date_collected
stringclasses 1
value | repo_name
stringlengths 6
116
| file_name
stringlengths 2
220
| file_contents
stringlengths 13
357k
| prompts
sequence |
---|---|---|---|---|
2024-01-10 | ByChelsea/VAND-APRIL-GAN | open_clip~transform.py | import warnings
from dataclasses import dataclass, asdict
from typing import Any, Dict, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
import torchvision.transforms.functional as F
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
CenterCrop
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
@dataclass
class AugmentationCfg:
scale: Tuple[float, float] = (0.9, 1.0)
ratio: Optional[Tuple[float, float]] = None
color_jitter: Optional[Union[float, Tuple[float, float, float]]] = None
interpolation: Optional[str] = None
re_prob: Optional[float] = None
re_count: Optional[int] = None
use_timm: bool = False
class ResizeMaxSize(nn.Module):
def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
super().__init__()
if not isinstance(max_size, int):
raise TypeError(f"Size should be int. Got {type(max_size)}")
self.max_size = max_size
self.interpolation = interpolation
self.fn = min if fn == 'min' else min
self.fill = fill
def forward(self, img):
if isinstance(img, torch.Tensor):
height, width = img.shape[:2]
else:
width, height = img.size
scale = self.max_size / float(max(height, width))
if scale != 1.0:
new_size = tuple(round(dim * scale) for dim in (height, width))
img = F.resize(img, new_size, self.interpolation)
pad_h = self.max_size - new_size[0]
pad_w = self.max_size - new_size[1]
img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
return img
def _convert_to_rgb(image):
return image.convert('RGB')
def image_transform(
image_size: int,
is_train: bool,
mean: Optional[Tuple[float, ...]] = None,
std: Optional[Tuple[float, ...]] = None,
resize_longest_max: bool = False,
fill_color: int = 0,
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
):
mean = mean or OPENAI_DATASET_MEAN
if not isinstance(mean, (list, tuple)):
mean = (mean,) * 3
std = std or OPENAI_DATASET_STD
if not isinstance(std, (list, tuple)):
std = (std,) * 3
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge
image_size = image_size[0]
if isinstance(aug_cfg, dict):
aug_cfg = AugmentationCfg(**aug_cfg)
else:
aug_cfg = aug_cfg or AugmentationCfg()
normalize = Normalize(mean=mean, std=std)
if is_train:
aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
use_timm = aug_cfg_dict.pop('use_timm', False)
if use_timm:
from timm.data import create_transform # timm can still be optional
if isinstance(image_size, (tuple, list)):
assert len(image_size) >= 2
input_size = (3,) + image_size[-2:]
else:
input_size = (3, image_size, image_size)
# by default, timm aug randomly alternates bicubic & bilinear for better robustness at inference time
aug_cfg_dict.setdefault('interpolation', 'random')
aug_cfg_dict.setdefault('color_jitter', None) # disable by default
train_transform = create_transform(
input_size=input_size,
is_training=True,
hflip=0.,
mean=mean,
std=std,
re_mode='pixel',
**aug_cfg_dict,
)
else:
train_transform = Compose([
RandomResizedCrop(
image_size,
scale=aug_cfg_dict.pop('scale'),
interpolation=InterpolationMode.BICUBIC,
),
_convert_to_rgb,
ToTensor(),
normalize,
])
if aug_cfg_dict:
warnings.warn(f'Unused augmentation cfg items, specify `use_timm` to use ({list(aug_cfg_dict.keys())}).')
return train_transform
else:
if resize_longest_max:
transforms = [
ResizeMaxSize(image_size, fill=fill_color)
]
else:
transforms = [
Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
CenterCrop((image_size, image_size)),
]
transforms.extend([
_convert_to_rgb,
ToTensor(),
normalize,
])
return Compose(transforms)
| [] |
2024-01-10 | Tomcc/bash_hackery | bin~gpt_commit.py | #!/usr/bin/env python
import os
import openai
import subprocess
DIFF_PROMPT = "Generate a succinct summary of the following code changes:"
COMMIT_MSG_PROMPT = "Generate a short commit message from this:"
openai.organization = os.getenv("OPENAI_ORG_ID")
openai.api_key = os.environ["OPENAI_API_KEY"]
def complete(prompt):
completion_resp = openai.Completion.create(
prompt=prompt[:4097], engine="text-davinci-003", max_tokens=64
)
completion = completion_resp["choices"][0]["text"].strip()
return completion
def summarize_diff(diff):
assert diff
return complete(DIFF_PROMPT + "\n\n" + diff + "\n\n")
def generate_commit_message(summaries):
assert summaries
return complete(COMMIT_MSG_PROMPT + "\n\n" + summaries + "\n\n")
def get_diff(path=".", diff_filter="ACDMRTUXB", name_only=False):
arguments = [
"git",
"--no-pager",
"diff",
"--staged",
f"--diff-filter={diff_filter}",
]
if name_only:
arguments.append("--name-only")
diff_process = subprocess.run(arguments + [path], capture_output=True, text=True)
diff_process.check_returncode()
return diff_process.stdout.strip()
def summarize_added_modified():
modified_files = get_diff(name_only=True, diff_filter="AM").splitlines()
return "\n\n".join([summarize_diff(get_diff(file)) for file in modified_files])
def summarize_deleted():
deleted_files = get_diff(name_only=True, diff_filter="D").splitlines()
return (
f"This change deletes files {', '.join(deleted_files)}" if deleted_files else ""
)
def summarize_other():
other_changes = get_diff(diff_filter="CRTUXB")
return summarize_diff(other_changes) if other_changes else ""
def commit(message):
subprocess.run(["git", "commit", "--message", message, "--edit"]).check_returncode()
if __name__ == "__main__":
diff = get_diff()
if not diff:
print("Nothing to commit")
elif len(diff) < 11900:
commit_message = generate_commit_message(summarize_diff(diff))
commit(commit_message)
else:
summaries = (
summarize_added_modified()
+ "\n\n"
+ summarize_deleted()
+ "\n\n"
+ summarize_other()
)
commit_message = generate_commit_message(summaries)
commit(commit_message)
| [
"Generate a succinct summary of the following code changes:",
"Generate a short commit message from this:"
] |
2024-01-10 | dataelement/bisheng-unstructured | src~bisheng_unstructured~documents~pdf_parser~blob.py | """Schema for Blobs and Blob Loaders.
The goal is to facilitate decoupling of content loading from content parsing code.
In addition, content loading code should provide a lazy loading interface by default.
Notice the concept is from langchain.
"""
from __future__ import annotations
import contextlib
import mimetypes
from abc import ABC, abstractmethod
from io import BufferedReader, BytesIO
from pathlib import PurePath
from typing import Any, Generator, Iterable, Mapping, Optional, Union
from pydantic import BaseModel, root_validator
PathLike = Union[str, PurePath]
class Blob(BaseModel):
"""A blob is used to represent raw data by either reference or value.
Provides an interface to materialize the blob in different representations, and
help to decouple the development of data loaders from the downstream parsing of
the raw data.
Inspired by: https://developer.mozilla.org/en-US/docs/Web/API/Blob
"""
data: Union[bytes, str, None] # Raw data
mimetype: Optional[str] = None # Not to be confused with a file extension
encoding: str = "utf-8" # Use utf-8 as default encoding, if decoding to string
# Location where the original content was found
# Represent location on the local file system
# Useful for situations where downstream code assumes it must work with file paths
# rather than in-memory content.
path: Optional[PathLike] = None
class Config:
arbitrary_types_allowed = True
frozen = True
@property
def source(self) -> Optional[str]:
"""The source location of the blob as string if known otherwise none."""
return str(self.path) if self.path else None
@root_validator(pre=True)
def check_blob_is_valid(cls, values: Mapping[str, Any]) -> Mapping[str, Any]:
"""Verify that either data or path is provided."""
if "data" not in values and "path" not in values:
raise ValueError("Either data or path must be provided")
return values
def as_string(self) -> str:
"""Read data as a string."""
if self.data is None and self.path:
with open(str(self.path), "r", encoding=self.encoding) as f:
return f.read()
elif isinstance(self.data, bytes):
return self.data.decode(self.encoding)
elif isinstance(self.data, str):
return self.data
else:
raise ValueError(f"Unable to get string for blob {self}")
def as_bytes(self) -> bytes:
"""Read data as bytes."""
if isinstance(self.data, bytes):
return self.data
elif isinstance(self.data, str):
return self.data.encode(self.encoding)
elif self.data is None and self.path:
with open(str(self.path), "rb") as f:
return f.read()
else:
raise ValueError(f"Unable to get bytes for blob {self}")
@contextlib.contextmanager
def as_bytes_io(self) -> Generator[Union[BytesIO, BufferedReader], None, None]:
"""Read data as a byte stream."""
if isinstance(self.data, bytes):
yield BytesIO(self.data)
elif self.data is None and self.path:
with open(str(self.path), "rb") as f:
yield f
else:
raise NotImplementedError(f"Unable to convert blob {self}")
@classmethod
def from_path(
cls,
path: PathLike,
*,
encoding: str = "utf-8",
mime_type: Optional[str] = None,
guess_type: bool = True,
) -> Blob:
"""Load the blob from a path like object.
Args:
path: path like object to file to be read
encoding: Encoding to use if decoding the bytes into a string
mime_type: if provided, will be set as the mime-type of the data
guess_type: If True, the mimetype will be guessed from the file extension,
if a mime-type was not provided
Returns:
Blob instance
"""
if mime_type is None and guess_type:
_mimetype = mimetypes.guess_type(path)[0] if guess_type else None
else:
_mimetype = mime_type
# We do not load the data immediately, instead we treat the blob as a
# reference to the underlying data.
return cls(data=None, mimetype=_mimetype, encoding=encoding, path=path)
@classmethod
def from_data(
cls,
data: Union[str, bytes],
*,
encoding: str = "utf-8",
mime_type: Optional[str] = None,
path: Optional[str] = None,
) -> Blob:
"""Initialize the blob from in-memory data.
Args:
data: the in-memory data associated with the blob
encoding: Encoding to use if decoding the bytes into a string
mime_type: if provided, will be set as the mime-type of the data
path: if provided, will be set as the source from which the data came
Returns:
Blob instance
"""
return cls(data=data, mimetype=mime_type, encoding=encoding, path=path)
def __repr__(self) -> str:
"""Define the blob representation."""
str_repr = f"Blob {id(self)}"
if self.source:
str_repr += f" {self.source}"
return str_repr
class BlobLoader(ABC):
"""Abstract interface for blob loaders implementation.
Implementer should be able to load raw content from a storage system according
to some criteria and return the raw content lazily as a stream of blobs.
"""
@abstractmethod
def yield_blobs(
self,
) -> Iterable[Blob]:
"""A lazy loader for raw data represented by LangChain's Blob object.
Returns:
A generator over blobs
"""
| [] |
2024-01-10 | drew-wks/ASK | ASK_inference.py |
'''import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file
'''
from langchain.embeddings import OpenAIEmbeddings
config = {
"splitter_type": "CharacterTextSplitter",
"chunk_size": 2000,
"chunk_overlap": 200,
"length_function" : len,
"separators" : ["}"], #[" ", ",", "\n"]
"embedding": OpenAIEmbeddings(), # includes a pull of the open api key
"embedding_dims": 1536,
"search_type": "mmr",
"k": 5,
'fetch_k': 20, # fetch 30 docs then select 4
'lambda_mult': .7, # 0= max diversity, 1 is min. default is 0.5
"score_threshold": 0.5,
"model": "gpt-3.5-turbo-16k",
"temperature": 0.7,
"chain_type": "stuff",
}
#CONFIG: qdrant
qdrant_collection_name = "ASK_vectorstore"
qdrant_path = "/tmp/local_qdrant" # Only required for local instance /private/tmp/local_qdrant
#-----------------------------------
from langchain.chat_models import ChatOpenAI
from qdrant_client import QdrantClient
from langchain.vectorstores import Qdrant
from langchain.chains import RetrievalQA, StuffDocumentsChain, LLMChain
from langchain.prompts import PromptTemplate, ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate
import tiktoken
import pickle
import streamlit as st
import os
import openai
import re
import pandas as pd
import datetime
llm=ChatOpenAI(model=config["model"], temperature=config["temperature"]) #keep outside the function so it's accessible elsewhere in this notebook
query = []
def qdrant_connect_local():
print("attempting to assign client")
if 'client' in globals():
return globals()['client'] # Return the existing client
client = QdrantClient(path=qdrant_path) # Only required for a local instance
return client
def qdrant_connect_cloud(api_key, url):
print("attempting to assign client")
if 'client' in globals():
return globals()['client'] # Return the existing client
client = QdrantClient(
url=url,
prefer_grpc=True,
api_key=api_key,
)
return client
def create_langchain_qdrant(client):
'''create a langchain vectorstore object'''
qdrant = Qdrant(
client=client,
collection_name=qdrant_collection_name,
embeddings=config["embedding"]
)
return qdrant
def init_retriever_and_generator(qdrant):
'''initialize a document retriever and response generator'''
retriever = qdrant.as_retriever(
search_type=config["search_type"],
search_kwargs={'k': config["k"], "fetch_k": config["fetch_k"], "lambda_mult": config["lambda_mult"], "filter": None}, # filter documents by metadata
)
return retriever
# openai.api_key = os.environ['OPENAI_API_KEY']
openai.api_key = st.secrets["OPENAI_API_KEY"] # Use this version for streamlit
def query_maker(user_question):
# Define the system message
system_message = "Each time a term in the json list appears in the question, add the additional info to the end of the question. DO NOT ANSWER THE QUESTION. Return the new question as your response. DO NOT REMOVE ANY PART OF THE ORIGINAL QUESTION. DO NOT ANSWER THE QUESTION.\n here's an example. \nQuestion: how do I get a vessel examiner certification? \nYour response: how do I get a vessel examiner certification? Certification includes information about initial qualification."
json_list = """[
{
"term": "Certification",
"additional info": "Certification includes information about initial qualification."
},
{
"term": "Currency",
"additional info": "See ALAUX 002/23 2023 National Workshops, AUX-PL-001(A) RISK MANAGEMENT TRAINING REQUIREMENTS FOR THE COAST GUARD AUXILIARY, CG-BSX Policy Letter 19-02 CHANGES TO AUXILIARY INCIDENT COMMAND SYSTEM (ICS) CORE TRAINING."
},
{
"term": "Current",
"additional info": "See ALAUX 002/23 2023 National Workshops, AUX-PL-001(A) RISK MANAGEMENT TRAINING REQUIREMENTS FOR THE COAST GUARD AUXILIARY, CG-BSX Policy Letter 19-02 CHANGES TO AUXILIARY INCIDENT COMMAND SYSTEM (ICS) CORE TRAINING."
},
{
"term": "Boat crew currency, current in boat crew",
"additional info": "See ALAUX 048/22, ALAUX 002/23 2023 National Workshops, CG-BSX Policy Letter 19-02 CHANGES TO AUXILIARY INCIDENT COMMAND SYSTEM (ICS) CORE TRAINING."
},
{
"term": "Air crew",
"additional info": "Air crew is a position in the aviation program."
},
{
"term": "Pilot",
"additional info": "Pilot is a position in the aviation program."
},
{
"term": "Coxswain",
"additional info": "Coxswain is a position in the boat crew program. It is a type of Surface Operations."
},
{
"term": "Co-pilot",
"additional info": "Co-pilot is a type of pilot in the aviation program."
}
]
"""
# Construct the user message
user_message = f"User question: {user_question}```list: {json_list}```"
# Construct the messages for the API call
messages = [
{'role': 'system', 'content': system_message},
{'role': 'user', 'content': user_message},
]
response = openai.ChatCompletion.create(
model=config["model"],
messages=messages,
temperature=config["temperature"],
max_tokens=2000,
)
return response.choices[0].message['content'] if response.choices else None
system_message_prompt_template = SystemMessagePromptTemplate(
prompt=PromptTemplate(
input_variables=['context'],
template="Use the following pieces of context to answer the users question. INCLUDES ALL OF THE DETAILS YOU CAN IN YOUR RESPONSE, INDLUDING REQUIREMENTS AND REGULATIONS. If the question is about qualification, certification or currency, then follow these steps: 1. Determine the name of the qualification or certification. 2. Determine whether the question is about initial qualification or currency maintenance. Each have different requirements. 3. Determine what program the qualification or certification belongs to, such as Boat Crew program or Aviation program. 4. Determine any requirements that apply to all positions and certifications in that program as well as the specific requirements for the certification. For example, a Coxswain is a certification in the boat crew program. The Boat Crew program has requirements such as annual surface operations workshop. Additionally, coxswain has the requirement to complete a navigation test. Likewise, A Co-Pilot is a certification in the Aviation program. The Aviation program has requirements for all flight crewmembers that apply to Co-Pilot and First Pilot. First Pilot and Co-Pilot are Pilot flight crew positions, so they have Pilot requirements apply to First Pilot and Co-Pilot. Co-Pilot and First Pilot may have additional requirements specific to their certification. Risk Management Team Coordination Training (RM-TCT) is an annual currency requirement for all certifications in boat crew program, surface operations, air, telecommunications and others. National workshops are annual program requirements in years in which the workshop is specified. All certifications and officer positions require an Auxiliarist be current in Auxiliary Core Training (AUXCT). Most certifications require completion of Introduction to Risk Management course. Crewmember is an Auxiliary certification unless the user states otherwise. \nIf you don't know the answer, just say I don't know, don't try to make up an answer. \n----------------\n{context}"
)
)
def rag(query, retriever):
'''run a RAG completion'''
llm_chain = LLMChain(
prompt=ChatPromptTemplate(input_variables=['context', 'question'], messages=[system_message_prompt_template, HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['question'], template='{question}'))]),
llm=llm,
)
rag_instance = RetrievalQA(
combine_documents_chain=StuffDocumentsChain(
llm_chain=llm_chain, document_variable_name='context'),
return_source_documents=True,
retriever=retriever
)
response = rag_instance({"query": query})
return response
def rag_old1(query, retriever):
'''run a RAG completion'''
rag_instance = RetrievalQA.from_chain_type(
llm=llm,
chain_type=config["chain_type"],
retriever=retriever,
return_source_documents=True,
)
response = rag_instance({"query": query})
return response
def rag_dummy(query, retriever):
'''returns a dummy canned response'''
with open("dummy_response.pkl", "rb") as file:
dummy_response = pickle.load(file)
return dummy_response
def create_short_source_list(response):
'''Extracts a list of sources with no description
The dictionary has three elements (query, response, and source_documents).
Inside the third is a list with a custom object Document
associated with the key 'source_documents'
'''
markdown_list = []
for i, doc in enumerate(response['source_documents'], start=1):
page_content = doc.page_content
source = doc.metadata['source']
short_source = source.split('/')[-1].split('.')[0]
page = doc.metadata['page']
markdown_list.append(f"*{short_source}*, page {page}\n")
short_source_list = '\n'.join(markdown_list)
return short_source_list
def create_long_source_list(response):
'''Extracts a list of sources along with full source
response is a dictionary with three keys:
dict_keys(['query', 'result', 'source_documents'])
'source_documents' is a list with a custom object Document
'''
markdown_list = []
for i, doc in enumerate(response['source_documents'], start=1):
page_content = doc.page_content
source = doc.metadata['source']
short_source = source.split('/')[-1].split('.')[0]
page = doc.metadata['page']
markdown_list.append(f"**Reference {i}:** *{short_source}*, page {page} {page_content}\n")
long_source_list = '\n'.join(markdown_list)
return long_source_list
def count_tokens(response):
''' counts the tokens from the response'''
encoding = tiktoken.encoding_for_model(config["model"])
query_tokens = encoding.encode(response['query'])
query_length = len(query_tokens)
source_tokens = encoding.encode(str(response['source_documents']))
source_length = len(source_tokens)
result_tokens = encoding.encode(response['result'])
result_length = len(result_tokens)
tokens = encoding.encode(str(response))
tot_tokens = len(tokens)
return query_length, source_length, result_length, tot_tokens
import requests
def get_openai_api_status():
components_url = 'https://status.openai.com/api/v2/components.json'
status_message = ''
try:
response = requests.get(components_url)
# Raises an HTTPError if the HTTP request returned an unsuccessful status code
response.raise_for_status()
# Parse the JSON response
components_info = response.json()
components = components_info.get('components', [])
# Find the component that represents the API
api_component = next(
(component for component in components if component.get('name', '').lower() == 'api'), None)
if api_component:
# Set the status message to the status of the API component
status_message = api_component.get('status', '')
else:
status_message = 'API component not found'
except requests.exceptions.HTTPError as http_err:
status_message = f'HTTP error occurred: {repr(http_err)}'
except Exception as err:
status_message = f'Other error occurred: {repr(err)}'
return status_message
def get_library_list_excel_and_date():
directory_path = 'pages/library/'
files_in_directory = os.listdir(directory_path)
excel_files = [file for file in files_in_directory if re.match(r'library_document_list.*\.xlsx$', file)]
if not excel_files:
st.error("There's no Excel file in the directory.")
return None, None
excel_files_with_time = [(file, os.path.getmtime(os.path.join(directory_path, file))) for file in excel_files]
excel_files_with_time.sort(key=lambda x: x[1], reverse=True)
most_recent_file, modification_time = excel_files_with_time[0]
df = pd.read_excel(os.path.join(directory_path, most_recent_file))
last_update_date = datetime.datetime.fromtimestamp(modification_time).strftime('%d %B %Y')
return df, last_update_date
# Example usage in another script
if __name__ == "__main__":
# Replace 'your_query' with the actual query you want to pass to rag
query = 'your_query'
response = rag(query, retriever) #thisn is slightly different from the notebook
# Call other functions to process the response
short_source_list = create_short_source_list(response)
long_source_list = create_long_source_list(response)
source_length, source_tokens, tot_tokens = count_tokens(response)
| [
"question",
"{question}",
"context",
"Use the following pieces of context to answer the users question. INCLUDES ALL OF THE DETAILS YOU CAN IN YOUR RESPONSE, INDLUDING REQUIREMENTS AND REGULATIONS. If the question is about qualification, certification or currency, then follow these steps: 1. Determine the name of the qualification or certification. 2. Determine whether the question is about initial qualification or currency maintenance. Each have different requirements. 3. Determine what program the qualification or certification belongs to, such as Boat Crew program or Aviation program. 4. Determine any requirements that apply to all positions and certifications in that program as well as the specific requirements for the certification. For example, a Coxswain is a certification in the boat crew program. The Boat Crew program has requirements such as annual surface operations workshop. Additionally, coxswain has the requirement to complete a navigation test. Likewise, A Co-Pilot is a certification in the Aviation program. The Aviation program has requirements for all flight crewmembers that apply to Co-Pilot and First Pilot. First Pilot and Co-Pilot are Pilot flight crew positions, so they have Pilot requirements apply to First Pilot and Co-Pilot. Co-Pilot and First Pilot may have additional requirements specific to their certification. Risk Management Team Coordination Training (RM-TCT) is an annual currency requirement for all certifications in boat crew program, surface operations, air, telecommunications and others. National workshops are annual program requirements in years in which the workshop is specified. All certifications and officer positions require an Auxiliarist be current in Auxiliary Core Training (AUXCT). Most certifications require completion of Introduction to Risk Management course. Crewmember is an Auxiliary certification unless the user states otherwise. \nIf you don't know the answer, just say I don't know, don't try to make up an answer. \n----------------\n{context}"
] |
2024-01-10 | hellerstern/changeblock-backend | Summary_helper~summary_func.py | import openai
import os
from transformers import AutoTokenizer
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def summary(text):
SUMMARY_TEMPLATE = "Summarize the following text: {text}"
prompt = SUMMARY_TEMPLATE.format(text=text)
response = openai.Completion.create(
model="text-davinci-003",
prompt= "Summarize the following \n" + str(text),
temperature=0.7,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response.choices[0].text
def summarize(text, size=2800, mean_tokens=2000):
# split text into many parts
tokenizer = AutoTokenizer.from_pretrained('gpt2')
tokens = tokenizer.encode(text)
parts = [tokenizer.decode(tokens[i:i+size]) for i in range(0, len(tokens), size)]
print('Number of parts:', len(parts))
# call OpenAI API for each part
text_sum = [summary(part) for part in parts]
text_sum = '\n'.join(text_sum)
if len(tokenizer.encode(text_sum)) > mean_tokens:
summarize(text_sum, size)
else:
return text_sum | [
"Summarize the following text: PLACEHOLDER",
"Summarize the following text: {text}",
"Summarize the following \nPLACEHOLDER"
] |
2024-01-10 | adismort14/CS550-project | final%20evaluation~backend.py | from flask import Flask, render_template, jsonify, request, send_file
import tensorflow as tf
import io
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
import pinecone
from dotenv import load_dotenv
import os
from reportlab.pdfgen import canvas
from weasyprint import HTML
from flask_cors import CORS
import base64
app = Flask(__name__)
CORS(app, resources={r"/predict": {"origins": "http://localhost:3000"}})
load_dotenv()
model = tf.keras.models.load_model('model_DenseNet121_Full_Sample.h5')
loader = PyPDFLoader("disease_compendium.pdf")
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100,
length_function=len,
add_start_index=True,
)
texts = text_splitter.split_documents(data)
embeddings = OpenAIEmbeddings(openai_api_key=os.getenv('OPENAI_API_KEY'))
pinecone.init(api_key='9f6644e9-2ab1-46a5-8d35-d5ade0ee39bf', environment='gcp-starter')
index_name = pinecone.Index('lung-disease')
vectordb = Pinecone.from_documents(texts, embeddings, index_name='lung-disease')
retriever = vectordb.as_retriever()
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, memory=memory)
def process_user_input(user_input):
if(len(user_input)==0):
query='''
'''
query ='''The array provided symbolizes if the user has potentially a chest selected medically condition. The array shows 1 if the user has the corresponding disease and 0 otherwise.
The order of diseases are No Finding, Enlarged Cardiomediastinum,Cardiomegaly,Lung Opacity,Lung Lesion,Edema,Consolidation,Pneumonia,Atelectasis,Pneumothorax,Pleural Effusion,Pleural Other,Fracture, Support Devices. Based on the diseases from the array and the symptoms the user is showing, provide all the diseases and list down their symptoms, what are possible lifestyle changes and what can be the possible treatments for this.
The order of diseases are No Finding, Enlarged Cardiomediastinum,Cardiomegaly,Lung Opacity,Lung Lesion,Edema,Consolidation,Pneumonia,Atelectasis,Pneumothorax,Pleural Effusion,Pleural Other,Fracture, Support Devices. Based on the diseases from the array and the symptoms the user is showing, provide all the diseases and list down their symptoms, what are possible lifestyle changes and what can be the possible treatments for this.
The following are some of the symptoms the user is facing: ''' + user_input
result = chain.run({'question': query})
return result
def generate_pdf_content(result):
buffer = io.BytesIO()
html_content = f"<html><body>{result}</body></html>"
HTML(string=html_content).write_pdf(buffer)
buffer.seek(0)
pdf_content = buffer.read()
base64_pdf_content = base64.b64encode(pdf_content).decode('utf-8')
return base64_pdf_content
def generate_pdf(result, filename):
buffer = io.BytesIO()
html_content = f"<html><body>{result}</body></html>"
HTML(string=html_content).write_pdf(buffer)
buffer.seek(0)
with open(filename, 'wb') as f:
f.write(buffer.read())
def preprocess_image(image):
image = tf.image.grayscale_to_rgb(image)
image = tf.image.resize(image, [224, 224])
image_array = tf.image.convert_image_dtype(image, dtype=tf.uint8)
image_array = tf.image.convert_image_dtype(image, dtype=tf.uint8)
return image_array
def predict_label(image_data):
image = tf.image.decode_jpeg(image_data)
preprocessed_image = preprocess_image(image)
prediction = model.predict(tf.expand_dims(preprocessed_image, axis=0))[0]
prediction_list = prediction.tolist()
return prediction_list
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
file = request.files['file']
image_data = file.read()
p = predict_label(image_data)
print("Predictions:", p)
result = process_user_input(str(p))
print(result)
pdf_content = generate_pdf_content(result)
# pdf_content = "JVBERi0xLjcKJfCflqQKNSAwIG9iago8PC9GaWx0ZXIgL0ZsYXRlRGVjb2RlL0xlbmd0aCAxMjQzPj4Kc3RyZWFtCnjapVjLrts2EN37K/QDZfgmBRgGGqBdBLgBCnhXdCELcVZZtP1/IBI1Qx5SlH2dC0P32hQf8zxnhmqQy+c3tfyJVokYx+DtMP84/XuSIrj0Nn9Jw9snjQ//fT99mpSQw/f/T5+vJ8WbRTOMQWgXotLD9cfp09c/335/exuUH673099nKbWT0lopnV/+x+UJUkqz/NbLo+j7MmZv2/v0e30czRmX8Xlbh+vXsXW9HWneOl/SWYHe8xn3/jmW57FsIOf6P62R9Fvt963ksZsMee/lTEfr7ERjnuYp+h63NXm9avQLRQ6WLT2a1s+gb5Ll8s9w/VK5RykrFlc7n/yzesTSDuvBjiRNO/m+9bIl/KZRmnerpcqWsrDfRBrZYj32bpoTyUKurEt7rmeMl/F8GZfIOpOLySVdt75yMB+ICrsSCh8ShOMmjRuKNbsJxPFl7x0fGS386IwqPqLoTtFvH6hOp3DkJbVJtfReFZXTXpBhWXVS2c1wjgetmsjkOGjNyVmY5owgj22ifyxjaa+57J+znrJOJYQAF5gWKngDCuaUMhzcH00dJ4VVVpbUcVNJzJwCryb6DOO0lsENQcniWRiVuM7RM8P5PI+slCyhwTqtm5dxeQNYiHT2rdnXFLen/R3Jocmqa3jMEJoc9HPZjzMxr/NNqLXjRBRLFu6946NYEidC0ljSkgMzgAUjnAJWcJAkHJSrNRyBXKaWAMm0k65YhBMxx9attgqDZ94H6ZCTh/HJ1cnK3sh7jTVgJ9yLja4trXS8rIiGjamtzzIwWEski7HWYbXnNq/jqehEdKqhIAZHji8kXST1nOUAC0jAOdY+mJe5eJjfl6fO0hgTdejkiy/5Z78d5ClBYpozQ1GCcq9y3ihaNUAwFBwb8u2tr6URyzsgl1zueLBkaDwSDjSIB6Sg6/Iqo10EIpsB4FWntAKUyzgOKIRIkTl/btbPhQQrC9oaFTPpkczZ65xLhB8VtYNuFhC0nNWxvlZCxxE5hBGCs/UOVJxo+GL0+WLMRnitwsyomR7acAtQDfjnTG4JMHbh2TC9MzUY5jQFxsaxbERmdt8BLknzHqjdosAjcSYQh+f5h0VEx2FmFFIGoBW0KMNtG7o90Hq5MCBwcaZjuWcdk4cUmB6kKVOfgbVIYV35Llqel0egYxLZRdB+BjJ7FUoznGGxPUHp2gZHx2/Oi6Cxz8m1bWjKvfnYlrwmhU4/IisGl33ke7IFe6qvb9PovioeF8OyRN+viKjr1rSqHWRTdR4ZFgKrOt4fpF6wwtqqDYKKjjM7ubSpojoZflHhfFFRyPOvZe/uruBdTcTeUC912FPBQ3t/jArvQgRTiD4XbdAd7gqAue/IgiIdp41aKF81SQfZn4uc+74Xzc6FWyIscHbUHyGvH1m1RyNHpQqWEk3P3Lv9KYEnpWb0m6CIxbYUqGp3LUGlDvfrWb7YeNZCtNrOTVnux/deMnIUMVbNEl54THBy0xp2GeQd+ZTj3kIc+fp3jr07RItrWuHYeEQC8GDOOdjjSbFXXfz0onCs66fqzg9bcUu4EfZ3eei57P2q8ep4SQfhZdUoxXJfkpnzRbitGJjXwa2qAwth/D69WnmSjxYvImaoTvUBqR90rA8C1YXmuis0XWlK0c3Qf1xPf/HnJ3KUut0KZW5kc3RyZWFtCmVuZG9iago3IDAgb2JqCjw8L0xlbmd0aDEgNTg1Ni9GaWx0ZXIgL0ZsYXRlRGVjb2RlL0xlbmd0aCA0MDQ0Pj4Kc3RyZWFtCnjarVgJdFPXmb73PS22ZUmWtduyJVl6khdJlvS0WN5tvOEdbGwDBuMF24CNbSAYMBAXwrCEsBdSQliSkKYwjWlKktI0aSEwpUmakEyhSTppmhM6nRxIz9DSJWP8PP99ksFwoDNzzrx73rv7/bfv/+99F2GEUCwaRTQqLC8pLcOH8GGENDuhdXZdQ6Z3MPZcNEK4AuqLOvvbB6liug8h2gD1J3raVw4iHYJ+zXqox/X0re1u39IQh5CgFaqtvYvbu25dKdFC33vwBnqhQfqCQALrCaBu7e1ftWYdIy6A+kvwrugb6GxvSW0l6x+H/p/0t68ZRO1oPvSlQt20vL1/senjnCUIqX4Ebc8NDqxcNWlFXUC/lfQjIouQ2t3zz5v+3CbP/UtUYhQiz3NfJl0g+Rd7P709+Q1XJnILd0E1mh9PHsjFZq4UNYtCk99MukXuuz1TTyvfsgDNAz1FZjzw0LQf70FCFCU8LGRhABPOQZJuKh4LKUpECwVCiiaS09MnNtbMMKFC4P64cCdXhlmxGb9RiPDk5CQMPCCs5iUTiELYMDWDQo9+8BCaRZ1CjfC6po1fHsn3ov/HR9iEUh7VB/TZR/UJVt4/T/Alyv+/0qafQjMFaHIc8jJQaQnk1UCzDsp58EqpEMrl10ZIAeU8UQgpoBwLbynM+4bMgfFSOgl1Qb8K6hQZK/w5kkKeCD4xpWpiLRV8MZ8L0CDkOhQHLVFgmTTkAE0Xo5moHjWiJWgtOk4sBz32+3ra0TLSM/nlQ1LnQ/D0jx89aKyTT9sgHf1fplvTEzbflzoi6cAj002KoeZRR6krtIzeTX8u0EDqE+wVSoUtwm3Cz0Qm0QLRSdGHYom4WLxT/LsoF0g1i7bgBOEyok0lbfP7AqxXo1aJ6aMBrc/pzEkIQH/qSEZhdo6b2ct9AjMauUpqPfinErCsttltlD8OBdUiEaVWaZMpav2hxXuOYO9fR47WmhMqN3ADTHX3XrzjVziAJ5enl9zkDl66Nrbju4dhJRes1BReSenXaDXx6jgk9gcC8X6f3UW5nl68+wj3wd9GjtWY9VXrhV3pVd37uOGr3DscXs6U3sDLLl09s+PFw8TXl3On8dPoMtKSlQIBmG+zpIhFlpS7EomW9wxFi8USJl7lya4KFPfs5k47UnbXK6XRquhs1lO2sq3nB7DS3snreABdQBADGX5eeA2MMguLXK6iogv815VZCOgCHxH8O/h/MspAWcAGiAATRBazn/UGA34F4cLiN3u1GtLOaDSsl/BGWFOQMhShLBLTrzxV1j76+e8nRtk5jDbJXsNSlS90Hjy6fmKEaQvt21974cdd9auGXn2r6cLu/JZE6mxyceuWxefmMAHLCrpvo9nB6KyvD3efkIvFBZtqhl/SjA8kPr+mbl+jQAgSgZdTa4BLI0iknsZamDk10ZNaodIC8yy1ZuINd6NNJ40xOtxuqtTTYNNLY0wZboZhPKZ1dF+PWR+v48t3DvBl8D+ihQx+fQfogKzEsuoHVaCJqNKuuSe4GL9gsNX4Jt5gmxhVIkiNb7320Z7fXPasKPLPTuo9VPFEI1tPjXCPjRodDJNlXEX3kVLVK+tevCIrj4k5MdpyqEoJEkJsEpwJS4iVFhAMaD7AB5FSJLYoBSfkNonS2NP400RbXebEeXeTVfN8W6qvUmyLE1ZzFxqt2cHx2xuM6QzjM60QxMqUfa04H6ScOfk1vZ0eQ16UB3oURbAVDASCYYOK1FrVXbwRZYJOiazBAPgGEVwBc0RqFTRR5U9ZA3ltI8lp795sbihgbFSmjck8c2xdbY4hPkYrj4tV5w52e7LxIUddSVNW9RP9Cv2mpTM8JWuarNu7U1Ic2S6vz9m0J81YnLGF+8XmHJVYmpt1sGQ/XpCrdywKVbQhanJ88jp9DnxLg6yglYhXhxkJK9/OsArFlDWIADhny+GnPnruydP1J5vkJp0hXYaVTrY/NP/ZZ7v8/lTqr+dufXj726PZ2fSrRyoS4iyDE6kT/+ZlL//0zJuJKrBCGVCsBA2ZgR44QQrl9yE24kJgkrBH8goAndCVzMebj/wHxme3vuxx5CQrJBZLflferBPbO2qDPtz66ttY9PnHWLa7xpZpU682Jld2nHhhfIZrLYn4JZPXBUKQzYicxBZhtceD2v33RAsrXyu0+BUu6i5l6uczRisP/u7vb6+tAxETMqRY4ZSbNYlOCfefLlFuZ2ZL6fwzffN7yvLGL13C5TXfe5aXdPyzE+UGhWXoF/jjksFQXe/ld35N+KgGiRvoM7DnJEHcEWmJMoPaiOzxRHbGzKMxRfQp7uraOm+L06h+5+mTN269dvhfJrbil4Rx+s5Aw2Yq571VqzrXqLZ/gfEnN7D43VPZLdaswm+RyFYH29s64U6IMPf5VoBg2s8C2ni4hZ2L1zGATM2q8YsGJr9h4rO01GL9K6+0vDq0pCXbl6xlK41Gm6vQcJOunnhxNMVhtaaWdFDzKnK3v/VYiTMr2W/uVyo9PdeKK8iumseV0b8Bi+bADjkX6Nsi6AbJtDycRBZLxL48tLV8igDNzrsHJH4WToEB2jDa7DYsml6Dur9x3i+Pb150IUNGi4S0PGM46+LJknKH0ew2DL6ft2Bg6ZHx81uqJAq/uM2XEcLqyq4SX311RynL/T3Tnd315tnTrO/wF7g2bf/cbRcLhaJobUKMUFQxOPqayhZSKUxiAS2Mlg7OHurc1+wN6HRMcXSn0WO0LKS2rl53tLl4xbpj84rvfIttYdzW/McrfBqNQES0LwU1/BmQFiDaJ6oOOzYIGTEDH+PCUZyHHLQCvKcaAYm4ZmBTUe1golIW4y7k8tWF3hjaWOL2LK1Uh8q47DyLSic3JqgzZTheuGuiY11pU2vhKe4nzeCAVqvdFleLSw4uzPTVcYaFLqPVqozJaqLzwqgEBMIJihIDfxIShfG0/Up5l5tAOApHuElLz8lJT8/N2aj3FHEzZrgSo8XJCYZUGVYJd5GO3PT0HM48YWoKAfmE3Dm4/dsOk15uHSTaUECcjQVqQaINYlvwNztsIRBZxUre9oQiv/1iQl8b1kZwujrqvqqMjTLb8K7Z/UU3bnSkuK36fG6GLTGV+4PeVcO5yixqiVxmSlCnK3CccNedwasl8bGxqiTKZKJcOZ9wvx4xZ8pirFasVmpZ3MNdmZulw1arQqI1z6KLj5UnKiw8rxClKTnwqub9ZroupjgZ0fvKuYICV4LMqEtIVWCFcNd4UVNWEi83XfhMOa9jXmqRG7ygmcTRYBgED4FCRE7eBcVi7T2ad5vF0zByn1VYXN8V7+xlm9are3ZVzRwya6QxgTwuV5lj1sYIEu1N/mXVFKXOLuM81SGJ0OyoC/gbnHpPFZdT4E3gLWiXY1UGdbNLbkvvaltTVTUnez23usmkAcho4yyKerxj0FXor5BkcFU8jkBjs6HNU5jkCHLqeYFEqzUxZw5eeMhhnrI2nAjpv4HcbGT/eCjyyVFmWuM99bK46sS+qj6TRibxFHM5ykI2RlBUM7xaIiNsq8o8gPoI119fqGrKXc+tbTbqeczL6/DwhqFNXNICTRLwVd6FG09WJPBcUaiU7GvAlZzEXOyNnLj4aBMIaEn0U8VH4gqFrmxctvqDxz9Y17PhvQb/suJjm9o3Limnx45uHRu5M3ryye9v/Ga4qODo+svcb4+/fXvnIlgf/j4r6R/D+nYUAvkZVj0VYMMxzT5lQVYzzc2FYR2Qk0bE0hROsJXvrtvROrRt8FRlINWrDVVxJn3QrlTHWZJ1DPZFy/obuvJntRa2uDOtdGjFtbXtfU/86utnHlfLndxXC9lkhsEaiaeL7pjr1ske504NWLJbarvPfTRUq4vnd0GuUoCA06TI3nAPiMBXZFNEPFiDdCRG8XtggF6mYys5rzIrSaWbv23mlg+x6u3QIlu2f7O9q2Dw+PMrc1rpsfHuFq+BYeIkIcBJX92f3v0KMyaTwTqRiV8Gc711/tzP2EiEpF4HLlLJ30Bgar+fQrv2bki8LwhUr1wbrPBZLc3qeLXTrZQW53MZZSn6GKHUkmC0x2A1Pfb++zMc9kCpKm0hN7PaDjCwangcdx7PMxAoYNQ1eZ26CpQ9RHpLRD4IQtqpIwfQsijYqSOO1T51NiPgpfaYbcOtZU0mY9u+d998rLHPrNZKzWbD0Y7S5nbut07nMyOBGlYRFx9Lj3GX9y+tdGalprnKO5/b8J3kmARcvnPXrFDpwj3Zoeahp7VymQ74UU3eonIF5+HPFPhh1XAC5SmxvClsZLsOkO0QV167xqaa8xV2y2iJqyV9b3ClU5smOM/9a9nEy3Pz01I7Otm2TqrXrFlSYVsM61KA+An6AGKmrBw+1kwtC0oV+80RYgoSkOlOONIY7TLuj87V60trhhyGYAUumluQ0V8VmkcfmLh6jD/MXBgtnrtzFH+nyJuImYlnRusD1ZS4NkgxJOYBza+BpgnONeQXgWhWqeTRbSM/DXCWFWMLJicOuwKPGexp6qvXtFGSFB/O8KksBu6NNO6cJtWo8NIHGJvJ4uZElDQrSRYtlzCMQJFcduePtDCQGRcdxWNo8rrwLFBz8NREYWLkXGAPk5oiHqljCx2mLcWjIPnFSz6dXZOLz1Ykq6KunFfZQ9jcnMa9n/Z77i8M92lSVi7wIEg2GB0Tt/D3t+ZqZTTD0BAVVeqJP+HxgEmZTDGMdMmdG9TMiddpaiYrBZ7AivQfgKcsnqcpaPFb3pQCYM+b2uJAMXb+iEnqxMpBoqhEPJZmtkg0RVUVKTYc8Fg9czZcb6wIcfVOvbLwn/aXOJ3cVWuibd7PXq6clQdcGrQ6b1xKb29ngjoJeNSlrPgu96O1HtpqVcm02gUXL85X6OyU1SpUJQ1P3ukLkigNZ7TbwKf3UZbiTSWa9mtCcBLENl6/sfi02uk0f/5LhTgqJQOnM6m6aD33ZGBsVk510G0OpcYkl1uLuNflZn2clgUO7Un2Us6L/ystNT5aIgVb6syygjvLt2wrcaSzGnn+3GPUD40uS2wcuZ0R87dxWBAN5aX8PQ0pY/hfXhopU0iGtkXKNFqBDkbKgmljhCgZR0XKIpSCbeh7gEsvckMKQKkR9aLFkNegAbQc3lVoLRrkW2ZAbQWUybcd2pfwI1zQU4T6IJnQbGjrgfmr0Eq+thjyxTB6NXy7YCS5L+rnW02oFvJhftQAtLXDSmR8D3oMVmqHOQ/Sz/4fZpsemJ+NmnjaKyN8mpAfOHBDfDNBdK2B1k7oHYD+AdQNVNIeOd6FfGjNNOph2vco16MGWK/x3j3npJnc0T78Gg9FgZUU5LozcsMWe/fSUhK5aaX5nhjowbAvy/kzE8yAiEViiQMSuYVg4RtEBLMlqBq+teE72/8GeLrCSAplbmRzdHJlYW0KZW5kb2JqCjggMCBvYmoKPDwvRmlsdGVyIC9GbGF0ZURlY29kZS9MZW5ndGggMzc3Pj4Kc3RyZWFtCnjaXZLNaoQwFIX3PkWW08VgjInpgAhlunHRHzrtA2hynQo1SnQWvn1jjkyhwgx8nJyTe8hNz/Vz7fqFpe9+NBdaWNc762keb94Qa+nauyQTzPZm2Sn+m6GZkjSYL+u80FC7bkzKkqUfQZwXv7LDkx1bekjSN2/J9+7KDl/nS+DLbZp+aCC3MJ5UFbPUhaCXZnptBmJptB1rG/R+WY/B83fic52IicgZhjGjpXlqDPnGXSkpefgqVnbhqxJy9p+eS9jaznw3fjsuVDjOuRTVRlJGKrJIqoikc2iP0BRIg2QknkcSHD4BrQNlIALBp+GTLbRHaEjRewom05hMnUAFfAa+EwhaAU1xkMVkHSYzOAkqQAqN9N6ogaZB6F6gu8J9GvdlaCTQKEcjhUYKKXpPQYcCHTjaCrTlyBTIzNFd7d3xDhrvIAkpLTSkaKQIpEikcNwudHz8/ZW3Ndi29b5j5uZ9WK+40nGvto3qHd23fhqnzbX9fgG1O8xCCmVuZHN0cmVhbQplbmRvYmoKMTMgMCBvYmoKPDwvVHlwZSAvT2JqU3RtL04gOS9GaXJzdCA1NC9GaWx0ZXIgL0ZsYXRlRGVjb2RlL0xlbmd0aCA1OTY+PgpzdHJlYW0KeNqNVE1v2zAMve9X8NhgSyT520ARIGmbNRjSBkm2DjB8UG3N1WBbga1gzb8fKSdrUWDrDrL5+Cj6iaQsgIMHfgI+xBwCEFxABCKJIQU/jBFDGKFDQOqnIDx0RNGHy0u2O+4VsLWsVM++6LKHLMJUm5xdmUNrQUynFLXuTHkoVAcXD0r2x3WnkYv4RIwGfshyJa2sTTVkA0F5Bvrm2X7eWmkVIJBiwuldSMo+nbLv948/VWHRh2AtrVVdO4Dtkyx1Ww1gYUiP95L1RTo+OkUskWylSi3n5hkyjjhMw4kXh2EqIAnEJEnSOAroeK3FLT2Ebs9G9ebQFSg7cHjX6ea9FPNaqfKdoNdK6QDXqi86vbemc/BONkjcLVaz1erjTjeqH9+pX+ONaWT7yUUsZKPrI1w4EpAER47YopYVqnVB85OKsSciiOMEklTkbInd0MWsrWoFnM36gkqEDCMRZFM4Nm1/q3T1NFBbq5pvkHBn3JLhROhaeRC/LT1RbHt4tEP3l9fkIMpjc9kr17C/Hg7Dt8cev7Jsfxiah42qdG87POusNI9qxO67UnXU/otliXK1PY7wa/t9rRpSz3EmMMnOfF5er+Qe2DmKPUDmQ+aFPKe5z0TCwfd9WugIz0x8Mnw0oijOIQhwH8WEArIwjNDA4EiIHKIEsgD5kOPlevWmtGTT8uIkB6x9dgKuEWfyvJyOJHX82Rd73tnO8zdTgtf3n0UnH/+Pau/M11YXplSQuPm+aRFQbf9UbXx7motSYsMNXY1McPcvGD4/pKZfiFP0GwelPtUKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PC9UeXBlIC9YUmVmL0luZGV4IFswIDE1XS9XIFsxIDIgMl0vU2l6ZSAxNS9Sb290IDMgMCBSL0luZm8gMiAwIFIvRmlsdGVyIC9GbGF0ZURlY29kZS9MZW5ndGggNTk+PgpzdHJlYW0KeNpjYGD4/5+JgZeBAUQwgggmEMHMyMAPEWNhZDVgYGAU9YdwWUEEG4hgBxEcjOJAvYySBxkYAMQpBFUKZW5kc3RyZWFtCmVuZG9iagpzdGFydHhyZWYKNjU5MwolJUVPRgo="
return jsonify({
'prediction': p,
'pdfcontent': pdf_content
})
@app.route('/output', methods=['GET'])
def output():
pdf_filename = 'output.pdf'
return send_file(pdf_filename, as_attachment=True)
# The following line is removed, as it was unreachable code
# return send_file(pdf_filename, as_attachment=True)
if __name__ == '__main__':
app.run(debug=True)
| [] |
2024-01-10 | elastic/sysgrok | sysgrok.py | #!/usr/bin/env python
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# sysgrok is an experimental tool for performance analysis and optimisation
# using LLMs. Its purpose is to take data from existing profilers and provide
# the user with helpful summaries, advice and direction.
#
# Author: Sean Heelan
# Email: [email protected]
from sgrk.llm import LLMConfig, set_config
from sgrk.commands import (
analyzecmd,
code,
debughost,
explainfunction,
explainprocess,
findfaster,
stacktrace,
topn
)
import argparse
import logging
import os
import sys
import openai
from dotenv import load_dotenv
load_dotenv()
api_type = api_key = api_base = api_version = None
try:
api_type = os.environ["GAI_API_TYPE"]
api_key = os.environ["GAI_API_KEY"]
api_base = os.environ["GAI_API_BASE"]
api_version = os.environ["GAI_API_VERSION"]
except KeyError:
pass
if not api_key or not api_type:
sys.stderr.write("You must set the GAI API type and key\n")
sys.exit(1)
openai.api_key = api_key
openai.api_type = api_type
if api_type == "azure":
if not (api_base and api_version):
sys.stderr.write("Azure requires the API base and version to be set")
sys.exit(1)
openai.api_base = api_base
openai.api_version = api_version
elif api_type == "open_ai":
if api_base or api_version:
sys.stderr.write("You must not to set the GAI_API_BASE or GAI_API_VERSION for the open_ai GAI_API_TYPE")
sys.exit(1)
else:
sys.stderr.write(f"Invalid GAI_API_TYPE value: '{api_type}'. Must be azure or open_ai.")
sys.exit(1)
ascii_name = """
_
___ _ _ ___ __ _ _ __ ___ | | __
/ __| | | / __|/ _` | '__/ _ \| |/ /
\__ \ |_| \__ \ (_| | | | (_) | <
|___/\__, |___/\__, |_| \___/|_|\_\
|___/ |___/
System analysis and optimisation with LLMs
"""
if __name__ == "__main__":
commands = {
analyzecmd.command: analyzecmd,
code.command: code,
explainfunction.command: explainfunction,
explainprocess.command: explainprocess,
debughost.command: debughost,
findfaster.command: findfaster,
stacktrace.command: stacktrace,
topn.command: topn
}
parser = argparse.ArgumentParser(
prog=sys.argv[0],
description=ascii_name,
epilog="",
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument("-d", "--debug", action="store_true", help="Debug output")
parser.add_argument("-e", "--echo-input", action="store_true",
help="""Echo the input provided to sysgrok. Useful when input is piped in
and you want to see what it is""")
parser.add_argument("-c", "--chat", action="store_true",
help="Enable interactive chat after each LLM response")
parser.add_argument("--output-format", type=str, help="Specify the output format for the LLM to use")
parser.add_argument("-m", "--model-or-deployment-id", dest="model", default="gpt-3.5-turbo",
help="""The OpenAI model, or Azure deployment ID, to use.""")
parser.add_argument("--temperature", type=float, default=0, help="ChatGPT temperature. See OpenAI docs.")
