = HumanMessagePrompt( repo_name=repo_name, issue_url=issue_url, username=username, repo_description=repo_description.strip(), title=title, summary=message_summary, snippets=snippets, tree=tree, ) context_pruning = ContextPruning(chat_logger=chat_logger) ( snippets_to_ignore, excluded_dirs, ) = context_pruning.prune_context( # TODO, ignore directories human_message, repo=repo ) snippets = post_process_snippets( snippets, max_num_of_snippets=5, exclude_snippets=snippets_to_ignore ) dir_obj = DirectoryTree() dir_obj.parse(tree) dir_obj.remove_multiple(excluded_dirs) tree = str(dir_obj) logger.info(f"New snippets: {snippets}") logger.info(f"New tree: {tree}") human_message = HumanMessagePrompt( repo_name=repo_name, issue_url=issue_url, username=username, repo_description=repo_description.strip(), title=title, summary=message_summary, snippets=snippets, tree=tree, ) _user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) sweep_bot = SweepBot.from_system_message_content( human_message=human_message, repo=repo, is_reply=bool(comments), chat_logger=chat_logger, sweep_context=sweep_context, ) # Check repository for sweep.yml file. sweep_yml_exists = False for content_file in repo.get_contents(""): if content_file.name == "sweep.yaml": sweep_yml_exists = True break # If sweep.yaml does not exist, then create a new PR that simply creates the sweep.yaml file. if not sweep_yml_exists: try: logger.info("Creating sweep.yaml file...") config_pr = create_config_pr(sweep_bot) config_pr_url = config_pr.html_url edit_sweep_comment(message="", index=-2) except SystemExit: raise SystemExit except Exception as e: logger.error( "Failed to create new branch for sweep.yaml file.\n", e, traceback.format_exc(), ) else: logger.info("sweep.yaml file already exists.") try: # ANALYZE SNIPPETS newline = "\n" edit_sweep_comment( "I found the following snippets in your repository. I will now analyze" " these snippets and come up with a plan." + "\n\n" + create_collapsible( "Some code snippets I looked at (click to expand). If some file is" " missing from here, you can mention the path in the ticket" " description.", "\n".join( [ f"https://github.com/{organization}/{repo_name}/blob/{repo.get_commits()[0].sha}/{snippet.file_path}#L{max(snippet.start, 1)}-L{min(snippet.end, snippet.content.count(newline) - 1)}\n" for snippet in snippets ] ), ) + ( create_collapsible( "I also found the following external resources that might be helpful:", f"\n\n{external_results}\n\n", ) if external_results else "" ) + (f"\n\n{docs_results}\n\n" if docs_results else ""), 1, ) if do_map: subissues: list[ProposedIssue] = sweep_bot.generate_subissues() edit_sweep_comment( f"I'm creating the following subissues:\n\n" + "\n\n".join( [ f"#{subissue.title}:\n" + blockquote(subissue.body) for subissue in subissues ] ), 2, ) for subissue in tqdm(subissues): subissue.issue_id = repo.create_issue( title="Sweep: " + subissue.title, body=subissue.body + f"\n\nParent issue: #{issue_number}", assignee=username, ).number subissues_checklist = "\n\n".join( [ f"- [ ] #{subissue.issue_id}\n\n" + blockquote(f"**{subissue.title}**\n{subissue.body}") for subissue in subissues ] ) current_issue.edit( body=summary + "\n\n---\n\nChecklist:\n\n" + subissues_checklist ) edit_sweep_comment( f"I finished creating the subissues! Track them at:\n\n" + "\n".join(f"* #{subissue.issue_id}" for subissue in subissues), 3, done=True, ) edit_sweep_comment(f"N/A", 4) edit_sweep_comment(f"I finished creating all the subissues.", 5) return {"success": True} # COMMENT ON ISSUE # TODO: removed issue commenting here logger.info("Fetching files to modify/create...") file_change_requests, plan = sweep_bot.get_files_to_change() if not file_change_requests: if len(title + summary) < 60: edit_sweep_comment( ( "Sorry, I could not find any files to modify, can you please" " provide more details? Please make sure that the title and" " summary of the issue are at least 60 characters." ), -1, ) else: edit_sweep_comment( ( "Sorry, I could not find any files to modify, can you please" " provide more details?" ), -1, ) raise Exception("No files to modify.") sweep_bot.summarize_snippets() file_change_requests = sweep_bot.validate_file_change_requests( file_change_requests ) table = tabulate( [ [ f"`{file_change_request.filename}`", file_change_request.instructions_display.replace( "\n", "<br/>" ).replace("```", "\\```"), ] for file_change_request in file_change_requests ], headers=["File Path", "Proposed Changes"], tablefmt="pipe", ) # edit_sweep_comment( # "From looking through the relevant snippets, I decided to make the" # " following modifications:\n\n" + table + "\n\n", # 2, # ) # TODO(lukejagg): Generate PR after modifications are made # CREATE PR METADATA logger.info("Generating PR...") pull_request = sweep_bot.generate_pull_request() # pull_request_content = pull_request.content.strip().replace("\n", "\n>") # pull_request_summary = f"**{pull_request.title}**\n`{pull_request.branch_name}`\n>{pull_request_content}\n" # edit_sweep_comment( # ( # "I have created a plan for writing the pull request. I am now working" # " my plan and coding the required changes to address this issue. Here" # f" is the planned pull request:\n\n{pull_request_summary}" # ), # 3, # ) logger.info("Making PR...") files_progress: list[tuple[str, str, str, str]] = [ ( file_change_request.filename, file_change_request.instructions_display, "⏳ In Progress", "", ) for file_change_request in file_change_requests ] checkboxes_progress: list[tuple[str, str, str]] = [ (file_change_request.filename, file_change_request.instructions, " ") for file_change_request in file_change_requests ] checkboxes_contents = "\n".join( [ create_checkbox(f"`{filename}`", blockquote(instructions), check == "X") for filename, instructions, check in checkboxes_progress ] ) checkboxes_collapsible = create_collapsible( "Checklist", checkboxes_contents, opened=True ) issue = repo.get_issue(number=issue_number) issue.edit(body=summary + "\n\n" + checkboxes_collapsible) delete_branch = False generator = create_pr_changes( # make this async later file_change_requests, pull_request, sweep_bot, username, installation_id, issue_number, chat_logger=chat_logger, ) edit_sweep_comment(checkboxes_contents, 2) response = {"error": NoFilesException()} for item in generator: if isinstance(item, dict): response = item break file_change_request, changed_file, sandbox_response, commit = item sandbox_response: SandboxResponse | None = sandbox_response format_exit_code = ( lambda exit_code: "✓" if exit_code == 0 else f"❌ (`{exit_code}`)" ) logger.print(sandbox_response) error_logs = ( ( create_collapsible( "Sandbox Execution Logs", blockquote( "\n\n".join( [ create_collapsible( f"<code>{execution.command.format(file_path=file_change_request.filename)}</code> {i + 1}/{len(sandbox_response.executions)} {format_exit_code(execution.exit_code)}", f"<pre>{clean_logs(execution.output)}</pre>", i == len(sandbox_response.executions) - 1, ) for i, execution in enumerate( sandbox_response.executions ) if len(sandbox_response.executions) > 0 # And error code check ] ) ), opened=True, ) ) if sandbox_response else "" ) if changed_file: logger.print("Changed File!") commit_hash = ( commit.sha if commit is not None else repo.get_branch(pull_request.branch_name).commit.sha ) commit_url = f"https://github.com/{repo_full_name}/commit/{commit_hash}" checkboxes_progress = [ ( ( f"`{filename}` ✅ Commit [`{commit_hash[:7]}`]({commit_url})", blockquote(instructions) + error_logs, "X", ) if file_change_request.filename == filename else (filename, instructions, progress) ) for filename, instructions, progress in checkboxes_progress ] else: logger.print("Didn't change file!") checkboxes_progress = [ ( ( f"`{filename}` ❌ Failed", blockquote(instructions) + error_logs, "X", ) if file_change_request.filename == filename else (filename, instructions, progress) ) for filename, instructions, progress in checkboxes_progress ] checkboxes_contents = "\n".join( [ checkbox_template.format( check=check, filename=filename, instructions=instructions, ) for filename, instructions, check in checkboxes_progress ] ) checkboxes_collapsible = collapsible_template.format( summary="Checklist", body=checkboxes_contents, opened="open", ) issue = repo.get_issue(number=issue_number) issue.edit(body=summary + "\n\n" + checkboxes_collapsible) logger.info(files_progress) logger.info(f"Edited {file_change_request.filename}") edit_sweep_comment(checkboxes_contents, 2) if not response.get("success"): raise Exception(f"Failed to create PR: {response.get('error')}") pr_changes = response["pull_request"] edit_sweep_comment( "I have finished coding the issue. I am now reviewing it for completeness.", 3, ) change_location = f" [`{pr_changes.pr_head}`](https://github.com/{repo_full_name}/commits/{pr_changes.pr_head}).\n\n" review_message = "Here are my self-reviews of my changes at" + change_location lint_output = None try: current_issue.delete_reaction(eyes_reaction.id) except SystemExit: raise SystemExit except: pass changes_required = False try: # Todo(lukejagg): Pass sandbox linter results to review_pr # CODE REVIEW changes_required, review_comment = review_pr( repo=repo, pr=pr_changes, issue_url=issue_url, username=username, repo_description=repo_description, title=title, summary=summary, replies_text=replies_text, tree=tree, lint_output=lint_output, plan=plan, # plan for the PR chat_logger=chat_logger, ) # Todo(lukejagg): Execute sandbox after each iteration lint_output = None review_message += ( f"Here is the {ordinal(1)} review\n" + blockquote(review_comment) + "\n\n" ) if changes_required: edit_sweep_comment( review_message + "\n\nI'm currently addressing these suggestions.", 3, ) logger.info(f"Addressing review comment {review_comment}") on_comment( repo_full_name=repo_full_name, repo_description=repo_description, comment=review_comment, username=username, installation_id=installation_id, pr_path=None, pr_line_position=None, pr_number=None, pr=pr_changes, chat_logger=chat_logger, repo=repo, ) except SystemExit: raise SystemExit except Exception as e: logger.error(traceback.format_exc()) logger.error(e) if changes_required: edit_sweep_comment( review_message + "\n\nI finished incorporating these changes.", 3, ) else: edit_sweep_comment( f"I have finished reviewing the code for completeness. I did not find errors for {change_location}.", 3, ) is_draft = config.get("draft", False) try: pr = repo.create_pull( title=pr_changes.title, body=pr_changes.body, head=pr_changes.pr_head, base=SweepConfig.get_branch(repo), draft=is_draft, ) except GithubException as e: is_draft = False pr = repo.create_pull( title=pr_changes.title, body=pr_changes.body, head=pr_changes.pr_head, base=SweepConfig.get_branch(repo), draft=is_draft, ) pr.add_to_labels(GITHUB_LABEL_NAME) current_issue.create_reaction("rocket") logger.info("Running github actions...") try: if is_draft: logger.info("Skipping github actions because PR is a draft") else: commit = pr.get_commits().reversed[0] check_runs = commit.get_check_runs() for check_run in check_runs: check_run.rerequest() except SystemExit: raise SystemExit except Exception as e: logger.error(e) # Completed code review edit_sweep_comment( review_message + "\n\nSuccess! 🚀", 4, pr_message=( f"## Here's the PR! [{pr.html_url}]({pr.html_url}).\n{payment_message}" ), done=True, ) logger.info("Add successful ticket to counter") except MaxTokensExceeded as e: logger.info("Max tokens exceeded") log_error( is_paying_user, is_trial_user, username, issue_url, "Max Tokens Exceeded", str(e) + "\n" + traceback.format_exc(), priority=2, ) if chat_logger.is_paying_user(): edit_sweep_comment( ( f"Sorry, I could not edit `{e.filename}` as this file is too long." " We are currently working on improved file streaming to address" " this issue.\n" ), -1, ) else: edit_sweep_comment( ( f"Sorry, I could not edit `{e.filename}` as this file is too" " long.\n\nIf this file is incorrect, please describe the desired" " file in the prompt. However, if you would like to edit longer" " files, consider upgrading to [Sweep Pro](https://sweep.dev/) for" " longer context lengths.\n" ), -1, ) delete_branch = True raise e except NoFilesException as e: logger.info("Sweep could not find files to modify") log_error( is_paying_user, is_trial_user, username, issue_url, "Sweep could not find files to modify", str(e) + "\n" + traceback.format_exc(), priority=2, ) edit_sweep_comment( ( "Sorry, Sweep could not find any appropriate files to edit to address" " this issue. If this is a mistake, please provide more context and I" f" will retry!\n\n> @{username}, please edit the issue description to" " include more details about this issue." ), -1, ) delete_branch = True raise e except openai.error.InvalidRequestError as e: logger.error(traceback.format_exc()) logger.error(e) edit_sweep_comment( ( "I'm sorry, but it looks our model has ran out of context length. We're" " trying to make this happen less, but one way to mitigate this is to" " code smaller files. If this error persists report it at" " https://discord.gg/sweep." ), -1, ) log_error( is_paying_user, is_trial_user, username, issue_url, "Context Length", str(e) + "\n" + traceback.format_exc(), priority=2, ) posthog.capture( username, "failed", properties={ "error": str(e), "reason": "Invalid request error / context length", **metadata, }, ) delete_branch = True raise e except SystemExit: raise SystemExit except Exception as e: logger.error(traceback.format_exc()) logger.error(e) # title and summary are defined elsewhere if len(title + summary) < 60: edit_sweep_comment( ( "I'm sorry, but it looks like an error has occurred due to" " insufficient information. Be sure to create a more detailed issue" " so I can better address it. If this error persists report it at" " https://discord.gg/sweep." ), -1, ) else: edit_sweep_comment( ( "I'm sorry, but it looks like an error has occurred. Try changing" " the issue description to re-trigger Sweep. If this error persists" " contact [email protected]." ), -1, ) log_error( is_paying_user, is_trial_user, username, issue_url, "Workflow", str(e) + "\n" + traceback.format_exc(), priority=1, ) posthog.capture( username, "failed", properties={"error": str(e), "reason": "Generic error", **metadata}, ) raise e else: try: item_to_react_to.delete_reaction(eyes_reaction.id) item_to_react_to.create_reaction("rocket") except SystemExit: raise SystemExit except Exception as e: logger.error(e) finally: cloned_repo.delete() if delete_branch: try: if pull_request.branch_name.startswith("sweep"): repo.get_git_ref(f"heads/{pull_request.branch_name}").delete() else: raise Exception( f"Branch name {pull_request.branch_name} does not start with sweep/" ) except SystemExit: raise SystemExit except Exception as e: logger.error(e) logger.error(traceback.format_exc()) logger.print("Deleted branch", pull_request.branch_name) posthog.capture(username, "success", properties={**metadata}) logger.info("on_ticket success") return {"success": True} """ tokens = tokenize_call(file_contents) symbols = list(set([token.text for token in tokens])) print(symbols)
[]
2024-01-10
sweepai/sweep
sweepai~handlers~on_ticket.py
""" on_ticket is the main function that is called when a new issue is created. It is only called by the webhook handler in sweepai/api.py. """ import difflib import os import re import traceback from time import time import markdown import openai import yaml import yamllint.config as yamllint_config from github import BadCredentialsException from github.Issue import Issue from logtail import LogtailContext, LogtailHandler from loguru import logger from tabulate import tabulate from tqdm import tqdm from yamllint import linter from sweepai.agents.pr_description_bot import PRDescriptionBot from sweepai.config.client import ( DEFAULT_RULES, RESET_FILE, RESTART_SWEEP_BUTTON, REVERT_CHANGED_FILES_TITLE, RULES_LABEL, RULES_TITLE, SWEEP_BAD_FEEDBACK, SWEEP_GOOD_FEEDBACK, SweepConfig, get_documentation_dict, get_rules, ) from sweepai.config.server import ( DISCORD_FEEDBACK_WEBHOOK_URL, ENV, GITHUB_BOT_USERNAME, GITHUB_LABEL_NAME, IS_SELF_HOSTED, LOGTAIL_SOURCE_KEY, MONGODB_URI, OPENAI_USE_3_5_MODEL_ONLY, WHITELISTED_REPOS, ) from sweepai.core.entities import ( AssistantRaisedException, FileChangeRequest, MaxTokensExceeded, NoFilesException, ProposedIssue, PullRequest, SandboxResponse, ) from sweepai.core.entities import create_error_logs as entities_create_error_logs from sweepai.core.external_searcher import ExternalSearcher from sweepai.core.sweep_bot import SweepBot from sweepai.handlers.create_pr import ( create_config_pr, create_pr_changes, safe_delete_sweep_branch, ) from sweepai.handlers.on_comment import on_comment from sweepai.handlers.on_review import review_pr from sweepai.utils.buttons import Button, ButtonList, create_action_buttons from sweepai.utils.chat_logger import ChatLogger from sweepai.utils.diff import generate_diff from sweepai.utils.event_logger import posthog from sweepai.utils.github_utils import ClonedRepo, get_github_client from sweepai.utils.progress import ( AssistantConversation, PaymentContext, TicketContext, TicketProgress, TicketProgressStatus, ) from sweepai.utils.prompt_constructor import HumanMessagePrompt from sweepai.utils.str_utils import ( UPDATES_MESSAGE, blockquote, bot_suffix, checkbox_template, clean_logs, collapsible_template, create_checkbox, create_collapsible, discord_suffix, format_sandbox_success, ordinal, sep, stars_suffix, strip_sweep, to_branch_name, ) from sweepai.utils.ticket_utils import ( center, fetch_relevant_files, fire_and_forget_wrapper, log_error, ) from sweepai.utils.user_settings import UserSettings # from sandbox.sandbox_utils import Sandbox sweeping_gif = """<a href="https://github.com/sweepai/sweep"><img class="swing" src="https://raw.githubusercontent.com/sweepai/sweep/main/.assets/sweeping.gif" width="100" style="width:50px; margin-bottom:10px" alt="Sweeping"></a>""" custom_config = """ extends: relaxed rules: line-length: disable indentation: disable """ INSTRUCTIONS_FOR_REVIEW = """\ ### 💡 To get Sweep to edit this pull request, you can: * Comment below, and Sweep can edit the entire PR * Comment on a file, Sweep will only modify the commented file * Edit the original issue to get Sweep to recreate the PR from scratch""" email_template = """Hey {name}, <br/><br/> 🚀 I just finished creating a pull request for your issue ({repo_full_name}#{issue_number}) at <a href="{pr_url}">{repo_full_name}#{pr_number}</a>! <br/><br/> You can view how I created this pull request <a href="{progress_url}">here</a>. <h2>Summary</h2> <blockquote> {summary} </blockquote> <h2>Files Changed</h2> <ul> {files_changed} </ul> {sweeping_gif} <br/> Cheers, <br/> Sweep <br/>""" def on_ticket( title: str, summary: str, issue_number: int, issue_url: str, username: str, repo_full_name: str, repo_description: str, installation_id: int, comment_id: int = None, edited: bool = False, tracking_id: str | None = None, ): on_ticket_start_time = time() logger.info(f"Starting on_ticket with title {title} and summary {summary}") ( title, slow_mode, do_map, subissues_mode, sandbox_mode, fast_mode, lint_mode, ) = strip_sweep(title) def initialize_logtail_context(): context = LogtailContext() context.context( task={ "issue_url": issue_url, "issue_number": issue_number, "repo_full_name": repo_full_name, "repo_description": repo_description, "username": username, "comment_id": comment_id, "edited": edited, "issue_title": title, } ) handler = LogtailHandler(source_token=LOGTAIL_SOURCE_KEY, context=context) logger.add(handler) fire_and_forget_wrapper(initialize_logtail_context)() summary = summary or "" summary = re.sub( "<details (open)?>(\r)?\n<summary>Checklist</summary>.*", "", summary, flags=re.DOTALL, ).strip() summary = re.sub( "---\s+Checklist:(\r)?\n(\r)?\n- \[[ X]\].*", "", summary, flags=re.DOTALL ).strip() summary = re.sub("### Details\n\n_No response_", "", summary, flags=re.DOTALL) summary = re.sub("\n\n", "\n", summary, flags=re.DOTALL) repo_name = repo_full_name user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) current_issue: Issue = repo.get_issue(number=issue_number) assignee = current_issue.assignee.login if current_issue.assignee else None if assignee is None: assignee = current_issue.user.login ticket_progress = TicketProgress( tracking_id=tracking_id, username=username, context=TicketContext( title=title, description=summary, repo_full_name=repo_full_name, issue_number=issue_number, is_public=repo.private is False, start_time=time(), ), ) branch_match = re.search(r"branch: (.*)(\n\r)?", summary) if branch_match: branch_name = branch_match.group(1) fire_and_forget_wrapper(SweepConfig.get_branch)(repo, branch_name) chat_logger = ( ChatLogger( { "repo_name": repo_name, "title": title, "summary": summary, "issue_number": issue_number, "issue_url": issue_url, "username": username if not username.startswith("sweep") else assignee, "repo_full_name": repo_full_name, "repo_description": repo_description, "installation_id": installation_id, "type": "ticket", "mode": ENV, "comment_id": comment_id, "edited": edited, "tracking_id": tracking_id, }, active=True, ) if MONGODB_URI else None ) if chat_logger: is_paying_user = chat_logger.is_paying_user() is_consumer_tier = chat_logger.is_consumer_tier() use_faster_model = OPENAI_USE_3_5_MODEL_ONLY or chat_logger.use_faster_model() else: is_paying_user = True is_consumer_tier = False use_faster_model = False if fast_mode: use_faster_model = True if not comment_id and not edited and chat_logger and not sandbox_mode: fire_and_forget_wrapper(chat_logger.add_successful_ticket)( gpt3=use_faster_model ) organization, repo_name = repo_full_name.split("/") metadata = { "issue_url": issue_url, "repo_full_name": repo_full_name, "organization": organization, "repo_name": repo_name, "repo_description": repo_description, "username": username, "comment_id": comment_id, "title": title, "installation_id": installation_id, "function": "on_ticket", "edited": edited, "model": "gpt-3.5" if use_faster_model else "gpt-4", "tier": "pro" if is_paying_user else "free", "mode": ENV, "slow_mode": slow_mode, "do_map": do_map, "subissues_mode": subissues_mode, "sandbox_mode": sandbox_mode, "fast_mode": fast_mode, "is_self_hosted": IS_SELF_HOSTED, "tracking_id": tracking_id, } fire_and_forget_wrapper(posthog.capture)(username, "started", properties=metadata) try: if current_issue.state == "closed": fire_and_forget_wrapper(posthog.capture)( username, "issue_closed", properties={ **metadata, "duration": round(time() - on_ticket_start_time), }, ) return {"success": False, "reason": "Issue is closed"} # Add :eyes: emoji to ticket def add_emoji(reaction_content="eyes"): item_to_react_to = ( current_issue.get_comment(comment_id) if comment_id else current_issue ) item_to_react_to.create_reaction("eyes") fire_and_forget_wrapper(add_emoji)() # If SWEEP_BOT reacted to item_to_react_to with "rocket", then remove it. def remove_emoji(content_to_delete="eyes"): item_to_react_to = ( current_issue.get_comment(comment_id) if comment_id else current_issue ) reactions = item_to_react_to.get_reactions() for reaction in reactions: if ( reaction.content == content_to_delete and reaction.user.login == GITHUB_BOT_USERNAME ): item_to_react_to.delete_reaction(reaction.id) fire_and_forget_wrapper(remove_emoji)(content_to_delete="rocket") fire_and_forget_wrapper(current_issue.edit)(body=summary) replies_text = "" summary = summary if summary else "" def delete_old_prs(): logger.info("Deleting old PRs...") prs = repo.get_pulls( state="open", sort="created", direction="desc", base=SweepConfig.get_branch(repo), ) checked_pr_count = 0 for pr in tqdm(prs): # # Check if this issue is mentioned in the PR, and pr is owned by bot # # This is done in create_pr, (pr_description = ...) if checked_pr_count >= 40: break if ( pr.user.login == GITHUB_BOT_USERNAME and f"Fixes #{issue_number}.\n" in pr.body ): success = safe_delete_sweep_branch(pr, repo) break checked_pr_count += 1 fire_and_forget_wrapper(delete_old_prs)() if not sandbox_mode: progress_headers = [ None, "Step 1: 🔎 Searching", "Step 2: ⌨️ Coding", "Step 3: 🔁 Code Review", ] else: progress_headers = [ None, "📖 Reading File", "🛠️ Executing Sandbox", ] issue_comment = None payment_message, payment_message_start = get_payment_messages(chat_logger) ticket_progress.context.payment_context = PaymentContext( use_faster_model=use_faster_model, pro_user=is_paying_user, daily_tickets_used=chat_logger.get_ticket_count(use_date=True) if chat_logger else 0, monthly_tickets_used=chat_logger.get_ticket_count() if chat_logger else 0, ) ticket_progress.save() config_pr_url = None user_settings = UserSettings.from_username(username=username) user_settings_message = user_settings.get_message() def get_comment_header( index, errored=False, pr_message="", done=False, initial_sandbox_response: int | SandboxResponse = -1, initial_sandbox_response_file=None, ): config_pr_message = ( "\n" + f"<div align='center'>Install Sweep Configs: <a href='{config_pr_url}'>Pull Request</a></div>" if config_pr_url is not None else "" ) actions_message = create_action_buttons( [ RESTART_SWEEP_BUTTON, ] ) sandbox_execution_message = "\n\n## GitHub Actions failed\n\nThe sandbox appears to be unavailable or down.\n\n" if initial_sandbox_response == -1: sandbox_execution_message = "" elif initial_sandbox_response is not None: repo = g.get_repo(repo_full_name) commit_hash = repo.get_commits()[0].sha success = ( initial_sandbox_response.outputs and initial_sandbox_response.success ) status = "✓" if success else "X" sandbox_execution_message = ( "\n\n## GitHub Actions" + status + "\n\nHere are the GitHub Actions logs prior to making any changes:\n\n" ) sandbox_execution_message += entities_create_error_logs( f'<a href="https://github.com/{repo_full_name}/commit/{commit_hash}"><code>{commit_hash[:7]}</code></a>', initial_sandbox_response, initial_sandbox_response_file, ) if success: sandbox_execution_message += f"\n\nSandbox passed on the latest `{repo.default_branch}`, so sandbox checks will be enabled for this issue." else: sandbox_execution_message += f"\n\nSandbox failed, so all sandbox checks will be disabled for this issue." if index < 0: index = 0 if index == 4: return ( pr_message + config_pr_message + f"\n\n---\n{user_settings.get_message(completed=True)}" + f"\n\n---\n{actions_message}" + sandbox_execution_message ) total = len(progress_headers) index += 1 if done else 0 index *= 100 / total index = int(index) index = min(100, index) if errored: pbar = f"\n\n<img src='https://progress-bar.dev/{index}/?&title=Errored&width=600' alt='{index}%' />" return ( f"{center(sweeping_gif)}<br/>{center(pbar)}\n\n" + f"\n\n---\n{actions_message}" + sandbox_execution_message ) pbar = f"\n\n<img src='https://progress-bar.dev/{index}/?&title=Progress&width=600' alt='{index}%' />" return ( f"{center(sweeping_gif)}" + center( f'\n\n<h2>✨ Track Sweep\'s progress on our <a href="https://progress.sweep.dev/issues/{tracking_id}">progress dashboard</a>!</h2>' ) + f"<br/>{center(pbar)}" + ("\n" + stars_suffix if index != -1 else "") + "\n" + center(payment_message_start) + f"\n\n---\n{user_settings_message}" + config_pr_message + f"\n\n---\n{actions_message}" + sandbox_execution_message ) cloned_repo = ClonedRepo( repo_full_name, installation_id=installation_id, token=user_token, repo=repo ) # check that repo's directory is non-empty if os.listdir(cloned_repo.cached_dir) == []: logger.info("Empty repo") first_comment = ( "Sweep is currently not supported on empty repositories. Please add some" f" code to your repository and try again.\n{sep}##" f" {progress_headers[1]}\n{bot_suffix}{discord_suffix}" ) if issue_comment is None: issue_comment = current_issue.create_comment(first_comment) else: issue_comment.edit(first_comment) return {"success": False} indexing_message = ( "I'm searching for relevant snippets in your repository. If this is your first" " time using Sweep, I'm indexing your repository. You can monitor the progress using the progress dashboard" ) first_comment = ( f"{get_comment_header(0)}\n{sep}I am currently looking into this ticket! I" " will update the progress of the ticket in this comment. I am currently" f" searching through your code, looking for relevant snippets.\n{sep}##" f" {progress_headers[1]}\n{indexing_message}{bot_suffix}{discord_suffix}" ) # Find Sweep's previous comment comments = [] for comment in current_issue.get_comments(): comments.append(comment) if comment.user.login == GITHUB_BOT_USERNAME: issue_comment = comment break if issue_comment is None: issue_comment = current_issue.create_comment(first_comment) else: fire_and_forget_wrapper(issue_comment.edit)(first_comment) past_messages = {} current_index = 0 table = None initial_sandbox_response = -1 initial_sandbox_response_file = None def edit_sweep_comment(message: str, index: int, pr_message="", done=False): nonlocal current_index, user_token, g, repo, issue_comment, initial_sandbox_response, initial_sandbox_response_file # -1 = error, -2 = retry # Only update the progress bar if the issue generation errors. errored = index == -1 if index >= 0: past_messages[index] = message current_index = index agg_message = None # Include progress history # index = -2 is reserved for for i in range( current_index + 2 ): # go to next header (for Working on it... text) if i == 0 or i >= len(progress_headers): continue # skip None header header = progress_headers[i] if header is not None: header = "## " + header + "\n" else: header = "No header\n" msg = header + (past_messages.get(i) or "Working on it...") if agg_message is None: agg_message = msg else: agg_message = agg_message + f"\n{sep}" + msg suffix = bot_suffix + discord_suffix if errored: agg_message = ( "## ❌ Unable to Complete PR" + "\n" + message + "\n\nFor bonus GPT-4 tickets, please report this bug on" f" **[Discord](https://discord.gg/invite/sweep)** (tracking ID: `{tracking_id}`)." ) if table is not None: agg_message = ( agg_message + f"\n{sep}Please look at the generated plan. If something looks" f" wrong, please add more details to your issue.\n\n{table}" ) suffix = bot_suffix # don't include discord suffix for error messages # Update the issue comment msg = f"{get_comment_header(current_index, errored, pr_message, done=done, initial_sandbox_response=initial_sandbox_response, initial_sandbox_response_file=initial_sandbox_response_file)}\n{sep}{agg_message}{suffix}" try: issue_comment.edit(msg) except BadCredentialsException: logger.error( f"Bad credentials, refreshing token (tracking ID: `{tracking_id}`)" ) _user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) for comment in comments: if comment.user.login == GITHUB_BOT_USERNAME: issue_comment = comment current_issue = repo.get_issue(number=issue_number) if issue_comment is None: issue_comment = current_issue.create_comment(msg) else: issue_comment = [ comment for comment in current_issue.get_comments() if comment.user == GITHUB_BOT_USERNAME ][0] issue_comment.edit(msg) if sandbox_mode: handle_sandbox_mode( title, repo_full_name, repo, ticket_progress, edit_sweep_comment ) return {"success": True} if len(title + summary) < 20: logger.info("Issue too short") edit_sweep_comment( ( f"Please add more details to your issue. I need at least 20 characters" f" to generate a plan. Please join our Discord server for support (tracking_id={tracking_id})" ), -1, ) posthog.capture( username, "issue_too_short", properties={ **metadata, "duration": round(time() - on_ticket_start_time), }, ) return {"success": True} if ( repo_name.lower() not in WHITELISTED_REPOS and not is_paying_user and not is_consumer_tier ): if ("sweep" in repo_name.lower()) or ("test" in repo_name.lower()): logger.info("Test repository detected") edit_sweep_comment( ( f"Sweep does not work on test repositories. Please create an issue" f" on a real repository. If you think this is a mistake, please" f" report this at https://discord.gg/sweep. Please join our Discord server for support (tracking_id={tracking_id})" ), -1, ) posthog.capture( username, "test_repo", properties={ **metadata, "duration": round(time() - on_ticket_start_time), }, ) return {"success": False} try: snippets, tree, _ = fetch_relevant_files( cloned_repo, title, summary, replies_text, username, metadata, on_ticket_start_time, tracking_id, is_paying_user, is_consumer_tier, issue_url, chat_logger, ticket_progress, ) except: edit_sweep_comment( ( "It looks like an issue has occurred around fetching the files." " Perhaps the repo has not been initialized. If this error persists" f" contact [email protected].\n\n> @{username}, editing this issue description to include more details will automatically make me relaunch. Please join our Discord server for support (tracking_id={tracking_id})" ), -1, ) raise Exception("Failed to fetch files") ticket_progress.search_progress.indexing_progress = ( ticket_progress.search_progress.indexing_total ) ticket_progress.status = TicketProgressStatus.PLANNING ticket_progress.save() # Fetch git commit history if not repo_description: repo_description = "No description provided." message_summary = summary + replies_text external_results = ExternalSearcher.extract_summaries(message_summary) if external_results: message_summary += "\n\n" + external_results user_dict = get_documentation_dict(repo) docs_results = "" human_message = HumanMessagePrompt( repo_name=repo_name, issue_url=issue_url, username=username, repo_description=repo_description.strip(), title=title, summary=message_summary, snippets=snippets, tree=tree, ) _user_token, g = get_github_client(installation_id) repo = g.get_repo(repo_full_name) sweep_bot = SweepBot.from_system_message_content( human_message=human_message, repo=repo, is_reply=bool(comments), chat_logger=chat_logger, cloned_repo=cloned_repo, ticket_progress=ticket_progress, ) # Check repository for sweep.yml file. sweep_yml_exists = False sweep_yml_failed = False for content_file in repo.get_contents(""): if content_file.name == "sweep.yaml": sweep_yml_exists = True # Check if YAML is valid yaml_content = content_file.decoded_content.decode("utf-8") sweep_yaml_dict = {} try: sweep_yaml_dict = yaml.safe_load(yaml_content) except: logger.error(f"Failed to load YAML file: {yaml_content}") if len(sweep_yaml_dict) > 0: break linter_config = yamllint_config.YamlLintConfig(custom_config) problems = list(linter.run(yaml_content, linter_config)) if problems: errors = [ f"Line {problem.line}: {problem.desc} (rule: {problem.rule})" for problem in problems ] error_message = "\n".join(errors) markdown_error_message = f"**There is something wrong with your [sweep.yaml](https://github.com/{repo_full_name}/blob/main/sweep.yaml):**\n```\n{error_message}\n```" sweep_yml_failed = True logger.error(markdown_error_message) edit_sweep_comment(markdown_error_message, -1) else: logger.info("The YAML file is valid. No errors found.") break # If sweep.yaml does not exist, then create a new PR that simply creates the sweep.yaml file. if not sweep_yml_exists: try: logger.info("Creating sweep.yaml file...") config_pr = create_config_pr(sweep_bot, cloned_repo=cloned_repo) config_pr_url = config_pr.html_url edit_sweep_comment(message="", index=-2) except SystemExit: raise SystemExit except Exception as e: logger.error( "Failed to create new branch for sweep.yaml file.