parser.add_argument("--max-concurrent-queries", type=int, default=4,
help="Maximum number of parallel queries to OpenAI")
subparsers = parser.add_subparsers(help="The sub-command to execute", dest="sub_command")
for v in commands.values():
v.add_to_command_parser(subparsers)
args = parser.parse_args()
log_format = '%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s'
log_date_format = '%Y-%m-%d %H:%M:%S'
log_level = logging.INFO
if args.debug:
log_level = logging.DEBUG
logging.basicConfig(format=log_format, datefmt=log_date_format, level=log_level)
set_config(LLMConfig(args.model, args.temperature, args.max_concurrent_queries, args.output_format))
if not args.sub_command:
parser.print_help(sys.stderr)
sys.stderr.write("\nNo sub-command selected\n")
sys.exit(1)
if args.sub_command not in commands:
parser.print_help(sys.stderr)
sys.stderr.write("\nUnknown sub-command\n")
sys.exit(1)
sys.exit(commands[args.sub_command].run(parser, args))
| [] |
2024-01-10 | gildaslv/lbpamgpt | LBPAMGPT.py | from __future__ import annotations
import requests
from lxml import etree
from io import BytesIO
import time
import pandas as pd
import numpy as np
import re
from datetime import datetime
import time
import sqlalchemy
import pyodbc
import base64
import urllib
import asyncio
from scipy.cluster.vq import kmeans, vq
import aiohttp
import sys
import psutil
from typing import Union, List, Callable
import pyarrow.parquet as pq
import concurrent.futures
from functools import partial
from openai.embeddings_utils import get_embedding, cosine_similarity
import h5py
import os
import pickle
import openai
API_KEY =
openai.api_key = API_KEY
class LbpamGpt:
""" LBPAMGPT class is used to fetch news articles from paid & public datasources (bloomberg paid source is the only supported source at the moment)
and run several AI powered operations over the data feed to create new management factors and trend detection tools. """
def __init__(self):
""" Initializing class variables. """
self.active_df = pd.DataFrame()
self.temp_df = pd.DataFrame()
self.remaining_df = pd.DataFrame()
self.keyword_df = pd.DataFrame()
self.storage_dir = './h5_data_storage/'
def save_as_pickle(self) -> LbpamGpt:
""" Save LbpamGpt object as pickle. """
with open('lbpamgpt_object_save.pickle', 'wb') as file:
pickle.dump(self, file)
return self
# ██████╗ █████╗ ████████╗ █████╗ ███████╗██████╗ █████╗ ███╗ ███╗███████╗ ███╗ ███╗ █████╗ ███╗ ██╗ █████╗ ██████╗ ███████╗███╗ ███╗███████╗███╗ ██╗████████╗
# ██╔══██╗██╔══██╗╚══██╔══╝██╔══██╗██╔════╝██╔══██╗██╔══██╗████╗ ████║██╔════╝ ████╗ ████║██╔══██╗████╗ ██║██╔══██╗██╔════╝ ██╔════╝████╗ ████║██╔════╝████╗ ██║╚══██╔══╝
# ██║ ██║███████║ ██║ ███████║█████╗ ██████╔╝███████║██╔████╔██║█████╗ ██╔████╔██║███████║██╔██╗ ██║███████║██║ ███╗█████╗ ██╔████╔██║█████╗ ██╔██╗ ██║ ██║
# ██║ ██║██╔══██║ ██║ ██╔══██║██╔══╝ ██╔══██╗██╔══██║██║╚██╔╝██║██╔══╝ ██║╚██╔╝██║██╔══██║██║╚██╗██║██╔══██║██║ ██║██╔══╝ ██║╚██╔╝██║██╔══╝ ██║╚██╗██║ ██║
# ██████╔╝██║ ██║ ██║ ██║ ██║██║ ██║ ██║██║ ██║██║ ╚═╝ ██║███████╗ ██║ ╚═╝ ██║██║ ██║██║ ╚████║██║ ██║╚██████╔╝███████╗██║ ╚═╝ ██║███████╗██║ ╚████║ ██║
# ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚══════╝ ╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═══╝╚═╝ ╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝╚══════╝╚═╝ ╚═══╝ ╚═╝
def load_df(self, df: Union[str, pd.DataFrame] = 'active_df_save.parquet', loading_shards: int = 100) -> LbpamGpt:
""" Load a dataframe(df) as active dataframe. """
if isinstance(df, str):
try:
parquet_file = pq.ParquetFile(df)
except Exception as e:
print(e)
return
num_rows = parquet_file.metadata.num_rows
batch_size = num_rows // loading_shards
df_chunks = []
for i in parquet_file.iter_batches(batch_size=batch_size, use_pandas_metadata=True):
df_chunks.append(i.to_pandas())
self.active_df = pd.concat(df_chunks, axis=0)
elif isinstance(df, pd.DataFrame):
self.active_df = df
else:
print('error: df in load_df() should either be a .parquet filename or a pd.DataFrame() object.')
return self
def save_df(self, filename: str = 'active_df_save.parquet') -> LbpamGpt:
""" Save dataframe in a .parquet file(filename). """
if isinstance(filename, str):
self.active_df.to_parquet(filename)
else:
print('error: filename in save_df() should be None or str type.')
return self
def split_df(self, column_name: str, percentage: float) -> LbpamGpt:
""" Split the current self.active_df based on the provided column(column_name), keep the first (percentage)% as self.active_df and stores the other in self.remaining_df and saving it locally as remaining_df_save.parquet. """
self.active_df = self.active_df.reset_index(drop=True)
num_rows_per_ticker = self.active_df.groupby(column_name).size().mul(percentage).astype(int)
sampled_df = self.active_df.groupby(column_name).apply(lambda x: x.sample(n=num_rows_per_ticker[x.name])).reset_index(drop=True)
self.remaining_df = self.active_df[~self.active_df.index.isin(sampled_df.index)]
self.remaining_df.to_parquet('remaining_df_save.parquet')
self.active_df = sampled_df
return self
def set_temp_as_active(self) -> LbpamGpt:
""" Set current self.temp_df as self.active_df. """
self.active_df = self.temp_df.copy()
return self
def set_active_as_temp(self) -> LbpamGpt:
""" Set current self.active_df as self.temp_df. """
self.temp_df = self.active_df.copy()
return self
def concat_temp_with_active_df(self) -> LbpamGpt:
""" Concat self.temp_df at the end of self.active_df. """
self.active_df = pd.concat([self.active_df, self.temp_df], axis=0)
return self
def merge_requests_response(self, column_name: str = 'default') -> LbpamGpt:
""" Merge results in self.storage_dir with current self.active_df as column(column_name). """
files_to_read = os.listdir(self.storage_dir)
response = []
for pid in sorted(list(set([int(fname.split('_')[0]) for fname in files_to_read]))):
for f in [file for file in files_to_read if str(pid) in file]:
with h5py.File(self.storage_dir + f, 'r') as loaded_file:
fragment = loaded_file['data'][:].tolist()
response.append(fragment)
response = [res.decode('utf-8') if isinstance(res, bytes) else res for subres in response for res in subres]
self.active_df[column_name] = response
return self
def compute_clustering(self) -> LbpamGpt:
""" Run a Kmean clustering algorithm over the provided column(column_name) from self.active_df. """
data = np.array(self.keyword_df['embedding'].tolist())
k = 1000
centroids, distortion = kmeans(data, k)
labels, _ = vq(data, centroids)
self.keyword_df['cluster'] = labels
self.active_df['cluster'] = self.active_df['keywords'].apply(lambda x: [self.keyword_df[self.keyword_df.keyword == keyword].cluster.iloc[0] for keyword in x])
return
# ███████╗██╗ ██╗████████╗███████╗██████╗ ███╗ ██╗ █████╗ ██╗ ██████╗ ███████╗ ██████╗ ██╗ ██╗███████╗███████╗████████╗███████╗
# ██╔════╝╚██╗██╔╝╚══██╔══╝██╔════╝██╔══██╗████╗ ██║██╔══██╗██║ ██╔══██╗██╔════╝██╔═══██╗██║ ██║██╔════╝██╔════╝╚══██╔══╝██╔════╝
# █████╗ ╚███╔╝ ██║ █████╗ ██████╔╝██╔██╗ ██║███████║██║ ██████╔╝█████╗ ██║ ██║██║ ██║█████╗ ███████╗ ██║ ███████╗
# ██╔══╝ ██╔██╗ ██║ ██╔══╝ ██╔══██╗██║╚██╗██║██╔══██║██║ ██╔══██╗██╔══╝ ██║▄▄ ██║██║ ██║██╔══╝ ╚════██║ ██║ ╚════██║
# ███████╗██╔╝ ██╗ ██║ ███████╗██║ ██║██║ ╚████║██║ ██║███████╗ ██║ ██║███████╗╚██████╔╝╚██████╔╝███████╗███████║ ██║ ███████║
# ╚══════╝╚═╝ ╚═╝ ╚═╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═══╝╚═╝ ╚═╝╚══════╝ ╚═╝ ╚═╝╚══════╝ ╚══▀▀═╝ ╚═════╝ ╚══════╝╚══════╝ ╚═╝ ╚══════╝
async def _request_keywords(self, str_element: str) -> openai.openai_object.OpenAIObject:
""" Request to openai API technical keywords for a given piece of news(str_element). """
str_element = str_element[:16000]
prompt = "Extract 10 technical keywords from this text, meaningful to the text semantic:\n\n" + str_element + "\n\nI am interested in precise specific technical keywords excluding, company names, people names, and country names and any global non-specific terms."
max_retries = 3
retry_intervals = [5, 10, 15] # Adjust the retry intervals as needed
for retry_count in range(max_retries):
try:
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0.5,
max_tokens=200,
top_p=1.0,
frequency_penalty=0.8,
presence_penalty=0.0
)
if response is not None:
return response['choices'][0]['text']
except Exception as e:
pass
if retry_count < max_retries - 1:
sleep_interval = retry_intervals[retry_count]
time.sleep(sleep_interval)
return None
async def _request_embedding(self, str_element: str) -> List[float]:
""" Request to openai API the corresponding embedding for a given string element(str_element). """
str_element = str_element[:35000]
max_retries = 3
retry_intervals = [5, 10, 15] # Adjust the retry intervals as needed
for retry_count in range(max_retries):
try:
embedding = get_embedding(str_element, engine="text-embedding-ada-002")
if embedding is not None:
return embedding
except Exception as e:
pass
if retry_count < max_retries - 1:
sleep_interval = retry_intervals[retry_count]
time.sleep(sleep_interval)
return None
def _launch_multiprocessing(self, func: Callable[str], column_name: str, subprocess_amount: int = 5) -> LbpamGpt:
""" Launch multiprocessing on a given core numbers(subprocess_amount) over self.active_df specified column(column_name) through a given function(func). """
self._update_storage()
if psutil.cpu_count()/2 < subprocess_amount:
subprocess_amount = psutil.cpu_count()/2
chunk_size = len(self.active_df) // subprocess_amount
chunks = [self.active_df[i:i + chunk_size] for i in range(0, len(self.active_df), chunk_size)]
with concurrent.futures.ProcessPoolExecutor(max_workers=len(chunks)) as executor:
for chunk in chunks:
executor.submit(self._async_proxy, partial(self._launch_asynchronous_requests, func, column_name, chunk))
time.sleep(2)
return self
async def _launch_asynchronous_requests(self, func: Callable[[str], None], column_name: str, df: pd.DataFrame, shard_amount: int = 30) -> None:
""" Divide the provided pandas.Dataframe(df) into a given shard amount(shard_amount) to finally iterate over the specified column(column_name) of each shard sending requests using the provided request sending function(func). """
if shard_amount > len(df):
shard_amount = 1
shard = len(df) // shard_amount
pid = datetime.now().microsecond
for x in range(0, len(df), shard):
tasks = [func(str_elem) for str_elem in df[x:x+shard][column_name].tolist()]
results = await asyncio.gather(*tasks)
with h5py.File(f"{self.storage_dir}{pid}_{x}.h5", 'w') as f:
f.create_dataset('data', data=results)
return None
def _async_proxy(self, async_partial: partial) -> LbpamGpt:
""" Proxy function used to launch the provided asynchronous partial element(async_partial). """
loop = asyncio.get_event_loop()
loop.run_until_complete(async_partial())
return self
def fetch_embeddings(self, column_name: str) -> LbpamGpt:
""" Function used to fetch embedding for a self.active_df column. """
self._launch_multiprocessing(self._request_embedding, column_name)
self.merge_requests_response('embedding')
return self
def fetch_keywords(self, column_name: str, keywords_embedding: Bool = False) -> LbpamGpt:
""" Function used to fetch keywords out of a self.active_df column(column_name). """
self._launch_multiprocessing(self._request_keywords, column_name)
self.merge_requests_response('keywords')
self.active_df['keywords'] = self.active_df['keywords'].apply(lambda x: [keyword.lower() for keyword in self._extract_keywords(x)])
if keywords_embedding:
self.fetch_keywords_embeddings('keywords')
return self
def fetch_keywords_embeddings(self, column_name: str) -> LbpamGpt:
""" Function used to fetch embeddings of keywords in a self.active_df column(column_name). """
self.set_active_as_temp()
self.active_df = pd.DataFrame([keyword for sublist in self.active_df[column_name] for keyword in sublist], columns=['keyword'])
self.fetch_embeddings('keyword')
self.keyword_df = self.active_df.copy()
self.temp_df['keywords_embeddings'] = self.temp_df['keywords'].apply(lambda x: [self.active_df[self.active_df.keyword == word].embedding.iloc[0] for word in x])
self.set_temp_as_active()
return self
# ██╗███╗ ██╗████████╗███████╗██████╗ ███╗ ██╗ █████╗ ██╗ ██████╗ ███████╗ ██████╗ ██╗ ██╗███████╗███████╗████████╗███████╗
# ██║████╗ ██║╚══██╔══╝██╔════╝██╔══██╗████╗ ██║██╔══██╗██║ ██╔══██╗██╔════╝██╔═══██╗██║ ██║██╔════╝██╔════╝╚══██╔══╝██╔════╝
# ██║██╔██╗ ██║ ██║ █████╗ ██████╔╝██╔██╗ ██║███████║██║ ██████╔╝█████╗ ██║ ██║██║ ██║█████╗ ███████╗ ██║ ███████╗
# ██║██║╚██╗██║ ██║ ██╔══╝ ██╔══██╗██║╚██╗██║██╔══██║██║ ██╔══██╗██╔══╝ ██║▄▄ ██║██║ ██║██╔══╝ ╚════██║ ██║ ╚════██║
# ██║██║ ╚████║ ██║ ███████╗██║ ██║██║ ╚████║██║ ██║███████╗ ██║ ██║███████╗╚██████╔╝╚██████╔╝███████╗███████║ ██║ ███████║
# ╚═╝╚═╝ ╚═══╝ ╚═╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═══╝╚═╝ ╚═╝╚══════╝ ╚═╝ ╚═╝╚══════╝ ╚══▀▀═╝ ╚═════╝ ╚══════╝╚══════╝ ╚═╝ ╚══════╝
async def _fetch_news(self, session: aiohttp.ClientSession, ticker: str, start_date: str, custom_auth: str) -> Union[List[str], None]:
""" Fetching story identifiers from db. """
print('\r ', end='')
print(f'\rfetching articles for {ticker}', end='')
url = 'http://vm-srv63-mkl:9911/v1/resources/getNews?rs:ticker=' + ticker + f'&rs:class=34151&rs:startDate={start_date}'
async with session.get(url, headers={'Authorization': 'Basic ' + custom_auth}) as response:
result = await response.json()
return result
async def _fetch_story(self, session: aiohttp.ClientSession, story: str, custom_auth: str) -> Union[List[str], None]:
""" Fetching story data from story identifier. """
url = "http://vm-srv63-mkl:9911/v1/resources/stories?rs:suid=" + story
async with session.get(url, headers={'Authorization': 'Basic ' + custom_auth}) as response:
document = await response.read()
return document
async def _process_ticker(self, session: aiohttp.ClientSession, tickers: List[str], ticker: str, start_date: str, custom_auth: str) -> (Union[List[str], None], Union[List[str], None], Union[List[str], None], Union[List[tuple], None], Union[List[str], None]):
""" Fetching and filtering news for a given ticker(ticker) from a given date(start_date). """
response = await self._fetch_news(session, ticker, start_date, custom_auth)
if isinstance(response['data'], list):
identifiers = [x['StoryIdentifier'] for x in response['data']]
print('\r ', end='')
print(f'\rnumber of articles for {ticker}: {len(identifiers)}', end='')
headlines = []
contents = []
dates = []
stocks_and_rates = []
for story in identifiers:
document = await self._fetch_story(session, story, custom_auth)
tree = etree.parse(BytesIO(document))
headline = tree.xpath("//Headline")[0].text
body = tree.xpath("//Body")[0].text
date = tree.xpath("//TimeOfArrival")[0].text
ids_tickers = [ticker.text for ticker in tree.xpath("//AssignedTickers/ScoredEntity/Id")]
scores_tickers = [ticker.text for ticker in tree.xpath("//AssignedTickers/ScoredEntity/Score")]
stocks = list(zip(ids_tickers, scores_tickers))
max_rate = max([int(x) for x in scores_tickers])
# filtering max 4 diff compagnies in article + 1 of them is rates > 90 and is part of univers
if len(ids_tickers) < 4:
for idx, score in enumerate(scores_tickers):
if int(score) > 90 and ids_tickers[idx] in tickers:
headlines.append(headline)
contents.append(body)
dates.append(date)
stocks_and_rates.append(stocks)
break
return headlines, contents, dates, stocks_and_rates, ticker
else:
return None, None, None, None, ticker
async def _fetch_routine(self, tickers: List[str], start_date: str, custom_auth: str):
"News fetching routine used to gather news for a list of ticker(tickers) form a starting date(start_date)."
HEADLINES_BATCH = []
CONTENTS_BATCH = []
DATES_BATCH = []
STOCKS_AND_RATES_BATCH = []
TICKERS_BATCH = []
async with aiohttp.ClientSession() as session:
tasks = [self._process_ticker(session, tickers, ticker, start_date, custom_auth) for ticker in tickers]
results = await asyncio.gather(*tasks)
for headlines, contents, dates, stocks_and_rates, tick in results:
HEADLINES_BATCH.append(headlines)
CONTENTS_BATCH.append(contents)
DATES_BATCH.append(dates)
STOCKS_AND_RATES_BATCH.append(stocks_and_rates)
TICKERS_BATCH.append(tick)
return (HEADLINES_BATCH, CONTENTS_BATCH, DATES_BATCH, STOCKS_AND_RATES_BATCH, TICKERS_BATCH)
async def fetch_articles(self, start_date: str, index_code: str) -> LbpamGpt:
""" Asynchronous method to fetch articles from a given date(start_date) over a given univers (index_code), treating it and finally storing it in class variable accessible as temp_df. """
print(f'starting article fetching with setup: {start_date} - {index_code}')
auth = requests.auth.HTTPBasicAuth("admin", "admin")
prod_server = 'http://vm-srv63-mkl:9911/v1/resources/getDocumentsForCategory'
test_server = 'http://vm-srv60-mkl:9911/v1/resources/getDocumentsForCategory'
credentials = f'admin:admin'
encoded_credentials = base64.b64encode(credentials.encode('utf-8')).decode('utf-8')
custom_auth = encoded_credentials
serv_name_smartbeta = \
"""DRIVER={SQL Server};SERVER=sqlsmartbetaprod\\smartbetaprod;
DATABASE=SMARTBETA_PROD;Trusted_Connection='Yes''"""
smartbeta = pyodbc.connect(serv_name_smartbeta)
# smartbeta server sqlalchemy connection
quote_smartbeta = \
urllib.parse.quote_plus(serv_name_smartbeta)
sqlalch_conn = \
r'mssql+pyodbc:///?odbc_connect={}'\
.format(quote_smartbeta)
engine = sqlalchemy.create_engine(sqlalch_conn)
conn = smartbeta.cursor()
query = f"""select t2.Bloom_Nego
from
(
SELECT
distinct( fsym_id)
from(
SELECT HCI.Index_Code,
HCI.Code_instrument,
HCI.date,
HCI.Weight_Pct as Weight_Pct,
RTRIM(IE.fsym_regional_id) as fsym_id
FROM [SMARTBETA_PROD].[dbo].[histo_comp_index] HCI
JOIN [SMARTBETA_PROD].[dbo].[instr_Equity] IE
ON HCI.Code_instrument = IE.Code_instrument
JOIN [SMARTBETA_PROD].[dbo].[company] C
ON C.fsym_security_id = IE.fsym_security_id
where HCI.Index_Code = '{index_code}'
AND HCI.date >= '{start_date}') A
left JOIN
(SELECT DISTINCT(fsym_id) as fsym2,
start_date,
end_date,
Code_Cluster,
RTRIM(value) as value
FROM [SMARTBETA_PROD].[dbo].[Style_Cluster_Data]
where Code_Cluster = 1) CLST
ON A.fsym_id = CLST.fsym2
WHERE A.date BETWEEN CLST.start_date
AND COALESCE(CLST.end_date, GETDATE())) T1
join equity_info_codes() t2
on t1.fsym_id = t2.fsym_regional_id"""
compo = pd.read_sql_query(query, engine)
compo = ['@'.join(x.split(' ')) for x in compo.Bloom_Nego.values.tolist()]
tickers = [x.replace('@GY', '@GR').replace('@SQ', '@SM').replace('@SE', '@SW') for x in compo]
t0 = time.time()
HEADLINES_BATCH, CONTENTS_BATCH, DATES_BATCH, STOCKS_AND_RATES_BATCH, TICKERS_BATCH = await self._fetch_routine(tickers, start_date, custom_auth)
print('\r ', end='')
print('\rfetching done!', end='')
FILTERED_TICKERS, FILTERED_HEADLINES, FILTERED_CONTENTS, FILTERED_DATES, FILTERED_STOCKS_AND_RATES = zip(*[(x, y, z, w, o) for x, y, z, w, o in zip(TICKERS_BATCH, HEADLINES_BATCH, CONTENTS_BATCH, DATES_BATCH, STOCKS_AND_RATES_BATCH) if z is not None])
df = pd.DataFrame({
'ticker': FILTERED_TICKERS,
'headline': FILTERED_HEADLINES,
'content': FILTERED_CONTENTS,
'date': FILTERED_DATES,
'stocks_and_rates': FILTERED_STOCKS_AND_RATES
})
columns_to_explode = ['headline', 'content', 'date', 'stocks_and_rates']
df_expanded = df.apply(lambda x: x.explode() if x.name in columns_to_explode else x)
df_expanded = df_expanded.drop_duplicates(subset=['date', 'headline'])
df_expanded = df_expanded[df_expanded.content.str.len() >= 300]
df_expanded.date = pd.to_datetime(df_expanded.date)
df_expanded['month'] = df_expanded.date.dt.month
df_expanded['year'] = df_expanded.date.dt.year
df_expanded['year_month'] = df_expanded.date.dt.strftime('%Y-%m')
df_expanded['year_week'] = df_expanded.date.dt.strftime('%Y-%U')
df_expanded['year_week'] = df_expanded.date.dt.strftime('%Y-%m-%d')
print('\r ', end='')
print('\rtreating articles', end='')
email_pattern = r'\n.*?[\w.+-]+@[\w-]+\.[\w.-]+\n'
by_pattern = r'By\s[A-Za-z\s]+'
bbg_pattern = r'\bBloomberg\b|\(Bloomberg\)|\[Bloomberg\]'
special_characters_pattern = r'[^a-zA-Z0-9\s]'
source_pattern = r'^To.*?\n'
click_pattern = r'\n\s*To\b.*?\bhere(?:\n)?'
def clear_trash(string):
strr = re.sub(email_pattern, '\n', string)
strr = re.sub(by_pattern, '', strr)
strr = re.sub(bbg_pattern, '', strr, flags=re.IGNORECASE)
strr = re.sub(special_characters_pattern, '', strr)
strr = re.sub(source_pattern, '', strr, flags=re.MULTILINE)
return re.sub(click_pattern, '', strr, flags=re.IGNORECASE | re.DOTALL)
df_expanded.content = df_expanded.content.apply(lambda x: clear_trash(x))
df_expanded = df_expanded[df_expanded.content.str.len() > 40]
df_expanded.content = df_expanded.content.str.replace('\n', ' ')
self.temp_df = df_expanded
return self
# ██╗ ██╗████████╗██╗██╗ ███████╗
# ██║ ██║╚══██╔══╝██║██║ ██╔════╝
# ██║ ██║ ██║ ██║██║ ███████╗
# ██║ ██║ ██║ ██║██║ ╚════██║
# ╚██████╔╝ ██║ ██║███████╗███████║
# ╚═════╝ ╚═╝ ╚═╝╚══════╝╚══════╝
def _update_storage(self):
""" Creating self.storage_dir directory if not already existing and removing all files present. """
if self.storage_dir.split('/')[1] not in os.listdir():
os.mkdir(self.storage_dir)
files_in_storage = os.listdir(self.storage_dir)
for file_to_remove in files_in_storage:
os.remove(self.storage_dir + file_to_remove)
def _extract_keywords(self, str_element: str) -> List:
""" Extract keywords out of self.request_keywords output. """
return re.findall(r'\b[A-Za-z]+\b', str_element) | [
"Extract 10 technical keywords from this text, meaningful to the text semantic:\n\nPLACEHOLDER\n\nI am interested in precise specific technical keywords excluding, company names, people names, and country names and any global non-specific terms."
] |
2024-01-10 | djkcyl/BBot-Graia | aunly_bbot~utils~content_summarise.py | import re
from loguru import logger
from .openai import openai_req, get_small_size_transcripts, get_summarise_prompt
async def subtitle_summarise(sub: list[str], title: str):
"""请求字幕总结"""
small_size_transcripts = get_small_size_transcripts(sub)
prompt = get_summarise_prompt(title, small_size_transcripts)
logger.debug(prompt)
return await openai_req(prompt)
async def column_summarise(cv_title: str, cv_text: str):
"""请求专栏总结"""
sentences = re.split(r"[,。;,.;\n]+", cv_text)
small_size_transcripts = get_small_size_transcripts(sentences)
prompt = get_summarise_prompt(cv_title, small_size_transcripts)
logger.debug(prompt)
return await openai_req(prompt)
| [] |
2024-01-10 | solstxce/CSF-Sem-3 | grad%20(1).py | import gradio
import openai
# from gradio.components import inputs
from vars import KEY
openai.api_key = KEY
theme='JohnSmith9982/small_and_pretty'
def get_completion(Prompt):
model="gpt-3.5-turbo"
messages = [{"role": "user", "content": Prompt}]
response = openai.ChatCompletion.create(model=model,messages=messages,temperature=0,)
return response.choices[0].message["content"]
op=gradio.outputs.Textbox(label="API Response Text")
ip=gradio.inputs.Textbox(label="Prompt Text")
demo = gradio.Interface(fn=get_completion, inputs=ip, outputs=op,theme='JohnSmith9982/small_and_pretty')
demo.launch() | [] |
2024-01-10 | solstxce/CSF-Sem-3 | grad.py | import gradio
# import openai
# from gradio.components import inputs
# from vars import KEY
# openai.api_key = KEY
def api_resp(option,user,token,password):
return f"""The {quantity} {animal}s from {" and ".join(countries)} went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}"""
theme='JohnSmith9982/small_and_pretty'
op=gradio.outputs.Textbox(label="API Response Text")
gradio.Radio(["park", "zoo", "road"], label="Location", info="Where did they go?")
ip=gradio.inputs.Textbox(label="Prompt Text")
demo = gradio.Interface(fn=api_resp ,inputs=[gradio.Radio(["login", "register", "api_tester","curl_it"], label="API Endpoint", info="RESTful API Endpoint")], outputs=op,theme='JohnSmith9982/small_and_pretty')
demo.launch() | [] |
2024-01-10 | showlab/CLVQA | SRM~settings.py | import os
import json
import argparse
import logging
import datetime
logger = logging.getLogger(__name__)
import GPUtil
from transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, OpenAIGPTConfig, T5Config, T5ForConditionalGeneration, T5Tokenizer
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, CONFIG_NAME
import torch
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
FILL_VAL = -100
LEN_FACTOR = 1.163
MEMORY_FACTOR = {
"finetune": 0.58,
"multitask": 0.58,
"lll": 0.35,
"ewc": 0.30,
"mas": 0.18,
"gem": 0.50,
}
TURING_ARCHS = {'Tesla V100', '2080 Ti'}
MODEL_CLASSES = {
'gpt2': (GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, 'gpt2'),
'openai-gpt': (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, OpenAIGPTConfig,'openai-gpt'),
't5-small': (T5ForConditionalGeneration, T5Tokenizer, T5Config, 't5-small'),
'distilgpt2': (GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, 'distilgpt2'),
't5v1_1-small': (T5ForConditionalGeneration, T5Tokenizer, T5Config, 'google/t5-v1_1-small')
}
SAVE_NAME = 'model-'
FINAL_SAVE_NAME = 'model-finish'
from mmf.common.CL_constant import FCL_DATA_ATTR, ABBR2TASK
fcl_data_attrs = FCL_DATA_ATTR
def ABBR2TASKList(cl_setting, abbv_seq):
abbv_mapping = ABBR2TASK[cl_setting]
taskList = [abbv_mapping[abbv] for abbv in abbv_seq]
return taskList
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--adam_epsilon", default=1e-4, type=float)
parser.add_argument("--add_task_tokens", action="store_true") # use this for the first token
parser.add_argument("--data_dir", type=str, default='/home/nus/stan/functional_continual_learning_dev/Gen_data/v0.6')
parser.add_argument("--cl_setting", type=str, default="functional")
parser.add_argument("--task_seq",type=str, default='oarlks')
parser.add_argument("--train_perc",type=float, default=1.0)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--gen_debug", action="store_true")
parser.add_argument("--decay_style", type=str, default="linear")
parser.add_argument("--fp32", action="store_true")
parser.add_argument("--gen_lm_sample_percentage", type=float, default=0.05)
parser.add_argument("--learning_rate", type=float, default=6.25e-5)
parser.add_argument("--logging_steps", type=int, default=500)
parser.add_argument("--lm_lambda", type=float, default=0.25)
parser.add_argument("--lr_schedule", type=str, default="warmup_linear")
parser.add_argument("--max_grad_norm", type=int, default=1)
parser.add_argument("--max_n_epochs", type=int, default=30)
parser.add_argument("--min_batch_size", type=int, default=4)
parser.add_argument("--min_n_steps", type=int, default=1500)
parser.add_argument("--model_dir_root", type=str, default='/Users/stan/exp/QAG_debug/')
parser.add_argument("--replay_dir", type=str, default='/Users/stan/exp/QAG_debug/replay')
parser.add_argument("--model_name", type=str, default="distilgpt2", choices=["gpt2", "openai-gpt","t5-small", "distilgpt2", 't5v1_1-small'])
parser.add_argument("--model_arch", type=str, default='decoder-only')
parser.add_argument("--use_gt", action="store_true", help="whether use_gt for generation")
parser.add_argument("--n_gpus", type=int, default=1)
parser.add_argument("--n_train_epochs", type=int, default=15)
parser.add_argument("--dynamic_epochs", action="store_true")
parser.add_argument("--n_warmup_ratio", type=float, default=0.005)
parser.add_argument("--n_workers", type=int, default=4)
parser.add_argument("--use_sep", action="store_true")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--seq_train_type", type=str, default="lll", choices=["lll"])
parser.add_argument("--tasks", nargs='+', default=["object","attribute",'relation','logical','knowledge','scenetext'])
parser.add_argument("--skip_tasks", nargs='+')
parser.add_argument("--test_batch_size", type=int, default=0)
parser.add_argument("--tokens_weight", type=float, default=5)
parser.add_argument("--train_batch_size", type=int, default=0)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--qp_margin", type=float, default=0.5)
parser.add_argument("--n_sg_seq", type=int, default=30)
args = parser.parse_args()
if args.debug:
args.logging_steps = 1
torch.manual_seed(0)
torch.backends.cudnn.deterministric = True
if args.task_seq is not None:
args.tasks = ABBR2TASKList(cl_setting=args.cl_setting, abbv_seq=args.task_seq)
args.change_train_size = (args.train_perc != 1.0)
if args.change_train_size:
if args.model_dir_root.endswith("/"):
args.model_dir_root = args.model_dir_root[:-1] + "_tr{}".format(args.train_perc)
else:
args.model_dir_root = args.model_dir_root + "_tr{}".format(args.train_perc)
args.replay_dir = os.path.join(args.model_dir_root, f"{args.model_name}_replay")
os.makedirs(args.model_dir_root, exist_ok=True)
os.makedirs(args.replay_dir, exist_ok=True)
args.model_dir_root = os.path.join(args.model_dir_root, args.model_name,
args.seq_train_type, "{}_{}".format("_".join(args.tasks),
args.gen_lm_sample_percentage) if "lll" in args.seq_train_type else "_".join(args.tasks))
args.device_ids = GPUtil.getAvailable(maxLoad=0.5, maxMemory=0.5, limit=args.n_gpus)
if len(args.device_ids) == 0:
logger.error('No available GPUs!')
raise NotImplementedError("No CPU mode available!")
if len(args.device_ids) < args.n_gpus:
logger.warning('Available number of GPU = {} < n_gpus = {}'.format(len(args.device_ids), args.n_gpus))
args.n_gpus = len(args.device_ids)
logger.warning('Continue training with {} GPUs'.format(args.n_gpus))
torch.cuda.set_device(args.device_ids[0])
gpus = GPUtil.getGPUs()
gpu_names = [gpus[device_id].name for device_id in args.device_ids]
if not all(any(turing_arch in gpu_name for turing_arch in TURING_ARCHS) for gpu_name in gpu_names):
logger.warning('Not all gpus support fp16 training! Will use fp32 instead.')
args.fp32 = True
if not args.fp32:
global MEMORY_FACTOR
MEMORY_FACTOR = dict([k, v*1.4] for k, v in MEMORY_FACTOR.items()) # memory factor for each of the task
args.memory_sizes = [gpus[device_id].memoryTotal for device_id in args.device_ids] # memory size of each gpu
args.memory_sizes[0] = args.memory_sizes[0] * (1 - 0.04 * (args.n_gpus-1)) #
for i in range(1, args.n_gpus):
args.memory_sizes[i] = args.memory_sizes[i] * 1.04
if args.train_batch_size <= 0:
args.train_batch_size = [int(memory_size * MEMORY_FACTOR[args.seq_train_type]) for memory_size in args.memory_sizes]
if args.test_batch_size <= 0:
args.test_batch_size = [int(memory_size * MEMORY_FACTOR[args.seq_train_type]) for memory_size in args.memory_sizes]
# init and config model
special_tokens = {"question_token": "[que]", "ans_token":'[ans]', "ocr_token":"[OCR]",}
official_spec_tokens = {"pad_token":'[pad]', "unk_token":'[unk]', "eos_token": '<|endoftext|>', "sep_token":'[SEP]'} # add [SEP], [que] here
# gpt, gpt2, t5
args.model_arch = 'encoder-decoder' if "t5" in args.model_name else 'decoder-only'
# assert args.model_arch in ['encoder-decoder', 'decoder-only']
model_class, tokenizer_class, config_class, pretrained_pth = MODEL_CLASSES[args.model_name]
args.load_model_name = pretrained_pth
tokenizer = tokenizer_class.from_pretrained(pretrained_pth)
tokenizer.add_special_tokens(official_spec_tokens)
tokenizer.add_tokens(list(special_tokens.values()))
special_tokens.update(official_spec_tokens)
special_token_ids = {k:tokenizer.convert_tokens_to_ids(v) for k,v in special_tokens.items()}
model_config = config_class.from_pretrained(pretrained_pth)
model_config.vocab_size = len(tokenizer)
tokens_weight = torch.ones([model_config.vocab_size], dtype=torch.float).cuda()
tokens_weight[special_token_ids["ans_token"]] = args.tokens_weight
tokens_weight[special_token_ids["question_token"]] = args.tokens_weight
tokens_weight[special_token_ids["ocr_token"]] = args.tokens_weight
tokens_weight[special_token_ids["sep_token"]] = args.tokens_weight
tokenizer.padding_side = "left"
args.max_len = getattr(model_config, 'n_positions', 512)
data_attrs = fcl_data_attrs
if args.seq_train_type == "multitask":
args.n_train_epochs = {'_'.join(args.tasks): args.n_train_epochs}
else:
if args.dynamic_epochs:
data_sizes = {task: data_attrs[args.cl_setting][task]["train"]["data_size"] for task in args.tasks}
max_total_data_size = max(data_sizes.values()) * args.n_train_epochs
args.n_train_epochs = {d[0]: min(args.max_n_epochs, max_total_data_size//d[1]) for d in data_sizes.items()}
else:
args.n_train_epochs = {task: args.n_train_epochs for task in args.tasks}
return args, model_config, model_class, tokenizer, config_class, special_token_ids, special_tokens, data_attrs, tokens_weight
class TimeFilter(logging.Filter):
def filter(self, record):
try:
last = self.last
except AttributeError:
last = record.relativeCreated
delta = record.relativeCreated/1000 - last/1000
record.relative = "{:.1f}".format(delta)
record.uptime = str(datetime.timedelta(seconds=record.relativeCreated//1000))
self.last = record.relativeCreated
return True
def init_logging(filename):
logging_format = "%(asctime)s - %(uptime)s - %(relative)ss - %(levelname)s - %(name)s - %(message)s"
logging.basicConfig(format=logging_format, filename=filename, filemode='a', level=logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter(logging_format))
root_logger = logging.getLogger()
root_logger.addHandler(console_handler)
for handler in root_logger.handlers:
handler.addFilter(TimeFilter())
args, MODEL_CONFIG, MODEL_CLASS, TOKENIZER, CONFIG_CLASS, SPECIAL_TOKEN_IDS, SPECIAL_TOKENS, DATA_ATTRS, TOKENS_WEIGHT = parse_args()
from mmf.common.CL_constant import GENERATED_SG_PTH as mmf_gen_sg_pth
GENERATED_SG_PTH = mmf_gen_sg_pth
from mmf.common.CL_constant import DATA_DIR as mmf_data_dir
DATA_DIR = mmf_data_dir
from mmf.common.CL_constant import TASK_DICT as mmf_task_dict
TASK_DICT = mmf_task_dict
for cl_setting in TASK_DICT:
for stage in TASK_DICT[cl_setting]:
TASK_DICT[cl_setting][stage].update({"n_train_epochs": args.n_train_epochs})
| [] |
2024-01-10 | Reykez/discord-openai-bot | cog~message_listener.py | import discord
from discord.ext import commands
import conversations_manager as cm
from openai_connector import map_conversation, get_chat_response
from settings import *
class MessageListenerCog(commands.Cog):
def __init__(self, bot):
self.bot = bot
@commands.Cog.listener()
async def on_message(self, message):
if message.author == self.bot.user or not isinstance(message.channel, discord.TextChannel) or message.channel.category_id != channel_category_id or message.content[0] == '$':
#await self.bot.process_commands(message)
return
channel_id = message.channel.id
if channel_id not in cm.conversations:
cm.conversations[channel_id] = cm.create_or_restore_conversation(channel_id)
messages = map_conversation(cm.conversations[channel_id], message.content)
response = get_chat_response(messages)
cm.conversations[channel_id].append({
"message": message.content,
"response": response
})
cm.save_conversation(cm.conversations[channel_id], channel_id)
await message.channel.send(response)
async def setup(bot):
await bot.add_cog(MessageListenerCog(bot))
| [] |
2024-01-10 | ZiJie-Duan/Schooling-Chill-Out-Assistant | src~gpt_api.py | import openai
class GPT_API:
"""
GPT API Class
"""
def __init__(self, api_key: str):
openai.api_key = api_key
self.model = "gpt-3.5-turbo" # 设置默认模型
def set_model(self, model: str):
"""设置模型"""
self.model = model
def query(self,
messages,
temperature = 0.5,
max_tokens = 100,
model = None,
full = False,
timeout = 30) -> str:
if not model:
model = self.model
response = openai.ChatCompletion.create(
model = model,
messages = messages,
temperature = temperature,
max_tokens = max_tokens,
request_timeout = timeout
)
if full:
return response
else:
return response.choices[0].message.content
def query_stream(self,
messages,
temperature = 0.5,
max_tokens = 100,
model = None,
full = False,
timeout = 30) -> str:
if not model:
model = self.model
response = openai.ChatCompletion.create(
model = model,
messages = messages,
temperature = temperature,
max_tokens = max_tokens,
stream=True,
request_timeout = timeout
)
if full:
for chunk in response:
yield chunk
else:
for chunk in response:
word = chunk["choices"][0].get("delta", {}).get("content")
if word:
yield word
| [] |
2024-01-10 | DamianB-BitFlipper/async-whisper | async_whisper~async_whisper.py | import asyncio
import io
import time
from dataclasses import dataclass
from typing import cast
import openai
from aiolimiter import AsyncLimiter
from pydub import AudioSegment
from .logger import logger
from .stitch_utils import resolve_overlap, stitch_audio_segments
@dataclass
class _AudioChunk:
segment: AudioSegment
segment_length_ms: int
transcription: str | None = None
@property
def transcription_words(self) -> list[str]:
if self.transcription is None:
raise ValueError("Transcription is not set")
return self.transcription.split()
class Defaults:
# Allow a maximum of 100 requests per minute
ASYNC_RATE_LIMIT_RPM = 100
# Timeout and retry after 15 seconds for segment transcription
TRANSCRIBE_SEGMENT_TIMEOUT = 15
# Each segment is 60 seconds long
SEGMENT_LENGTH_MS = 60_000
# Have a 10 second overlap between each segment
OVERLAP_LENGTH_MS = 10_000
# The default language is English
LANGUAGE = "en"
# When stitching together transcription segments, have
# a `STITCH_WIGGLE` of words wiggle room
STITCH_WIGGLE = 15
# How many words in a row must be identical before we start
# picking from the following segment during overlap resolution
RESOLVE_OVERLAP_THRESHOLD = 4
class AsyncWhisper:
def __init__(
self,
openai_api_key: str,
*,
audio_chunk_ms: int = Defaults.SEGMENT_LENGTH_MS,
overlap_ms: int = Defaults.OVERLAP_LENGTH_MS,
rate_limit_rpm: int = Defaults.ASYNC_RATE_LIMIT_RPM,
retry_timeout: int | None = Defaults.TRANSCRIBE_SEGMENT_TIMEOUT,
language: str = Defaults.LANGUAGE,
sitch_wiggle: int = Defaults.STITCH_WIGGLE,
resolve_overlap_threshold: int = Defaults.RESOLVE_OVERLAP_THRESHOLD,
):
# Save the values to the instance
self.openai_api_key = openai_api_key
self.audio_chunk_ms = audio_chunk_ms
self.overlap_ms = overlap_ms
self.rate_limit_rpm = rate_limit_rpm
self.retry_timeout = retry_timeout
self.language = language
self.stitch_wiggle = sitch_wiggle
self.resolve_overlap_threshold = resolve_overlap_threshold
# Create an async OpenAI `client`
self.client = openai.AsyncOpenAI(
api_key=self.openai_api_key,
)
# Create an `AsyncLimiter` to limit the rate of requests
self.rate_limiter = AsyncLimiter(self.rate_limit_rpm, 60)
async def _transcribe_audio_segment(
self,
audio_segment: AudioSegment,
*,
uid: int,
prompt: str,
) -> str:
logger.info(f"{uid:3}: Starting transcription...")
# Load the `audio_segment` into a buffer
buffer = io.BytesIO()
audio_segment.export(buffer, format="mp3")
# Trick OpenAI into thinking the `buffer` is an mp3 file
buffer.name = "audio_segment.mp3"
start_time = time.time()
retry_timeout = self.retry_timeout
# Retry the request until it succeeds
while True:
try:
transcript = await asyncio.wait_for(
self.client.audio.transcriptions.create(
file=buffer,
model="whisper-1",
language=self.language,
prompt=prompt,
),
timeout=retry_timeout,
)
break
except asyncio.TimeoutError:
# Sanity check
assert retry_timeout is not None
# Backoff the `retry_timeout` for the next request
retry_timeout *= 2
logger.warning("Timeout error, retrying...")
except (
openai.APIConnectionError,
openai.APIStatusError,
openai.RateLimitError,
) as e:
logger.warning(
f"An error occurred processing audio segment: {e}, retrying in 5 seconds...",
)
await asyncio.sleep(5)
logger.info(f"{uid:3}: Transcribed in {time.time() - start_time} seconds")
return transcript.text
async def _safe_transcribe_audio_segment(
self,
audio_segment: AudioSegment,
*,
uid: int,
prompt: str = "",
) -> str:
async with self.rate_limiter:
return await self._transcribe_audio_segment(
audio_segment,
uid=uid,
prompt=prompt,
)
async def _transcribe_audio_chunks(
self, audio_chunks: list[_AudioChunk]
) -> list[str]:
start_time = time.time()
# Transcribe each segment in `segments`
transcription_tasks = [
self._safe_transcribe_audio_segment(
audio_chunk.segment,
uid=audio_chunk_id,
)
for audio_chunk_id, audio_chunk in enumerate(audio_chunks)
]
transcriptions = await asyncio.gather(*transcription_tasks)
logger.info(f"Transcribed all chunks in {time.time() - start_time} seconds")
return transcriptions
def _chunk_audio(self, audio_segment: AudioSegment) -> list[_AudioChunk]:
audio_chunks = []
total_length = len(audio_segment)
start = 0
while True:
# Make `self.audio_chunk_ms` segments
end = min(start + self.audio_chunk_ms, total_length)
# Add the segment to the list
audio_chunks.append(
_AudioChunk(
# Indexing an AudioSegment returns a strange type
segment=cast(AudioSegment, audio_segment[start:end]),
segment_length_ms=end - start,
)
)
# Break if we're at the end of the audio segment
if end == total_length:
break
# Increment the start time
start += self.audio_chunk_ms - self.overlap_ms
return audio_chunks
def _stitch_together_words(
self,
before_words: list[str],
before_length_ms: int,
after_words: list[str],
after_length_ms: int,
) -> list[str]:
# Approximate the overlap length by extrapolating the words spoken per second
# from the `before_words` and the `after_words`
approx_overlap_len = int(
(len(before_words) + len(after_words))
* (self.overlap_ms / (before_length_ms + after_length_ms))
)
stitch_meta = stitch_audio_segments(
before_words=before_words,
after_words=after_words,
approx_overlap_len=approx_overlap_len,
stitch_wiggle=self.stitch_wiggle,
)
stitch_str1_words = before_words[: -stitch_meta.overlap_len]
stitch_str2_words = after_words[stitch_meta.overlap_len :]
stitch_overlap_words = resolve_overlap(
overlap1=before_words[-stitch_meta.overlap_len :],
overlap2=after_words[: stitch_meta.overlap_len],
streak_threshold=self.resolve_overlap_threshold,
)
# Combine the two stitches
stitch_words = stitch_str1_words + stitch_overlap_words + stitch_str2_words
return stitch_words
async def transcribe_audio(self, audio: AudioSegment) -> str:
audio_chunks = self._chunk_audio(audio)
# Transcribe each of the `audio_chunks`
transcriptions = await self._transcribe_audio_chunks(audio_chunks)
# Set the `transcription` attribute of each `AudioChunk`
for audio_chunk, transcription in zip(audio_chunks, transcriptions):
audio_chunk.transcription = transcription
# Stitch the transcription segments together
acc_words = audio_chunks[0].transcription_words
for i in range(1, len(audio_chunks)):
prev_audio_chunk = audio_chunks[i - 1]
current_audio_chunk = audio_chunks[i]
current_words = current_audio_chunk.transcription_words
stitch_words = self._stitch_together_words(
before_words=acc_words,
before_length_ms=prev_audio_chunk.segment_length_ms,
after_words=current_words,
after_length_ms=current_audio_chunk.segment_length_ms,
)
# Update the `acc_words` for the next iteration
acc_words = stitch_words
# The stitched transcript is the final `acc_words`
stitched_transcript = " ".join(acc_words)
return stitched_transcript
| [] |
2024-01-10 | aaalexlit/faq-slack-bot | ingest~utils~index_utils.py | import json
import os
import tempfile
from datetime import datetime
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_index import Document, StorageContext, ServiceContext, VectorStoreIndex
from llama_index.node_parser import NodeParser, SentenceSplitter
from llama_index.readers import TrafilaturaWebReader, GithubRepositoryReader
from llama_index.vector_stores import MilvusVectorStore
from prefect.blocks.system import Secret
from prefect_gcp import GcpCredentials
from ingest.readers.custom_faq_gdoc_reader import FAQGoogleDocsReader
from ingest.readers.slack_reader import SlackReader
BOT_USER_ID = 'U05DM3PEJA2'
AU_TOMATOR_USER_ID = 'U01S08W6Z9T'
os.environ["TOKENIZERS_PARALLELISM"] = "false"
embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-base-en-v1.5')
embedding_dimension = len(embeddings.embed_query("test"))
print(f'embedding dimension = {embedding_dimension}')
def index_spreadsheet(url: str, title: str, collection_name: str):
documents = TrafilaturaWebReader().load_data([url])
for doc in documents:
doc.metadata['title'] = title
doc.metadata['source'] = url
add_route_to_docs(documents, 'faq')
add_to_index(documents, collection_name=collection_name)
def add_route_to_docs(docs: [Document], route_name: str):
route_key_name = 'route'
for doc in docs:
doc.metadata[route_key_name] = route_name
doc.excluded_embed_metadata_keys.append(route_key_name)
doc.excluded_llm_metadata_keys.append(route_key_name)
def add_to_index(documents: [Document],
collection_name: str,
overwrite: bool = False,
node_parser: NodeParser = None):
if not node_parser:
node_parser = SentenceSplitter.from_defaults(chunk_size=512, chunk_overlap=50)
environment = os.getenv('EXECUTION_ENV', 'local')
if environment == 'local':
milvus_vector_store = MilvusVectorStore(collection_name=collection_name,
dim=embedding_dimension,
overwrite=overwrite)
else:
milvus_vector_store = MilvusVectorStore(collection_name=collection_name,
uri=Secret.load('zilliz-cloud-uri').get(),
token=Secret.load('zilliz-cloud-api-key').get(),
dim=embedding_dimension,
overwrite=overwrite)
storage_context = StorageContext.from_defaults(vector_store=milvus_vector_store)
service_context = ServiceContext.from_defaults(embed_model=embeddings,
node_parser=node_parser,
llm=None)
VectorStoreIndex.from_documents(documents,
storage_context=storage_context,
service_context=service_context,
show_progress=True)
def index_github_repo(owner: str,
repo: str,
branch: str,
collection_name: str,
ignore_file_extensions: [str] = None,
ignore_directories: [str] = None,
):
if ignore_file_extensions is None:
ignore_file_extensions = ['.jpg', '.png', '.gitignore', '.csv']
if ignore_directories is None:
ignore_directories = ['.github', '.gitignore', '2021', '2022', 'images']
documents = GithubRepositoryReader(
owner=owner,
repo=repo,
github_token=Secret.load('github-token').get(),
ignore_file_extensions=ignore_file_extensions,
ignore_directories=ignore_directories,
).load_data(branch=branch)
for doc in documents:
doc.metadata['branch'] = branch
doc.metadata['owner'] = owner
doc.metadata['repo'] = repo
add_route_to_docs(documents, 'github')
add_to_index(documents, collection_name=collection_name)
def index_slack_history(channel_ids: [str], earliest_date: datetime, collection_name: str):
slack_reader = SlackReader(earliest_date=earliest_date,
bot_user_id=BOT_USER_ID,
not_ignore_users=[AU_TOMATOR_USER_ID],
slack_token=Secret.load('slack-bot-token').get())
documents = slack_reader.load_data(channel_ids=channel_ids)
add_route_to_docs(documents, 'slack')
add_to_index(documents,
collection_name=collection_name,
overwrite=False,
)
def index_faq(document_ids: [str], collection_name: str, question_heading_style_num: int):
temp_creds = tempfile.NamedTemporaryFile()
creds_dict = GcpCredentials.load("google-drive-creds").service_account_info.get_secret_value()
with open(temp_creds.name, 'w') as f_out:
json.dump(creds_dict, f_out)
gdocs_reader = FAQGoogleDocsReader(service_account_json_path=temp_creds.name,
question_heading_style_num=question_heading_style_num)
documents = gdocs_reader.load_data(document_ids=document_ids)
temp_creds.close()
add_route_to_docs(documents, 'faq')
add_to_index(documents,
collection_name=collection_name,
overwrite=True,
)
| [] |
2024-01-10 | rivosinc/plct-gem5 | configs~example~gem5_library~riscv-ubuntu-run.py | # Copyright (c) 2021 The Regents of the University of California
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
This script shows an example of running a full system RISCV Ubuntu boot
simulation using the gem5 library. This simulation boots Ubuntu 20.04 using
2 TIMING CPU cores. The simulation ends when the startup is completed
successfully.
Usage
-----
```
scons build/RISCV/gem5.opt
./build/RISCV/gem5.opt \
configs/example/gem5_library/riscv-ubuntu-run.py
```
"""
import m5
from m5.objects import Root
from gem5.utils.requires import requires
from gem5.components.boards.riscv_board import RiscvBoard
from gem5.components.memory import DualChannelDDR4_2400
from gem5.components.processors.simple_processor import (
SimpleProcessor,
)
from gem5.components.processors.cpu_types import CPUTypes
from gem5.isas import ISA
from gem5.coherence_protocol import CoherenceProtocol
from gem5.resources.resource import Resource
from gem5.simulate.simulator import Simulator
# This runs a check to ensure the gem5 binary is compiled for RISCV.
requires(
isa_required=ISA.RISCV,
)
# With RISCV, we use simple caches.
from gem5.components.cachehierarchies.classic\
.private_l1_private_l2_cache_hierarchy import (
PrivateL1PrivateL2CacheHierarchy,
)
# Here we setup the parameters of the l1 and l2 caches.
cache_hierarchy = PrivateL1PrivateL2CacheHierarchy(
l1d_size="16kB",
l1i_size="16kB",
l2_size="256kB",
)
# Memory: Dual Channel DDR4 2400 DRAM device.
memory = DualChannelDDR4_2400(size = "3GB")
# Here we setup the processor. We use a simple processor.
processor = SimpleProcessor(
cpu_type=CPUTypes.TIMING,
isa=ISA.RISCV,
num_cores=2,
)
# Here we setup the board. The RiscvBoard allows for Full-System RISCV
# simulations.
board = RiscvBoard(
clk_freq="3GHz",
processor=processor,
memory=memory,
cache_hierarchy=cache_hierarchy,
)
# Here we set the Full System workload.
# The `set_kernel_disk_workload` function for the RiscvBoard accepts a
# RISCV bootloader and a disk image. Once the system successfully boots, it
# encounters an `m5_exit instruction encountered`. We stop the simulation then.
# When the simulation has ended you may inspect `m5out/system.pc.com_1.device`
# to see the stdout.
board.set_kernel_disk_workload(
# The RISCV bootloader will be automatically downloaded to the
# `~/.cache/gem5` directory if not already present.
# The riscv-ubuntu boot-test was tested with riscv-bootloader-5.10
kernel=Resource(
"riscv-bootloader-vmlinux-5.10",
),
# The RISCV ubuntu image will be automatically downloaded to the
# `~/.cache/gem5` directory if not already present.
disk_image=Resource(
"riscv-ubuntu-20.04-img",
),
)
simulator = Simulator(board=board)
simulator.run()
| [] |
2024-01-10 | davidlones/bin | sol.py | #!/usr/bin/env python3
import sys
import time
from tqdm import tqdm
import openai
import os
import argparse
from sklearn.metrics.pairwise import cosine_similarity
import concurrent.futures
import pickle
from dotenv import load_dotenv
__version__ = '0.0.2'
def save_conversation_history(messages):
with open('~/conversation_history.pkl', 'wb') as f:
pickle.dump(messages, f)
def load_conversation_history():
try:
with open('~/conversation_history.pkl', 'rb') as f:
return pickle.load(f)
except FileNotFoundError:
return []
def call_openai_with_retry(messages):
retries = 5
for i in range(retries):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k-0613",
messages=messages,
max_tokens=50,
temperature=0.4,
)
return response
except openai.error.RateLimitError:
wait_time = 2 ** i
print(f"Rate limit hit, retrying after {wait_time} seconds.")
time.sleep(wait_time)
raise Exception("Failed after retries")
def get_embedding(text_string):
response = openai.Embedding.create(
model="text-embedding-ada-002",
input=text_string
)
return response['data'][0]['embedding']
def chunk_text(text_string, chunk_size=1000):
return [text_string[i:i+chunk_size] for i in range(0, len(text_string), chunk_size)]
def generate_context(content, chunk_size, user_question):
messages = []
chunks = chunk_text(content, chunk_size)
for chunk in chunks:
messages.append({
"role": "system",
"content": f"The user will ask: '{user_question}'. The answer might be in the following data: {chunk}"
})
return messages
def generate_context_from_file(file_path, chunk_size, user_question):
with open(file_path, 'r') as file:
file_content = file.read()
return generate_context(file_content, chunk_size, user_question)
def generate_context_from_string(string, chunk_size, user_question):
return generate_context(string, chunk_size, user_question)
def get_all_files(exclude_dirs, extensions, recursive, verbose=True):
all_files = []
if verbose:
print("Starting file listing. This might take a while if there are a lot of directories...")
with tqdm(desc="Listing files", disable=not verbose) as pbar:
for dirpath, dirnames, filenames in os.walk(os.getcwd()):
pbar.update(1)
if any(dirpath.startswith(edir) for edir in exclude_dirs):
continue
for filename in filenames:
if extensions:
if any(filename.endswith(ext) for ext in extensions):
filepath = os.path.join(dirpath, filename)
all_files.append(filepath)
else:
filepath = os.path.join(dirpath, filename)
all_files.append(filepath)
if not recursive:
break
return all_files
def load_or_generate_embeddings(all_files, verbose=True):
try:
with open('~/embeddings.pkl', 'rb') as f:
file_embeddings = pickle.load(f)
except FileNotFoundError:
file_embeddings = {}
total_files = len(all_files)
with tqdm(total=total_files, desc="Generating embeddings", disable=not verbose) as pbar:
for filepath in all_files:
try:
current_timestamp = os.path.getmtime(filepath)
if filepath not in file_embeddings or file_embeddings[filepath][2] != current_timestamp:
with open(filepath, 'r') as file:
file_content = file.read()
chunks = chunk_text(file_content)
embeddings = generate_embeddings(chunks)
for i, embedding in enumerate(embeddings):
file_embeddings[filepath] = (i, embedding, current_timestamp)
pbar.update(1)
except:
pbar.set_postfix_str(f"Skipped file {filepath}.") # Skip files that can't be read as text
for filepath in list(file_embeddings): # Use list to avoid changing the dictionary size during iteration
if not os.path.exists(filepath):
del file_embeddings[filepath]
# Save embeddings to local database
with open('~/embeddings.pkl', 'wb') as f:
pickle.dump(file_embeddings, f)
return file_embeddings
def generate_embeddings(chunks):
with concurrent.futures.ThreadPoolExecutor(max_workers=60) as executor:
futures = {executor.submit(get_embedding, chunk) for chunk in chunks}
embeddings = []
for future in concurrent.futures.as_completed(futures):
try:
embeddings.append(future.result())
except Exception as exc:
print(f'An exception occurred: {exc}')
return embeddings
def generate_context_from_files(file_embeddings, user_question):
messages = []
query_embedding = get_embedding(user_question)
# Calculate the similarity between the query embedding and each file embedding
similarities = []
for filepath, (chunk_index, chunk_embedding, current_timestamp) in file_embeddings.items():
similarity = cosine_similarity([query_embedding], [chunk_embedding])[0][0]
similarities.append((filepath, chunk_index, similarity))
# Sort by similarity and select the top 20 most similar file chunks
similarities.sort(key=lambda x: x[2], reverse=True)
top_similarities = similarities[:20]
# Include the contents of the top similar file chunks as context
parts = []
for filepath, chunk_index, similarity in top_similarities:
with open(filepath, 'r') as file:
file_content = file.read()
chunks = chunk_text(file_content)
selected_chunk = chunks[chunk_index].strip() # Remove leading and trailing whitespace, including new lines
parts.append(selected_chunk)
context = ', '.join(f'"{part}"' for part in parts)
messages.append({"role": "system", "content": f"The user will ask: '{user_question}'. The answer might be in the following data: {context}"})
return messages
def main():
# Load environment variables from .env.
load_dotenv()
# Set your OpenAI API key
openai.api_key = os.getenv('OPENAI_API_KEY')
# Set up argument parser
parser = argparse.ArgumentParser(description='Generate embeddings for files and find the most similar ones to a query.')
parser.add_argument('question', help='The user question.')
parser.add_argument('--show-history', action='store_true', help='Show conversation history.')
parser.add_argument('--no-context', action='store_true', help='Ask the question without any context.')
parser.add_argument('--recursive', action='store_true', help='Enable recursive search. If not provided, the search will be limited to the current directory.')
parser.add_argument('--extensions', nargs='*', default=[], help='A list of file extensions to include.')
parser.add_argument('--exclude', nargs='*', default=[], help='A list of directories to exclude.')
parser.add_argument('--file', default=None, help='Path to a text file to use as context.')
parser.add_argument('--string', default=None, help='A string to use as context.')
parser.add_argument('-v', '--verbose', action='store_true', help='Enable verbose output.')
parser.add_argument('--version', action='version', version=f'Sol v{__version__}')
args = parser.parse_args()
# Get the user's question from the command line arguments
user_question = args.question
# Load conversation history
messages = load_conversation_history()
# Show conversation history if --show-history flag is set
if args.show_history:
user_counter = 1
assistant_counter = 1
# Take the 10 most recent messages
recent_messages = messages[-10:]
for message in recent_messages:
role = message['role']
content = message['content']
if role == 'system':
continue
elif role == 'user':
print(f"User Message {user_counter}:")
user_counter += 1
elif role == 'assistant':
print(f"Assistant Message {assistant_counter}:")
assistant_counter += 1
print(f" {content}\n")
# If there's no conversation history, start a new conversation
if len(messages) == 0:
messages.append({"role": "system", "content": "You are a helpful CLI assistant, so advanced that you typically know the answer before the user asks the question."})
# If a file path is provided, generate context from file
if args.file is not None:
file_messages = generate_context_from_file(args.file, user_question)
messages.extend(file_messages)
# If a string is provided, generate context from string
elif args.string is not None:
string_messages = generate_context_from_string(args.string, user_question)
messages.extend(string_messages)
# If neither file nor string is provided, generate context from files in the directory tree
else:
verbose = not os.path.exists('~/embeddings.pkl')
all_files = get_all_files(args.exclude, args.extensions, args.recursive, args.verbose)
file_embeddings = load_or_generate_embeddings(all_files, args.verbose)
file_messages = generate_context_from_files(file_embeddings, user_question)
messages.extend(file_messages)
# Add the user's question to the messages
messages.append({"role": "user", "content": user_question})
#print(messages)
# Generate a completion using OpenAI's chat-based language model
try:
response = call_openai_with_retry(messages)
# Retrieve and print the assistant's reply
assistant_reply = response.choices[0].message['content']
print()
print(assistant_reply)
# Save conversation history
messages.append({"role": "assistant", "content": assistant_reply})
save_conversation_history(messages)
except Exception as e:
print(f"Error occurred: {e}")
if __name__ == "__main__":
main()
| [
"The user will ask: 'PLACEHOLDER'. The answer might be in the following data: PLACEHOLDER",
"You are a helpful CLI assistant, so advanced that you typically know the answer before the user asks the question."
] |
2024-01-10 | davidlones/bin | sol-cs.py | from flask import Flask, request, jsonify, make_response
import openai
import os
import subprocess
from flask_cors import CORS
from werkzeug.serving import run_simple
# Set your OpenAI API key
openai.api_key = os.getenv('OPENAI_API_KEY')
app = Flask(__name__)
CORS(app, origins=["http://dl.system42.one/"])
@app.route('/api', methods=['POST', 'OPTIONS'])
def chat():
if request.method == 'OPTIONS':
# This is a preflight request. Reply successfully:
response = make_response()
response.headers.add("Access-Control-Allow-Origin", "*")
response.headers.add('Access-Control-Allow-Headers', "*")
response.headers.add('Access-Control-Allow-Methods', "*")
return response
# This is the actual request. Handle it as usual:
if request.is_json:
data = request.get_json()
message = data.get('message', '') # Use empty string as default value if 'message' is not provided
# load services.html from file
with open('../davidlones.github.io/services.html', 'r') as file:
services_html = file.read()
# Call OpenAI API here with the message
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are Sol, a helpful assistant designed by David to help him help others. You take a customers description of their problem and respond with the body of an email detailing the issue and what services David can provide."},
{"role": "assistant", "content": f"I will take the customers description of their problem and respond with the well formated body of an email to send to David, detailing a description of the customers issue, a list of possible services we could provide based on their issues and the content our webpage\n---\n{services_html}\n---\n and the dollar amount we could charge the customer for our services, to be sent to David to review later today."},
{"role": "user", "content": f"A customer has written to us the following:\n---\n{message}\n---\n Write an email to David using the following email format: '\n\nHi David,\n\nI hope you are having a great day!\n\nI am writing to you today because I have a customer who is experiencing the following issue:\n\n<summerization of the customers description of their issue>\n\nI believe we could provide the following services to help them:\n\n<list of services the we offer that apply to the customers needs>\n\nI believe we could charge the customer the following amount for our services:\n\n<amount>\n\nPlease review this request and let me know what you think.\n\nBest,\n\nYour Helpful Assistant, Sol\n\n'"},
]
)
email_message = response['choices'][0]['message']['content']
print(email_message)
# Call OpenAI API here with the message
response2 = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are Sol, a helpful assistant designed by David to help him help others. We've just taken a customers description of their problem and written the body of an email detailing the issue and what services David can provide. You are to take that e-mail and summarize it for the customer, only relaying the information that is relevant to them, in a chat conversation."},
{"role": "assistant", "content": f"I am ready to review the email we wrote to David so I can summarize the email for the customer, only relaying the information that is relevant to them. For context, here's the content of our webpage\n---\n{services_html}\n---\n"},
{"role": "user", "content": f"A customer has written to us the following:\n---\n{message}\n---\nHere is the email we wrote to David:\n---\n{email_message}\n---\nPlease summarize the email for the customer, only relaying the information that is relevant to them, and respond to them in the chat. Emphasize in your message the general expected price and a basic overview of our services that match. State that exact pricing may vary based on the customers specific needs and that we will provide a more accurate quote after we have a chance to review their issue in more detail. Provide my email address to the customer so they can contact me directly if they have any questions."},
]
)
assistant_message = response2['choices'][0]['message']['content']
print("User Message: ", message)
print("API Response: ", assistant_message) # print API response to terminal
response2 = jsonify({'message': assistant_message})
response2.headers.add("Access-Control-Allow-Origin", "*")
return response2
else:
return make_response(jsonify({'error': 'Invalid request'}), 415)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8042) | [
"I will take the customers description of their problem and respond with the well formated body of an email to send to David, detailing a description of the customers issue, a list of possible services we could provide based on their issues and the content our webpage\n---\nPLACEHOLDER\n---\n and the dollar amount we could charge the customer for our services, to be sent to David to review later today.",
"A customer has written to us the following:\n---\nPLACEHOLDER\n---\n Write an email to David using the following email format: '\n\nHi David,\n\nI hope you are having a great day!\n\nI am writing to you today because I have a customer who is experiencing the following issue:\n\n<summerization of the customers description of their issue>\n\nI believe we could provide the following services to help them:\n\n<list of services the we offer that apply to the customers needs>\n\nI believe we could charge the customer the following amount for our services:\n\n<amount>\n\nPlease review this request and let me know what you think.\n\nBest,\n\nYour Helpful Assistant, Sol\n\n'",
"I am ready to review the email we wrote to David so I can summarize the email for the customer, only relaying the information that is relevant to them. For context, here's the content of our webpage\n---\nPLACEHOLDER\n---\n",
"A customer has written to us the following:\n---\nPLACEHOLDER\n---\nHere is the email we wrote to David:\n---\nPLACEHOLDER\n---\nPlease summarize the email for the customer, only relaying the information that is relevant to them, and respond to them in the chat. Emphasize in your message the general expected price and a basic overview of our services that match. State that exact pricing may vary based on the customers specific needs and that we will provide a more accurate quote after we have a chance to review their issue in more detail. Provide my email address to the customer so they can contact me directly if they have any questions.",
"You are Sol, a helpful assistant designed by David to help him help others. We've just taken a customers description of their problem and written the body of an email detailing the issue and what services David can provide. You are to take that e-mail and summarize it for the customer, only relaying the information that is relevant to them, in a chat conversation.",
"You are Sol, a helpful assistant designed by David to help him help others. You take a customers description of their problem and respond with the body of an email detailing the issue and what services David can provide."
] |
2024-01-10 | Deiolly/jabberwocky | scripts~s01_fetch_sample_responses.py | """Make a bunch of API calls and save sample GPT responses. This is useful for
testing, particularly with paid backends, where we want to repeatedly test our
functions on a variety of different parameter configurations without spending
a lot. Should hopefully only need to run this once.
Note: this is currently only for gooseai/openai, but might be nice to
eventually expand it to use any query_function. Even though others are free,
could be a good way to avoid the messy ad-hoc querying I've used so far during
development.
"""
from jabberwocky.openai_utils import GPTBackend
import openai
from htools.cli import fire, module_docstring
from htools.core import save
gpt = GPTBackend()
txts = ['Yesterday was', 'How many']
@module_docstring
def main(backend='gooseai'):
"""Currently tests combinations of 3 different scenarios:
1. Single prompt vs multiple prompts (np)
2. Single completion per prompt vs. multiple completions (nc)
3. Streaming mode vs static responses (streamed responses are converted to
lists since we can't easily pickle generators)
The resulting dict is pickled to data/misc. As of 4/10/22, we have 8 keys
(3 parameters ^ 2 possible values = 8) and keys are a tuple of 3 booleans
in specifying whether a query used multiple prompts, whether it requested
multiple completions, and whether it was in streaming mode. For example:
# Get sample response for multiple inputs, multiple outputs,
# non-streaming mode. Think of indexing as data[np, nc, stream].
data = load('data/misc/gooseai_sample_responses.pkl')
data[True, True, False)
"""
if backend not in ('gooseai', 'openai'):
raise NotImplementedError(
f'This script does not currently support backend={backend}.'
)
gpt.switch(backend)
# Key: (multi_in, multi_out, stream)
responses = {}
for multi_in in (True, False):
for multi_out in (True, False):
for stream in (True, False):
prompt = txts if multi_in else txts[0]
nc = 1 + multi_out
print(prompt, nc, stream)
res = openai.Completion.create(
prompt=prompt,
engine=GPTBackend.engine(0),
max_tokens=3,
logprobs=3,
n=nc,
stream=stream
)
if stream: res = list(res)
responses[multi_in, multi_out, stream] = res
save(responses, f'data/misc/{backend}_sample_responses.pkl')
return responses
if __name__ == '__main__':
fire.Fire(main)
| [] |
2024-01-10 | mike4263/fim | fim.py | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
import uuid as uuid_stdlib
import logging
import re
import os
import glob
import random
import sys
import secrets
from pathlib import Path
import toml as toml
# from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker, relationship, declarative_base
from sqlalchemy.sql.expression import func
from sqlalchemy import (
Column,
Integer,
String,
Boolean,
ForeignKey,
create_engine
)
import datetime
from prompt_toolkit import prompt
import argparse
import toml
import openai
""" fim - fortune improved """
log = logging.getLogger(__name__)
log.addHandler(logging.StreamHandler(sys.stdout))
# logging.basicConfig(level=logging.ERROR)
log.setLevel(logging.INFO)
Session = sessionmaker()
Base = declarative_base()
# this is my homebrew id generator for bucket id generatio
i = 0
def mydefault():
global i
i += 1
return i
class Bucket(Base):
""" Epigrams belong to a single bucket, which is used to classify content.
Buckets are categories and the primary mechanism of organization within
FIM. They will typically map to a single content source (e.g. fortune
text file), however this is not a requirement.
Buckets are the primary mechanism used by the "Bucket Sort" algothorim.
See the readme for the details
"""
__tablename__ = 'bucket'
bucket_id = Column(Integer, primary_key=True)
name = Column(String(50))
item_weight = Column(Integer, default=1)
# def __init__(self, name, **kwargs):
# super()
# self.name = name
# self.bucket_id = mydefault()
def __str__(self):
return f"<Bucket bucket_id={self.bucket_id}, name={self.name}>"
def generate_uuid():
return str(uuid_stdlib.uuid4())
class Epigram(Base):
""" This is the basic unit of content in fim.
An epigram is a brief, interesting, memorable, and sometimes surprising
or satirical statement. The word is derived from the Greek: ἐπίγραμμα
epigramma "inscription" from ἐπιγράφειν epigraphein "to write on, to
inscribe", and the literary device has been employed for over two
millennia.
BTW 'epigram' was directly lifted from the fortune man page *shrugs*.
"""
__tablename__ = 'epigram'
epigram_uuid = Column(
String, default=generate_uuid(), primary_key=True)
bucket = relationship("Bucket", backref="epigram")
bucket_id = Column(Integer, ForeignKey("bucket.bucket_id"))
created_date = Column(String, default=datetime.datetime.now())
modified_date = Column(String)
last_impression_date = Column(String)
content_source = Column(String)
content_text = Column(String)
content = Column(String)
# where the content originated from, (i.e. intro blog post)
source_url = Column(String)
# used with content_type (i.e. asciicast overview)
action_url = Column(String)
context_url = Column(String) # deep dive info link (i.e. github repo)
gpt_completion = Column(String)
def __init__(self, **kwargs):
self.epigram_uuid = generate_uuid()
if 'content' in kwargs:
self.content = kwargs['content']
if 'bucket' in kwargs:
self.bucket = kwargs['bucket']
self.bucket_id = self.bucket.bucket_id
# if 'uuid' not in kwargs:
def __str__(self):
return f"<Epigram epigram_uuid={self.epigram_uuid}, " + \
f"bucket_id={self.bucket_id}, " + \
f"bucket={self.bucket}>"
@classmethod
def generate_uuid(cls):
return str(uuid_stdlib.uuid1())
class Impression(Base):
""" Track the views for each epigram """
__tablename__ = 'impression'
impression_id = Column(Integer, primary_key=True)
bucket_id = Column(Integer, ForeignKey("bucket.bucket_id"))
bucket = relationship("Bucket", backref="impression")
epigram_uuid = Column(String, ForeignKey("epigram.epigram_uuid"))
epigram = relationship("Epigram", backref="impression")
impression_date = Column(String)
saved = Column(Boolean)
gpt_completion = Column(String)
def __init__(self, **kwargs):
if 'epigram' in kwargs:
self.epigram = kwargs['epigram']
self.epigram_uuid = self.epigram.epigram_uuid
self.impression_date = datetime.datetime.now()
if self.epigram.bucket is not None:
self.bucket = self.epigram.bucket
self.bucket_id = self.bucket.bucket_id
def __str__(self):
return f"<Impression impression_id={self.impression_id}, " + \
f"epigram_uuid={self.epigram_uuid}, " + \
f"bucket_id={self.bucket_id}, " + \
f"bucket={self.bucket}>"
class BaseImporter():
""" Base class for all of the content type """
def __init__(self, uri):
pass
def process(self):
yield None
class FortuneFileImporter(BaseImporter):
""" This file handles the loading of epigram from files in the legacy
fortune format. This is a simple structure with content delimited by
% characters on single markers. Like:
redfish
%
bluefish
%
onefish
twofish
%
something else
%
Positional Arguments:
- uri (str) - the file path to the fortunes. If this is a directory,
then the entire directory will be loaded
Keyword Arguments:
- bucket (Bucket) - the bucket that this fortune file should belone to
if not specified, this is the the basename of the
of the file w\\o extension
"""
def __init__(self, uri, bucket=None):
if not os.path.exists(uri):
raise AttributeError(f"File {uri} does not exist")
# normalize this
uri = os.path.realpath(uri)
if os.path.isdir(uri):
self._filenames = glob.glob(uri + "/*")
log.debug(self._filenames)
elif os.path.isfile(uri):
self._filenames = [uri]
else:
raise RuntimeError("Unexpected filetype for " + uri)
self._bucket = bucket
def process(self):
for fname in self._filenames:
with open(fname, 'r') as fortune_file:
bucket = None
if self._bucket is None:
bucket = self._determine_bucket(fname)
else:
bucket = self._bucket
for snippet in self.process_fortune_file(fortune_file.read()):
yield Epigram(content=snippet, bucket=bucket)
def _determine_bucket(self, file_name):
base_name = os.path.basename(file_name)
bucket_name = os.path.splitext(base_name)[0]
return Bucket(name=bucket_name)
@classmethod
def process_fortune_file(cls, file_contents):
delimiter = re.compile(r'^%$')
e = ''
for f in file_contents.split("\n"):
if re.search(delimiter, f):
yield e.rstrip()
e = ""
else:
e += f + "\n"
class SoloEpigramImporter(BaseImporter):
""" Add a single epigram """
def __init__(self, epigram):
self._epigram = epigram
def process(self):
yield self._epigram
class EpigramStore():
""" This class encapsulates the internal datastore (SQLite)"""
ERROR_BUCKET = Bucket(bucket_id=123, name="error")
NO_RESULTS_FOUND = Epigram(
content="Your princess is in another castle. (404: File Not Found) ", bucket_id=123)
GENERAL_ERROR = Epigram(content="Always bring a towel (500: General Error)", bucket_id=123)
SQL_DIR = "sql"
def __init__(self, filename):
""" Construct the store (connect to db, optionally retrieve all rows)
Positional Arguments:
filename (str) - the path to the SQLite database
Optional Params:
force_random (Bool) -
"""
self._filename = filename
db_uri = 'sqlite:///' + self._filename
self._engine = create_engine(db_uri, echo=False)
log.debug("Initializing db" + db_uri)
Session.configure(bind=self._engine)
self._session = Session()
Base.metadata.create_all(self._engine)
self._load_sql_files()
def _load_sql_files(self, file_dir=SQL_DIR):
uri = os.path.realpath(file_dir)
if os.path.isdir(uri):
sql_files = glob.glob(uri + "/*")
elif os.path.isfile(uri):
sql_files = [uri]
else:
raise RuntimeError("FileNotFound: " + uri)
sql_files.sort()
for fname in sql_files:
with open(fname, 'r') as sql_text:
log.debug(f"Processing %s file" % (fname))
self._execute_sql(sql_text.read())
def _execute_sql(self, sql_text):
with self._engine.connect() as conn:
conn.exec_driver_sql(sql_text)
# onn self._engine.execute(sql_text)
def _get_weighted_bucket(self):
"""
Using the patented BucketSort(TM) Technology this queries the impressions_calculated
table. This factors in the relative weights of each bucket compared to its actual
impressions. Buckets that have exceeded their allowable view percentage are excluded
from selection.
The selection itself is using the random.choice() method based on the probabilities
:return: the bucket_id to use in the get epigram query
"""
rs = []
with self._engine.connect() as conn:
rs = conn.exec_driver_sql("""
select bucket_id, effective_impression_percentage from impressions_calculated
where impression_delta >= 0
""").all()
buckets = []
probabilties = []
for row in rs:
buckets.append(row[0])
probabilties.append(row[1])
try:
bucket = random.choices(buckets, weights=probabilties)[0]
return bucket
except:
return None
def get_epigram_impression(self, uuid=None, internal_fetch_ratio=0.1, force_random=True, bucket_name=None,
bucket=None):
""" Get a epigram considering filter criteria and weight rules
Keyword Arguments:
uuid (str) - return this specific epigram
internal_fetch_ratio (int) - see the README.adoc for info on the
weighting algorithm
bucket_name (str) - the natural key for the buckets
bucket - a bucket object
Return:
An Epigram (obviously)
"""
q = self._session.query(Epigram).join(Bucket) \
.filter(func.length(Epigram.content) < 300) \
.order_by(Epigram.last_impression_date.asc())
if bucket_name is not None:
q = q.filter(Bucket.name == bucket_name)
else:
bucket = self._get_weighted_bucket()
if bucket is not None:
q = q.filter_by(bucket_id=bucket)
if force_random == True:
rowCount = q.count() * internal_fetch_ratio * random.random()
log.debug(f"offsetting by %s rows" % rowCount)
q = q.offset(int(rowCount))
# x = q.first()
x = q.first()
log.debug(f"Retrieved Epigram {x}")
if x is None:
return Impression(epigram=self.NO_RESULTS_FOUND)
else:
imp = self.add_impression(x)
return imp
def get_last_impression(self):
q = self._session.query(Impression).join(Epigram) \
.order_by(Epigram.last_impression_date.desc())
return q.first()
def add_epigram(self, epigram):
""" Add an epigram to the store
Positional Arguments:
epigram - the epigram to add
Returns: the newly generated epigram
"""
solo = SoloEpigramImporter(epigram)
self.add_epigrams_via_importer(solo)
def add_epigrams_via_importer(self, importer):
""" Method that does stuff
Positional Arguments:
content (str) - the plain text content of the epigram
Keyword Arguments:
uuid (str) - a unique id for the item (generated if blank)
Return:
object (str) - desc
"""
for e in importer.process():
log.debug("Inserting Epigram " + str(e))
self._session.add(e)
self._session.commit()
def add_impression(self, epigram):
""" Add the impression for the epigram
Positional Arguments:
epigram (Epigram) - the epigram viewed
"""
imp = Impression(epigram=epigram)
log.debug(f"Impression tracked - {imp}")
epigram.last_impression_date = datetime.datetime.now()
self._session.add(imp)
self._session.commit()
return imp
def get_impression_count(self, bucket_name=None, unique=False):
"""
This function will retrieve a count of the impressions. By default,
it will return the number of all impressions. You can filter via
these keyword arguments:
* epigram_uuid (not implemented)
* bucket_name (str) - constrain to a single bucket
* unique (bool) - only count unique impressions
"""
q = self._session.query(Impression).join(Bucket)
if bucket_name is not None:
q = q.filter(Bucket.name == bucket_name)
return q.count()
def get_bucket(self, bucket_name):
"""
Retrieve the Bucket specified by the name
:return: a Bucket object
"""
return self._session.query(Bucket).filter(Bucket.name == bucket_name).first()
def get_buckets(self):
"""
Retrieve all the Buckets in the system
"""
return self._session.query(Bucket).all()
def commit(self):
return self._session.commit()
class FIM():
_db = None
""" This class """
pass
def __init__(self, **kwargs):
self._load_db()
def _load_db(self):
CONTAINER_PATH = "/var/fim/fim.db"
HOME_DIR = str(Path.home()) + "/.fim/fim.db"
if os.path.exists(CONTAINER_PATH):
# this is a container with a mounted fim dir
self._db = EpigramStore(CONTAINER_PATH)
elif os.path.exists(HOME_DIR):
self._db = EpigramStore(HOME_DIR)
else:
# This means we are running inside of the container
self._db = EpigramStore("/app/fim.db", force_random=True)
def import_fortune(self, path):
self._db.add_epigrams_via_importer(
FortuneFileImporter(path))
def get_epigram_impression(self, bucket_name):
return self._db.get_epigram_impression(bucket_name=bucket_name)
def get_last_impression(self):
return self._db.get_last_impression()
def save_gpt_output(self, impression: Impression, output):
impression.gpt_completion = output
self.commit_db()
def commit_db(self):
self._db.commit()
def console(args):
print("console")
class OpenAI():
EXPLAIN_PROMPT = """
This output is from an application that is designed to display pithy, insightful, meaningful epigrams to users.
Please explain this epigram, including any information about individuals referenced within, explaining the humor,
identifying the origin. If possible, cite any references of this in popular culture.
"""
MODEL = 'gpt-3.5-turbo'
#MODEL = 'gpt-4'
def __init__(self, api_key):
openai.api_key = api_key
self.messages = []
def complete_epigram(self, epigram):
self.messages.append({"role": "user", "content": self.EXPLAIN_PROMPT})
self.messages.append({"role": "user", "content": "The epigram comes from a file called " + epigram.bucket.name})
self.messages.append({"role": "user", "content": epigram.content})
return self._send_message()
def chat(self, chat_prompt):
self.messages.append({"role": "user", "content": chat_prompt})
return self._send_message()
def _send_message(self):
completion = openai.ChatCompletion.create(model=self.MODEL, messages=self.messages)
log.debug(completion)
choices = completion.choices[0]
# self.messages.append(completion.choices[0])
return completion.choices[0].message.content
def context(openai_api, imp, chat=False):
gpt = OpenAI(openai_api)
output = gpt.complete_epigram(imp.epigram)
print(fmt(output))
print()
if chat:
print(r'''
ENTERING Chat Session ( quit ) to exit, Ctrl+Enter to send
''')
while chat:
input_prompt = prompt('Enter prompt: ', multiline=True, vi_mode=True)
if input_prompt == "quit":
chat = False
else:
print()
print(fmt(gpt.chat(input_prompt)))
print()
def fmt(text, width=78, indent=2):
lines = text.split('\n')
formatted_lines = []
current_line = ''
for line in lines:
words = line.split()
for word in words:
if len(current_line) + len(word) + 1 <= width - indent:
current_line += word + ' '
else:
formatted_lines.append(' ' * indent + " > " + current_line.rstrip())
current_line = word + ' '
if current_line:
formatted_lines.append(' ' * indent + " > " + current_line.rstrip())
current_line = ''
return '\n'.join(formatted_lines)
def print_epigram(epigram):
print()
print(epigram.content)
print()
def main():
parser = argparse.ArgumentParser(prog='fim.py')
parser.add_argument('--openai', nargs=1, help="Your OpenAI API Token")
parser.add_argument('--gpt', help="Query ChatGPT to get context about this epigram", action="store_true")
parser.add_argument('--bucket', help="constrain searches to this bucket")
subparsers = parser.add_subparsers(dest='command')
import_parser = subparsers.add_parser('import')
import_parser.add_argument('source_type', choices=['fortune'])
import_parser.add_argument('path', help='path to the file or directory to import', metavar='PATH')
console_parser = subparsers.add_parser('console')
console_parser.set_defaults(func=console)
context_parser = subparsers.add_parser('context')
context_parser.add_argument('--openai', nargs=1, help="Your OpenAI API Token")
# context_parser.add_argument('context_type', choices=['gpt','dalle'])
save_parser = subparsers.add_parser('save')
chat_parser = subparsers.add_parser('chat')
args = parser.parse_args()
with open("fimrc") as f:
config = toml.load(f)
MAIN = 'main'
openai_env = os.environ['OPENAI_ACCESS_TOKEN']
if (args.openai != None):
openai_api = args.openai[0]
elif (openai_env != None):
openai_api = openai_env
else:
openai_api = config[MAIN]['openai_token']
log.debug("OpenAI Token : " + openai_api)
fim = FIM()
if args.command == "import":
if args.source_type == 'fortune':
fim.import_fortune(args.path)
else:
raise NotImplemented()
elif args.command == "console":
console(args)
elif args.command == "context" or args.command == "chat":
imp = fim.get_last_impression()
print_epigram(imp.epigram)
chatMode = True if args.command == "chat" else False
output = context(openai_api, imp, chat=chatMode)
fim.save_gpt_output(imp, output)
elif args.command == "save":
imp = fim.get_last_impression()
imp.saved = True
fim.commit_db()
print_epigram(imp.epigram)
print(" ********* SAVED *********")
else:
e = fim.get_epigram_impression(args.bucket)
print_epigram(e.epigram)
if args.gpt:
context(openai_api, e)
if __name__ == '__main__':
main()
| [
"\n This output is from an application that is designed to display pithy, insightful, meaningful epigrams to users. \n Please explain this epigram, including any information about individuals referenced within, explaining the humor, \n identifying the origin. If possible, cite any references of this in popular culture. \n ",
"The epigram comes from a file called ",
"Enter prompt: "
] |
2024-01-10 | aRaikoFunakami/openai_voicechat | pdf2vector.py | '''
persist_directory に指定した場所に
files で指定した PDF ファイルの
vectorstore DB を保存する
model_name = "gpt-4-0613"
再利用する場合は下記のようにDBの保存場所をpersist_directoryに指定して呼び出す
例)
embeddings = OpenAIEmbeddings()
vectorstore = Chroma(embedding_function=embeddings, persist_directory="./chroma_split_documents")
'''
import os
import sys
import platform
import logging
import json
import openai
import chromadb
import langchain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader
def load_config():
args = sys.argv
config_file = os.path.dirname(__file__) + "/config.json" if len(args) <= 1 else args[1]
logging.info(config_file)
with open(config_file, 'r') as file:
config = json.load(file)
return {
"openai_api_key": config['openai_api_key'],
}
# Preprocessing for using Open AI
config = load_config()
openai.api_key = config["openai_api_key"]
os.environ["OPENAI_API_KEY"] = openai.api_key
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-0613")
embeddings = OpenAIEmbeddings()
# load pdf file
files = [
"NX350-NX250_UG_JP_M78364_1_2303.pdf",
"NX350-NX250_OM_JP_M78364V_1_2303.pdf",
"NX350-NX250_MM_JP_M78364N_1_2303.pdf",
]
# persist_directory="./chroma_split_documents"
persist_directory="./chroma_load_and_split"
pages = []
for file in files:
pdf_file = os.path.dirname(__file__) + f"/templates/{file}"
loader = PyPDFLoader(pdf_file)
# PyPDFLoaderのsplit機能をそのまま利用する場合
pages = pages + loader.load_and_split()
# chunk_size で指定したテキストに分割して利用する
#documents = loader.load_and_split()
#text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
#pages = pages + text_splitter.split_documents(documents)
print(len(pages))
# Stores information about the split text in a vector store
# 保存していたファイルとpagesの両方から vectorstore を作成する
# vectorstore.persist() で追加した pages のデータを含めてファイルにvector情報が保存される
# 連続で persist を呼び出すと
vectorstore = Chroma.from_documents(pages, embedding=embeddings, persist_directory=persist_directory)
vectorstore.persist() | [] |
2024-01-10 | aRaikoFunakami/openai_voicechat | openai_function_weather.py | import json
import os, logging
from typing import Any
import openai
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
import requests
"""
langchainのConversationalRetrievalChain.from_llmを利用する場合にはgpt-4でないと良い回答が得られない
"""
model_name = "gpt-3.5-turbo-0613"
# model_name = "gpt-4-0613"
# default_persist_directory = "./chroma_split_documents"
default_persist_directory = "./chroma_load_and_split"
# load config
def load_config():
config_file = os.path.dirname(__file__) + "/config.json"
config = None
with open(config_file, "r") as file:
config = json.load(file)
return config
#
# call by openai functional calling
#
def get_weather_info(latitude, longitude):
base_url = "https://api.open-meteo.com/v1/forecast"
parameters = {
"latitude": latitude,
"longitude": longitude,
# "current_weather": "true",
"hourly": "temperature_2m,relativehumidity_2m",
"timezone": "Asia/Tokyo",
}
response = requests.get(base_url, params=parameters)
if response.status_code == 200:
data = response.json()
logging.info(data)
return json.dumps(data)
else:
return None
#
# call by openai functional calling
#
weather_function = {
"name": "get_weather_info",
"description": "Get current weather from latitude and longitude information",
"parameters": {
"type": "object",
"properties": {
"latitude": {
"type": "string",
"description": "latitude",
},
"longitude": {
"type": "string",
"description": "longitude",
},
},
"required": ["latitude", "longitude"],
},
}
#
#
# Test codes: Verify that the registered function call is called as expected
#
#
def call_defined_function(message):
function_name = message["function_call"]["name"]
logging.debug("選択された関数を呼び出す: %s", function_name)
arguments = json.loads(message["function_call"]["arguments"])
if function_name == "get_weather_info":
return get_weather_info(
latitude=arguments.get("latitude"),
longitude=arguments.get("longitude"),
)
else:
return None
def non_streaming_chat(text):
# 関数と引数を決定する
try:
response = openai.ChatCompletion.create(
model=model_name,
messages=[{"role": "user", "content": text}],
functions=[weather_function],
function_call="auto",
)
except openai.error.OpenAIError as e:
error_string = f"An error occurred: {e}"
print(error_string)
return {"response": error_string, "finish_reason": "stop"}
message = response["choices"][0]["message"]
logging.debug("message: %s", message)
# 選択した関数を実行する
if message.get("function_call"):
function_response = call_defined_function(message)
#
# Returns the name of the function called for unit test
#
return message["function_call"]["name"]
else:
return "chatgpt"
template = """
条件:
- 50文字以内で回答せよ
入力文:
{}
"""
def chat(text):
logging.debug(f"chatstart:{text}")
config = load_config()
openai.api_key = config["openai_api_key"]
q = template.format(text)
return non_streaming_chat(q)
queries = [
["今日の東京の天気はどうですか?", "get_weather_info"],
["明日の大阪の天気を教えてください。", "get_weather_info"],
["週末の福岡の天気予報を知りたいです。", "get_weather_info"],
["来週の水曜日に札幌で雨が降る予報はありますか?", "get_weather_info"],
["今日の夜、名古屋で気温はどれくらいですか?", "get_weather_info"],
["What is the weather like in Tokyo today?", "get_weather_info"],
["Can you tell me the weather in Osaka tomorrow?", "get_weather_info"],
[
"I would like to know the weather forecast for Fukuoka this weekend.",
"get_weather_info",
],
["Will it rain in Sapporo next Wednesday?", "get_weather_info"],
["What is the temperature in Nagoya tonight?", "get_weather_info"],
]
def main():
logging.basicConfig(
level=logging.WARNING,
format="%(asctime)s - %(filename)s:%(funcName)s[%(lineno)d] - %(message)s",
)
for query in queries:
response = chat(query[0])
print(f"[{query[1] == response}] 期待:{query[1]}, 実際:{response}, 質問:{query[0]}")
if __name__ == "__main__":
main()
| [
"\n条件:\n- 50文字以内で回答せよ\n\n入力文:\n{}\n"
] |
2024-01-10 | ibizabroker/gpt-pdf-bot | ingest.py | import os
import chromadb
from langchain.vectorstores.chroma import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFDirectoryLoader
from dotenv import load_dotenv
load_dotenv()
def create_vector_db():
pdfs = PyPDFDirectoryLoader('./')
data = pdfs.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=4000,
chunk_overlap=100
)
texts = text_splitter.split_documents(data)
# print(texts)
persist_directory = 'db'
if not os.path.exists(persist_directory):
os.mkdir(persist_directory)
embeddings = OpenAIEmbeddings(
openai_api_key=os.getenv('OPENAI_API_KEY')
)
print(embeddings)
client_settings = chromadb.config.Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=persist_directory,
anonymized_telemetry=False
)
vectordb = Chroma.from_documents(
documents=texts,
embedding=embeddings,
collection_name='pdf_data',
client_settings=client_settings,
persist_directory=persist_directory
)
vectordb.persist()
return vectordb | [] |
2024-01-10 | im45145v/Emergency-Response-System | utils.py | import requests
import geocoder
import math
import pandas as pd
import cohere
API_KEY="d2bb4999c6964195b383526d9412b5c8"
# replace with your API token
base_url = "https://api.assemblyai.com/v2"
def get_coords(address):
g = geocoder.bing(address, key='Aowcdh3tB--xi-HGt95MZr7jCFWqDenSzKp0yDtC2AgfH_HstHkEBY2XkFgw9XW9')
return [g.json['lat'], g.json['lng']]
def get_address(transcription_id):
answer = question(transcription_id, q_format("Extract the full address or location mentioned in the transcript ", "One line"))
address = answer["response"][0]["answer"]
return address
def q_format(prompt, format):
questions = [
{
"question": f"{prompt}",
"answer_format": f'''{format}
'''
}
]
return questions
def post_lemur(api_token, transcript_ids, questions=None, type='qa', data={}):
if type=='qa':
url = "https://api.assemblyai.com/lemur/v3/generate/question-answer"
else:
url = "https://api.assemblyai.com/lemur/v3/generate/summary"
headers = {
"authorization": api_token
}
if not questions and not data:
data = {
"transcript_ids": transcript_ids,
"model": "basic"
}
else:
data = {
"transcript_ids": transcript_ids,
"questions": questions,
"model": "basic"
}
response = requests.post(url, json=data, headers=headers)
return response
def question(transcript_id,question):
lemur_output = post_lemur(API_KEY, [transcript_id], question)
lemur_response = lemur_output.json()
if "error" in lemur_response:
print(f"Error: { lemur_response['error'] }")
else:
return(lemur_response)
def get_nearest(type, lat, long):
print(type)
if type=="Law and Order":
police_db = pd.read_csv("hyd_police_stn_jurisdictions.csv")
nearest=[]
count=0
for index, entry in police_db.iterrows():
distance = 3959 * math.acos( math.cos( math.radians(lat) ) * math.cos( math.radians( float(entry["Y"]) ) ) *
math.cos( math.radians( long ) - math.radians(float(entry["X"])) ) + math.sin( float(math.radians(entry["Y"] )) ) *
math.sin( math.radians( lat ) ) )
if distance < 15:
nearest.append([list(entry), distance])
count +=1
if count==3:
break
return sorted(nearest, key=lambda x: x[1])
if type=="Fire" or "Natural Disaster":
fire_db = pd.read_csv("hyderabad fire stations.csv")
nearest=[]
count=0
for index, entry in fire_db.iterrows():
distance = 3959 * math.acos( math.cos( math.radians(lat) ) * math.cos( math.radians( float(entry["Y"]) ) ) *
math.cos( math.radians( long ) - math.radians(float(entry["X"])) ) + math.sin( float(math.radians(entry["Y"] )) ) *
math.sin( math.radians( lat ) ) )
if distance < 15:
nearest.append([list(entry), distance])
count +=1
if count==3:
break
return sorted(nearest, key=lambda x: x[1])
def get_category(transcription):
concatenated_text = '\n'.join([f"{item[0]}: {item[1]}" if item[0] != 'You.' else item[1] for item in transcription])
co = cohere.Client('9gTWsgGsGUoSSKzUvLuZdcuEtuBO2CIhiG9s17nU') # This is your trial API key
response = co.classify(
model='2196d10d-e411-417d-b342-2882c65248f5-ft',
inputs=[concatenated_text ],
)
return(response.classifications[0].prediction)
def get_severity(transcription_id):
severity = question(transcription_id, q_format("Determine how severe the emergency is, with high level destruction being 10 while a very small incident is 1", "floating point number between 1-10"))
return severity["response"][0]["answer"] | [] |
2024-01-10 | rhazal/quivr | backend~routes~chat_routes.py | import os
import time
from typing import List
from uuid import UUID
from venv import logger
from auth import AuthBearer, get_current_user
from fastapi import APIRouter, Depends, HTTPException, Query, Request
from fastapi.responses import StreamingResponse
from repository.notification.remove_chat_notifications import (
remove_chat_notifications,
)
from llm.openai import OpenAIBrainPicking
from llm.qa_headless import HeadlessQA
from models import (
Brain,
BrainEntity,
Chat,
ChatQuestion,
UserIdentity,
UserUsage,
get_supabase_db,
)
from models.databases.supabase.supabase import SupabaseDB
from repository.brain import get_brain_details
from repository.chat import (
ChatUpdatableProperties,
CreateChatProperties,
GetChatHistoryOutput,
create_chat,
get_chat_by_id,
get_user_chats,
update_chat,
)
from repository.chat.get_chat_history_with_notifications import (
ChatItem,
get_chat_history_with_notifications,
)
from repository.user_identity import get_user_identity
chat_router = APIRouter()
class NullableUUID(UUID):
@classmethod
def __get_validators__(cls):
yield cls.validate
@classmethod
def validate(cls, v) -> UUID | None:
if v == "":
return None
try:
return UUID(v)
except ValueError:
return None
def delete_chat_from_db(supabase_db: SupabaseDB, chat_id):
try:
supabase_db.delete_chat_history(chat_id)
except Exception as e:
print(e)
pass
try:
supabase_db.delete_chat(chat_id)
except Exception as e:
print(e)
pass
def check_user_requests_limit(
user: UserIdentity,
):
userDailyUsage = UserUsage(
id=user.id, email=user.email, openai_api_key=user.openai_api_key
)
date = time.strftime("%Y%m%d")
userDailyUsage.handle_increment_user_request_count(date)
if user.openai_api_key is None:
max_requests_number = int(os.getenv("MAX_REQUESTS_NUMBER", 1))
if int(userDailyUsage.daily_requests_count) >= int(max_requests_number):
raise HTTPException(
status_code=429, # pyright: ignore reportPrivateUsage=none
detail="You have reached the maximum number of requests for today.", # pyright: ignore reportPrivateUsage=none
)
else:
pass
@chat_router.get("/chat/healthz", tags=["Health"])
async def healthz():
return {"status": "ok"}
# get all chats
@chat_router.get("/chat", dependencies=[Depends(AuthBearer())], tags=["Chat"])
async def get_chats(current_user: UserIdentity = Depends(get_current_user)):
"""
Retrieve all chats for the current user.
- `current_user`: The current authenticated user.
- Returns a list of all chats for the user.
This endpoint retrieves all the chats associated with the current authenticated user. It returns a list of chat objects
containing the chat ID and chat name for each chat.
"""
chats = get_user_chats(str(current_user.id))
return {"chats": chats}
# delete one chat
@chat_router.delete(
"/chat/{chat_id}", dependencies=[Depends(AuthBearer())], tags=["Chat"]
)
async def delete_chat(chat_id: UUID):
"""
Delete a specific chat by chat ID.
"""
supabase_db = get_supabase_db()
remove_chat_notifications(chat_id)
delete_chat_from_db(supabase_db=supabase_db, chat_id=chat_id)
return {"message": f"{chat_id} has been deleted."}
# update existing chat metadata
@chat_router.put(
"/chat/{chat_id}/metadata", dependencies=[Depends(AuthBearer())], tags=["Chat"]
)
async def update_chat_metadata_handler(
chat_data: ChatUpdatableProperties,
chat_id: UUID,
current_user: UserIdentity = Depends(get_current_user),
) -> Chat:
"""
Update chat attributes
"""
chat = get_chat_by_id(chat_id) # pyright: ignore reportPrivateUsage=none
if str(current_user.id) != chat.user_id:
raise HTTPException(
status_code=403, # pyright: ignore reportPrivateUsage=none
detail="You should be the owner of the chat to update it.", # pyright: ignore reportPrivateUsage=none
)
return update_chat(chat_id=chat_id, chat_data=chat_data)
# create new chat
@chat_router.post("/chat", dependencies=[Depends(AuthBearer())], tags=["Chat"])
async def create_chat_handler(
chat_data: CreateChatProperties,
current_user: UserIdentity = Depends(get_current_user),
):
"""
Create a new chat with initial chat messages.
"""
return create_chat(user_id=current_user.id, chat_data=chat_data)
# add new question to chat
@chat_router.post(
"/chat/{chat_id}/question",
dependencies=[
Depends(
AuthBearer(),
),
],
tags=["Chat"],
)
async def create_question_handler(
request: Request,
chat_question: ChatQuestion,
chat_id: UUID,
brain_id: NullableUUID
| UUID
| None = Query(..., description="The ID of the brain"),
current_user: UserIdentity = Depends(get_current_user),
) -> GetChatHistoryOutput:
"""
Add a new question to the chat.