\n", e, traceback.format_exc(), ) else: logger.info("sweep.yaml file already exists.") try: # ANALYZE SNIPPETS newline = "\n" edit_sweep_comment( "I found the following snippets in your repository. I will now analyze" " these snippets and come up with a plan." + "\n\n" + create_collapsible( "Some code snippets I think are relevant in decreasing order of relevance (click to expand). If some file is missing from here, you can mention the path in the ticket description.", "\n".join( [ f"https://github.com/{organization}/{repo_name}/blob/{repo.get_commits()[0].sha}/{snippet.file_path}#L{max(snippet.start, 1)}-L{min(snippet.end, snippet.content.count(newline) - 1)}\n" for snippet in snippets ] ), ) + ( create_collapsible( "I also found the following external resources that might be helpful:", f"\n\n{external_results}\n\n", ) if external_results else "" ) + (f"\n\n{docs_results}\n\n" if docs_results else ""), 1, ) if do_map: subissues: list[ProposedIssue] = sweep_bot.generate_subissues() edit_sweep_comment( f"I'm creating the following subissues:\n\n" + "\n\n".join( [ f"#{subissue.title}:\n" + blockquote(subissue.body) for subissue in subissues ] ), 2, ) for subissue in tqdm(subissues): subissue.issue_id = repo.create_issue( title="Sweep: " + subissue.title, body=subissue.body + f"\n\nParent issue: #{issue_number}", assignee=username, ).number subissues_checklist = "\n\n".join( [ f"- [ ] #{subissue.issue_id}\n\n" + blockquote(f"**{subissue.title}**\n{subissue.body}") for subissue in subissues ] ) current_issue.edit( body=summary + "\n\n---\n\nChecklist:\n\n" + subissues_checklist ) edit_sweep_comment( f"I finished creating the subissues! Track them at:\n\n" + "\n".join(f"* #{subissue.issue_id}" for subissue in subissues), 3, done=True, ) edit_sweep_comment(f"N/A", 4) edit_sweep_comment(f"I finished creating all the subissues.", 5) posthog.capture( username, "subissues_created", properties={ **metadata, "count": len(subissues), "duration": round(time() - on_ticket_start_time), }, ) return {"success": True} logger.info("Fetching files to modify/create...") non_python_count = sum( not file_path.endswith(".py") and not file_path.endswith(".ipynb") and not file_path.endswith(".md") for file_path in human_message.get_file_paths() ) python_count = len(human_message.get_file_paths()) - non_python_count is_python_issue = python_count >= non_python_count and python_count > 0 posthog.capture( username, "is_python_issue", properties={"is_python_issue": is_python_issue}, ) file_change_requests, plan = sweep_bot.get_files_to_change(is_python_issue) ticket_progress.planning_progress.file_change_requests = ( file_change_requests ) ticket_progress.coding_progress.file_change_requests = file_change_requests ticket_progress.coding_progress.assistant_conversations = [ AssistantConversation() for fcr in file_change_requests ] ticket_progress.status = TicketProgressStatus.CODING ticket_progress.save() if not file_change_requests: if len(title + summary) < 60: edit_sweep_comment( ( "Sorry, I could not find any files to modify, can you please" " provide more details? Please make sure that the title and" " summary of the issue are at least 60 characters." ), -1, ) else: edit_sweep_comment( ( "Sorry, I could not find any files to modify, can you please" " provide more details?" ), -1, ) raise Exception("No files to modify.") ( initial_sandbox_response, initial_sandbox_response_file, ) = sweep_bot.validate_sandbox(file_change_requests) file_change_requests: list[ FileChangeRequest ] = sweep_bot.validate_file_change_requests( file_change_requests, initial_sandbox_response=initial_sandbox_response ) ticket_progress.planning_progress.file_change_requests = ( file_change_requests ) ticket_progress.coding_progress.assistant_conversations = [ AssistantConversation() for fcr in file_change_requests ] ticket_progress.save() table = tabulate( [ [ file_change_request.entity_display, file_change_request.instructions_display.replace( "\n", "<br/>" ).replace("```", "\\```"), ] for file_change_request in file_change_requests if file_change_request.change_type != "check" ], headers=["File Path", "Proposed Changes"], tablefmt="pipe", ) logger.info("Generating PR...") pull_request = PullRequest( title="Sweep: " + title, branch_name="sweep/" + to_branch_name(title), content="", ) logger.info("Making PR...") ticket_progress.context.branch_name = pull_request.branch_name ticket_progress.save() files_progress: list[tuple[str, str, str, str]] = [ ( file_change_request.entity_display, file_change_request.instructions_display, "⏳ In Progress", "", ) for file_change_request in file_change_requests ] checkboxes_progress: list[tuple[str, str, str]] = [ ( file_change_request.entity_display, file_change_request.instructions_display, " ", ) for file_change_request in file_change_requests if not file_change_request.change_type == "check" ] checkboxes_contents = "\n".join( [ create_checkbox( f"`{filename}`", blockquote(instructions), check == "X" ) for filename, instructions, check in checkboxes_progress ] ) checkboxes_collapsible = create_collapsible( "Checklist", checkboxes_contents, opened=True ) file_change_requests[0].status = "running" condensed_checkboxes_contents = "\n".join( [ create_checkbox(f"`{filename}`", "", check == "X").strip() for filename, instructions, check in checkboxes_progress ] ) condensed_checkboxes_collapsible = create_collapsible( "Checklist", condensed_checkboxes_contents, opened=True ) current_issue = repo.get_issue(number=issue_number) current_issue.edit(body=summary + "\n\n" + condensed_checkboxes_collapsible) delete_branch = False generator = create_pr_changes( file_change_requests, pull_request, sweep_bot, username, installation_id, issue_number, chat_logger=chat_logger, ) edit_sweep_comment(checkboxes_contents, 2) response = {"error": NoFilesException()} def create_error_logs( commit_url_display: str, sandbox_response: SandboxResponse, status: str = "✓", ): return ( ( "<br/>" + create_collapsible( f"Sandbox logs for {commit_url_display} {status}", blockquote( "\n\n".join( [ create_collapsible( f"<code>{output}</code> {i + 1}/{len(sandbox_response.outputs)} {format_sandbox_success(sandbox_response.success)}", f"<pre>{clean_logs(output)}</pre>", i == len(sandbox_response.outputs) - 1, ) for i, output in enumerate( sandbox_response.outputs ) if len(sandbox_response.outputs) > 0 ] ) ), opened=True, ) ) if sandbox_response else "" ) def update_progress( entity_display: str, header: str, error_logs: str, status: str = "X", ): nonlocal checkboxes_progress for i, (entity_display_, instructions, status_) in enumerate( checkboxes_progress ): if entity_display in entity_display_: checkboxes_progress[i] = ( header, instructions + error_logs, status, ) return True return False changed_files = [] for item in generator: if isinstance(item, dict): response = item break ( file_change_request, changed_file, sandbox_response, commit, file_change_requests, ) = item changed_files.append(file_change_request.filename) sandbox_response: SandboxResponse | None = sandbox_response logger.info(sandbox_response) commit_hash: str = ( commit if isinstance(commit, str) else ( commit.sha if commit is not None else repo.get_branch(pull_request.branch_name).commit.sha ) ) commit_url = f"https://github.com/{repo_full_name}/commit/{commit_hash}" commit_url_display = ( f"<a href='{commit_url}'><code>{commit_hash[:7]}</code></a>" ) error_logs: str = create_error_logs( commit_url_display, sandbox_response, status="✓" if (sandbox_response is None or sandbox_response.success) else "❌", ) checkboxes_progress = [ ( file_change_request.display_summary + " " + file_change_request.status_display + " " + (file_change_request.commit_hash_url or "") + f" [Edit]({file_change_request.get_edit_url(repo.full_name, pull_request.branch_name)})", file_change_request.instructions_ticket_display + f"\n\n{file_change_request.diff_display}", "X" if file_change_request.status in ("succeeded", "failed") else " ", ) for file_change_request in file_change_requests ] checkboxes_contents = "\n".join( [ checkbox_template.format( check=check, filename=filename, instructions=blockquote(instructions), ) for filename, instructions, check in checkboxes_progress ] ) checkboxes_collapsible = collapsible_template.format( summary="Checklist", body=checkboxes_contents, opened="open", ) condensed_checkboxes_contents = "\n".join( [ checkbox_template.format( check=check, filename=filename, instructions="", ).strip() for filename, instructions, check in checkboxes_progress if not instructions.lower().startswith("run") ] ) condensed_checkboxes_collapsible = collapsible_template.format( summary="Checklist", body=condensed_checkboxes_contents, opened="open", ) current_issue = repo.get_issue(number=issue_number) current_issue.edit( body=summary + "\n\n" + condensed_checkboxes_collapsible ) logger.info(files_progress) logger.info(f"Edited {file_change_request.entity_display}") edit_sweep_comment(checkboxes_contents, 2) if not response.get("success"): raise Exception(f"Failed to create PR: {response.get('error')}") checkboxes_contents = "\n".join( [ checkbox_template.format( check=check, filename=filename, instructions=blockquote(instructions), ) for filename, instructions, check in checkboxes_progress ] ) condensed_checkboxes_contents = "\n".join( [ checkbox_template.format( check=check, filename=filename, instructions="", ).strip() for filename, instructions, check in checkboxes_progress if not instructions.lower().startswith("run") ] ) condensed_checkboxes_collapsible = collapsible_template.format( summary="Checklist", body=condensed_checkboxes_contents, opened="open", ) for _ in range(3): try: current_issue.edit( body=summary + "\n\n" + condensed_checkboxes_collapsible ) break except: from time import sleep sleep(1) edit_sweep_comment(checkboxes_contents, 2) pr_changes = response["pull_request"] # change the body here diff_text = get_branch_diff_text(repo, pull_request.branch_name) new_description = PRDescriptionBot().describe_diffs( diff_text, pull_request.title, ) # TODO: update the title as well if new_description: pr_changes.body = ( f"{new_description}\n\nFixes" f" #{issue_number}.\n\n---\n\n{UPDATES_MESSAGE}\n\n---\n\n{INSTRUCTIONS_FOR_REVIEW}" ) edit_sweep_comment( "I have finished coding the issue. I am now reviewing it for completeness.", 3, ) change_location = f" [`{pr_changes.pr_head}`](https://github.com/{repo_full_name}/commits/{pr_changes.pr_head}).\n\n" review_message = ( "Here are my self-reviews of my changes at" + change_location ) lint_output = None try: fire_and_forget_wrapper(remove_emoji)(content_to_delete="eyes") except SystemExit: raise SystemExit except: pass changes_required, review_message = False, "" if False: changes_required, review_message = review_code( repo, pr_changes, issue_url, username, repo_description, title, summary, replies_text, tree, lint_output, plan, chat_logger, review_message, edit_sweep_comment, repo_full_name, installation_id, ) if changes_required: edit_sweep_comment( review_message + "\n\nI finished incorporating these changes.", 3, ) else: edit_sweep_comment( f"I have finished reviewing the code for completeness. I did not find errors for {change_location}", 3, ) pr_actions_message = ( create_action_buttons( [ SWEEP_GOOD_FEEDBACK, SWEEP_BAD_FEEDBACK, ], header="### PR Feedback (click)\n", ) + "\n" if DISCORD_FEEDBACK_WEBHOOK_URL is not None else "" ) revert_buttons = [] for changed_file in set(changed_files): revert_buttons.append(Button(label=f"{RESET_FILE} {changed_file}")) revert_buttons_list = ButtonList( buttons=revert_buttons, title=REVERT_CHANGED_FILES_TITLE ) rule_buttons = [] repo_rules = get_rules(repo) if repo_rules != [""]: for rule in repo_rules: if rule: rule_buttons.append(Button(label=f"{RULES_LABEL} {rule}")) if len(repo_rules) == 0: for rule in DEFAULT_RULES: rule_buttons.append(Button(label=f"{RULES_LABEL} {rule}")) rules_buttons_list = ButtonList(buttons=rule_buttons, title=RULES_TITLE) sandbox_passed = None for file_change_request in file_change_requests: if file_change_request.change_type == "check": if ( file_change_request.sandbox_response and file_change_request.sandbox_response.error_messages ): sandbox_passed = False elif sandbox_passed is None: sandbox_passed = True if sandbox_passed == True: pr_changes.title = f"{pr_changes.title} (✓ Sandbox Passed)" # delete failing sweep yaml if applicable if sweep_yml_failed: try: repo.delete_file( "sweep.yaml", "Delete failing sweep.yaml", branch=pr_changes.pr_head, sha=repo.get_contents("sweep.yaml").sha, ) except: pass pr: PullRequest = repo.create_pull( title=pr_changes.title, body=pr_actions_message + pr_changes.body, head=pr_changes.pr_head, base=SweepConfig.get_branch(repo), ) ticket_progress.status = TicketProgressStatus.COMPLETE ticket_progress.context.done_time = time() ticket_progress.context.pr_id = pr.number ticket_progress.save() if revert_buttons: pr.create_issue_comment(revert_buttons_list.serialize()) if rule_buttons: pr.create_issue_comment(rules_buttons_list.serialize()) # add comments before labelling pr.add_to_labels(GITHUB_LABEL_NAME) current_issue.create_reaction("rocket") heres_pr_message = f'<h1 align="center">🚀 Here\'s the PR! <a href="{pr.html_url}">#{pr.number}</a></h1>' progress_message = f'<div align="center"><b>See Sweep\'s progress at <a href="https://progress.sweep.dev/issues/{tracking_id}">the progress dashboard</a>!</b></div>' edit_sweep_comment( review_message + "\n\nSuccess! 🚀", 4, pr_message=( f"{center(heres_pr_message)}\n{center(progress_message)}\n{center(payment_message_start)}" ), done=True, ) user_settings = UserSettings.from_username(username=username) user = g.get_user(username) full_name = user.name or user.login name = full_name.split(" ")[0] files_changed = [] for fcr in file_change_requests: if fcr.change_type in ("create", "modify"): diff = list( difflib.unified_diff( (fcr.old_content or "").splitlines() or [], (fcr.new_content or "").splitlines() or [], lineterm="", ) ) added = sum( 1 for line in diff if line.startswith("+") and not line.startswith("+++") ) removed = sum( 1 for line in diff if line.startswith("-") and not line.startswith("---") ) files_changed.append( f"<code>{fcr.filename}</code> (+{added}/-{removed})" ) user_settings.send_email( subject=f"Sweep Pull Request Complete for {repo_name}#{issue_number} {title}", html=email_template.format( name=name, pr_url=pr.html_url, issue_number=issue_number, repo_full_name=repo_full_name, pr_number=pr.number, progress_url=f"https://progress.sweep.dev/issues/{tracking_id}", summary=markdown.markdown(pr_changes.body), files_changed="\n".join( [f"<li>{item}</li>" for item in files_changed] ), sweeping_gif=sweeping_gif, ), ) except MaxTokensExceeded as e: logger.info("Max tokens exceeded") ticket_progress.status = TicketProgressStatus.ERROR ticket_progress.error_message = "Max tokens exceeded. Feel free to add more details to the issue descript for Sweep to better address it, or alternatively, reach out to Kevin or William for help at https://discord.gg/sweep." ticket_progress.save() log_error( is_paying_user, is_consumer_tier, username, issue_url, "Max Tokens Exceeded", str(e) + "\n" + traceback.format_exc(), priority=2, ) if chat_logger and chat_logger.is_paying_user(): edit_sweep_comment( ( f"Sorry, I could not edit `{e.filename}` as this file is too long." " We are currently working on improved file streaming to address" " this issue.\n" ), -1, ) else: edit_sweep_comment( ( f"Sorry, I could not edit `{e.filename}` as this file is too" " long.\n\nIf this file is incorrect, please describe the desired" " file in the prompt. However, if you would like to edit longer" " files, consider upgrading to [Sweep Pro](https://sweep.dev/) for" " longer context lengths.\n" ), -1, ) delete_branch = True raise e except NoFilesException as e: ticket_progress.status = TicketProgressStatus.ERROR ticket_progress.error_message = "Sweep could not find files to modify to address this issue. Feel free to add more details to the issue descript for Sweep to better address it, or alternatively, reach out to Kevin or William for help at https://discord.gg/sweep." ticket_progress.save() logger.info("Sweep could not find files to modify") log_error( is_paying_user, is_consumer_tier, username, issue_url, "Sweep could not find files to modify", str(e) + "\n" + traceback.format_exc(), priority=2, ) edit_sweep_comment( ( "Sorry, Sweep could not find any appropriate files to edit to address" " this issue. If this is a mistake, please provide more context and Sweep" f" will retry!\n\n> @{username}, please edit the issue description to" " include more details about this issue." ), -1, ) delete_branch = True raise e except openai.BadRequestError as e: ticket_progress.status = TicketProgressStatus.ERROR ticket_progress.error_message = "Sorry, it looks like there is an error with communicating with OpenAI. If this error persists, reach out to Kevin or William for help at https://discord.gg/sweep." ticket_progress.save() logger.error(traceback.format_exc()) logger.error(e) edit_sweep_comment( ( "I'm sorry, but it looks our model has ran out of context length. We're" " trying to make this happen less, but one way to mitigate this is to" " code smaller files. If this error persists report it at" " https://discord.gg/sweep." ), -1, ) log_error( is_paying_user, is_consumer_tier, username, issue_url, "Context Length", str(e) + "\n" + traceback.format_exc(), priority=2, ) posthog.capture( username, "failed", properties={ "error": str(e), "reason": "Invalid request error / context length", **metadata, "duration": round(time() - on_ticket_start_time), }, ) delete_branch = True raise e except AssistantRaisedException as e: ticket_progress.status = TicketProgressStatus.ERROR ticket_progress.error_message = f"Sweep raised an error with the following message: {e.message}. Feel free to add more details to the issue descript for Sweep to better address it, or alternatively, reach out to Kevin or William for help at https://discord.gg/sweep." ticket_progress.save() logger.exception(e) edit_sweep_comment( f"Sweep raised an error with the following message:\n{blockquote(e.message)}", -1, ) log_error( is_paying_user, is_consumer_tier, username, issue_url, "Workflow", str(e) + "\n" + traceback.format_exc(), priority=1, ) raise e except Exception as e: ticket_progress.status = TicketProgressStatus.ERROR ticket_progress.error_message = f"Internal server error: {str(e)}. Feel free to add more details to the issue descript for Sweep to better address it, or alternatively, reach out to Kevin or William for help at https://discord.gg/sweep." ticket_progress.save() logger.error(traceback.format_exc()) logger.error(e) # title and summary are defined elsewhere if len(title + summary) < 60: edit_sweep_comment( ( "I'm sorry, but it looks like an error has occurred due to" + " a planning failure. Feel free to add more details to the issue description" + " so Sweep can better address it. Alternatively, reach out to Kevin or William for help at" + " https://discord.gg/sweep." ), -1, ) else: edit_sweep_comment( ( "I'm sorry, but it looks like an error has occurred due to" + " a planning failure. Feel free to add more details to the issue description" + " so Sweep can better address it. Alternatively, reach out to Kevin or William for help at" + " https://discord.gg/sweep." ), -1, ) log_error( is_paying_user, is_consumer_tier, username, issue_url, "Workflow", str(e) + "\n" + traceback.format_exc(), priority=1, ) raise e else: try: fire_and_forget_wrapper(remove_emoji)(content_to_delete="eyes") fire_and_forget_wrapper(add_emoji)("rocket") except SystemExit: raise SystemExit except Exception as e: logger.error(e) finally: cloned_repo.delete() if delete_branch: try: if pull_request.branch_name.startswith("sweep"): repo.get_git_ref(f"heads/{pull_request.branch_name}").delete() else: raise Exception( f"Branch name {pull_request.branch_name} does not start with sweep/" ) except SystemExit: raise SystemExit except Exception as e: logger.error(e) logger.error(traceback.format_exc()) logger.info("Deleted branch", pull_request.branch_name) except Exception as e: posthog.capture( username, "failed", properties={ **metadata, "error": str(e), "trace": traceback.format_exc(), "duration": round(time() - on_ticket_start_time), }, ) raise e posthog.capture( username, "success", properties={**metadata, "duration": round(time() - on_ticket_start_time)}, ) logger.info("on_ticket success in " + str(round(time() - on_ticket_start_time))) return {"success": True} def handle_sandbox_mode( title, repo_full_name, repo, ticket_progress, edit_sweep_comment ): logger.info("Running in sandbox mode") sweep_bot = SweepBot(repo=repo, ticket_progress=ticket_progress) logger.info("Getting file contents") file_name = title.split(":")[1].strip() file_contents = sweep_bot.get_contents(file_name).decoded_content.decode("utf-8") try: ext = file_name.split(".")[-1] except: ext = "" displayed_contents = file_contents.replace("```", "\`\`\`") sha = repo.get_branch(repo.default_branch).commit.sha permalink = f"https://github.com/{repo_full_name}/blob/{sha}/{file_name}#L1-L{len(file_contents.splitlines())}" logger.info("Running sandbox") edit_sweep_comment( f"Running sandbox for {file_name}. Current Code:\n\n{permalink}", 1, ) updated_contents, sandbox_response = sweep_bot.check_sandbox( file_name, file_contents, [] ) logger.info("Sandbox finished") logs = ( ( "<br/>" + create_collapsible( f"Sandbox logs", blockquote( "\n\n".join( [ create_collapsible( f"<code>{output}</code> {i + 1}/{len(sandbox_response.outputs)} {format_sandbox_success(sandbox_response.success)}", f"<pre>{clean_logs(output)}</pre>", i == len(sandbox_response.outputs) - 1, ) for i, output in enumerate(sandbox_response.outputs) if len(sandbox_response.outputs) > 0 ] ) ), opened=True, ) ) if sandbox_response else "" ) updated_contents = updated_contents.replace("```", "\`\`\`") diff = generate_diff(file_contents, updated_contents).replace("```", "\`\`\`") diff_display = ( f"Updated Code:\n\n```{ext}\n{updated_contents}```\nDiff:\n```diff\n{diff}\n```" if diff else f"Sandbox made no changes to {file_name} (formatters were not configured or Sweep didn't make changes)." ) edit_sweep_comment( f"{logs}\n{diff_display}", 2, ) edit_sweep_comment("N/A", 3) logger.info("Sandbox comments updated") def review_code( repo, pr_changes, issue_url, username, repo_description, title, summary, replies_text, tree, lint_output, plan, chat_logger, review_message, edit_sweep_comment, repo_full_name, installation_id, ): try: # CODE REVIEW changes_required = False changes_required, review_comment = review_pr( repo=repo, pr=pr_changes, issue_url=issue_url, username=username, repo_description=repo_description, title=title, summary=summary, replies_text=replies_text, tree=tree, lint_output=lint_output, plan=plan, # plan for the PR chat_logger=chat_logger, ) lint_output = None review_message += ( f"Here is the {ordinal(1)} review\n" + blockquote(review_comment) + "\n\n" ) if changes_required: edit_sweep_comment( review_message + "\n\nI'm currently addressing these suggestions.", 3, ) logger.info(f"Addressing review comment {review_comment}") on_comment( repo_full_name=repo_full_name, repo_description=repo_description, comment=review_comment, username=username, installation_id=installation_id, pr_path=None, pr_line_position=None, pr_number=None, pr=pr_changes, chat_logger=chat_logger, repo=repo, ) except SystemExit: raise SystemExit except Exception as e: logger.error(traceback.format_exc()) logger.error(e) return changes_required, review_message def get_branch_diff_text(repo, branch, base_branch=None): base_branch = base_branch or SweepConfig.get_branch(repo) comparison = repo.compare(base_branch, branch) file_diffs = comparison.files pr_diffs = [] for file in file_diffs: diff = file.patch if ( file.status == "added" or file.status == "modified" or file.status == "removed" ): pr_diffs.append((file.filename, diff)) else: logger.info( f"File status {file.status} not recognized" ) # TODO(sweep): We don't handle renamed files return "\n".join([f"{filename}\n{diff}" for filename, diff in pr_diffs]) def get_payment_messages(chat_logger: ChatLogger): if chat_logger: is_paying_user = chat_logger.is_paying_user() is_consumer_tier = chat_logger.is_consumer_tier() use_faster_model = OPENAI_USE_3_5_MODEL_ONLY or chat_logger.use_faster_model() else: is_paying_user = True is_consumer_tier = False use_faster_model = False tracking_id = chat_logger.data["tracking_id"] if chat_logger else None # Find the first comment made by the bot tickets_allocated = 5 if is_consumer_tier: tickets_allocated = 15 if is_paying_user: tickets_allocated = 500 purchased_ticket_count = ( chat_logger.get_ticket_count(purchased=True) if chat_logger else 0 ) ticket_count = ( max(tickets_allocated - chat_logger.get_ticket_count(), 0) + purchased_ticket_count if chat_logger else 999 ) daily_ticket_count = ( (3 - chat_logger.get_ticket_count(use_date=True) if not use_faster_model else 0) if chat_logger else 999 ) model_name = "GPT-3.5" if use_faster_model else "GPT-4" payment_link = "https://sweep.dev/pricing" single_payment_link = "https://buy.stripe.com/00g3fh7qF85q0AE14d" pro_payment_link = "https://buy.stripe.com/00g5npeT71H2gzCfZ8" daily_message = ( f" and {daily_ticket_count} for the day" if not is_paying_user and not is_consumer_tier else "" ) user_type = "💎 <b>Sweep Pro</b>" if is_paying_user else "⚡ <b>Sweep Basic Tier</b>" gpt_tickets_left_message = ( f"{ticket_count} GPT-4 tickets left for the month" if not is_paying_user else "unlimited GPT-4 tickets" ) purchase_message = f"<br/><br/> For more GPT-4 tickets, visit <a href={single_payment_link}>our payment portal</a>. For a one week free trial, try <a href={pro_payment_link}>Sweep Pro</a> (unlimited GPT-4 tickets)." payment_message = ( f"{user_type}: I used {model_name} to create this ticket. You have {gpt_tickets_left_message}{daily_message}. (tracking ID: <code>{tracking_id}</code>)" + (purchase_message if not is_paying_user else "") ) payment_message_start = ( f"{user_type}: I'm using {model_name}. You have {gpt_tickets_left_message}{daily_message}. (tracking ID: <code>{tracking_id}</code>)" + (purchase_message if not is_paying_user else "") ) return payment_message, payment_message_start
[ "Hey {name},\n<br/><br/>\n🚀 I just finished creating a pull request for your issue ({repo_full_name}#{issue_number}) at <a href=\"{pr_url}\">{repo_full_name}#{pr_number}</a>!\n\n<br/><br/>\nYou can view how I created this pull request <a href=\"{progress_url}\">here</a>.\n\n<h2>Summary</h2>\n<blockquote>\n{summary}\n</blockquote>\n\n<h2>Files Changed</h2>\n<ul>\n{files_changed}\n</ul>\n\n{sweeping_gif}\n<br/>\nCheers,\n<br/>\nSweep\n<br/>" ]
2024-01-10
sahilkamath0108/Jarvis-AI
deal_with_files~vecDB.py
from langchain.document_loaders import PyPDFLoader, DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma def vectorize(path): # loader = DirectoryLoader(path, glob="./*.pdf", loader_cls=PyPDFLoader) # documents = loader.load() loader_cls = PyPDFLoader loader = loader_cls(path) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=200) texts = text_splitter.split_documents(documents) embeddings = SentenceTransformerEmbeddings(model_name="multi-qa-mpnet-base-dot-v1") persist_directory = "data" db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory) return True if __name__ == '__main__': path = "C:\\Users\\Hp\\Desktop\\realmadrid.pdf" vectorize(path)
[]
2024-01-10
sahilkamath0108/Jarvis-AI
deal_with_files~performQA.py
from langchain.vectorstores import Chroma from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import pipeline import torch from langchain.llms import HuggingFacePipeline from langchain.embeddings import SentenceTransformerEmbeddings from langchain.chains import RetrievalQA from helpers.say import say from helpers.listen import listen chat_history = [] def ques_ans(): say('Alright shoot questions at me') while True: query = listen() if 'malf' in query: continue if 'finish questioning' in query: break else: if query and 'malf' not in query: response = chat(chat_history, query) say(response) say('Next question') return True def chat(chat_history, user_input): bot_response = qa_chain({"query": user_input}) bot_response = bot_response['result'] response = "" for letter in ''.join(bot_response): response += letter + "" chat_history = chat_history + [(user_input, response)] return bot_response checkpoint = "MBZUAI/LaMini-Flan-T5-783M" #google/flan-t5-xl google/flan-t5 MBZUAI/LaMini-Flan-T5-783M tokenizer = AutoTokenizer.from_pretrained(checkpoint) base_model = AutoModelForSeq2SeqLM.from_pretrained( checkpoint, device_map="auto", torch_dtype = torch.float32) embeddings = SentenceTransformerEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") db = Chroma(persist_directory="data", embedding_function=embeddings) pipe = pipeline( 'text2text-generation', model = base_model, tokenizer = tokenizer, max_length = 512, do_sample = True, temperature = 0.3, top_p= 0.95 ) local_llm = HuggingFacePipeline(pipeline=pipe) qa_chain = RetrievalQA.from_chain_type(llm=local_llm, chain_type='stuff', retriever=db.as_retriever(search_type="similarity", search_kwargs={"k":2}), return_source_documents=True, ) if __name__ == "__main__": print('how much stipend')
[]
2024-01-10
RavinMaddHatter/YoutubePrepTools
youtubePrep.py
import time t1 = time.time() from time import sleep from threading import Thread import cutter import openai_translator as Translator from queue import Queue from csv import DictReader from pyperclip import copy from json import dump, load from tkinter import Tk, Label, Button, INSERT, Scale, IntVar, Checkbutton, END from tkinter import filedialog, Entry, DoubleVar, ttk, Toplevel, StringVar, OptionMenu from os.path import exists, split, join, getmtime from tkinter.scrolledtext import ScrolledText from pathlib import Path from glob import glob print(time.time() - t1) data = None BoilerplateInfo = None slider_defaults = None sliders_enabled = None audioChans = 6 translator = Translator.Translator def update_save(data, file_name="default_profile.json"): with open(file_name, "w+") as file: dump(data, file, indent=2) def load_file(file_name="default_profile.json"): print(file_name) data = {} if exists(file_name): with open(file_name) as file: data = load(file) if "boilerplate" not in data.keys(): data["boilerplate"] = "Default Test For Your Youtube Description/n" if "slider_defaults" not in data.keys(): data["sliders_enabled"] = [] data["slider_defaults"] = [] for i in range(audioChans): data["slider_defaults"].append(-24) data["sliders_enabled"].append(False) data["sliders_enabled"][0] = True if "model" not in data.keys(): data["model"] = "base" if "in_space" not in data.keys(): data["in_space"] = 0.1 if "out_space" not in data.keys(): data["out_space"] = 0.1 if "min_clip" not in data.keys(): data["min_clip"] = 1 if "min_silent" not in data.keys(): data["min_silent"] = 0.1 if "min_silent" not in data.keys(): data["min_silent"] = 0.1 update_save(data) return data data = load_file() class Markerprocessor: def __init__(self, file): self.markers = [] with open(file, newline='') as csvfile: reader = DictReader(csvfile, delimiter=',') for row in reader: time = row["Source In"].split(":") time[0] = int(time[0]) - 1 if time[0] == 0: time.pop(0) else: time[0] = "{:02d}".format(time[0]) time.pop() time = ":".join(time) self.markers.append(time + " " + row["Notes"]) def string_to_clipboard(self): copy(data["boilerplate"] + "\n\r\n\rChapters: \n\r" + "\n\r".join(self.markers)) def string_to_file(self, name): with open(name, "w+") as text_file: text_file.write("\n\r".join(self.markers)) if __name__ == "__main__": def progress_bar(operation_name, update_queue): popup = Toplevel(height=100, width=500) status_text = StringVar() popup_description = Label(popup, textvariable=status_text) popup_description.grid(row=0, column=0) progress_var = DoubleVar() progress_bar = ttk.Progressbar(popup, variable=progress_var, maximum=100) progress_bar.grid(row=1, column=0) complete = False while not complete: sleep(0.01) if not update_queue.empty(): update = update_queue.get() progress_var.set(update["percent"]) status_text.set(update["state"]) popup.update() popup.focus_force() complete = (update["state"] == "done") popup.destroy() popup.update() def find_csv(): filename = filedialog.askopenfilename(title="Select a CSV File", filetypes=(("CSV files", "*.CSV*"), ("all files", "*.*"))) data["boilerplate"] = st.get("1.0", END) mk = Markerprocessor(filename) mk.string_to_clipboard() print("markers in clipboard") def transcribe_process(transcribe_queue, filename): print("setting moddel") trans = translator(transcribe_queue, selected_model.get()) print("running model") trans.audio_to_text(filename) print("finished") def transcribe_vid(): filename = filedialog.askopenfilename(title="Select a Media File File", filetypes=(("Media Files", "*.WAV *.MP4 *.MOV *.AVI *.Y4M *.MKV"), ("all files", "*.*"))) try: transcribe_queue = Queue() print("queue sent") popup = Thread(target=progress_bar, args=("Transcribing Video", transcribe_queue,)) popup.start() trans = Thread(target=transcribe_process, args=(transcribe_queue, filename,)) trans.start() print("transcribe finished") except Exception as e: print("failed translation") print(e) def do_settings(cc): levels = [] chans = [] for i in range(len(sliders)): levels.append(-sliders[i].get()) chans.append(slider_chks[i].get() == 1) cc.set_multi_chan_thres(levels) cc.set_lead_in(lead_in.get()) cc.set_lead_out(lead_out.get()) cc.set_min_clip_dur(clip_dur.get()) cc.set_enabled_tracks(chans) cc.set_min_silent_dur(min_silent_dur_var.get()) def cut_clip_process(queue, video_file): name = Path(video_file).stem head, tail = split(video_file) cc = cutter.Clipcutter(queue) try: do_settings(cc) cc.add_cut_video_to_timeline(video_file) cc.export_edl(join(head, name + "-cut.edl")) cc._cleanup() except Exception as e: print(e) cc._cleanup() def cut_clip(): video_file = filedialog.askopenfilename(title="Select a WAV File", filetypes=(("video files", "*.mkv*"), ("all files", "*.*"))) cut_queue = Queue() popup = Thread(target=progress_bar, args=("Cutting Video", cut_queue,)) popup.start() trans = Thread(target=cut_clip_process, args=(cut_queue, video_file,)) trans.start() def cut_folder_process(queue, folder): cc = cutter.Clipcutter(queue) try: name = split(folder)[-1] do_settings(cc) files = glob(join(folder, "*.mkv")) files.sort(key=getmtime) for file in files: print(file) cc.add_cut_video_to_timeline(file) print(join(folder, (name + "-cut.edl"))) cc.export_edl(join(folder, (name + "-cut.edl"))) cc._cleanup() except Exception as e: print(e) cc._cleanup() def cut_folder(): folder = filedialog.askdirectory() cut_queue = Queue() popup = Thread(target=progress_bar, args=("Cutting Video", cut_queue,)) popup.start() trans = Thread(target=cut_folder_process, args=(cut_queue, folder,)) trans.start() def set_save_data(): for i in range(audioChans): data["slider_defaults"][i] = sliders[i].get() data["sliders_enabled"][i] = slider_chks[i].get() data["boilerplate"] = st.get("1.0", END) data["model"] = selected_model.get() data["in_space"] = lead_in.get() data["out_space"] = lead_out.get() data["min_clip"] = clip_dur.get() data["min_silent"] = min_silent_dur_var.get() def load_profile(): settings_file = filedialog.askopenfilename(title="Select a profile", filetypes=(("json files", "*.json*"), ("all files", "*.*"))) load_file(settings_file) for i in range(audioChans): sliders[i].set(data["slider_defaults"][i]) slider_chks[i].set(data["sliders_enabled"][i]) st.delete('1.0', END) st.insert(INSERT, data["boilerplate"]) selected_model.set(data["model"]) lead_in.set(data["in_space"]) lead_out.set(data["out_space"]) clip_dur.set(data["min_clip"]) min_silent_dur_var.set(data["min_silent"]) def save_as(): file_name = filedialog.asksaveasfile(title="Set Profile File Name", filetypes=(("JSON", "*.json*"),)).name if not (file_name.endswith(".json") or file_name.endswith(".json")): file_name += ".json" set_save_data() update_save(data, file_name=file_name) def save(): set_save_data() update_save(data) def exit(): window.destroy() window = Tk() window.title('Youtube Video Publishing Tools') label_file_explorer = Label(window, text="Video Prep Tools", width=20, height=2) csvButton = Button(window, text="Markers to Clipboard", command=find_csv, width=20) waveButton = Button(window, text="Transcribe Media", command=transcribe_vid, width=20) cut_button = Button(window, text="Cut Clip", command=cut_clip, width=20) super_cut_button = Button(window, text="Cut Folder", command=cut_folder, width=20) button_exit = Button(window, text="Exit", command=exit, width=20) button_save = Button(window, text="Save Default", command=save, width=20) button_save_as = Button(window, text="Save as", command=save_as, width=20) button_load = Button(window, text="Load", command=load_profile, width=20) lbl_entry = Label(window, text="Description Tools", width=50, height=2) st = ScrolledText(window, width=75, height=5, relief="raised") st.insert(INSERT, data["boilerplate"]) options = list(Translator._MODELS.keys()) model_label = Label(window, text="Speach Model Size", width=15, height=2) selected_model = StringVar() selected_model.set(data["model"]) model_select = OptionMenu(window, selected_model, *options) sliders = [] sliders_lb = [] sliders_ch = [] slider_chks = [] for i in range(audioChans): sliders_lb.append(Label(window, text="ch {}".format(i + 1), height=2)) sliders.append(Scale(window, from_=0, to=-50)) sliders[i].set(data["slider_defaults"][i]) slider_chks.append(IntVar()) slider_chks[i].set(data["sliders_enabled"][i]) sliders_ch.append(Checkbutton(window, variable=slider_chks[i])) slider_chks[0].set(1) lead_in = DoubleVar() ld_in_ent = Entry(window, textvariable=lead_in, width=10) in_lb = Label(window, text="In Space", width=15, height=2) lead_out = DoubleVar() ld_out_ent = Entry(window, textvariable=lead_out, width=10) out_lb = Label(window, text="Out Space", width=15, height=2) clip_dur = DoubleVar() clip_dur_ent = Entry(window, textvariable=clip_dur, width=10) dur_lb = Label(window, text="Min Clip Length", width=15, height=2) min_silent_dur_var = DoubleVar() min_silent_dur_ent = Entry(window, textvariable=min_silent_dur_var, width=10) silent_lb = Label(window, text="Min Silent Dur", width=15, height=2) lead_in.set(data["in_space"]) lead_out.set(data["out_space"]) clip_dur.set(data["min_clip"]) min_silent_dur_var.set(data["min_silent"]) audio_lb = Label(window, text="Audio Tools", width=15, height=2) row = 1 label_file_explorer.grid(column=1, row=row, columnspan=audioChans) row += 1 cut_button.grid(column=0, row=row, columnspan=3) super_cut_button.grid(column=3, row=row, columnspan=3) row += 1 for i in range(len(sliders)): sliders_lb[i].grid(column=i + 1, row=row) sliders[i].grid(column=i + 1, row=row + 1) sliders_ch[i].grid(column=i + 1, row=row + 2) row += 3 in_lb.grid(column=1, row=row) out_lb.grid(column=2, row=row) dur_lb.grid(column=3, row=row) silent_lb.grid(column=4, row=row) row += 1 ld_in_ent.grid(column=1, row=row) ld_out_ent.grid(column=2, row=row) clip_dur_ent.grid(column=3, row=row) min_silent_dur_ent.grid(column=4, row=row) row += 1 audio_lb.grid(column=1, row=row, columnspan=6) row += 1 model_label.grid(column=0, row=row, columnspan=2) model_select.grid(column=2, row=row, columnspan=1) waveButton.grid(column=3, row=row, columnspan=3) row += 1 lbl_entry.grid(column=1, row=row, columnspan=audioChans) row += 1 st.grid(column=1, row=row, columnspan=audioChans) row += 1 csvButton.grid(column=1, row=row, columnspan=audioChans) row += 1 button_save.grid(column=1, row=row) button_save_as.grid(column=2, row=row) button_load.grid(column=3, row=row) button_exit.grid(column=4, row=row, columnspan=audioChans - 1) window.mainloop()