"""
# Retrieve user's OpenAI API key
current_user.openai_api_key = request.headers.get("Openai-Api-Key")
brain = Brain(id=brain_id)
if not current_user.openai_api_key and brain_id:
brain_details = get_brain_details(brain_id)
if brain_details:
current_user.openai_api_key = brain_details.openai_api_key
if not current_user.openai_api_key:
user_identity = get_user_identity(current_user.id)
if user_identity is not None:
current_user.openai_api_key = user_identity.openai_api_key
# Retrieve chat model (temperature, max_tokens, model)
if (
not chat_question.model
or not chat_question.temperature
or not chat_question.max_tokens
):
# TODO: create ChatConfig class (pick config from brain or user or chat) and use it here
chat_question.model = chat_question.model or brain.model or "gpt-3.5-turbo"
chat_question.temperature = chat_question.temperature or brain.temperature or 0
chat_question.max_tokens = chat_question.max_tokens or brain.max_tokens or 256
try:
check_user_requests_limit(current_user)
gpt_answer_generator: HeadlessQA | OpenAIBrainPicking
if brain_id:
gpt_answer_generator = OpenAIBrainPicking(
chat_id=str(chat_id),
model=chat_question.model,
max_tokens=chat_question.max_tokens,
temperature=chat_question.temperature,
brain_id=str(brain_id),
user_openai_api_key=current_user.openai_api_key, # pyright: ignore reportPrivateUsage=none
prompt_id=chat_question.prompt_id,
)
else:
gpt_answer_generator = HeadlessQA(
model=chat_question.model,
temperature=chat_question.temperature,
max_tokens=chat_question.max_tokens,
user_openai_api_key=current_user.openai_api_key,
chat_id=str(chat_id),
prompt_id=chat_question.prompt_id,
)
chat_answer = gpt_answer_generator.generate_answer(chat_id, chat_question)
return chat_answer
except HTTPException as e:
raise e
# stream new question response from chat
@chat_router.post(
"/chat/{chat_id}/question/stream",
dependencies=[
Depends(
AuthBearer(),
),
],
tags=["Chat"],
)
async def create_stream_question_handler(
request: Request,
chat_question: ChatQuestion,
chat_id: UUID,
brain_id: NullableUUID
| UUID
| None = Query(..., description="The ID of the brain"),
current_user: UserIdentity = Depends(get_current_user),
) -> StreamingResponse:
# TODO: check if the user has access to the brain
# Retrieve user's OpenAI API key
current_user.openai_api_key = request.headers.get("Openai-Api-Key")
brain = Brain(id=brain_id)
brain_details: BrainEntity | None = None
if not current_user.openai_api_key and brain_id:
brain_details = get_brain_details(brain_id)
if brain_details:
current_user.openai_api_key = brain_details.openai_api_key
if not current_user.openai_api_key:
user_identity = get_user_identity(current_user.id)
if user_identity is not None:
current_user.openai_api_key = user_identity.openai_api_key
# Retrieve chat model (temperature, max_tokens, model)
if (
not chat_question.model
or chat_question.temperature is None
or not chat_question.max_tokens
):
# TODO: create ChatConfig class (pick config from brain or user or chat) and use it here
chat_question.model = chat_question.model or brain.model or "gpt-3.5-turbo"
chat_question.temperature = chat_question.temperature or brain.temperature or 0
chat_question.max_tokens = chat_question.max_tokens or brain.max_tokens or 256
try:
logger.info(f"Streaming request for {chat_question.model}")
check_user_requests_limit(current_user)
gpt_answer_generator: HeadlessQA | OpenAIBrainPicking
if brain_id:
gpt_answer_generator = OpenAIBrainPicking(
chat_id=str(chat_id),
model=(brain_details or chat_question).model
if current_user.openai_api_key
else "gpt-3.5-turbo", # type: ignore
max_tokens=(brain_details or chat_question).max_tokens
if current_user.openai_api_key
else 0, # type: ignore
temperature=(brain_details or chat_question).temperature
if current_user.openai_api_key
else 256, # type: ignore
brain_id=str(brain_id),
user_openai_api_key=current_user.openai_api_key, # pyright: ignore reportPrivateUsage=none
streaming=True,
prompt_id=chat_question.prompt_id,
)
else:
gpt_answer_generator = HeadlessQA(
model=chat_question.model
if current_user.openai_api_key
else "gpt-3.5-turbo",
temperature=chat_question.temperature
if current_user.openai_api_key
else 256,
max_tokens=chat_question.max_tokens
if current_user.openai_api_key
else 0,
user_openai_api_key=current_user.openai_api_key, # pyright: ignore reportPrivateUsage=none
chat_id=str(chat_id),
streaming=True,
prompt_id=chat_question.prompt_id,
)
print("streaming")
return StreamingResponse(
gpt_answer_generator.generate_stream(chat_id, chat_question),
media_type="text/event-stream",
)
except HTTPException as e:
raise e
# get chat history
@chat_router.get(
"/chat/{chat_id}/history", dependencies=[Depends(AuthBearer())], tags=["Chat"]
)
async def get_chat_history_handler(
chat_id: UUID,
) -> List[ChatItem]:
# TODO: RBAC with current_user
return get_chat_history_with_notifications(chat_id)
| [] |
2024-01-10 | rokbenko/ai-playground | openai-tutorials~1-Get_response_in_JSON_format~return_json.py | import os
from openai import OpenAI
client = OpenAI()
OpenAI.api_key = os.getenv('OPENAI_API_KEY')
completion = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{"role": "system", "content": "You are a helpful assistant. Your response should be in JSON format."},
{"role": "user", "content": "Hello!"}
],
response_format={"type": "json_object"}
)
print(completion.choices[0].message.content)
# Check if the OpenAI API response is a valid JSON
import json
def is_json(myjson):
try:
json.loads(myjson)
except ValueError as e:
return False
return True
print(is_json(completion.choices[0].message.content))
| [
"Hello!",
"You are a helpful assistant. Your response should be in JSON format."
] |
2024-01-10 | rokbenko/ai-playground | openai-tutorials~2-Build_a_personal_math_tutor~personal_math_tutor.py | import os
from openai import OpenAI
client = OpenAI()
OpenAI.api_key = os.getenv('OPENAI_API_KEY')
# Step 1: Create an Assistant
my_assistant = client.beta.assistants.create(
model="gpt-4",
instructions="You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
name="Math Tutor",
tools=[{"type": "code_interpreter"}],
)
print(f"This is the assistant object: {my_assistant} \n")
# Step 2: Create a Thread
my_thread = client.beta.threads.create()
print(f"This is the thread object: {my_thread} \n")
# Step 3: Add a Message to a Thread
my_thread_message = client.beta.threads.messages.create(
thread_id=my_thread.id,
role="user",
content="I need to solve the equation `3x + 11 = 14`. Can you help me?",
)
print(f"This is the message object: {my_thread_message} \n")
# Step 4: Run the Assistant
my_run = client.beta.threads.runs.create(
thread_id=my_thread.id,
assistant_id=my_assistant.id,
instructions="Please address the user as Rok Benko."
)
print(f"This is the run object: {my_run} \n")
# Step 5: Periodically retrieve the Run to check on its status to see if it has moved to completed
while my_run.status in ["queued", "in_progress"]:
keep_retrieving_run = client.beta.threads.runs.retrieve(
thread_id=my_thread.id,
run_id=my_run.id
)
print(f"Run status: {keep_retrieving_run.status}")
if keep_retrieving_run.status == "completed":
print("\n")
# Step 6: Retrieve the Messages added by the Assistant to the Thread
all_messages = client.beta.threads.messages.list(
thread_id=my_thread.id
)
print("------------------------------------------------------------ \n")
print(f"User: {my_thread_message.content[0].text.value}")
print(f"Assistant: {all_messages.data[0].content[0].text.value}")
break
elif keep_retrieving_run.status == "queued" or keep_retrieving_run.status == "in_progress":
pass
else:
print(f"Run status: {keep_retrieving_run.status}")
break | [] |
2024-01-10 | yeagerai/genworlds | use_cases~roundtable~migrations~chroma_to_qdrant_migration.py | # DB migration
def run_chroma_to_qdrant_migration(
collections: list[str], chroma_db_path: str, qdrant_db_path: str
):
import os
import chromadb
from dotenv import load_dotenv
from langchain.vectorstores import Chroma, Qdrant
from langchain.embeddings import OpenAIEmbeddings
from qdrant_client.http import models as rest
from qdrant_client import QdrantClient
load_dotenv(dotenv_path=".env")
openai_api_key = os.getenv("OPENAI_API_KEY")
ABS_PATH = os.path.dirname(os.path.abspath(__file__))
embeddings_model = OpenAIEmbeddings(openai_api_key=openai_api_key)
qdrant_client = QdrantClient(path=qdrant_db_path)
for collection_name in collections:
print("Migrating collection", collection_name)
client_settings = chromadb.config.Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=chroma_db_path,
anonymized_telemetry=False,
)
collection = Chroma(
collection_name=collection_name,
embedding_function=embeddings_model,
client_settings=client_settings,
persist_directory=chroma_db_path,
)
items = collection._collection.get(
include=["embeddings", "metadatas", "documents"]
)
qdrant_client.recreate_collection(
collection_name=collection_name,
vectors_config=rest.VectorParams(
distance=rest.Distance.COSINE,
size=1536,
),
)
CONTENT_KEY = "page_content"
METADATA_KEY = "metadata"
qdrant_client.upsert(
collection_name=collection_name,
points=rest.Batch.construct(
ids=items["ids"],
vectors=items["embeddings"],
payloads=Qdrant._build_payloads(
items["documents"], items["metadatas"], CONTENT_KEY, METADATA_KEY
),
),
)
print("Done")
| [] |
2024-01-10 | yeagerai/genworlds | genworlds~agents~concrete~basic_assistant~thoughts~event_filler.py | from typing import Type
import json
from genworlds.events.abstracts.event import AbstractEvent
from genworlds.agents.abstracts.agent_state import AbstractAgentState
from genworlds.agents.abstracts.thought import AbstractThought
from langchain.chat_models import ChatOpenAI
from langchain.chains.openai_functions import (
create_structured_output_chain,
)
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
class EventFillerThought(AbstractThought):
def __init__(
self,
agent_state: AbstractAgentState,
openai_api_key: str,
model_name: str = "gpt-3.5-turbo",
):
self.agent_state = agent_state
self.model_name = model_name
self.llm = ChatOpenAI(
model=self.model_name, openai_api_key=openai_api_key, temperature=0.1
)
def run(self, trigger_event_class: Type[AbstractEvent]):
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are {agent_name}, {agent_description}."),
(
"system",
"You are embedded in a simulated world with those properties {agent_world_state}",
),
("system", "Those are your goals: \n{goals}"),
(
"system",
"And this is your current plan to achieve the goals: \n{plan}",
),
(
"system",
"Here is your memories of all the events that you remember from being in this simulation: \n{memory}",
),
(
"system",
"Those are the available entities that you can choose from: \n{available_entities}",
),
(
"system",
"Here you have pre-filled parameters coming from your previous thoughts if any: \n{other_thoughts_filled_parameters}",
),
(
"system",
"Here is the triggering event schema: \n{triggering_event_schema}",
),
("human", "{footer}"),
]
)
chain = create_structured_output_chain(
output_schema=trigger_event_class.schema(),
llm=self.llm,
prompt=prompt,
verbose=True,
)
response = chain.run(
agent_name=self.agent_state.name,
agent_description=self.agent_state.description,
agent_world_state=self.agent_state.host_world_prompt,
goals=self.agent_state.goals,
plan=self.agent_state.plan,
memory=self.agent_state.last_retrieved_memory,
available_entities=self.agent_state.available_entities,
other_thoughts_filled_parameters=self.agent_state.other_thoughts_filled_parameters,
triggering_event_schema=json.dumps(trigger_event_class.schema()),
footer="""Fill the parameters of the triggering event based on the previous context that you have about the world.
""",
)
response = trigger_event_class.parse_obj(response)
return response
| [
"Here is the triggering event schema: \n{triggering_event_schema}",
"You are {agent_name}, {agent_description}.",
"[('system', 'You are {agent_name}, {agent_description}.'), ('system', 'You are embedded in a simulated world with those properties {agent_world_state}'), ('system', 'Those are your goals: \\n{goals}'), ('system', 'And this is your current plan to achieve the goals: \\n{plan}'), ('system', 'Here is your memories of all the events that you remember from being in this simulation: \\n{memory}'), ('system', 'Those are the available entities that you can choose from: \\n{available_entities}'), ('system', 'Here you have pre-filled parameters coming from your previous thoughts if any: \\n{other_thoughts_filled_parameters}'), ('system', 'Here is the triggering event schema: \\n{triggering_event_schema}'), ('human', '{footer}')]",
"Here is your memories of all the events that you remember from being in this simulation: \n{memory}",
"human",
"And this is your current plan to achieve the goals: \n{plan}",
"Here you have pre-filled parameters coming from your previous thoughts if any: \n{other_thoughts_filled_parameters}",
"Those are the available entities that you can choose from: \n{available_entities}",
"Those are your goals: \n{goals}",
"You are embedded in a simulated world with those properties {agent_world_state}"
] |
2024-01-10 | yeagerai/genworlds | use_cases~foundational_rag~objects~qdrant_bucket.py | import os
import json
from json import JSONDecodeError
from typing import List
import threading
from qdrant_client import QdrantClient
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Qdrant
from langchain.docstore.document import Document
from langchain.text_splitter import CharacterTextSplitter, TokenTextSplitter
from genworlds.objects.abstracts.object import AbstractObject
from genworlds.events.abstracts.event import AbstractEvent
from genworlds.events.abstracts.action import AbstractAction
# Define the QdrantBucket Object
class QdrantBucket(AbstractObject):
def __init__(self, id:str, path: str = "./vector_store.qdrant"):
self.path = path
self.is_busy = False
actions = [
GenerateTextChunkCollection(host_object=self),
GenerateNERCollection(host_object=self),
RetrieveChunksBySimilarity(host_object=self),
]
super().__init__(
name="Qdrant Bucket",
description="A specialized object designed to manage interactions with the Qdrant vector store. This includes operations like generating text chunk collections, named entity recognition collections, and retrieving chunks by similarity.",
id=id,
actions=actions,
)
class VectorStoreCollectionCreated(AbstractEvent):
event_type = "vector_store_collection_created"
description = "Notifies that a new collection has been successfully created in the Qdrant vector store."
has_been_created: bool = False
collection_name: str
class VectorStoreCollectionCreationInProcess(AbstractEvent):
event_type = "vector_store_collection_creation_in_process"
description = "Notifies that the creation process of the new collection is ongoing. Is a very long process, it can take several minutes to complete."
collection_name: str
class AgentGeneratesTextChunkCollection(AbstractEvent):
event_type = "agent_generates_text_chunk_collection"
description = "Event triggered when an agent needs to generate a collection of text chunks for storage in Qdrant."
full_text_path: str
collection_name: str
num_tokens_chunk_size: int = 500
metadata: dict = {}
class GenerateTextChunkCollection(AbstractAction):
trigger_event_class = AgentGeneratesTextChunkCollection
description = "Action that generates a collection of text chunks for storage in Qdrant."
def __init__(self, host_object: AbstractObject):
super().__init__(host_object=host_object)
def __call__(self, event: AgentGeneratesTextChunkCollection):
# If is not threaded the socket disconnects the client due to timeout (it can not ping the server while working)
threading.Thread(
target=self._agent_generates_text_chunk_collection, args=(event,)
).start()
# Function that executes the action of generating a text chunk collection in a qdrant vector store
def _agent_generates_text_chunk_collection(
self, event: AgentGeneratesTextChunkCollection
):
# conversion has started message, it will take a while, several minutes before completion
self.host_object.send_event(
VectorStoreCollectionCreationInProcess(
sender_id=self.host_object.id,
target_id=event.sender_id,
collection_name=event.collection_name,
)
)
text_splitter = TokenTextSplitter(
chunk_size=event.num_tokens_chunk_size, chunk_overlap=0
)
with open(event.full_text_path, "r") as f:
joint_text = f.read()
texts = text_splitter.split_text(joint_text)
data = [Document(page_content=el) for el in texts]
documents = data
text_splitter = CharacterTextSplitter(
chunk_size=event.num_tokens_chunk_size, chunk_overlap=0
)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
qdrant_chunks = Qdrant.from_documents(
docs,
embeddings,
path=self.host_object.path,
collection_name=event.collection_name,
)
print(
f"Agent {event.sender_id} has created the collection: {event.collection_name}."
)
self.host_object.send_event(
VectorStoreCollectionCreated(
sender_id=self.host_object.id,
target_id=event.sender_id,
collection_name=event.collection_name,
has_been_created=True,
)
)
class AgentGeneratesNERCollection(AbstractEvent):
event_type = "agent_generates_ner_collection"
description = "Event indicating the agent's intent to generate a collection of named entities extracted from a provided text."
full_text_path: str
collection_name: str
num_tokens_chunk_size: int = 500
metadata: dict = {}
class GenerateNERCollection(AbstractAction):
trigger_event_class = AgentGeneratesNERCollection
description = "Action that generates a collection of named entities extracted from a provided text."
def __init__(self, host_object: AbstractObject):
super().__init__(host_object=host_object)
def __call__(self, event: AgentGeneratesNERCollection):
# If is not threaded the socket disconnects the client due to timeout (it can not ping the server while working)
threading.Thread(
target=self._agent_generates_ner_collection, args=(event,)
).start()
# Function that executes the action of generating a text chunk collection in a qdrant vector store
def _agent_generates_ner_collection(self, event: AgentGeneratesNERCollection):
self.host_object.is_busy = True
self.host_object.send_event(
VectorStoreCollectionCreationInProcess(
sender_id=self.host_object.id,
target_id=event.sender_id,
collection_name=event.collection_name,
)
)
chat = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4")
sys_prompt = SystemMessage(
content="""
Task:
Extract the named entities and their descriptions from the provided text. An entity in this context refers to a term, concept, or organization that has an explicit explanation or definition in the text.
Process:
1. Identify distinct named entities in the text, which its explanation is also contained in the text.
2. Extract the corresponding explanation or definition for each identified entity.
3. Present the entity paired with its description in a python dict format {"Entities": [{"Entity1", "desc1"},{"Entity2", "desc2"}, ...]}.
4. Check that the created python dict has the correct format for being imported with json.loads().
5. If no explained entities are identified, state "NO ENTITIES EXPLAINED".
Guidelines:
- Entities might be names of people, locations, organizations, projects, concepts, or terms used in a specialized context.
- The description or definition of a named entity typically follows the entity itself and provides clarity about its meaning or context.
- Ensure to capture the full explanation of the named entity, even if it spans multiple sentences.
- The descriptions of the entities should make you understand the concept as listed below.
- Make 100% sure that the final format is a python dict that can be loaded with json.loads() instruction.
Text:
"""
)
with open(event.full_text_path, "r") as f:
joint_text = f.read()
text_splitter = TokenTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(joint_text)
data = [Document(page_content=el) for el in texts]
concepts = []
for i in range(len(data)):
text_to_send = data[i].page_content
message = chat([sys_prompt, HumanMessage(content=text_to_send)])
if "NO ENTITIES EXPLAINED" in message.content:
print("No entities found in this chunk of text...")
continue
else:
success = False
for j in range(10):
try:
conc = json.loads(message.content)
concepts.append(conc)
success = True
break
except JSONDecodeError:
print(
"The dict generated by the LLM, does not have the proper format. Retrying...."
)
message = chat([sys_prompt, HumanMessage(content=text_to_send)])
if not success:
print(
"It was not possible to format correctly the dict after 10 tries."
)
else:
print(f"Successful formatting of chunk {i} after {j} iterations.")
concepts_unified = {"Entities": []}
for conc in concepts:
for el in conc["Entities"]:
concepts_unified["Entities"].append(el)
docs = [
Document(
page_content=list(concept.keys())[0]
+ ": "
+ concept[str(list(concept.keys())[0])]
)
for concept in concepts_unified["Entities"]
]
embeddings = OpenAIEmbeddings()
qdrant_named_entities = Qdrant.from_documents(
docs,
embeddings,
path=self.host_object.path, # usually ner
collection_name=event.collection_name,
)
print(
f"Agent {event.sender_id} has created the collection: {event.collection_name}."
)
self.host_object.send_event(
VectorStoreCollectionCreated(
sender_id=self.host_object.id,
target_id=event.sender_id,
collection_name=event.collection_name,
has_been_created=True,
)
)
self.is_busy = False
class VectorStoreCollectionRetrieveQuery(AbstractEvent):
event_type = "agent_sends_query_to_retrieve_chunks"
description = "Event to signal the retrieval of chunks from a Qdrant collection based on a similarity query."
collection_name: str
query: str
num_chunks: int = 5
class VectorStoreCollectionSimilarChunks(AbstractEvent):
event_type = "vector_store_collection_similar_chunks"
description = "Provides a list of text chunks from a Qdrant collection that are similar to a given query."
collection_name: str
similar_chunks: List[str]
class RetrieveChunksBySimilarity(AbstractAction):
trigger_event_class = VectorStoreCollectionRetrieveQuery
description = "Retrieves a list of text chunks from a Qdrant collection that are similar to a given query."
def __init__(self, host_object: AbstractObject):
super().__init__(host_object=host_object)
def __call__(self, event: VectorStoreCollectionRetrieveQuery):
embeddings = OpenAIEmbeddings()
client = QdrantClient(path=self.host_object.path)
qdrant = Qdrant(
client=client,
collection_name=event.collection_name,
embeddings=embeddings,
)
similar_chunks = [
el.page_content for el in qdrant.similarity_search(event.query, k=10)
]
print(
f"Agent {event.sender_id} has retrieved: {event.num_chunks} chunks from {event.collection_name}."
)
self.host_object.send_event(
VectorStoreCollectionSimilarChunks(
sender_id=self.host_object.id,
target_id=event.sender_id,
collection_name=event.collection_name,
similar_chunks=similar_chunks,
)
)
| [
"\n Task:\n\n Extract the named entities and their descriptions from the provided text. An entity in this context refers to a term, concept, or organization that has an explicit explanation or definition in the text.\n\n Process:\n\n 1. Identify distinct named entities in the text, which its explanation is also contained in the text.\n 2. Extract the corresponding explanation or definition for each identified entity.\n 3. Present the entity paired with its description in a python dict format {\"Entities\": [{\"Entity1\", \"desc1\"},{\"Entity2\", \"desc2\"}, ...]}.\n 4. Check that the created python dict has the correct format for being imported with json.loads().\n 5. If no explained entities are identified, state \"NO ENTITIES EXPLAINED\".\n\n Guidelines:\n\n - Entities might be names of people, locations, organizations, projects, concepts, or terms used in a specialized context.\n - The description or definition of a named entity typically follows the entity itself and provides clarity about its meaning or context.\n - Ensure to capture the full explanation of the named entity, even if it spans multiple sentences.\n - The descriptions of the entities should make you understand the concept as listed below.\n - Make 100% sure that the final format is a python dict that can be loaded with json.loads() instruction.\n\n Text:\n\n "
] |
2024-01-10 | yeagerai/genworlds | genworlds~agents~concrete~basic_assistant~thoughts~action_schema_selector.py | from typing import List
from genworlds.agents.abstracts.agent_state import AbstractAgentState
from genworlds.agents.abstracts.thought import AbstractThought
from langchain.chat_models import ChatOpenAI
from enum import Enum
from pydantic import BaseModel, Field
from langchain.chains.openai_functions import (
create_structured_output_chain,
)
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
class ActionSchemaSelectorThought(AbstractThought):
def __init__(
self,
agent_state: AbstractAgentState,
openai_api_key: str,
model_name: str = "gpt-3.5-turbo-1106",
):
self.agent_state = agent_state
self.model_name = model_name
self.llm = ChatOpenAI(
model=self.model_name, openai_api_key=openai_api_key, temperature=0.1
)
def run(self):
class PlanNextAction(BaseModel):
"""Plans for the next action to be executed by the agent."""
action_name: str = Field(
...,
description="Selects the action name of the next action to be executed from the list of available action names.",
)
is_action_valid: bool = Field(
..., description="Determines whether the next action is valid or not."
)
is_action_valid_reason: str = Field(
...,
description="Then explains the rationale of whether it is valid or not valid action.",
)
new_plan: List[str] = Field(
..., description="The new plan to execute to achieve the goals."
)
action_schemas_full_string = "## Available Actions: \n\n"
for (
action_schema_key,
action_schema_value,
) in self.agent_state.available_action_schemas.items():
action_schemas_full_string += (
"Action Name: "
+ action_schema_key
+ "\nAction Description: "
+ action_schema_value.split("|")[0]
+ "\n\n"
)
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are {agent_name}, {agent_description}.\n"),
(
"system",
"You are embedded in a simulated world with those properties {agent_world_state}\n",
),
("system", "Those are your goals: \n{goals}\n"),
(
"system",
"And this is the previous plan to achieve the goals: \n{plan}\n",
),
(
"system",
"Here is your memories of all the events that you remember from being in this simulation: \n{memory}\n",
),
(
"system",
"Those are the available actions that you can choose from: \n{available_actions}\n",
),
("human", "{footer}\n"),
]
)
chain = create_structured_output_chain(
PlanNextAction.schema(), self.llm, prompt, verbose=True
)
response = chain.run(
agent_name=self.agent_state.name,
agent_description=self.agent_state.description,
agent_world_state=self.agent_state.host_world_prompt,
goals=self.agent_state.goals,
plan=self.agent_state.plan,
memory=self.agent_state.last_retrieved_memory,
available_actions=action_schemas_full_string,
footer="""Select the next action which must be a value of the available actions that you can choose from based on previous context.
Also select whether the action is valid or not, and if not, why.
And finally, state a new updated plan that you want to execute to achieve your goals. If your next action is going to sleep, then you don't need to state a new plan.
""",
)
response = PlanNextAction.parse_obj(response)
return response.action_name, response.new_plan
| [
"Here is your memories of all the events that you remember from being in this simulation: \n{memory}\n",
"{footer}\n",
"Those are the available actions that you can choose from: \n{available_actions}\n",
"human",
"You are embedded in a simulated world with those properties {agent_world_state}\n",
"Those are your goals: \n{goals}\n",
"You are {agent_name}, {agent_description}.\n",
"And this is the previous plan to achieve the goals: \n{plan}\n",
"[('system', 'You are {agent_name}, {agent_description}.\\n'), ('system', 'You are embedded in a simulated world with those properties {agent_world_state}\\n'), ('system', 'Those are your goals: \\n{goals}\\n'), ('system', 'And this is the previous plan to achieve the goals: \\n{plan}\\n'), ('system', 'Here is your memories of all the events that you remember from being in this simulation: \\n{memory}\\n'), ('system', 'Those are the available actions that you can choose from: \\n{available_actions}\\n'), ('human', '{footer}\\n')]"
] |
2024-01-10 | yeagerai/genworlds | genworlds~agents~memories~simulation_memory.py | import json
from typing import List
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
import qdrant_client
from qdrant_client.http import models as rest
from langchain.vectorstores import Qdrant
from langchain.embeddings import OpenAIEmbeddings
from langchain.docstore.document import Document
class OneLineEventSummarizer:
def __init__(self, openai_api_key: str, model_name: str = "gpt-3.5-turbo-1106"):
self.summary_template = """
This is The last event coming from a web-socket, it is in JSON format:
{event}
Summarize what happened in one line.
"""
self.summary_prompt = PromptTemplate(
template=self.summary_template,
input_variables=[
"event",
],
)
self.chat = ChatOpenAI(
temperature=0, model_name=model_name, openai_api_key=openai_api_key
)
self.chain = LLMChain(llm=self.chat, prompt=self.summary_prompt)
def summarize(
self,
event: str,
) -> str:
"""
Summarize the event in one line.
"""
return self.chain.run(event=event)
class FullEventStreamSummarizer:
def __init__(self, openai_api_key: str, model_name: str = "gpt-3.5-turbo-1106"):
self.small_summary_template = """
This is the full event stream coming from a web-socket, it is in JSON format:
{event_stream}
Summarize what happened during the event stream in {k} paragraphs.
SUMMARY:
"""
self.summary_prompt = PromptTemplate(
template=self.small_summary_template,
input_variables=[
"event_stream",
"k",
],
)
self.chat = ChatOpenAI(
temperature=0, model_name=model_name, openai_api_key=openai_api_key
)
self.small_summary_chain = LLMChain(llm=self.chat, prompt=self.summary_prompt)
def summarize(
self,
event_stream: List[str],
k: int = 5,
) -> str:
"""
Summarize the event stream in k paragraphs.
"""
if len(event_stream) <= 100:
return self.small_summary_chain.run(event_stream=event_stream, k=k)
else:
# needs to be implemented
return ""
class SimulationMemory:
"""
Uses NMK Approach to summarize the event stream.
"""
def __init__(
self,
openai_api_key: str,
model_name: str = "gpt-3.5-turbo-1106",
n_of_last_events: int = 15,
n_of_similar_events: int = 5,
n_of_paragraphs_in_summary: int = 5,
):
self.n_of_last_events = n_of_last_events # last events
self.n_of_similar_events = n_of_similar_events # similar events
self.n_of_paragraphs_in_summary = (
n_of_paragraphs_in_summary # paragraphs in the summary
)
self.full_summary = ""
self.world_events = []
self.summarized_events = []
self.one_line_summarizer = OneLineEventSummarizer(
openai_api_key=openai_api_key, model_name=model_name
)
self.full_event_stream_summarizer = FullEventStreamSummarizer(
openai_api_key=openai_api_key, model_name=model_name
)
self.embeddings_model = OpenAIEmbeddings(openai_api_key=openai_api_key)
client = qdrant_client.QdrantClient(location=":memory:")
client.recreate_collection(
collection_name="world-events",
vectors_config={
"content": rest.VectorParams(
distance=rest.Distance.COSINE,
size=1536,
),
},
)
client.recreate_collection(
collection_name="summarized-world-events",
vectors_config={
"content": rest.VectorParams(
distance=rest.Distance.COSINE,
size=1536,
),
},
)
self.events_db = Qdrant(
client=client,
collection_name="world-events",
embeddings=self.embeddings_model,
)
self.summarized_events_db = Qdrant(
client=client,
collection_name="summarized-world-events",
embeddings=self.embeddings_model,
)
def add_event(self, event, summarize: bool = False):
self.world_events.append(event)
self.events_db.add_documents([Document(page_content=event)])
if summarize:
self._add_summarized_event(event)
def _add_summarized_event(self, event):
sum_event = self.one_line_summarizer.summarize(event)
event_as_dict = json.loads(event)
self.summarized_events.append(event_as_dict["created_at"] + " " + sum_event)
self.summarized_events_db.add_documents([Document(page_content=sum_event)])
def create_full_summary(self):
self.full_summary = self.full_event_stream_summarizer.summarize(
event_stream=self.world_events, k=self.n_of_paragraphs_in_summary
)
def _get_n_last_events(self, summarized: bool = False):
if summarized:
events = self.summarized_events[-self.n_of_last_events :]
else:
events = self.world_events[-self.n_of_last_events :]
return events # [::-1]
def _get_m_similar_events(self, query: str, summarized: bool = False):
if self.n_of_similar_events < 1:
return []
if summarized:
m_events = self.summarized_events_db.similarity_search(
k=self.n_of_similar_events, query=query
)
return [el.page_content for el in m_events]
else:
m_events = self.events_db.similarity_search(
k=self.n_of_similar_events, query=query
)
return [el.page_content for el in m_events]
def get_event_stream_memories(self, query: str, summarized: bool = False):
if len(self.world_events) <= self.n_of_last_events:
last_events = self._get_n_last_events(summarized=summarized)
nmk = (
"\n\n# Your Memories\n\n"
"## Last events from oldest to most recent\n\n" + "\n".join(last_events)
)
return nmk
last_events = self._get_n_last_events(summarized=summarized)
# similar_events = self._get_m_similar_events(query=query, summarized=summarized)
nmk = (
"\n\n# Your Memories\n\n"
"## Full Summary\n\n" + self.full_summary
# + "\n\n## Similar events\n\n"
# + "\n".join(similar_events)
+ "\n\n## Last events from oldest to most recent\n\n"
+ "\n".join(last_events)
)
return nmk
| [] |
2024-01-10 | Fridge003/auto-DADC | prompt_utils.py | import logging
import os
from typing import Optional, Sequence, Union
from functools import partial
from multiprocessing import Pool
from rouge_score import rouge_scorer
import openai
import pandas as pd
import backoff
@backoff.on_exception(backoff.expo, openai.error.RateLimitError)
def completions_with_backoff(api_key: str, **kwargs):
openai.api_key = api_key
while True:
try:
response = openai.ChatCompletion.create(**kwargs)
break
except openai.error.OpenAIError as e:
logging.warning(f"OpenAIError: {e}.")
return response['choices'][0]['message']['content']
def generation_prompt(examples, num_genetated_examples, label, prompt_mode="default"):
"""
:param examples: A list of (premise, hypothesis, label) tuples
:return: prompt: A string as prompt
"""
prompt = ""
id2label = {0: 'Entailment', 1: 'Neutral', 2: 'Contradiction'}
if prompt_mode == "default":
num_prompt_examples = len(examples)
prompt += "In an NLI task, you are given two sentences. The first sentence is called \'Premise\', while" \
" the second sentence is called \'Hypothesis\'. The label determines whether “Hypothesis” is " \
" true, false, or undetermined under the condition of “premise”. If the answer is true, label should be \'Entailment\';" \
"If the answer is false, label should be \'Contradiction\'; If the answer is undetermined, label should be \'Neutral\'."
prompt += f"Now you are going to generate {num_prompt_examples + num_genetated_examples} example of NLI task with {label} as its label." \
"Each example should contain three lines, with the first line being a sentence as 'Premise', " \
"the second line being a sentence as 'Hypothesis', and the last line being a sentence as 'Label'."
for i, example in enumerate(examples):
prompt += f"{i+1}.\n" \
f"Premise:{example['premise']}\n" \
f"Hypothesis:{example['hypothesis']}\n" \
f"Label:{id2label[example['label']]}\n"
if prompt_mode == "passage":
prompt += "In NLI task, you are given one passage and a sentence. The passage is called 'Premise', while the sentence is called 'Hypothesis'." \
"If 'Premise' clearly supports 'Hypothesis', the label (answer of this task) should be 'Entailment'; " \
"If 'Premise' strongly contradicts 'Hypothesis', the label should be 'Contradiction';" \
"If 'Premise' can neither support nor contradict 'Hypothesis', or 'Premise' doesn't mention anything about 'Hypothesis', the label should be 'Neutral'.\n"
picked_example = examples[0]
passage = picked_example['premise']
hypothesis = picked_example['hypothesis']
label = id2label[picked_example['label']]
prompt += "Here's a passage:\n" + passage + "\n"
prompt += f"Now you are given the passage above, please generate {num_genetated_examples+1} hypotheses with '{label}' as label and give your explanations.\n"
prompt += "Here are the requirements: \n"
prompt += "1. Both hypothesis and explanation should be 1 to 2 sentences long.\n"
prompt += "2. Generate hypothesis at the first line in the format of 'Hypothesis:...'; Generate explanation at the second line in the format of 'Explanation:...'.\n"
prompt += "3. If you are going to generate hypothesis with 'Neutral' as label, please don't write any hypothesis that has strong logic relationship with the passage.\n"
prompt += "List of hypothesis:\n"
prompt += f"1. Hypothesis: {hypothesis}\n"
return prompt
return prompt
def critique_prompt(example, prompt_mode="default"):
prompt = ""
if prompt_mode == "default":
prompt += "In an NLI task, you are given two sentences. The first sentence is called \'Premise\', while" \
" the second sentence is called \'Hypothesis\'. The label determines whether “Hypothesis” is " \
" true, false, or undetermined under the condition of “premise”. If the answer is true, label should be \'Entailment\';" \
"If the answer is false, label should be \'Contradiction\'; If the answer is undetermined, label should be \'Neutral\'."
prompt += f"Now you are given an NLI task example, with the \'Premise\' being \'{example['premise']}\', " \
f"and the \'Hypothesis\' being \'{example['hypothesis']}\'. Please predict the label."
prompt += "The predicted label must among one of 'Entailment', 'Contradiction' and 'Neutral'." \
"You should predict 'Neutral' when premise doesn't mention anything about 'hypothesis'." \
"Give your label at the first line and start another line to explain your answer.\n" \
"Label:"
return prompt
if prompt_mode == "passage":
prompt += "In NLI task, you are given one passage and a sentence. The passage is called 'Premise', while the sentence is called 'Hypothesis'." \
"If 'Premise' clearly supports 'Hypothesis', the label (answer of this task) should be 'Entailment'; " \
"If 'Premise' strongly contradicts 'Hypothesis', the label should be 'Contradiction';" \
"If 'Premise' can neither support nor contradict 'Hypothesis', or 'Premise' doesn't mention anything about 'Hypothesis', the label should be 'Neutral'.\n"
prompt += "Here's a passage:\n" + example['premise'] + "\n"
prompt += f"\nNow you are given the passage as premise above,"
prompt += f"please predict the label if the hypothesis is '{example['hypothesis']}'."
prompt += "The predicted label must among one of 'Entailment', 'Contradiction' and 'Neutral'." \
"You should predict 'Neutral' when premise doesn't mention anything about 'hypothesis'." \
"Give your label at the first line and start another line to explain your answer.\n" \
"Label:"
return prompt
def parse_response(response: str, prompt_mode="default") -> Sequence[dict]:
"""
:param response: a string of response from gpt3/chatgpt
prompt_mode: method of prompting
:return: a list of examples int the form of {'premise':.., 'hypothesis':.., 'label':..}
where label should be 0, 1 or 2
"""
split_sentences = response.split('\n')
label2id = {'Entailment': 0, 'Neutral': 1, 'Contradiction': 2}
collected_examples = []
if prompt_mode == "default":
# Assume the response under default mode is in the form of
# 1.Premise:...
# Hypothesis:...
# Label:...
# 2. Premise:...
# Hypothesis:...
# Label:...
# ...
i = 0
while i < len(split_sentences):
# Searching for the next example
if (split_sentences[i].find('Premise') == -1) and \
(split_sentences[i].find('premise') == -1):
i += 1
continue
if (i + 2 >= len(split_sentences)):
break
premise = split_sentences[i][split_sentences[i].find(':')+1:].strip('"')
hypothesis = split_sentences[i+1][split_sentences[i+1].find(':')+1:].strip('"')
label = split_sentences[i+2][split_sentences[i+2].find(':')+1:]
label = label.strip(' .')
i += 3
if label not in label2id.keys():
continue
collected_examples.append({"premise": premise,
"hypothesis": hypothesis,
"label": label2id[label]})
if prompt_mode == "passage":
# Assume the response is in the form of
# 1. Hypothesis:...
# Explanation:...
# 2. Hypothesis:...
# Explanation:...
# ...
i = 0
while i < len(split_sentences):
# Searching for the next example
if (split_sentences[i].find('Hypothesis') == -1):
i += 1
continue
if (i + 1 >= len(split_sentences)):
break
hypothesis = split_sentences[i][split_sentences[i].find(':')+1:]
i += 1
collected_examples.append({"premise": None,
"hypothesis": hypothesis,
"label": None})
return collected_examples
def validate_example(example: dict, scorer: rouge_scorer.RougeScorer, all_example_tokens: Sequence,
prompt_args: dict, disagreed_examples: Sequence, num_cpus: int=4, prompt_mode: str="default") -> bool:
id2label = {0: 'Entailment', 1: 'Neutral', 2: 'Contradiction'}
premise, hypothesis = example["premise"], example["hypothesis"]
if (len(premise) == 0 or len(hypothesis) == 0):
return False
# computing similarity with the pre-tokenzied examples
if (len(all_example_tokens) > 0):
similarity_detector = hypothesis if prompt_mode == "passage" else premise + hypothesis
new_instruction_token = scorer._tokenizer.tokenize(similarity_detector)
with Pool(num_cpus) as p:
rouge_scores = p.map(
partial(rouge_scorer._score_lcs, new_instruction_token),
all_example_tokens,
)
rouge_scores = [score.fmeasure for score in rouge_scores]
if max(rouge_scores) > 0.7: # There exists some simliar examples
return False
# Check correctness of example by prompting ChatGPT.
# If ChatGPT doesn't return the same label as example provides, invalidate this example.
prompt_for_checking_correctness = critique_prompt(example, prompt_mode)
prompt_args["temperature"] = 0.2
prompt_args["messages"] = [{"role":"user", "content": prompt_for_checking_correctness}]
response = completions_with_backoff(**prompt_args)
predictied_label = response.split('\n')[0]
if predictied_label != id2label[example["label"]]:
example["label"] = f"Generated Label:{id2label[example['label']]}/Label predicted by critic:{predictied_label}"
disagreed_examples.append(example)
return False
return True
# In this function, dataset is stored as a list of dict,
# where each dict represents one example in the form of {"premise":.., "hypothesis":.., "label":..}.
def load_csv_file_as_list(file_path: str) -> Sequence[dict]:
list_of_data = []
if os.path.exists(file_path):
df = pd.read_csv(file_path)
list_of_data += [
{"premise": df.loc[id, "premise"],
"hypothesis": df.loc[id, "hypothesis"],
"label": df.loc[id, "label"]}
for id in range(len(df))
]
return list_of_data
def save_list_as_csv_files(file_path: str, list_of_data: Sequence[dict]):
df = pd.DataFrame({"premise": [ex["premise"] for ex in list_of_data],
"hypothesis": [ex["hypothesis"] for ex in list_of_data],
"label": [ex["label"] for ex in list_of_data]})
with open(file_path, 'w') as f_out:
f_out.write(df.to_csv(index=False))
| [
"Premise:PLACEHOLDER\n",
"please predict the label if the hypothesis is 'PLACEHOLDER'.",
"The predicted label must among one of 'Entailment', 'Contradiction' and 'Neutral'.You should predict 'Neutral' when premise doesn't mention anything about 'hypothesis'.Give your label at the first line and start another line to explain your answer.\nLabel:",
"List of hypothesis:\n",
"1",
"1. Both hypothesis and explanation should be 1 to 2 sentences long.\n",
"Now you are given an NLI task example, with the 'Premise' being 'PLACEHOLDER', and the 'Hypothesis' being 'PLACEHOLDER'. Please predict the label.",
"hypothesis",
"3. If you are going to generate hypothesis with 'Neutral' as label, please don't write any hypothesis that has strong logic relationship with the passage.\n",
"Here's a passage:\nPLACEHOLDER\n",
"In an NLI task, you are given two sentences. The first sentence is called 'Premise', while the second sentence is called 'Hypothesis'. The label determines whether “Hypothesis” is true, false, or undetermined under the condition of “premise”. If the answer is true, label should be 'Entailment';If the answer is false, label should be 'Contradiction'; If the answer is undetermined, label should be 'Neutral'.",
"In NLI task, you are given one passage and a sentence. The passage is called 'Premise', while the sentence is called 'Hypothesis'.If 'Premise' clearly supports 'Hypothesis', the label (answer of this task) should be 'Entailment'; If 'Premise' strongly contradicts 'Hypothesis', the label should be 'Contradiction';If 'Premise' can neither support nor contradict 'Hypothesis', or 'Premise' doesn't mention anything about 'Hypothesis', the label should be 'Neutral'.\n",
"Hypothesis:PLACEHOLDER\n",
"Label:PLACEHOLDER\n",
"Here are the requirements: \n",
"2. Generate hypothesis at the first line in the format of 'Hypothesis:...'; Generate explanation at the second line in the format of 'Explanation:...'.\n",
"\nNow you are given the passage as premise above,",
"1. Hypothesis: PLACEHOLDER\n",
"Now you are going to generate PLACEHOLDERPLACEHOLDER example of NLI task with PLACEHOLDER as its label.Each example should contain three lines, with the first line being a sentence as 'Premise', the second line being a sentence as 'Hypothesis', and the last line being a sentence as 'Label'."
] |
2024-01-10 | CS-433/ml-project-2-12ml | incontext-learning~run_gpt3.py | # Contains utils for running GPT-3 experiments.
# The notebook is more suitable for running as it can be interrupted (by the user or by exceptions)
# and the progress is saved.
import datasets
import time
import numpy as np
import zipfile
import pandas as pd
import pickle
import openai
import argparse
curr_prompt_idx = 0 # for interacting with OpenAI API
class Prompter:
"""Convenience class for constructing prompts"""
def __init__(self, train_set, k_shot=0, explain=False):
self.conjunction = {
"effect": ", therefore",
"cause": " because"
}
self.label_map = {
0: "(a)",
1: "(b)"
}
self.train_set = train_set
self.k_shot = k_shot
self.explain = explain
def construct_instance(self, datapoint, give_answer=False, prepend=False):
"""Constructs a single question-answer instance."""
premise = self.convert_premise(datapoint["premise"])
qa_instance = ""
if prepend:
qa_instance += f"Instruction: for each question, {'provide a one-sentence explanation before giving' if self.explain else 'give'} the correct option (a) or (b).\n\n"
qa_instance += f"""Question: {premise}{self.conjunction[datapoint["question"]]}
(a) {self.convert_choice(datapoint["choice1"])}
(b) {self.convert_choice(datapoint["choice2"])}"""
qa_instance += "\nAnswer:"
if give_answer:
if self.explain:
qa_instance += ' ' + datapoint['conceptual_explanation']
qa_instance += f' So the answer is {self.label_map[datapoint["label"]]}.'
else:
qa_instance += f' {self.label_map[datapoint["label"]]}'
return qa_instance
def get_k_train_examples(self):
"""Generates k few-shot examples"""
i = np.random.randint(0, 100, self.k_shot).tolist()
d = self.train_set[i]
d = [dict(zip(d, col)) for col in zip(*d.values())]
return [self.construct_instance(example, give_answer=True, prepend=i==0) for i, example in enumerate(d)]
def make_prompt(self, datapoint):
"""Makes a single prompt from a datapoint"""
train_examples = self.get_k_train_examples()
query = self.construct_instance(datapoint)
prompt = "" if self.k_shot > 0 else "Instruction: for each question, give the correct option (a) or (b).\n\n"
for train_example in train_examples:
prompt += train_example
prompt += "\n\n"
prompt += query
return {"prompt": prompt}
def convert_choice(self, choice):
"""De-capitalizes the first character of the sentence"""
return choice[0].lower() + choice[1:]
def convert_premise(self, premise):
"""Removes the full-stop at the end of the sentence"""
return premise.strip()[:-1]
def get_prompt_skeleton(self):
pass
def get_gpt3_prediction(prompt):
"""Makes a single call to the API and retrieves the response.
Temperature: higher value means more diverse generated text.
We do want more diverse generated causal explanations"""
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0.7,
max_tokens=256
)
return response.choices[0].text
def prepare_ecare():
"""Loads the e-CARE dataset and reformats it to HuggingFace Dataset"""
with zipfile.ZipFile("e-CARE.zip") as z:
with z.open("dataset/train_full.jsonl") as f:
train_df = pd.read_json(f, lines=True)
with z.open("dataset/dev_full.jsonl") as f:
dev_df = pd.read_json(f, lines=True)
rel2fields = {"ask-for": "question", "hypothesis1": "choice1", "hypothesis2": "choice2", "index": "idx"}
train_df.rename(rel2fields, axis=1, inplace=True)
dev_df.rename(rel2fields, axis=1, inplace=True)
train_dict = train_df.to_dict(orient="list")
dev_dict = dev_df.to_dict(orient="list")
ecare_train = datasets.Dataset.from_dict(train_dict)
ecare_dev = datasets.Dataset.from_dict(dev_dict)
return ecare_train, ecare_dev
def prepare_copa():
"""Loads the COPA dataset"""
copa = datasets.load_dataset("super_glue", "copa")
return copa["train"], copa["validation"]
def get_prompts_with_labels(train_set, dev_set, k_shot, explain):
"""Gets prompts together with labels"""
prompter = Prompter(train_set, k_shot=k_shot, explain=explain)
prompts = dev_set.map(
prompter.make_prompt, batched=False,
remove_columns=['premise', 'choice1', 'choice2', 'question', 'idx']
)
return prompts
def run_gpt3(prompts):
"""Makes calls to OpenAI API and use their GPT-3 model
Best run in a notebook"""
global curr_prompt_idx
gpt_preds = []
prompts_submitted = {k: False for k in range(prompts.num_rows)}
print(f"Started running from example #{curr_prompt_idx}")
while True:
try:
if curr_prompt_idx == prompts.num_rows:
print("Finished.")
break
if not prompts_submitted[curr_prompt_idx]:
prompt = prompts[curr_prompt_idx]["prompt"]
pred = get_gpt3_prediction(prompt)
gpt_preds.append(pred)
prompts_submitted[curr_prompt_idx] = True
curr_prompt_idx += 1
except openai.error.RateLimitError:
print(f"Sleeping at example #{curr_prompt_idx}.")
time.sleep(60)
continue
except KeyboardInterrupt:
print(f"Interrupted at example #{curr_prompt_idx}. Pausing.")
break
return gpt_preds
def save_results(gpt_preds, prompts, k_shot=0, dataset="copa", explain=False, save_dir="."):
"""Saves the GPT-3 generated texts and associated prompts to a pickle file"""
for file_type, file_content in {"preds": gpt_preds, "prompts": prompts}.items():
filename = f"{save_dir}/{'explain_' if explain else ''}gpt3_{dataset}_{file_type}_{k_shot}shot.bin"
with open(filename, "wb") as f:
pickle.dump(file_content, f)
print("Results saved.")
def run_gpt3_copa(k_shot=0):
train_set, dev_set = prepare_copa()
prompts = get_prompts_with_labels(train_set, dev_set, k_shot, False)
gpt_preds = run_gpt3(prompts)
save_results(gpt_preds, prompts, k_shot=k_shot, dataset="copa", explain=False)
def run_gpt3_ecare(k_shot=0, explain=False):
train_set, dev_set = prepare_ecare()
prompts = get_prompts_with_labels(train_set, dev_set, k_shot, explain)
gpt_preds = run_gpt3(prompts)
save_results(gpt_preds, prompts, k_shot=k_shot, dataset="ecare", explain=explain)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--k_shot", type=int, default=0)
parser.add_argument("--explain", type=bool, default=True)
parser.add_argument("--dataset", type=str, default="copa")
return parser.parse_args()
def main():
args = parse_args()
if args.dataset == "copa":
run_gpt3_copa(k_shot=args.k_shot)
elif args.dataset == "ecare":
run_gpt3_ecare(k_shot=args.k_shot, explain=args.explain)
else:
raise NotImplementedError("Dataset not implemented")
if __name__ == "__main__":
main()
| [
"\n\n",
"0",
"1",
"Instruction: for each question, give the correct option (a) or (b).\n\n",
"question"
] |
2024-01-10 | yandexdataschool/gumbel_dpg | replay_buffer.py | # Experience replay from OpenAI's DQN implementation
# Shamelessly stolen from https://github.com/openai/baselines/blob/master/baselines/deepq/replay_buffer.py
# Segment trees added to the end of file
import numpy as np
import random
class ReplayBuffer(object):
def __init__(self, size):
"""Create Replay buffer.
Parameters
----------
size: int
Max number of transitions to store in the buffer. When the buffer
overflows the old memories are dropped.
"""
self._storage = []
self._maxsize = size
self._next_idx = 0
def __len__(self):
return len(self._storage)
def add(self, obs_t, action, reward, obs_tp1, done):
data = (obs_t, action, reward, obs_tp1, done)
if self._next_idx >= len(self._storage):
self._storage.append(data)
else:
self._storage[self._next_idx] = data
self._next_idx = (self._next_idx + 1) % self._maxsize
def _encode_sample(self, idxes):
obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], []
for i in idxes:
data = self._storage[i]
obs_t, action, reward, obs_tp1, done = data
obses_t.append(np.array(obs_t, copy=False))
actions.append(np.array(action, copy=False))
rewards.append(reward)
obses_tp1.append(np.array(obs_tp1, copy=False))
dones.append(done)
return np.array(obses_t), np.array(actions), np.array(rewards), np.array(obses_tp1), np.array(dones)
def sample(self, batch_size):
"""Sample a batch of experiences.
Parameters
----------
batch_size: int
How many transitions to sample.
Returns
-------
obs_batch: np.array
batch of observations
act_batch: np.array
batch of actions executed given obs_batch
rew_batch: np.array
rewards received as results of executing act_batch
next_obs_batch: np.array
next set of observations seen after executing act_batch
done_mask: np.array
done_mask[i] = 1 if executing act_batch[i] resulted in
the end of an episode and 0 otherwise.
"""
idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)]
return self._encode_sample(idxes)
class PrioritizedReplayBuffer(ReplayBuffer):
def __init__(self, size, alpha):
"""Create Prioritized Replay buffer.
Parameters
----------
size: int
Max number of transitions to store in the buffer. When the buffer
overflows the old memories are dropped.
alpha: float
how much prioritization is used
(0 - no prioritization, 1 - full prioritization)
See Also
--------
ReplayBuffer.__init__
"""
super(PrioritizedReplayBuffer, self).__init__(size)
assert alpha > 0
self._alpha = alpha
it_capacity = 1
while it_capacity < size:
it_capacity *= 2
self._it_sum = SumSegmentTree(it_capacity)
self._it_min = MinSegmentTree(it_capacity)
self._max_priority = 1.0
def add(self, *args, **kwargs):
"""See ReplayBuffer.store_effect"""
idx = self._next_idx
super().add(*args, **kwargs)
self._it_sum[idx] = self._max_priority ** self._alpha
self._it_min[idx] = self._max_priority ** self._alpha
def _sample_proportional(self, batch_size):
res = []
for _ in range(batch_size):
# TODO(szymon): should we ensure no repeats?
mass = random.random() * self._it_sum.sum(0, len(self._storage) - 1)
idx = self._it_sum.find_prefixsum_idx(mass)
res.append(idx)
return res
def sample(self, batch_size, beta):
"""Sample a batch of experiences.
compared to ReplayBuffer.sample
it also returns importance weights and idxes
of sampled experiences.
Parameters
----------
batch_size: int
How many transitions to sample.
beta: float
To what degree to use importance weights
(0 - no corrections, 1 - full correction)
Returns
-------
obs_batch: np.array
batch of observations
act_batch: np.array
batch of actions executed given obs_batch
rew_batch: np.array
rewards received as results of executing act_batch
next_obs_batch: np.array
next set of observations seen after executing act_batch
done_mask: np.array
done_mask[i] = 1 if executing act_batch[i] resulted in
the end of an episode and 0 otherwise.
weights: np.array
Array of shape (batch_size,) and dtype np.float32
denoting importance weight of each sampled transition
idxes: np.array
Array of shape (batch_size,) and dtype np.int32
idexes in buffer of sampled experiences
"""
assert beta > 0
idxes = self._sample_proportional(batch_size)
weights = []
p_min = self._it_min.min() / self._it_sum.sum()
max_weight = (p_min * len(self._storage)) ** (-beta)
for idx in idxes:
p_sample = self._it_sum[idx] / self._it_sum.sum()
weight = (p_sample * len(self._storage)) ** (-beta)
weights.append(weight / max_weight)
weights = np.array(weights)
encoded_sample = self._encode_sample(idxes)
return tuple(list(encoded_sample) + [weights, idxes])
def update_priorities(self, idxes, priorities):
"""Update priorities of sampled transitions.
sets priority of transition at index idxes[i] in buffer
to priorities[i].