[]
2024-01-10
f01zy/Assistant
commands~execute.py
import os import random import webbrowser import pathlib # import openai from .say import say def execute(cmd): BASE_DIR = pathlib.Path().resolve() # if purpose == "cmd": if cmd == "yandex": os.system(f"{BASE_DIR}/applications/Yandex.lnk") say(f"ok{random.randint(1 , 4)}") elif cmd == "excellent": say("thanks.wav") elif cmd == "youtube": url = "https://youtube.com/" webbrowser.open(url) elif cmd == "VS Code": os.system(f"{BASE_DIR}/applications/Code.lnk") say(f"ok{random.randint(1 , 4)}") elif cmd == "figma": os.system(f"{BASE_DIR}/applications/Figma.lnk") say(f"ok{random.randint(1 , 4)}") # elif purpose == "openai": # pass
[]
2024-01-10
chicodelacruz/mlprj
qa_api.py
import os import openai import configuration # add a configuration.py file with the line: # key = "your api key" class Answer: def __init__(self, answer="", additional_info="", next_question=""): answer = answer additional = additional_info follow_up = next_question def create_jsonlfile(): #Paste the API KEY #openai.api_key ="Your api key" openai.api_key = configuration.key # Create the documents file as jsonl file document_path = "jsonlfiles/finaldoc.jsonl" file = openai.File.create(file=open(document_path), purpose='answers') return file def look_alternative_document(response_object): """ Look for an alternative answer :param response_object: :return: """ return "Would you like to browse all the handbook?" def check_scores(user_question, response_object, score_threshold=0, low_threshold=50): """ :param response_object: :param score_threshold: :param low_threshold: threshold for responses with low confidence :return: """ answer_object = Answer() # go through response selected documents scores = [] for document in response_object.selected_documents: # select max score scores.append(document.score) max_score = max(scores) print("max_score: {0}".format(str(max_score))) if max_score > score_threshold: # look for low confidence answers, it means gpt-3 generates an answer but the similarity to documents is low if max_score <= low_threshold: # adjust temperature, so far adjusting temperature still returns low scores # response = generateAnswers(user_question, temp=response_object.temperature + 1) print("low confidence") chatbot_response = look_alternative_document(response_object) else: # it could be the one with the maximum score but the one with higher score is not always on-point answer_object.answer = response_object.answers[0] # find document with top score answer_object.additional = response_object.selected_documents[0].text # but also include the documents text else: chatbot_response = "I don't understand the question" return answer_object def generateAnswers(user_question,jsonl_file,temp = 0.1,maxtoken = 20): try: # Api for creating answers response =openai.Answer.create( search_model="ada", model="davinci", question=user_question, file=jsonl_file["id"], examples_context="Corruption is dishonest or illegal behavior, especially by people in power, typically involving bribery. It can also include other acts, such as fraud, embezzlement, favoritism, and nepotism. The most common form of corruption is bribery.For further information see Section G1 of the BCG.**Additional Information** : For further information, also about what the term gifts of money covers, see [Compliance Handbook](https://webbooks.siemens.com/public/LC/chen/index.htm?n=Part-1-Activity-Fields,A.-Anti-Corruption", examples=[["Can I take my client on a holiday?", "No, you cannot take your client on a holiday .**Additional Information** For further information, see [Compliance Handbook](https://webbooks.siemens.com/public/LC/chen/index.htm?n=Part-1-Activity-Fields,A.-Anti-Corruption"],["What is corruption?", "Corruption is dishonest or illegal behavior, especially by people in power, typically involving bribery **Additional Information** For further information , see [Compliance Handbook](https://webbooks.siemens.com/public/LC/chen/index.htm?n=Part-1-Activity-Fields,A.-Anti-Corruption"],["What is bribery?","Bribery is the act of offering, promising, or giving money, gifts, or other benefit to a public official or public or private employee with the aim of receiving improper advantages. Bribery is a criminal offense worldwide. Siemens does not tolerate any form of bribery. **Additional Information** For further information check [BCG](https://compliance.siemens.cloud/bcg/responsibility.html#g)"],["What are the rules for cash payments?","Payments with Cash are specifically regulated in many jurisdictions according to money laundering or other laws. The governance for Anti-Money Laundering lies with Legal & Compliance (LC CO RFC / LC CO SFS) and supports the BizCos by appropriate processes. **Additional Information** More information can be found [Here](https://webbooks.siemens.com/public/LC/chen/index.htm?n=Part-1-Activity-Fields,C.-Anti-Money-Laundering-(AML),5.-Cash-Handling-Rules)"], ["Was ist ein Geschenk?", "Ein Geschenk ist eine freiwillige Überweisung von Geld oder anderen Vorteilen an Dritte ohne Gegenleistung. ** Zusätzliche Informationen ** Weitere Informationen finden Sie im [Compliance-Handbuch](https://webbooks.siemens.com/public/LC/chen/index.htm?n=Part-1-Activity-Fields,A.-Anti-Corruption"]], max_rerank=10, max_tokens=maxtoken, temperature=temp, stop=["\n"] ) return response except: response ={"answers": ["Apologies, I could not find an answer for your query. Please ask questions related to" " compliance or please rephrase your question"], "file": file} return response print("Creating file !") file =create_jsonlfile() print("File created!! File id: ", file["id"]) user_ques =input("Chatbot - Enter your question :") response = generateAnswers(user_ques, file) full_answer = check_scores(user_ques, response) # print("Chatbot Answer :", response["answers"][0]) print("Chatbot Answer :", full_answer.answer) if full_answer.additional: print("Additionally:\n") print(full_answer.additional)
[]
2024-01-10
stdanyaa/AIINIR_langchain
llm_utils.py
from langchain.llms import LlamaCpp from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.document_loaders import PyPDFLoader, DirectoryLoader from langchain.document_loaders.csv_loader import CSVLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.prompts import ChatPromptTemplate, PromptTemplate from operator import itemgetter from langchain.schema.output_parser import StrOutputParser from langchain.schema.prompt_template import format_document from langchain.prompts import PromptTemplate from langchain.retrievers import RePhraseQueryRetriever from prompt_templates import QA_PROMPT_TEMPLATE, QUERY_REPHRASE_PROMPT_TEMPLATE """ Documents loading and preprocessing """ # def process_docs(docs): # prompt = PromptTemplate.from_template("{page_content}\n") # return [format_document(doc, prompt) for doc in docs] def load_documents( docs_path, text_splitter=None, loaders={ '.pdf': PyPDFLoader, '.csv': CSVLoader,}, loader_kwargs=None ): def create_directory_loader(file_type, directory_path): return DirectoryLoader( path=directory_path, glob=f"**/*{file_type}", loader_cls=loaders[file_type], loader_kwargs=loader_kwargs ) pdf_loader = create_directory_loader('.pdf', docs_path) csv_loader = create_directory_loader('.csv', docs_path) if text_splitter: pdf_documents = pdf_loader.load_and_split(text_splitter=text_splitter) csv_documents = csv_loader.load_and_split(text_splitter=text_splitter) else: pdf_documents = pdf_loader.load() csv_documents = csv_loader.load() return pdf_documents + csv_documents def get_text_splitter(chunk_size=800, chunk_overlap=100): text_splitter = RecursiveCharacterTextSplitter( chunk_size = chunk_size, chunk_overlap = chunk_overlap, length_function = len, separators=['\d+\.\s', '\d+\.\d+\.\s', '\d+(\.\d+){2}\.\s', '\n\n', '\n'], is_separator_regex=True ) return text_splitter """ Vector database, embedder and retriever """ def get_db(chunks, embedder_name='cointegrated/LaBSE-en-ru'): embeddings_model = HuggingFaceEmbeddings(model_name=embedder_name) db = Chroma.from_documents(chunks, embeddings_model) return db def get_query_rephraser(llm): query_prompt = PromptTemplate( input_variables=["question"], template=QUERY_REPHRASE_PROMPT_TEMPLATE ) return LLMChain(llm=llm, prompt=query_prompt) def get_retriever(vectorstore, search_kwargs={"k": 2}, rephraser=None): retriever=vectorstore.as_retriever(search_kwargs=search_kwargs) if rephraser: return RePhraseQueryRetriever( retriever=retriever, llm_chain=rephraser ) else: return retriever """ LLM and QA-langchain """ def get_llm(model_path='models/llama-2-7b-chat.Q4_K_M.gguf', n_ctx=4096): callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) llm = LlamaCpp( model_path=model_path, temperature=0.0, #0.75, max_tokens=min(n_ctx, 4000), n_ctx=n_ctx, top_p=1, callback_manager=callback_manager, verbose=True, # Verbose is required to pass to the callback manager ) return llm def get_qa_langchain(model, retriever): template = QA_PROMPT_TEMPLATE prompt = ChatPromptTemplate.from_template(template) chain = { "context": itemgetter("question") | retriever, "question": itemgetter("question") } | prompt | model | StrOutputParser() return chain
[ "question" ]
2024-01-10
xinggonglie/ColossalAI
applications~ColossalEval~colossal_eval~evaluate~dataset_evaluator~gpt_judge.py
# Code adapted from https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge import ast import concurrent.futures import copy import json import os import re import time from typing import Any, Dict, List import numpy as np import openai import tqdm MODEL = "gpt-4" API_MAX_RETRY = 16 API_RETRY_SLEEP = 10 API_ERROR_OUTPUT = "$ERROR$" NEED_REF_CATS = ["math", "reasoning", "coding"] one_score_pattern = re.compile("\[\[(\d+\.?\d*)\]\]") one_score_pattern_backup = re.compile("\[(\d+\.?\d*)\]") def load_mt_prompts(prompt_file: str): prompts = {} with open(prompt_file) as fin: for line in fin: line = json.loads(line) prompts[line["name"]] = line return prompts def get_mt_prompt(prompts: Dict[str, str], multiturn: bool, math: bool): if math and multiturn: return prompts["single-math-v1-multi-turn"] elif math and not multiturn: return prompts["single-math-v1"] elif not math and multiturn: return prompts["single-v1-multi-turn"] elif not math and not multiturn: return prompts["single-v1"] def chat_compeletion_openai(messages: List[Dict], temperature: float = 0.0, max_tokens: int = 2048): output = API_ERROR_OUTPUT model = MODEL for _ in range(API_MAX_RETRY): try: response = openai.ChatCompletion.create( model=model, messages=messages, n=1, temperature=temperature, max_tokens=max_tokens, ) output = response["choices"][0]["message"]["content"] break except openai.error.OpenAIError as e: print(type(e), e) time.sleep(API_RETRY_SLEEP) return output def get_mtbench_judgements(question: Dict[str, Any], prompts: Dict[str, str]): id = question["id"] judgement = {"id": id, "judgements": [], "ratings": []} category = question["category"] math = category in NEED_REF_CATS turn_number = len(question["instruction"]) for num in range(turn_number): assert (len(question["target"]) >= 1 and math) or not math kwargs = {} if num >= 1: prompt = get_mt_prompt(prompts, multiturn=True, math=math) if len(question["target"]) >= 1 and math: kwargs = {f"ref_answer_{i+1}": question["target"][i] for i in range(len(question["target"]))} user_prompt = prompt["prompt_template"].format( question_1=question["instruction"][0], question_2=question["instruction"][1], answer_1=question["output"][0], answer_2=question["output"][1], **kwargs, ) else: prompt = get_mt_prompt(prompts, multiturn=False, math=math) if len(question["target"]) >= 1 and math: kwargs = {"ref_answer_1": question["target"][0]} user_prompt = prompt["prompt_template"].format( question=question["instruction"][0], answer=question["output"][0], **kwargs, ) rating = -1 sys_prompt = prompt["system_prompt"] messages = [{"role": "system", "content": sys_prompt}, {"role": "user", "content": user_prompt}] judgement_str = chat_compeletion_openai(messages, temperature=0.0, max_tokens=2048) match = re.search(one_score_pattern, judgement_str) if not match: match = re.search(one_score_pattern_backup, judgement_str) if match: rating = ast.literal_eval(match.groups()[0]) else: rating = -1 judgement["judgements"].append(judgement_str) judgement["ratings"].append(rating) return judgement def mtbench_single_judge(data: List[Dict], config_path: str): judgements = [] prompt_dir = os.path.dirname(config_path) prompts = load_mt_prompts(os.path.join(prompt_dir, "mtbench_judge_prompts.jsonl")) with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: futures = [] for i, question in enumerate(data): future = executor.submit(get_mtbench_judgements, question, prompts) futures.append(future) for future in tqdm.tqdm( concurrent.futures.as_completed(futures), desc=f"MTBench single judge for {data[0]['category']}", total=len(futures), ): judgements.append(future.result()) judgements.sort(key=lambda x: x["id"]) judgements_by_id = {j["id"]: j for j in judgements} data_to_dump = copy.deepcopy(data) for d in data_to_dump: id = d["id"] d["judgements"] = judgements_by_id[id]["judgements"] d["ratings"] = judgements_by_id[id]["ratings"] avg_ratings = np.mean([j["ratings"] for j in judgements], axis=0) return data_to_dump, avg_ratings
[ "{}", "instruction", "mtbench_judge_prompts.jsonl", "prompt_template", "system_prompt" ]
2024-01-10
unconv/gpt4v-examples
vision.py
from openai import OpenAI import base64 model = OpenAI() def image_b64(image_path): with open(image_path, "rb") as f: return base64.b64encode(f.read()).decode() def look(image_path, prompt="Describe this image"): b64_image = image_b64(image_path) response = model.chat.completions.create( model="gpt-4-vision-preview", messages=[ { "role": "user", "content": [ { "type": "image_url", "image_url": f"data:image/jpeg;base64,{b64_image}", }, { "type": "text", "text": prompt, } ] } ], max_tokens=1024, ) message = response.choices[0].message return message.content
[ "[{'type': 'image_url', 'image_url': ''}, {'type': 'text', 'text': PLACEHOLDER}]" ]
2024-01-10
unconv/gpt4v-examples
multivision.py
from openai import OpenAI import base64 model = OpenAI() def image_b64(image_path): with open(image_path, "rb") as f: return base64.b64encode(f.read()).decode() def look( image_paths: list[str] | str, prompt="Describe this image", ): if not isinstance(image_paths, list): image_paths = [image_paths] images = [] for image in image_paths: b64_image = image_b64(image) images.append({ "type": "image_url", "image_url": f"data:image/jpeg;base64,{b64_image}", }) response = model.chat.completions.create( model="gpt-4-vision-preview", messages=[ { "role": "user", "content": images + [ { "type": "text", "text": prompt, } ] } ], max_tokens=1024, ) message = response.choices[0].message return message.content
[]
2024-01-10
Exic9999/GPPT4GUI
GPT4GUI.py
import tkinter as tk from tkinter import scrolledtext, font import openai import threading def send_request(event=None): def api_call(): user_input = user_input_box.get("1.0", tk.END).strip() clear_output = clear_output_check_var.get() if clear_output: output_box.configure(state='normal') output_box.delete("1.0", tk.END) output_box.configure(state='disabled') if user_input.lower() == 'exit': root.quit() else: try: loading_label.config(text="Asking ChatGPT4 now...") response = openai.ChatCompletion.create( model="gpt-4-1106-preview", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": user_input} ], max_tokens=4096 ) output_box.configure(state='normal') # Insert and apply bold tag to user input output_box.insert(tk.END, "You: ") start = output_box.index("end-1c linestart") output_box.insert(tk.END, user_input + "\n") end = output_box.index("end-1c linestart") output_box.tag_add("bold", start, end) # Insert GPT-4 response output_box.insert(tk.END, "GPT-4: " + response['choices'][0]['message']['content'] + "\n\n") output_box.configure(state='disabled') output_box.yview(tk.END) loading_label.config(text="") except Exception as e: output_box.configure(state='normal') output_box.insert(tk.END, "Error: " + str(e) + "\n") output_box.configure(state='disabled') loading_label.config(text="") threading.Thread(target=api_call).start() openai.api_key = '' root = tk.Tk() root.title("GPT-4 GUI") root.geometry("1500x1000") root.configure(bg="#f0f0f0") input_font = font.Font(family="Times New Roman", size=14) output_font = font.Font(family="Times New Roman", size=14) bold_font = font.Font(family="Times New Roman", size=14, weight="bold") # Bold font input_frame = tk.Frame(root) input_frame.pack(padx=10, pady=5, fill='both', expand=True) user_input_box = scrolledtext.ScrolledText(input_frame, height=4, width=70, font=input_font, bg="#7FFFD4") user_input_box.pack(side='left', fill='both', expand=True) user_input_box.bind("<Return>", send_request) send_button = tk.Button(input_frame, text="Send", command=send_request, bg="#4CAF50", fg="white", padx=10, pady=5) send_button.pack(side='right', padx=10) send_button.bind("<Enter>", lambda e: e.widget.config(bg="#45a049")) send_button.bind("<Leave>", lambda e: e.widget.config(bg="#4CAF50")) loading_label = tk.Label(input_frame, text="", font=("Helvetica", 10)) loading_label.pack(side='right') clear_output_check_var = tk.BooleanVar() clear_output_check = tk.Checkbutton(input_frame, text="Clear output on send", var=clear_output_check_var, bg="#f0f0f0") clear_output_check.pack(side='right') output_box = scrolledtext.ScrolledText(root, height=15, width=100, font=output_font, bg="#ADD8E6") output_box.pack(padx=10, pady=5, fill='both', expand=True) output_box.configure(state='disabled') output_box.tag_configure("bold", font=bold_font) # Configure bold tag root.mainloop()
[ "You are a helpful assistant." ]
2024-01-10
allenai/DecomP
src~decomp~models~gpt3generator.py
import logging import os import openai from diskcache import Cache logger = logging.getLogger(__name__) cache = Cache(os.path.expanduser("~/.cache/gpt3calls")) @cache.memoize() def cached_openai_call( # kwargs doesn't work with caching. prompt, engine, temperature, max_tokens, top_p, frequency_penalty, presence_penalty, stop, n, best_of, logprobs, ): return openai.Completion.create( prompt=prompt, engine=engine, temperature=temperature, max_tokens=max_tokens, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, stop=stop, n=n, best_of=best_of, logprobs=logprobs ) def openai_call( prompt, engine, temperature, max_tokens, top_p, frequency_penalty, presence_penalty, stop, n, best_of, logprobs, ): function = cached_openai_call if temperature == 0 else openai.Completion.create return function( prompt=prompt, engine=engine, temperature=temperature, max_tokens=max_tokens, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, stop=stop, n=n, best_of=best_of, logprobs=logprobs ) class GPT3Generator: def __init__(self, engine="text-davinci-002", temperature=0, max_tokens=100, top_p=1, frequency_penalty=0, presence_penalty=0, stop=["\n"], n=1, best_of=1, logprobs=0): self.engine = engine self.logprobs = logprobs self.n = n self.best_of = best_of self.presence_penalty = presence_penalty self.frequency_penalty = frequency_penalty self.max_tokens = max_tokens self.top_p = top_p self.stop = stop self.temperature = temperature def generate_text_sequence(self, prompt): """ :param input_text: :return: returns a sequence of tuples (string, score) where lower score is better """ # GPT3 can't handle trailing white-space prompt = prompt.rstrip() if self.best_of is None: response = openai.Completion.create( engine=self.engine, prompt=prompt, temperature=self.temperature, max_tokens=self.max_tokens, top_p=self.top_p, n=self.n, logprobs=self.logprobs, frequency_penalty=self.frequency_penalty, presence_penalty=self.presence_penalty, stop=self.stop ) else: response = openai_call( engine=self.engine, prompt=prompt, temperature=self.temperature, max_tokens=self.max_tokens, top_p=self.top_p, n=self.n, best_of=self.best_of, logprobs=self.logprobs, frequency_penalty=self.frequency_penalty, presence_penalty=self.presence_penalty, stop=self.stop ) output_seq_score = [] for index, choice in enumerate(response["choices"]): # print(choice) if "logprobs" in choice and "token_logprobs" in choice["logprobs"]: # get probs of the tokens used in text (i.e. till the stop token) probs = [] # selected_toks = [] for prob, tok in zip(choice["logprobs"]["token_logprobs"], choice["logprobs"]["tokens"]): if tok not in self.stop and tok != "<|endoftext|>": probs.append(prob) # selected_toks.append(tok) else: # include the probability of the stop character too. This will also # ensure that an empty string (i.e. first predicted character being a stop # character) also has a reasonable probability measure # selected_toks.append(tok) probs.append(prob) break # average the logits and negate to make them +ve scores where lower is better # set a high +ve score if no predictions # print(probs, selected_toks) score = -sum(probs) / len(probs) if len(probs) else 100.0 output_seq_score.append((choice["text"], score)) else: # no score, just use index output_seq_score.append((choice["text"], index)) # Ensure sorted output return sorted(output_seq_score, key=lambda x: x[1])
[]
2024-01-10
EleutherAI/NeMo
nemo~collections~nlp~modules~common~megatron~transformer.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer.""" import math from contextlib import nullcontext from enum import Enum import torch import torch.nn.functional as F from einops import rearrange, repeat from nemo.collections.common.parts.adapter_modules import LinearAdapterConfig from nemo.collections.nlp.modules.common.megatron.adapters.parallel_adapters import ( AdapterName, InfusedAdapterConfig, MLPInfusedAdapterConfig, ParallelLinearAdapterConfig, ) from nemo.collections.nlp.modules.common.megatron.fused_bias_dropout_add import ( bias_dropout_add, bias_dropout_add_fused_inference, bias_dropout_add_fused_train, dropout_add, ) from nemo.collections.nlp.modules.common.megatron.flash_attention import flash_attn_unpadded_qkvpacked_func from nemo.collections.nlp.modules.common.megatron.fused_bias_geglu import fused_bias_geglu from nemo.collections.nlp.modules.common.megatron.fused_bias_gelu import fused_bias_gelu from nemo.collections.nlp.modules.common.megatron.fused_layer_norm import get_layer_norm from nemo.collections.nlp.modules.common.megatron.fused_softmax import MatchedScaleMaskSoftmax from nemo.collections.nlp.modules.common.megatron.layer_norm_1p import LayerNorm1P from nemo.collections.nlp.modules.common.megatron.layer_type import LayerType from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.rotary_pos_embedding import apply_rotary_pos_emb from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults, attention_mask_func, erf_gelu from nemo.collections.nlp.modules.common.megatron.utils import openai_gelu as openai_gelu_func from nemo.core import adapter_mixins from nemo.utils import logging try: from apex.transformer import parallel_state, tensor_parallel from apex.transformer.enums import AttnMaskType, AttnType, ModelType from apex.transformer.utils import divide as safe_divide from apex.transformer.parallel_state import get_tensor_model_parallel_world_size from apex.normalization import MixedFusedRMSNorm HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes ModelType = AttnMaskType = AttnType = LayerType = ApexGuardDefaults() """ We use the following notation throughout this file: h: hidden size n: number of attention heads p: number of model parallel partitions np: n/p hp: h/p hn: h/n b: batch size s: sequence length l: number of layers Transformer takes input of size [s, b, h] and returns a tensor of the same size. We use the following arguments: hyperparameters: transformer hyperparameters """ if HAVE_APEX: class ColumnLinear(tensor_parallel.ColumnParallelLinear): # redefine forward only for non-parallel inference def forward(self, input_): world_size = get_tensor_model_parallel_world_size() if input_.requires_grad or world_size > 1: return tensor_parallel.ColumnParallelLinear.forward(self, input_) # Matrix multiply. output = torch.matmul(input_, self.weight.t()) if not self.skip_bias_add and self.bias is not None: output = output + self.bias output_bias = self.bias if self.skip_bias_add else None return output, output_bias else: class ColumnLinear(ApexGuardDefaults): def __init__(self): super().__init__() logging.warning( "Apex was not found. ColumnLinear will not work. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) class AttentionImpl(Enum): core = "core" flash = "flash" class ParallelMLP(MegatronModule): """MLP. MLP will take the input with h hidden state, project it to 4*h hidden dimension, perform nonlinear transformation, and project the state back into h hidden dimension. """ def __init__( self, init_method, output_layer_init_method, hidden_size, ffn_hidden_size, use_cpu_initialization=False, bias_activation_fusion=True, openai_gelu=False, onnx_safe=False, activation='gelu', bias=True, transformer_block_type='pre_ln', normalization='layernorm', layernorm_epsilon=1e-5, persist_layer_norm=False, sequence_parallel=False, gradient_accumulation_fusion=False, dropout=0.0, ): super(ParallelMLP, self).__init__() self.activation = activation self.bias = bias self.transformer_block_type = transformer_block_type self.normalization = normalization self.layernorm_epsilon = layernorm_epsilon self.persist_layer_norm = persist_layer_norm self.activation = activation self.dropout = dropout self.set_accepted_adapter_types([MLPInfusedAdapterConfig._target_]) if activation not in ['gelu', 'geglu', 'reglu', 'swiglu']: raise ValueError(f"Activation {activation} not supported. Only gelu, geglu, reglu, swiglu are supported.") no_async_tensor_model_parallel_allreduce = ( parallel_state.get_tensor_model_parallel_world_size() == 1 or sequence_parallel ) # Project to 4h. self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear( hidden_size, ffn_hidden_size, # NOTE: When using geglu, divide ffn dim by 2/3 to keep overall params the same. gather_output=False, init_method=init_method, skip_bias_add=True, use_cpu_initialization=use_cpu_initialization, bias=bias, sequence_parallel_enabled=sequence_parallel, no_async_tensor_model_parallel_allreduce=no_async_tensor_model_parallel_allreduce, gradient_accumulation_fusion=gradient_accumulation_fusion, ) if activation in ['geglu', 'reglu', 'swiglu']: # Separate linear layer for *GLU activations. # Source: https://github.com/huggingface/transformers/blob/bee361c6f1f7704f8c688895f2f86f6e5ff84727/src/transformers/models/t5/modeling_t5.py#L292 self.dense_h_to_4h_2 = tensor_parallel.ColumnParallelLinear( hidden_size, ffn_hidden_size, # NOTE: When using *glu, divide ffn dim by 2/3 to keep overall params the same. gather_output=False, init_method=init_method, skip_bias_add=True, use_cpu_initialization=use_cpu_initialization, bias=bias, sequence_parallel_enabled=sequence_parallel, no_async_tensor_model_parallel_allreduce=no_async_tensor_model_parallel_allreduce, gradient_accumulation_fusion=gradient_accumulation_fusion, ) self.glu_activation_family = activation in ['geglu', 'reglu', 'swiglu'] bias_activation_fusion_unavailable = activation in ['reglu', 'swiglu'] if bias_activation_fusion_unavailable and bias_activation_fusion: raise ValueError( f"Cannot use bias_activation_fusion with {activation} activation. Please turn bias gelu fusion off." ) if self.glu_activation_family and openai_gelu: raise ValueError( f"Cannot use openai_gelu with specificed activation function : {activation} Please turn openai gelu off." ) if self.glu_activation_family and onnx_safe: raise ValueError( f"Cannot use onnx_safe with specificed activation function and bias_activation_fusion : {activation} Please turn onnx safe off." ) if bias_activation_fusion and not bias: raise ValueError( f"Cannot use bias_activation_fusion without bias terms. Please set bias=True or bias_activation_fusion=False." ) self.bias_activation_fusion = bias_activation_fusion # Give openai_gelu precedence over other activations if set, for HF compatibility. Normally this is off and shouldn't affect regular model training. if openai_gelu: self.activation_func = openai_gelu_func elif activation in ["gelu", "geglu"]: self.activation_func = F.gelu elif onnx_safe: self.activation_func = erf_gelu elif activation == "reglu": self.activation_func = F.relu elif activation == "swiglu": # SiLU or sigmoid linear unit is the same as swish with beta = 1 (which is what https://arxiv.org/pdf/2002.05202.pdf uses.) self.activation_func = F.silu # Project back to h. self.dense_4h_to_h = tensor_parallel.RowParallelLinear( ffn_hidden_size, hidden_size, input_is_parallel=True, init_method=output_layer_init_method, skip_bias_add=True, use_cpu_initialization=use_cpu_initialization, bias=bias, sequence_parallel_enabled=sequence_parallel, gradient_accumulation_fusion=gradient_accumulation_fusion, ) # Normformer normalization if transformer_block_type == 'normformer': if normalization == 'layernorm': self.normalization = get_layer_norm( ffn_hidden_size // get_tensor_model_parallel_world_size(), layernorm_epsilon, persist_layer_norm ) elif normalization == 'layernorm1p': self.normalization = LayerNorm1P( ffn_hidden_size // get_tensor_model_parallel_world_size(), layernorm_epsilon, sequence_parallel_enabled=sequence_parallel, ) else: self.normalization = MixedFusedRMSNorm( ffn_hidden_size // get_tensor_model_parallel_world_size(), layernorm_epsilon ) def forward(self, hidden_states): # [s, b, 4hp] intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states) if self.glu_activation_family: intermediate_parallel_2, bias_parallel_2 = self.dense_h_to_4h_2(hidden_states) if self.bias_activation_fusion: if self.activation == 'gelu': intermediate_parallel = fused_bias_gelu(intermediate_parallel, bias_parallel) elif self.activation == 'geglu': intermediate_parallel = fused_bias_geglu( intermediate_parallel, bias_parallel, intermediate_parallel_2, bias_parallel_2 ) elif self.activation in ['reglu', 'swiglu'] or ( self.glu_activation_family and not self.bias_activation_fusion ): if bias_parallel is not None: intermediate_parallel = self.activation_func(intermediate_parallel + bias_parallel) * ( intermediate_parallel_2 + bias_parallel_2 ) else: intermediate_parallel = self.activation_func(intermediate_parallel) * intermediate_parallel_2 else: if bias_parallel is not None: intermediate_parallel = self.activation_func(intermediate_parallel + bias_parallel) else: intermediate_parallel = self.activation_func(intermediate_parallel) if self.dropout > 0: intermediate_parallel = F.dropout(intermediate_parallel, p=self.dropout, training=self.training) infused_adapter = self.get_from_adapter_layer(AdapterName.MLP_INFUSED) if infused_adapter: intermediate_parallel = infused_adapter(intermediate_parallel) # Normformer normalization if self.transformer_block_type == 'normformer': intermediate_parallel = self.normalization(intermediate_parallel) # [s, b, h] output, output_bias = self.dense_4h_to_h(intermediate_parallel) return output, output_bias class SwitchMLP(MegatronModule): """Top-1 MoE Curently supports Sinkhorn based expert routing.""" def __init__( self, num_experts, init_method, output_layer_init_method, hidden_size, ffn_hidden_size, use_cpu_initialization=False, bias_activation_fusion=True, openai_gelu=False, onnx_safe=False, activation='gelu', bias=True, transformer_block_type='pre_ln', normalization='layernorm', layernorm_epsilon=1e-5, persist_layer_norm=False, sequence_parallel=False, gradient_accumulation_fusion=False, dropout=0.0, ): super(SwitchMLP, self).__init__() self.num_experts = num_experts self.route_algo = SwitchMLP.sinkhorn self.router = tensor_parallel.RowParallelLinear( hidden_size, num_experts, input_is_parallel=False, init_method=init_method, skip_bias_add=False, use_cpu_initialization=use_cpu_initialization, bias=bias, sequence_parallel_enabled=sequence_parallel, gradient_accumulation_fusion=gradient_accumulation_fusion, ) mlp_args = { 'init_method': init_method, 'output_layer_init_method': output_layer_init_method, 'hidden_size': hidden_size, 'ffn_hidden_size': ffn_hidden_size, 'use_cpu_initialization': use_cpu_initialization, 'bias_activation_fusion': bias_activation_fusion, 'openai_gelu': openai_gelu, 'onnx_safe': onnx_safe, 'activation': activation, 'bias': bias, 'transformer_block_type': transformer_block_type, 'normalization': normalization, 'layernorm_epsilon': layernorm_epsilon, 'persist_layer_norm': persist_layer_norm, 'sequence_parallel': sequence_parallel, 'gradient_accumulation_fusion': gradient_accumulation_fusion, 'dropout': dropout, } self.experts = torch.nn.ModuleList([ParallelMLP(**mlp_args) for _ in range(num_experts)]) def forward(self, hidden_states): hidden_shape = hidden_states.shape route, _ = self.router(hidden_states) route = route.view(-1, self.num_experts) if self.training: with torch.no_grad(): norm_route = self.route_algo( route.detach().to(dtype=torch.float32) ) # explicit fp32 conversion for stability _, max_ind = torch.max(norm_route, dim=1) route = torch.sigmoid(route) max_prob = route[torch.arange(route.size(0)), max_ind] else: route = torch.sigmoid(route) max_prob, max_ind = torch.max(route, dim=1) max_prob = torch.unsqueeze(max_prob, 1) hidden_states = hidden_states.view(-1, hidden_shape[-1]) local_indices = (max_ind == 0).nonzero() hidden = hidden_states[local_indices, :] output, output_bias = self.experts[0](hidden) output_bias = output_bias.expand_as(output) output_total = torch.empty_like(hidden_states, dtype=output.dtype) output_bias_total = torch.empty_like(hidden_states, dtype=output_bias.dtype) output_total[local_indices, :] = output output_bias_total[local_indices, :] = output_bias for expert_num, expert in enumerate(self.experts): if expert_num == 0: continue local_indices = (max_ind == expert_num).nonzero() hidden = hidden_states[local_indices, :] output, output_bias = expert(hidden) output_bias = output_bias.expand_as(output) output_total[local_indices, :] = output output_bias_total[local_indices, :] = output_bias output_total = output_total * max_prob output_bias_total = output_bias_total * max_prob output_total = output_total.view(hidden_shape) output_bias_total = output_bias_total.view(hidden_shape) return output_total, output_bias_total @classmethod def sinkhorn(cls, cost, tol=0.0001): "Megatron-LMs sinkhorn implementation" cost = torch.exp(cost) d0 = torch.ones(cost.size(0), device=cost.device, dtype=cost.dtype) d1 = torch.ones(cost.size(1), device=cost.device, dtype=cost.dtype) eps = 0.00000001 error = 1e9 d1_old = d1 while error > tol: d0 = (1 / d0.size(0)) * 1 / (torch.sum(d1 * cost, 1) + eps) d1 = (1 / d1.size(0)) * 1 / (torch.sum(d0.unsqueeze(1) * cost, 0) + eps) error = torch.mean(torch.abs(d1_old - d1)) d1_old = d1 return d1 * cost * d0.unsqueeze(1) class CoreAttention(MegatronModule): """ Region where selective activation recomputation is applied. See Figure 3. in Reducing Activation Recomputation in Large Transformer Models https://arxiv.org/pdf/2205.05198.pdf for more details. """ def __init__( self, layer_number, num_attention_heads, hidden_size, attention_type=AttnType.self_attn, attn_mask_type=AttnMaskType.padding, precision=16, apply_query_key_layer_scaling=True, kv_channels=None, masked_softmax_fusion=True, attention_dropout=0.1, sequence_parallel=False, normalize_attention_scores=True, ): super(CoreAttention, self).__init__() self.precision = precision self.fp16 = precision == 16 self.bf16 = precision == 'bf16' self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.attention_softmax_in_fp32 = False if self.apply_query_key_layer_scaling: self.attention_softmax_in_fp32 = True self.layer_number = max(1, layer_number) self.attention_type = attention_type self.attn_mask_type = attn_mask_type self.sequence_parallel = sequence_parallel if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads projection_size = kv_channels * num_attention_heads # Per attention head and per partition values. world_size = parallel_state.get_tensor_model_parallel_world_size() self.hidden_size_per_partition = safe_divide(projection_size, world_size) self.hidden_size_per_attention_head = safe_divide(projection_size, num_attention_heads) self.num_attention_heads_per_partition = safe_divide(num_attention_heads, world_size) self.num_attention_heads_partition_offset = ( self.num_attention_heads_per_partition * parallel_state.get_tensor_model_parallel_rank() ) coeff = None self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) if self.apply_query_key_layer_scaling: coeff = self.layer_number self.norm_factor *= coeff self.scale_mask_softmax = MatchedScaleMaskSoftmax( self.fp16, self.bf16, self.attn_mask_type, masked_softmax_fusion, attention_mask_func, self.attention_softmax_in_fp32, coeff, ) # Dropout. Note that for a single iteration, this layer will generate # different outputs on different number of parallel partitions but # on average it should not be partition dependent. self.attention_dropout = torch.nn.Dropout(attention_dropout) def forward( self, query_layer, key_layer, value_layer, attention_mask, layer_past=None, get_key_value=False, rotary_pos_emb=None, relative_position_bias=None, headscale_tensor=None, ): # =================================== # Raw attention scores. [b, np, s, s] # =================================== # [b, np, sq, sk] output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0)) # TODO: figure out how to do this # apply relative positional encoding (rotary embedding) if rotary_pos_emb is not None: q_pos_emb, k_pos_emb = rotary_pos_emb query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb) key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb) # TODO, can apply positional embedding to value_layer so it has # absolute positional embedding. # otherwise, only relative positional embedding takes effect # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb) # [sq, b, np, hn] -> [sq, b * np, hn] query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) # [sk, b, np, hn] -> [sk, b * np, hn] key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) # preallocting input tensor: [b * np, sq, sk] matmul_input_buffer = torch.empty( output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype, device=torch.cuda.current_device(), ) # Raw attention scores. [b * np, sq, sk] matmul_result = torch.baddbmm( matmul_input_buffer, query_layer.transpose(0, 1), # [b * np, sq, hn] key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk] beta=0.0, alpha=(1.0 / self.norm_factor) if self.normalize_attention_scores else 1.0, ) # change view to [b, np, sq, sk] attention_scores = matmul_result.view(*output_size) if relative_position_bias is not None: attention_scores += relative_position_bias[ :, self.num_attention_heads_partition_offset : self.num_attention_heads_partition_offset + self.num_attention_heads_per_partition, : attention_scores.size(2), : attention_scores.size(3), ] # ================================================== # Update attention mask for inference. [b, np, sq, sk] # ================================================== if get_key_value: with torch.no_grad(): if layer_past is not None: attention_mask = attention_mask[ ..., attention_scores.size(3) - 1, : attention_scores.size(3) ].unsqueeze(2) else: attention_mask = attention_mask[..., : attention_scores.size(3), : attention_scores.size(3)] # =========================== # Attention probs and dropout # =========================== # attention scores and attention mask [b, np, sq, sk] attention_probs = self.scale_mask_softmax(attention_scores, attention_mask) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. if not self.sequence_parallel: with tensor_parallel.random.get_cuda_rng_tracker().fork(): attention_probs = self.attention_dropout(attention_probs) else: attention_probs = self.attention_dropout(attention_probs) # ========================= # Context layer. [sq, b, hp] # ========================= # value_layer -> context layer. # [sk, b, np, hn] --> [b, np, sq, hn] # context layer shape: [b, np, sq, hn] output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) # change view [sk, b * np, hn] value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1) # change view [b * np, sq, sk] attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) # matmul: [b * np, sq, hn] context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) # change view [b, np, sq, hn] context_layer = context_layer.view(*output_size) if headscale_tensor is not None: context_layer = context_layer * headscale_tensor # [b, np, sq, hn] --> [sq, b, np, hn] context_layer = context_layer.permute(2, 0, 1, 3).contiguous() # [sq, b, np, hn] --> [sq, b, hp] new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class FlashAttention(MegatronModule): def __init__( self, layer_number, num_attention_heads, hidden_size, attention_type=AttnType.self_attn, attn_mask_type=AttnMaskType.padding, precision=16, kv_channels=None, attention_dropout=0.1, sequence_parallel=False, ): super(FlashAttention, self).__init__() if precision == 32: raise ValueError('FlashAttention does not support fp32.') self.precision = precision self.fp16 = precision == 16 self.bf16 = precision == 'bf16' if self.fp16: self.dtype = torch.float16 else: self.dtype = torch.bfloat16 self.flash_attention_fn = flash_attn_unpadded_qkvpacked_func self.layer_number = max(1, layer_number) self.attention_type = attention_type self.attn_mask_type = attn_mask_type self.sequence_parallel = sequence_parallel if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads projection_size = kv_channels * num_attention_heads # Per attention head and per partition values. world_size = parallel_state.get_tensor_model_parallel_world_size() self.hidden_size_per_partition = safe_divide(projection_size, world_size) self.hidden_size_per_attention_head = safe_divide(projection_size, num_attention_heads) self.num_attention_heads_per_partition = safe_divide(num_attention_heads, world_size) self.num_attention_heads_partition_offset = ( self.num_attention_heads_per_partition * parallel_state.get_tensor_model_parallel_rank() ) self.attention_dropout = attention_dropout def forward(self, query_layer, key_layer, value_layer, attention_mask, **kwargs): # [b, np, sq, sk] output_size = ( query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0), ) causal = attention_mask is not None # [s, b, np, hn] -> [b, s, np, hn] -> [b * s, 1, np, hn] query_layer = query_layer.transpose(0, 1).reshape(output_size[0] * output_size[2], 1, output_size[1], -1) key_layer = key_layer.transpose(0, 1).reshape(output_size[0] * output_size[3], 1, output_size[1], -1) value_layer = value_layer.transpose(0, 1).reshape(output_size[0] * output_size[3], 1, output_size[1], -1) # Combined q/k/v into [b * s, 3, np, hn]. qkv = torch.concat([query_layer, key_layer, value_layer], dim=1) prev_dtype = None if qkv.dtype != self.dtype: prev_dtype = qkv.dtype qkv = qkv.to(self.dtype) batch_size = output_size[0] seqlen = output_size[2] max_s = seqlen cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) output = self.flash_attention_fn( qkv, cu_seqlens, max_s, self.attention_dropout, softmax_scale=None, causal=causal ) if prev_dtype is not None: output.to(prev_dtype) # [b * sq, np, hn] -> [b, sq, np, hn] matmul_result = output.view(output_size[0], output_size[2], output.shape[1], output.shape[2]) # [b, sq, np, hn] -> [b, np, sq, hn] matmul_result = matmul_result.transpose(1, 2) # [b, np, sq, hn] --> [sq, b, np, hn] context_layer = matmul_result.permute(2, 0, 1, 3).contiguous() # [sq, b, np, hn] --> [sq, b, hp] new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class ParallelAttention(MegatronModule): """Parallel self-attention layer abstract class. Self-attention layer takes input with size [s, b, h] and returns output of the same size. """ def __init__( self, init_method, output_layer_init_method, layer_number, num_attention_heads, hidden_size, attention_type=AttnType.self_attn, attn_mask_type=AttnMaskType.padding, precision=16, apply_query_key_layer_scaling=True, kv_channels=None, use_cpu_initialization=False, masked_softmax_fusion=True, attention_dropout=0.1, layer_type=None, megatron_legacy=False, bias=True, headscale=False, activations_checkpoint_granularity=None, sequence_parallel=False, gradient_accumulation_fusion=False, attention_impl=AttentionImpl.flash, ): super(ParallelAttention, self).__init__() self.precision = precision self.layer_number = max(1, layer_number) self.attention_type = attention_type self.attn_mask_type = attn_mask_type self.normalize_attention_scores = normalize_attention_scores self.megatron_legacy = megatron_legacy self.set_accepted_adapter_types([InfusedAdapterConfig._target_]) if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads projection_size = kv_channels * num_attention_heads # Per attention head and per partition values. world_size = parallel_state.get_tensor_model_parallel_world_size() self.hidden_size_per_attention_head = safe_divide(projection_size, num_attention_heads) self.num_attention_heads_per_partition = safe_divide(num_attention_heads, world_size) self.num_attention_heads_partition_offset = ( self.num_attention_heads_per_partition * parallel_state.get_tensor_model_parallel_rank() ) no_async_tensor_model_parallel_allreduce = ( parallel_state.get_tensor_model_parallel_world_size() == 1 or sequence_parallel ) # Strided linear layer. if attention_type == AttnType.self_attn: # TODO: checl self.query_key_value.weight.dtype at initialization for Core vs Flash self.query_key_value = ColumnLinear( hidden_size, 3 * projection_size, gather_output=False, init_method=init_method, use_cpu_initialization=use_cpu_initialization, bias=bias, sequence_parallel_enabled=sequence_parallel, no_async_tensor_model_parallel_allreduce=no_async_tensor_model_parallel_allreduce, gradient_accumulation_fusion=gradient_accumulation_fusion, ) else: assert attention_type == AttnType.cross_attn self.query = tensor_parallel.ColumnParallelLinear( hidden_size, projection_size, gather_output=False, init_method=init_method, bias=bias, sequence_parallel_enabled=sequence_parallel, no_async_tensor_model_parallel_allreduce=no_async_tensor_model_parallel_allreduce, gradient_accumulation_fusion=gradient_accumulation_fusion, ) self.key_value = tensor_parallel.ColumnParallelLinear( hidden_size, 2 * projection_size, gather_output=False, init_method=init_method, bias=bias, sequence_parallel_enabled=sequence_parallel, no_async_tensor_model_parallel_allreduce=no_async_tensor_model_parallel_allreduce, gradient_accumulation_fusion=gradient_accumulation_fusion, ) self.checkpoint_core_attention = activations_checkpoint_granularity == 'selective' if attention_impl == AttentionImpl.core: self.attention = CoreAttention( layer_number=self.layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, attention_type=self.attention_type, attn_mask_type=self.attn_mask_type, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, sequence_parallel=sequence_parallel, ) elif attention_impl == AttentionImpl.flash: self.attention = FlashAttention( layer_number=self.layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, attention_type=self.attention_type, attn_mask_type=self.attn_mask_type, precision=precision, kv_channels=kv_channels, attention_dropout=attention_dropout, sequence_parallel=sequence_parallel, ) else: raise NotImplementedError(f'Attention algorithm {attention_impl} has not been implemented.') # Output. self.dense = tensor_parallel.RowParallelLinear( projection_size, hidden_size, input_is_parallel=True, init_method=output_layer_init_method, skip_bias_add=True, use_cpu_initialization=use_cpu_initialization, bias=bias, sequence_parallel_enabled=sequence_parallel, gradient_accumulation_fusion=gradient_accumulation_fusion, ) self.headscale = headscale if headscale: self.head_scale_tensor = torch.nn.Parameter( torch.ones(1, self.num_attention_heads_per_partition, 1, 1), requires_grad=True ) # Inference key-value memory self.inference_key_memory = None self.inference_value_memory = None self.inference_current_sequence_len = 0 # relative position embedding self.layer_type = layer_type def _checkpointed_attention_forward( self, query_layer, key_layer, value_layer, attention_mask, rotary_pos_emb=None, relative_position_bias=None, headscale_tensor=None, ): """Forward method with activation checkpointing.""" def custom_forward(*inputs): if len(inputs) == 7: query_layer = inputs[0] key_layer = inputs[1] value_layer = inputs[2] attention_mask = inputs[3] rotary_pos_emb = inputs[4] relative_position_bias = inputs[5] headscale_tensor = inputs[6] elif len(inputs) == 8: query_layer = inputs[0] key_layer = inputs[1] value_layer = inputs[2] attention_mask = inputs[3] rotary_pos_emb = (inputs[4], inputs[5]) relative_position_bias = inputs[6] headscale_tensor = inputs[7] else: raise ValueError('unexpected number of inputs') output_ = self.attention( query_layer, key_layer, value_layer, attention_mask, rotary_pos_emb=rotary_pos_emb, relative_position_bias=relative_position_bias, headscale_tensor=headscale_tensor, ) return output_ if rotary_pos_emb is None: rot_tuple = (rotary_pos_emb,) else: rot_tuple = (rotary_pos_emb[0], rotary_pos_emb[1]) hidden_states = tensor_parallel.checkpoint( custom_forward, False, query_layer, key_layer, value_layer, attention_mask, *rot_tuple, relative_position_bias, headscale_tensor, ) return hidden_states def _allocate_memory(self, inference_max_sequence_len, batch_size, dtype): return torch.empty( inference_max_sequence_len, batch_size, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, dtype=dtype, device=torch.cuda.current_device(), ) def _transpose_last_dim(self, mixed_layer, num_splits, num_splits_first): input_shape = mixed_layer.size() if num_splits_first: """[s, b, num_splits * np * hn] -->(view) [s, b, num_splits, np, hn] -->(tranpose) [s, b, np, num_splits, hn] -->(view) [s, b, np * num_splits * hn] """ intermediate_shape = input_shape[:-1] + ( num_splits, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, ) mixed_layer = mixed_layer.view(*intermediate_shape) mixed_layer = mixed_layer.transpose(-2, -3).contiguous() else: """[s, b, np * hn * num_splits] -->(view) [s, b, np, hn, num_splits] -->(tranpose) [s, b, np, num_splits, hn] -->(view) [s, b, np * num_splits * hn] """ intermediate_shape = input_shape[:-1] + ( self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, num_splits, ) mixed_layer = mixed_layer.view(*intermediate_shape) mixed_layer = mixed_layer.transpose(-1, -2).contiguous() mixed_layer = mixed_layer.view(*input_shape) return mixed_layer def forward( self, hidden_states, attention_mask, layer_past=None, get_key_value=False, encoder_output=None, set_inference_key_value_memory=False, inference_max_sequence_len=None, rotary_pos_emb=None, # rotary positional embedding relative_position_bias=None, checkpoint_core_attention=False, ): # hidden_states: [sq, b, h] # ================================================= # Pre-allocate memory for key-values for inference. # ================================================= if set_inference_key_value_memory: assert inference_max_sequence_len and inference_max_sequence_len > 0 self.inference_key_memory = self._allocate_memory( inference_max_sequence_len, hidden_states.size(1), hidden_states.dtype ) self.inference_value_memory = self._allocate_memory( inference_max_sequence_len, hidden_states.size(1), hidden_states.dtype ) self.inference_current_sequence_len = 0 # Some consistency check. if inference_max_sequence_len: assert self.inference_current_sequence_len < self.inference_key_memory.size(0) assert inference_max_sequence_len == self.inference_key_memory.size(0) # This is added for safety. In case inference_max_sequence_len # is not provided, make sure there is no potential memory left # from previous inference. if not inference_max_sequence_len: self.inference_key_memory = None self.inference_value_memory = None # ===================== # Query, Key, and Value # ===================== if self.attention_type == AttnType.self_attn: # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)] mixed_x_layer, _ = self.query_key_value(hidden_states) # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn] new_tensor_shape = mixed_x_layer.size()[:-1] + ( self.num_attention_heads_per_partition, 3 * self.hidden_size_per_attention_head, ) if self.megatron_legacy: mixed_x_layer = self._transpose_last_dim(mixed_x_layer, 3, True) mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn] (query_layer, key_layer, value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3) else: # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)] mixed_kv_layer, _ = self.key_value(encoder_output) # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn] new_tensor_shape = mixed_kv_layer.size()[:-1] + ( self.num_attention_heads_per_partition, 2 * self.hidden_size_per_attention_head, ) if self.megatron_legacy: mixed_kv_layer = self._transpose_last_dim(mixed_kv_layer, 2, True) mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape) # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn] (key_layer, value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2) # Attention head [sq, b, h] --> [sq, b, hp] query_layer, _ = self.query(hidden_states) # [sq, b, hp] --> [sq, b, np, hn] new_tensor_shape = query_layer.size()[:-1] + ( self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, ) query_layer = query_layer.view(*new_tensor_shape) if self.is_adapter_available(): key_infused_adapter = self.get_from_adapter_layer(AdapterName.KEY_INFUSED) value_infused_adapter = self.get_from_adapter_layer(AdapterName.VALUE_INFUSED) if key_infused_adapter: assert value_infused_adapter is not None, "Expected value_infused_adapter not found!" kls = key_layer.shape key_layer = key_infused_adapter(key_layer.reshape(kls[0], kls[1], -1)).reshape(kls) if value_infused_adapter: assert key_infused_adapter is not None, "Expected key_infused_adapter not found!" vls = value_layer.shape value_layer = value_infused_adapter(value_layer.reshape(vls[0], vls[1], -1)).reshape(vls) # =================================================== # Adjust key, value, and attention mask for inference # =================================================== # duplicate the pos_emb for self attention if rotary_pos_emb is not None: rotary_pos_emb = rotary_pos_emb if isinstance(rotary_pos_emb, tuple) else ((rotary_pos_emb,) * 2) if inference_max_sequence_len: # Adjust the range variables. start = self.inference_current_sequence_len self.inference_current_sequence_len += key_layer.size(0) end = self.inference_current_sequence_len # Copy key and values. self.inference_key_memory[start:end, ...] = key_layer self.inference_value_memory[start:end, ...] = value_layer key_layer = self.inference_key_memory[:end, ...] value_layer = self.inference_value_memory[:end, ...] # Adjust attention mask attention_mask = attention_mask[..., start:end, :end] # adjust the key rotary positional embedding if rotary_pos_emb is not None: q_pos_emb, k_pos_emb = rotary_pos_emb if not set_inference_key_value_memory: # In inference, we compute one token at a time. # Select the correct positional embedding. q_pos_emb = q_pos_emb[end - 1 : end] k_pos_emb = k_pos_emb[:end, :, :, :] rotary_pos_emb = (q_pos_emb, k_pos_emb) if layer_past is not None: past_key, past_value = layer_past key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=0) value_layer = torch.cat((past_value.type_as(value_layer), value_layer), dim=0) if get_key_value: present = (key_layer, value_layer) if checkpoint_core_attention: context_layer = self._checkpointed_attention_forward( query_layer, key_layer, value_layer, attention_mask, rotary_pos_emb=rotary_pos_emb, relative_position_bias=relative_position_bias, headscale_tensor=self.head_scale_tensor if self.headscale else None, ) else: context_layer = self.attention( query_layer, key_layer, value_layer, attention_mask, layer_past=layer_past, get_key_value=get_key_value, rotary_pos_emb=rotary_pos_emb, relative_position_bias=relative_position_bias, headscale_tensor=self.head_scale_tensor if self.headscale else None, ) # ================= # Output. [sq, b, h] # ================= output, bias = self.dense(context_layer) if get_key_value: output = [output, present] return output, bias class ParallelChunkedCrossAttention(MegatronModule): """Parallel chunked cross-attention layer class. Self-attention layer takes input with size [b, s, h] and returns output of the same size. """ def __init__( self, init_method, output_layer_init_method, layer_number, num_attention_heads, hidden_size, precision=16, apply_query_key_layer_scaling=True, kv_channels=None, use_cpu_initialization=False, masked_softmax_fusion=True, attention_dropout=0.1, megatron_legacy=False, chunk_size=64, # each chunk, how many tokens bias=True, headscale=False, gradient_accumulation_fusion=False, normalize_attention_scores=True, ): super(ParallelChunkedCrossAttention, self).__init__() self.cross_attention = ParallelAttention( init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, attention_type=AttnType.cross_attn, attn_mask_type=AttnMaskType.padding, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, use_cpu_initialization=use_cpu_initialization, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, megatron_legacy=megatron_legacy, bias=bias, headscale=headscale, gradient_accumulation_fusion=gradient_accumulation_fusion, normalize_attention_scores=normalize_attention_scores, ) self.chunk_size = chunk_size def forward( self, hidden_states, attention_mask, encoder_output=None, set_inference_key_value_memory=False, inference_max_sequence_len=None, rotary_pos_emb=None, checkpoint_core_attention=False, ): if checkpoint_core_attention: raise ValueError( 'checkpoint_core_attention during forward not implemented yet for ParallelChunkedCrossAttention' ) # hidden_states is assumed to have dimension [token length, batch, dimension] # derive variables # encoder_output here is the retrieved context context = encoder_output # context is assumed to have dimension [num_chunks, num_neighbors, context_token_len, batch, dimension] chunk_size = self.chunk_size b, n, dim = ( hidden_states.shape[1], hidden_states.shape[0], hidden_states.shape[2], ) default_bias = self.cross_attention.dense.bias if set_inference_key_value_memory: seq_index = (n // chunk_size) * chunk_size self.current_len = n elif inference_max_sequence_len is not None: # only handles single token increment assert n == 1 self.current_len += n token_pos = (self.current_len - 1) % chunk_size chunk_id = self.current_len // chunk_size if chunk_id <= 0: # if sequence length less than chunk size, do an early return return torch.zeros_like(hidden_states), default_bias causal_padding = chunk_size - 1 # pad it as a full chunk, put it at the end of the chunk position hidden_states = F.pad(hidden_states, (0, 0, 0, 0, causal_padding, 0), value=0.0) # only use the relevant context context = context[chunk_id - 1 : chunk_id, :, :, :, :] attention_mask = rearrange(attention_mask, '(b k) 1 q v -> b k 1 q v', b=b) # select the relevant chunk attn mask attention_mask = attention_mask[:, chunk_id - 1] seq_index = chunk_size else: # this is normal forward without inference seq_index = (n // chunk_size) * chunk_size # if sequence length less than chunk size, do an early return if n < self.chunk_size and set_inference_key_value_memory and inference_max_sequence_len is not None: return torch.zeros_like(hidden_states), default_bias num_chunks, num_retrieved = ( context.shape[-5], context.shape[-4], ) # causal padding causal_padding = chunk_size - 1 x = F.pad(hidden_states, (0, 0, 0, 0, -causal_padding, causal_padding), value=0.0) # remove sequence which is ahead of the neighbors retrieved (during inference) # seq_index = (n // chunk_size) * chunk_size x, x_remainder = x[:seq_index], x[seq_index:] seq_remain_len = x_remainder.shape[0] # take care of rotary positional embedding # make sure queries positions are properly shifted to the future q_pos_emb, k_pos_emb = rotary_pos_emb # currently implementation is broken # q need to extend to causal_padding, and just do # q_pos_emb = F.pad(q_pos_emb, (0, 0, -causal_padding, 0), value = 0.) if inference_max_sequence_len is not None and not set_inference_key_value_memory: q_pos_emb = F.pad( q_pos_emb, (0, 0, 0, 0, 0, 0, -causal_padding - token_pos, -causal_padding + token_pos), value=0.0 ) else: q_pos_emb = F.pad(q_pos_emb, (0, 0, 0, 0, 0, 0, -causal_padding, 0), value=0.0) k_pos_emb = repeat(k_pos_emb, 'n b h d -> (r n) b h d', r=num_retrieved) rotary_pos_emb = (q_pos_emb, k_pos_emb) # make sure number context chunks is enough assert x.shape[0] // chunk_size == num_chunks # reshape so we have chunk to chunk attention, without breaking causality x = rearrange(x, '(k n) b d -> n (b k) d', k=num_chunks) context = rearrange(context, 'k r n b d -> (r n) (b k) d') # cross attention out, bias = self.cross_attention(x, attention_mask, encoder_output=context, rotary_pos_emb=rotary_pos_emb) # reshape back to original sequence out = rearrange(out, 'n (b k) d -> (k n) b d', b=b) # pad back to original, with 0s at the beginning (which will be added to the residual and be fine) out = F.pad(out, (0, 0, 0, 0, causal_padding, -causal_padding + seq_remain_len), value=0.0) if not set_inference_key_value_memory and inference_max_sequence_len is not None: out = out[-1:] return out, bias def get_bias_dropout_add(training): def _bias_dropout_add(x, bias, residual, prob): return bias_dropout_add(x, bias, residual, prob, training) return _bias_dropout_add def get_dropout_add(training): def _dropout_add(x, bias, residual, prob): assert bias is None return dropout_add(x, bias, residual, prob, training) return _dropout_add class ParallelTransformerLayer_(MegatronModule, adapter_mixins.AdapterModuleMixin): """A single transformer layer. Transformer layer takes input with size [s, b, h] and returns an output of the same size. """ def __init__( self, init_method, output_layer_init_method, layer_number, hidden_size, ffn_hidden_size, num_attention_heads, layer_type=LayerType.encoder, self_attn_mask_type=AttnMaskType.padding, fp32_residual_connection=False, precision=16, apply_query_key_layer_scaling=True, kv_channels=None, layernorm_epsilon=1e-5, hidden_dropout=0.1, persist_layer_norm=False, use_cpu_initialization=False, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, gradient_accumulation_fusion=False, openai_gelu=False, onnx_safe=False, attention_dropout=0.1, ffn_dropout=0.0, activation='gelu', megatron_legacy=False, bias=True, chunk_size=64, normalization='layernorm', transformer_block_type='pre_ln', headscale=False, activations_checkpoint_granularity=None, sequence_parallel=False, normalize_attention_scores=True, num_moe_experts=1, moe_frequency=1, moe_dropout=0.0, ): super(ParallelTransformerLayer_, self).__init__() if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads self.layer_number = layer_number self.layer_type = layer_type self.bias = bias self.transformer_block_type = transformer_block_type self.set_accepted_adapter_types([LinearAdapterConfig._target_, ParallelLinearAdapterConfig._target_]) if not bias and bias_dropout_add_fusion: raise ValueError( 'bias_dropout_add_fusion=True requires bias=True, found bias=False. Either set both to True or both to False.' ) if normalization not in ['layernorm', 'layernorm1p', 'rmsnorm']: raise ValueError(f'normalization must be "layernorm", "layernorm1p" or "rmsnorm", found {normalization}') if transformer_block_type not in ['pre_ln', 'post_ln', 'normformer']: raise ValueError( f'transformer_block_type must be either "pre_ln" or "post_ln" or "normformer", found {transformer_block_type}' ) self.fp32_residual_connection = fp32_residual_connection # if true move residual connections to fp32 self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.bias_dropout_add_fusion = bias_dropout_add_fusion # if true, enable bias dropout fusion # Self attention. # retrieval_decoder_after_self_attn skips the self attention if self.layer_type != LayerType.retrieval_decoder_after_self_attn: # Layernorm on the input data. if normalization == 'layernorm': self.input_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, sequence_parallel ) elif normalization == 'layernorm1p': self.input_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=sequence_parallel ) else: self.input_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) self.self_attention = ParallelAttention( init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, attention_type=AttnType.self_attn, attn_mask_type=self_attn_mask_type, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, use_cpu_initialization=use_cpu_initialization, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, layer_type=layer_type, megatron_legacy=megatron_legacy, bias=bias, headscale=headscale, activations_checkpoint_granularity=activations_checkpoint_granularity, sequence_parallel=sequence_parallel, gradient_accumulation_fusion=gradient_accumulation_fusion, normalize_attention_scores=normalize_attention_scores, ) if transformer_block_type == 'normformer': if normalization == 'layernorm': self.post_attention_normformer_norm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm ) else: self.post_attention_normformer_norm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) if self.layer_type != LayerType.decoder_pre_mlp or self.transformer_block_type != 'post_ln': # the post_attention_layernorm is used for layermorm after mlp # don't need it for decoder_pre_mlp and post_ln if normalization == 'layernorm': self.post_attention_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, sequence_parallel ) elif normalization == 'layernorm1p': self.post_attention_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=sequence_parallel ) else: self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) if self.layer_type == LayerType.decoder_pre_mlp: # skip MLP and cross attention return # the post_attention_layernorm is used for layermorm after mlp # need it for post_ln if self.layer_type == LayerType.retrieval_decoder_after_self_attn and self.transformer_block_type == 'post_ln': # Layernorm on the attention output if normalization == 'layernorm': self.post_attention_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, sequence_parallel ) elif normalization == 'layernorm1p': self.post_attention_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=sequence_parallel ) else: self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) if self.layer_type == LayerType.decoder or self.layer_type == LayerType.retrieval_encoder: self.inter_attention = ParallelAttention( init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, attention_type=AttnType.cross_attn, attn_mask_type=AttnMaskType.padding, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, use_cpu_initialization=use_cpu_initialization, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, megatron_legacy=megatron_legacy, bias=bias, headscale=headscale, sequence_parallel=sequence_parallel, gradient_accumulation_fusion=gradient_accumulation_fusion, normalize_attention_scores=normalize_attention_scores, ) # Normformer normalization if transformer_block_type == 'normformer': if normalization == 'layernorm': self.post_inter_attention_normformer_norm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, sequence_parallel ) elif normalization == 'layernorm1p': self.post_inter_attention_normformer_norm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=sequence_parallel ) else: self.post_inter_attention_normformer_norm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) # Layernorm on the attention output. if normalization == 'layernorm': self.post_inter_attention_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, sequence_parallel ) elif normalization == 'layernorm1p': self.post_inter_attention_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=sequence_parallel ) else: self.post_inter_attention_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) elif ( self.layer_type == LayerType.retrieval_decoder or self.layer_type == LayerType.retrieval_decoder_after_self_attn ): self.inter_attention = ParallelChunkedCrossAttention( init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, use_cpu_initialization=use_cpu_initialization, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, megatron_legacy=megatron_legacy, chunk_size=chunk_size, bias=bias, headscale=headscale, gradient_accumulation_fusion=gradient_accumulation_fusion, ) # Normformer normalization if transformer_block_type == 'normformer': if normalization == 'layernorm': self.post_inter_attention_normformer_norm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, sequence_parallel ) elif normalization == 'layernorm1p': self.post_inter_attention_normformer_norm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=sequence_parallel ) else: self.post_inter_attention_normformer_norm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) # Layernorm on the attention output. if normalization == 'layernorm': self.post_inter_attention_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, sequence_parallel ) elif normalization == 'layernorm1p': self.post_inter_attention_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=sequence_parallel ) else: self.post_inter_attention_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) # MLP