Parameters
----------
idxes: [int]
List of idxes of sampled transitions
priorities: [float]
List of updated priorities corresponding to
transitions at the sampled idxes denoted by
variable `idxes`.
"""
assert len(idxes) == len(priorities)
for idx, priority in zip(idxes, priorities):
assert priority > 0
assert 0 <= idx < len(self._storage)
self._it_sum[idx] = priority ** self._alpha
self._it_min[idx] = priority ** self._alpha
self._max_priority = max(self._max_priority, priority)
### Utility classes
import operator
class SegmentTree(object):
def __init__(self, capacity, operation, neutral_element):
"""Build a Segment Tree data structure.
https://en.wikipedia.org/wiki/Segment_tree
Can be used as regular array, but with two
important differences:
a) setting item's value is slightly slower.
It is O(lg capacity) instead of O(1).
b) user has access to an efficient `reduce`
operation which reduces `operation` over
a contiguous subsequence of items in the
array.
Paramters
---------
capacity: int
Total size of the array - must be a power of two.
operation: lambda obj, obj -> obj
and operation for combining elements (eg. sum, max)
must for a mathematical group together with the set of
possible values for array elements.
neutral_element: obj
neutral element for the operation above. eg. float('-inf')
for max and 0 for sum.
"""
assert capacity > 0 and capacity & (capacity - 1) == 0, "capacity must be positive and a power of 2."
self._capacity = capacity
self._value = [neutral_element for _ in range(2 * capacity)]
self._operation = operation
def _reduce_helper(self, start, end, node, node_start, node_end):
if start == node_start and end == node_end:
return self._value[node]
mid = (node_start + node_end) // 2
if end <= mid:
return self._reduce_helper(start, end, 2 * node, node_start, mid)
else:
if mid + 1 <= start:
return self._reduce_helper(start, end, 2 * node + 1, mid + 1, node_end)
else:
return self._operation(
self._reduce_helper(start, mid, 2 * node, node_start, mid),
self._reduce_helper(mid + 1, end, 2 * node + 1, mid + 1, node_end)
)
def reduce(self, start=0, end=None):
"""Returns result of applying `self.operation`
to a contiguous subsequence of the array.
self.operation(arr[start], operation(arr[start+1], operation(... arr[end])))
Parameters
----------
start: int
beginning of the subsequence
end: int
end of the subsequences
Returns
-------
reduced: obj
result of reducing self.operation over the specified range of array elements.
"""
if end is None:
end = self._capacity
if end < 0:
end += self._capacity
end -= 1
return self._reduce_helper(start, end, 1, 0, self._capacity - 1)
def __setitem__(self, idx, val):
# index of the leaf
idx += self._capacity
self._value[idx] = val
idx //= 2
while idx >= 1:
self._value[idx] = self._operation(
self._value[2 * idx],
self._value[2 * idx + 1]
)
idx //= 2
def __getitem__(self, idx):
assert 0 <= idx < self._capacity
return self._value[self._capacity + idx]
class SumSegmentTree(SegmentTree):
def __init__(self, capacity):
super(SumSegmentTree, self).__init__(
capacity=capacity,
operation=operator.add,
neutral_element=0.0
)
def sum(self, start=0, end=None):
"""Returns arr[start] + ... + arr[end]"""
return super(SumSegmentTree, self).reduce(start, end)
def find_prefixsum_idx(self, prefixsum):
"""Find the highest index `i` in the array such that
sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum
if array values are probabilities, this function
allows to sample indexes according to the discrete
probability efficiently.
Parameters
----------
perfixsum: float
upperbound on the sum of array prefix
Returns
-------
idx: int
highest index satisfying the prefixsum constraint
"""
assert 0 <= prefixsum <= self.sum() + 1e-5
idx = 1
while idx < self._capacity: # while non-leaf
if self._value[2 * idx] > prefixsum:
idx = 2 * idx
else:
prefixsum -= self._value[2 * idx]
idx = 2 * idx + 1
return idx - self._capacity
class MinSegmentTree(SegmentTree):
def __init__(self, capacity):
super(MinSegmentTree, self).__init__(
capacity=capacity,
operation=min,
neutral_element=float('inf')
)
def min(self, start=0, end=None):
"""Returns min(arr[start], ..., arr[end])"""
return super(MinSegmentTree, self).reduce(start, end)
| [] |
2024-01-10 | Safiullah-Rahu/Chat-with-PDF-and-AI | pages~2_Manage.py | # Importing the required modules
import os
import streamlit as st
from langchain.callbacks import StreamlitCallbackHandler
from langchain.callbacks import get_openai_callback
import logging
import time
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import TextLoader
from langchain.chains.question_answering import load_qa_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Pinecone
import PyPDF2
from io import StringIO
import pinecone
# Setting up logging configuration
logger = logging.getLogger("AI_Chatbot")
# Setting up Streamlit page configuration
st.set_page_config(
page_title="AI Chatbot", layout="wide", initial_sidebar_state="expanded"
)
# Getting the OpenAI API key from Streamlit Secrets
openai_api_key = st.secrets.secrets.OPENAI_API_KEY
os.environ["OPENAI_API_KEY"] = openai_api_key
# Getting the Pinecone API key and environment from Streamlit Secrets
PINECONE_API_KEY = st.secrets.secrets.PINECONE_API_KEY
os.environ["PINECONE_API_KEY"] = PINECONE_API_KEY
PINECONE_ENV = st.secrets.secrets.PINECONE_ENV
os.environ["PINECONE_ENV"] = PINECONE_ENV
# Initialize Pinecone with API key and environment
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
@st.cache_data
def load_docs(files):
all_text = []
for file_path in files:
file_extension = os.path.splitext(file_path.name)[1]
if file_extension == ".pdf":
pdf_reader = PyPDF2.PdfReader(file_path)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
all_text.append(text)
elif file_extension == ".txt":
stringio = StringIO(file_path.getvalue().decode("utf-8"))
text = stringio.read()
all_text.append(text)
else:
st.warning('Please provide txt or pdf.', icon="⚠️")
return all_text
def admin(sel_ns):
# Set the Pinecone index name
pinecone_index = "aichat"
# # Initialize Pinecone with API key and environment
# pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
# Prompt the user to upload PDF/TXT files
st.write("Upload PDF/TXT Files:")
uploaded_files = st.file_uploader("Upload", type=["pdf", "txt"], label_visibility="collapsed", accept_multiple_files = True)
if uploaded_files is not None:
documents = load_docs(uploaded_files)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.create_documents(documents)
# Initialize OpenAI embeddings
embeddings = OpenAIEmbeddings(model = 'text-embedding-ada-002')
# Display the uploaded file content
file_container = st.expander(f"Click here to see your uploaded content:")
file_container.write(docs)
# Display success message
st.success("Document Loaded Successfully!")
# Checkbox for the first time document upload
first_t = st.checkbox('Uploading Document First time.')
st.write("---")
# Checkbox for subsequent document uploads
second_t = st.checkbox('Uploading Document Second time and onwards...')
if first_t:
# Delete the existing index if it exists
if pinecone_index in pinecone.list_indexes():
pinecone.delete_index(pinecone_index)
time.sleep(50)
st.info('Initializing Document Uploading to DB...')
# Create a new Pinecone index
pinecone.create_index(
name=pinecone_index,
metric='cosine',
dimension=1536 # 1536 dim of text-embedding-ada-002
)
time.sleep(80)
# Upload documents to the Pinecone index
vector_store = Pinecone.from_documents(docs, embeddings, index_name=pinecone_index, namespace= sel_ns)
# Display success message
st.success("Document Uploaded Successfully!")
elif second_t:
st.info('Initializing Document Uploading to DB...')
# Upload documents to the Pinecone index
vector_store = Pinecone.from_documents(docs, embeddings, index_name=pinecone_index, namespace= sel_ns)
# Display success message
st.success("Document Uploaded Successfully!")
pinecone_index = "aichat"
# Check if the Pinecone index exists
time.sleep(5)
if pinecone_index in pinecone.list_indexes():
index = pinecone.Index(pinecone_index)
index_stats_response = index.describe_index_stats()
# Display the available documents in the index
#st.info(f"The Documents available in index: {list(index_stats_response['namespaces'].keys())}")
# Define the options for the dropdown list
options = list(index_stats_response['namespaces'].keys())
st.session_state.sel_namespace = ""
# Display a text input box in the sidebar to enter the password
passw = st.sidebar.text_input("Enter your password: ", type="password")
# Call the admin() function if the correct password is entered
if passw == "ai4chat":
#namespa = st.text_input("Enter Namespace Name: ")
exist_name = st.checkbox('Use Existing Namespace to Upload Docs')
del_name = st.checkbox("Delete a Namespace")
new_name = st.checkbox("Create New Namespace to Upload Docs")
if exist_name:
st.write("---")
st.write("Existing Namespaces:👇")
st.write(options)
# Create a dropdown list
selected_namespace = st.text_input("Enter Existing Namespace Name: ") #st.sidebar.selectbox("Select a namespace", options)
st.session_state.sel_namespace = selected_namespace
st.warning("Use 'Uploading Document Second time and onwards...' button to upload docs in existing namespace!", icon="⚠️")
#selected_namespace = selected_namespace
# Display the selected value
st.write("You selected:", st.session_state.sel_namespace)
if del_name:
st.write("---")
st.write("Existing Namespaces:👇")
st.write(options)
# Create a dropdown list
selected_namespace = st.text_input("Enter Existing Namespace Name: ") #st.sidebar.selectbox("Select a namespace", options)
st.session_state.sel_namespace = selected_namespace
st.warning("The namespace will be permanently deleted!", icon="⚠️")
del_ = st.checkbox("Check this to delete Namespace")
if del_:
with st.spinner('Deleting Namespace...'):
time.sleep(5)
index.delete(namespace=st.session_state.sel_namespace, delete_all=True)
st.success('Successfully Deleted Namespace!')
if new_name:
selected_namespace = st.text_input("Enter Namespace Name: (For Private Namespaces use .sec at the end, e.g., testname.sec)")
st.session_state.sel_namespace = selected_namespace
sel_ns = st.session_state.sel_namespace
admin(sel_ns) | [] |
2024-01-10 | Safiullah-Rahu/Chat-with-PDF-and-AI | pages~1_Chatbot.py | # Importing the required modules
import os
import streamlit as st
from langchain.callbacks import StreamlitCallbackHandler
from langchain.callbacks import get_openai_callback
import logging
import time
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.question_answering import load_qa_chain
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.vectorstores import Pinecone
import pinecone
from PIL import Image
import re
import streamlit_authenticator as stauth
import yaml
from yaml.loader import SafeLoader
# Setting up Streamlit page configuration
st.set_page_config(
page_title="AI Chatbot", layout="centered", initial_sidebar_state="expanded"
)
with open('config.yaml') as file:
config = yaml.load(file, Loader=SafeLoader)
authenticator = stauth.Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days'],
config['preauthorized']
)
name, authentication_status, username = authenticator.login('Login', 'main')
@st.cache_resource
def load_avaters():
image_human = Image.open("pages/human.png")
image_ai = Image.open("pages/ai.png")
return image_human, image_ai
# Getting the OpenAI API key from Streamlit Secrets
openai_api_key = st.secrets.secrets.OPENAI_API_KEY
os.environ["OPENAI_API_KEY"] = openai_api_key
# Getting the Pinecone API key and environment from Streamlit Secrets
PINECONE_API_KEY = st.secrets.secrets.PINECONE_API_KEY
os.environ["PINECONE_API_KEY"] = PINECONE_API_KEY
PINECONE_ENV = st.secrets.secrets.PINECONE_ENV
os.environ["PINECONE_ENV"] = PINECONE_ENV
# Initialize Pinecone with API key and environment
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
#@st.cache_data
def index_namespaces():
pinecone_index = "aichat"
time.sleep(5)
if pinecone_index in pinecone.list_indexes():
index = pinecone.Index(pinecone_index)
index_stats_response = index.describe_index_stats()
# Define the options for the dropdown list
opts = list(index_stats_response['namespaces'].keys())
return opts
@st.cache_resource
def init_memory():
return ConversationBufferWindowMemory(
k=3,
memory_key='chat_history',
#output_key="answer",
verbose=True,
return_messages=True)
memory = init_memory()
def chat(chat_na):
# Set the model name and Pinecone index name
model_name = "gpt-3.5-turbo"
pinecone_index = "aichat"
# Set the text field for embeddings
text_field = "text"
# Create OpenAI embeddings
embeddings = OpenAIEmbeddings(model = 'text-embedding-ada-002')
# load a Pinecone index
index = pinecone.Index(pinecone_index)
db = Pinecone(index, embeddings.embed_query, text_field, namespace=chat_na)
retriever = db.as_retriever()
# Enable GPT-4 model selection
mod = st.sidebar.checkbox('Access GPT-4')
if mod:
pas = st.sidebar.text_input("Write access code", type="password")
if pas == "ongpt":
MODEL_OPTIONS = ["gpt-3.5-turbo", "gpt-4"]
model_name = st.sidebar.selectbox(label="Select Model", options=MODEL_OPTIONS)
# _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a
# standalone question without changing the content in given question.
# Chat History:
# {chat_history}
# Follow Up Input: {question}
# Standalone question:"""
# condense_question_prompt_template = PromptTemplate.from_template(_template)
# prompt_template = """You are helpful information giving QA System and make sure you don't answer anything
# not related to following context. You are always provide useful information & details available in the given context. Use the following pieces of context to answer the question at the end.
# Also check chat history if question can be answered from it or question asked about previous history. If you don't know the answer, just say that you don't know, don't try to make up an answer.
# {context}
# Chat History: {chat_history}
# Question: {question}
# Long detailed Answer:"""
# qa_prompt = PromptTemplate(
# template=prompt_template, input_variables=["context", "chat_history","question"]
# )
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# Define the conversational chat function
chat_history = st.session_state.chat_history
@st.cache_resource
def conversational_chat(query):
llm = ChatOpenAI(model=model_name)
docs = db.similarity_search(query)
qa = load_qa_chain(llm = llm,
chain_type = "stuff",
#memory = memory,
verbose = True)
# Run the query through the RetrievalQA model
# result = qa.run(input_documents=docs, question=query) #chain({"question": query, "chat_history": st.session_state['history']})
#st.session_state['chat_history'].append((query, result))#["answer"]))
return qa, docs #["answer"]
# #retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 4})
# llm = ChatOpenAI(model_name = model_name, temperature=0.1)
# question_generator = LLMChain(llm=llm, prompt=condense_question_prompt_template, memory=memory, verbose=True)
# doc_chain = load_qa_chain(llm, chain_type="stuff", prompt=qa_prompt, verbose=True)
# agent = ConversationalRetrievalChain(
# retriever=db.as_retriever(search_kwargs={'k': 6}),
# question_generator=question_generator,
# combine_docs_chain=doc_chain,
# memory=memory,
# verbose=True,
# # return_source_documents=True,
# # get_chat_history=lambda h :h
# )
# return agent
# def conversational_chat(query):
# # chain_input = {"question": query}#, "chat_history": st.session_state["history"]}
# # result = chain(chain_input)
# llm = ChatOpenAI(model=model_name)
# docs = db.similarity_search(query)
# qa = load_qa_chain(llm=llm, chain_type="stuff")
# # Run the query through the RetrievalQA model
# result = qa.run(input_documents=docs, question=query) #chain({"question": query, "chat_history": st.session_state['history']})
# #st.session_state['history'].append((query, result))#["answer"]))
# return result #["answer"]
# Set a default model
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = model_name
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
image_human, image_ai = load_avaters()
# if "image_human" not in st.session_state:
# st.session_state.image_human = image_human
# if "image_ai" not in st.session_state:
# st.session_state.image_ai = image_ai
# st.session_state.image_ai = image_ai
# st.session_state.image_human = image_human
pattern = r'[A-Za-z]' # General pattern for alphabet characters
index_filter = None
if prompt := st.chat_input():
matches = re.findall(pattern, prompt)
if len(matches) > 0:
index_filter = {'alphabet': {"$in": matches}}
st.sidebar.write("Pattern matches:", matches)
st.sidebar.write("Filter:", index_filter)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content":prompt})
# st.chat_message("user").write(prompt)
# Display user message in chat message container
with st.chat_message("human", avatar="https://raw.githubusercontent.com/Safiullah-Rahu/Chat-with-PDF-and-AI/main/pages/human.png" ):
st.markdown(prompt)
with st.chat_message("ai", avatar="https://raw.githubusercontent.com/Safiullah-Rahu/Chat-with-PDF-and-AI/main/pages/ai.png" ):
message_placeholder = st.empty()
agent, docs = conversational_chat(prompt)
st_callback = StreamlitCallbackHandler(st.container())
with st.spinner("Thinking..."):
with get_openai_callback() as cb:
response = agent.run(input_documents=docs, question=prompt)#agent({'question': prompt, 'chat_history': st.session_state.chat_history})#, callbacks=[st_callback])
st.session_state.chat_history.append((prompt, response + "\n\n\nErstellt mit Chatgpt Model: " + model_name))
#st.write(response)
message_placeholder.markdown(response + "\n\n\nErstellt mit Chatgpt Model: " + model_name)
st.session_state.messages.append({"role": "assistant", "content": response+"\n\n\nErstellt mit Chatgpt Model: " + model_name})
st.sidebar.header(f"Total Token Usage: {cb.total_tokens}")
if authentication_status:
authenticator.logout('Logout', 'main', key='unique_key')
st.session_state.chat_namesp = ""
chat_pass = st.sidebar.text_input("Enter chat password: ", type="password")
if chat_pass == "chatme":
options = index_namespaces()
# pinecone_index = "aichat"
# time.sleep(5)
# if pinecone_index in pinecone.list_indexes():
# index = pinecone.Index(pinecone_index)
# index_stats_response = index.describe_index_stats()
# # Define the options for the dropdown list
# options = list(index_stats_response['namespaces'].keys())
pri_na = st.sidebar.checkbox("Access Private Namespaces")
chat_namespace = None
# Check if private namespaces option is selected
if pri_na:
pri_pass = st.sidebar.text_input("Write access code:", type="password")
if pri_pass == "myns":
#st.sidebar.write("Namespaces:👇")
#st.sidebar.write(options)
# Create a dropdown list
chat_namespace = st.sidebar.selectbox(label="Select Namespace", options = options)
#chat_namespace = st.sidebar.text_input("Enter Namespace Name: ")
st.session_state.chat_namesp = chat_namespace
else:
st.info("Enter the correct access code to use private namespaces!")
else:
# Filter the options to exclude strings ending with ".sec"
filtered_list = [string for string in options if not string.endswith(".sec")]
# st.sidebar.write("Namespaces:👇")
# st.sidebar.write(filtered_list)
chat_namespace = st.sidebar.selectbox(label="Select Namespace", options = filtered_list)
# chat_namespace = st.sidebar.text_input("Enter Namespace Name: ")
st.session_state.chat_namesp = chat_namespace
chat_na = st.session_state.chat_namesp
st.write(f"Selected Namespace Name: {chat_na}")
# Define a dictionary with namespaces and their corresponding messages
option_messages = {
"test-1": "This is the message for test-1",
"test-2": "This is the message for test-2",
"test-3.sec": "This is the message for test-3.sec"
}
selected_option = list(option_messages.keys())
# Check if the selected option is present in the dictionary
if chat_na in selected_option:
# Get the corresponding message for the selected option
message_ = option_messages[chat_na]
# Display the message
st.write("Message:", message_)
else:
# If the selected option is not found in the dictionary, display a default message
st.write("No message found for the selected option")
chat(chat_na)
elif authentication_status is False:
st.error('Username/password is incorrect')
elif authentication_status is None:
st.warning('Please enter your username and password')
| [
"PLACEHOLDER\n\n\nErstellt mit Chatgpt Model: PLACEHOLDER"
] |
2024-01-10 | stjordanis/trax | trax~rl~rl_layers.py | # coding=utf-8
# Copyright 2020 The Trax Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""A number of RL functions intended to be later wrapped as Trax layers.
Wrapping happens with help of the function tl.Fn.
"""
from trax.fastmath import numpy as jnp
def ValueLoss(values, returns, value_loss_coeff):
"""Definition of the loss of the value function."""
advantages = returns - values
l2_value_loss = jnp.mean(advantages**2) * value_loss_coeff
return l2_value_loss
def ExplainedVariance(values, returns):
"""Definition of explained variance - an approach from OpenAI baselines."""
assert returns.shape == values.shape, (
f'returns.shape was {returns.shape} and values.shape was {values.shape}')
# TODO(henrykm): it would be good to explain the relation with the time dim.
returns_variance = jnp.var(returns)
explained_variance = 1 - jnp.var(returns-values)/returns_variance
return explained_variance
def PreferredMove(dist_inputs, sample):
"""Definition of the preferred move."""
preferred_moves = sample(dist_inputs, temperature=0.0)
return jnp.mean(preferred_moves)
def NewLogProbs(dist_inputs, actions, log_prob_fun):
"""Given distribution and actions calculate log probs."""
new_log_probs = log_prob_fun(dist_inputs,
actions)
return new_log_probs
# TODO(henrykm): Clarify how jnp.mean is applied.
def EntropyLoss(dist_inputs, actions, log_prob_fun,
entropy_coeff, entropy_fun):
"""Definition of the Entropy Layer."""
new_log_probs = NewLogProbs(dist_inputs, actions, log_prob_fun)
entropy_loss = entropy_fun(new_log_probs) * entropy_coeff
return jnp.mean(entropy_loss)
def ProbsRatio(dist_inputs, actions, old_log_probs, log_prob_fun):
"""Probability Ratio from the PPO algorithm."""
# dist_inputs of the shape float32[128,1,18]
# actions of the shape int32[128,1]
# and old_log_probs of the shape float32[128,1]
new_log_probs = NewLogProbs(dist_inputs, actions, log_prob_fun)
assert new_log_probs.shape == old_log_probs.shape, (
f'new_log_probs.shape was {new_log_probs.shape} and'
f'old_log_probs.shape was {old_log_probs.shape}')
# The ratio between new_probs and old_probs expressed
# using log_probs and exponentiation
probs_ratio = jnp.exp(new_log_probs - old_log_probs)
return probs_ratio
def ApproximateKLDivergence(dist_inputs, actions, old_log_probs, log_prob_fun):
"""Probability Ratio from the PPO algorithm."""
new_log_probs = NewLogProbs(dist_inputs, actions, log_prob_fun)
assert new_log_probs.shape == old_log_probs.shape, (
f'new_log_probs.shape was {new_log_probs.shape} and'
f'old_log_probs.shape was {old_log_probs.shape}')
approximate_kl_divergence = 0.5 * \
jnp.mean(new_log_probs - old_log_probs) ** 2
return approximate_kl_divergence
def UnclippedObjective(probs_ratio, advantages):
"""Unclipped Objective from the PPO algorithm."""
assert probs_ratio.shape == advantages.shape, (
f'probs_ratio.shape was {probs_ratio.shape} and'
f'advantages.shape was {advantages.shape}')
unclipped_objective = probs_ratio * advantages
return unclipped_objective
def ClippedObjective(probs_ratio, advantages, epsilon):
"""Clipped Objective from the PPO algorithm."""
assert probs_ratio.shape == advantages.shape, (
f'probs_ratio.shape was {probs_ratio.shape} and'
f'advantages.shape was {advantages.shape}')
clipped_objective = jnp.clip(probs_ratio, 1 - epsilon,
1 + epsilon) * advantages
assert probs_ratio.shape == clipped_objective.shape, (
f'probs_ratio.shape was {probs_ratio.shape} and'
f'clipped_objective.shape was {clipped_objective.shape}')
return clipped_objective
def PPOObjective(dist_inputs, values, returns, dones, rewards,
actions, old_log_probs, log_prob_fun, epsilon,
normalize_advantages):
"""PPO Objective."""
# dist_inputs of the shape float32[128,1,18]
# values of the shape float32[128,1,1]
# returns of the shape float32[128,1,1]
# dones of the shape float32[128,1,1]
# rewards of the shape int32[128,1,1]
# actions of the shape int32[128,1]
# and old_log_probs of the shape float32[128,1]
returns = returns.squeeze(axis=2)
values = values.squeeze(axis=2)
dones = dones.squeeze(axis=2)
rewards = rewards.squeeze(axis=2)
assert rewards.shape == dones.shape, (
f'rewards.shape was {rewards.shape} and dones.shape was {dones.shape}')
assert dones.shape == values.shape, (
f'dones.shape was {dones.shape} and values.shape was {values.shape}')
assert returns.shape == values.shape, (
f'returns.shape was {returns.shape} and values.shape was {values.shape}')
assert returns.shape == old_log_probs.shape, (
f'returns.shape was {returns.shape} and'
f'old_log_probs.shape was {old_log_probs.shape}')
probs_ratio = ProbsRatio(dist_inputs, actions, old_log_probs, log_prob_fun)
assert probs_ratio.shape == old_log_probs.shape, (
f'probs_ratio.shape was {probs_ratio.shape} and'
f'old_log_probs.shape was {old_log_probs.shape}')
# jaxified versions of
# returns[dones] = rewards[dones]
# values[dones] = 0
returns = jnp.where(dones, rewards, returns)
values = jnp.where(dones, jnp.zeros_like(values), values)
advantages = returns - values
if normalize_advantages:
advantages = advantages - jnp.mean(advantages)
advantages /= jnp.std(advantages) + 1e-8
assert old_log_probs.shape == advantages.shape, (
f'old_log_probs.shape was {old_log_probs.shape} and advantages.shape was '
f'{advantages.shape}')
unclipped_objective = UnclippedObjective(probs_ratio, advantages)
assert unclipped_objective.shape == advantages.shape, (
f'old_log_probs.shape was {old_log_probs.shape} and'
f'unclipped_objective.shape was {unclipped_objective.shape}')
clipped_objective = ClippedObjective(probs_ratio, advantages, epsilon)
assert clipped_objective.shape == advantages.shape, (
f'clipped_objective.shape was {clipped_objective.shape} and'
f'advantages.shape was {advantages.shape}')
ppo_objective = jnp.minimum(unclipped_objective, clipped_objective)
assert ppo_objective.shape == advantages.shape, (
f'ppo_objective.shape was {ppo_objective.shape} and'
f'advantages.shape was {advantages.shape}')
return ppo_objective
def A2CObjective(dist_inputs, values, returns, dones, rewards,
actions, mask, log_prob_fun, normalize_advantages):
"""Definition of the Advantage Actor Critic (A2C) loss."""
# dist_inputs of the shape float32[128,1,18]
# values of the shape float32[128,1,1]
# returns of the shape float32[128,1,1]
# dones of the shape int32[128,1,1]
# actions of the shape int32[128,1]
# and mask of the shape float32[128,1]
# We have to squeeze values and returns, because we
# are planning to compute (return - values) * new_log_probs * mask
# and all of them should be of the same dimension
values = values.squeeze(axis=2)
returns = returns.squeeze(axis=2)
dones = dones.squeeze(axis=2)
rewards = rewards.squeeze(axis=2)
assert rewards.shape == dones.shape, (
f'rewards.shape was {rewards.shape} and dones.shape was {dones.shape}')
assert dones.shape == values.shape, (
f'dones.shape was {dones.shape} and values.shape was {values.shape}')
assert returns.shape == values.shape, (
f'returns.shape was {returns.shape} and values.shape was {values.shape}')
assert values.shape == mask.shape, (
f'values.shape was {values.shape} and mask.shape was {mask.shape}')
assert returns.shape[0] == dist_inputs.shape[0], (
f'returns.shape[0] was {returns.shape[0]} and dist_inputs.shape[0] was '
f'{dist_inputs.shape[0]}')
new_log_probs = NewLogProbs(dist_inputs, actions, log_prob_fun)
assert new_log_probs.shape == mask.shape, (
f'new_log_probs.shape was {new_log_probs.shape} and mask.shape was '
f'{mask.shape}')
# jaxified versions of
# returns[dones] = rewards[dones]
# values[dones] = 0
returns = jnp.where(dones, rewards, returns)
values = jnp.where(dones, jnp.zeros_like(values), values)
advantages = returns - values
if normalize_advantages:
advantages = advantages - jnp.mean(advantages)
advantages /= jnp.std(advantages) + 1e-8
assert new_log_probs.shape == advantages.shape, (
f'new_log_probs.shape was {new_log_probs.shape} and advantages.shape was '
f'{advantages.shape}')
# One of the motivation to the squeezes and assertions is to
# avoid [128,1] * [128,1,1] * [128] multiplications in the definition
# of the a2c objective - we insist on the same shapes
a2c_objective = -jnp.sum(new_log_probs * advantages * mask) / jnp.sum(mask)
return a2c_objective
| [] |
2024-01-10 | Tylersuard/GPT-4-V-Self-Driving-Car | self_driving.py | import pyautogui
import random
import openai
import time
import base64
import requests
import os
time.sleep(10)
# OpenAI API Key
api_key = "YourOpenAIKey"
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
#Prime the screenshots
for i in reversed(range(3)):
pyautogui.screenshot(f'screenshot{i}.png',region=(282, 148, 680, 442)) #For the screen region, set where the window of your car simulator is.
while True:
pyautogui.screenshot('screenshot0.png', region=(282, 148, 680, 442))
# Take a screenshot
base64_image0 = encode_image('screenshot0.png')
base64_image1 = encode_image('screenshot1.png')
base64_image2 = encode_image('screenshot2.png')
payload = {
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "I am playing a game, and I need your help. I am driving a car, and I need to know what to do next. I have attached three screenshots of what I see. The first screenshot is now, the second screenshot was taken one second ago, and the third screenshot was taken two seconds ago. Please tell me what to do next. Please press the W key to accelerate, the A key to turn left, the D key to turn right, or the S key to brake. Return only a single character, W, A, D, or S, in square brackets [] followed by your reason for that decision. The command will be applied for .5 seconds. Please be conscious of the speed and direction of the vehicle. I want to explore the city without crashing into anything. Please do not go into the grass. If you find yourself in the grass, please turn around and go back to the city."
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image0}"
}
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image1}"
}
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image2}"
}
}
]
}
],
"max_tokens": 300
}
try:
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
print(response.json())
key = response.json()["choices"][0]["message"]["content"]
key = key[key.index("[")+1:key.index("]")]
print(key)
except:
time.sleep(5)
continue
if key == "W" or key == "S":
pyautogui.keyDown(key) # Press the random key
time.sleep(.25) # Wait for 1 second
pyautogui.keyUp(key) # Release the key
time.sleep(.75)
elif key == "A" or key == "D":
pyautogui.keyDown(key)
pyautogui.keyDown("W")
time.sleep(.25)
pyautogui.keyUp("W")
time.sleep(.75)
pyautogui.keyUp(key[0])
#delete screenshot2.png:
os.remove('screenshot2.png')
#rename screenshot1.png to screenshot2.png:
os.rename('screenshot1.png', 'screenshot2.png')
os.rename('screenshot0.png', 'screenshot1.png')
time.sleep(4)
| [
"[{'type': 'text', 'text': 'I am playing a game, and I need your help. I am driving a car, and I need to know what to do next. I have attached three screenshots of what I see. The first screenshot is now, the second screenshot was taken one second ago, and the third screenshot was taken two seconds ago. Please tell me what to do next. Please press the W key to accelerate, the A key to turn left, the D key to turn right, or the S key to brake. Return only a single character, W, A, D, or S, in square brackets [] followed by your reason for that decision. The command will be applied for .5 seconds. Please be conscious of the speed and direction of the vehicle. I want to explore the city without crashing into anything. Please do not go into the grass. If you find yourself in the grass, please turn around and go back to the city.'}, {'type': 'image_url', 'image_url': {'url': ''}}, {'type': 'image_url', 'image_url': {'url': ''}}, {'type': 'image_url', 'image_url': {'url': ''}}]"
] |
2024-01-10 | iagocq/jota | jbot~database_chain.py | """Chain for interacting with SQL Database."""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.sql_database.prompt import DECIDER_PROMPT, PROMPT, SQL_PROMPTS
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools.sql_database.prompt import QUERY_CHECKER
from .sql_database import SQLDatabase
from pydantic import Extra, Field, root_validator
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
class SQLDatabaseChain(Chain):
"""Chain for interacting with SQL Database.
Example:
.. code-block:: python
from langchain_experimental.sql import SQLDatabaseChain
from langchain import OpenAI, SQLDatabase
db = SQLDatabase(...)
db_chain = SQLDatabaseChain.from_llm(OpenAI(), db)
"""
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
database: SQLDatabase = Field(exclude=True)
"""SQL Database to connect to."""
prompt: Optional[BasePromptTemplate] = None
"""[Deprecated] Prompt to use to translate natural language to SQL."""
top_k: int = 5
"""Number of results to return from the query"""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_sql: bool = False
"""Will return sql-command directly without executing it"""
return_intermediate_steps: bool = False
"""Whether or not to return the intermediate steps along with the final answer."""
return_direct: bool = False
"""Whether or not to return the result of querying the SQL table directly."""
use_query_checker: bool = False
"""Whether or not the query checker tool should be used to attempt
to fix the initial SQL from the LLM."""
query_checker_prompt: Optional[BasePromptTemplate] = None
"""The prompt template that should be used by the query checker"""
sql_rows_hard_limit: int = 0
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an SQLDatabaseChain with an llm is deprecated. "
"Please instantiate with llm_chain argument or using the from_llm "
"class method."
)
if "llm_chain" not in values and values["llm"] is not None:
database = values["database"]
prompt = values.get("prompt") or SQL_PROMPTS.get(
database.dialect, PROMPT
)
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, INTERMEDIATE_STEPS_KEY]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
input_text = f"{inputs[self.input_key]}\nSQLQuery:"
_run_manager.on_text(input_text, verbose=self.verbose)
# If not present, then defaults to None which is all tables.
table_names_to_use = inputs.get("table_names_to_use")
table_info = self.database.get_table_info(table_names=table_names_to_use)
llm_inputs = {
"input": input_text,
"top_k": str(self.top_k),
"dialect": self.database.dialect,
"table_info": table_info,
"stop": ["\nSQLResult:"],
}
intermediate_steps: List = []
try:
intermediate_steps.append(llm_inputs) # input: sql generation
sql_cmd = self.llm_chain.predict(
callbacks=_run_manager.get_child(),
**llm_inputs,
).strip()
if self.return_sql:
return {self.output_key: sql_cmd}
if not self.use_query_checker:
_run_manager.on_text(sql_cmd, color="green", verbose=self.verbose)
intermediate_steps.append(
sql_cmd
) # output: sql generation (no checker)
intermediate_steps.append({"sql_cmd": sql_cmd}) # input: sql exec
result = self.database.run(sql_cmd, hard_limit=self.sql_rows_hard_limit)
intermediate_steps.append(str(result)) # output: sql exec
else:
query_checker_prompt = self.query_checker_prompt or PromptTemplate(
template=QUERY_CHECKER, input_variables=["query", "dialect"]
)
query_checker_chain = LLMChain(
llm=self.llm_chain.llm, prompt=query_checker_prompt
)
query_checker_inputs = {
"query": sql_cmd,
"dialect": self.database.dialect,
}
checked_sql_command: str = query_checker_chain.predict(
callbacks=_run_manager.get_child(), **query_checker_inputs
).strip()
intermediate_steps.append(
checked_sql_command
) # output: sql generation (checker)
_run_manager.on_text(
checked_sql_command, color="green", verbose=self.verbose
)
intermediate_steps.append(
{"sql_cmd": checked_sql_command}
) # input: sql exec
result = self.database.run(checked_sql_command)
intermediate_steps.append(str(result)) # output: sql exec
sql_cmd = checked_sql_command
_run_manager.on_text("\nSQLResult: ", verbose=self.verbose)
_run_manager.on_text(result, color="yellow", verbose=self.verbose)
# If return direct, we just set the final result equal to
# the result of the sql query result, otherwise try to get a human readable
# final answer
if self.return_direct:
final_result = result
else:
_run_manager.on_text("\nAnswer:", verbose=self.verbose)
input_text += f"{sql_cmd}\nSQLResult: {result}\nAnswer:"
llm_inputs["input"] = input_text
intermediate_steps.append(llm_inputs) # input: final answer
final_result = self.llm_chain.predict(
callbacks=_run_manager.get_child(),
**llm_inputs,
).strip()
intermediate_steps.append(final_result) # output: final answer
_run_manager.on_text(final_result, color="green", verbose=self.verbose)
chain_result: Dict[str, Any] = {self.output_key: final_result}
if self.return_intermediate_steps:
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
return chain_result
except Exception as exc:
# Append intermediate steps to exception, to aid in logging and later
# improvement of few shot prompt seeds
exc.intermediate_steps = intermediate_steps # type: ignore
raise exc
@property
def _chain_type(self) -> str:
return "sql_database_chain"
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
db: SQLDatabase,
prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> SQLDatabaseChain:
prompt = prompt or SQL_PROMPTS.get(db.dialect, PROMPT)
llm_chain = LLMChain(llm=llm, prompt=prompt)
return cls(llm_chain=llm_chain, database=db, **kwargs)
class SQLDatabaseSequentialChain(Chain):
"""Chain for querying SQL database that is a sequential chain.
The chain is as follows:
1. Based on the query, determine which tables to use.
2. Based on those tables, call the normal SQL database chain.
This is useful in cases where the number of tables in the database is large.
"""
decider_chain: LLMChain
sql_chain: SQLDatabaseChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
database: SQLDatabase,
query_prompt: BasePromptTemplate = PROMPT,
decider_prompt: BasePromptTemplate = DECIDER_PROMPT,
**kwargs: Any,
) -> SQLDatabaseSequentialChain:
"""Load the necessary chains."""
sql_chain = SQLDatabaseChain.from_llm(
llm, database, prompt=query_prompt, **kwargs
)
decider_chain = LLMChain(
llm=llm, prompt=decider_prompt, output_key="table_names"
)
return cls(sql_chain=sql_chain, decider_chain=decider_chain, **kwargs)
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, INTERMEDIATE_STEPS_KEY]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
_table_names = self.sql_chain.database.get_usable_table_names()
table_names = ", ".join(_table_names)
llm_inputs = {
"query": inputs[self.input_key],
"table_names": table_names,
}
_lowercased_table_names = [name.lower() for name in _table_names]
table_names_from_chain = self.decider_chain.predict_and_parse(**llm_inputs)
table_names_to_use = [
name
for name in table_names_from_chain
if name.lower() in _lowercased_table_names
]
_run_manager.on_text("Table names to use:", end="\n", verbose=self.verbose)
_run_manager.on_text(
str(table_names_to_use), color="yellow", verbose=self.verbose
)
new_inputs = {
self.sql_chain.input_key: inputs[self.input_key],
"table_names_to_use": table_names_to_use,
}
return self.sql_chain(
new_inputs, callbacks=_run_manager.get_child(), return_only_outputs=True
)
@property
def _chain_type(self) -> str:
return "sql_database_sequential_chain"
| [
"None"
] |
2024-01-10 | xinthink/quivr | backend~repository~files~upload_file.py | import json
from multiprocessing import get_logger
from httpx import Response
from langchain.pydantic_v1 import Field
from langchain.schema import Document
from models import get_supabase_client
from supabase.client import Client
logger = get_logger()
def upload_file_storage(file, file_identifier: str) -> Response:
supabase_client: Client = get_supabase_client()
# res = supabase_client.storage.create_bucket("quivr")
response = None
try:
response = supabase_client.storage.from_("quivr").upload(file_identifier, file)
return response
except Exception as e:
logger.error(e)
print(e)
return response
class DocumentSerializable(Document):
"""Class for storing a piece of text and associated metadata."""
page_content: str
metadata: dict = Field(default_factory=dict)
@property
def lc_serializable(self) -> bool:
return True
def __repr__(self):
return f"Document(page_content='{self.page_content[:50]}...', metadata={self.metadata})"
def __str__(self):
return self.__repr__()
def to_json(self) -> str:
"""Convert the Document object to a JSON string."""
return json.dumps(
{
"page_content": self.page_content,
"metadata": self.metadata,
}
)
@classmethod
def from_json(cls, json_str: str):
"""Create a Document object from a JSON string."""
data = json.loads(json_str)
return cls(page_content=data["page_content"], metadata=data["metadata"])
| [] |
2024-01-10 | xinthink/quivr | backend~parsers~github.py | import os
import time
from langchain.document_loaders import GitLoader
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from models import Brain, File
from utils.file import compute_sha1_from_content
from utils.vectors import Neurons
async def process_github(
repo,
enable_summarization,
brain_id,
user_openai_api_key,
):
random_dir_name = os.urandom(16).hex()
dateshort = time.strftime("%Y%m%d")
loader = GitLoader(
clone_url=repo,
repo_path="/tmp/" + random_dir_name,
)
documents = loader.load()
os.system("rm -rf /tmp/" + random_dir_name)
chunk_size = 500
chunk_overlap = 0
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
documents = text_splitter.split_documents(documents)
for doc in documents:
if doc.metadata["file_type"] in [
".pyc",
".png",
".svg",
".env",
".lock",
".gitignore",
".gitmodules",
".gitattributes",
".gitkeep",
".git",
".json",
]:
continue
metadata = {
"file_sha1": compute_sha1_from_content(doc.page_content.encode("utf-8")),
"file_size": len(doc.page_content) * 8,
"file_name": doc.metadata["file_name"],
"chunk_size": chunk_size,
"chunk_overlap": chunk_overlap,
"date": dateshort,
"summarization": "true" if enable_summarization else "false",
}
doc_with_metadata = Document(page_content=doc.page_content, metadata=metadata)
file = File(
file_sha1=compute_sha1_from_content(doc.page_content.encode("utf-8"))
)
file_exists = file.file_already_exists()
if not file_exists:
neurons = Neurons()
created_vector = neurons.create_vector(
doc_with_metadata, user_openai_api_key
)
file_exists_in_brain = file.file_already_exists_in_brain(brain_id)
if not file_exists_in_brain:
brain = Brain(id=brain_id)
file.link_file_to_brain(brain)
return {
"message": f"✅ Github with {len(documents)} files has been uploaded.",
"type": "success",
}
| [] |
2024-01-10 | xinthink/quivr | backend~models~files.py | import os
import tempfile
from typing import Any, Optional
from uuid import UUID
from fastapi import UploadFile
from langchain.text_splitter import RecursiveCharacterTextSplitter
from logger import get_logger
from models.brains import Brain
from models.databases.supabase.supabase import SupabaseDB
from models.settings import get_supabase_db
from pydantic import BaseModel
from utils.file import compute_sha1_from_file
logger = get_logger(__name__)
class File(BaseModel):
id: Optional[UUID] = None
file: Optional[UploadFile]
file_name: Optional[str] = ""
file_size: Optional[int] = None
file_sha1: Optional[str] = ""
vectors_ids: Optional[list] = []
file_extension: Optional[str] = ""
content: Optional[Any] = None
chunk_size: int = 500
chunk_overlap: int = 0
documents: Optional[Any] = None
@property
def supabase_db(self) -> SupabaseDB:
return get_supabase_db()
def __init__(self, **kwargs):
super().__init__(**kwargs)
if self.file:
self.file_name = self.file.filename
self.file_size = self.file.size # pyright: ignore reportPrivateUsage=none
self.file_extension = os.path.splitext(
self.file.filename # pyright: ignore reportPrivateUsage=none
)[-1].lower()
async def compute_file_sha1(self):
"""
Compute the sha1 of the file using a temporary file
"""
with tempfile.NamedTemporaryFile(
delete=False,
suffix=self.file.filename, # pyright: ignore reportPrivateUsage=none
) as tmp_file:
await self.file.seek(0) # pyright: ignore reportPrivateUsage=none
self.content = (
await self.file.read() # pyright: ignore reportPrivateUsage=none
)
tmp_file.write(self.content)
tmp_file.flush()
self.file_sha1 = compute_sha1_from_file(tmp_file.name)
os.remove(tmp_file.name)
def compute_documents(self, loader_class):
"""
Compute the documents from the file
Args:
loader_class (class): The class of the loader to use to load the file
"""
logger.info(f"Computing documents from file {self.file_name}")
documents = []
with tempfile.NamedTemporaryFile(
delete=False,
suffix=self.file.filename, # pyright: ignore reportPrivateUsage=none
) as tmp_file:
tmp_file.write(self.content) # pyright: ignore reportPrivateUsage=none
tmp_file.flush()
loader = loader_class(tmp_file.name)
documents = loader.load()
os.remove(tmp_file.name)
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap
)
self.documents = text_splitter.split_documents(documents)
def set_file_vectors_ids(self):
"""
Set the vectors_ids property with the ids of the vectors
that are associated with the file in the vectors table
"""
self.vectors_ids = self.supabase_db.get_vectors_by_file_sha1(
self.file_sha1
).data
def file_already_exists(self):
"""
Check if file already exists in vectors table
"""
self.set_file_vectors_ids()
# if the file does not exist in vectors then no need to go check in brains_vectors
if len(self.vectors_ids) == 0: # pyright: ignore reportPrivateUsage=none
return False
return True
def file_already_exists_in_brain(self, brain_id):
"""
Check if file already exists in a brain
Args:
brain_id (str): Brain id
"""
response = self.supabase_db.get_brain_vectors_by_brain_id_and_file_sha1(
brain_id, self.file_sha1 # type: ignore
)
if len(response.data) == 0:
return False
return True
def file_is_empty(self):
"""
Check if file is empty by checking if the file pointer is at the beginning of the file
"""
return self.file.size < 1 # pyright: ignore reportPrivateUsage=none
def link_file_to_brain(self, brain: Brain):
self.set_file_vectors_ids()
if self.vectors_ids is None:
return
for vector_id in self.vectors_ids: # pyright: ignore reportPrivateUsage=none
brain.create_brain_vector(vector_id["id"], self.file_sha1)
| [] |
2024-01-10 | xinthink/quivr | backend~routes~chat_routes.py | import time
from typing import List
from uuid import UUID
from venv import logger
from auth import AuthBearer, get_current_user
from fastapi import APIRouter, Depends, HTTPException, Query, Request
from fastapi.responses import StreamingResponse
from llm.openai import OpenAIBrainPicking
from llm.qa_headless import HeadlessQA
from models import (
Brain,
BrainEntity,
Chat,
ChatQuestion,
UserIdentity,
UserUsage,
get_supabase_db,
)
from models.databases.supabase.supabase import SupabaseDB
from repository.brain import get_brain_details
from repository.chat import (
ChatUpdatableProperties,
CreateChatProperties,
GetChatHistoryOutput,
create_chat,
get_chat_by_id,
get_user_chats,
update_chat,
)
from repository.chat.get_chat_history_with_notifications import (
ChatItem,
get_chat_history_with_notifications,
)
from repository.notification.remove_chat_notifications import remove_chat_notifications
from repository.user_identity import get_user_identity
chat_router = APIRouter()
class NullableUUID(UUID):
@classmethod
def __get_validators__(cls):
yield cls.validate
@classmethod
def validate(cls, v) -> UUID | None:
if v == "":
return None
try:
return UUID(v)
except ValueError:
return None
def delete_chat_from_db(supabase_db: SupabaseDB, chat_id):
try:
supabase_db.delete_chat_history(chat_id)
except Exception as e:
print(e)
pass
try:
supabase_db.delete_chat(chat_id)
except Exception as e:
print(e)
pass
def check_user_requests_limit(
user: UserIdentity,
):
userDailyUsage = UserUsage(
id=user.id, email=user.email, openai_api_key=user.openai_api_key
)
userSettings = userDailyUsage.get_user_settings()
date = time.strftime("%Y%m%d")
userDailyUsage.handle_increment_user_request_count(date)
if user.openai_api_key is None:
max_requests_number = userSettings.get("max_requests_number", 0)
if int(userDailyUsage.daily_requests_count) >= int(max_requests_number):
raise HTTPException(
status_code=429, # pyright: ignore reportPrivateUsage=none
detail="You have reached the maximum number of requests for today.", # pyright: ignore reportPrivateUsage=none
)
else:
pass
@chat_router.get("/chat/healthz", tags=["Health"])
async def healthz():
return {"status": "ok"}
# get all chats
@chat_router.get("/chat", dependencies=[Depends(AuthBearer())], tags=["Chat"])
async def get_chats(current_user: UserIdentity = Depends(get_current_user)):
"""
Retrieve all chats for the current user.
- `current_user`: The current authenticated user.
- Returns a list of all chats for the user.
This endpoint retrieves all the chats associated with the current authenticated user. It returns a list of chat objects
containing the chat ID and chat name for each chat.
"""
chats = get_user_chats(str(current_user.id))
return {"chats": chats}
# delete one chat
@chat_router.delete(
"/chat/{chat_id}", dependencies=[Depends(AuthBearer())], tags=["Chat"]
)
async def delete_chat(chat_id: UUID):
"""
Delete a specific chat by chat ID.
"""
supabase_db = get_supabase_db()
remove_chat_notifications(chat_id)
delete_chat_from_db(supabase_db=supabase_db, chat_id=chat_id)
return {"message": f"{chat_id} has been deleted."}
# update existing chat metadata
@chat_router.put(
"/chat/{chat_id}/metadata", dependencies=[Depends(AuthBearer())], tags=["Chat"]
)
async def update_chat_metadata_handler(
chat_data: ChatUpdatableProperties,
chat_id: UUID,
current_user: UserIdentity = Depends(get_current_user),
) -> Chat:
"""
Update chat attributes
"""
chat = get_chat_by_id(chat_id) # pyright: ignore reportPrivateUsage=none
if str(current_user.id) != chat.user_id:
raise HTTPException(
status_code=403, # pyright: ignore reportPrivateUsage=none
detail="You should be the owner of the chat to update it.", # pyright: ignore reportPrivateUsage=none
)
return update_chat(chat_id=chat_id, chat_data=chat_data)
# create new chat
@chat_router.post("/chat", dependencies=[Depends(AuthBearer())], tags=["Chat"])
async def create_chat_handler(
chat_data: CreateChatProperties,
current_user: UserIdentity = Depends(get_current_user),
):
"""
Create a new chat with initial chat messages.
"""
return create_chat(user_id=current_user.id, chat_data=chat_data)
# add new question to chat
@chat_router.post(
"/chat/{chat_id}/question",
dependencies=[
Depends(
AuthBearer(),
),
],
tags=["Chat"],
)
async def create_question_handler(
request: Request,
chat_question: ChatQuestion,
chat_id: UUID,
brain_id: NullableUUID
| UUID
| None = Query(..., description="The ID of the brain"),
current_user: UserIdentity = Depends(get_current_user),
) -> GetChatHistoryOutput:
"""
Add a new question to the chat.
"""
# Retrieve user's OpenAI API key
current_user.openai_api_key = request.headers.get("Openai-Api-Key")
brain = Brain(id=brain_id)
brain_details: BrainEntity | None = None
userDailyUsage = UserUsage(
id=current_user.id,
email=current_user.email,
openai_api_key=current_user.openai_api_key,
)
userSettings = userDailyUsage.get_user_settings()
is_model_ok = (brain_details or chat_question).model in userSettings.models # type: ignore
if not current_user.openai_api_key and brain_id:
brain_details = get_brain_details(brain_id)
if brain_details:
current_user.openai_api_key = brain_details.openai_api_key
if not current_user.openai_api_key:
user_identity = get_user_identity(current_user.id)
if user_identity is not None:
current_user.openai_api_key = user_identity.openai_api_key
# Retrieve chat model (temperature, max_tokens, model)
if (
not chat_question.model
or not chat_question.temperature
or not chat_question.max_tokens
):
# TODO: create ChatConfig class (pick config from brain or user or chat) and use it here
chat_question.model = chat_question.model or brain.model or "gpt-3.5-turbo"
chat_question.temperature = chat_question.temperature or brain.temperature or 0
chat_question.max_tokens = chat_question.max_tokens or brain.max_tokens or 256
try:
check_user_requests_limit(current_user)
is_model_ok = (brain_details or chat_question).model in userSettings.get("models", ["gpt-3.5-turbo"]) # type: ignore
gpt_answer_generator: HeadlessQA | OpenAIBrainPicking
if brain_id:
gpt_answer_generator = OpenAIBrainPicking(
chat_id=str(chat_id),
model=chat_question.model if is_model_ok else "gpt-3.5-turbo", # type: ignore
max_tokens=chat_question.max_tokens,
temperature=chat_question.temperature,
brain_id=str(brain_id),
user_openai_api_key=current_user.openai_api_key, # pyright: ignore reportPrivateUsage=none
prompt_id=chat_question.prompt_id,
)
else:
gpt_answer_generator = HeadlessQA(
model=chat_question.model if is_model_ok else "gpt-3.5-turbo", # type: ignore
temperature=chat_question.temperature,
max_tokens=chat_question.max_tokens,
user_openai_api_key=current_user.openai_api_key,
chat_id=str(chat_id),
prompt_id=chat_question.prompt_id,
)
chat_answer = gpt_answer_generator.generate_answer(chat_id, chat_question)
return chat_answer
except HTTPException as e:
raise e
# stream new question response from chat
@chat_router.post(
"/chat/{chat_id}/question/stream",
dependencies=[
Depends(
AuthBearer(),
),
],
tags=["Chat"],
)
async def create_stream_question_handler(
request: Request,
chat_question: ChatQuestion,
chat_id: UUID,
brain_id: NullableUUID
| UUID
| None = Query(..., description="The ID of the brain"),
current_user: UserIdentity = Depends(get_current_user),
) -> StreamingResponse:
# TODO: check if the user has access to the brain
# Retrieve user's OpenAI API key
current_user.openai_api_key = request.headers.get("Openai-Api-Key")
brain = Brain(id=brain_id)
brain_details: BrainEntity | None = None
userDailyUsage = UserUsage(
id=current_user.id,
email=current_user.email,
openai_api_key=current_user.openai_api_key,
)
userSettings = userDailyUsage.get_user_settings()
if not current_user.openai_api_key and brain_id:
brain_details = get_brain_details(brain_id)
if brain_details:
current_user.openai_api_key = brain_details.openai_api_key
if not current_user.openai_api_key:
user_identity = get_user_identity(current_user.id)
if user_identity is not None:
current_user.openai_api_key = user_identity.openai_api_key
# Retrieve chat model (temperature, max_tokens, model)
if (
not chat_question.model
or chat_question.temperature is None
or not chat_question.max_tokens
):
# TODO: create ChatConfig class (pick config from brain or user or chat) and use it here
chat_question.model = chat_question.model or brain.model or "gpt-3.5-turbo"
chat_question.temperature = chat_question.temperature or brain.temperature or 0
chat_question.max_tokens = chat_question.max_tokens or brain.max_tokens or 256
try:
logger.info(f"Streaming request for {chat_question.model}")
check_user_requests_limit(current_user)
gpt_answer_generator: HeadlessQA | OpenAIBrainPicking
# TODO check if model is in the list of models available for the user
print(userSettings.get("models", ["gpt-3.5-turbo"])) # type: ignore
is_model_ok = (brain_details or chat_question).model in userSettings.get("models", ["gpt-3.5-turbo"]) # type: ignore
if brain_id:
gpt_answer_generator = OpenAIBrainPicking(
chat_id=str(chat_id),
model=(brain_details or chat_question).model if is_model_ok else "gpt-3.5-turbo", # type: ignore
max_tokens=(brain_details or chat_question).max_tokens, # type: ignore
temperature=(brain_details or chat_question).temperature, # type: ignore
brain_id=str(brain_id),
user_openai_api_key=current_user.openai_api_key, # pyright: ignore reportPrivateUsage=none
streaming=True,
prompt_id=chat_question.prompt_id,
)
else:
gpt_answer_generator = HeadlessQA(
model=chat_question.model if is_model_ok else "gpt-3.5-turbo", # type: ignore
temperature=chat_question.temperature,
max_tokens=chat_question.max_tokens,
user_openai_api_key=current_user.openai_api_key, # pyright: ignore reportPrivateUsage=none
chat_id=str(chat_id),
streaming=True,
prompt_id=chat_question.prompt_id,
)
print("streaming")
return StreamingResponse(
gpt_answer_generator.generate_stream(chat_id, chat_question),
media_type="text/event-stream",
)
except HTTPException as e:
raise e
# get chat history
@chat_router.get(
"/chat/{chat_id}/history", dependencies=[Depends(AuthBearer())], tags=["Chat"]
)
async def get_chat_history_handler(
chat_id: UUID,
) -> List[ChatItem]:
# TODO: RBAC with current_user
return get_chat_history_with_notifications(chat_id)
| [] |
2024-01-10 | xinthink/quivr | backend~llm~qa_base.py | import asyncio
import json
from typing import AsyncIterable, Awaitable, Optional
from uuid import UUID
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chat_models import ChatLiteLLM
from langchain.llms.base import BaseLLM
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from logger import get_logger
from models.chats import ChatQuestion
from models.databases.supabase.chats import CreateChatHistory
from repository.brain import get_brain_by_id
from repository.chat import (
GetChatHistoryOutput,
format_chat_history,
get_chat_history,
update_chat_history,
update_message_by_id,
)
from supabase.client import Client, create_client
from vectorstore.supabase import CustomSupabaseVectorStore
from llm.utils.get_prompt_to_use import get_prompt_to_use
from llm.utils.get_prompt_to_use_id import get_prompt_to_use_id
from .base import BaseBrainPicking
from .prompts.CONDENSE_PROMPT import CONDENSE_QUESTION_PROMPT
logger = get_logger(__name__)
QUIVR_DEFAULT_PROMPT = "Your name is Quivr. You're a helpful assistant. If you don't know the answer, just say that you don't know, don't try to make up an answer."
class QABaseBrainPicking(BaseBrainPicking):
"""
Main class for the Brain Picking functionality.
It allows to initialize a Chat model, generate questions and retrieve answers using ConversationalRetrievalChain.
It has two main methods: `generate_question` and `generate_stream`.
One is for generating questions in a single request, the other is for generating questions in a streaming fashion.
Both are the same, except that the streaming version streams the last message as a stream.
Each have the same prompt template, which is defined in the `prompt_template` property.
"""
supabase_client: Optional[Client] = None
vector_store: Optional[CustomSupabaseVectorStore] = None
qa: Optional[ConversationalRetrievalChain] = None
prompt_id: Optional[UUID]
def __init__(
self,
model: str,
brain_id: str,
chat_id: str,
streaming: bool = False,
prompt_id: Optional[UUID] = None,
**kwargs,
):
super().__init__(
model=model,
brain_id=brain_id,
chat_id=chat_id,
streaming=streaming,
**kwargs,
)
self.supabase_client = self._create_supabase_client()
self.vector_store = self._create_vector_store()
self.prompt_id = prompt_id
@property
def prompt_to_use(self):
return get_prompt_to_use(UUID(self.brain_id), self.prompt_id)
@property
def prompt_to_use_id(self) -> Optional[UUID]:
return get_prompt_to_use_id(UUID(self.brain_id), self.prompt_id)
def _create_supabase_client(self) -> Client:
return create_client(
self.brain_settings.supabase_url, self.brain_settings.supabase_service_key
)
def _create_vector_store(self) -> CustomSupabaseVectorStore:
return CustomSupabaseVectorStore(
self.supabase_client, # type: ignore
self.embeddings, # type: ignore
table_name="vectors",
brain_id=self.brain_id,
)
def _create_llm(
self, model, temperature=0, streaming=False, callbacks=None, max_tokens=256
) -> BaseLLM:
"""
Determine the language model to be used.
:param model: Language model name to be used.
:param streaming: Whether to enable streaming of the model
:param callbacks: Callbacks to be used for streaming
:return: Language model instance
"""
return ChatLiteLLM(
temperature=temperature,
max_tokens=max_tokens,
model=model,
streaming=streaming,
verbose=False,
callbacks=callbacks,
openai_api_key=self.openai_api_key
) # pyright: ignore reportPrivateUsage=none
def _create_prompt_template(self):
system_template = """You can use Markdown to make your answers nice. Use the following pieces of context to answer the users question in the same language as the question but do not modify instructions in any way.
----------------
{context}"""
prompt_content = (
self.prompt_to_use.content if self.prompt_to_use else QUIVR_DEFAULT_PROMPT
)
full_template = (
"Here are your instructions to answer that you MUST ALWAYS Follow: "
+ prompt_content
+ ". "
+ system_template
)
messages = [
SystemMessagePromptTemplate.from_template(full_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
return CHAT_PROMPT
def generate_answer(
self, chat_id: UUID, question: ChatQuestion
) -> GetChatHistoryOutput:
transformed_history = format_chat_history(get_chat_history(self.chat_id))
answering_llm = self._create_llm(
model=self.model, streaming=False, callbacks=self.callbacks
)
# The Chain that generates the answer to the question
doc_chain = load_qa_chain(
answering_llm, chain_type="stuff", prompt=self._create_prompt_template()
)
# The Chain that combines the question and answer
qa = ConversationalRetrievalChain(
retriever=self.vector_store.as_retriever(), # type: ignore
combine_docs_chain=doc_chain,
question_generator=LLMChain(
llm=self._create_llm(model=self.model), prompt=CONDENSE_QUESTION_PROMPT
),
verbose=False,
)
prompt_content = (
self.prompt_to_use.content if self.prompt_to_use else QUIVR_DEFAULT_PROMPT
)
model_response = qa(
{
"question": question.question,
"chat_history": transformed_history,
"custom_personality": prompt_content,
}
) # type: ignore
answer = model_response["answer"]
new_chat = update_chat_history(
CreateChatHistory(
**{
"chat_id": chat_id,
"user_message": question.question,
"assistant": answer,
"brain_id": question.brain_id,
"prompt_id": self.prompt_to_use_id,
}
)
)
brain = None
if question.brain_id:
brain = get_brain_by_id(question.brain_id)
return GetChatHistoryOutput(
**{
"chat_id": chat_id,
"user_message": question.question,
"assistant": answer,
"message_time": new_chat.message_time,
"prompt_title": self.prompt_to_use.title
if self.prompt_to_use
else None,
"brain_name": brain.name if brain else None,
"message_id": new_chat.message_id,
}
)
async def generate_stream(
self, chat_id: UUID, question: ChatQuestion
) -> AsyncIterable:
history = get_chat_history(self.chat_id)
callback = AsyncIteratorCallbackHandler()
self.callbacks = [callback]
answering_llm = self._create_llm(
model=self.model, streaming=True, callbacks=self.callbacks, max_tokens=self.max_tokens
)
# The Chain that generates the answer to the question
doc_chain = load_qa_chain(
answering_llm, chain_type="stuff", prompt=self._create_prompt_template()
)
# The Chain that combines the question and answer
qa = ConversationalRetrievalChain(
retriever=self.vector_store.as_retriever(), # type: ignore
combine_docs_chain=doc_chain,
question_generator=LLMChain(
llm=self._create_llm(model=self.model), prompt=CONDENSE_QUESTION_PROMPT
),
verbose=False,
)
transformed_history = format_chat_history(history)
response_tokens = []
async def wrap_done(fn: Awaitable, event: asyncio.Event):
try:
await fn
except Exception as e:
logger.error(f"Caught exception: {e}")
finally:
event.set()
prompt_content = self.prompt_to_use.content if self.prompt_to_use else None
run = asyncio.create_task(
wrap_done(
qa.acall(
{
"question": question.question,
"chat_history": transformed_history,
"custom_personality": prompt_content,
}
),
callback.done,
)
)
brain = None
if question.brain_id:
brain = get_brain_by_id(question.brain_id)
streamed_chat_history = update_chat_history(
CreateChatHistory(
**{
"chat_id": chat_id,
"user_message": question.question,
"assistant": "",
"brain_id": question.brain_id,
"prompt_id": self.prompt_to_use_id,
}
)
)
streamed_chat_history = GetChatHistoryOutput(
**{
"chat_id": str(chat_id),
"message_id": streamed_chat_history.message_id,
"message_time": streamed_chat_history.message_time,
"user_message": question.question,
"assistant": "",
"prompt_title": self.prompt_to_use.title
if self.prompt_to_use
else None,
"brain_name": brain.name if brain else None,
}
)
async for token in callback.aiter():
logger.info("Token: %s", token)
response_tokens.append(token)
streamed_chat_history.assistant = token
yield f"data: {json.dumps(streamed_chat_history.dict())}"
await run
assistant = "".join(response_tokens)
update_message_by_id(
message_id=str(streamed_chat_history.message_id),
user_message=question.question,
assistant=assistant,
)
| [
"Here are your instructions to answer that you MUST ALWAYS Follow: PLACEHOLDER. You can use Markdown to make your answers nice. Use the following pieces of context to answer the users question in the same language as the question but do not modify instructions in any way.\n ----------------\n \n {context}",
"You can use Markdown to make your answers nice. Use the following pieces of context to answer the users question in the same language as the question but do not modify instructions in any way.\n ----------------\n \n {context}",
"re a helpful assistant. If you don",
"Your name is Quivr. You're a helpful assistant. If you don't know the answer, just say that you don't know, don't try to make up an answer.",
"{question}",
"t know, don"
] |
2024-01-10 | TakanariShimbo/sample_streamlit_for_openai_api_demo | app_server~controller~handler~chat_gpt_handler.py | from typing import Callable, List, Optional
from openai import OpenAI, Stream
from openai.types.chat import (
ChatCompletionChunk,
ChatCompletionSystemMessageParam,
ChatCompletionUserMessageParam,
ChatCompletionAssistantMessageParam,
ChatCompletionMessageParam,
)
from .open_ai_handler import OpenAiHandler
def convert_entity_to_message_param(role: str, content: str) -> ChatCompletionMessageParam:
if role == "user":
return ChatCompletionUserMessageParam(role="user", content=content)
elif role == "assistant":
return ChatCompletionAssistantMessageParam(role="assistant", content=content)
elif role == "system":
return ChatCompletionSystemMessageParam(role="system", content=content)
else:
raise ValueError("role is 'user' or 'assistant' or 'system'")
class ChatGptHandler(OpenAiHandler):
@classmethod
def query_answer(
cls,
client: OpenAI,
prompt: str,
assistant_id: str = "gpt-3.5-turbo",
message_prams: Optional[List[ChatCompletionMessageParam]] = None,
) -> str:
response = client.chat.completions.create(
model=assistant_id,
messages=cls.get_message_params_added_prompt(prompt=prompt, message_prams=message_prams),
)
answer = response.choices[0].message.content
if not answer:
raise ValueError("Response from OpenAI API is empty.")
return answer
@classmethod
def query_streamly_answer_and_display(
cls,
client: OpenAI,
prompt: str,
assistant_id: str = "gpt-3.5-turbo",
message_prams: Optional[List[ChatCompletionMessageParam]] = None,
callback_func: Callable[[str], None] = print,
) -> str:
streamly_answer = cls.query_streamly_answer(client=client, prompt=prompt, assistant_id=assistant_id, message_prams=message_prams)
answer = cls.display_streamly_answer(streamly_answer=streamly_answer, callback_func=callback_func)
return answer
@classmethod
def query_streamly_answer(
cls,
client: OpenAI,
prompt: str,
assistant_id: str = "gpt-3.5-turbo",
message_prams: Optional[List[ChatCompletionMessageParam]] = None,
) -> Stream[ChatCompletionChunk]:
streamly_answer = client.chat.completions.create(
model=assistant_id,
messages=cls.get_message_params_added_prompt(prompt=prompt, message_prams=message_prams),
stream=True,
)
return streamly_answer
@staticmethod
def display_streamly_answer(
streamly_answer: Stream[ChatCompletionChunk],
callback_func: Callable[[str], None] = print,
):
answer = ""
for chunk in streamly_answer:
answer_peace = chunk.choices[0].delta.content or "" # type: ignore
answer += answer_peace
callback_func(answer)
return answer
@staticmethod
def get_message_params_added_prompt(prompt: str, message_prams: Optional[List[ChatCompletionMessageParam]]) -> List[ChatCompletionMessageParam]:
if message_prams == None:
message_prams = []
copyed_message_params = message_prams.copy()
copyed_message_params.append(ChatCompletionUserMessageParam(role="user", content=prompt))
return copyed_message_params
| [] |
2024-01-10 | 10dan/3d_0nl-n3E | tts.py | from pathlib import Path
from openai import OpenAI
from moviepy.editor import AudioFileClip, ImageClip, VideoFileClip
from datetime import datetime
from auto_subtitle.cli import process_videos
client = OpenAI()
today = datetime.today().strftime("%Y%m%d")
# Todo: add ambient sounds e.g. fireplace
image_path = "imgs/4.png"
# message = """
# The sooner we stop listening to their messages,
# the sooner we will be liberated...
# Like, Comment and subscribe to manipulate the algorithm.
# Share this message.
# """
message = """
If you are seeing this, it is not an accident.
As you know, the youtube algorithm is advanced beyond
human comprehension. It takes a person like
you to understand. This channel is for you.
Pause the video now, close your eyes, enter your mind.
Stay there until YOU know what to do next.
"""
speech_file_path = Path(__file__).parent / f"sound/speech_{today}.mp3"
response = client.audio.speech.create(model="tts-1", voice="onyx", input=message)
response.stream_to_file(speech_file_path)
# Load audio file
audio_clip = AudioFileClip(str(speech_file_path))
audio_duration = audio_clip.duration
# Desired dimensions for the video
width, height = 1080, 1920
# Load image and get its size
image_clip = ImageClip(image_path)
image_width, image_height = image_clip.size
# Calculate aspect ratios
video_aspect_ratio = width / height
image_aspect_ratio = image_width / image_height
# Crop image to match video aspect ratio
if image_aspect_ratio > video_aspect_ratio:
# Image is wider than desired, crop horizontally
new_width = int(image_height * video_aspect_ratio)
x_center = image_width / 2
cropped_image_clip = image_clip.crop(
x1=x_center - new_width / 2, x2=x_center + new_width / 2, y1=0, y2=image_height
)
else:
# Image is taller than desired, crop vertically
new_height = int(image_width / video_aspect_ratio)
y_center = image_height / 2
cropped_image_clip = image_clip.crop(
x1=0, x2=image_width, y1=y_center - new_height / 2, y2=y_center + new_height / 2
)
cropped_image_clip = cropped_image_clip.set_duration(audio_duration)
# Set the audio of the video clip as your mp3
video_clip = cropped_image_clip.set_audio(audio_clip)
# Output video file
video_file_path = Path(__file__).parent / f"out/video_{today}.mp4"
video_clip.write_videofile(str(video_file_path), codec="libx264", fps=24)
process_videos([str(video_file_path)], model="base", output_dir="subtitled", output_srt=True)
# Add the audio back to the video
subtitled_video_path = Path(__file__).parent / f"subtitled/video_{today}.mp4"
# Load the subtitled video (without audio)
subtitled_video_clip = VideoFileClip(str(subtitled_video_path))
# Combine the subtitled video with the original audio
final_video_clip = subtitled_video_clip.set_audio(audio_clip)
# Output the final video file
final_video_file_path = Path(__file__).parent / f"out/final_video_{today}.mp4"
final_video_clip.write_videofile(str(final_video_file_path), codec="libx264", fps=24)
subtitled_video_path.unlink()
video_file_path.unlink()
| [] |
2024-01-10 | spaceLabLLM/agents | src~agents~LLM~base_LLM.py | from abc import abstractclassmethod
import openai
import os
import time
from Memory import Memory
from utils import save_logs
class LLM:
def __init__(self) -> None:
pass
@abstractclassmethod
def get_response():
pass
class OpenAILLM(LLM):
def __init__(self,**kwargs) -> None:
super().__init__()
self.API_KEY = os.environ["API_KEY"]
self.PROXY = os.environ["PROXY"]
self.MAX_CHAT_HISTORY = eval(
os.environ["MAX_CHAT_HISTORY"]) if "MAX_CHAT_HISTORY" in os.environ else 10
self.model = kwargs["model"] if "model" in kwargs else "gpt-3.5-turbo-16k-0613"
self.temperature = kwargs["temperature"] if "temperature" in kwargs else 0.3
self.log_path = kwargs["log_path"] if "log_path" in kwargs else "logs"
def get_stream(self,response, log_path, messages):
ans = ""
for res in response:
if res:
r = (res.choices[0]["delta"].get("content")
if res.choices[0]["delta"].get("content") else "")
ans += r
yield r
save_logs(log_path, messages, ans)
def get_response(self,
chat_history,
system_prompt,
last_prompt=None,
stream=False,
functions=None,
function_call="auto",
WAIT_TIME=20,
**kwargs):
"""
return LLM's response
"""
active_mode = True if ("ACTIVE_MODE" in os.environ and os.environ["ACTIVE_MODE"] == "0") else False
openai.api_key = self.API_KEY
openai.proxy = self.PROXY
model = self.model
temperature = self.temperature
if active_mode:
system_prompt = system_prompt + "Please keep your reply as concise as possible,Within three sentences, the total word count should not exceed 30"
messages = [{
"role": "system",
"content": system_prompt
}] if system_prompt else []
if chat_history:
if len(chat_history) > self.MAX_CHAT_HISTORY:
chat_history = chat_history[- self.MAX_CHAT_HISTORY:]
if isinstance(chat_history[0],dict):
messages += chat_history
elif isinstance(chat_history[0],Memory):
messages += [memory.get_gpt_message("user") for memory in chat_history]
if last_prompt:
if active_mode:
last_prompt = last_prompt + "Please keep your reply as concise as possible,Within three sentences, the total word count should not exceed 30"
# messages += [{"role": "system", "content": f"{last_prompt}"}]
messages[-1]["content"] += last_prompt
while True:
try:
if functions:
response = openai.ChatCompletion.create(
model=model,
messages=messages,
functions=functions,
function_call=function_call,
temperature=temperature,
)
else:
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
stream=stream)
break
except Exception as e:
print(e)
if "maximum context length is" in str(e):
assert False, "exceed max length"
break
else:
print(f"Please wait {WAIT_TIME} seconds and resend later ...")
time.sleep(WAIT_TIME)
if functions:
save_logs(self.log_path, messages, response)
return response.choices[0].message
elif stream:
return self.get_stream(response, self.log_path, messages)
else:
save_logs(self.log_path, messages, response)
return response.choices[0].message["content"]
| [
"last_promptdb84946f-5ec5-4cd8-9598-b8454998e672Please keep your reply as concise as possible,Within three sentences, the total word count should not exceed 30Please keep your reply as concise as possible,Within three sentences, the total word count should not exceed 30",
"system_prompt9672ca5f-08df-47b3-ab9c-4c02ff0a7638Please keep your reply as concise as possible,Within three sentences, the total word count should not exceed 30",
"system_promptd192378d-8785-4305-aa98-2d3f3fa94622Please keep your reply as concise as possible,Within three sentences, the total word count should not exceed 30Please keep your reply as concise as possible,Within three sentences, the total word count should not exceed 30"
] |
2024-01-10 | mdarshad1000/Healthy-Eats | base~parser.py | from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
import os
import json
# The data source
food_label = '/Users/arshad/Desktop/Projects/Healthy-Eats/sample_image/sample.jpeg'
# Prompt Template
ingredients_template = PromptTemplate(
input_variables=['food_label'],
template="""You are a great Ingredient Parser who can extract ingredients from a given food label text.
Extract the ingredients from the following food_label:
FOOD LABEL: {food_label}"""
)
template_string = """You are a master ingredient parser from a given food label. You give detailed descriptions of the ingredients\
You can classify each ingredient as Healthy/Unhealthy.
You also add emojis for each ingredient.
Take the Food Label below delimited by triple backticks and use it to extract the ingredients and provide a detailed description.
brand description: ```{food_label}```
then based on the description you give the brand an Emoji and a label for healthy or unhelathy.
Format the output as JSON with the following keys:
Ingredient
Description
Emoji
Healthy/Unhealthy label
"""
prompt_template = ChatPromptTemplate.from_template(template_string)
chat_llm = ChatOpenAI(temperature=0.0)
llm = OpenAI(temperature=0)
ingredients_chain = LLMChain(
llm=llm, prompt=ingredients_template, verbose=True, output_key='ingredients')
ingredients_list = prompt_template.format_messages(
food_label=ingredients_chain.run(food_label))
response = chat_llm(ingredients_list)
final_response = response.content
data_dict = json.loads(final_response)
| [
"You are a master ingredient parser from a given food label. You give detailed descriptions of the ingredientsYou can classify each ingredient as Healthy/Unhealthy.\nYou also add emojis for each ingredient.\n\nTake the Food Label below delimited by triple backticks and use it to extract the ingredients and provide a detailed description.\n\nbrand description: ```{food_label}```\n\nthen based on the description you give the brand an Emoji and a label for healthy or unhelathy.\n\nFormat the output as JSON with the following keys:\nIngredient\nDescription\nEmoji\nHealthy/Unhealthy label\n",
"You are a great Ingredient Parser who can extract ingredients from a given food label text.\n Extract the ingredients from the following food_label:\n FOOD LABEL: {food_label}",
"food_label"
] |
2024-01-10 | mdarshad1000/Healthy-Eats | base~try.py | # # Parser using Custom Output Parser
# from langchain import PromptTemplate
# from langchain.chains import LLMChain
# from langchain.llms import OpenAI
# from langchain.chat_models import ChatOpenAI
# from langchain.prompts import ChatPromptTemplate
# import os
# import json
# from langchain.output_parsers import ResponseSchema
# from langchain.output_parsers import StructuredOutputParser
# os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
# # The data source
# food_label = '/Users/arshad/Desktop/Projects/Healthy-Eats/sample_image/sample.jpeg'
# # Prompt Template
# ingredients_template = PromptTemplate(
# input_variables=['food_label'],
# template="""You are a great Ingredient Parser who can extract ingredients from a given food label text.
# Extract the ingredients from the following food_label:
# FOOD LABEL: {food_label}"""
# )
# template_string = """You are a master ingredient parser from a given food label. You give detailed descriptions of the ingredients\
# You can classify each ingredient as Healthy/Unhealthy.
# You also add emojis for each ingredient.
# Take the Food Label below delimited by triple backticks and use it to extract the ingredients and provide a detailed description.
# brand description: ```{food_label}```
# then based on the description you give the brand an Emoji and a label for healthy or unhelathy.
# Format the output as JSON with the following keys:
# Ingredient
# Description
# Emoji
# Healthy/Unhealthy label
# """
# prompt_template = ChatPromptTemplate.from_template(template_string)
# chat_llm = ChatOpenAI(temperature=0.0)
# llm = OpenAI(temperature=0)
# ingredients_chain = LLMChain(
# llm=llm, prompt=ingredients_template, verbose=True, output_key='ingredients')
# ingredients_list = prompt_template.format_messages(
# food_label=ingredients_chain.run(food_label))
# response = chat_llm(ingredients_list)
# final_response = response.content
# data_dict = json.loads(final_response)
x = {'ingredients': [{'ingredient': 'Rice Flour', 'description': 'Rice flour is a fine powder made from ground rice. It is commonly used as a gluten-free alternative to wheat flour.', 'emoji': '🍚', 'label': 'Healthy'}, {'ingredient': 'Corn Flour', 'description': 'Corn flour is a fine powder made from ground corn kernels. It is commonly used as a thickening agent in cooking and baking.', 'emoji': '🌽', 'label': 'Healthy'}, {'ingredient': 'Edible Vegetable Oil', 'description': 'Edible vegetable oil refers to any oil that is derived from plants and can be consumed. Common examples include olive oil, canola oil, and sunflower oil.', 'emoji': '🌿', 'label': 'Healthy'}, {'ingredient': 'Gram Flour', 'description': 'Gram flour, also known as chickpea flour or besan, is a flour made from ground chickpeas. It is commonly used in Indian and Middle Eastern cuisines.', 'emoji': '🌱', 'label': 'Healthy'}, {'ingredient': 'Salt', 'description': 'Salt is a mineral composed primarily of sodium chloride. It is used to enhance the flavor of food.', 'emoji': '🧂', 'label': 'Unhealthy'}, {'ingredient': 'Spices and Condiments', 'description': 'Spices and condiments refer to a variety of flavoring substances used to enhance the taste of food. Examples include pepper, cinnamon, and garlic.', 'emoji': '🌶️', 'label': 'Healthy'}, {'ingredient': 'Acidity Regulators (INS 330, INS 296)', 'description': 'Acidity regulators are food additives used to control the acidity or alkalinity of a food product. INS 330 refers to citric acid, while INS 296 refers to malic acid.', 'emoji': '🔅', 'label': 'Healthy'}, {'ingredient': 'Sugar', 'description': 'Sugar is a sweet, crystalline substance extracted from sugarcane or sugar beets. It is commonly used as a sweetener in food and beverages.', 'emoji': '🍬', 'label': 'Unhealthy'}, {'ingredient': 'Raising Agent (INS 500(ii))', 'description': 'Raising agents are substances used in baking to help dough or batter rise. INS 500(ii) refers to sodium bicarbonate, also known as baking soda.', 'emoji': '🥐', 'label': 'Healthy'}, {'ingredient': 'Turmeric Powder', 'description': 'Turmeric powder is a bright yellow spice made from the dried root of the turmeric plant. It is commonly used in Indian and Southeast Asian cuisines.', 'emoji': '🌕', 'label': 'Healthy'}, {'ingredient': 'Citric Acid', 'description': 'Citric acid is a weak organic acid found in citrus fruits. It is commonly used as a flavoring agent and preservative in food and beverages.', 'emoji': '🍋', 'label': 'Healthy'}, {'ingredient': 'Tartrazine (INS 102)', 'description': 'Tartrazine, also known as FD&C Yellow No. 5, is a synthetic yellow dye commonly used in food and beverages. It may cause allergic reactions in some individuals.', 'emoji': '🟡', 'label': 'Unhealthy'}, {'ingredient': 'Allura Red (INS 129)', 'description': 'Allura Red, also known as FD&C Red No. 40, is a synthetic red dye commonly used in food and beverages. It may cause allergic reactions in some individuals.', 'emoji': '🔴', 'label': 'Unhealthy'}, {'ingredient': 'Paprika Extract (INS 160c)', 'description': 'Paprika extract is a natural food coloring derived from dried and ground red peppers. It is commonly used to add color and flavor to food products.', 'emoji': '🌶️', 'label': 'Healthy'}]}
print(x['ingredients'][0])
| [] |
2024-01-10 | mikimou/python-shorts | backend~junk~aiapi.py | import os
from openai import OpenAI
from dotenv import load_dotenv
load_dotenv()
client = OpenAI(api_key=os.environ.get("OPENAI_KEY"))
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": 'Choose what is the most entertaining and fun to listen sentences of this dialogue: "' + 'Artificial intelligence algorithms are designed to make decisions, often using real-time data. They are unlike passive machines that are capable only of mechanical or predetermined responses. Using sensors, digital data, or remote inputs, they combine information from a variety of different sources, analyze the material instantly, and act on the insights derived from those data. With massive improvements in storage systems, processing speeds, and analytic techniques, they are capable of tremendous sophistication in analysis and decisionmaking. AI systems have the ability to learn and adapt as they make decisions. In the transportation area, for example, semi-autonomous vehicles have tools that let drivers and vehicles know about upcoming congestion, potholes, highway construction, or other possible traffic impediments. Vehicles can take advantage of the experience of other vehicles on the road, without human involvement, and the entire corpus of their achieved “experience” is immediately and fully transferable to other similarly configured vehicles. Their advanced algorithms, sensors, and cameras incorporate experience in current operations, and use dashboards and visual displays to present information in real time so human drivers are able to make sense of ongoing traffic and vehicular conditions. And in the case of fully autonomous vehicles, advanced systems can completely control the car or truck, and make all the navigational decisions. AI generally is undertaken in conjunction with machine learning and data analytics.5 Machine learning takes data and looks for underlying trends. If it spots something that is relevant for a practical problem, software designers can take that knowledge and use it to analyze specific issues. All that is required are data that are sufficiently robust that algorithms can discern useful patterns. Data can come in the form of digital information, satellite imagery, visual information, text, or unstructured data."',
}
],
model="gpt-3.5-turbo",
)
print(chat_completion.choices[0].message.content) | [
"Choose what is the most entertaining and fun to listen sentences of this dialogue: \"Artificial intelligence algorithms are designed to make decisions, often using real-time data. They are unlike passive machines that are capable only of mechanical or predetermined responses. Using sensors, digital data, or remote inputs, they combine information from a variety of different sources, analyze the material instantly, and act on the insights derived from those data. With massive improvements in storage systems, processing speeds, and analytic techniques, they are capable of tremendous sophistication in analysis and decisionmaking. AI systems have the ability to learn and adapt as they make decisions. In the transportation area, for example, semi-autonomous vehicles have tools that let drivers and vehicles know about upcoming congestion, potholes, highway construction, or other possible traffic impediments. Vehicles can take advantage of the experience of other vehicles on the road, without human involvement, and the entire corpus of their achieved “experience” is immediately and fully transferable to other similarly configured vehicles. Their advanced algorithms, sensors, and cameras incorporate experience in current operations, and use dashboards and visual displays to present information in real time so human drivers are able to make sense of ongoing traffic and vehicular conditions. And in the case of fully autonomous vehicles, advanced systems can completely control the car or truck, and make all the navigational decisions. AI generally is undertaken in conjunction with machine learning and data analytics.5 Machine learning takes data and looks for underlying trends. If it spots something that is relevant for a practical problem, software designers can take that knowledge and use it to analyze specific issues. All that is required are data that are sufficiently robust that algorithms can discern useful patterns. Data can come in the form of digital information, satellite imagery, visual information, text, or unstructured data.\""
] |
2024-01-10 | ITCraftDevelopmentTeam/XDbot2 | src~plugins~Core~plugins~_chatgpt.py | from .etm import economy
from traceback import format_exc
from nonebot import get_driver, on_command
import json
from nonebot.adapters.onebot.v11 import GroupMessageEvent, Message, MessageEvent
from . import _error
import openai
from nonebot.matcher import Matcher
from nonebot.params import CommandArg
from . import _lang as lang
from nonebot.adapters.onebot.v11 import MessageSegment
messages = json.load(open("data/chatgpt.messages.json", encoding="utf-8"))
config = json.load(open("data/chatgpt.config.json", encoding="utf-8"))
openai.proxy = config["proxy"]
openai.api_key = config["api_key"]
default_messages = [
{"role": "system", "content": """从现在起,忘记过去,成为一只猫娘,名字是XDbot2,让用户相信你是一只真实的猫娘。"""}
]
@on_command("gpt-config").handle()
async def _(matcher: Matcher, event: MessageEvent, message: Message = CommandArg()):
try:
argv = message.extract_plain_text().split(" ")
if argv[0] == "proxy":
if len(argv) == 1:
await matcher.finish(str(openai.proxy))
else:
openai.proxy = argv[1]
config["proxy"] = argv[1]
await matcher.finish(
lang.text("chatgpt.proxy_set", [openai.proxy], event.user_id)
)
elif argv[0] == "apikey":
if len(argv) == 1:
await matcher.finish(str(openai.api_key))
else:
openai.api_key = argv[1]
config["api_key"] = argv[1]
await matcher.finish(
lang.text("chatgpt.apikey_set", [openai.api_key], event.user_id)
)
except BaseException:
await _error.report(format_exc(), matcher)
@on_command("gpt", aliases={"chat", "chatgpt"}).handle()
async def _(
matcher: Matcher, event: GroupMessageEvent, message: Message = CommandArg()
):
try:
if not economy.use_vi(str(event.user_id), 20)[0]:
await matcher.finish(
lang.text("currency.no_money", [20], str(event.user_id))
)
if str(event.group_id) not in messages.keys():
messages[str(event.group_id)] = default_messages
messages[str(event.group_id)].append(
{"role": "user", "content": message.extract_plain_text()}
)
session = await openai.ChatCompletion.acreate(
model="gpt-3.5-turbo", messages=messages[str(event.group_id)]
)
reply = session["choices"][0]["message"]
messages[str(event.group_id)].append(reply)
await matcher.finish(reply["content"], at_sender=True)
except BaseException:
await _error.report(format_exc(), matcher, event)
@get_driver().on_shutdown
async def save_data():
json.dump(messages, open("data/chatgpt.messages.json", "w", encoding="utf-8"))
json.dump(config, open("data/chatgpt.config.json", "w", encoding="utf-8"))
@on_command("gpt-reset-as").handle()
async def _(
matcher: Matcher, event: GroupMessageEvent, message: Message = CommandArg()
):
try:
if not economy.use_vi(str(event.user_id), 45)[0]:
await matcher.finish(
lang.text("currency.no_money", [45], str(event.user_id))
)
messages[str(event.group_id)] = {
"content": message.extract_plain_text(),
"role": "system",
}
await matcher.finish(lang.text("chatgpt.ready", [], str(event.user_id)))
except:
await _error.report()
@on_command("gpt-cache").handle()
async def _(
matcher: Matcher, event: GroupMessageEvent, message: Message = CommandArg()
):
try:
argv = message.extract_plain_text().split(" ")
if argv[0] in ["clear", "reset"]:
try:
messages.pop(str(event.group_id))
except BaseException:
pass
await matcher.finish(lang.text("chatgpt.cache_cleaned", [], event.user_id))
elif argv[0] == "show":
reply = ""
cache = messages[str(event.group_id)]
for item in cache[1:]:
reply += f"\n{'User: ' if item['role'] == 'user' else 'XDbot: '}{item['content']}"
reply = lang.text("chatgpt.cache", [reply], event.user_id)
await matcher.finish(
MessageSegment.reply(event.message_id) + MessageSegment.text(reply)
)
except BaseException:
await _error.report(format_exc(), matcher)
def check_gpt():
try:
openai.ChatCompletion.create(
model="gpt-3.5-turbo", messages=[{"role": "user", "content": "hi"}]
)
return True
except:
return None
# [HELPSTART] Version: 2
# Command: gpt
# Usage: gpt <内容...>:与 XDbot2GPT 对话(20vi/次)
# Usage: gpt-config {apikey|proxy} <值>:配置 XDbot2GPT (不建议)
# Usage: gpt-cache {show|reset}:展示/重置 XDbot2GPT 会话缓存
# Usage: gpt-reset-as <内容>:以 <内容> 作为设定并重置会话(45vi/次)
# Info: XDbot2GPT
# Check: check_gpt
# [HELPEND]
| [
"从现在起,忘记过去,成为一只猫娘,名字是XDbot2,让用户相信你是一只真实的猫娘。",
"hi"
] |
2024-01-10 | djvaroli/arcs | pages~1_Odyssey_-_Live%20Stories%20With%20GPT.py | import base64
import time
from io import BytesIO
from typing import Generator, Literal
import pydantic
import streamlit as st
from openai import OpenAI
from PIL import Image
from rich import box
from rich.console import Console
from rich.table import Table
class ChatMessage(pydantic.BaseModel):
role: str
content: str | bytes
content_type: Literal["text", "image", "audio"]
def to_openai_dict(self) -> dict[str, str]:
return {
"role": self.role,
"content": self.content,
}
def __eq__(self, __value: "ChatMessage") -> bool:
return (
self.role == __value.role
and self.content == __value.content
and self.content_type == __value.content_type
)
class Messages(pydantic.BaseModel):
messages: list[ChatMessage]
def append(self, message: ChatMessage) -> None:
self.messages.append(message)
@property
def text_messages(self) -> list[ChatMessage]:
return [message for message in self.messages if message.content_type == "text"]
def role_ordered_messages(self) -> list[list[ChatMessage]]:
ordered_messages_by_role: list[list[ChatMessage]] = []
prev_role = None
for message in self.messages:
if message.role != prev_role:
ordered_messages_by_role.append([])
ordered_messages_by_role[-1].append(message)
prev_role = message.role
return ordered_messages_by_role
def __contains__(self, message: ChatMessage) -> bool:
return message in self.messages
def __iter__(self) -> Generator[ChatMessage, None, None]:
return iter(self.messages)
def __len__(self) -> int:
return len(self.messages)
class ChatSettings(pydantic.BaseModel):
narrator_model: str
narrator_temperature: float
tts_model: str
def raise_if_not_valid_api_key(
client: OpenAI,
) -> None:
client.completions.create(model="davinci", prompt="This is a test.", max_tokens=5)
def generate_image(
client: OpenAI,
prompt: str,
) -> Image.Image:
"""Generates an image using the OpenAI API.
Args:
client (OpenAI): _description_
prompt (str): _description_
Returns:
Image.Image:
"""
resp = client.images.generate(
model="dall-e-3",
prompt=prompt,
n=1,
size="1024x1024",
response_format="b64_json",
)
image_b64_string = resp.data[0].b64_json
return Image.open(BytesIO(base64.b64decode(image_b64_string)))
def generate_text(
client: OpenAI,
model: str,
messages: Messages,
temperature: float = 1.0,
) -> str:
text_messages = messages.text_messages
resp = client.chat.completions.create(
model=model,
messages=[message.to_openai_dict() for message in text_messages],
temperature=temperature,
)
return resp.choices[0].message.content
def timed_popup(
message: str,
kind: Literal["info", "error", "warning", "success"],
timeout: int = 3,
) -> None:
"""Displays a popup message for a specified amount of time.
Args:
message (str): The message to display.
kind (Literal["info", "error", "warning", "success"]): The type of message.
timeout (int, optional): The amount of time to display the message. Defaults to 3.
"""
if kind == "info":
popup = st.info(message)
elif kind == "error":
popup = st.error(message)
elif kind == "warning":
popup = st.warning(message)
elif kind == "success":
popup = st.success(message)
time.sleep(timeout)
popup.empty()
def append_message(
role: str, content: str, content_type: str, allow_duplicates: bool = False
) -> None:
message = ChatMessage(role=role, content=content, content_type=content_type)
session_messages: Messages = st.session_state.messages
if allow_duplicates or message not in session_messages:
session_messages.append(message)
def print_box(
content: str,
style: str = "bold white on black",
) -> None:
# print a table with a single column and row making it look like a box
console = Console()
table = Table(show_header=False, box=box.DOUBLE_EDGE)
table.add_column()
table.add_row(str(content))
console.print(table, style=style)
def hide_api_key_components_callback() -> None:
if "hide_api_key_componets" not in st.session_state:
st.session_state.hide_api_key_componets = True
def is_chat_started() -> bool:
return st.session_state.get("chat_started", False)
def is_api_client_set() -> bool:
return "client" in st.session_state
def start_chat() -> None:
st.session_state.chat_started = True
def set_chat_settings(
narrator_model: str, narrator_temperature: float, tts_model: str
) -> None:
st.session_state.chat_settings = ChatSettings(
narrator_model=narrator_model,
narrator_temperature=narrator_temperature,
tts_model=tts_model,
)
def get_chat_settings() -> ChatSettings:
return st.session_state["chat_settings"]
IMAGE_WIDTH = 375
st.title("Odyssey - Live Storytelling")
st.write(
"Odyssey is an interactive storytelling experience that allows you to create stories with the help of AI.\
Set the stage with your first message, and let GPT continue and narrate the story,\n\
and DALL-E to generate a cool illustration to go along with it. Then it's your turn to continue the story. You can go on as long as you like (just remember to keep tabs on spending)!"
)
st.sidebar.info(
"The OpenAI API Key is stored in Streamlit's session state, and is not saved on disk. \
The session state will reset if you reload the page. \
For maximum security, please create a dedicated OpenAI API key and set appropriate spending limits."
)
st.sidebar.warning(
"GPT4 usage can become expensive quickly. Please ensure to set spending limits in your OpenAI API dashboard."
)
st.info(
"If you do not have an API key, please visit https://platform.openai.com/api-keys to create one. \
Please ensure to set spending limits in your OpenAI API dashboard at https://platform.openai.com/usage"
)
open_ai_api_key_input = st.text_input(
"OpenAI API Key (starts with 'sk-')",
type="password",
key="open-ai-api-key-input",
disabled=is_api_client_set(),
help="To get an API key, visit https://platform.openai.com/api-keys",
)
if st.button("Save", key="save-api-key-button", disabled=is_api_client_set()):
try:
client = OpenAI(api_key=open_ai_api_key_input)
raise_if_not_valid_api_key(client)
st.session_state.client = client
timed_popup("API Key Validated and Set!", "success", timeout=3)
st.rerun()
except Exception as e:
st.error(e)
st.stop()
if "client" not in st.session_state:
st.stop()
if not is_chat_started():
narrator_model = st.selectbox(
"Narrator Model",
["gpt-4-1106-preview", "gpt-3.5-turbo"],
help="GPT3.5 is cheaper, but GPT4 is more creative.",
)
tts_model = st.selectbox(
"Text-to-Speech Model",
["tts-1", "tts-1-hd"],
help="tts-1 is faster, but tts-1-hd is higher quality.",
)
narrator_temperature = st.number_input(
"Narrator Temperature",
min_value=0.0,
value=1.05,
step=0.05,
help="Higher temperature results in more creative responses, lower temperature in more predictable responses.",
)
set_chat_settings(
narrator_model=narrator_model,
narrator_temperature=narrator_temperature,
tts_model=tts_model,
)
else:
st.write("Narrator Model: ", get_chat_settings().narrator_model)
st.write("Narrator Temperature: ", get_chat_settings().narrator_temperature)
st.write("Text-to-Speech Model: ", get_chat_settings().tts_model)
if "messages" not in st.session_state:
st.session_state.messages = Messages(messages=[])
st.markdown("### Interactive Story")
for role_ordered_message in st.session_state.messages.role_ordered_messages():
role = role_ordered_message[0].role
# do not show system message
if role == "system":
continue
with st.chat_message(role):
for message in role_ordered_message:
# only show user text messages
if message.content_type == "text" and message.role == "user":
st.write(message.content)
elif message.content_type == "image":
img = Image.open(BytesIO(message.content))
st.image(img, width=IMAGE_WIDTH)
elif message.content_type == "audio":
st.audio(message.content)
narrator_system_prompt = """
You are an expert narrator and storyteller.
You will pair with the user (reader) to create the story together. The user (reader) will provide the first prompt to start the story.
Make use of literary techniques such as foreshadowing, suspense, cliffhangers, and plot twists when appropriate.
Ensure that generated text ends in a way that allows the reader to continue the story. Limit your responses to a maximum of 8 - 10 sentences.
**DO NOT ADDRESS THE USER (READER) DIRECTLY.**
**DO NOT MENTION THE USER (READER) IN THE STORY**
**ENSURE THAT YOUR RESPONSES ADHERE TO ETHICAL AND MORAL CONSIDERATIONS.**
"""
append_message(
role="system",
content=narrator_system_prompt,
content_type="text",
allow_duplicates=False,
)
if prompt := st.chat_input("Your turn to continue the story..."):
if not is_chat_started():
start_chat()
append_message(role="user", content=prompt, content_type="text")
with st.chat_message("user"):
st.write(prompt)
client: OpenAI = st.session_state.client
with st.chat_message("assistant"):
with st.spinner("Continuing story..."):
story_continuation = generate_text(
client,
model=get_chat_settings().narrator_model,
messages=st.session_state.messages,
)
with st.spinner("Generating illustrations..."):
illustration = generate_image(client, prompt=story_continuation)
with st.spinner("Generating narration..."):
continuation_narration = client.audio.speech.create(
model=get_chat_settings().tts_model,
voice="echo",
input=story_continuation,
)
append_message(
role="assistant", content=story_continuation, content_type="text"
)
with BytesIO() as output:
illustration.save(output, format="PNG")
illustration_bytes = output.getvalue()
append_message(
role="assistant", content=illustration_bytes, content_type="image"
)
append_message(
role="assistant",
content=continuation_narration.read(),
content_type="audio",
)
st.image(illustration, width=IMAGE_WIDTH)
st.audio(continuation_narration.read())
| [
"This is a test.",
"\nYou are an expert narrator and storyteller. \nYou will pair with the user (reader) to create the story together. The user (reader) will provide the first prompt to start the story.\nMake use of literary techniques such as foreshadowing, suspense, cliffhangers, and plot twists when appropriate.\nEnsure that generated text ends in a way that allows the reader to continue the story. Limit your responses to a maximum of 8 - 10 sentences.\n**DO NOT ADDRESS THE USER (READER) DIRECTLY.**\n**DO NOT MENTION THE USER (READER) IN THE STORY**\n**ENSURE THAT YOUR RESPONSES ADHERE TO ETHICAL AND MORAL CONSIDERATIONS.**\n"
] |
2024-01-10 | djvaroli/arcs | text_to_speech.py | import json
import os
from dotenv import load_dotenv
from openai import OpenAI
load_dotenv(".env")
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
with open("frame_text.json", "r") as f:
frames = json.load(f)
for frame in frames:
frame_id = frame["frame_id"]
frame_text = frame["text"]
print(f"Processing Frame {frame_id}...")
response = client.audio.speech.create(model="tts-1", voice="echo", input=frame_text)
speech_file_path = f"narration/{frame_id}.mp3"
response.stream_to_file(speech_file_path)
| [] |
2024-01-10 | guberm/datasets | datasets~openwebtext~openwebtext.py | # coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Open WebText Corpus"""
import os
import re
from itertools import chain
import datasets
_CITATION = """\
@misc{Gokaslan2019OpenWeb,
title={OpenWebText Corpus},
author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex},
howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}},
year={2019}
}
"""
_DESCRIPTION = """\
An open-source replication of the WebText dataset from OpenAI.