if num_moe_experts > 1 and self.layer_number % moe_frequency == 0: self.mlp = SwitchMLP( num_experts=num_moe_experts, init_method=init_method, output_layer_init_method=output_layer_init_method, hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, use_cpu_initialization=use_cpu_initialization, bias_activation_fusion=bias_activation_fusion, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, transformer_block_type=transformer_block_type, normalization=normalization, layernorm_epsilon=layernorm_epsilon, persist_layer_norm=persist_layer_norm, sequence_parallel=sequence_parallel, gradient_accumulation_fusion=gradient_accumulation_fusion, dropout=moe_dropout, ) else: self.mlp = ParallelMLP( init_method=init_method, output_layer_init_method=output_layer_init_method, hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, use_cpu_initialization=use_cpu_initialization, bias_activation_fusion=bias_activation_fusion, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, transformer_block_type=transformer_block_type, normalization=normalization, layernorm_epsilon=layernorm_epsilon, persist_layer_norm=persist_layer_norm, sequence_parallel=sequence_parallel, gradient_accumulation_fusion=gradient_accumulation_fusion, dropout=ffn_dropout, ) def _get_bias_droput_add_func(self, transformer_block_type='pre_ln', position_after='attention'): """ Returns a function that potentially fuses the dropout and bias addition. This function is particularly helpful for the normformer architecture that does not the fused kernel after attention layers, but can after the MLP. """ # Normformer activations at this point have no bias vector since they've gone through another normalization layer. if transformer_block_type == 'normformer' and position_after == 'attention': bias_dropout_add_func = get_dropout_add(self.training) # Bias dropout add fused kernel elif self.bias and self.bias_dropout_add_fusion: if self.training: bias_dropout_add_func = bias_dropout_add_fused_train else: bias_dropout_add_func = bias_dropout_add_fused_inference # Bias dropout add non-fused kernel elif self.bias and not self.bias_dropout_add_fusion: bias_dropout_add_func = get_bias_dropout_add(self.training) # Dropout add non-fused kernel for a model without bias terms. else: bias_dropout_add_func = get_dropout_add(self.training) return bias_dropout_add_func def forward( self, hidden_states, attention_mask, encoder_output=None, enc_dec_attn_mask=None, layer_past=None, get_key_value=False, set_inference_key_value_memory=False, inference_max_sequence_len=None, rotary_pos_emb=None, # list of positional embedding tensors, first one self attention, second one and third one are for cross attention (q, k) self_attention_relative_position_bias=None, cross_attention_relative_position_bias=None, checkpoint_core_attention=False, ): # Self attention. if rotary_pos_emb is not None: # self attention pos_emb is (q, q) self_attention_pos_emb = (rotary_pos_emb[0], rotary_pos_emb[0]) cross_attention_pos_emb = (rotary_pos_emb[1], rotary_pos_emb[2]) else: self_attention_pos_emb = None cross_attention_pos_emb = None if self.layer_type != LayerType.retrieval_decoder_after_self_attn: # hidden_states: [b, s, h] # Pre-LN: x -> LN -> MHA -> Residual -> LN -> MLP -> Residual # Post-LN: x -> MHA -> Residual -> LN -> MLP -> Residual -> LN # Normformer: x -> LN -> MHA -> LN -> Residual -> MLP (w/LN) -> Residual residual = hidden_states # Layer norm at the beginning of the transformer layer. if self.transformer_block_type in ['pre_ln', 'normformer']: hidden_states = self.input_layernorm(hidden_states) attention_output, attention_bias = self.self_attention( hidden_states, attention_mask, layer_past=layer_past, get_key_value=get_key_value, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, rotary_pos_emb=self_attention_pos_emb, relative_position_bias=self_attention_relative_position_bias, checkpoint_core_attention=checkpoint_core_attention, ) if get_key_value: attention_output, presents = attention_output # If normformer, apply norm on the output of the self attention. if self.transformer_block_type == 'normformer': # Normformer normalization attention_output = ( attention_output + attention_bias if attention_bias is not None else attention_output ) attention_output = self.post_attention_normformer_norm(attention_output) attention_bias = None # jit scripting for a nn.module (with dropout) is not # trigerring the fusion kernel. For now, we use two # different nn.functional routines to account for varying # dropout semantics during training and inference phases. bias_dropout_add_func = self._get_bias_droput_add_func( transformer_block_type=self.transformer_block_type, position_after='attention' ) if attention_bias is not None: attention_bias = attention_bias.expand_as(residual) layernorm_input = bias_dropout_add_func(attention_output, attention_bias, residual, self.hidden_dropout) # print(f"Layer: {self.layer_number} Attention checksum {layernorm_input.sum()}") if self.is_adapter_available(): adapter_1 = self.get_from_adapter_layer(AdapterName.PRE_ATTN_ADAPTER) if adapter_1: strategy = adapter_1.adapter_strategy layernorm_input = self.forward_single_enabled_adapter_( layernorm_input, adapter_1, adapter_name=AdapterName.PRE_ATTN_ADAPTER, adapter_strategy=strategy, ) # Post-LN normalization after residual if self.transformer_block_type == 'post_ln': normalization_output = self.input_layernorm(layernorm_input) layernorm_input = normalization_output elif self.transformer_block_type in ['pre_ln', 'normformer']: # Layer norm post the self attention. normalization_output = self.post_attention_layernorm(layernorm_input) else: layernorm_input, normalization_output = hidden_states if self.layer_type == LayerType.decoder_pre_mlp: return layernorm_input, normalization_output if ( self.layer_type == LayerType.decoder or self.layer_type == LayerType.retrieval_decoder or self.layer_type == LayerType.retrieval_encoder or self.layer_type == LayerType.retrieval_decoder_after_self_attn ): if ( self.layer_type == LayerType.retrieval_decoder or self.layer_type == LayerType.retrieval_decoder_after_self_attn ): attention_output, attention_bias = self.inter_attention( normalization_output, enc_dec_attn_mask, encoder_output=encoder_output, rotary_pos_emb=cross_attention_pos_emb, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, checkpoint_core_attention=checkpoint_core_attention, ) else: attention_output, attention_bias = self.inter_attention( normalization_output, enc_dec_attn_mask, encoder_output=encoder_output, rotary_pos_emb=cross_attention_pos_emb, relative_position_bias=cross_attention_relative_position_bias, checkpoint_core_attention=checkpoint_core_attention, ) # If normformer, apply norm on the output of the self attention. if self.transformer_block_type == 'normformer': # Normformer normalization attention_output = ( attention_output + attention_bias if attention_bias is not None else attention_output ) attention_output = self.post_inter_attention_normformer_norm(attention_output) attention_bias = None residual = layernorm_input bias_dropout_add_func = self._get_bias_droput_add_func( transformer_block_type=self.transformer_block_type, position_after='attention' ) layernorm_input = bias_dropout_add_func(attention_output, attention_bias, residual, self.hidden_dropout) # print(f"Layer: {self.layer_number} Cross-Attention checksum {layernorm_input.sum()}") normalization_output = self.post_inter_attention_layernorm(layernorm_input) # Post-LN normalization after residual if self.transformer_block_type == 'post_ln': layernorm_input = normalization_output # MLP. mlp_output, mlp_bias = self.mlp(normalization_output) residual = layernorm_input bias_dropout_add_func = self._get_bias_droput_add_func( transformer_block_type=self.transformer_block_type, position_after='mlp' ) output = bias_dropout_add_func(mlp_output, mlp_bias, residual, self.hidden_dropout) # print(f"Layer: {self.layer_number} MLP + Dropout + Residual checksum {output.sum()}") if self.transformer_block_type == 'post_ln': output = self.post_attention_layernorm(output) if get_key_value: output = [output, presents] if ( self.is_adapter_available() ): # TODO: (@adithyre) was able to move adapter_2 back to the end of the transformer after ptl 1.7 update. adapter_2 = self.get_from_adapter_layer(AdapterName.POST_ATTN_ADAPTER) if adapter_2: strategy = adapter_2.adapter_strategy output = self.forward_single_enabled_adapter_( output, adapter_2, adapter_name=AdapterName.POST_ATTN_ADAPTER, adapter_strategy=strategy ) return output class ParallelTransformerLayer(ParallelTransformerLayer_): def __init__( self, init_method, output_layer_init_method, layer_number, hidden_size, ffn_hidden_size, num_attention_heads, layer_type=LayerType.encoder, self_attn_mask_type=AttnMaskType.padding, fp32_residual_connection=False, precision=16, apply_query_key_layer_scaling=True, kv_channels=None, layernorm_epsilon=1e-5, hidden_dropout=0.1, bias_dropout_add_fusion=True, persist_layer_norm=False, use_cpu_initialization=False, bias_activation_fusion=True, openai_gelu=False, onnx_safe=False, masked_softmax_fusion=True, attention_dropout=0.1, ffn_dropout=0.0, activation='gelu', megatron_legacy=False, bias=True, chunk_size=64, normalization='layernorm', transformer_block_type='pre_ln', headscale=False, activations_checkpoint_granularity=None, sequence_parallel=False, gradient_accumulation_fusion=False, normalize_attention_scores=True, num_moe_experts=1, moe_frequency=1, moe_dropout=0.0, ): super(ParallelTransformerLayer, self).__init__( init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number, hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, num_attention_heads=num_attention_heads, layer_type=layer_type, self_attn_mask_type=self_attn_mask_type, fp32_residual_connection=fp32_residual_connection, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, layernorm_epsilon=layernorm_epsilon, hidden_dropout=hidden_dropout, bias_dropout_add_fusion=bias_dropout_add_fusion, persist_layer_norm=persist_layer_norm, use_cpu_initialization=use_cpu_initialization, bias_activation_fusion=bias_activation_fusion, openai_gelu=openai_gelu, onnx_safe=onnx_safe, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, activation=activation, megatron_legacy=megatron_legacy, bias=bias, chunk_size=chunk_size, normalization=normalization, transformer_block_type=transformer_block_type, headscale=headscale, activations_checkpoint_granularity=activations_checkpoint_granularity, sequence_parallel=sequence_parallel, gradient_accumulation_fusion=gradient_accumulation_fusion, normalize_attention_scores=normalize_attention_scores, num_moe_experts=num_moe_experts, moe_frequency=moe_frequency, moe_dropout=moe_dropout, ) if precision == 32: self.dtype = torch.float32 elif precision == 16: self.dtype = torch.float16 elif precision == 'bf16': self.dtype = torch.bfloat16 else: raise ValueError def forward( self, hidden_states, attention_mask, encoder_output=None, enc_dec_attn_mask=None, rotary_pos_emb=None, layer_past=None, get_key_value=False, set_inference_key_value_memory=False, inference_max_sequence_len=None, self_attention_relative_position_bias=None, cross_attention_relative_position_bias=None, checkpoint_core_attention=False, ): if self.dtype == torch.float32: return super().forward( hidden_states, attention_mask, encoder_output, enc_dec_attn_mask, layer_past, get_key_value, set_inference_key_value_memory, inference_max_sequence_len, rotary_pos_emb, self_attention_relative_position_bias, cross_attention_relative_position_bias, checkpoint_core_attention, ) with torch.autocast(device_type="cuda", dtype=self.dtype): return super().forward( hidden_states, attention_mask, encoder_output, enc_dec_attn_mask, layer_past, get_key_value, set_inference_key_value_memory, inference_max_sequence_len, rotary_pos_emb, self_attention_relative_position_bias, cross_attention_relative_position_bias, checkpoint_core_attention, ) class AutocastTransformerLayer(TransformerLayer): def __init__( self, hidden_size: int, ffn_hidden_size: int, layernorm_epsilon: float, num_attention_heads: int, init_method: Callable, output_layer_init_method: Callable, hidden_dropout: float, attention_dropout: float, layer_number: Optional[int] = None, kv_channels: Optional[int] = None, self_attn_mask_type: str = "causal", tp_group: Optional[Any] = None, tp_size: int = 1, params_dtype: torch.dtype = torch.float32, get_rng_state_tracker: Optional[Callable] = None, fuse_wgrad_accumulation: bool = False, apply_query_key_layer_scaling: bool = True, attention_softmax_in_fp32: bool = False, seq_length: Optional[int] = None, micro_batch_size: Optional[int] = None, sequence_parallel: bool = False, apply_residual_connection_post_layernorm: bool = False, output_layernorm: bool = False, layer_type: str = "encoder", drop_path_rate: float = 0, use_emha: bool = False, autocast_dtype: Any = 16, ) -> None: super().__init__( hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, layernorm_epsilon=layernorm_epsilon, num_attention_heads=num_attention_heads, init_method=init_method, output_layer_init_method=output_layer_init_method, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, layer_number=layer_number, kv_channels=kv_channels, self_attn_mask_type=self_attn_mask_type, tp_group=tp_group, tp_size=tp_size, params_dtype=params_dtype, get_rng_state_tracker=get_rng_state_tracker, fuse_wgrad_accumulation=fuse_wgrad_accumulation, apply_query_key_layer_scaling=apply_query_key_layer_scaling, attention_softmax_in_fp32=attention_softmax_in_fp32, seq_length=seq_length, micro_batch_size=micro_batch_size, sequence_parallel=sequence_parallel, apply_residual_connection_post_layernorm=apply_residual_connection_post_layernorm, output_layernorm=output_layernorm, layer_type=layer_type, drop_path_rate=drop_path_rate, set_parallel_mode=tp_size > 1, fuse_qkv_params=True, ) # use_emha=use_emha, if autocast_dtype == 32: self.dtype = torch.float32 elif autocast_dtype == 16: self.dtype = torch.float16 elif autocast_dtype == 'bf16': self.dtype = torch.bfloat16 else: raise ValueError def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, encoder_output: Optional[torch.Tensor] = None, enc_dec_attn_mask: Optional[torch.Tensor] = None, inference_params: Optional[Any] = None, is_first_microbatch: Optional[bool] = None, checkpoint_core_attention: Optional[bool] = False, ) -> torch.Tensor: if self.dtype == torch.float32: return super().forward( hidden_states, attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, inference_params=inference_params, is_first_microbatch=is_first_microbatch, checkpoint_core_attention=checkpoint_core_attention, ) with torch.autocast(device_type="cuda", dtype=self.dtype): return super().forward( hidden_states, attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, inference_params=inference_params, is_first_microbatch=is_first_microbatch, checkpoint_core_attention=checkpoint_core_attention, ) class ParallelTransformer(MegatronModule): """Transformer class.""" def __init__( self, init_method, output_layer_init_method, num_layers, hidden_size, ffn_hidden_size, num_attention_heads, apply_query_key_layer_scaling=True, kv_channels=None, layer_type=LayerType.encoder, # it can be a list of types or single type self_attn_mask_type=AttnMaskType.padding, pre_process=True, post_process=True, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=None, layernorm_epsilon=1e-5, hidden_dropout=0.1, attention_dropout=0.1, ffn_dropout=0.0, use_cpu_initialization=False, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, gradient_accumulation_fusion=False, persist_layer_norm=False, openai_gelu=False, onnx_safe=False, activation='gelu', model_type=ModelType.encoder_or_decoder, megatron_legacy=False, bias=True, chunk_size=64, normalization='layernorm', transformer_block_type='pre_ln', headscale=False, layer_number_offset=0, # this is use only for attention norm_factor scaling activations_checkpoint_granularity=None, activations_checkpoint_layers_per_pipeline=None, sequence_parallel=False, transformer_engine=False, fp8=False, fp8_e4m3=False, fp8_hybrid=False, fp8_margin=0, fp8_interval=1, fp8_amax_history_len=1, fp8_amax_compute_algo='most_recent', use_emha=False, normalize_attention_scores=True, num_moe_experts=1, moe_frequency=1, moe_dropout=0.0, ): super(ParallelTransformer, self).__init__() if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads self.fp32_residual_connection = fp32_residual_connection self.pre_process = pre_process self.post_process = post_process self.input_tensor = None self.self_attn_mask_type = self_attn_mask_type self.model_type = model_type self.normalization = normalization self.transformer_block_type = transformer_block_type self.layer_type = layer_type self.activations_checkpoint_method = activations_checkpoint_method self.activations_checkpoint_num_layers = activations_checkpoint_num_layers self.activations_checkpoint_granularity = activations_checkpoint_granularity self.activations_checkpoint_layers_per_pipeline = activations_checkpoint_layers_per_pipeline if self.activations_checkpoint_granularity: if self.activations_checkpoint_granularity == 'selective': if self.activations_checkpoint_method == 'uniform': logging.info( ( f'Using uniform activation checkpointing with granularity selective forces all layers to use checkpointing.' ) ) elif self.activations_checkpoint_method == 'block': logging.info( ( f'Using block activation checkpointing requires activations_checkpoint_num_layers to be set.' f'Got: {self.activations_checkpoint_num_layers}. Setting to 1 by default.' ) ) else: raise ValueError( f'activations_checkpoint_method should be "uniform" or "block" when using granularity selective.' ) elif self.activations_checkpoint_granularity == 'full': if self.activations_checkpoint_method in ['uniform', 'block']: if not self.activations_checkpoint_num_layers: logging.info( ( f'Using uniform or block activation checkpointing requires activations_checkpoint_num_layers to be set.' f'Got: {self.activations_checkpoint_num_layers}. Setting to 1 by default.' ) ) else: raise ValueError( f'activations_checkpoint_method should be "uniform" or "block" when using granularity full.' ) else: raise ValueError(f'activations_checkpoint_granularity should be "selective" or "full".') self.sequence_parallel = sequence_parallel self.transformer_engine = transformer_engine self.fp8 = fp8 self.fp8_e4m3 = fp8_e4m3 self.fp8_hybrid = fp8_hybrid self.fp8_margin = fp8_margin self.fp8_interval = fp8_interval self.fp8_amax_history_len = fp8_amax_history_len self.fp8_amax_compute_algo = fp8_amax_compute_algo self.fp8_recipe = None if self.fp8: if self.fp8_e4m3: fp8_format = recipe.Format.E4M3 elif self.fp8_hybrid: fp8_format = recipe.Format.HYBRID self.fp8_recipe = recipe.DelayedScaling( margin=self.fp8_margin, interval=self.fp8_interval, fp8_format=fp8_format, amax_history_len=self.fp8_amax_history_len, amax_compute_algo=self.fp8_amax_compute_algo, ) self.is_first_microbatch = True self.microbatch_count = 0 # transformer engine forward needs to know if it is working on the first microbatch self.checkpoint_core_attention = ( activations_checkpoint_granularity == 'selective' ) # transformer engine forward allows for more granular selective checkpointing if self.model_type == ModelType.encoder_or_decoder: assert ( num_layers % parallel_state.get_pipeline_model_parallel_world_size() == 0 ), 'num_layers must be divisible by pipeline_model_parallel_size' assert moe_frequency <= num_layers, 'MoE frequency must be <= number of transformer layers' # TODO: Add similar assert for encoder-decoder. self.num_layers = self.get_num_layers(num_layers) # Transformer layers. def build_layer(layer_number): if isinstance(layer_type, list): lt = layer_type[layer_number - 1] else: lt = layer_type if self.transformer_engine: return AutocastTransformerLayer( hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, layernorm_epsilon=layernorm_epsilon, num_attention_heads=num_attention_heads, init_method=init_method, output_layer_init_method=output_layer_init_method, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, layer_number=layer_number + layer_number_offset, kv_channels=kv_channels, self_attn_mask_type=self_attn_mask_type.name, tp_size=parallel_state.get_tensor_model_parallel_world_size(), params_dtype=torch.float32, # dtype params are initialized in get_rng_state_tracker=tensor_parallel.random.get_cuda_rng_tracker, fuse_wgrad_accumulation=gradient_accumulation_fusion, apply_query_key_layer_scaling=apply_query_key_layer_scaling, seq_length=None, # used for jit warmup micro_batch_size=None, # used for jit warmup sequence_parallel=sequence_parallel, apply_residual_connection_post_layernorm=False, autocast_dtype=precision, use_emha=use_emha, ) else: return ParallelTransformerLayer( init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number + layer_number_offset, hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, layer_type=lt, self_attn_mask_type=self_attn_mask_type, precision=precision, fp32_residual_connection=fp32_residual_connection, layernorm_epsilon=layernorm_epsilon, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, use_cpu_initialization=use_cpu_initialization, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, gradient_accumulation_fusion=gradient_accumulation_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, megatron_legacy=megatron_legacy, bias=bias, chunk_size=chunk_size, normalization=normalization, transformer_block_type=transformer_block_type, headscale=headscale, activations_checkpoint_granularity=activations_checkpoint_granularity, sequence_parallel=sequence_parallel, normalize_attention_scores=normalize_attention_scores, num_moe_experts=num_moe_experts, moe_frequency=moe_frequency, moe_dropout=moe_dropout, ) if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None: assert num_layers % parallel_state.get_virtual_pipeline_model_parallel_world_size() == 0, ( 'num_layers_per_stage must be divisible by ' 'virtual_pipeline_model_parallel_size' ) assert self.model_type.value != 2, f'virtual pipeline parallel currently only supported for GPT' # Number of layers in each model chunk is the number of layers in the stage, # divided by the number of model chunks in a stage. self.num_layers = self.num_layers // parallel_state.get_virtual_pipeline_model_parallel_world_size() # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of # layers to stages like (each list is a model chunk): # Stage 0: [0] [2] [4] [6] # Stage 1: [1] [3] [5] [7] # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of # layers to stages like (each list is a model chunk): # Stage 0: [0, 1] [4, 5] # Stage 1: [2, 3] [6, 7] offset = parallel_state.get_virtual_pipeline_model_parallel_rank() * ( num_layers // parallel_state.get_virtual_pipeline_model_parallel_world_size() ) + (parallel_state.get_pipeline_model_parallel_rank() * self.num_layers) else: # Each stage gets a contiguous set of layers. if ( self.model_type == ModelType.encoder_and_decoder and parallel_state.get_pipeline_model_parallel_world_size() > 1 ): pipeline_rank = parallel_state.get_pipeline_model_parallel_rank() if layer_type == LayerType.encoder: offset = pipeline_rank * self.num_layers else: num_ranks_in_enc = parallel_state.get_pipeline_model_parallel_split_rank() offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers else: offset = parallel_state.get_pipeline_model_parallel_rank() * self.num_layers self.layers = torch.nn.ModuleList([build_layer(i + 1 + offset) for i in range(self.num_layers)]) if self.post_process and self.transformer_block_type != 'post_ln': # Final layer norm before output. if normalization == 'layernorm': self.final_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, sequence_parallel=sequence_parallel ) elif normalization == 'layernorm1p': self.final_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=sequence_parallel ) else: self.final_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) def _get_layer(self, layer_number): return self.layers[layer_number] def get_num_layers(self, num_layers): """Compute the number of transformer layers resident on the current rank.""" if parallel_state.get_pipeline_model_parallel_world_size() > 1: if self.model_type == ModelType.encoder_and_decoder: assert parallel_state.get_pipeline_model_parallel_split_rank() is not None num_ranks_in_encoder = parallel_state.get_pipeline_model_parallel_split_rank() num_ranks_in_decoder = parallel_state.get_pipeline_model_parallel_world_size() - num_ranks_in_encoder if self.layer_type == LayerType.encoder: assert ( num_layers % num_ranks_in_encoder == 0 ), 'num_layers must be divisible by number of ranks given to encoder' elif self.layer_type == LayerType.decoder: assert ( num_layers % num_ranks_in_decoder == 0 ), 'num_layers must be divisible by number of ranks given to decoder' else: raise ValueError(f"Unknown layer type {self.layer_type}") if parallel_state.is_pipeline_stage_before_split(): num_layers = num_layers // num_ranks_in_encoder else: num_layers = num_layers // num_ranks_in_decoder else: assert ( num_layers % parallel_state.get_pipeline_model_parallel_world_size() == 0 ), 'num_layers must be divisible by pipeline_model_parallel_size' num_layers = num_layers // parallel_state.get_pipeline_model_parallel_world_size() return num_layers def _checkpointed_forward( self, hidden_states, attention_mask, encoder_output, enc_dec_attn_mask, rotary_pos_emb, self_attention_relative_position_bias, cross_attention_relative_position_bias, checkpoint_activations_all_layers, ): """Forward method with activation checkpointing.""" def custom(start, end): if self.transformer_engine: def custom_forward(*inputs): hidden_states = inputs[0] attention_mask = inputs[1] encoder_output = inputs[2] enc_dec_attn_mask = inputs[3] for index in range(start, end): layer = self._get_layer(index) hidden_states = layer( hidden_states, attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, inference_params=None, is_first_microbatch=self.is_first_microbatch, checkpoint_core_attention=False, ) return hidden_states else: def custom_forward(*inputs): if len(inputs) == 9: hidden_states = inputs[0] attention_mask = inputs[1] encoder_output = inputs[2] enc_dec_attn_mask = inputs[3] rotary_pos_emb = (inputs[4], inputs[5], inputs[6]) self_attention_relative_position_bias = inputs[7] cross_attention_relative_position_bias = inputs[8] elif len(inputs) == 10: hidden_states = (inputs[0], inputs[1]) attention_mask = inputs[2] encoder_output = inputs[3] enc_dec_attn_mask = inputs[4] rotary_pos_emb = (inputs[5], inputs[6], inputs[7]) self_attention_relative_position_bias = inputs[8] cross_attention_relative_position_bias = inputs[9] else: hidden_states = inputs[0] attention_mask = inputs[1] encoder_output = inputs[2] enc_dec_attn_mask = inputs[3] rotary_pos_emb = inputs[4] self_attention_relative_position_bias = inputs[5] cross_attention_relative_position_bias = inputs[6] for index in range(start, end): layer = self._get_layer(index) hidden_states = layer( hidden_states=hidden_states, attention_mask=attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, rotary_pos_emb=rotary_pos_emb, self_attention_relative_position_bias=self_attention_relative_position_bias, cross_attention_relative_position_bias=cross_attention_relative_position_bias, ) if isinstance(hidden_states, tuple): pass else: hidden_states = hidden_states.contiguous() return hidden_states return custom_forward # Make sure memory is freed. tensor_parallel.reset_checkpointed_activations_memory_buffer() if self.activations_checkpoint_method == 'uniform': # Uniformly divide the total number of Transformer layers and checkpoint # the input activation of each divided chunk. # A method to further reduce memory usage reducing checkpoints. l = 0 while l < self.num_layers: if isinstance(hidden_states, tuple): hidden_tuple = (hidden_states[0], hidden_states[1]) else: hidden_tuple = (hidden_states,) middle_tuple = ( attention_mask, encoder_output, enc_dec_attn_mask, ) if rotary_pos_emb is None: rot_tuple = (rotary_pos_emb,) else: rot_tuple = (rotary_pos_emb[0], rotary_pos_emb[1], rotary_pos_emb[2]) final_tuple = (self_attention_relative_position_bias, cross_attention_relative_position_bias) arg_tuple = hidden_tuple + middle_tuple + rot_tuple + final_tuple if self.transformer_engine: hidden_states = te_checkpoint( custom(l, l + self.activations_checkpoint_num_layers), False, tensor_parallel.random.get_cuda_rng_tracker, parallel_state.get_tensor_model_parallel_group(), *arg_tuple, ) else: hidden_states = tensor_parallel.checkpoint( custom(l, l + self.activations_checkpoint_num_layers), False, *arg_tuple ) l += self.activations_checkpoint_num_layers elif self.activations_checkpoint_method == 'block': # When pipeline-parallel size > 1 and 'num_micro_batches_with_partial_activation_checkpoints' = int, # pipeline scheduling can force to checkpoint all layers or partial layers in a micro-batch. if checkpoint_activations_all_layers: activations_checkpoint_num_layers = self.num_layers else: activations_checkpoint_num_layers = self.activations_checkpoint_num_layers if ( parallel_state.get_pipeline_model_parallel_world_size() > 0 and self.activations_checkpoint_layers_per_pipeline is not None ): # Decrease the number of layers to checkpoint at later pipeline stages activations_checkpoint_num_layers -= int( parallel_state.get_pipeline_model_parallel_rank() * self.activations_checkpoint_layers_per_pipeline ) # Checkpoint the input activation of only a set number of individual # Transformer layers and skip the rest. # A method fully use the device memory removing redundant re-computation. for l in range(self.num_layers): if isinstance(hidden_states, tuple): hidden_tuple = (hidden_states[0], hidden_states[1]) else: hidden_tuple = (hidden_states,) middle_tuple = ( attention_mask, encoder_output, enc_dec_attn_mask, ) if rotary_pos_emb is None: rot_tuple = (rotary_pos_emb,) else: rot_tuple = (rotary_pos_emb[0], rotary_pos_emb[1], rotary_pos_emb[2]) final_tuple = (self_attention_relative_position_bias, cross_attention_relative_position_bias) arg_tuple = hidden_tuple + middle_tuple + rot_tuple + final_tuple if l < activations_checkpoint_num_layers: if self.transformer_engine: hidden_states = te_checkpoint( custom(l, l + 1), False, tensor_parallel.random.get_cuda_rng_tracker, parallel_state.get_tensor_model_parallel_group(), *arg_tuple, ) else: hidden_states = tensor_parallel.checkpoint(custom(l, l + 1), False, *arg_tuple) else: hidden_states = custom(l, l + 1)(*arg_tuple) else: raise ValueError("Invalid activation checkpoint method.") return hidden_states def set_input_tensor(self, input_tensor): """Set input tensor to be used instead of forward()'s input. When doing pipeline parallelism the input from the previous stage comes from communication, not from the input, so the model's forward_step_func won't have it. This function is thus used by internal code to bypass the input provided by the forward_step_func""" self.input_tensor = input_tensor def forward( self, hidden_states, attention_mask, layer_past=None, get_key_value=False, encoder_output=None, enc_dec_attn_mask=None, set_inference_key_value_memory=False, inference_max_sequence_len=None, rotary_pos_emb=None, # list of positional embedding tensors, first one self attention, second one and third one are for cross attention (q, k) retrieved_emb=None, # tensor of retrieved embedding of shape [b, k, r, n, d] self_attention_relative_position_bias=None, cross_attention_relative_position_bias=None, checkpoint_activations_all_layers=None, ): # Checks. if inference_max_sequence_len: assert self.activations_checkpoint_method is None, 'inference does not work with activation checkpointing' if layer_past is not None: assert get_key_value, 'for not None values in layer_past, ' 'expected get_key_value to be set' if get_key_value: assert self.activations_checkpoint_method is None, ( 'get_key_value does not work with ' 'activation checkpointing' ) if not self.pre_process: # See set_input_tensor() hidden_states = self.input_tensor # TODO: @Yi Dong, what should this be? if retrieved_emb is not None: assert len(retrieved_emb.shape) == 5 # this is retrieval decoder, need special transpose encoder_output = rearrange(retrieved_emb, 'b k r n d -> k r n b d').contiguous() """ is_first_microbatch is an optimization parameter for transformer engine. It indicates if the current step in the forward pass is the first in a gradient accumulation cycle. If set, FP8 weights are cached and some minor optimizations are applied to fuse_wgrad_accumulation """ from apex.transformer.pipeline_parallel.utils import _GLOBAL_NUM_MICROBATCHES_CALCULATOR num_micro_batches = getattr(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, 'num_micro_batches', 1) if self.sequence_parallel: rng_context = tensor_parallel.random.get_cuda_rng_tracker().fork() else: rng_context = nullcontext() with rng_context: if self.activations_checkpoint_granularity == 'full': hidden_states = self._checkpointed_forward( hidden_states, attention_mask, encoder_output, enc_dec_attn_mask, rotary_pos_emb, self_attention_relative_position_bias, cross_attention_relative_position_bias, ) else: fp8_context = nullcontext() with fp8_context: if self.activations_checkpoint_granularity == 'full' and self.activations_checkpoint_num_layers > 0: hidden_states = self._checkpointed_forward( hidden_states, attention_mask, encoder_output, enc_dec_attn_mask, rotary_pos_emb, self_attention_relative_position_bias, cross_attention_relative_position_bias, checkpoint_activations_all_layers, ) else: if get_key_value: presents = [] for index in range(self.num_layers): layer = self._get_layer(index) past = None if layer_past is not None: past = layer_past[index] if self.activations_checkpoint_granularity == 'selective': # When pipeline-parallel size > 1 and 'num_micro_batches_with_partial_activation_checkpoints' = int, # pipeline scheduling can force to checkpoint all layers or partial layers in a micro-batch. if ( checkpoint_activations_all_layers == True or self.activations_checkpoint_method == 'uniform' ): checkpoint_core_attention = True elif self.activations_checkpoint_method == 'block': activations_checkpoint_num_layers = self.activations_checkpoint_num_layers # Decrease the number of layers to checkpoint at later pipeline stages if self.activations_checkpoint_layers_per_pipeline is not None: activations_checkpoint_num_layers -= int( parallel_state.get_pipeline_model_parallel_rank() * self.activations_checkpoint_layers_per_pipeline ) checkpoint_core_attention = index < activations_checkpoint_num_layers else: checkpoint_core_attention = False if self.transformer_engine: inference_params = None hidden_states = layer( hidden_states, attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, inference_params=inference_params, is_first_microbatch=self.is_first_microbatch, checkpoint_core_attention=checkpoint_core_attention, ) else: hidden_states = layer( hidden_states, attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, layer_past=past, get_key_value=get_key_value, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, rotary_pos_emb=rotary_pos_emb, self_attention_relative_position_bias=self_attention_relative_position_bias, cross_attention_relative_position_bias=cross_attention_relative_position_bias, checkpoint_core_attention=checkpoint_core_attention, ) # Skip counter update for eval and activation checkpointing if torch.is_grad_enabled() and self.training: self.microbatch_count += 1 if self.microbatch_count % num_micro_batches == 0: self.microbatch_count = 0 self.is_first_microbatch = True else: self.is_first_microbatch = False output = hidden_states # Final layer norm. if self.post_process: # only apply the final_layernorm for pre-ln if self.transformer_block_type != 'post_ln': output = self.final_layernorm(hidden_states) if get_key_value: output = [output, presents] return output
[]
2024-01-10
erman-gurses/SHARK
apps~stable_diffusion~web~ui~h2ogpt.py
import gradio as gr import torch import os from pathlib import Path from transformers import ( AutoModelForCausalLM, ) from apps.stable_diffusion.web.ui.utils import available_devices from apps.language_models.langchain.enums import ( DocumentChoices, LangChainAction, ) import apps.language_models.langchain.gen as gen from gpt_langchain import ( path_to_docs, create_or_update_db, ) from apps.stable_diffusion.src import args def user(message, history): # Append the user's message to the conversation history return "", history + [[message, ""]] sharkModel = 0 h2ogpt_model = 0 # NOTE: Each `model_name` should have its own start message start_message = """ SHARK DocuChat Chat with an AI, contextualized with provided files. """ def create_prompt(history): system_message = start_message for item in history: print("His item: ", item) conversation = "<|endoftext|>".join( [ "<|endoftext|><|answer|>".join([item[0], item[1]]) for item in history ] ) msg = system_message + conversation msg = msg.strip() return msg def chat(curr_system_message, history, device, precision): args.run_docuchat_web = True global h2ogpt_model global sharkModel global h2ogpt_tokenizer global model_state global langchain global userpath_selector from apps.language_models.langchain.h2oai_pipeline import generate_token if h2ogpt_model == 0: if "cuda" in device: shark_device = "cuda" elif "sync" in device: shark_device = "cpu" elif "task" in device: shark_device = "cpu" elif "vulkan" in device: shark_device = "vulkan" else: print("unrecognized device") device = "cpu" if shark_device == "cpu" else "cuda" args.device = shark_device args.precision = precision from apps.language_models.langchain.gen import Langchain langchain = Langchain(device, precision) h2ogpt_model, h2ogpt_tokenizer, _ = langchain.get_model( load_4bit=True if device == "cuda" else False, # load model in 4bit if device is cuda to save memory load_gptq="", use_safetensors=False, infer_devices=True, device=device, base_model="h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3", inference_server="", tokenizer_base_model="h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3", lora_weights="", gpu_id=0, reward_type=None, local_files_only=False, resume_download=True, use_auth_token=False, trust_remote_code=True, offload_folder=None, compile_model=False, verbose=False, ) model_state = dict( model=h2ogpt_model, tokenizer=h2ogpt_tokenizer, device=device, base_model="h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3", tokenizer_base_model="h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3", lora_weights="", inference_server="", prompt_type=None, prompt_dict=None, ) from apps.language_models.langchain.h2oai_pipeline import ( H2OGPTSHARKModel, ) sharkModel = H2OGPTSHARKModel() prompt = create_prompt(history) output_dict = langchain.evaluate( model_state=model_state, my_db_state=None, instruction=prompt, iinput="", context="", stream_output=True, prompt_type="prompt_answer", prompt_dict={ "promptA": "", "promptB": "", "PreInstruct": "<|prompt|>", "PreInput": None, "PreResponse": "<|answer|>", "terminate_response": [ "<|prompt|>", "<|answer|>", "<|endoftext|>", ], "chat_sep": "<|endoftext|>", "chat_turn_sep": "<|endoftext|>", "humanstr": "<|prompt|>", "botstr": "<|answer|>", "generates_leading_space": False, }, temperature=0.1, top_p=0.75, top_k=40, num_beams=1, max_new_tokens=256, min_new_tokens=0, early_stopping=False, max_time=180, repetition_penalty=1.07, num_return_sequences=1, do_sample=False, chat=True, instruction_nochat=prompt, iinput_nochat="", langchain_mode="UserData", langchain_action=LangChainAction.QUERY.value, top_k_docs=3, chunk=True, chunk_size=512, document_choice=[DocumentChoices.All_Relevant.name], concurrency_count=1, memory_restriction_level=2, raise_generate_gpu_exceptions=False, chat_context="", use_openai_embedding=False, use_openai_model=False, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", db_type="chroma", n_jobs=-1, first_para=False, max_max_time=60 * 2, model_state0=model_state, model_lock=True, user_path=userpath_selector.value, ) output = generate_token(sharkModel, **output_dict) for partial_text in output: history[-1][1] = partial_text yield history return history userpath_selector = gr.Textbox( label="Document Directory", value=str(os.path.abspath("apps/language_models/langchain/user_path/")), interactive=True, container=True, ) with gr.Blocks(title="DocuChat") as h2ogpt_web: with gr.Row(): supported_devices = available_devices enabled = len(supported_devices) > 0 # show cpu-task device first in list for chatbot supported_devices = supported_devices[-1:] + supported_devices[:-1] supported_devices = [x for x in supported_devices if "sync" not in x] print(supported_devices) device = gr.Dropdown( label="Device", value=supported_devices[0] if enabled else "Only CUDA Supported for now", choices=supported_devices, interactive=enabled, ) precision = gr.Radio( label="Precision", value="fp16", choices=[ "int4", "int8", "fp16", "fp32", ], visible=True, ) chatbot = gr.Chatbot(height=500) with gr.Row(): with gr.Column(): msg = gr.Textbox( label="Chat Message Box", placeholder="Chat Message Box", show_label=False, interactive=enabled, container=False, ) with gr.Column(): with gr.Row(): submit = gr.Button("Submit", interactive=enabled) stop = gr.Button("Stop", interactive=enabled) clear = gr.Button("Clear", interactive=enabled) system_msg = gr.Textbox( start_message, label="System Message", interactive=False, visible=False ) submit_event = msg.submit( fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False ).then( fn=chat, inputs=[system_msg, chatbot, device, precision], outputs=[chatbot], queue=True, ) submit_click_event = submit.click( fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False ).then( fn=chat, inputs=[system_msg, chatbot, device, precision], outputs=[chatbot], queue=True, ) stop.click( fn=None, inputs=None, outputs=None, cancels=[submit_event, submit_click_event], queue=False, ) clear.click(lambda: None, None, [chatbot], queue=False) with gr.Blocks(title="DocuChat Upload") as h2ogpt_upload: import pathlib upload_path = None database = None database_directory = os.path.abspath( "apps/language_models/langchain/db_path/" ) def read_path(): global upload_path filenames = [ [f] for f in os.listdir(upload_path) if os.path.isfile(os.path.join(upload_path, f)) ] filenames.sort() return filenames def upload_file(f): names = [] for tmpfile in f: name = tmpfile.name.split("/")[-1] basename = os.path.join(upload_path, name) with open(basename, "wb") as w: with open(tmpfile.name, "rb") as r: w.write(r.read()) update_or_create_db() return read_path() def update_userpath(newpath): global upload_path upload_path = newpath pathlib.Path(upload_path).mkdir(parents=True, exist_ok=True) return read_path() def update_or_create_db(): global database global upload_path sources = path_to_docs( upload_path, verbose=True, fail_any_exception=False, n_jobs=-1, chunk=True, chunk_size=512, url=None, enable_captions=False, captions_model=None, caption_loader=None, enable_ocr=False, ) pathlib.Path(database_directory).mkdir(parents=True, exist_ok=True) database = create_or_update_db( "chroma", database_directory, "UserData", sources, False, True, True, "sentence-transformers/all-MiniLM-L6-v2", ) def first_run(): global database if database is None: update_or_create_db() update_userpath( os.path.abspath("apps/language_models/langchain/user_path/") ) h2ogpt_upload.load(fn=first_run) h2ogpt_web.load(fn=first_run) with gr.Column(): text = gr.DataFrame( col_count=(1, "fixed"), type="array", label="Documents", value=read_path(), ) with gr.Row(): upload = gr.UploadButton( label="Upload documents", file_count="multiple", ) upload.upload(fn=upload_file, inputs=upload, outputs=text) userpath_selector.render() userpath_selector.input( fn=update_userpath, inputs=userpath_selector, outputs=text ).then(fn=update_or_create_db)
[]
2024-01-10
jeromeku/datasets
datasets~openwebtext~openwebtext.py
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Open WebText Corpus""" from __future__ import absolute_import, division, print_function import os import re from itertools import chain import datasets _CITATION = """\ @misc{Gokaslan2019OpenWeb, title={OpenWebText Corpus}, author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex}, howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}}, year={2019} } """ _DESCRIPTION = """\ An open-source replication of the WebText dataset from OpenAI. """ _URL = "https://zenodo.org/record/3834942/files/openwebtext.tar.xz" class Openwebtext(datasets.GeneratorBasedBuilder): """The Open WebText dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="plain_text", description="Plain text", version=datasets.Version("1.0.0"), ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({"text": datasets.Value("string")}), homepage="https://skylion007.github.io/OpenWebTextCorpus/", citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URL) owt_dir = os.path.join(dl_dir, "openwebtext") subset_xzs = [ os.path.join(owt_dir, file_name) for file_name in sorted(os.listdir(owt_dir)) if file_name.endswith("xz") # filter out ...xz.lock ] ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75)) nested_txt_files = [ [ os.path.join(ex_dir, txt_file_name) for txt_file_name in sorted(os.listdir(ex_dir)) if txt_file_name.endswith("txt") ] for ex_dir in ex_dirs ] txt_files = chain(*nested_txt_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}), ] def _generate_examples(self, txt_files): """ Yields examples. """ for idx, filepath in enumerate(txt_files): with open(filepath, encoding="utf-8") as f: yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()}
[]
2024-01-10
ncats/Rare-Disease-Social-Media-Project
rdsmproj~tm_t2v~top2vec_topic_tools.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Collection of tools for analysis of topic modeling results from Top2Vec. """ from typing import Dict, Union, Optional from pathlib import Path import random from wordcloud import WordCloud import matplotlib.pyplot as plt import seaborn as sns import numpy as np import gensim from gensim.models.coherencemodel import CoherenceModel from gensim.corpora.dictionary import Dictionary from rdsmproj import utils def create_topic_sizes_dict(topic_sizes:list[int]) -> Dict[str, int]: """ Creates topic size distribution dictionary from the topic size list for Top2Vec models. Parameters ---------- topic_sizes: list[int] Returns ------- Dictionary of topics and the number of documents that have that topic as their primary document based on the highest topic score for that document. """ return {topic: int(size) for topic, size in enumerate(topic_sizes)} def create_distplot(docs_per_topics:Dict[int, list[str]], name:str, path:Union[str,Path]): """ Creates a barplot of the distribution of different topics and the number of documents where that topic is the most probable topic. Parameters ---------- docs_per_topic: Dict[int, list[str]] Dictionary with each key being the topic number and the value being the list of documents that have that topic as their top topic based on probability. name: str Name of the collection of documents for use in title and saving file (e.g. 'CysticFibrosis') path: str, Path Path to where the figure will be saved to. """ plt.figure(figsize=(16,9)) if isinstance(docs_per_topics, dict): x = [f'{key}' for key in docs_per_topics] y = [len(value) if isinstance(value, list) else 0 for value in docs_per_topics.values()] else: x = [i for i in range(len(docs_per_topics))] y = docs_per_topics sns.barplot(x=x, y=y, color =[0,114/255,178/255]) #plt.xticks(fontsize='x-small') plt.xticks(rotation='vertical') plt.xlabel('Topic Number') plt.ylabel('Number of Posts') plt.title(f'Topic Distribution for {name}', weight='bold', fontsize='large') plt.tight_layout() plt.savefig(Path(path, f'{name}_postdistplot.png'), dpi=300) plt.clf() plt.close('all') def create_coherence_model(model:Optional[gensim.models.basemodel.BaseTopicModel] = None, topics:Optional[list[list[str]]] = None, texts:Optional[list[list[str]]] = None, id2word:Optional[Dictionary] = None, corpus:Optional[list[tuple[int, int]]] = None, coherence:str = 'c_v', topn:int = 10, processes:int = 1): """ Creates a gensim.models.coherencemodel.CoherenceModel object from either a model or list of tokenized topics. Used to calculate coherence of a topic. Parameters ---------- model: gensim.models.basemodel.BaseTopicModel (Optional, default None) Pre-trained topic model provided if topics not provided. Currently supports LdaModel, LdaMulticore, LdaMallet, and LdaVowpalWabbit. topics: list[list[str]] (Optional, default None) List of tokenized topics. id2word must be provided. texts: list[list[str]] (Optional, default None) Tokenized texts for use with sliding window based probability estimator ('c_something'). id2word: gensim.corpora.dictionary.Dictionary (Optional, default None) If model present, not needed. If both provided, passed id2word will be used. corpus: list[tuple[int, int]] (Optional, default None) Document vectors made up of list of tuples with (word_id, word_frequency) coherence: str (default 'c_v') Currently through gensim supports following coherence measures: 'u_mass', 'c_v', 'c_uci', and 'c_npmi. Coherence measure 'c_uci = 'c_pmi'. topn: int (default 10) Integer corresponding to number of top words to be extracted from each topic. processes: int (default 1) Number of processes to use, any value less than 1 will be num_cpus - 1. Returns ------- coherence_model: gensim.models.coherencemodel.CoherenceModel CoherenceModel object used for building and maintaining a model for topic coherence. """ coherence_model = CoherenceModel(model = model, topics = topics, texts = texts, dictionary= id2word, corpus = corpus, coherence = coherence, topn = topn, processes = processes) return coherence_model def create_coherence_distplot(coherence_values_per_topic:Union[list[float], Dict[str, float]], name:str, path:Union[str,Path]): """ Create coherence distribution plot of the topics and their coherence values. Parameters ---------- coherence_values_per_topic: Union[list[float], Dict[str, float]] Coherence values per topic. Either a list with the topic number being the index of the score or a dictionary where the key is the label and the score is the value. name: str Name of the collection of documents for use in title and saving file (e.g. 'CysticFibrosis') path: str, Path Path to where the figure will be saved to. """ plt.figure(figsize=(4.5,8)) sns.displot(coherence_values_per_topic, binwidth = 0.05) plt.axvline(x=np.mean(coherence_values_per_topic), label='Average Coherence', linestyle='--') plt.title(f'{name}\nTopic Coherence Distribution') plt.xlabel('Topic Coherence') plt.xlim([0.0, 1.05]) plt.ylabel('Topic Count') plt.tight_layout() plt.savefig(Path(path,f'{name}_coherencedistplot.png'), dpi=300) plt.clf() plt.close('all') def create_word_dict(topic_words:list[list[str]], word_scores:list[list[float]], topic_nums:list[int]) -> Dict[int, Dict[str, float]]: """ Creates a dictionary of words and scores for each topic. For use with Top2Vec models to create word score dictionaries for wordcloud creation. Parameters ---------- topic_words: list[list[str]] List of topics and their list of top words that make up that topic based on their scores. word_scores: list[list[float]] List of topics and the list of word scores that correspond to each word top word for that topic. topic_nums: list[int] List of topic numbers. Returns ------- word_score_dict: Dict[int, Dict[str, float]] Dictionary where keys are labels from topic_list and values are dictionaries of keys = word:str and values = score:float) for each label. """ word_score_dict = {} for topic in topic_nums: words = topic_words[topic] scores = [float(score) for score in word_scores[topic]] word_score_dict[int(topic)] = dict(zip(words, scores)) return word_score_dict def grey_color_func(word, font_size, position, orientation, random_state=None, **kwargs): return "hsl(0, 0%%, %d%%)" % random.randint(0, 60) def create_wordcloud_subplots(data:Dict[int, Dict[str, float]], suptitle:str, path:Union[str,Path], topics:Optional[list[list[str]]] = None, max_words:Optional[int]=50, context:Optional[str]='paper'): """ Creates wordcloud subplots for a top2vec model. Parameters ---------- data: Dict[int, Dict[str, float]] Word score dict. Dictionary where keys are labels from topic_list and values are dictionaries of keys = word:str and values = score:float) for each label. suptitle: str Name of the collection of documents for use in title and saving file (e.g. 'CysticFibrosis') path: str, Path Path to where the figure will be saved to. topics: list[list[str]] (Optional, default None) List of tokenized topics. id2word must be provided. max_words: int (Optional, default 50) Maximum number of words for each wordcloud. context: str (Optional, default paper) Name of context to pass to seaborn for plot style. """ cm = 1/2.54 sns.set_context(context) sns.set_style(style='white') if topics is None: num_topics = len(data) topics = list(data.keys()) else: num_topics = len(topics) if num_topics < 5: num_cols = num_topics fig_width = (16/5)*cm*num_cols num_rows = 1 else: num_cols = 5 fig_width = 16*cm num_rows = int(np.ceil(num_topics/5)) widths = [400]*num_cols heights = [500]*num_rows fig_height = fig_width * sum(heights)/sum(widths) fig, axs = plt.subplots(num_rows,num_cols, figsize=(fig_width, fig_height), gridspec_kw = {'height_ratios': heights, 'wspace':0, 'hspace':0}, constrained_layout=True) fig.suptitle(suptitle, weight='bold') for n, ax in enumerate(axs.flat): if n < len(topics): try: wordcloud = WordCloud(background_color='white', width=400, height=400, max_words=max_words ).generate_from_frequencies(data[topics[n]]) ax.imshow(wordcloud.recolor(color_func=grey_color_func, random_state=3), interpolation="bilinear") ax.text(0, -5, f'{topics[n]}',weight='bold') ax.axis('off') except OSError: ax.axis('off') pass else: ax.axis('off') plt.savefig(Path(path, f'{suptitle}_wordcloud.png'), dpi=300) plt.clf() plt.close('all') class AnalyzeTopics: """ Class to call analysis tools to create files and visualizations to analyze the results of topic modeling done. Parameters ---------- model: Topic model. Currently either supports model from Top2Vec. subreddit_name: str Name of the collection of documents for use in title and saving file (e.g. 'r/CysticFibrosis') model_name: str Name of the embedding model. tokenized_docs: list[list[str]] Tokenized list of documents. id2word: Dict[(int, str)] Mapping of word ids to words. corpus: list[tuple[int, int]] Document vectors made up of list of tuples with (word_id, word_frequency) model_type: str ('LDA', 'Top2Vec') Model type for model passed to class. Currently only supports gensim or Top2Vec models. coherence: str (default 'c_v') Currently through gensim supports following coherence measures: 'u_mass', 'c_v', 'c_uci', and 'c_npmi. Coherence measure 'c_uci = 'c_pmi'. path: Path, str (Optional, default None) Path to store the analysis results files to. """ def __init__(self, model, subreddit_name:str, model_name:str, tokenized_docs:list[list[str]], id2word:Dict[(int, str)], corpus:list[tuple[int, int]], model_type:str, coherence:str='c_v', path:Optional[Union[Path,str]]=None): self.model_name = model_name self.subreddit_name = subreddit_name self.tokenized_docs = tokenized_docs self.id2word = id2word self.corpus = corpus self.model_type = model_type # Sets the path for analysis files and plots to be saved to. if path is None: results_path = utils.get_data_path('results') self.path = Path(results_path, self.subreddit_name, self.model_name) else: self.path = path utils.check_folder(self.path) # Sets the model for use in analysis. self.model = model # Retrieves topic sizes and numbers from the Top2Vec model. topic_sizes, topic_nums = self.model.get_topic_sizes() # Creates a dictionary of topic sizes. topic_sizes_dict = create_topic_sizes_dict(topic_sizes) # Saves the topic size dictionary. utils.dump_json(topic_sizes_dict, self.path, f'{self.model_name}_topic_sizes_Top2Vec') # Creates a distribtion plot of number of documents for each topic. create_distplot(topic_sizes, f'{self.model_name} Top2Vec', self.path) # Retrieves topic words and their scores from the model. topic_words, word_scores, _ = model.get_topics() # Creates a list of topic words for each topic for use in coherence model creation. topics = [list(words) for words in topic_words] # Creates a dictionary of word scores. For use in creating wordclouds. word_score_dict = create_word_dict(topic_words, word_scores, topic_nums) # Saves the word score dictionary. utils.dump_json(word_score_dict, self.path, f'{self.model_name}_word_score_dict_Top2Vec') # Prints the number of topics and the mean coherence of derived topics for the model. num_topics = self.model.get_num_topics() coherence_value = {} coherence_values_per_topic = [] for coherence_measure in ['c_v', 'c_npmi', 'u_mass', 'c_uci']: try: coherence_model = create_coherence_model(topics=topics, texts=tokenized_docs, id2word=id2word, coherence=coherence_measure) coherence_value[coherence_measure] = coherence_model.get_coherence() #print(f'{coherence_measure}: {coherence_value[coherence_measure]}') if coherence_measure == coherence: coherence_values_per_topic = coherence_model.get_coherence_per_topic() # Saves the coherence values for each topic. utils.dump_json(coherence_values_per_topic, self.path, f'{self.model_name}_coherence_values_per_topic_Top2Vec') except ValueError: coherence_value[coherence_measure] = np.nan #print(f'{coherence_measure}: {coherence_value[coherence_measure]}') if coherence_values_per_topic: # Saves the coherence value dictionary. utils.dump_json(coherence_value, self.path, f'{self.model_name}_coherence_values') # Creates the coherence distribution plot of coherence values for each topic with the # dashed line showing the mean coherence value. if num_topics > 1: create_coherence_distplot(coherence_values_per_topic, f'{self.model_name} Top2Vec', self.path) print(f'>>> Model: {self.model_name}') print(f'>>> Num Topics: {num_topics}') print(f'>>> Coherence ({coherence}): {coherence_value[coherence]}') # Creates wordcloud figure. if num_topics > 1: create_wordcloud_subplots(word_score_dict, suptitle = self.subreddit_name, path=self.path) else: print(f'No coherence model was created for {self.model_name}')
[]
2024-01-10
devprashantt/picstone-generative-ai
server~utils~generate_story.py
import openai def generate_story(tags, tag_analysis, image_text, story_title, desc, themes, ai_content): # Extract detected moods, sentiments, and tones from tag_analysis detected_moods = tag_analysis.get("moods", []) detected_sentiments = tag_analysis.get("sentiments", []) detected_tones = tag_analysis.get("tones", []) # Define default values if not detected default_mood = "neutral" default_sentiment = "neutral" default_tone = "calm" # Use the detected values if available; otherwise, use defaults mood = ', '.join(detected_moods) if detected_moods else default_mood sentiment = ', '.join( detected_sentiments) if detected_sentiments else default_sentiment tone = ', '.join(detected_tones) if detected_tones else default_tone # Create a prompt with specific instructions for ChatGPT prompt = f"""Generate a captivating story based on the provided image and information. The image analysis has extracted tags, and further analysis has revealed moods: {mood}, sentiments: {sentiment}, and tones: {tone}. The OCR applied to the image has provided the following text: {image_text}. The user has contributed a story titled "{story_title}" with the description: "{desc}" and themes: {themes}. Additionally, an AI content analysis has generated the following caption: "{ai_content}". Create a narrative that seamlessly incorporates these elements into a coherent and engaging story.""" try: # Generate a story/poem using ChatGPT response = openai.Completion.create( engine="text-davinci-003", temperature=0.7, # Adjust temperature for creativity max_tokens=1000, # Adjust max_tokens for desired length prompt=prompt, n=1 # Ensure only one response is generated ) return response.choices[0].text except Exception as e: print(f"Error generating poem/story from ChatGPT: {str(e)}") raise e
[ "Generate a captivating story based on the provided image and information. The image analysis has extracted tags, and further analysis has revealed moods: PLACEHOLDER, sentiments: PLACEHOLDER, and tones: PLACEHOLDER. The OCR applied to the image has provided the following text: PLACEHOLDER. The user has contributed a story titled \"PLACEHOLDER\" with the description: \"PLACEHOLDER\" and themes: PLACEHOLDER. Additionally, an AI content analysis has generated the following caption: \"PLACEHOLDER\". Create a narrative that seamlessly incorporates these elements into a coherent and engaging story." ]
2024-01-10
devprashantt/picstone-generative-ai
server~utils~themed_story.py
import openai def generate_themed_story( theme ): # Create a prompt with specific instructions for ChatGPT prompt = f"Generate an intriguing story based on the {theme} theme. The story should include suspenseful events, unexpected twists, and engaging characters. Ensure that the story maintains a sense of {theme} throughout, keeping the user captivated until the resolution. Consider incorporating elements such as hidden clues, enigmatic settings, and characters with ambiguous motives. The generated story should be immersive and evoke a sense of curiosity. Keep the user engaged by introducing new elements that deepen the mystery and lead to a satisfying conclusion. Be creative and make the story dynamic and compelling." try: # Generate a story/poem using ChatGPT response = openai.Completion.create( engine="text-davinci-003", temperature=0.7, # Adjust temperature for creativity max_tokens=1000, # Adjust max_tokens for desired length prompt=prompt, n=1 # Ensure only one response is generated ) return response.choices[0].text except Exception as e: print(f"Error generating poem/story from Server: {str(e)}") return None
[ "Generate an intriguing story based on the PLACEHOLDER theme. The story should include suspenseful events, unexpected twists, and engaging characters. Ensure that the story maintains a sense of PLACEHOLDER throughout, keeping the user captivated until the resolution. Consider incorporating elements such as hidden clues, enigmatic settings, and characters with ambiguous motives. The generated story should be immersive and evoke a sense of curiosity. Keep the user engaged by introducing new elements that deepen the mystery and lead to a satisfying conclusion. Be creative and make the story dynamic and compelling." ]
2024-01-10
Lynxye/dataframe-editor
dfeditor.py
import streamlit as st from streamlit_chat import message import pandas as pd from pandasai import PandasAI import numpy as np from langchain.chat_models import ChatOpenAI from langchain.agents import create_pandas_dataframe_agent import os # Retrieve the API key from the environment variables api_key = os.getenv("OPENAI_API_KEY") # Instantiate a LLM from pandasai.llm.openai import OpenAI llm = OpenAI(api_token="YOUR_API_TOKEN") # Initialize PandasAI pandas_ai = PandasAI(llm) # set page to wide mode st.set_page_config(layout="wide") # Check if DataFrame is already in session_state if "df" not in st.session_state: st.session_state.df = pd.DataFrame(columns=['Classification', 'Space Type', 'Room Name', 'Level', 'Room Count', 'Unit Count', 'NSF/Unit', 'NSF', 'Net to Gross Factor', 'GSF', 'Floor Finish', 'Wall Finish', 'Ceiling Finish']) with st.sidebar: st.subheader('Instructions') st.info( """ - You can start by uploading a CSV file or start from scratch. - Complete the input fields and click "Add to Table" to add data to the table. - To delete a row, enter the row index and click "Delete Row". The index is zero-based, i.e., the first row is index 0. - You can clear the entire data using the "Clear Data" button. - Finally, you can save your data as a CSV file with a filename of your choice. """ ) # File uploader uploaded_file = st.file_uploader("Choose a CSV file", type='csv') # Clear data button clear_data = st.button('Clear Data') if uploaded_file is not None: st.session_state.df = pd.read_csv(uploaded_file) if clear_data: st.session_state.df = pd.DataFrame(columns=['Classification', 'Space Type', 'Room Name', 'Level', 'Room Count', 'Unit Count', 'NSF/Unit', 'NSF', 'Net to Gross Factor', 'GSF', 'Floor Finish', 'Wall Finish', 'Ceiling Finish']) st.success('Data cleared.') # Delete row row_index = st.number_input('Enter row index to delete', value=-1, min_value=-1) delete = st.button('Delete Row') if delete: if row_index >= 0 and row_index < len(st.session_state.df): st.session_state.df = st.session_state.df.drop(st.session_state.df.index[row_index]) st.session_state.df.reset_index(drop=True, inplace=True) st.success(f'Row {row_index} deleted.') # Input fields in sidebar with st.sidebar: st.subheader('Input Fields') classification = st.text_input('Classification', value='Revenue & Fan Experience') space_type = st.text_input('Space Type', value='Public Space') room_name = st.text_input('Room Name', value='Concourse') level = st.text_input('Level', value='Level 1') room_count = st.number_input('Room Count', value=1, format="%i") unit_count = st.number_input('Unit Count', value=1, format="%i") nsf_per_unit = st.number_input('NSF/Unit', value=1, format="%i") net_to_gross_factor = st.number_input('Net to Gross Factor', value=1.0) floor_finish = st.selectbox('Floor Finish', options=list(range(1, 6))) wall_finish = st.selectbox('Wall Finish', options=list(range(1, 6))) ceiling_finish = st.selectbox('Ceiling Finish', options=list(range(1, 6))) add_row = st.button('Add to Table') if add_row: gsf_value = room_count * unit_count * nsf_per_unit * net_to_gross_factor df_new = pd.DataFrame({ 'Classification': [classification], 'Space Type': [space_type], 'Room Name': [room_name], 'Level': [level], 'Room Count': [room_count], 'Unit Count': [unit_count], 'NSF/Unit': [nsf_per_unit], 'NSF': [room_count * unit_count * nsf_per_unit], 'Net to Gross Factor': [net_to_gross_factor], 'GSF': [np.round(gsf_value, 0)], # rounding the GSF value 'Floor Finish': [floor_finish], 'Wall Finish': [wall_finish], 'Ceiling Finish': [ceiling_finish] }) st.session_state.df = pd.concat([st.session_state.df, df_new], axis=0) st.session_state.df.reset_index(drop=True, inplace=True) st.markdown(f"**Total GSF:** {np.round(st.session_state.df['GSF'].sum(), 0)}") # rounding the total GSF value # Display the DataFrame st.dataframe(st.session_state.df) # Save DataFrame as CSV file_name = st.text_input('Enter filename to save as CSV') if st.button('Save DataFrame as CSV') and file_name: st.session_state.df.to_csv(f'{file_name}.csv', index=False) st.success(f'DataFrame saved as {file_name}.csv')
[]
2024-01-10
ThiagoTrabach/cover-letter-gpt
cover-letter-gpt~helpers.py
import openai import os from dotenv import load_dotenv load_dotenv() openai.api_key = os.environ['OPENAI_KEY'] def gpt_get_completion(prompt, model="gpt-3.5-turbo"): # Andrew mentioned that the prompt/ completion paradigm is preferable for this class messages = [{"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=0, # this is the degree of randomness of the model's output ) return response
[]
2024-01-10
AdrianAbeyta/openai_ros-1
openai_ros~src~openai_ros~task_envs~task_envs_list.py
#!/usr/bin/env python from gym.envs.registration import register from gym import envs def RegisterOpenAI_Ros_Env(task_env, max_episode_steps=10000): """ Registers all the ENVS supported in OpenAI ROS. This way we can load them with variable limits. Here is where you have to PLACE YOUR NEW TASK ENV, to be registered and accessible. return: False if the Task_Env wasnt registered, True if it was. """ ########################################################################### # MovingCube Task-Robot Envs result = True # Cubli Moving Cube if task_env == 'MovingCubeOneDiskWalk-v0': print("Import module") # We have to import the Class that we registered so that it can be found afterwards in the Make from openai_ros.task_envs.moving_cube import one_disk_walk print("Importing register env") # We register the Class through the Gym system register( id=task_env, #entry_point='openai_ros:task_envs.moving_cube.one_disk_walk.MovingCubeOneDiskWalkEnv', entry_point='openai_ros.task_envs.moving_cube.one_disk_walk:MovingCubeOneDiskWalkEnv', max_episode_steps=max_episode_steps, ) # Husarion Robot elif task_env == 'HusarionGetToPosTurtleBotPlayGround-v0': register( id=task_env, entry_point='openai_ros.task_envs.husarion.husarion_get_to_position_turtlebot_playground:HusarionGetToPosTurtleBotPlayGroundEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.husarion import husarion_get_to_position_turtlebot_playground elif task_env == 'FetchTest-v0': register( id=task_env, entry_point='openai_ros.task_envs.fetch.fetch_test_task:FetchTestEnv', max_episode_steps=max_episode_steps, ) # 50 # We have to import the Class that we registered so that it can be found afterwards in the Make from openai_ros.task_envs.fetch import fetch_test_task elif task_env == 'FetchSimpleTest-v0': register( id=task_env, # entry_point='openai_ros:task_envs.fetch.fetch_simple_task.FetchSimpleTestEnv', entry_point='openai_ros.task_envs.fetch.fetch_simple_task:FetchSimpleTestEnv', max_episode_steps=max_episode_steps, ) # We have to import the Class that we registered so that it can be found afterwards in the Make from openai_ros.task_envs.fetch import fetch_simple_task elif task_env == 'FetchPickAndPlace-v0': register( id=task_env, # entry_point='openai_ros:task_envs.fetch.fetch_pick_and_place_task.FetchPickAndPlaceEnv', entry_point='openai_ros.task_envs.fetch.fetch_pick_and_place_task:FetchPickAndPlaceEnv', max_episode_steps=max_episode_steps, ) # We have to import the Class that we registered so that it can be found afterwards in the Make from openai_ros.task_envs.fetch import fetch_pick_and_place_task elif task_env == 'FetchPush-v0': register( id=task_env, # entry_point='openai_ros:task_envs.fetch.fetch_pick_and_place_task.FetchPushEnv', # entry_point='openai_ros:task_envs.fetch.fetch_push.FetchPushEnv', entry_point='openai_ros.task_envs.fetch.fetch_push:FetchPushEnv', max_episode_steps=max_episode_steps, ) # We have to import the Class that we registered so that it can be found afterwards in the Make from openai_ros.task_envs.fetch import fetch_push elif task_env == 'CartPoleStayUp-v0': register( id=task_env, entry_point='openai_ros.task_envs.cartpole_stay_up.stay_up:CartPoleStayUpEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.cartpole_stay_up import stay_up elif task_env == 'HopperStayUp-v0': register( id=task_env, entry_point='openai_ros.task_envs.hopper.hopper_stay_up:HopperStayUpEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.hopper import hopper_stay_up elif task_env == 'IriWamTcpToBowl-v0': register( id=task_env, entry_point='openai_ros.task_envs.iriwam.tcp_to_bowl:IriWamTcpToBowlEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.iriwam import tcp_to_bowl elif task_env == 'ParrotDroneGoto-v0': register( id=task_env, entry_point='openai_ros.task_envs.parrotdrone.parrotdrone_goto:ParrotDroneGotoEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.parrotdrone import parrotdrone_goto elif task_env == 'SawyerTouchCube-v0': register( id=task_env, entry_point='openai_ros.task_envs.sawyer.learn_to_touch_cube:SawyerTouchCubeEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.sawyer import learn_to_touch_cube elif task_env == 'ShadowTcGetBall-v0': register( id=task_env, entry_point='openai_ros.task_envs.shadow_tc.learn_to_pick_ball:ShadowTcGetBallEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.shadow_tc import learn_to_pick_ball elif task_env == 'SumitXlRoom-v0': register( id='SumitXlRoom-v0', entry_point='openai_ros.task_envs.sumit_xl.sumit_xl_room:SumitXlRoom', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.sumit_xl import sumit_xl_room elif task_env == 'MyTurtleBot2Maze-v0': register( id=task_env, entry_point='openai_ros.task_envs.turtlebot2.turtlebot2_maze:TurtleBot2MazeEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.turtlebot2 import turtlebot2_maze elif task_env == 'MyTurtleBot2Wall-v0': register( id=task_env, entry_point='openai_ros.task_envs.turtlebot2.turtlebot2_wall:TurtleBot2WallEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.turtlebot2 import turtlebot2_wall elif task_env == 'TurtleBot3World-v0': register( id=task_env, entry_point='openai_ros.task_envs.turtlebot3.turtlebot3_world:TurtleBot3WorldEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.turtlebot3 import turtlebot3_world ########################################################### ADDED FOR WALRUS elif task_env == 'WalrusTest-v0': register( id=task_env, entry_point='openai_ros.task_envs.walrus.walrus_test:WalrusTestEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.walrus import walrus_test elif task_env == 'WalrusCampus-v0': register( id=task_env, entry_point='openai_ros.task_envs.walrus.walrus_campus:WalrusCampusEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.walrus import walrus_campus elif task_env == 'WalrusNav-v0': register( id=task_env, entry_point='openai_ros.task_envs.walrus.walrus_nav:WalrusNavEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.walrus import walrus_nav elif task_env == 'WalrusStairs-v0': register( id=task_env, entry_point='openai_ros.task_envs.walrus.walrus_stairs:WalrusStairsEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.walrus import walrus_stairs elif task_env == 'WalrusBalance-v0': register( id=task_env, entry_point='openai_ros.task_envs.walrus.walrus_balance:WalrusBalanceEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.walrus import walrus_balance ############################################################ END WALRUS ADDITIONS elif task_env == 'WamvNavTwoSetsBuoys-v0': register( id=task_env, entry_point='openai_ros.task_envs.wamv.wamv_nav_twosets_buoys:WamvNavTwoSetsBuoysEnv', max_episode_steps=max_episode_steps, ) # import our training environment from openai_ros.task_envs.wamv import wamv_nav_twosets_buoys # Add here your Task Envs to be registered else: result = False ########################################################################### if result: # We check that it was really registered supported_gym_envs = GetAllRegisteredGymEnvs() #print("REGISTERED GYM ENVS===>"+str(supported_gym_envs)) assert (task_env in supported_gym_envs), "The Task_Robot_ENV given is not Registered ==>" + \ str(task_env) return result def GetAllRegisteredGymEnvs(): """ Returns a List of all the registered Envs in the system return EX: ['Copy-v0', 'RepeatCopy-v0', 'ReversedAddition-v0', ... ] """ all_envs = envs.registry.all() env_ids = [env_spec.id for env_spec in all_envs] return env_ids