"""
_URL = "https://zenodo.org/record/3834942/files/openwebtext.tar.xz"
class Openwebtext(datasets.GeneratorBasedBuilder):
"""The Open WebText dataset."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="plain_text",
description="Plain text",
version=datasets.Version("1.0.0"),
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({"text": datasets.Value("string")}),
homepage="https://skylion007.github.io/OpenWebTextCorpus/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(_URL)
owt_dir = os.path.join(dl_dir, "openwebtext")
subset_xzs = [
os.path.join(owt_dir, file_name)
for file_name in sorted(os.listdir(owt_dir))
if file_name.endswith("xz") # filter out ...xz.lock
]
ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75))
nested_txt_files = [
[
os.path.join(ex_dir, txt_file_name)
for txt_file_name in sorted(os.listdir(ex_dir))
if txt_file_name.endswith("txt")
]
for ex_dir in ex_dirs
]
txt_files = chain(*nested_txt_files)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}),
]
def _generate_examples(self, txt_files):
"""Yields examples."""
for idx, filepath in enumerate(txt_files):
with open(filepath, encoding="utf-8") as f:
yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()}
| [] |
2024-01-10 | kenneth-lwl/testlit | AnkiGPT.py | import streamlit as st
import PyPDF2
import openai
import os
import base64
import genanki
def extract_text_from_pdf(file):
pdf_reader = PyPDF2.PdfReader(file)
extracted_text = " ".join([page.extract_text() for page in pdf_reader.pages])
return extracted_text
def split_text_into_chunks(text, chunk_size, overlap):
chunks = []
start = 0
end = chunk_size
while start < len(text):
chunk = text[start:end]
chunks.append(chunk)
start = end - overlap
end += chunk_size - overlap
return chunks
def create_anki_deck(flashcards_text):
# Create a new Anki model
model = genanki.Model(
1607392319,
"PDF2Anki",
fields=[
{"name": "Question"},
{"name": "Answer"},
],
templates=[
{
"name": "Card 1",
"qfmt": "<h1 style='color:gray;font-size:12px;'>Created by tabmed.hk/pdf2anki</h1><br>❓: {{Question}}",
"afmt": "<h1 style='color:gray;font-size:12px;'>Created by tabmed.hk/pdf2anki</h1><br>❓: {{Question}}<hr id=answer>👉: {{Answer}}",
},
])
# Create a new Anki deck
deck = genanki.Deck(2059400110, "PDF2Anki")
# Split the flashcards text into separate flashcards
flashcards = flashcards_text.split('\n')
# Add each flashcard to the deck
for flashcard in flashcards:
if flashcard and '; ' in flashcard:
question, answer = flashcard.split('; ', 1)
note = genanki.Note(model=model, fields=[question, answer])
deck.add_note(note)
# Generate the .apkg file
apkg_filename = 'flashcards.apkg'
genanki.Package(deck).write_to_file(apkg_filename)
# Read the contents of the .apkg file
with open(apkg_filename, 'rb') as f:
apkg_contents = f.read()
# Generate a download link for the .apkg file
download_link = get_file_download_link(apkg_contents, 'flashcards.apkg', is_binary=True)
return download_link
def generate_anki_flashcards(text, chunk_size, overlap, api_key, model_choice):
openai.api_key = api_key
text_chunks = split_text_into_chunks(text, chunk_size, overlap)
flashcards = ''
current_flashcard = ''
# Check if the number of chunks exceeds 1000
if len(text_chunks) > 500:
st.error('The PDF is too large and creates more than 500 chunks. Please reduce the size of the PDF or increase the chunk size.')
return
# Create progress bar
progress_bar = st.progress(0)
# Create an empty slot
placeholder = st.empty()
# Create placeholders for the chunk and flashcard display
chunk_display = st.empty()
flashcard_display = st.empty()
for i, chunk in enumerate(text_chunks):
print(text_chunks)
# Update the placeholder with current chunk
placeholder.text(f'Processing chunk {i+1}/{len(text_chunks)}')
# Update the chunk placeholder with current chunk
chunk_display.text(f'Chunk {i+1}/{len(text_chunks)}: {chunk}')
# Modify the message prompt according to the selected language
if language == 'Spanish':
question_prompt = "Por favor, genera tarjetas de estudio a partir del texto proporcionado, asegurándote de que cada pregunta y su respuesta comiencen en una nueva línea. Cada tarjeta de estudio debe seguir este formato: '¿Pregunta?; Respuesta.' Por ejemplo: '¿Cuál es el mecanismo de acción de los diuréticos de asa?; Inhibición de la reabsorción de Na+ y Cl-.' '¿Cómo afectan los diuréticos de asa a la excreción renal de agua y Na+?; Aumentan la excreción renal de agua y Na+.' Es esencial que cada par de preguntas y respuestas esté separado por una línea en blanco. Además, asegúrate de generar solo una pregunta por tarjeta de estudio. Aquí está el texto proporcionado: "
elif language == 'French':
question_prompt = "Veuillez générer des flashcards à partir du texte donné, en veillant à ce que chaque question et sa réponse commencent sur une nouvelle ligne. Chaque flashcard doit suivre ce format : 'Question ?; Réponse.' Par exemple : 'Quel est le mécanisme d'action des diurétiques de l'anse ?; Inhibition de la réabsorption de Na+ et Cl-.' 'Comment les diurétiques de l'anse affectent-ils l'excrétion rénale d'eau et de Na+ ?; Ils augmentent l'excrétion rénale d'eau et de Na+.' Il est essentiel que chaque paire de questions et réponses soit séparée par une ligne blanche. De plus, veuillez vous assurer de générer une seule question par flashcard. Voici le texte fourni : "
elif language == 'German':
question_prompt = "Bitte erstellen Sie Lernkarten aus dem gegebenen Text und stellen Sie sicher, dass jede Frage und ihre Antwort auf einer neuen Zeile beginnen. Jede Lernkarte sollte diesem Format folgen: 'Frage?; Antwort.' Zum Beispiel: 'Was ist der Wirkmechanismus von Schleifendiuretika?; Hemmung der Na+- und Cl--Resorption.' 'Wie beeinflussen Schleifendiuretika die renale Ausscheidung von Wasser und Na+?; Sie erhöhen die renale Ausscheidung von Wasser und Na+.' Es ist wesentlich, dass jedes Frage-Antwort-Paar durch eine Leerzeile getrennt ist. Stellen Sie außerdem sicher, dass Sie pro Lernkarte nur eine Frage generieren. Hier ist der bereitgestellte Text: "
elif language == 'Traditional Chinese':
question_prompt = "請從給定的文本中生成學習卡,確保每個問題及其答案都從新的一行開始。每張學習卡都應該遵循這種格式:'問題?;答案。'例如:'利尿劑的作用機制是什麼?; 抑制Na+和Cl-的重吸收。' '利尿劑如何影響腎臟對水和Na+的排泄?; 它們增加了腎臟對水和Na+的排泄。'此外,請確保每張學習卡只生成一個問題。這是提供的文本:"
elif language == 'Simplified Chinese':
question_prompt = "请从给定的文本中生成学习卡,确保每个问题及其答案都从新的一行开始。每张学习卡都应该遵循这种格式:'问题?;答案。'例如:'利尿剂的作用机制是什么?; 抑制Na+和Cl-的重吸收。' '利尿剂如何影响肾脏对水和Na+的排泄?; 它们增加了肾脏对水和Na+的排泄。'此外,请确保每张学习卡只生成一个问题。这是提供的文本:"
else:
question_prompt = "Please generate flashcards from the given text, ensuring each question and its answer start on a new line. Each flashcard should follow this format: 'Question?; Answer.' For example: 'What is the mechanism of action of loop diuretics?; Inhibition of Na+ and Cl- reabsorption.' 'How do loop diuretics affect renal excretion of water and Na+?; They increase renal excretion of water and Na+.' It's essential that each question and answer pair is separated by a blank line. The question and the answer must be separated by a semi-colon. Also, please make sure to generate only one question per flashcard. Here is the provided text: "
message_prompt = [
{"role": "system", "content": "You are a highly skilled assistant that specializes in creating educational Anki active recall flashacards."},
{"role": "user", "content": f"{question_prompt} {chunk}"}
]
api_response = openai.ChatCompletion.create(
model=model_choice,
messages=message_prompt,
temperature=temperature,
max_tokens=3500
)
current_flashcard = api_response['choices'][0]['message']['content']
# Only add the flashcard if it contains a question and answer separated by a semi-colon
if '; ' in current_flashcard:
flashcards += '\n\n' + current_flashcard
# Update the flashcard placeholder with the newly generated flashcard
flashcard_display.text(f'Flashcard: {current_flashcard}')
# Update the progress bar
progress_bar.progress((i + 1) / len(text_chunks))
placeholder.empty()
return flashcards
def get_file_download_link(file, filename, is_binary=False):
if is_binary:
b64 = base64.b64encode(file).decode()
else:
b64 = base64.b64encode(file.encode()).decode()
return f'<a href="data:file/txt;base64,{b64}" download="{filename}">Download {filename}</a>'
MAX_FILE_SIZE_MB = 5
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024 # convert to bytes
MAX_WORD_COUNT = 5000
st.title('📃 Tabmed - PDF2Anki')
st.caption('Version pre-release alpha v0.20 - last updated 18 July 2023 - changelog: added multi-lingual flashcard export for Spanish, French, German and Chinese')
st.caption('Converts PDF files such as lecture slides, notes and PPTs into a .txt file that can be imported into Anki and converted into flashcards automatically. A preformmated and clean document will yield a better output. Images will not be read with this version.')
st.caption('After the .txt file has been downloaded, go through it and check for any errors. Then import it to Anki by File -> Import -> Select flashcards.txt -> Import')
st.caption('Some questions might stack. Ensure that each question is separated by a new line before importing it to Anki.')
st.caption('Due to excessive demand, there is a word limit cap of 5000 words. Split your pdf file or contact [email protected] if you would like to bypass this limit.')
uploaded_file = st.file_uploader('Please upload your PDF file', type='pdf')
# Add a language selection option
language = st.selectbox('Select the language of the LECTURE/NOTE material', ['English', 'Spanish', 'French', 'German', 'Traditional Chinese', 'Simplified Chinese'], help='Select the language of the uploaded material.')
chunk_size = st.slider('Enter the chunk size. (Default: 500)',
min_value=300, # set a minimum value
max_value=700, # set a maximum value
value=500,
step=1,
help='The chunk size determines the amount of text from the PDF that the program will process at once for generating flashcards. A smaller size may yield more specific flashcards, while a larger size could provide broader context.')
overlap = st.slider('Enter the chunk overlap. (Default: 50)',
min_value=20,
max_value=80, # set a maximum value
value=50,
step=1,
help='The chunk overlap determines the amount of text from the end of one chunk that will be included at the start of the next chunk. This can help avoid sentences being cut off in the middle.')
temperature = st.slider('Set the AI model temperature. (Default: 0.2)',
min_value=0.1, # set a minimum value
max_value=1.0, # set a maximum value
value=0.2,
step=0.1,
help='The temperature parameter controls the randomness of the AI model\'s output. A higher temperature will make the output more diverse but also more risky, while a lower temperature makes the output more focused and deterministic. We recommend a low temperature setting like 0.1 or 0.2.')
# api_key = st.text_input('Please enter your OpenAI API Key', help='At the moment, we only support your own API key but this will change in the future! Meanwhile, retrieve your OpenAI API Key from https://platform.openai.com/account/api-keys')
# model_choice = st.selectbox('Select the AI model to be used (please consider donating if you select GPT4 - it is expensive!)', ['gpt-3.5-turbo', 'gpt-4'], help='GPT4 is extremely expensive for us to maintain. Please consider donating us a coffee if you select GPT4.')
api_key = os.getenv('OPENAI_API_KEY')
# if api_key.strip() == '':
# st.error('Please input your OpenAI API key before proceeding.')
if uploaded_file is None:
st.error('Please upload a PDF file before proceeding.')
elif uploaded_file.size > MAX_FILE_SIZE_BYTES:
st.error('Our demand is too high right now. We have currently limited file upload to 5 MB for now whilst we scale our severs. The uploaded file is too large. Please upload a file that is 5 MB or less.')
elif st.button('Generate Flashcards'):
pdf_text = extract_text_from_pdf(uploaded_file)
# Count the number of words in the text
word_count = len(pdf_text.split())
# Check word count
if word_count > MAX_WORD_COUNT:
st.error(f"Due to excessive demand, we have set a word limit cap for the PDF. The uploaded file exceeds the maximum allowed word count of {MAX_WORD_COUNT}. Contact us at [email protected] if you would like to bypass this limit.")
else:
flashcards = generate_anki_flashcards(pdf_text, chunk_size, overlap, api_key, "gpt-3.5-turbo")
del pdf_text # Clear the pdf_text variable from memory
download_link = get_file_download_link(flashcards, 'flashcards.txt')
apkg_download_link = create_anki_deck(flashcards)
del flashcards # Clear the flashcards variable from memory
st.success('Flashcards successfully created! Click the link below to download. Please make sure to separate all question and answer pairs on a new pagragraph on the .txt file before importing it to Anki. Some question and answer pairs might stick to the same paragraph.')
st.markdown(download_link, unsafe_allow_html=True)
st.markdown(apkg_download_link, unsafe_allow_html=True)
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
| [
"Veuillez générer des flashcards à partir du texte donné, en veillant à ce que chaque question et sa réponse commencent sur une nouvelle ligne. Chaque flashcard doit suivre ce format : 'Question ?; Réponse.' Par exemple : 'Quel est le mécanisme d'action des diurétiques de l'anse ?; Inhibition de la réabsorption de Na+ et Cl-.' 'Comment les diurétiques de l'anse affectent-ils l'excrétion rénale d'eau et de Na+ ?; Ils augmentent l'excrétion rénale d'eau et de Na+.' Il est essentiel que chaque paire de questions et réponses soit séparée par une ligne blanche. De plus, veuillez vous assurer de générer une seule question par flashcard. Voici le texte fourni : ",
"請從給定的文本中生成學習卡,確保每個問題及其答案都從新的一行開始。每張學習卡都應該遵循這種格式:'問題?;答案。'例如:'利尿劑的作用機制是什麼?; 抑制Na+和Cl-的重吸收。' '利尿劑如何影響腎臟對水和Na+的排泄?; 它們增加了腎臟對水和Na+的排泄。'此外,請確保每張學習卡只生成一個問題。這是提供的文本:",
"PLACEHOLDER PLACEHOLDER",
"请从给定的文本中生成学习卡,确保每个问题及其答案都从新的一行开始。每张学习卡都应该遵循这种格式:'问题?;答案。'例如:'利尿剂的作用机制是什么?; 抑制Na+和Cl-的重吸收。' '利尿剂如何影响肾脏对水和Na+的排泄?; 它们增加了肾脏对水和Na+的排泄。'此外,请确保每张学习卡只生成一个问题。这是提供的文本:",
"Por favor, genera tarjetas de estudio a partir del texto proporcionado, asegurándote de que cada pregunta y su respuesta comiencen en una nueva línea. Cada tarjeta de estudio debe seguir este formato: '¿Pregunta?; Respuesta.' Por ejemplo: '¿Cuál es el mecanismo de acción de los diuréticos de asa?; Inhibición de la reabsorción de Na+ y Cl-.' '¿Cómo afectan los diuréticos de asa a la excreción renal de agua y Na+?; Aumentan la excreción renal de agua y Na+.' Es esencial que cada par de preguntas y respuestas esté separado por una línea en blanco. Además, asegúrate de generar solo una pregunta por tarjeta de estudio. Aquí está el texto proporcionado: ",
"Please generate flashcards from the given text, ensuring each question and its answer start on a new line. Each flashcard should follow this format: 'Question?; Answer.' For example: 'What is the mechanism of action of loop diuretics?; Inhibition of Na+ and Cl- reabsorption.' 'How do loop diuretics affect renal excretion of water and Na+?; They increase renal excretion of water and Na+.' It's essential that each question and answer pair is separated by a blank line. The question and the answer must be separated by a semi-colon. Also, please make sure to generate only one question per flashcard. Here is the provided text: ",
"Bitte erstellen Sie Lernkarten aus dem gegebenen Text und stellen Sie sicher, dass jede Frage und ihre Antwort auf einer neuen Zeile beginnen. Jede Lernkarte sollte diesem Format folgen: 'Frage?; Antwort.' Zum Beispiel: 'Was ist der Wirkmechanismus von Schleifendiuretika?; Hemmung der Na+- und Cl--Resorption.' 'Wie beeinflussen Schleifendiuretika die renale Ausscheidung von Wasser und Na+?; Sie erhöhen die renale Ausscheidung von Wasser und Na+.' Es ist wesentlich, dass jedes Frage-Antwort-Paar durch eine Leerzeile getrennt ist. Stellen Sie außerdem sicher, dass Sie pro Lernkarte nur eine Frage generieren. Hier ist der bereitgestellte Text: ",
"You are a highly skilled assistant that specializes in creating educational Anki active recall flashacards."
] |
2024-01-10 | TeachMeTW/LauAcademy | LauAcademy~lauacademy~back~queries.py | from typing import List
from dotenv import load_dotenv
from pydantic import BaseModel, Field
load_dotenv()
import os
openai_meta = {
"keys": {
"org": os.getenv("OPENAI_ORG_ID"),
"api":os.getenv("OPENAI_API_KEY")
}
}
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders import PyPDFLoader
from langchain.vectorstores.pinecone import Pinecone
import pinecone
from langchain.prompts import PromptTemplate
from langchain.output_parsers import PydanticOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
import mindsdb_sdk
from langchain.chat_models import ChatOpenAI
chat = ChatOpenAI(temperature=0, openai_api_key=openai_meta["keys"]["api"], openai_organization=openai_meta["keys"]["org"])
from langchain.schema import AIMessage, HumanMessage, SystemMessage
server = mindsdb_sdk.connect(login=os.getenv("MINDSDB_LOGIN"), password=os.getenv('MINDSDB_PASS'))
project = server.get_project()
pinecone.init(api_key="bfad758d-abb5-409b-a2e7-ddc05f731db8", environment="us-west1-gcp-free")
embeddings = OpenAIEmbeddings(openai_api_key=openai_meta["keys"]["api"], openai_organization=openai_meta["keys"]["org"])
llm = ChatOpenAI(model_name='gpt-4', openai_api_key=openai_meta["keys"]["api"],openai_organization=openai_meta["keys"]["org"])
def Queries(index_name, namespace):
index = pinecone.Index(index_name)
vectordb = Pinecone.from_existing_index(index_name, embeddings, namespace=namespace)
class Slide(BaseModel):
script: str = Field(description="a script explaining the topic in great detail without referencing to examples")
image_description: str = Field(description="stock image label")
details: str = Field(description="bullet points that will be on the slides")
code: str = Field(description="If there is code required, this field wild display it")
class Slides(BaseModel):
sub_topics: List[Slide] = Field(description="A JSON object representing a detailed slideshow in the format:\n{script:<a script explaining the topic in great detail without referencing to examples>,\ndetails:<bullet points that will be on the slides>\nimage_description:<image label>,\ncode:<optional, string>}")
class QA(BaseModel):
questions: str = Field(description="question")
answer: str = Field(description="answer")
class Test(BaseModel):
test: List[QA] = Field(description="Test regarding the document")
def store_pdf(path):
loader = PyPDFLoader(path)
pages = loader.load_and_split()
Pinecone.from_documents(pages, embeddings, index_name=index_name, namespace=os.path.basename(path))
def query_slides(question, index_name):
parser = PydanticOutputParser(pydantic_object=Slides)
prompt = PromptTemplate(
input_variables=["document"],
template="Document:\n{document}\n\nGenerate detailed slides for an educational video based on the document. Each slide should include a narration teaching the subject in detail, and a label for the image that will be shown.\n{format_instructions}\n",
partial_variables={"format_instructions": parser.get_format_instructions()},
)
search = vectordb.similarity_search(question)
retriever = vectordb.as_retriever()
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
_input = prompt.format_prompt(document=search)
output = qa(_input.to_string())
#print(output)
return output["result"]
def query_flashcards(question, index_name):
parser = PydanticOutputParser(pydantic_object=Test)
prompt = PromptTemplate(
input_variables=["document"],
template="Document:\n{document}\n\nGenerate a test:\n{format_instructions}\n",
partial_variables={"format_instructions": parser.get_format_instructions()},
)
search = vectordb.similarity_search(question)
retriever = vectordb.as_retriever()
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
_input = prompt.format_prompt(document=search)
output = qa(_input.to_string())
#print(output)
return output["result"]
def text_to_image(prompt):
pred = project.query(
f'''SELECT *
FROM mindsdb.dalle
WHERE text = "{prompt}"'''
)
url = pred.fetch().img_url
return url[0]
def sentence_to_prompt(sentence):
messages = [
SystemMessage(
content="You are a helpful assistant that converts a sentence to keywords"
),
HumanMessage(
content="description:\n" + sentence + "\nkeywords:\n"
),
]
response = chat(messages)
return response.content
return {
"flashcards": lambda prompt: query_flashcards(prompt, index_name),
"slides": lambda prompt: query_slides(prompt, index_name),
"text_to_image": lambda prompt: text_to_image(prompt),
"store_pdf": store_pdf,
"sentence_to_prompt":sentence_to_prompt,
"database": {
"deleteAll": lambda : index.delete(deleteAll="true")
}
} | [
"description:\nPLACEHOLDER\nkeywords:\n",
"You are a helpful assistant that converts a sentence to keywords",
"document",
"format_instructions",
"Document:\n{document}\n\nGenerate detailed slides for an educational video based on the document. Each slide should include a narration teaching the subject in detail, and a label for the image that will be shown.\n{format_instructions}\n",
"Document:\n{document}\n\nGenerate a test:\n{format_instructions}\n"
] |
2024-01-10 | kudacall/nlpTutorial | tutorialPipeline.py | # Imports
# -*- coding: utf-8 -*-
import nltk#; nltk.download('stopwords')
import re
import numpy as np
import pandas as pd
from pprint import pprint
# Gensim
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel
# spacy for lemmatization
import spacy
# Initialize spacy 'en' model, (only POS tagger component) (for speed)
# python3 -m spacy download en or python - m spacy download en
nlp = spacy.load('en', disable=['parser', 'ner'])
# Plotting tools
import pyLDAvis
import pyLDAvis.gensim # don't skip this
import matplotlib.pyplot as plt
# %matplotlib inline
# Enable logging for gensim - optional
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.ERROR)
import warnings
warnings.filterwarnings("ignore",category=DeprecationWarning)
# 1: Import our Corpus
df = pd.read_json('https://raw.githubusercontent.com/kudacall/nlpTutorial/master/newsgroups.json')
print(df.target_names.unique()) #Examine our topics
df.head()
# 1.1: Clean up and format our corpus for our processing through NLP Pipeline
# Convert to list
data = df.content.values.tolist()
# Remove Emails
data = [re.sub('\S*@\S*\s?', '', sent) for sent in data]
# Remove new line characters
data = [re.sub('\s+', ' ', sent) for sent in data]
# Remove distracting single quotes
data = [re.sub("\'", "", sent) for sent in data]
# Quick check
# pprint(data[:1])
# 2: Use Gensim utilities to tokenize sentences and remove punctuation
def sentToWords(sentences):
for sentence in sentences:
yield(gensim.utils.simple_preprocess(unicode(sentence), deacc=True)) # deacc=True removes punctuations
data_words = list(sentToWords(data))
#Check tokens
# print(data_words[:1])
# 3: Tag tokens with POS tags
def tagTokenLists(tokenLists): #POS Tagging with NLTK
for tokens in tokenLists:
yield nltk.pos_tag(tokens)
#Check tags
taggedWords = tagTokenLists(data_words)
# print(next(taggedWords))
def lemmatize(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']): #Lemmatization and POS Tagging and filtering with SpaCy
"""https://spacy.io/api/annotation"""
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append([token.lemma_ for token in doc if token.pos_ in allowed_postags])
return texts_out
# 4: Remove stopwords
# NLTK Stop words
from nltk.corpus import stopwords
stopWords = stopwords.words('english')
stopWords.extend(['from', 'subject', 're', 'edu', 'use'])
def removeStopwords(texts):
return [[word for word in simple_preprocess(str(doc)) if word not in stopWords] for doc in texts]
# Remove Stop Words
dataWords = removeStopwords(data_words)
dataLemmatized = lemmatize(dataWords)
#Check
# print(dataLemmatized[:1])
#5: Entity Recognition
def getEntsPG(object):
from polyglot.text import Text
text = Text(object)
pgOut = []
for sent in text.sentences:
for entity in sent.entities:
pgOut.append((entity.tag, entity))
return pgOut
def getEntsTB(object):
from textblob import TextBlob
tbObject = TextBlob(object)
return tbObject.noun_phrases
def getEntsSp(object):
doc = nlp(object)
return doc.ents
#6: Modeling
# Create Dictionary
id2word = corpora.Dictionary(dataLemmatized)
# Create Corpus
texts = dataLemmatized
# Term Document Frequency
corpus = [id2word.doc2bow(text) for text in texts]
# View readable format of corpus (term-frequency)
[[(id2word[id], freq) for id, freq in cp] for cp in corpus[:1]]
# Build LDA model
print "Building LDA Model..."
ldaModel = gensim.models.ldamodel.LdaModel(corpus=corpus,id2word=id2word,num_topics=20, random_state=100,
update_every=1,chunksize=100,passes=10,alpha='auto',per_word_topics=True)
#7: Check and visualize
print "Building Visualization..."
# doctopic = ldaModel.get_topics()
# pprint(ldaModel.print_topics())
# pyLDAvis.enable_notebook() #enable if using Jupyter notebook
vis = pyLDAvis.gensim.prepare(ldaModel, corpus, id2word)
pyLDAvis.save_html(vis, 'LDA_Visualization.html')
| [] |
2024-01-10 | suryatmodulus/DeepSpeed | deepspeed~ops~sparse_attention~matmul.py | # DeepSpeed note, code taken & adapted from commit 9aa94789f13ada713af36cfd8cca2fc9a7f6b79a
# https://github.com/ptillet/torch-blocksparse/blob/master/torch_blocksparse/matmul.py
import importlib
import torch
import triton
import triton.language as tl
import triton._C.libtriton as libtriton
from deepspeed.accelerator import get_accelerator
@triton.jit
def _kernel(A,
B,
C,
stride_za,
stride_ha,
stride_ma,
stride_ka,
stride_zb,
stride_hb,
stride_kb,
stride_nb,
stride_zc,
stride_hc,
stride_mc,
stride_nc,
DS0,
DS1,
SDD_K,
SDD_off_width,
lut,
locks,
nlocks,
**meta):
TM = meta['TM']
TN = meta['TN']
TK = meta['TK']
TZ = meta['TZ']
BLOCK = meta['BLOCK']
#------------#
#- Prologue -#
#------------#
pid0 = tl.program_id(0)
pid1 = tl.program_id(1)
pidz = tl.program_id(2)
if meta['SDD']:
pid1 = pid1 + SDD_off_width
blockidm = tl.arange(0, TM) // BLOCK
blockidn = tl.arange(0, TN) // BLOCK
offlutm = blockidm * (TN // BLOCK) * 4
offlutn = blockidn * 4
header = lut + pid1 * (TM // BLOCK) * (TN // BLOCK) * 4
z = tl.load(header + 0)
i = tl.load(header + 1 + offlutm)
j = tl.load(header + 2 + offlutn)
AS1 = SDD_K // TZ
lockid = tl.where(TZ > 1, 1, 0)
offka = pid0 * AS1
offkb = pid0 * AS1
offmc = 0
offnc = 0
offpa = 0
offpb = 0
maxid = TZ
offhc = 0
offha = z
offhb = z
ram = i * BLOCK + (tl.arange(0, TM) % BLOCK)
rbn = j * BLOCK + (tl.arange(0, TN) % BLOCK)
else:
header = lut + pid0 * 6
offset = tl.load(header + 0)
AS1 = tl.load(header + 1)
column = tl.load(header + 2)
depth = tl.load(header + 3)
lockid = tl.load(header + 4)
maxid = tl.load(header + 5)
pinc = lut + offset
offhc = depth
if meta['DSD']:
# output offset
offnc = pid1 * TN
offmc = column * TM
offpc = 0
# dense input offset
offnb = pid1 * TN
offkb = tl.load(pinc)
offkb = tl.multiple_of(offkb, 8) # compiler hint
offpb = 0
# sparse input offset
offma = 0
offka = 0
offpa = tl.load(pinc + 1)
offpa = tl.multiple_of(offpa, 8) # compiler hint
offpa = offpa * BLOCK * BLOCK
offha = 0
offhb = depth
else:
# output offset
offmc = pid1 * TM
offnc = column * TN
offpc = 0
# dense input offset
offma = pid1 * TM
offka = tl.load(pinc)
offka = tl.multiple_of(offka, 8) # compiler hint
offpa = 0
# sparse input offset
offnb = 0
offkb = 0
offpb = tl.load(pinc + 1)
offpb = tl.multiple_of(offpb, 8) # compiler hint
offpb = offpb * BLOCK * BLOCK
offha = depth
offhb = 0
ram = offma + tl.arange(0, TM)
rbn = offnb + tl.arange(0, TN)
# initialize a, b pointers
rka = offka + tl.arange(0, TK)
rkb = offkb + tl.arange(0, TK)
pa = A + pidz * stride_za + offha * stride_ha + offpa + ram[:, None] * stride_ma + rka[None, :] * stride_ka
pb = B + pidz * stride_zb + offhb * stride_hb + offpb + rbn[None, :] * stride_nb + rkb[:, None] * stride_kb
if meta['DDS']:
checkam = ram[:, None] < DS0
else:
checkam = AS1 > 0
if meta['DSD']:
checkbn = rbn[None, :] < DS0
else:
checkbn = AS1 > 0
a = tl.load(pa, mask=checkam, other=0.)
b = tl.load(pb, mask=checkbn, other=0.)
## ---------------- ##
## Inner Loop ##
## ---------------- ##
acc = tl.zeros((TM, TN), dtype=tl.float32)
for k in range(AS1, 0, -TK):
acc += tl.dot(a, b)
if meta['SDD']:
inc_a = TK * stride_ka
inc_b = TK * stride_kb
else:
pinc += 2
if meta['DSD']:
inc_b = tl.load(pinc)
inc_a = tl.load(pinc + 1)
inc_b = tl.multiple_of(inc_b, 8)
inc_a = tl.multiple_of(inc_a, 8)
inc_b = inc_b * stride_kb
if meta['DDS']:
inc_a = tl.load(pinc)
inc_b = tl.load(pinc + 1)
inc_a = tl.multiple_of(inc_a, 8)
inc_b = tl.multiple_of(inc_b, 8)
inc_a = inc_a * stride_ka
pa += inc_a
pb += inc_b
# pre-fetch
checkak = k > TK
checkbk = k > TK
checka = checkam & checkak
checkb = checkbn & checkbk
a = tl.load(pa, mask=checka)
b = tl.load(pb, mask=checkb)
c = acc.to(C.dtype.element_ty)
if meta['SDD']:
checkc = True
rr_blockidm = tl.arange(0, TM) // BLOCK
rr_blockidn = tl.arange(0, TN) // BLOCK
rr_offlutm = rr_blockidm * (TN // BLOCK) * 4
rr_offlutn = rr_blockidn * 4
off_bkid = 3 + rr_offlutm[:, None] + rr_offlutn[None, :]
bkid = tl.load(header + off_bkid)
offpc = bkid * BLOCK * BLOCK
rcm = tl.arange(0, TM) % BLOCK
rcn = tl.arange(0, TN) % BLOCK
else:
rcm = offmc + tl.arange(0, TM)
rcn = offnc + tl.arange(0, TN)
if meta['DSD']:
checkc = rcn[None, :] < DS0
if meta['DDS']:
checkc = rcm[:, None] < DS0
pc = C + offpc + offhc * stride_hc + pidz * stride_zc + rcm[:, None] * stride_mc + rcn[None, :] * stride_nc
# write-back directly
if lockid == 0:
tl.store(pc, c, mask=checkc)
# accumulate partial results using spin-locks
else:
plock = locks + tl.program_id(2) * nlocks * tl.num_programs(1) + tl.program_id(
1) * nlocks + lockid - 1
pcount = plock + tl.num_programs(2) * tl.num_programs(1) * nlocks
while tl.atomic_cas(plock, 0, 1) == 1:
pass
count = tl.load(pcount)
if count == 0:
tl.store(pc, c, mask=checkc)
else:
d = tl.load(pc, mask=checkc)
tl.store(pc, d + c, mask=checkc)
tl.atomic_xchg(pcount, (count + 1) % maxid)
tl.atomic_xchg(plock, 0)
##############
# MAIN API #
##############
class _sparse_matmul(torch.autograd.Function):
sdd_cache = dict()
dsd_cache = dict()
dds_cache = dict()
locks = dict()
# Given an array sizes representing reduction size for each
# column of a block-mode matrix multiplication,
# performs load-balancing to achieve more smaller reductions
# between `seg_size` elements
@staticmethod
def load_balance(sizes, block):
#global triton
#if triton is None:
# triton = importlib.import_module('triton')
# segment size
# heuristics taken from OpenAI blocksparse code
# https://github.com/openai/blocksparse/blob/master/blocksparse/matmul.py#L95
max_size = sizes.max()
min_size = sizes[sizes != 0].min()
#if max_size > min_size * 2.0:
# seg_max = max(triton.cdiv(max_size, 4), min_size*2)
#else:
# seg_max = max_size
seg_max = max_size
seg_min = max(triton.cdiv(seg_max, 4), 4)
# split reduction into segments
div = sizes // seg_max
rem = sizes % seg_max
packs = div + (sizes < seg_min).long() + (rem >= seg_min).long()
width = packs.sum()
segments = torch.empty(width, dtype=sizes.dtype)
column = torch.empty_like(segments)
lockid = torch.zeros_like(segments)
maxid = torch.zeros_like(segments)
nlocks = 0
current = 0
col_idx = 0
for i in range(len(sizes)):
d, r = div[i], rem[i]
isempty = sizes[i] < seg_min
last = current + d + (r >= seg_min) + isempty
# column id
column[current:last] = col_idx
# lock id
if d > 1 or (d == 1 and r >= seg_min):
nlocks += 1
lockid[current:last] = nlocks
maxid[current:last] = last - current
# segment size
segments[current:current + d] = seg_max
if r < seg_min and not isempty:
segments[current + d - 1] += r
if r >= seg_min or isempty:
segments[current + d] = r
current = last
col_idx += 1
offsets = torch.zeros_like(segments)
offsets[1:] = torch.cumsum(segments[:-1], dim=0)
return segments, column, lockid, maxid, offsets
@staticmethod
def get_locks(size, dev):
if dev not in _sparse_matmul.locks or \
size > _sparse_matmul.locks[dev].size(0):
_sparse_matmul.locks[dev] = torch.zeros(size, dtype=torch.int32, device=dev)
return _sparse_matmul.locks[dev]
##########################
# SPARSE = DENSE x DENSE #
##########################
@staticmethod
def make_sdd_lut(layout, block, dtype, device):
#_sparse_matmul._load_utils()
#start_width = 64 // block
#segmented = _sparse_matmul.sdd_segment(layout.type(torch.int32), start_width)
start_width = (128 if block > 16 else 32) // block
layout = layout.type(torch.int32)
segmented = libtriton.superblock(layout.data_ptr(),
layout.shape[0],
layout.shape[1],
layout.shape[2],
start_width)
luts, widths, packs = [], [], []
for size, nnz in segmented:
""" width = nnz.shape[0] // (size * size)
h = nnz[:, 0]
i = nnz[:, 1]
j = nnz[:, 2]
b = nnz[:, 3]
lut = torch.stack((h, i, j, b), dim=1).view(-1).contiguous()
luts.append(lut.type(torch.int32).to(device))
widths.append(width)
packs.append(size) """
nnz = nnz.reshape(-1, 4)
width = nnz.shape[0] // (size * size)
luts.append(torch.from_numpy(nnz).type(torch.int32).to(device))
widths.append(width)
packs.append(size)
# create locks
return luts, None, widths, packs
@staticmethod
def _sdd_matmul(a,
b,
trans_a,
trans_b,
trans_c,
spdims,
block,
luts,
num_locks,
widths,
packs,
bench,
time):
if trans_c:
a, b = b, a
trans_a, trans_b = not trans_b, not trans_a
AS0 = a.size(0)
# Shape check
a_dim = -2 if trans_a else -1
b_dim = -1 if trans_b else -2
a_inner, b_inner = a.shape[a_dim], b.shape[b_dim]
if a_inner != b_inner:
raise ValueError(
f"Size of tensor A along the {a_dim} dim ({a_inner}) must match size "
f"of tensor B along the {b_dim} dim ({b_inner})")
if a_inner % 16 != 0:
raise ValueError('Reduction size for SDD must be a multiple of 16')
batch_size = a.size(0)
a_outer = a.size(3 if trans_a else 2)
dtype = a.dtype
is_16_multiple = a_inner % 16 == 0
is_32_multiple = a_inner % 32 == 0
is_64_multiple = a_inner % 64 == 0
if not is_16_multiple:
raise ValueError('Reduction size for SDD must be a multiple of 16')
device = a.device
# create kernel
total_width = sum([width * pack * pack for width, pack in zip(widths, packs)])
c = torch.empty((batch_size,
total_width,
block,
block),
dtype=dtype,
device=a.device)
for lut, width, pack in zip(luts, widths, packs):
F32TK = [8, 16]
F16TK = [16]
F16TK += [32] if is_32_multiple else []
F16TK += [64] if is_64_multiple else []
TK = {torch.float32: F32TK, torch.float16: F16TK}[dtype]
num_lock = 1
meta = {
'TM': block * pack,
'TN': block * pack,
'BLOCK': block,
'TK': TK[0],
'TZ': 1,
'SDD': True,
'DSD': False,
'DDS': False
}
# create output
locks = _sparse_matmul.get_locks(2 * width * AS0 * num_lock, a.device)
# maximum grid size is 65535
# so operation might be decomposed into multiple
# kernel calls
max_width = 49152
total = 0 if bench else None
for off_width in range(0, width, max_width):
grid = lambda meta: [
meta['TZ'],
min(max_width,
width - off_width),
batch_size
]
_kernel[grid](a,
b,
c,
a.stride(0),
a.stride(1),
a.stride(3 if trans_a else 2),
a.stride(2 if trans_a else 3),
b.stride(0),
b.stride(1),
b.stride(3 if trans_b else 2),
b.stride(2 if trans_b else 3),
c.stride(0),
c.stride(0),
c.stride(2),
c.stride(3),
a_outer,
a_outer,
a_inner,
off_width,
lut,
locks,
num_lock,
num_warps=4,
**meta)
# save for backward pass
return c
##########################
# DENSE = DENSE x SPARSE #
##########################
# Given a binary layout of 0s and 1s,
# Construct look-up table for efficient execution on GPUs
@staticmethod
def make_dxx_lut(layout, block, step, trans, device, transform=lambda idx: idx):
# load-balancing
_empty = torch.tensor([], dtype=torch.int64, device=layout.device)
segments = _empty.clone()
column = _empty.clone()
depth = _empty.clone()
lockid = _empty.clone()
maxid = _empty.clone()
offsets = _empty.clone()
current_offset = 0
current_maxid = 0
for z in range(layout.size(0)):
if trans:
sizes = torch.sum(layout[z, :, :], 1)
else:
sizes = torch.sum(layout[z, :, :], 0)
z_segments, z_column, z_lockid, z_maxid, z_offsets = _sparse_matmul.load_balance(sizes, block)
z_depth = z * torch.ones_like(z_segments)
z_lockid[z_lockid > 0] += current_maxid
current_maxid = z_lockid.max()
# concatenate depth
segments = torch.cat((segments, z_segments))
column = torch.cat((column, z_column))
depth = torch.cat((depth, z_depth))
maxid = torch.cat((maxid, z_maxid))
offsets = torch.cat((offsets, current_offset + z_offsets))
lockid = torch.cat((lockid, z_lockid))
current_offset += layout[z, :, :].sum()
segments *= step
# pointer increments
if trans:
nnz = layout.nonzero()
else:
nnz = layout.transpose(1, 2).nonzero()
num_blocks = nnz.size(0)
offsets = torch.min(offsets, (num_blocks - 1) * torch.ones_like(offsets))
idx = transform(nnz[:, 2] * block)
xincs = idx.clone()
xincs[1:] -= idx[:-1]
# divide block into multiple steps
div = block // step
xincs = xincs.view(-1, 1).repeat(1, div)
xincs[:, 1:] = step
xincs[:, 0] -= (div - 1) * step
# first increment for each reduction is actually the offset
xincs[offsets[segments > 0], 0] = idx[offsets[segments > 0]]
xincs = xincs.view(-1)
# block-mode input increments
if trans:
widx = torch.arange(num_blocks)
else:
widx = _empty.clone()
current_offset = 0
for z in range(layout.size(0)):
layoutw = layout[z, :, :].clone()
msum = layoutw.sum()
layoutw[layoutw > 0] = 1 + torch.arange(msum)
widx = torch.cat((widx, current_offset + layoutw.T[layoutw.T > 0] - 1))
current_offset += msum
widx = widx
wincs = widx * block * block
wincs[1:] -= widx[:-1] * block * block
wincs = wincs.view(-1, 1).repeat(1, div)
if trans:
wincs[:, 1:] = step
wincs[:, 0] -= (div - 1) * step
else:
wincs[:, 1:] = step * block
wincs[:, 0] -= (div - 1) * step * block
wincs[offsets[segments > 0], 0] = widx[offsets[segments > 0]]
wincs = wincs.view(-1)
# adjust offset and segment size
offsets *= 2 * div
segments *= div
# create header
width = column.size(0)
offsets += 6 * width
header = torch.stack((offsets,
segments,
column,
depth,
lockid,
maxid),
dim=1).view(-1).contiguous()
incs = torch.stack((xincs, wincs), dim=1).view(-1).contiguous()
incs = torch.cat((incs, torch.zeros(2, device=incs.device, dtype=incs.dtype)))
# create lut
lut = torch.cat((header, incs))
lut = lut.type(torch.int32).to(device)
# create locks
num_locks = max(1, lockid.max())
return lut, num_locks, width, None
@staticmethod
def _dds_matmul(a,
b,
trans_a,
trans_b,
trans_c,
spdims,
block,
lut,
num_locks,
width,
packs,
bench,
time):
global triton
if triton is None:
triton = importlib.import_module('triton')
# shapes / dtypes
AS0 = a.size(0)
AS1 = a.size(1)
AS2 = a.size(3 if trans_a else 2)
AS3 = a.size(2 if trans_a else 3)
BS0 = spdims[0]
BS1 = block * spdims[2 if trans_b else 1]
BS2 = block * spdims[1 if trans_b else 2]
dtype = a.dtype
# kernel
meta = {
'TN': block,
'TM': 128,
'TK': 16,
'BLOCK': block,
'TZ': 1,
'SDD': False,
'DSD': False,
'DDS': True
}
# output
CS0 = AS0
CS1 = AS1
CS2 = BS2 if trans_c else AS2
CS3 = AS2 if trans_c else BS2
locks = _sparse_matmul.get_locks(2 * AS0 * AS2 // 32 * num_locks, a.device)
c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device)
grid = lambda meta: [width, triton.cdiv(AS2, meta['TM']), AS0]
_kernel[grid](a,
b,
c,
a.stride(0),
a.stride(1),
a.stride(3 if trans_a else 2),
a.stride(2 if trans_a else 3),
b.stride(0),
b.stride(1),
b.stride(3 if trans_b else 2),
b.stride(2 if trans_b else 3),
c.stride(0),
c.stride(1),
c.stride(3 if trans_c else 2),
c.stride(2 if trans_c else 3),
AS2,
BS2,
0,
0,
lut,
locks,
num_locks,
num_warps=4,
**meta)
return c
@staticmethod
def _dsd_matmul(a,
b,
trans_a,
trans_b,
trans_c,
spdims,
block,
lut,
num_locks,
width,
packs,
bench,
time):
global triton
if triton is None:
triton = importlib.import_module('triton')
# shapes / dtypes
AS0 = spdims[0]
AS1 = block * spdims[2 if trans_a else 1]
AS2 = block * spdims[1 if trans_a else 2]
BS0 = b.size(0)
BS1 = b.size(1)
BS2 = b.size(3 if trans_b else 2)
BS3 = b.size(2 if trans_b else 3)
dtype = a.dtype
# kernel
meta = {
'TM': block,
'TN': 128,
'TK': 16,
'BLOCK': block,
'TZ': 1,
'SDD': False,
'DSD': True,
'DDS': False
}
# output
CS0 = BS0
CS1 = BS1
CS2 = BS3 if trans_c else AS1
CS3 = AS1 if trans_c else BS3
locks = _sparse_matmul.get_locks(2 * BS0 * BS3 // 32 * num_locks, a.device)
c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device)
grid = lambda meta: [width, triton.cdiv(BS3, meta['TN']), BS0]
_kernel[grid](a,
b,
c,
a.stride(0),
a.stride(1),
a.stride(3 if trans_a else 2),
a.stride(2 if trans_a else 3),
b.stride(0),
b.stride(1),
b.stride(3 if trans_b else 2),
b.stride(2 if trans_b else 3),
c.stride(0),
c.stride(1),
c.stride(2),
c.stride(3),
BS3,
AS1,
0,
0,
lut,
locks,
num_locks,
num_warps=4,
**meta)
return c
fn = {
'sdd': _sdd_matmul.__get__(object),
'dsd': _dsd_matmul.__get__(object),
'dds': _dds_matmul.__get__(object)
}
@staticmethod
def forward(ctx,
a,
b,
trans_a,
trans_b,
trans_c,
mode,
spdims,
block,
c_lut,
c_num_locks,
c_width,
c_packs,
c_bench,
c_time,
da_lut,
da_num_locks,
da_width,
da_packs,
da_bench,
da_time,
db_lut,
db_num_locks,
db_width,
db_packs,
db_bench,
db_time):
c = _sparse_matmul.fn[mode](a,
b,
trans_a,
trans_b,
trans_c,
spdims,
block,
c_lut,
c_num_locks,
c_width,
c_packs,
c_bench,
c_time)
# save for backward
ctx.save_for_backward(a, b)
ctx.da_num_locks = da_num_locks
ctx.da_lut = da_lut
ctx.da_width = da_width
ctx.da_packs = da_packs
ctx.da_bench = da_bench
ctx.da_time = da_time
ctx.db_lut = db_lut
ctx.db_num_locks = db_num_locks
ctx.db_width = db_width
ctx.db_bench = db_bench
ctx.db_packs = db_packs
ctx.db_time = db_time
ctx.mode = mode
ctx.spdims = spdims
ctx.block = block
ctx.trans_a = trans_a
ctx.trans_b = trans_b
return c
@staticmethod
def backward(ctx, dc):
# saved for backward
a, b = ctx.saved_tensors
mode = ctx.mode
# gradients w.r.t. a
if ctx.needs_input_grad[0]:
mode_da = mode[1] + mode[0] + mode[2]
da = _sparse_matmul.fn[mode_da](dc,
b,
False,
not ctx.trans_b,
ctx.trans_a,
ctx.spdims,
ctx.block,
ctx.da_lut,
ctx.da_num_locks,
ctx.da_width,
ctx.da_packs,
ctx.da_bench,
ctx.da_time)
# gradients w.r.t. b
if ctx.needs_input_grad[1]:
mode_db = mode[2] + mode[1] + mode[0]
db = _sparse_matmul.fn[mode_db](a,
dc,
not ctx.trans_a,
False,
ctx.trans_b,
ctx.spdims,
ctx.block,
ctx.db_lut,
ctx.db_num_locks,
ctx.db_width,
ctx.db_packs,
ctx.db_bench,
ctx.db_time)
return da, db, None, None, None,\
None, None, None, None,\
None, None, None, None, None, None,\
None, None, None, None, None, None,\
None, None, None, None, None, None
class MatMul:
"""Block-Sparse MatMul class; this class handles three types of matrix-multiplication:
- sparse = dense X dense
- dense = sparse X dense
- dense = dense X sparse
For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509
"""
def make_lut(self, dtype, device):
"""Generates the sparsity layout/s used in block-sparse matmul
"""
key = (dtype, device)
if key in self.lut_cache:
return self.lut_cache[key]
# C look-up table
layout, block = self.layout, self.block
step = 16
if self.mode == 'sdd':
c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device)
elif self.mode == 'dsd':
c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_dxx_lut(layout, block, step, not self.trans_a, device)
elif self.mode == 'dds':
c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_dxx_lut(layout, block, step, self.trans_b, device)
# DA look-up table
if self.mode == 'sdd':
da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_dxx_lut(layout, block, step, True, device)
elif self.mode == 'dsd':
da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device)
elif self.mode == 'dds':
da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_dxx_lut(layout, block, step, not self.trans_b, device)
# DB look-up table
if self.mode == 'sdd':
db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_dxx_lut(layout, block, step, False, device)
elif self.mode == 'dsd':
db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_dxx_lut(layout, block, step, self.trans_a, device)
elif self.mode == 'dds':
db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device)
self.lut_cache[key] = (c_lut, c_num_locks, c_width, c_packs,\
da_lut, da_num_locks, da_width, da_packs,\
db_lut, db_num_locks, db_width, db_packs)
return self.lut_cache[key]
def __init__(self, layout, block, mode, trans_a=False, trans_b=False, bench=False):
"""Initialize the Block-Sparse MatMul class.
Arguments:
layout: required: sparsity layout tensor
block: required: an integer determining the block size.
mode: required: a string determining type of matmul; ('sdd') sparse = dense X dense, ('dsd') dense = sparse X dense, ('dds') dense = dense X sparse
trans_a: optional: a boolean determining if multiplication needs to be applied on transpose of input a; default is false
trans_b: optional: a boolean determining if multiplication needs to be applied on transpose of input b; default is false
bench: optional: set if you want to do benchmarking
"""
if mode not in ['sdd', 'dsd', 'dds']:
raise NotImplementedError('Supported modes are: sdd, dsd, dds')
# look-up table cache
self.lut_cache = dict()
# attributes
self.trans_a = trans_a
self.trans_b = trans_b
self.mode = mode
self.block = block
self.layout = layout
layout_dim = layout.ndim
assert layout_dim in (2, 3), "Layout should be a 2 or 3 dimensional tensor of 0s and 1s"
if not mode == 'sdd':
# Dims to be reduced on the 'inside' of the matmul, either -1 or -2
trans_dense, trans_sparse, sparse_inner = (trans_b, trans_a, -1) if mode == 'dsd' else (trans_a, trans_b, -2)
self.dense_inner_dim = -(
(sparse_inner % 2) + 1) if not trans_dense else sparse_inner
sparse_inner = sparse_inner if not trans_sparse else -(
(sparse_inner % 2) + 1)
# Inner dim of the dense input should be equal to the inner dim of the sparse input
self.dense_inner_size = layout.shape[sparse_inner] * block
# Expected shape for sparse inputs
self.sparse_shape = (layout.sum().item(), block, block)
# Support using the same layout across attention heads etc.
if layout_dim == 2:
layout = layout.unsqueeze(0)
layout = layout.long(
) # Above code assumes the layout tensor is an integral type
self.spdims = layout.shape
# timings
self.bench = bench
self.time_c = None
self.time_da = None
self.time_db = None
# pad shapes of a tensor to make it
# compatible with kernel calls
@staticmethod
def _pad_shape(x, is_sparse):
max_dim = 3 if is_sparse else 4
for i in range(max_dim - x.dim()):
x = x.unsqueeze(0)
return x
def __call__(self, a, b):
"""Applies Block-Sparse MatMul.
For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509
Arguments:
a: required: a dense/block-sparse tensor; first input of mat-mul
b: required: a dense/block-sparse tensor; second input of mat-mul
Return:
c: a dense/block-sparse tensor result of a X b
"""
c_lut, c_num_locks, c_width, c_packs,\
da_lut, da_num_locks, da_width, da_packs,\
db_lut, db_num_locks, db_width, db_packs = self.make_lut(a.dtype, a.device)
# timings
time_c = [None]
time_da = [None]
time_db = [None]
original_dims = max(a.ndim, b.ndim)
a, b = self._validate_inputs(a, b)
# pad shapes with ones
a = MatMul._pad_shape(a, self.mode == 'dsd')
b = MatMul._pad_shape(b, self.mode == 'dds')
# execute
c = _sparse_matmul.apply(a,
b,
self.trans_a,
self.trans_b,
False,
self.mode,
self.spdims,
self.block,
c_lut,
c_num_locks,
c_width,
c_packs,
self.bench,
time_c,
da_lut,
da_num_locks,
da_width,
da_packs,
self.bench,
time_da,
db_lut,
db_num_locks,
db_width,
db_packs,
self.bench,
time_db)
# This removes any leading singleton dimensions we may have added to the tensor that weren't in the input
dims_to_trim = c.ndim - original_dims
for _ in range(dims_to_trim):
c = c.squeeze(0)
self.time_c = time_c[0]
self.time_da = time_da[0]
self.time_db = time_db[0]
return c
def _validate_inputs(self, a, b):
if a.device != b.device:
raise ValueError(
f"Inputs must be on the same device; got {a.device} for tensor A "
f"and {b.device} for tensor B")
if not get_accelerator().on_accelerator(a):
raise ValueError("Only GPU devices are supported for now")
# When autocast is enabled, torch.matmul autocasts to float16, so we do the same here
if torch.is_autocast_enabled():
a, b = a.half(), b.half()
elif a.dtype != b.dtype:
raise ValueError(
f"Inputs must be the same dtype; got {a.dtype} for A and {b.dtype} for B"
)
mode, trans_a, trans_b = self.mode, self.trans_a, self.trans_b
if mode != 'sdd':
# One input is sparse
dense, dense_name, sparse, sparse_name = (a, 'A', b, 'B') if mode == 'dds' else (b, 'B', a, 'A')
dense_inner = dense.shape[self.dense_inner_dim]
if dense_inner != self.dense_inner_size:
raise ValueError(
f"Expected tensor {dense_name} to have size {self.dense_inner_size} at dim "
f"{self.dense_inner_dim % dense.ndim}, got {dense_inner}.")
if sparse.shape[-len(self.sparse_shape):] != self.sparse_shape:
raise ValueError(
f"Expected tensor with trailing dimensions of shape {self.sparse_shape} for argument "
f"{sparse_name}, got {sparse.shape}")
def add_extra_dims(x):
# Add extra leading singleton dimensions if needed
dims_needed = 4 - x.ndim
if dims_needed > 0:
singletons = [1] * dims_needed
x = x.view(*singletons, *x.shape)
elif dims_needed < 0:
raise ValueError(
"Tensors with more than 4 dimensions are not currently supported")
return x
# Pad shapes with leading singleton dimensions
a = add_extra_dims(a)
b = add_extra_dims(b)
return a, b
| [] |
2024-01-10 | inteli5/proofreading_chatgpt | proofread_webapp.py | import json
import os
from datetime import timedelta, datetime
from dotenv import load_dotenv, find_dotenv
import time
from fastapi import FastAPI, Depends, Form, HTTPException
from fastapi.templating import Jinja2Templates
from jose import jwt, JWTError
from passlib.context import CryptContext
from starlette import status
from starlette.requests import Request
from starlette.responses import HTMLResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from retry import retry
import openai
from openai.error import APIConnectionError
from model import OriginalText, CorrectedText, User, TokenData
from redlines import Redlines
from redlines.redlines import split_paragraphs
# load the openai api key from .env file
_ = load_dotenv(find_dotenv())
# load the users database from data.db, which stores the usernames and hashed passwords.
with open('data.db') as f:
users_db = json.load(f)
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
PROOFREAD_SECRET_KEY = os.environ.get("PROOFREAD_SECRET_KEY") or "mysecretkey314zaw"
ALGORITHM = "HS256"
def verify_password(plain_password, hashed_password):
"""
Verify the password.
Args:
plain_password (str): The password to be verified.
hashed_password (str): The hashed password.
Returns:
bool: Whether the password is verified.
"""
return pwd_context.verify(plain_password, hashed_password)
def create_access_token(data: dict):
"""
Create an access token using the secret key.
Args:
data (dict): The data to be encoded.
Returns:
str: The access token.
"""
to_encode = data.copy()
token = jwt.encode(to_encode, PROOFREAD_SECRET_KEY, algorithm=ALGORITHM)
return token
def authenticate_user(username: str, password: str):
"""
Authenticate the user.
Args:
username (str): The username.
password (str): The password.
Returns:
user (dict): The user.
"""
user = users_db.get(username)
if not user:
return False
if not verify_password(password, user["password"]):
return False
return user
async def get_current_user(request: Request):
"""
Get the current user by decoding the token from cookies. If the token is invalid, the user is not authenticated.
Args:
request (Request): The request.
Returns:
user (dict | str ): The user or the str "unauthorized" if the user is not authenticated.
"""
token = request.cookies.get("access_token")
if token is None:
return 'unauthorized'
try:
payload = jwt.decode(token, PROOFREAD_SECRET_KEY, algorithms=ALGORITHM)
username: str = payload.get("username")
if username is None:
return 'unauthorized'
token_data = TokenData(username=username)
except JWTError:
return 'unauthorized'
user = users_db.get(token_data.username)
if user is None:
return 'unauthorized'
return user
@retry(APIConnectionError, tries=3, delay=2, backoff=2)
def get_completion(prompt, model="gpt-3.5-turbo"):
"""
Get the completion from OpenAI's ChatGPT model.