[]
2024-01-10
AdrianAbeyta/openai_ros-1
openai_ros~src~openai_ros~robot_envs~sawyer_env.py
import numpy import rospy import time import tf from openai_ros import robot_gazebo_env import intera_interface import intera_external_devices from intera_interface import CHECK_VERSION from intera_core_msgs.msg import JointLimits from sensor_msgs.msg import Image from openai_ros.openai_ros_common import ROSLauncher class SawyerEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all SawyerEnv environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new SawyerEnv environment. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /robot/joint_limits: Odometry of the Base of Wamv Actuators Topic List: * As actuator we will use a class to interface with the movements through commands. Args: """ rospy.logdebug("Start SawyerEnv INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="sawyer_gazebo", launch_file_name="put_sawyer_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(SawyerEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") rospy.logdebug("SawyerEnv unpause...") self.gazebo.unpauseSim() # self.controllers_object.reset_controllers() # TODO: Fill it with the sensors self._check_all_systems_ready() rospy.Subscriber("/io/internal_camera/head_camera/image_raw", Image, self._head_camera_image_raw_callback) rospy.Subscriber("/io/internal_camera/right_hand_camera/image_raw", Image, self._right_hand_camera_image_raw_callback) self._setup_tf_listener() self._setup_movement_system() self.gazebo.pauseSim() rospy.logdebug("Finished SawyerEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ rospy.logdebug("SawyerEnv check_all_systems_ready...") self._check_all_sensors_ready() rospy.logdebug("END SawyerEnv _check_all_systems_ready...") return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") # TODO: Here go the sensors like cameras and joint states self._check_head_camera_image_raw_ready() self._check_right_hand_camera_image_raw_ready() rospy.logdebug("ALL SENSORS READY") def _check_head_camera_image_raw_ready(self): self.head_camera_image_raw = None rospy.logdebug( "Waiting for /io/internal_camera/head_camera/image_raw to be READY...") while self.head_camera_image_raw is None and not rospy.is_shutdown(): try: self.head_camera_image_raw = rospy.wait_for_message( "/io/internal_camera/head_camera/image_raw", Image, timeout=5.0) rospy.logdebug( "Current /io/internal_camera/head_camera/image_raw READY=>") except: rospy.logerr( "Current /io/internal_camera/head_camera/image_raw not ready yet, retrying for getting head_camera_image_raw") return self.head_camera_image_raw def _check_right_hand_camera_image_raw_ready(self): self.right_hand_camera_image_raw = None rospy.logdebug( "Waiting for /io/internal_camera/right_hand_camera/image_raw to be READY...") while self.right_hand_camera_image_raw is None and not rospy.is_shutdown(): try: self.right_hand_camera_image_raw = rospy.wait_for_message( "/io/internal_camera/right_hand_camera/image_raw", Image, timeout=5.0) rospy.logdebug( "Current /io/internal_camera/right_hand_camera/image_raw READY=>") except: rospy.logerr( "Current /io/internal_camera/right_hand_camera/image_raw not ready yet, retrying for getting right_hand_camera_image_raw") return self.right_hand_camera_image_raw def _head_camera_image_raw_callback(self, data): self.head_camera_image_raw = data def _right_hand_camera_image_raw_callback(self, data): self.right_hand_camera_image_raw = data def _setup_tf_listener(self): """ Set ups the TF listener for getting the transforms you ask for. """ self.listener = tf.TransformListener() def _setup_movement_system(self): """ Setup of the movement system. :return: """ rp = intera_interface.RobotParams() valid_limbs = rp.get_limb_names() if not valid_limbs: rp.log_message(("Cannot detect any limb parameters on this robot. " "Exiting."), "ERROR") return rospy.loginfo("Valid Sawyer Limbs==>"+str(valid_limbs)) print("Getting robot state... ") rs = intera_interface.RobotEnable(CHECK_VERSION) init_state = rs.state().enabled rospy.loginfo("Enabling robot...") rs.enable() self._map_actions_to_movement() def _map_actions_to_movement(self, side="right", joint_delta=0.1): self.limb = intera_interface.Limb(side) try: self.gripper = intera_interface.Gripper(side + '_gripper') except: self.has_gripper = False rospy.loginfo("The electric gripper is not detected on the robot.") else: self.has_gripper = True self.joints = self.limb.joint_names() self.bindings = { self.joints[0]+"_increase": (self.set_j, [self.joints[0], joint_delta], self.joints[0]+" increase"), self.joints[0]+"_decrease": (self.set_j, [self.joints[0], -joint_delta], self.joints[0]+" decrease"), self.joints[1]+"_increase": (self.set_j, [self.joints[1], joint_delta], self.joints[1]+" increase"), self.joints[1]+"_decrease": (self.set_j, [self.joints[1], -joint_delta], self.joints[1]+" decrease"), self.joints[2]+"_increase": (self.set_j, [self.joints[2], joint_delta], self.joints[2]+" increase"), self.joints[2]+"_decrease": (self.set_j, [self.joints[2], -joint_delta], self.joints[2]+" decrease"), self.joints[3]+"_increase": (self.set_j, [self.joints[3], joint_delta], self.joints[3]+" increase"), self.joints[3]+"_decrease": (self.set_j, [self.joints[3], -joint_delta], self.joints[3]+" decrease"), self.joints[4]+"_increase": (self.set_j, [self.joints[4], joint_delta], self.joints[4]+" increase"), self.joints[4]+"_decrease": (self.set_j, [self.joints[4], -joint_delta], self.joints[4]+" decrease"), self.joints[5]+"_increase": (self.set_j, [self.joints[5], joint_delta], self.joints[5]+" increase"), self.joints[5]+"_decrease": (self.set_j, [self.joints[5], -joint_delta], self.joints[5]+" decrease"), self.joints[6]+"_increase": (self.set_j, [self.joints[6], joint_delta], self.joints[6]+" increase"), self.joints[6]+"_decrease": (self.set_j, [self.joints[6], -joint_delta], self.joints[6]+" decrease") } if self.has_gripper: self.bindings.update({ "close": (self.set_g, "close", side+" gripper close"), "open": (self.set_g, "open", side+" gripper open"), "calibrate": (self.set_g, "calibrate", side+" gripper calibrate") }) rospy.loginfo("Controlling joints...") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def execute_movement(self, action_id): """ It executed the command given through an id. This will move any joint of Sawyer, including the gripper if it has it. :param: action_id: These are the possible action_id values and the action asociated. self.joints[0]+"_increase", self.joints[0]+_decrease, self.joints[1]+"_increase", self.joints[1]+"_decrease", self.joints[2]+"_increase", self.joints[2]+"_decrease", self.joints[3]+"_increase", self.joints[3]+"_decrease", self.joints[4]+"_increase", self.joints[4]+"_decrease", self.joints[5]+"_increase", self.joints[5]+"_decrease", self.joints[6]+"_increase", self.joints[6]+"_decrease", gripper_close, gripper_open, gripper_calibrate """ if action_id in self.bindings: cmd = self.bindings[action_id] if action_id == "gripper_close" or action_id == "gripper_open" or action_id == "gripper_calibrate": cmd[0](cmd[1]) rospy.loginfo("command: %s" % (cmd[2],)) else: # expand binding to something like "self.set_j(right, 'j0', joint_delta)" cmd[0](*cmd[1]) rospy.loginfo("command: %s" % (cmd[2],)) else: rospy.logerr("NOT VALID key binding, it should be one of these: ") for key, val in sorted(self.bindings.items(), key=lambda x: x[1][2]): rospy.logerr(" %s: %s" % (key, val[2])) def set_j(self, joint_name, delta): current_position = self.limb.joint_angle(joint_name) joint_command = {joint_name: current_position + delta} self.limb.set_joint_positions(joint_command) def set_g(self, action): if self.has_gripper: if action == "close": self.gripper.close() elif action == "open": self.gripper.open() elif action == "calibrate": self.gripper.calibrate() def move_joints_to_angle_blocking(self, joint_positions_dict, timeout=15.0, threshold=0.008726646): """ It moves all the joints to the given position and doesnt exit until it reaches that position """ self.limb.move_to_joint_positions(positions=joint_positions_dict, timeout=15.0, threshold=0.008726646, test=None) def get_limb_joint_names_array(self): """ Returns the Joint Names array of the Limb. """ return self.joints def get_all_limb_joint_angles(self): """ Return dictionary dict({str:float}) with all the joints angles """ return self.limb.joint_angles() def get_all_limb_joint_efforts(self): """ Returns a dictionary dict({str:float}) with all the joints efforts """ return self.limb.joint_efforts() def get_tf_start_to_end_frames(self, start_frame_name, end_frame_name): """ Given two frames, it returns the transform from the start_frame_name to the end_frame_name. It will only return something different to None if the TFs of the Two frames are in TF topic published and are connected through the TF tree. :param: start_frame_name: Start Frame of the TF transform end_frame_name: End Frame of the TF transform :return: trans,rot of the transform between the start and end frames. """ start_frame = "/"+start_frame_name end_frame = "/"+end_frame_name trans, rot = None, None while (trans is None or rot is None) and not rospy.is_shutdown(): try: (trans, rot) = self.listener.lookupTransform( start_frame, end_frame, rospy.Time(0)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): rospy.logerr("TF start to end not ready YET...") duration_obj = rospy.Duration.from_sec(1.0) rospy.sleep(duration_obj) return trans, rot def check_joint_limits_ready(self): self.joint_limits = None rospy.logdebug("Waiting for /robot/joint_limits to be READY...") while self.joint_limits is None and not rospy.is_shutdown(): try: self.joint_limits = rospy.wait_for_message( "/robot/joint_limits", JointLimits, timeout=3.0) rospy.logdebug("Current /robot/joint_limits READY=>") except: rospy.logerr( "Current /robot/joint_limits not ready yet, retrying for getting joint_limits") return self.joint_limits def get_joint_limits(self): return self.joint_limits def get_head_camera_image_raw(self): return self.head_camera_image_raw def get_right_hand_camera_image_raw(self): return self.right_hand_camera_image_raw def init_joint_limits(self): """ Get the Joint Limits, in the init fase where we need to unpause the simulation to get them :return: joint_limits: The Joint Limits Dictionary, with names, angles, vel and effort limits. """ self.gazebo.unpauseSim() joint_limits = self.check_joint_limits_ready() self.gazebo.pauseSim() return joint_limits
[]
2024-01-10
AdrianAbeyta/openai_ros-1
openai_ros~src~openai_ros~robot_envs~walrus_env.py
import numpy import rospy import time from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan from sensor_msgs.msg import PointCloud2 from sensor_msgs.msg import Imu from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist from openai_ros.openai_ros_common import ROSLauncher class WalrusEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new WalrusEnv environment. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: TODO update with actual sensors from Walrus * /odom : Odometry readings of the Base of the Robot * /imu: Inertial Mesuring Unit that gives relative accelerations and orientations. * /scan: Laser Readings Actuators Topic List: /cmd_vel, #TODO update Args: """ rospy.logdebug("Start WalrusEnv INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="walrus_gazebo", launch_file_name="put_robot_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = ['diff_vel_controller','joint_state_controller'] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(WalrusEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False) self.gazebo.unpauseSim() self.controllers_object.reset_controllers() self._check_all_sensors_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/odom", Odometry, self._odom_callback) rospy.Subscriber("/imu/data", Imu, self._imu_callback) rospy.Subscriber("/scan", LaserScan, self._laser_scan_l_callback) rospy.Subscriber("/scan_1", LaserScan, self._laser_scan_r_callback) self._cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self._check_publishers_connection() self.gazebo.pauseSim() rospy.logdebug("Finished WalrusEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_odom_ready() self._check_imu_ready() self._check_laser_scan_l_ready() self._check_laser_scan_r_ready() rospy.logdebug("ALL SENSORS READY") def _check_odom_ready(self): self.odom = None rospy.logdebug("Waiting for /odom to be READY...") while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message("/odom", Odometry, timeout=5.0) rospy.logdebug("Current /odom READY=>") except: rospy.logerr("Current /odom not ready yet, retrying for getting odom") return self.odom def _check_imu_ready(self): self.imu = None rospy.logdebug("Waiting for /imu to be READY...") while self.imu is None and not rospy.is_shutdown(): try: self.imu = rospy.wait_for_message("/imu/data", Imu, timeout=5.0) rospy.logdebug("Current /imu/data READY=>") except: rospy.logerr("Current /imu/data not ready yet, retrying for getting imu") return self.imu def _check_laser_scan_l_ready(self): self.laser_scan_l = None rospy.logdebug("Waiting for /scan to be READY...") while self.laser_scan_l is None and not rospy.is_shutdown(): try: self.laser_scan_l = rospy.wait_for_message("/scan", LaserScan, timeout=1.0) rospy.logdebug("Current /scan READY=>") except: rospy.logerr("Current /scan not ready yet, retrying for getting laser_scan") return self.laser_scan_l def _check_laser_scan_r_ready(self): self.laser_scan_r = None rospy.logdebug("Waiting for /scan_1 to be READY...") while self.laser_scan_r is None and not rospy.is_shutdown(): try: self.laser_scan_r = rospy.wait_for_message("/scan_1", LaserScan, timeout=1.0) rospy.logdebug("Current /scan_1 READY=>") except: rospy.logerr("Current /scan not ready yet, retrying for getting laser_scan") return self.laser_scan_r def _odom_callback(self, data): self.odom = data def _imu_callback(self, data): self.imu = data def _laser_scan_l_callback(self, data): self.laser_scan_l = data def _laser_scan_r_callback(self, data): self.laser_scan_r = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._cmd_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug("No susbribers to _cmd_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_cmd_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_base(self, linear_speed, angular_speed, epsilon=0.05, update_rate=10): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed: Speed in the X axis of the robot base frame :param angular_speed: Speed of the angular turning of the robot base frame :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed cmd_vel_value.angular.z = angular_speed rospy.logdebug("Walrus Base Twist Cmd>>" + str(cmd_vel_value)) self._check_publishers_connection() self._cmd_vel_pub.publish(cmd_vel_value) #self.wait_until_twist_achieved(cmd_vel_value,epsilon,update_rate) # Weplace a waitof certain amiunt of time, because this twist achived doesnt work properly time.sleep(0.2) def wait_until_twist_achieved(self, cmd_vel_value, epsilon, update_rate): """ We wait for the cmd_vel twist given to be reached by the robot reading from the odometry. :param cmd_vel_value: Twist we want to wait to reach. :param epsilon: Error acceptable in odometry readings. :param update_rate: Rate at which we check the odometry. :return: """ rospy.logdebug("START wait_until_twist_achieved...") rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 epsilon = 0.05 rospy.logdebug("Desired Twist Cmd>>" + str(cmd_vel_value)) rospy.logdebug("epsilon>>" + str(epsilon)) linear_speed = cmd_vel_value.linear.x angular_speed = cmd_vel_value.angular.z linear_speed_plus = linear_speed + epsilon linear_speed_minus = linear_speed - epsilon angular_speed_plus = angular_speed + epsilon angular_speed_minus = angular_speed - epsilon while not rospy.is_shutdown(): current_odometry = self._check_odom_ready() # IN Walrus the odometry angular readings are inverted, so we have to invert the sign. TODO check this odom_linear_vel = current_odometry.twist.twist.linear.x odom_angular_vel = -1*current_odometry.twist.twist.angular.z rospy.logdebug("Linear VEL=" + str(odom_linear_vel) + ", ?RANGE=[" + str(linear_speed_minus) + ","+str(linear_speed_plus)+"]") rospy.logdebug("Angular VEL=" + str(odom_angular_vel) + ", ?RANGE=[" + str(angular_speed_minus) + ","+str(angular_speed_plus)+"]") linear_vel_are_close = (odom_linear_vel <= linear_speed_plus) and (odom_linear_vel > linear_speed_minus) angular_vel_are_close = (odom_angular_vel <= angular_speed_plus) and (odom_angular_vel > angular_speed_minus) if linear_vel_are_close and angular_vel_are_close: rospy.logdebug("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break rospy.logdebug("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time- start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") rospy.logdebug("END wait_until_twist_achieved...") return delta_time def get_odom(self): return self.odom def get_imu(self): return self.imu def get_laser_scan_l(self): return self.laser_scan_l def get_laser_scan_r(self): return self.laser_scan_r
[]
2024-01-10
AdrianAbeyta/openai_ros-1
openai_ros~src~openai_ros~robot_envs~walrus_upright_env.py
import numpy import rospy import time from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan from sensor_msgs.msg import PointCloud2 from sensor_msgs.msg import Imu from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist from openai_ros.openai_ros_common import ROSLauncher class WalrusUprightEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new WalrusUprightEnv environment. Walrus doesnt use controller_manager, therefore we wont reset the TODO: check controllers controllers in the standard fashion. For the moment we wont reset them. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: TODO update with actual sensors from Walrus * /odom : Odometry readings of the Base of the Robot * /imu: Inertial Mesuring Unit that gives relative accelerations and orientations. * /scan: Laser Readings Actuators Topic List: /cmd_vel, #TODO update Args: """ rospy.logdebug("Start WalrusUprightEnv INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="walrus_gazebo", launch_file_name="put_robot_in_world_upright.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = ['diff_vel_controller','joint_state_controller'] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(WalrusUprightEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=True, start_init_physics_parameters=True) self.gazebo.unpauseSim() self.controllers_object.reset_controllers() self._check_all_sensors_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/diff_vel_controller/odom", Odometry, self._odom_callback) rospy.Subscriber("/imu/data", Imu, self._imu_callback) rospy.Subscriber("/scan", LaserScan, self._laser_scan_l_callback) rospy.Subscriber("/scan_1", LaserScan, self._laser_scan_r_callback) self._cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self._check_publishers_connection() self.gazebo.pauseSim() # The odometry from diff_vel_controller doesn't reset after each run. # Instead, track elapsed odometry before each run, so that it can be subtracted to give actual relative odometry. #self.elapsed_x = 0.0 #self.elapsed_y = 0.0 #self.elapsed_z = 0.0 #self.odom = Odometry() # Blank odometry message rospy.logdebug("Finished WalrusUprightEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_odom_ready() self._check_imu_ready() self._check_laser_scan_l_ready() self._check_laser_scan_r_ready() rospy.logdebug("ALL SENSORS READY") def _check_odom_ready(self): self.odom = None rospy.logdebug("Waiting for /diff_vel_controller/odom to be READY...") while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message("/diff_vel_controller/odom", Odometry, timeout=5.0) rospy.logdebug("Current /diff_vel_controller/odom READY=>") except: rospy.logerr("Current /diff_vel_controller/odom not ready yet, retrying for getting odom") self.elapsed_x = self.odom.pose.pose.position.x self.elapsed_y = self.odom.pose.pose.position.y self.elapsed_z = self.odom.pose.pose.position.z return self.odom def _check_imu_ready(self): self.imu = None rospy.logdebug("Waiting for /imu to be READY...") while self.imu is None and not rospy.is_shutdown(): try: self.imu = rospy.wait_for_message("/imu/data", Imu, timeout=5.0) rospy.logdebug("Current /imu/data READY=>") except: rospy.logerr("Current /imu/data not ready yet, retrying for getting imu") return self.imu def _check_laser_scan_l_ready(self): self.laser_scan_l = None rospy.logdebug("Waiting for /scan to be READY...") while self.laser_scan_l is None and not rospy.is_shutdown(): try: self.laser_scan_l = rospy.wait_for_message("/scan", LaserScan, timeout=1.0) rospy.logdebug("Current /scan READY=>") except: rospy.logerr("Current /scan not ready yet, retrying for getting laser_scan") return self.laser_scan_l def _check_laser_scan_r_ready(self): self.laser_scan_r = None rospy.logdebug("Waiting for /scan_1 to be READY...") while self.laser_scan_r is None and not rospy.is_shutdown(): try: self.laser_scan_r = rospy.wait_for_message("/scan_1", LaserScan, timeout=1.0) rospy.logdebug("Current /scan_1 READY=>") except: rospy.logerr("Current /scan not ready yet, retrying for getting laser_scan") return self.laser_scan_r def _odom_callback(self, data): self.odom = data def _imu_callback(self, data): self.imu = data def _laser_scan_l_callback(self, data): self.laser_scan_l = data def _laser_scan_r_callback(self, data): self.laser_scan_r = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._cmd_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug("No susbribers to _cmd_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_cmd_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() # Since odometry drifts and cannot be reset between runs, save the elapsed pose for later processing. self.elapsed_x = self.odom.pose.pose.position.x self.elapsed_y = self.odom.pose.pose.position.y self.elapsed_z = self.odom.pose.pose.position.z def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_base(self, linear_speed, angular_speed, epsilon=0.05, update_rate=10): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed: Speed in the X axis of the robot base frame :param angular_speed: Speed of the angular turning of the robot base frame :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed cmd_vel_value.angular.z = angular_speed rospy.logdebug("Walrus Base Twist Cmd>>" + str(cmd_vel_value)) self._check_publishers_connection() self._cmd_vel_pub.publish(cmd_vel_value) #self.wait_until_twist_achieved(cmd_vel_value,epsilon,update_rate) # Weplace a waitof certain amiunt of time, because this twist achived doesnt work properly time.sleep(0.2) def wait_until_twist_achieved(self, cmd_vel_value, epsilon, update_rate): """ We wait for the cmd_vel twist given to be reached by the robot reading from the odometry. :param cmd_vel_value: Twist we want to wait to reach. :param epsilon: Error acceptable in odometry readings. :param update_rate: Rate at which we check the odometry. :return: """ rospy.logdebug("START wait_until_twist_achieved...") rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 epsilon = 0.05 rospy.logdebug("Desired Twist Cmd>>" + str(cmd_vel_value)) rospy.logdebug("epsilon>>" + str(epsilon)) linear_speed = cmd_vel_value.linear.x angular_speed = cmd_vel_value.angular.z linear_speed_plus = linear_speed + epsilon linear_speed_minus = linear_speed - epsilon angular_speed_plus = angular_speed + epsilon angular_speed_minus = angular_speed - epsilon while not rospy.is_shutdown(): current_odometry = self._check_odom_ready() # IN Walrus the odometry angular readings are inverted, so we have to invert the sign. TODO check this odom_linear_vel = current_odometry.twist.twist.linear.x odom_angular_vel = -1*current_odometry.twist.twist.angular.z rospy.logdebug("Linear VEL=" + str(odom_linear_vel) + ", ?RANGE=[" + str(linear_speed_minus) + ","+str(linear_speed_plus)+"]") rospy.logdebug("Angular VEL=" + str(odom_angular_vel) + ", ?RANGE=[" + str(angular_speed_minus) + ","+str(angular_speed_plus)+"]") linear_vel_are_close = (odom_linear_vel <= linear_speed_plus) and (odom_linear_vel > linear_speed_minus) angular_vel_are_close = (odom_angular_vel <= angular_speed_plus) and (odom_angular_vel > angular_speed_minus) if linear_vel_are_close and angular_vel_are_close: rospy.logdebug("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break rospy.logdebug("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time- start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") rospy.logdebug("END wait_until_twist_achieved...") return delta_time def get_odom(self): # Uncorrected, drifting odom: odom_drift = self.odom # Initialize relative odom as equal to drifting odom rel_odom = odom_drift # Now, subtract elapsed odometry and return corrected relative odometry rel_odom.pose.pose.position.x -= self.elapsed_x rel_odom.pose.pose.position.y -= self.elapsed_y rel_odom.pose.pose.position.z -= self.elapsed_z # Print an output for debugging rospy.logdebug("Uncorrected odom position: " + str(self.odom.pose.pose.position)) rospy.logdebug("Corrected odom position: " + str(rel_odom.pose.pose.position)) return rel_odom def get_imu(self): return self.imu def get_laser_scan_l(self): return self.laser_scan_l def get_laser_scan_r(self): return self.laser_scan_r
[]
2024-01-10
AdrianAbeyta/openai_ros-1
openai_ros~src~openai_ros~task_envs~walrus~walrus_balance.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import walrus_upright_env from gym.envs.registration import register from geometry_msgs.msg import Vector3 from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class WalrusBalanceEnv(walrus_upright_env.WalrusUprightEnv): def __init__(self): """ This Task Env is designed for having the Walrus balance. It will learn how to balance without tipping over. """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/walrus/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="walrus_gazebo", launch_file_name="load_stairs.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/walrus/config", yaml_file_name="walrus_balance.yaml") # Here we will add any init functions prior to starting the MyRobotEnv super(WalrusBalanceEnv, self).__init__(ros_ws_abspath) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) #number_observations = rospy.get_param('/walrus/n_observations') """ We set the Observation space for the 6 observations cube_observations = [ round(current_disk_roll_vel, 0), round(y_distance, 1), round(roll, 1), round(pitch, 1), round(y_linear_speed,1), round(yaw, 1), ] """ # Action parameters self.linear_forward_speed_max = rospy.get_param('/walrus/linear_forward_speed_max') self.linear_forward_speed_min = rospy.get_param('/walrus/linear_forward_speed_min') #self.linear_turn_speed = rospy.get_param('/walrus/linear_turn_speed') #self.angular_speed = rospy.get_param('/walrus/angular_speed') self.init_linear_forward_speed = rospy.get_param('/walrus/init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param('/walrus/init_linear_turn_speed') # Set up action space. Potential action/commanded velocity is any value between linear_forward_speed_min and _max #number_actions = rospy.get_param('/walrus/n_actions') #self.action_space = spaces.Discrete(number_actions) self.action_space = spaces.Box(numpy.array([self.linear_forward_speed_min]), numpy.array([self.linear_forward_speed_max])) # Observation parameters self.new_ranges = rospy.get_param('/walrus/new_ranges') self.num_scans = rospy.get_param('/walrus/num_scans') self.min_range = rospy.get_param('/walrus/min_range') self.max_laser_value = rospy.get_param('/walrus/max_laser_value') self.min_laser_value = rospy.get_param('/walrus/min_laser_value') #self.num_imu_obs = rospy.get_param('/walrus/num_imu_obs') self.max_pitch_orient = rospy.get_param('/walrus/max_pitch_orient') self.min_pitch_orient = rospy.get_param('/walrus/min_pitch_orient') self.max_pitch_rate = rospy.get_param('/walrus/max_pitch_rate') self.min_pitch_rate = rospy.get_param('/walrus/min_pitch_rate') self.max_x_disp = rospy.get_param('/walrus/max_x_disp') self.min_x_disp = rospy.get_param('/walrus/min_x_disp') self.max_linear_acceleration = rospy.get_param('/walrus/max_linear_acceleration') self.max_angular_velocity = rospy.get_param('/walrus/max_angular_velocity') # Set up observation space # We create two arrays based on the range values that will be assigned # In the discretization method. laser_scan_l = self.get_laser_scan_l() laser_scan_r = self.get_laser_scan_r() #num_laser_readings = int(len(laser_scan.ranges)/self.new_ranges) # Define high and low values for the scans high_scan = numpy.full((self.new_ranges*self.num_scans), self.max_laser_value) low_scan = numpy.full((self.new_ranges*self.num_scans), self.min_laser_value) # Now, define high and low values for the imu measurements in a numpy array high_imu = numpy.array([self.max_pitch_orient, self.max_pitch_rate]) low_imu = numpy.array([self.min_pitch_orient, self.min_pitch_rate]) # Now, define high and low values for the odometry measurement in a numpy array high_disp = numpy.array(self.max_x_disp) low_disp = numpy.array(self.min_x_disp) # Define high and low values for all observations, and create the observation space to span high = numpy.append(high_scan, high_imu) high = numpy.append(high, high_disp) low = numpy.append(low_scan, low_imu) low = numpy.append(low, low_disp) self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>"+str(self.observation_space)) # Reward/penalty parameters self.stay_up_reward = rospy.get_param("/walrus/stay_up_reward") self.position_penalty = rospy.get_param("/walrus/position_penalty") self.ang_velocity_threshold = rospy.get_param("/walrus/ang_velocity_threshold") self.ang_velocity_reward = rospy.get_param("/walrus/ang_velocity_reward") self.cumulated_steps = 0.0 def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base( self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Reset Controller #self.controllers_object.reset_controllers() # Set to false Done, because its calculated asyncronously self._episode_done = False def _set_action(self, action): """ This set action will Set the linear and angular speed of the walrus based on the action given. :param action: The action value; i.e. commanded linear velocity. """ rospy.logdebug("Start Set Action ==>"+str(action)) # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv # if action == 0: #FORWARD # linear_speed = self.linear_forward_speed # angular_speed = 0.0 # self.last_action = "FORWARDS" # elif action == 1: #BACKWARD # linear_speed = -self.linear_forward_speed # angular_speed = 0.0 # self.last_action = "BACKWARDS" # elif action == 2: #HOLD # linear_speed = 0.0 # angular_speed = 0.0 # self.last_action = "HOLD" linear_speed = action[0] angular_speed = 0.0 self.last_action = str(action[0]) # We tell walrus the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10) rospy.logdebug("END Set Action ==>"+str(action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the WalrusEnv API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan_l = self.get_laser_scan_l() laser_scan_r = self.get_laser_scan_r() imu_data = self.get_imu() odom = self.get_odom() discretized_observations_l = self.discretize_scan_observation(laser_scan_l, self.new_ranges) discretized_observations_r = self.discretize_scan_observation(laser_scan_r, self.new_ranges) imu_observations = [imu_data.orientation.y, imu_data.angular_velocity.y] odom_observations = [odom.pose.pose.position.x] obs = [] # initialize empty list obs.extend(discretized_observations_l) # add left scan obs to obs obs.extend(discretized_observations_r) # add right scan obs to obs obs.extend(imu_observations) # add imu obs to obs obs.extend(odom_observations) # add odom obs to obs # obs.extend(new_list) rospy.logdebug("Observations==>"+str(obs)) rospy.logdebug("END Get Observation ==>") return obs def _is_done(self, observations): if self._episode_done: rospy.logerr("Walrus is Too Close to wall==>") else: rospy.logwarn("Walrus is NOT close to a wall ==>") # Check orientation and angular velocity observations for rollover if (observations[16]>self.max_pitch_orient)|(observations[16]<self.min_pitch_orient): rospy.logerr("Walrus pitch orientation out of bounds==>"+str(observations[16])) self._episode_done = True else: rospy.logdebug("Walrus pitch orientation in bounds==>"+str(observations[16])) if (observations[17]>self.max_pitch_rate)|(observations[17]<self.min_pitch_rate): rospy.logerr("Walrus angular velocity out of bounds==>"+str(observations[17])) self._episode_done = True else: rospy.logdebug("Walrus pitch velocity in bounds==>"+str(observations[17])) # Now we check if it has crashed based on the imu imu_data = self.get_imu() linear_acceleration_magnitude = self.get_vector_magnitude(imu_data.linear_acceleration) if linear_acceleration_magnitude > self.max_linear_acceleration: rospy.logerr("Walrus Crashed==>"+str(linear_acceleration_magnitude)+">"+str(self.max_linear_acceleration)) self._episode_done = True else: rospy.logerr("Walrus DIDN'T crash ==>"+str(linear_acceleration_magnitude)+"<"+str(self.max_linear_acceleration)) return self._episode_done def _compute_reward(self, observations, done): # Reward for staying up / continuing the training episode reward = self.stay_up_reward # Penalty for x odometry being far away from origin (off-center) rospy.logdebug("Displacement is " + str(observations[18]) + ", penalty is " + str(self.position_penalty*abs(observations[18]))) reward += self.position_penalty*abs(observations[18]) # If angular velocity is below threshold, give a reward if abs(observations[17]) < self.ang_velocity_threshold: rospy.logdebug("Angular velocity " + str(observations[17]) + " is below threshold, giving reward.") reward += self.ang_velocity_reward # if not done: # if self.last_action == "FORWARDS": # reward = self.forwards_reward # else: # reward = self.turn_reward # else: # reward = -1*self.end_episode_points rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_scan_observation(self,data,new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] mod = len(data.ranges)/new_ranges for i, item in enumerate(data.ranges): if (i%mod==0): if item == float ('Inf') or numpy.isinf(item): discretized_ranges.append(self.max_laser_value) elif numpy.isnan(item): discretized_ranges.append(self.min_laser_value) else: #discretized_ranges.append(int(item)) discretized_ranges.append(item) if (self.min_range > item > 0): rospy.logerr("done Validation >>> item=" + str(item)+"< "+str(self.min_range)) self._episode_done = True else: rospy.logdebug("NOT done Validation >>> item=" + str(item)+"< "+str(self.min_range)) return discretized_ranges def get_vector_magnitude(self, vector): """ It calculated the magnitude of the Vector3 given. This is usefull for reading imu accelerations and knowing if there has been a crash :return: """ contact_force_np = numpy.array((vector.x, vector.y, vector.z)) force_magnitude = numpy.linalg.norm(contact_force_np) return force_magnitude
[]
2024-01-10
AdrianAbeyta/openai_ros-1
openai_ros~src~openai_ros~task_envs~cartpole_stay_up~stay_up.py
from gym import utils from openai_ros.robot_envs import cartpole_env from gym.envs.registration import register from gym import error, spaces import rospy import math import numpy as np from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class CartPoleStayUpEnv(cartpole_env.CartPoleEnv): def __init__(self): ros_ws_abspath = rospy.get_param("/cartpole_v0/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="cartpole_description", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/cartpole_stay_up/config", yaml_file_name="stay_up.yaml") self.get_params() self.action_space = spaces.Discrete(self.n_actions) high = np.array([ 2.5 * 2, np.finfo(np.float32).max, 0.7 * 2, np.finfo(np.float32).max]) self.observation_space = spaces.Box(-high, high) # TODO: Remove when working """ cartpole_env.CartPoleEnv.__init__( self, control_type=self.control_type ) """ # Here we will add any init functions prior to starting the MyRobotEnv super(CartPoleStayUpEnv, self).__init__(control_type=self.control_type, ros_ws_abspath=ros_ws_abspath) def get_params(self): # get configuration parameters self.n_actions = rospy.get_param('/cartpole_v0/n_actions') self.min_pole_angle = rospy.get_param('/cartpole_v0/min_pole_angle') self.max_pole_angle = rospy.get_param('/cartpole_v0/max_pole_angle') self.max_base_velocity = rospy.get_param( '/cartpole_v0/max_base_velocity') self.min_base_pose_x = rospy.get_param('/cartpole_v0/min_base_pose_x') self.max_base_pose_x = rospy.get_param('/cartpole_v0/max_base_pose_x') self.pos_step = rospy.get_param('/cartpole_v0/pos_step') self.running_step = rospy.get_param('/cartpole_v0/running_step') self.init_pos = rospy.get_param('/cartpole_v0/init_pos') self.wait_time = rospy.get_param('/cartpole_v0/wait_time') self.control_type = rospy.get_param('/cartpole_v0/control_type') def _set_action(self, action): # Take action if action == 0: # LEFT rospy.loginfo("GO LEFT...") self.pos[0] -= self.pos_step elif action == 1: # RIGHT rospy.loginfo("GO RIGHT...") self.pos[0] += self.pos_step elif action == 2: # LEFT BIG rospy.loginfo("GO LEFT BIG...") self.pos[0] -= self.pos_step * 10 elif action == 3: # RIGHT BIG rospy.loginfo("GO RIGHT BIG...") self.pos[0] += self.pos_step * 10 # Apply action to simulation. rospy.loginfo("MOVING TO POS=="+str(self.pos)) # 1st: unpause simulation #rospy.logdebug("Unpause SIM...") # self.gazebo.unpauseSim() self.move_joints(self.pos) rospy.logdebug( "Wait for some time to execute movement, time="+str(self.running_step)) rospy.sleep(self.running_step) # wait for some time rospy.logdebug( "DONE Wait for some time to execute movement, time=" + str(self.running_step)) # 3rd: pause simulation #rospy.logdebug("Pause SIM...") # self.gazebo.pauseSim() def _get_obs(self): data = self.joints # base_postion base_velocity pole angle pole velocity #obs = [round(data.position[1],1), round(data.velocity[1],1), round(data.position[0],1), round(data.velocity[0],1)] obs = [data.position[1], data.velocity[1], data.position[0], data.velocity[0]] return np.array(obs) def _is_done(self, observations): done = False data = self.joints rospy.loginfo("BASEPOSITION=="+str(observations[0])) rospy.loginfo("POLE ANGLE==" + str(observations[2])) # check if the base is still within the ranges of (-2, 2) if (self.min_base_pose_x >= observations[0] or observations[0] >= self.max_base_pose_x): rospy.logerr("Base Outside Limits==>min="+str(self.min_base_pose_x) + ",pos="+str(observations[0])+",max="+str(self.max_base_pose_x)) done = True # check if pole has toppled over if (self.min_pole_angle >= observations[2] or observations[2] >= self.max_pole_angle): rospy.logerr( "Pole Angle Outside Limits==>min=" + str(self.min_pole_angle) + ",pos=" + str(observations[2]) + ",max=" + str( self.max_pole_angle)) done = True rospy.loginfo("FINISHED get _is_done") return done def _compute_reward(self, observations, done): """ Gives more points for staying upright, gets data from given observations to avoid having different data than other previous functions :return:reward """ rospy.logdebug("START _compute_reward") if not done: reward = 1.0 elif self.steps_beyond_done is None: # Pole just fell! self.steps_beyond_done = 0 reward = 1.0 else: if self.steps_beyond_done == 0: logger.warning("You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.") self.steps_beyond_done += 1 reward = 0.0 rospy.logdebug("END _compute_reward") return reward def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ self.steps_beyond_done = None def _set_init_pose(self): """ Sets joints to initial position [0,0,0] :return: """ self.check_publishers_connection() # Reset Internal pos variable self.init_internal_vars(self.init_pos) self.move_joints(self.pos)
[]
2024-01-10
AdrianAbeyta/openai_ros-1
openai_ros~src~openai_ros~task_envs~walrus~walrus_stairs.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import walrus_env from gym.envs.registration import register from geometry_msgs.msg import Vector3 from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class WalrusStairsEnv(walrus_env.WalrusEnv): def __init__(self): """ This Task Env is designed for having the Walrus climb and descend stairs. It will learn how to climb stairs without tipping over. """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/walrus/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="walrus_gazebo", launch_file_name="load_stairs.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/walrus/config", yaml_file_name="walrus_stairs.yaml") # Here we will add any init functions prior to starting the MyRobotEnv super(WalrusStairsEnv, self).__init__(ros_ws_abspath) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) #number_observations = rospy.get_param('/walrus/n_observations') """ We set the Observation space for the 6 observations cube_observations = [ round(current_disk_roll_vel, 0), round(y_distance, 1), round(roll, 1), round(pitch, 1), round(y_linear_speed,1), round(yaw, 1), ] """ # Action parameters self.linear_forward_speed_max = rospy.get_param('/walrus/linear_forward_speed_max') self.linear_forward_speed_min = rospy.get_param('/walrus/linear_forward_speed_min') #self.linear_turn_speed = rospy.get_param('/walrus/linear_turn_speed') #self.angular_speed = rospy.get_param('/walrus/angular_speed') self.init_linear_forward_speed = rospy.get_param('/walrus/init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param('/walrus/init_linear_turn_speed') # Set up action space. Potential action/commanded velocity is any value between linear_forward_speed_min and _max #number_actions = rospy.get_param('/walrus/n_actions') #self.action_space = spaces.Discrete(number_actions) self.action_space = spaces.Box(numpy.array([self.linear_forward_speed_min]), numpy.array([self.linear_forward_speed_max])) # Observation parameters self.new_ranges = rospy.get_param('/walrus/new_ranges') self.num_scans = rospy.get_param('/walrus/num_scans') self.min_range = rospy.get_param('/walrus/min_range') self.max_laser_value = rospy.get_param('/walrus/max_laser_value') self.min_laser_value = rospy.get_param('/walrus/min_laser_value') #self.num_imu_obs = rospy.get_param('/walrus/num_imu_obs') self.max_pitch_orient = rospy.get_param('/walrus/max_pitch_orient') self.min_pitch_orient = rospy.get_param('/walrus/min_pitch_orient') self.max_pitch_rate = rospy.get_param('/walrus/max_pitch_rate') self.min_pitch_rate = rospy.get_param('/walrus/min_pitch_rate') self.max_x_disp = rospy.get_param('/walrus/max_x_disp') self.min_x_disp = rospy.get_param('/walrus/min_x_disp') self.max_linear_acceleration = rospy.get_param('/walrus/max_linear_acceleration') self.max_angular_velocity = rospy.get_param('/walrus/max_angular_velocity') # Set up observation space # We create two arrays based on the range values that will be assigned # In the discretization method. laser_scan_l = self.get_laser_scan_l() laser_scan_r = self.get_laser_scan_r() #num_laser_readings = int(len(laser_scan.ranges)/self.new_ranges) # Define high and low values for the scans high_scan = numpy.full((self.new_ranges*self.num_scans), self.max_laser_value) low_scan = numpy.full((self.new_ranges*self.num_scans), self.min_laser_value) # Now, define high and low values for the imu measurements in a numpy array high_imu = numpy.array([self.max_pitch_orient, self.max_pitch_rate]) low_imu = numpy.array([self.min_pitch_orient, self.min_pitch_rate]) # Now, define high and low values for the odometry measurement in a numpy array high_disp = numpy.array(self.max_x_disp) low_disp = numpy.array(self.min_x_disp) # Define high and low values for all observations, and create the observation space to span high = numpy.append(high_scan, high_imu) high = numpy.append(high, high_disp) low = numpy.append(low_scan, low_imu) low = numpy.append(low, low_disp) self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>"+str(self.observation_space)) # Reward/penalty parameters self.stay_alive_reward = rospy.get_param("/walrus/stay_alive_reward") self.position_reward = rospy.get_param("/walrus/position_reward") self.ang_velocity_threshold = rospy.get_param("/walrus/ang_velocity_threshold") self.ang_velocity_reward = rospy.get_param("/walrus/ang_velocity_reward") self.forward_velocity_reward = rospy.get_param("/walrus/forward_velocity_reward") self.cumulated_steps = 0.0 def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base( self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Reset Controller #self.controllers_object.reset_controllers() # Set to false Done, because its calculated asyncronously self._episode_done = False def _set_action(self, action): """ This set action will Set the linear and angular speed of the walrus based on the action given. :param action: The action value; i.e. commanded linear velocity. """ rospy.logdebug("Start Set Action ==>"+str(action)) linear_speed = action[0] angular_speed = 0.0 self.last_action = action[0] # We tell walrus the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10) rospy.logdebug("END Set Action ==>"+str(action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the WalrusEnv API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan_l = self.get_laser_scan_l() laser_scan_r = self.get_laser_scan_r() imu_data = self.get_imu() odom = self.get_odom() discretized_observations_l = self.discretize_scan_observation(laser_scan_l, self.new_ranges) discretized_observations_r = self.discretize_scan_observation(laser_scan_r, self.new_ranges) imu_observations = [imu_data.orientation.y, imu_data.angular_velocity.y] odom_observations = [odom.pose.pose.position.x] obs = [] # initialize empty list obs.extend(discretized_observations_l) # add left scan obs to obs obs.extend(discretized_observations_r) # add right scan obs to obs obs.extend(imu_observations) # add imu obs to obs obs.extend(odom_observations) # add odom obs to obs # obs.extend(new_list) rospy.logdebug("Observations==>"+str(obs)) rospy.logdebug("END Get Observation ==>") return obs def _is_done(self, observations): if self._episode_done: rospy.logerr("Walrus is Too Close to wall==>") else: rospy.logwarn("Walrus is NOT close to a wall ==>") # Check orientation and angular velocity observations for rollover if (observations[16]>self.max_pitch_orient)|(observations[16]<self.min_pitch_orient): rospy.logerr("Walrus pitch orientation out of bounds==>"+str(observations[16])) self._episode_done = True else: rospy.logdebug("Walrus pitch orientation in bounds==>"+str(observations[16])) if (observations[17]>self.max_pitch_rate)|(observations[17]<self.min_pitch_rate): rospy.logerr("Walrus angular velocity out of bounds==>"+str(observations[17])) self._episode_done = True else: rospy.logdebug("Walrus pitch velocity in bounds==>"+str(observations[17])) # Check to see if robot out of bounds if (observations[18]>self.max_x_disp)|(observations[18]<self.min_x_disp): rospy.logerr("Walrus x-position out of bounds==>"+str(observations[18])) self._episode_done = True else: rospy.logdebug("Walrus x-position in bounds==>"+str(observations[18])) # Now we check if it has crashed based on the imu imu_data = self.get_imu() linear_acceleration_magnitude = self.get_vector_magnitude(imu_data.linear_acceleration) if linear_acceleration_magnitude > self.max_linear_acceleration: rospy.logerr("Walrus Crashed==>"+str(linear_acceleration_magnitude)+">"+str(self.max_linear_acceleration)) self._episode_done = True else: rospy.logerr("Walrus DIDN'T crash ==>"+str(linear_acceleration_magnitude)+"<"+str(self.max_linear_acceleration)) return self._episode_done def _compute_reward(self, observations, done): # Reward for staying up / continuing the training episode reward = self.stay_alive_reward # Penalty for x odometry being far away from origin (off-center) rospy.logdebug("Displacement is " + str(observations[18]) + ", reward is " + str(self.position_reward*observations[18])) reward += self.position_reward*abs(observations[18]) # If angular velocity is below threshold, give a reward if abs(observations[17]) < self.ang_velocity_threshold: rospy.logdebug("Angular velocity " + str(observations[17]) + " is below threshold, giving reward.") reward += self.ang_velocity_reward # if not done: if self.last_action > 0: rospy.logdebug("Forward velocity " + str(self.last_action) + ", giving reward " + str(self.forward_velocity_reward*self.last_action)) reward += self.forward_velocity_reward*self.last_action # else: # reward = self.turn_reward # else: # reward = -1*self.end_episode_points rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_scan_observation(self,data,new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] mod = len(data.ranges)/new_ranges for i, item in enumerate(data.ranges): if (i%mod==0): if item == float ('Inf') or numpy.isinf(item): discretized_ranges.append(self.max_laser_value) elif numpy.isnan(item): discretized_ranges.append(self.min_laser_value) else: #discretized_ranges.append(int(item)) discretized_ranges.append(item) # Check if collision occurred #if (self.min_range > item > 0): # rospy.logerr("done Validation >>> item=" + str(item)+"< "+str(self.min_range)) # self._episode_done = True #else: # rospy.logdebug("NOT done Validation >>> item=" + str(item)+"< "+str(self.min_range)) return discretized_ranges def get_vector_magnitude(self, vector): """ It calculated the magnitude of the Vector3 given. This is usefull for reading imu accelerations and knowing if there has been a crash :return: """ contact_force_np = numpy.array((vector.x, vector.y, vector.z)) force_magnitude = numpy.linalg.norm(contact_force_np) return force_magnitude
[]
2024-01-10
AdrianAbeyta/openai_ros-1
openai_ros~src~openai_ros~task_envs~walrus~walrus_test.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import walrus_env from gym.envs.registration import register from geometry_msgs.msg import Vector3 from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class WalrusTestEnv(walrus_env.WalrusEnv): def __init__(self): """ This Task Env is designed for having the Walrus in the closed room with columns. It will learn how to move around without crashing. """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/walrus/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="walrus_gazebo", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/walrus/config", yaml_file_name="walrus_world.yaml") # Here we will add any init functions prior to starting the MyRobotEnv super(WalrusTestEnv, self).__init__(ros_ws_abspath) # Only variable needed to be set here number_actions = rospy.get_param('/walrus/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) #number_observations = rospy.get_param('/walrus/n_observations') """ We set the Observation space for the 6 observations cube_observations = [ round(current_disk_roll_vel, 0), round(y_distance, 1), round(roll, 1), round(pitch, 1), round(y_linear_speed,1), round(yaw, 1), ] """ # Actions and Observations self.linear_forward_speed = rospy.get_param('/walrus/linear_forward_speed') self.linear_turn_speed = rospy.get_param('/walrus/linear_turn_speed') self.angular_speed = rospy.get_param('/walrus/angular_speed') self.init_linear_forward_speed = rospy.get_param('/walrus/init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param('/walrus/init_linear_turn_speed') self.new_ranges = rospy.get_param('/walrus/new_ranges') self.min_range = rospy.get_param('/walrus/min_range') self.max_laser_value = rospy.get_param('/walrus/max_laser_value') self.min_laser_value = rospy.get_param('/walrus/min_laser_value') self.max_linear_aceleration = rospy.get_param('/walrus/max_linear_aceleration') # We create two arrays based on the binary values that will be assigned # In the discretization method. laser_scan = self.get_laser_scan() num_laser_readings = int(len(laser_scan.ranges)/self.new_ranges) #high = numpy.full((num_laser_readings), self.max_laser_value) #low = numpy.full((num_laser_readings), self.min_laser_value) high = numpy.full((self.new_ranges), self.max_laser_value) low = numpy.full((self.new_ranges), self.min_laser_value) # We only use two integers self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>"+str(self.observation_space)) # Rewards self.forwards_reward = rospy.get_param("/walrus/forwards_reward") self.turn_reward = rospy.get_param("/walrus/turn_reward") self.end_episode_points = rospy.get_param("/walrus/end_episode_points") self.cumulated_steps = 0.0 def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base( self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Set to false Done, because its calculated asyncronously self._episode_done = False def _set_action(self, action): """ This set action will Set the linear and angular speed of the walrus based on the action number given. :param action: The action integer that set s what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv if action == 0: #FORWARD linear_speed = self.linear_forward_speed angular_speed = 0.0 self.last_action = "FORWARDS" elif action == 1: #LEFT linear_speed = self.linear_turn_speed angular_speed = self.angular_speed self.last_action = "TURN_LEFT" elif action == 2: #RIGHT linear_speed = self.linear_turn_speed angular_speed = -1*self.angular_speed self.last_action = "TURN_RIGHT" # We tell walrus the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10) rospy.logdebug("END Set Action ==>"+str(action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the WalrusEnv API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan = self.get_laser_scan() discretized_observations = self.discretize_scan_observation( laser_scan, self.new_ranges ) rospy.logdebug("Observations==>"+str(discretized_observations)) rospy.logdebug("END Get Observation ==>") return discretized_observations def _is_done(self, observations): if self._episode_done: rospy.logerr("Walrus is Too Close to wall==>") else: rospy.logwarn("Walrus is NOT close to a wall ==>") # Now we check if it has crashed based on the imu imu_data = self.get_imu() linear_acceleration_magnitude = self.get_vector_magnitude(imu_data.linear_acceleration) if linear_acceleration_magnitude > self.max_linear_aceleration: rospy.logerr("Walrus Crashed==>"+str(linear_acceleration_magnitude)+">"+str(self.max_linear_aceleration)) self._episode_done = True else: rospy.logerr("Walrus DIDN'T crash ==>"+str(linear_acceleration_magnitude)+">"+str(self.max_linear_aceleration)) return self._episode_done def _compute_reward(self, observations, done): if not done: if self.last_action == "FORWARDS": reward = self.forwards_reward else: reward = self.turn_reward else: reward = -1*self.end_episode_points rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_scan_observation(self,data,new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] mod = len(data.ranges)/new_ranges rospy.logdebug("data=" + str(data)) rospy.logdebug("new_ranges=" + str(new_ranges)) rospy.logdebug("mod=" + str(mod)) for i, item in enumerate(data.ranges): if (i%mod==0): if item == float ('Inf') or numpy.isinf(item): discretized_ranges.append(self.max_laser_value) elif numpy.isnan(item): discretized_ranges.append(self.min_laser_value) else: discretized_ranges.append(int(item)) if (self.min_range > item > 0): rospy.logerr("done Validation >>> item=" + str(item)+"< "+str(self.min_range)) self._episode_done = True else: rospy.logdebug("NOT done Validation >>> item=" + str(item)+"< "+str(self.min_range)) return discretized_ranges def get_vector_magnitude(self, vector): """ It calculated the magnitude of the Vector3 given. This is usefull for reading imu accelerations and knowing if there has been a crash :return: """ contact_force_np = numpy.array((vector.x, vector.y, vector.z)) force_magnitude = numpy.linalg.norm(contact_force_np) return force_magnitude
[]
2024-01-10
AdrianAbeyta/openai_ros-1
openai_ros~src~openai_ros~task_envs~walrus~walrus_nav.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import walrus_env from gym.envs.registration import register from geometry_msgs.msg import Vector3 from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class WalrusNavEnv(walrus_env.WalrusEnv): def __init__(self): """ This Task Env is designed for 2D Walrus navigation. It will learn how to get to the goal. """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/walrus/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="walrus_gazebo", launch_file_name="playpen.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/walrus/config", yaml_file_name="walrus_nav.yaml") # Here we will add any init functions prior to starting the MyRobotEnv super(WalrusNavEnv, self).__init__(ros_ws_abspath) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) # Goal parameters self.x_goal = rospy.get_param('/walrus/x_goal') self.y_goal = rospy.get_param('/walrus/y_goal') self.success_radius= rospy.get_param('/walrus/success_radius') # Action parameters self.linear_speed_max = rospy.get_param('/walrus/linear_speed_max') self.linear_speed_min = rospy.get_param('/walrus/linear_speed_min') self.angular_speed_max = rospy.get_param('/walrus/angular_speed_max') self.angular_speed_min = rospy.get_param('/walrus/angular_speed_min') self.init_linear_forward_speed = rospy.get_param('/walrus/init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param('/walrus/init_linear_turn_speed') # Set up action space. Potential action/commanded velocity is any value between linear_speed_min and _max #number_actions = rospy.get_param('/walrus/n_actions') #self.action_space = spaces.Discrete(number_actions) self.action_space = spaces.Box(numpy.array([self.linear_speed_min, self.angular_speed_min]), numpy.array([self.linear_speed_max, self.angular_speed_max])) # Observation parameters self.new_ranges = rospy.get_param('/walrus/new_ranges') self.num_scans = rospy.get_param('/walrus/num_scans') self.min_range = rospy.get_param('/walrus/min_range') self.max_laser_value = rospy.get_param('/walrus/max_laser_value') self.min_laser_value = rospy.get_param('/walrus/min_laser_value') #self.num_imu_obs = rospy.get_param('/walrus/num_imu_obs') # self.max_pitch_orient = rospy.get_param('/walrus/max_pitch_orient') # self.min_pitch_orient = rospy.get_param('/walrus/min_pitch_orient') self.max_yaw_orient = rospy.get_param('/walrus/max_yaw_orient') self.min_yaw_orient = rospy.get_param('/walrus/min_yaw_orient') # self.max_pitch_rate = rospy.get_param('/walrus/max_pitch_rate') # self.min_pitch_rate = rospy.get_param('/walrus/min_pitch_rate') self.max_x_disp = rospy.get_param('/walrus/max_x_disp') self.min_x_disp = rospy.get_param('/walrus/min_x_disp') self.max_y_disp = rospy.get_param('/walrus/max_y_disp') self.min_y_disp = rospy.get_param('/walrus/min_y_disp') self.max_linear_acceleration = rospy.get_param('/walrus/max_linear_acceleration') self.max_angular_velocity = rospy.get_param('/walrus/max_angular_velocity') # Set up observation space # We create two arrays based on the range values that will be assigned # In the discretization method. laser_scan_l = self.get_laser_scan_l() laser_scan_r = self.get_laser_scan_r() #num_laser_readings = int(len(laser_scan.ranges)/self.new_ranges) # Define high and low values for the scans high_scan = numpy.full((self.new_ranges*self.num_scans), self.max_laser_value) low_scan = numpy.full((self.new_ranges*self.num_scans), self.min_laser_value) # Now, define high and low values for the imu measurements in a numpy array #high_imu = numpy.array([self.max_pitch_orient, self.max_pitch_rate]) #low_imu = numpy.array([self.min_pitch_orient, self.min_pitch_rate]) high_imu = numpy.array([self.max_yaw_orient]) low_imu = numpy.array([self.min_yaw_orient]) # Now, define high and low values for the odometry measurement in a numpy array high_disp = numpy.array([self.max_x_disp, self.max_y_disp]) low_disp = numpy.array([self.min_x_disp, self.min_y_disp]) # Define high and low values for all observations, and create the observation space to span high = numpy.append(high_scan, high_imu) high = numpy.append(high, high_disp) low = numpy.append(low_scan, low_imu) low = numpy.append(low, low_disp) self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>"+str(self.observation_space)) # Reward/penalty parameters self.stay_alive_reward = rospy.get_param("/walrus/stay_alive_reward") self.position_reward = rospy.get_param("/walrus/position_reward") self.goal_reached_reward = rospy.get_param("/walrus/goal_reached_reward") self.ang_velocity_threshold = rospy.get_param("/walrus/ang_velocity_threshold") self.ang_velocity_reward = rospy.get_param("/walrus/ang_velocity_reward") self.forward_velocity_reward = rospy.get_param("/walrus/forward_velocity_reward") self.cumulated_steps = 0.0 def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base( self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Reset Controller #self.controllers_object.reset_controllers() # Set to false Done, because its calculated asyncronously self._episode_done = False def _set_action(self, action): """ This set action will Set the linear and angular speed of the walrus based on the action given. :param action: The action value; i.e. commanded linear velocity. """ rospy.logdebug("Start Set Action ==>"+str(action)) linear_speed = action[0] angular_speed = action[1] self.last_action = action[0] # We tell walrus the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10) rospy.logdebug("END Set Action ==>"+str(action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the WalrusEnv API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan_l = self.get_laser_scan_l() laser_scan_r = self.get_laser_scan_r() imu_data = self.get_imu() odom = self.get_odom() discretized_observations_l = self.discretize_scan_observation(laser_scan_l, self.new_ranges) discretized_observations_r = self.discretize_scan_observation(laser_scan_r, self.new_ranges) imu_observations = [imu_data.orientation.z] odom_observations = [odom.pose.pose.position.x, odom.pose.pose.position.y] obs = [] # initialize empty list obs.extend(discretized_observations_l) # add left scan obs to obs obs.extend(discretized_observations_r) # add right scan obs to obs obs.extend(imu_observations) # add imu obs to obs obs.extend(odom_observations) # add odom obs to obs # obs.extend(new_list) rospy.logdebug("Observations==>"+str(obs)) rospy.logdebug("END Get Observation ==>") return obs def _is_done(self, observations): if self._episode_done: rospy.logerr("Walrus is Too Close to wall==>") else: rospy.logwarn("Walrus is NOT close to a wall ==>") # Check orientation and angular velocity observations for rollover # if (observations[16]>self.max_pitch_orient)|(observations[16]<self.min_pitch_orient): # rospy.logerr("Walrus pitch orientation out of bounds==>"+str(observations[16])) # self._episode_done = True # else: # rospy.logdebug("Walrus pitch orientation in bounds==>"+str(observations[16])) # if (observations[17]>self.max_pitch_rate)|(observations[17]<self.min_pitch_rate): # rospy.logerr("Walrus angular velocity out of bounds==>"+str(observations[17])) # self._episode_done = True # else: # rospy.logdebug("Walrus pitch velocity in bounds==>"+str(observations[17])) # Check to see if robot out of bounds if (observations[17]>self.max_x_disp)|(observations[17]<self.min_x_disp): rospy.logerr("Walrus x-position out of bounds==>"+str(observations[17])) self._episode_done = True elif (observations[18]>self.max_y_disp)|(observations[18]<self.min_y_disp): rospy.logerr("Walrus y-position out of bounds==>"+str(observations[18])) self._episode_done = True else: rospy.logdebug("Walrus x-position in bounds==>"+str(observations[17])) rospy.logdebug("Walrus y-position in bounds==>"+str(observations[18])) # Now we check if it has crashed based on the imu imu_data = self.get_imu() linear_acceleration_magnitude = self.get_vector_magnitude(imu_data.linear_acceleration) if linear_acceleration_magnitude > self.max_linear_acceleration: rospy.logerr("Walrus Crashed==>"+str(linear_acceleration_magnitude)+">"+str(self.max_linear_acceleration)) self._episode_done = True else: rospy.logerr("Walrus DIDN'T crash ==>"+str(linear_acceleration_magnitude)+"<"+str(self.max_linear_acceleration)) return self._episode_done def _compute_reward(self, observations, done): # Reward for staying up / continuing the training episode reward = self.stay_alive_reward # Bonus for forward speed, penalty for reverse rospy.logdebug("Linear velocity " + str(self.last_action) + ", giving reward " + str(self.forward_velocity_reward*self.last_action)) reward += self.forward_velocity_reward*self.last_action # Reward for proximity to goal dist_to_goal = numpy.sqrt((observations[17] - self.x_goal)**2 + (observations[18] - self.y_goal)**2) reward += self.position_reward/dist_to_goal rospy.logdebug("Distance to goal is " + str(dist_to_goal) + ", reward is " + str(self.position_reward/dist_to_goal)) # Reward for reaching goal if dist_to_goal < self.success_radius: reward += self.goal_reached_reward self._episode_done = True rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_scan_observation(self,data,new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] mod = len(data.ranges)/new_ranges for i, item in enumerate(data.ranges): if (i%mod==0): if item == float ('Inf') or numpy.isinf(item): discretized_ranges.append(self.max_laser_value) elif numpy.isnan(item): discretized_ranges.append(self.min_laser_value) else: #discretized_ranges.append(int(item)) discretized_ranges.append(item) # Check if collision occurred if (self.min_range > item > 0): rospy.logerr("done Validation >>> item=" + str(item)+" < "+str(self.min_range)) self._episode_done = True else: rospy.logdebug("NOT done Validation >>> item=" + str(item)+" > "+str(self.min_range)) return discretized_ranges def get_vector_magnitude(self, vector): """ It calculated the magnitude of the Vector3 given. This is usefull for reading imu accelerations and knowing if there has been a crash :return: """ contact_force_np = numpy.array((vector.x, vector.y, vector.z)) force_magnitude = numpy.linalg.norm(contact_force_np) return force_magnitude
[]
2024-01-10
AdrianAbeyta/openai_ros-1
openai_ros~src~openai_ros~robot_envs~cube_single_disk_env.py
#! /usr/bin/env python import numpy import rospy from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from nav_msgs.msg import Odometry from openai_ros.openai_ros_common import ROSLauncher class CubeSingleDiskEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """Initializes a new CubeSingleDisk environment. Args: """ # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="moving_cube_description", launch_file_name="put_robot_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Variables that we give through the constructor. # None in this case # Internal Vars self.controllers_list = ['joint_state_controller', 'inertia_wheel_roll_joint_velocity_controller' ] self.robot_name_space = "moving_cube" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(CubeSingleDiskEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=True) # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/moving_cube/joint_states", JointState, self._joints_callback) rospy.Subscriber("/moving_cube/odom", Odometry, self._odom_callback) self._roll_vel_pub = rospy.Publisher('/moving_cube/inertia_wheel_roll_joint_velocity_controller/command', Float64, queue_size=1) self._check_all_systems_ready() # We pause the simulation once everything is ready self.gazebo.pauseSim() # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() self._check_publishers_connection() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): self._check_joint_states_ready() self._check_odom_ready() rospy.logdebug("ALL SENSORS READY") def _check_joint_states_ready(self): self.joints = None while self.joints is None and not rospy.is_shutdown(): try: self.joints = rospy.wait_for_message( "/moving_cube/joint_states", JointState, timeout=1.0) rospy.logdebug( "Current moving_cube/joint_states READY=>" + str(self.joints)) except: rospy.logerr( "Current moving_cube/joint_states not ready yet, retrying for getting joint_states") return self.joints def _check_odom_ready(self): self.odom = None while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message( "/moving_cube/odom", Odometry, timeout=1.0) rospy.logdebug( "Current /moving_cube/odom READY=>" + str(self.odom)) except: rospy.logerr( "Current /moving_cube/odom not ready yet, retrying for getting odom") return self.odom def _joints_callback(self, data): self.joints = data def _odom_callback(self, data): self.odom = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._roll_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug( "No susbribers to _roll_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_roll_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need. # ---------------------------- def move_joints(self, roll_speed): joint_speed_value = Float64() joint_speed_value.data = roll_speed rospy.logdebug("Single Disk Roll Velocity>>" + str(joint_speed_value)) self._roll_vel_pub.publish(joint_speed_value) self.wait_until_roll_is_in_vel(joint_speed_value.data) def wait_until_roll_is_in_vel(self, velocity): rate = rospy.Rate(10) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 epsilon = 0.1 v_plus = velocity + epsilon v_minus = velocity - epsilon while not rospy.is_shutdown(): joint_data = self._check_joint_states_ready() roll_vel = joint_data.velocity[0] rospy.logdebug("VEL=" + str(roll_vel) + ", ?RANGE=[" + str(v_minus) + ","+str(v_plus)+"]") are_close = (roll_vel <= v_plus) and (roll_vel > v_minus) if are_close: rospy.logdebug("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break rospy.logdebug("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time - start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") return delta_time def get_joints(self): return self.joints def get_odom(self): return self.odom
[]