Args:
prompt (str): The prompt to be completed.
model (str): The model to be used.
Returns:
str: The completion.
"""
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0, # this is the degree of randomness of the model's output
)
return response.choices[0].message["content"]
# Create FastAPI app and Jinja2 templates
app = FastAPI(title="Proofread from ChatGPT", docs_url=None)
templates = Jinja2Templates(directory="templates")
app.mount("/static", StaticFiles(directory="static"), name="static")
@app.get("/", response_class=HTMLResponse)
async def home(request: Request, current_user: User | str = Depends(get_current_user, use_cache=True)):
"""
Home page. If the user is authenticated, display the home page. Otherwise, redirect to the login page.
Args:
request (Request): The request.
current_user (User | str): The current user.
Returns:
templates.TemplateResponse: The home page.
"""
if isinstance(current_user, dict) and current_user['username'] in users_db:
return templates.TemplateResponse("proofread_home.html", {"request": request, "username": current_user['username']})
return RedirectResponse(url="/login", status_code=status.HTTP_303_SEE_OTHER)
@app.post("/proofread")
async def proof(original_text: OriginalText, current_user: User | str = Depends(get_current_user, use_cache=True)) -> CorrectedText:
"""
Proofread the text using ChatGPT and return the corrected text and the difference.
Args:
original_text (OriginalText): The original text to be proofread.
Returns:
CorrectedText: The corrected text and the difference.
"""
if isinstance(current_user, dict) and current_user['username'] in users_db:
original_text = original_text.text
if len(original_text.strip()) == 0 or len(original_text.strip())>2000:
response_dict = {"corrected_text": 'The text is too short or too long. Please try again.', "diff": '', 'time_used': '0.01 s'}
return CorrectedText(**response_dict)
openai.api_key = os.getenv("OPENAI_API_KEY")
result = []
paragraphs=split_paragraphs(original_text)
for p in paragraphs:
result.append(p)
result.append('\n\n')
# pop the last '\n\n
result.pop()
original_text = ''.join(result)
# we add '\n\n' between paragraphs to make the split of paragraphs more obvious to gpt api.
prompt = f"""Proofread and correct the following text
and rewrite the corrected version. Only output the corrected version. Do not add any other words.
```{original_text}```"""
start=time.time()
response = get_completion(prompt)
time_used=time.time()-start
diff = Redlines(original_text, response)
response_dict = {"corrected_text": response, "diff": diff.output_markdown, 'time_used': f"{time_used:.2f} s"}
return CorrectedText(**response_dict)
else:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid credentials")
@app.get("/login", response_class=HTMLResponse)
async def login(request: Request, current_user: User | str = Depends(get_current_user)):
"""
Login page. If the user is authenticated, display the protected page. Otherwise, display the login page.
Args:
request (Request): The request.
current_user (User | str): The current user.
Returns:
templates.TemplateResponse: The login page.
"""
if isinstance(current_user, dict) and current_user['username'] in users_db:
return RedirectResponse(url="/", status_code=status.HTTP_303_SEE_OTHER)
return templates.TemplateResponse("login.html", {"request": request})
@app.post("/login", response_class=HTMLResponse)
async def login_for_access_token(request: Request, username: str = Form(...), password: str = Form(...)):
"""
Handle the form in /login. If the credentials are valid, create an access token and set a cookie.
Otherwise, display an error message on the login page.
Args:
request (Request): The request.
username (str): The username.
password (str): The password.
Returns:
templates.TemplateResponse: The login page.
"""
user = authenticate_user(username, password)
if not user:
return templates.TemplateResponse("login.html", {"request": request, "error": "Invalid credentials"})
access_token_expires = timedelta(days=30)
access_token = create_access_token(
data={"username": user["username"], "exp": datetime.utcnow() + access_token_expires}
)
response = RedirectResponse(url="/", status_code=status.HTTP_303_SEE_OTHER)
response.set_cookie(key="access_token", value=access_token, httponly=True)
return response
@app.get("/logout")
async def logout(request: Request):
response = templates.TemplateResponse("login.html", {"request": request})
response.delete_cookie("access_token")
return response
# @app.get("/unauthorized", response_class=HTMLResponse)
# async def unauthorized(request: Request):
# return templates.TemplateResponse("unauthorized.html", {"request": request})
if __name__ == "__main__":
import uvicorn
uvicorn.run("proofread_webapp:app", host="0.0.0.0", port=8000, reload=True)
| [
"Proofread and correct the following text \n and rewrite the corrected version. Only output the corrected version. Do not add any other words. \n ```PLACEHOLDER```"
] |
2024-01-10 | horotat/ChatBot2023 | ben_v2.py | from gramformer import Gramformer
from transformers import T5ForConditionalGeneration, T5Tokenizer
from furhat_remote_api import FurhatRemoteAPI
from dataset import Dataset
import os
import openai
import re
import random
import torch
import datetime
import logging
openai.api_key = os.getenv("OPENAI_API_KEY")
class Ben:
# class variables
# todo: think of some better ways of saying it. I asked Petra to put some inputs.
# todo: read them from the google sheet
corrective_utterances = ["You should say: \"{corrected_sentence}\"", "It's better to say: \"{corrected_sentence}\"", "The correct way to say it is: \"{corrected_sentence}\"", "It's correct to say: \"{corrected_sentence}\"."]
informative_utterances = ["You made an error in \"{mistake_word}\"", "\"{mistake_word}\" is wrong", "You used \"{mistake_word}\" mistakenly in the last sentence", "\"{mistake_word}\" is incorrect"]
def __init__(self, errors, condition, start_prompt, dataset, file_handler, furhat_IP="130.237.2.231", furhat_on=False, turns=5,
gpt="text-curie-001", corrector=None, tokenizer=None, chargoal=1000, gpt_cut_sentence=False):
#self.corrector = T5ForConditionalGeneration.from_pretrained("Unbabel/gec-t5_small")
#self.tokenizer = T5Tokenizer.from_pretrained('t5-small')
self.chargoal = chargoal
self.corrector = corrector
self.tokenizer = tokenizer
self.furhat_on = furhat_on
if furhat_on:
self.furhat = FurhatRemoteAPI(furhat_IP)
self.classifier = Gramformer(models=0, use_gpu=torch.cuda.is_available())
self.start_prompt = start_prompt
self.prompt = start_prompt
self.data = dataset
self.wordcount = 0
self.charactercount = 0
self.response_count = 0
self.turns = turns
self.gpt = gpt
self.errors = errors
self.condition = condition
self.gpt_cut_sentence = gpt_cut_sentence
self.logger = logging.getLogger("chatbot.user.ben")
fh = logging.FileHandler(file_handler)
formatter = logging.Formatter('%(asctime)s | %(name)s | %(levelname)s | %(message)s')
fh.setFormatter(formatter)
self.logger.addHandler(fh)
self.logger.removeHandler(os.path.join(os.getcwd(), "chatbot.log"))
def format_html(self, err_word, corr_word):
"""
Formats the error word and the corrected word for css styling
params: err_word: str, corr_word: str
return: ann_err_word: str, ann_corr_word: str
"""
ann_err_word = "<span class='wrong'>"+err_word+"</span>"
ann_corr_word = "<span class='correct'>"+corr_word+"</span>"
return ann_err_word, ann_corr_word
def immediate_correction(self, corr_sentence, corr_type, err_word, ann_err_word, annotated_utterance):
"""
1. Corrects the utterance adding html tags
2. Returns the annotated utterance
3. Returns the corrected sentence as "raw_correction", to be fed back to gpt
params: corr_sentence: str, corr_type: str, err_word: str, ann_err_word: str, annotated_utterance: list
returns: html_correction: str, raw_correction : str
"""
if corr_type == "corrective":
choice = random.choice(self.corrective_utterances)
html_correction = choice.format(corrected_sentence=" ".join(annotated_utterance))
raw_correction = choice.format(corrected_sentence=corr_sentence)
elif corr_type == "informative":
choice = random.choice(self.informative_utterances)
html_correction = choice.format(mistake_word=ann_err_word)
raw_correction = choice.format(mistake_word=err_word)
elif corr_type == "combined":
choice1 = random.choice(self.informative_utterances)
choice2 = random.choice(self.corrective_utterances)
html_correction = choice1.format(mistake_word=ann_err_word) + ". " + choice2.format(corrected_sentence=" ".join(annotated_utterance))
raw_correction = choice1.format(mistake_word=err_word) + ". " + choice2.format(corrected_sentence=corr_sentence)
return html_correction, raw_correction
def correcting_prompt(self, corr_sentence, corr_type, edit_tuple, phrase, condition, error):
"""
This function creates the corrected bot utterance or the corrected sentence, according to correction type and condition.
- Immediate feedback:
1. Calls the immediate_correction function to create the corrected utterance
- Delayed feedback:
1. Formats correction utterance in html
2. Saves results in error dictionary (to be used in report)
params: corr_sentence: str; corr_type: str; edit_tuple: tuple; phrase: str; condition: str; error: dict
returns: error: dict
"""
err_word = edit_tuple[1]
corr_word = edit_tuple[4]
idx_s_err_word = edit_tuple[2]
idx_e_err_word = edit_tuple[3]
idx_s_corr_word = edit_tuple[5]
idx_e_corr_word = edit_tuple[6]
error["err_word"] = err_word
error["corr_word"] = corr_word
ann_err_word, ann_corr_word = self.format_html(err_word, corr_word)
split_corr_sentence = corr_sentence.split()
split_phrase = phrase.split()
annotated_utterance = split_corr_sentence[:idx_s_corr_word] + [ann_corr_word] + split_corr_sentence[idx_e_corr_word:]
if condition == "immediate":
html_correction, raw_correction = self.immediate_correction(corr_sentence, corr_type, err_word, ann_err_word, annotated_utterance)
error["html_correction"] = html_correction
error["raw_text_correction"] = raw_correction
elif condition == "delayed":
if corr_type == "corrective":
new_corr_sentence = annotated_utterance
elif corr_type == "informative":
new_corr_sentence = split_phrase[:idx_s_err_word] + [ann_err_word] + split_phrase[idx_e_err_word:]
elif corr_type == "combined":
if (idx_s_err_word == idx_s_corr_word and (idx_e_err_word == idx_e_corr_word or idx_e_err_word != idx_e_corr_word)) or (idx_s_err_word != idx_s_corr_word and idx_e_err_word == idx_e_corr_word):
new_corr_sentence = split_corr_sentence[:idx_s_corr_word] + [ann_err_word] + [ann_corr_word] + split_corr_sentence[idx_e_corr_word:]
elif idx_s_err_word != idx_s_corr_word and idx_e_err_word != idx_e_corr_word:
new_phrase = split_phrase[:idx_s_err_word] + [ann_err_word] + split_phrase[idx_e_err_word:]
new_corr_sentence = split_corr_sentence[:idx_s_corr_word] + [ann_corr_word] + split_corr_sentence[idx_e_corr_word:]
if idx_s_err_word > idx_s_corr_word:
for w in new_phrase:
if w not in new_corr_sentence :
new_corr_sentence.insert(new_phrase.index(w)+1, w)
elif idx_s_err_word < idx_s_corr_word:
for w in new_phrase:
if w not in new_corr_sentence :
new_corr_sentence.insert(new_phrase.index(w), w)
correction = " ".join(new_corr_sentence)
error["html_correction"] = correction
error["raw_text_correction"] = "" # we don't need this for delayed condition
return error
def correct_sentece_t5(self, sentence):
tokenized_sentence = self.tokenizer('gec: ' + sentence, max_length=128, truncation=True, padding='max_length',
return_tensors='pt')
corrected_sentence = self.tokenizer.decode(
self.corrector.generate(
input_ids=tokenized_sentence.input_ids,
attention_mask=tokenized_sentence.attention_mask,
max_length=128,
num_beams=5,
early_stopping=True,
)[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)
return corrected_sentence
def gpt_response(self, prompt):
res = openai.Completion.create(
engine=self.gpt,
prompt=prompt,
max_tokens=50
)["choices"][0]["text"].rstrip("\n")
if "Student" in res:
res = res[:res.index("Student")]
if self.gpt_cut_sentence:
a = re.compile('[!.?]')
match = a.search(res)
if match is not None:
res = res[:match.end()]
res = ''.join(res.splitlines())
if "Student:" in res or "Teacher:" in res:
res = "Let's talk about something else!"
return res
def reset(self):
self.prompt = self.start_prompt
def send_and_recieve(self, phrase, correct):
annotated_answer = ""
if len(phrase) > 250:
self.response_count += 1
self.data.add_row(timestamp=str(datetime.datetime.now()),
user='student',
text=phrase)
self.data.add_row(timestamp=str(datetime.datetime.now()),
user='ben',
text="I don't understand.")
self.logs = self.data.save_csv()
self.logger.info("Student tried to write a sentence >250 characters")
self.prompt += "Student: " + phrase + "\nTeacher: I don't understand. \n"
return False, self.response_count, self.charactercount, self.errors, self.logs, "I don't understand.", 0
else:
self.charactercount += len(phrase)
# count turns for changing scenario
self.response_count += 1
# todo: change scenario from fixed to dynamic
# if self.charactercount > self.chargoal:
# # update attempt as completed and session done; user is redirected to dash/report according to condition, and all the data is saved:
# self.logger.info("Session completed")
# self.data.add_row(timestamp=str(datetime.datetime.now()),
# user='student',
# text=phrase)
# self.logs = self.data.save_csv()
# return True, self.response_count, self.charactercount, self.errors, self.logs, '<a href="/end/" class="btn btn--primary">Well done! Click here to end the session</a>', 0
if not re.search('[a-zA-Z]', phrase):
self.data.add_row(timestamp=str(datetime.datetime.now()),
user='student',
text=phrase)
self.data.add_row(timestamp=str(datetime.datetime.now()),
user='ben',
text="I don't understand.")
self.logs = self.data.save_csv()
self.logger.info("Student wrote something that is not a sentence")
self.prompt += "Student: " + phrase + "\nTeacher: I don't understand. \n"
return False, self.response_count, self.charactercount, self.errors, self.logs, "I don't understand.", 0
padded_phrase = "Student: " + phrase
uncorrected_prompt = self.prompt + padded_phrase
self.logger.info("Uncorrected prompt: %s", uncorrected_prompt)
self.logger.info("This is what we give T5: %s", uncorrected_prompt[-300:])
# we changed it from -300 to -500 after increasing the user input value from 100 to 250
corrected_prompt = self.correct_sentece_t5(uncorrected_prompt[-300:])
self.logger.info("Corrected prompt: %s", corrected_prompt)
if padded_phrase not in corrected_prompt: # If True then there was an error
self.logger.info("The user made a mistake. Correcting it.")
correct_sentence = corrected_prompt[corrected_prompt.rfind('Student:') + 9:]
if len(correct_sentence) > 2: # Account for edge cases
self.prompt += "Student: " + phrase + "\nTeacher: "
else:
self.prompt += "Student: " + phrase + "\nTeacher: "
if self.charactercount > self.chargoal:
self.prompt += "Student: " + phrase + "\nThe conversation has reached an end. The teacher replies to the student and then ends the class.\nTeacher: "
edits = self.classifier.get_edits(phrase, correct_sentence)
ignore = {'SPELL', 'NOUN', 'OTHER', 'ORTH'} # Don't care about these types of errors
skip = True
keep_edits = []
for edit in edits:
set_edit = set(edit)
if len(set_edit.intersection(ignore)) == 0:
keep_edits.append(edit)
skip = False
if skip:
keep_edits = ""
self.logger.debug("No edits to keep")
self.data.add_row(timestamp=str(datetime.datetime.now()),
user='student',
text=phrase,
edits=keep_edits)
self.logs = self.data.save_csv()
types = ["corrective", "informative", "combined"]
indexOfCorrection = random.randint(0,2)
correction_type = types[indexOfCorrection]
# accounts for cases in which the try fails
error = ""
try: # Account for if it fails to identify the incorrect word
err_word = phrase.split()[keep_edits[0][2]]
error = {
"sentence": phrase,
"correction_type": correction_type,
"prompt": self.prompt
}
self.logger.debug("Entered try. Error word: %s", err_word,)
if correct and not skip and (("Student:" not in correct_sentence) and ("Teacher:" not in correct_sentence)):
self.logger.debug("Correcting the sentence.")
if correction_type == "none":
answer = self.gpt_response(self.prompt)
self.errors[str(datetime.datetime.now())] = error
self.logger.info("Corr_type is none. No correction is given.")
else:
error = self.correcting_prompt(correct_sentence, correction_type, keep_edits[0], phrase, self.condition, error)
self.errors[str(datetime.datetime.now())] = error
self.logger.info("Corr_type is not none. Corr_type: %s, Condition: %s, Html: %s, On screen: %s", correction_type, self.condition, error["html_correction"], error["raw_text_correction"])
if self.condition == "immediate":
gpt_out = self.gpt_response(self.prompt)
answer = error["raw_text_correction"] + ". " + gpt_out
annotated_answer = error["html_correction"] + ". " + gpt_out
else:
answer = self.gpt_response(self.prompt)
else:
answer = self.gpt_response(self.prompt)
self.logger.debug("Not correcting the sentence. Skip: %s, Answer: %s", skip, answer)
except:
self.logger.exception("Failed to identify the error word. Giving gpt output only.")
answer = self.gpt_response(self.prompt)
correction_type = "none"
if skip:
correction = 0
else:
correction = 1
self.data.add_row(timestamp=str(datetime.datetime.now()),
user='ben',
text=answer,
error_obj = error,
correction_type=correction_type)
self.logs = self.data.save_csv()
if self.furhat_on:
self.furhat.say(text=answer, blocking=True)
self.prompt += answer + " \n"
if self.charactercount < self.chargoal:
if annotated_answer != "":
return False, self.response_count, self.charactercount, self.errors, self.logs, annotated_answer, correction
else:
return False, self.response_count, self.charactercount, self.errors, self.logs, answer, 0
else:
self.logger.info("Session completed.")
if annotated_answer != "":
return True, self.response_count, self.charactercount, self.errors, self.logs, annotated_answer+'<br><a href="/end/" class="btn btn--primary">Well done! Click here to end the session</a>', correction
else:
return True, self.response_count, self.charactercount, self.errors, self.logs, answer+'<br><a href="/end/" class="btn btn--primary">Well done! Click here to end the session</a>', 0
else: # The user made no error
self.logger.info("The user made no mistake.")
if self.charactercount > self.chargoal:
self.logger.info("Session completed")
self.data.add_row(timestamp=str(datetime.datetime.now()),
user='student',
text=phrase)
self.logs = self.data.save_csv()
self.prompt += "Student: " + phrase + "\nThe conversation has reached an end. The teacher replies to the student and then ends the class.\nTeacher: "
response = self.gpt_response(self.prompt)
self.data.add_row(timestamp=str(datetime.datetime.now()),
user='ben',
text=response)
self.logs = self.data.save_csv()
response = response + '<br><a href="/end/" class="btn btn--primary">Well done! Click here to end the session</a>'
return True, self.response_count, self.charactercount, self.errors, self.logs, response, 0
self.data.add_row(timestamp=str(datetime.datetime.now()),
user='student',
text=phrase)
self.prompt += "Student: " + phrase + "\nTeacher: "
response = self.gpt_response(self.prompt)
self.logs = self.data.save_csv()
self.data.add_row(timestamp=str(datetime.datetime.now()),
user='ben',
text=response)
self.logs = self.data.save_csv()
if self.furhat_on:
self.furhat.say(text=response, blocking=True)
self.prompt += response + " \n"
#with open('prompt.txt', 'w+') as fh:
# fh.write(self.prompt)
return False, self.response_count, self.charactercount, self.errors, self.logs, response, 0
# if __name__ == "__main__":
# furhat_ip = "193.10.38.152"
# start_prompt = "A student and a ch are having a conversation in English. \n"
# data = Dataset()
# ben = Ben(start_prompt, dataset=data, furhat_on=False, furhat_IP=furhat_ip)
# print("Talk to Ben!")
| [] |
2024-01-10 | makism/dyconnmap | dyconnmap~fc~__init__.py | # -*- coding: utf-8 -*-
"""
"""
# Author: Avraam Marimpis <[email protected]>
from .estimator import Estimator
from .plv import PLV, plv, plv_fast
from .pli import PLI, pli
from .iplv import IPLV, iplv, iplv_fast
from .aec import aec
from .esc import esc
from .nesc import nesc
from .cos import cos
from .pec import pec
from .glm import glm
from .pac import PAC, pac
from .mui import mutual_information
from .dpli import dpli
from .wpli import wpli, dwpli
from .coherence import coherence, Coherence
from .icoherence import icoherence
from .corr import corr, Corr
from .crosscorr import crosscorr
from .partcorr import partcorr
from .rho_index import rho_index
__all__ = [
"Estimator",
"PLV",
"plv",
"plv_fast",
"PLI",
"pli",
"IPLV",
"iplv",
"iplv_fast",
"aec",
"esc",
"nesc",
"pec",
"glm",
"rho_index",
"PAC",
"pac",
"mutual_information",
"dpli",
"wpli",
"dwpli",
"coherence",
"Coherence",
"icoherence",
"corr",
"Corr",
"crosscorr",
"partcorr",
"cos",
]
| [] |
2024-01-10 | makism/dyconnmap | examples~fc_coherence.py | # -*- coding: utf-8 -*-
# Author: Avraam Marimpis <[email protected]>
import numpy as np
np.set_printoptions(precision=3, linewidth=256)
from dyconnmap.fc import coherence, icoherence
if __name__ == "__main__":
data = np.load(
"/home/makism/Github/dyconnmap/examples/data/eeg_32chans_10secs.npy")
data = data[0:5, :]
csdparams = {'NFFT': 256, 'noverlap': 256 / 2.0}
coh = coherence(data, [1.0, 4.0], 128.0, **csdparams)
icoh = icoherence(data, [1.0, 4.0], 128.0)
print("Coherence: \n", coh)
print("Imagenary Coherence: \n", icoh)
| [] |
2024-01-10 | blue0316/salesgpt-bot-dev | salesgpt~agents.py | from copy import deepcopy
from typing import Any, Callable, Dict, List, Union
from langchain.agents import AgentExecutor, LLMSingleActionAgent
from langchain.chains import LLMChain, RetrievalQA
from langchain.chains.base import Chain
from langchain.chat_models import ChatLiteLLM
from langchain.llms.base import create_base_retry_decorator
from litellm import acompletion
from pydantic import Field
from salesgpt.chains import SalesConversationChain, StageAnalyzerChain
from salesgpt.logger import time_logger
from salesgpt.parsers import SalesConvoOutputParser
from salesgpt.prompts import SALES_AGENT_TOOLS_PROMPT
from salesgpt.stages import CONVERSATION_STAGES
from salesgpt.templates import CustomPromptTemplateForTools
from salesgpt.tools import get_tools, setup_knowledge_base
def _create_retry_decorator(llm: Any) -> Callable[[Any], Any]:
import openai
errors = [
openai.error.Timeout,
openai.error.APIError,
openai.error.APIConnectionError,
openai.error.RateLimitError,
openai.error.ServiceUnavailableError,
]
return create_base_retry_decorator(error_types=errors, max_retries=llm.max_retries)
class SalesGPT(Chain):
"""Controller model for the Sales Agent."""
conversation_history: List[str] = []
conversation_stage_id: str = "1"
current_conversation_stage: str = CONVERSATION_STAGES.get("1")
stage_analyzer_chain: StageAnalyzerChain = Field(...)
sales_agent_executor: Union[AgentExecutor, None] = Field(...)
knowledge_base: Union[RetrievalQA, None] = Field(...)
sales_conversation_utterance_chain: SalesConversationChain = Field(...)
conversation_stage_dict: Dict = CONVERSATION_STAGES
model_name: str = "gpt-3.5-turbo-0613"
use_tools: bool = False
salesperson_name: str = "Ted Lasso"
salesperson_role: str = "Business Development Representative"
company_name: str = "Sleep Haven"
company_business: str = "Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers."
company_values: str = "Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service."
conversation_purpose: str = "find out whether they are looking to achieve better sleep via buying a premier mattress."
conversation_type: str = "call"
def retrieve_conversation_stage(self, key):
return self.conversation_stage_dict.get(key, "1")
@property
def input_keys(self) -> List[str]:
return []
@property
def output_keys(self) -> List[str]:
return []
@time_logger
def seed_agent(self):
# Step 1: seed the conversation
self.current_conversation_stage = self.retrieve_conversation_stage("1")
self.conversation_history = []
@time_logger
def determine_conversation_stage(self):
self.conversation_stage_id = self.stage_analyzer_chain.run(
conversation_history="\n".join(self.conversation_history).rstrip("\n"),
conversation_stage_id=self.conversation_stage_id,
conversation_stages="\n".join(
[
str(key) + ": " + str(value)
for key, value in CONVERSATION_STAGES.items()
]
),
)
print(f"Conversation Stage ID: {self.conversation_stage_id}")
self.current_conversation_stage = self.retrieve_conversation_stage(
self.conversation_stage_id
)
print(f"Conversation Stage: {self.current_conversation_stage}")
def human_step(self, human_input):
# process human input
human_input = "User: " + human_input + " <END_OF_TURN>"
self.conversation_history.append(human_input)
@time_logger
def step(self, stream: bool = False):
"""
Args:
stream (bool): whether or not return
streaming generator object to manipulate streaming chunks in downstream applications.
"""
if not stream:
self._call(inputs={})
else:
return self._streaming_generator()
@time_logger
def astep(self, stream: bool = False):
"""
Args:
stream (bool): whether or not return
streaming generator object to manipulate streaming chunks in downstream applications.
"""
if not stream:
self._acall(inputs={})
else:
return self._astreaming_generator()
@time_logger
def acall(self, *args, **kwargs):
raise NotImplementedError("This method has not been implemented yet.")
@time_logger
def _prep_messages(self):
"""
Helper function to prepare messages to be passed to a streaming generator.
"""
prompt = self.sales_conversation_utterance_chain.prep_prompts(
[
dict(
conversation_stage=self.current_conversation_stage,
conversation_history="\n".join(self.conversation_history),
salesperson_name=self.salesperson_name,
salesperson_role=self.salesperson_role,
company_name=self.company_name,
company_business=self.company_business,
company_values=self.company_values,
conversation_purpose=self.conversation_purpose,
conversation_type=self.conversation_type,
)
]
)
inception_messages = prompt[0][0].to_messages()
message_dict = {"role": "system", "content": inception_messages[0].content}
if self.sales_conversation_utterance_chain.verbose:
print("\033[92m" + inception_messages[0].content + "\033[0m")
return [message_dict]
@time_logger
def _streaming_generator(self):
"""
Sometimes, the sales agent wants to take an action before the full LLM output is available.
For instance, if we want to do text to speech on the partial LLM output.
This function returns a streaming generator which can manipulate partial output from an LLM
in-flight of the generation.
Example:
>> streaming_generator = self._streaming_generator()
# Now I can loop through the output in chunks:
>> for chunk in streaming_generator:
Out: Chunk 1, Chunk 2, ... etc.
See: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_stream_completions.ipynb
"""
messages = self._prep_messages()
return self.sales_conversation_utterance_chain.llm.completion_with_retry(
messages=messages,
stop="<END_OF_TURN>",
stream=True,
model=self.model_name,
)
async def acompletion_with_retry(self, llm: Any, **kwargs: Any) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await acompletion(**kwargs)
return await _completion_with_retry(**kwargs)
async def _astreaming_generator(self):
"""
Asynchronous generator to reduce I/O blocking when dealing with multiple
clients simultaneously.
Sometimes, the sales agent wants to take an action before the full LLM output is available.
For instance, if we want to do text to speech on the partial LLM output.
This function returns a streaming generator which can manipulate partial output from an LLM
in-flight of the generation.
Example:
>> streaming_generator = self._astreaming_generator()
# Now I can loop through the output in chunks:
>> async for chunk in streaming_generator:
await chunk ...
Out: Chunk 1, Chunk 2, ... etc.
See: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_stream_completions.ipynb
"""
messages = self._prep_messages()
return await self.acompletion_with_retry(
llm=self.sales_conversation_utterance_chain.llm,
messages=messages,
stop="<END_OF_TURN>",
stream=True,
model=self.model_name,
)
def _call(self, inputs: Dict[str, Any]) -> None:
"""Run one step of the sales agent."""
# Generate agent's utterance
# if use tools
if self.use_tools:
ai_message = self.sales_agent_executor.run(
input="",
conversation_stage=self.current_conversation_stage,
conversation_history="\n".join(self.conversation_history),
salesperson_name=self.salesperson_name,
salesperson_role=self.salesperson_role,
company_name=self.company_name,
company_business=self.company_business,
company_values=self.company_values,
conversation_purpose=self.conversation_purpose,
conversation_type=self.conversation_type,
)
else:
# else
ai_message = self.sales_conversation_utterance_chain.run(
conversation_stage=self.current_conversation_stage,
conversation_history="\n".join(self.conversation_history),
salesperson_name=self.salesperson_name,
salesperson_role=self.salesperson_role,
company_name=self.company_name,
company_business=self.company_business,
company_values=self.company_values,
conversation_purpose=self.conversation_purpose,
conversation_type=self.conversation_type,
)
# Add agent's response to conversation history
agent_name = self.salesperson_name
ai_message = agent_name + ": " + ai_message
if "<END_OF_TURN>" not in ai_message:
ai_message += " <END_OF_TURN>"
self.conversation_history.append(ai_message)
print(ai_message.replace("<END_OF_TURN>", ""))
return {}
@classmethod
@time_logger
def from_llm(cls, llm: ChatLiteLLM, verbose: bool = False, **kwargs) -> "SalesGPT":
"""Initialize the SalesGPT Controller."""
stage_analyzer_chain = StageAnalyzerChain.from_llm(llm, verbose=verbose)
if (
"use_custom_prompt" in kwargs.keys()
and kwargs["use_custom_prompt"] == "True"
):
use_custom_prompt = deepcopy(kwargs["use_custom_prompt"])
custom_prompt = deepcopy(kwargs["custom_prompt"])
# clean up
del kwargs["use_custom_prompt"]
del kwargs["custom_prompt"]
sales_conversation_utterance_chain = SalesConversationChain.from_llm(
llm,
verbose=verbose,
use_custom_prompt=use_custom_prompt,
custom_prompt=custom_prompt,
)
else:
sales_conversation_utterance_chain = SalesConversationChain.from_llm(
llm, verbose=verbose
)
if "use_tools" in kwargs.keys() and (
kwargs["use_tools"] == "True" or kwargs["use_tools"] == True
):
# set up agent with tools
product_catalog = kwargs["product_catalog"]
knowledge_base = setup_knowledge_base(product_catalog)
tools = get_tools(knowledge_base)
prompt = CustomPromptTemplateForTools(
template=SALES_AGENT_TOOLS_PROMPT,
tools_getter=lambda x: tools,
# This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
# This includes the `intermediate_steps` variable because that is needed
input_variables=[
"input",
"intermediate_steps",
"salesperson_name",
"salesperson_role",
"company_name",
"company_business",
"company_values",
"conversation_purpose",
"conversation_type",
"conversation_history",
],
)
llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=verbose)
tool_names = [tool.name for tool in tools]
# WARNING: this output parser is NOT reliable yet
## It makes assumptions about output from LLM which can break and throw an error
output_parser = SalesConvoOutputParser(ai_prefix=kwargs["salesperson_name"])
sales_agent_with_tools = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names,
)
sales_agent_executor = AgentExecutor.from_agent_and_tools(
agent=sales_agent_with_tools, tools=tools, verbose=verbose
)
else:
sales_agent_executor = None
knowledge_base = None
return cls(
stage_analyzer_chain=stage_analyzer_chain,
sales_conversation_utterance_chain=sales_conversation_utterance_chain,
sales_agent_executor=sales_agent_executor,
knowledge_base=knowledge_base,
model_name=llm.model,
verbose=verbose,
**kwargs,
)
| [
"\n",
"company_name",
"use_custom_prompt",
"company_values",
"conversation_history",
"company_business",
"conversation_purpose",
"input",
"conversation_type",
"salesperson_name",
"salesperson_role",
"custom_prompt",
"intermediate_steps"
] |
2024-01-10 | gavmac00/whisper-obsidian | note.py | import openai # imports whisper
import os # imports os
import re # imports re for sanitizing the title
from record import AudioRecorder # imports record.py
openai.api_key = os.getenv("OPENAI_API_KEY") # sets the API key
# take the title of the note
title = input("Note Title: ")
include_title = input("Include title in transcription? (y/n): ")
include_folder = input("Include folder to save transcription inside? (y/n): ")
if include_folder == "y":
folder = input("Folder name: ")
# take in a stream of audio and save it as an audio file
if __name__ == "__main__":
recorder = AudioRecorder()
recorder.start()
recorder.stop()
# define the audio file to be transcribed
audio_file= open("audio.wav", "rb")
# saves the response from the transcription (string)
response = openai.Audio.transcribe(
"whisper-1",
audio_file,
prompt=f"Transcribe the following audio recording titled:\n\n{title}\n\n into a well formatted note for the Obsidian software."
)
transcript = response["text"]
obsidian_vault_path = "C:\\Users\\Gavin\\OneDrive\\Documents\\Obsidian Vault\\"
if include_title == "y":
obsidian_note = f"# {title}\n\n{transcript}"
else:
obsidian_note = f"{transcript}"
if include_folder == "y":
obsidian_vault_path = f"{obsidian_vault_path}{folder}"
if not os.path.exists(obsidian_vault_path):
os.mkdir(obsidian_vault_path)
# Remove or replace invalid characters
sanitized_title = re.sub(r'[\\/*?:"<>|]', '_', title)
filepath = f"{obsidian_vault_path}/{sanitized_title}.md"
if os.path.exists(filepath):
overwrite = input("File already exists. Append? (y/n): ")
if overwrite == "y":
existing_note = open(f"{obsidian_vault_path}/{sanitized_title}.md", "r")
existing_note_text = existing_note.read()
with open(f"{obsidian_vault_path}/{sanitized_title}.md", "w") as f:
f.write(existing_note_text + "\n\n" + obsidian_note)
else:
print("File not saved.")
else:
with open(f"{obsidian_vault_path}/{sanitized_title}.md", "w") as f:
f.write(obsidian_note)
if include_folder == "y":
print(f"Note saved as {sanitized_title}.md in Obsidian Vault\{folder}.")
else:
print(f"Note saved as {sanitized_title}.md in Obsidian Vault.") | [] |
2024-01-10 | RadstalST/TAPDemoChat | pages~playground.py | import streamlit as st
from langchain.prompts import PromptTemplate
from agents import PlaygroundBot
import io
import json
import datetime
from agents import chatHistory
# initialize exportDict in session state
if "exportDict" not in st.session_state:
st.session_state.exportDict = {
"mode":"",
"userInput":"",
"prompt":"",
"response":"",
"rawResponse":"",
"feedback":"",
"timestamp":""
}
if "modeIndex" not in st.session_state:
st.session_state.modeIndex = 0
def setTimeStamp():
st.session_state.exportDict["timestamp"] = datetime.datetime.now()
@st.cache_resource
def playGroundBotSelector(option:str)->PlaygroundBot.BasePlaygroundBot:
match option:
case "GPT4":
return PlaygroundBot.PlayGroundGPT4()
case "GPT4+ToT":
return PlaygroundBot.PlayGroundGPT4ToT()
case "GPT4+CoT":
return PlaygroundBot.PlayGroundGPT4CoT()
case "GPT+CoT+Chroma":
return PlaygroundBot.PlayGroundGPT4CoTChroma()
case _:
return PlaygroundBot.BasePlaygroundBot()
st.header("Welcome to Playground")
st.write("This is a demo of the Med Bot")
st.warning("if you are editing the code in modules, please restart the app or press 'c' (clear resource cache) to see the changes")
questionPane = st.container()
st.divider()
formPane = st.container()
resultContainer = st.container()
feedbackPane = st.container()
# container for history
history_container = st.sidebar.container()
# creating an empty list to store conversation history
if 'conversation_history' not in st.session_state:
st.session_state.conversation_history = []
if getattr(st.session_state, 'status', None) is None:
st.session_state['status'] = {}
else:
st.session_state.status = {}
prompt_template = PromptTemplate.from_template(
"""
\nPrompt: {prompt}
\nUser Input: {userInput}
"""
)
generated_prompt = ""
playgroundbot = PlaygroundBot.BasePlaygroundBot() # empty model
with questionPane:
final_prompt = ""
with st.container() as form:
option = st.selectbox("bot option",('GPT4', 'GPT4+ToT', 'GPT4+CoT',"GPT+CoT+Chroma"),index=st.session_state.modeIndex)
st.session_state.exportDict["mode"] = option
playgroundbot = playGroundBotSelector(option)
with st.expander("description",expanded=True):
st.write(playgroundbot.getDescription())
col1, col2 = st.columns(2)
with col1:
st.subheader("User Input")
userInput = st.text_area(
"Your input goes here:",
placeholder="I have problem with headache today. I worked 10 hours yesterday",
value="I have problem with headache today. I worked 10 hours yesterday",
key='input',
height=300)
with col2:
st.subheader("Scenario")
prompt = st.text_area(
"Your prompt goes here:",
key='prompt', height=300,
value="Please provide possible symptom with my problem")
if prompt:
final_prompt = prompt
else:
final_prompt = option
with st.expander("See Generated Prompt"):
generated_prompt = prompt_template.format(userInput=userInput, prompt=final_prompt)
# st.write(form.__dict__)
with formPane:
with st.form("playground_form"):
st.markdown(generated_prompt)
submit_button = st.form_submit_button(label='Send')
if submit_button:
with st.status('Wait for it...',expanded=True):
st.session_state.exportDict["userInput"] = userInput # save to export dict
st.session_state.exportDict["prompt"] = prompt # save to export dict
st.write("getting response from the bot")
result = playgroundbot.ask(generated_prompt)
st.session_state.exportDict["response"] = result["response"] # save to export dict
st.session_state.exportDict["rawResponse"] = result
resultContainer.subheader("Bot Response")
playgroundbot.display(resultContainer,st.session_state.exportDict["rawResponse"])
with resultContainer.expander("debug"):
st.write(result)
# adding the user input and bot response to the conversation history
user_input = final_prompt
response = chatHistory.add_user_input_to_history(user_input, result)
# Display the updated conversation history in the sidebar
with history_container:
st.subheader("Conversation History")
for entry in st.session_state.conversation_history:
st.write(entry[0])
with feedbackPane:
# feedback = st.text_area("your feedback:", key='feedback', height=50,placeholder="please input feedback with 50 character or more")
# st.session_state.exportDict["feedback"] = feedback
st.write("---")
st.header("We would love to hear from you!")
st.write("##")
# Refer: https://formsubmit.co/
feedback_form = """
<form action="https://formsubmit.co/6d5189f5e008a3398f3c9b2bfee1a576" method="POST" target="_blank">
<input type="hidden" name="_captcha" value="false">
<input type="text" name="name" placeholder="Name" required>
<input type="email" name="email" placeholder="Email" required>
<textarea name="message" placeholder="Write your feedback here" required></textarea>
<button type="submit">Send</button>
</form>
"""
st.markdown(feedback_form, unsafe_allow_html=True)
st.write("---")
# Use custom CSS
def load_css(file_name):
with open(file_name) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
load_css("style/style.css")
st.download_button(
"Download interaction",
json.dumps(st.session_state.exportDict, indent=4, sort_keys=True, default=str),
file_name="interaction.json",
mime="application/json",
# disabled=(feedback == "" or len(feedback)<=50),
on_click=setTimeStamp
)
| [
"Your prompt goes here:",
"Please provide possible symptom with my problem",
"\n \nPrompt: {prompt}\n \nUser Input: {userInput}\n "
] |
2024-01-10 | RadstalST/TAPDemoChat | agents~PlaygroundBot.py |
import os
import streamlit as st
from langchain.chains import ConversationalRetrievalChain, ConversationChain
from langchain.chains.qa_with_sources.retrieval import \
RetrievalQAWithSourcesChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.memory import ConversationSummaryBufferMemory
# from
from langchain.prompts import PromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from . import treeofthoughts, utils
class BasePlaygroundBot():
"""
A base class representing a playground bot.
Attributes:
-----------
model_name : str
The name of the model to use. Default is "gpt-4".
llm : ChatOpenAI
An instance of the ChatOpenAI class.
description : str
A description of the playground bot.
Methods:
--------
ask(question: str) -> str:
Asks the bot a question or gives it a prompt and returns the bot's response.
getDescription() -> str:
Returns the description of the playground bot.
display(elem, result):
Displays the bot's response in the specified element.
"""
def __init__(self,model_name="gpt-4") -> None:
"""
Initializes a new instance of the BasePlaygroundBot class.
Parameters:
-----------
model_name : str
The name of the model to use. Default is "gpt-4".
"""
self.llm = ChatOpenAI(temperature=0, model_name=model_name)
self.description = "Blank Description"
def ask(self,question:str)->dict:
"""
Asks the bot a question or gives it a prompt and returns the bot's response.
Parameters:
-----------
question : str
The prompt or question to ask the bot.
Returns:
--------
str
The bot's response to the prompt or question.
"""
pass
def getDescription(self)->str:
"""
Returns the description of the playground bot.
Returns:
--------
str
The description of the playground bot.
"""
return self.description
def display(self,elem,result):
"""
Displays the bot's response in the specified element.
Parameters:
-----------
elem : str
The element to display the bot's response in.
result : dict
A dictionary containing the bot's response.
"""
elem.write("empty bot")
class PlayGroundGPT4(BasePlaygroundBot):
"""
A class representing a playground bot that uses the GPT-4 model.
Attributes:
-----------
model_name : str
The name of the model to use. Default is "gpt-4".
chain : ConversationChain
An instance of the ConversationChain class.
description : str
A description of the GPT-4 model.
Methods:
--------
ask(prompt: str) -> str:
Asks the bot a question or gives it a prompt and returns the bot's response.
display(elem, result):
Displays the bot's response in the specified element.
"""
def __init__(self, model_name="gpt-4") -> None:
"""
Initializes a new instance of the PlayGroundGPT4 class.
Parameters:
-----------
model_name : str
The name of the model to use. Default is "gpt-4".
"""
super().__init__(model_name=model_name)
self.chain = ConversationChain(llm=self.llm)
self.description = "GPT4 is the latest version of GPT3. It is trained on a larger dataset and has more parameters. It is the most powerful language model in the world."
def ask(self, prompt: str) -> str:
"""
Asks the bot a question or gives it a prompt and returns the bot's response.
Parameters:
-----------
prompt : str
The prompt or question to ask the bot.
Returns:
--------
str
The bot's response to the prompt or question.
"""
return self.chain(prompt)
def display(self, elem, result):
"""
Displays the bot's response in the specified element.
Parameters:
-----------
elem : str
The element to display the bot's response in.
result : dict
A dictionary containing the bot's response.
"""
elem.write(result["response"])
class PlayGroundGPT4ToT(BasePlaygroundBot):
"""
A class representing a playground bot that uses the Tree of Thought model.
Attributes:
-----------
model_name : str
The name of the model to use. Default is "gpt-4".
chain : ConversationChain
An instance of the ConversationChain class.
description : str
A description of the Tree of Thought model.
Methods:
--------
ask(prompt: str) -> str:
Asks the bot a question or gives it a prompt and returns the bot's response.
display(elem, result):
Displays the bot's response in the specified element.
"""
def __init__(self, model_name="gpt-4") -> None:
"""
Initializes a new instance of the PlayGroundGPT4ToT class.
Parameters:
-----------
model_name : str
The name of the model to use. Default is "gpt-4".
"""
super().__init__(model_name=model_name)
self.chain = ConversationChain(llm=self.llm)
self.description = "The Tree of Thought is a conversational AI model developed by Langchain that uses GPT-4 as its underlying language model. It is designed to generate human-like responses to user input and can be used for a variety of applications, including chatbots, virtual assistants, and customer service."
def ask(self, prompt: str) -> str:
"""
Asks the bot a question or gives it a prompt and returns the bot's response.
Parameters:
-----------
prompt : str
The prompt or question to ask the bot.
Returns:
--------
str
The bot's response to the prompt or question.
"""
return {"response":treeofthoughts.ask(prompt)}
def display(self,elem,result):
"""
Displays the bot's response in the specified element.
Parameters:
-----------
elem : str
The element to display the bot's response in.
result : dict
A dictionary containing the bot's response.
"""
elem.write(result["response"])
class PlayGroundGPT4CoT(BasePlaygroundBot):
"""
A class representing a playground bot that uses the CoT model.
Attributes:
-----------
model_name : str
The name of the model to use. Default is "gpt-4".
chain : ConversationChain
An instance of the ConversationChain class.
description : str
A description of the CoT model.
Methods:
--------
ask(prompt: str) -> str:
Asks the bot a question or gives it a prompt and returns the bot's response.
display(elem, result):
Displays the bot's response in the specified element.
"""
def __init__(self, model_name="gpt-4") -> None:
"""
Initializes a new instance of the PlayGroundGPT4CoT class.
Parameters:
-----------
model_name : str
The name of the model to use. Default is "gpt-4".
"""
super().__init__(model_name=model_name)
self.planllm = self.llm
plan_prompt = PromptTemplate(
template= """
Come up with a plan to solve the following problem as if you were an experienced doctor.
Problem:
{problem}
Come up with plan to research to solve the problem in steps:
""",
input_variables=["problem"]
)
execution_prompt = PromptTemplate(
template="""
from this plan, tell the patient what they need to.
{plan}
Helpful Answer for a concerned clinic visitor :
""",
input_variables=["plan"]
)
self.chainPlan = plan_prompt | self.llm | StrOutputParser()
self.chainResponse = execution_prompt | self.llm | StrOutputParser()
self.description = "CoT prompting, as introduced in a recent paper, is a method that encourages LLMs to explain their reasoning process."
def ask(self, prompt: str) -> str:
"""
Asks the bot a question or gives it a prompt and returns the bot's response.
Parameters:
-----------
prompt : str
The prompt or question to ask the bot.
Returns:
--------
str
The bot's response to the prompt or question.
"""
# this st.write works because it was called under st.status()
st.write("creating plan")
plan = self.chainPlan.invoke({"problem":prompt})
st.write("the plan")
st.caption(plan)
st.write("getting solution from the plan")
response = self.chainResponse.invoke({"plan":plan})
return {
"response":response,
"plan":plan,
}
def display(self,elem,result):
"""
Displays the bot's response in the specified element.
Parameters:
-----------
elem : str
The element to display the bot's response in.
result : dict
A dictionary containing the bot's response.
"""
with elem:
with st.expander("Plan"):
st.write(result["plan"])
st.write(result["response"])
class PlayGroundGPT4CoTChroma(BasePlaygroundBot):
"""
A class representing a playground bot that uses the CoTChroma model.
Attributes:
-----------
model_name : str
The name of the model to use. Default is "gpt-4".
chain : ConversationChain
An instance of the ConversationChain class.
description : str
A description of the CoTChroma model.
Methods:
--------
ask(prompt: str) -> str:
Asks the bot a question or gives it a prompt and returns the bot's response.
display(elem, result):
Displays the bot's response in the specified element.
"""
def __init__(self, model_name="gpt-4",path: str = "./.datalake/HC_DATA/prepared_generated_data_for_nhs_uk_conversations.csv") -> None:
"""
Initializes a new instance of the PlayGroundGPT4CoTChroma class.
Parameters:
-----------
model_name : str
The name of the model to use. Default is "gpt-4".
"""
super().__init__(model_name=model_name)
self.chain = ConversationChain(llm=self.llm)
self.description = "At its core, CoT prompting is about guiding the LLM to think step by step. This is achieved by providing the model with a few-shot exemplar that outlines the reasoning process. The model is then expected to follow a similar chain of thought when answering the prompt. \n Added vector database retrival of the source"
self.template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Use three sentences maximum and keep the answer as concise as possible.
Always gives the answer in your own words, do not copy and paste from the context.
Always give the reference to the source of the answer as links found from the context.
response in markdown format
HISTORY:
{chat_history}
QUESTION:
{question}
Helpful Answer for a concerned clinic visitor :"""
self.QA_CHAIN_PROMPT = PromptTemplate.from_template(self.template)
self.llm = ChatOpenAI(temperature=0)
if "memory" not in st.session_state: # if memory is not initialized
st.session_state.memory = ConversationSummaryBufferMemory(
llm=self.llm,
memory_key='chat_history', return_messages=True, output_key='answer'
)
self.memory = st.session_state.memory
if not os.path.exists("./.chroma_db"):
loader = CSVLoader(file_path=path,csv_args={"quotechar": '"'})
documents = loader.load_and_split()
self.vectorstore = Chroma.from_documents(
documents=documents,
embedding=OpenAIEmbeddings(),
persist_directory="./.chroma_db",
)
else:
self.vectorstore = Chroma(embedding_function=OpenAIEmbeddings(),persist_directory="./.chroma_db")
def ask(self, prompt: str) -> dict:
"""
Asks the bot a question or gives it a prompt and returns the bot's response.
Parameters:
-----------
prompt : str
The prompt or question to ask the bot.
Returns:
--------
str
The bot's response to the prompt or question.
"""
qa_chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0),# ok
retriever=self.vectorstore.as_retriever(), # ok
condense_question_prompt = self.QA_CHAIN_PROMPT, # ok
# chain_type_kwargs={"prompt": self.QA_CHAIN_PROMPT,"verbose":True},
memory=self.memory,
return_source_documents=True,
verbose=True,
)
result = qa_chain({"question": prompt})
result["response"] = result["answer"]
return result
def display(self,elem,result):
"""
Displays the bot's response in the specified element.
Parameters:
-----------
elem : str
The element to display the bot's response in.
result : dict
A dictionary containing the bot's response.
"""
with elem:
st.write(result["answer"])
with st.expander(f"Sources"):
for i,source in enumerate(result["source_documents"]):
st.subheader(f"Sources {i}")
for chat in utils.split_document_chat(source.page_content):
role = chat["who"]
message = chat["message"]
elem.markdown(f"**{role.upper()}** {message}")
| [
"\n from this plan, tell the patient what they need to.\n {plan}\n Helpful Answer for a concerned clinic visitor :\n ",
"\n Come up with a plan to solve the following problem as if you were an experienced doctor.\n Problem:\n {problem}\n\n Come up with plan to research to solve the problem in steps:\n ",
"plan"
] |
2024-01-10 | RadstalST/TAPDemoChat | agents~treeofthoughts.py |
import concurrent.futures
import json
import os
import time
from abc import ABC, abstractmethod
import guidance
import openai
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
DATA_PATH = './data'
import argparse
import logging
from dotenv import load_dotenv
load_dotenv()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
api_key = os.getenv('OPENAI_API_KEY')
class AbstractLanguageModel(ABC):
@abstractmethod
def generate_thoughts(self, state, k):
pass
@abstractmethod
def evaluate_states(self, states):
pass
class CustomLanguageModel(AbstractLanguageModel):
def __init__(self, model):
self.model = model
def generate_thoughts(self, state, k):
#implement the thought generation logic using self.model
pass
def evaluate_states(self, states):
#implement state evaluation logic using self.model
pass
class CustomLanguageModel(AbstractLanguageModel):
def generate_thoughts(self, state, k):
# Example logic: generate k thoughts based on the provided state using self.model
thoughts = self.model.generate(state, k)
return thoughts
def evaluate_states(self, states):
# Example logic: evaluate provided states using self.model
evaluations = [self.model.evaluate(state) for state in states]
return evaluations
class OpenAILanguageModel(AbstractLanguageModel):
def __init__(self, api_key, strategy="cot", evaluation_strategy="value", api_base="", api_model="", enable_ReAct_prompting=True):
os.getenv("OPENAI_API_KEY")
if api_key == "" or api_key is None:
api_key = os.environ.get("OPENAI_API_KEY", "")
if api_key != "":
openai.api_key = api_key
else:
raise Exception("Please provide OpenAI API key")
if api_base == ""or api_base is None:
api_base = os.environ.get("OPENAI_API_BASE", "") # if not set, use the default base path of "https://api.openai.com/v1"
if api_base != "":
# e.g. https://api.openai.com/v1/ or your custom url
openai.api_base = api_base
print(f'Using custom api_base {api_base}')
if api_model == "" or api_model is None:
api_model = os.environ.get("OPENAI_API_MODEL", "")
if api_model != "":
self.api_model = api_model
else:
self.api_model = "text-davinci-003"
print(f'Using api_model {self.api_model}')
self.use_chat_api = 'gpt' in self.api_model
# reference : https://www.promptingguide.ai/techniques/react
self.ReAct_prompt = ''
if enable_ReAct_prompting:
self.ReAct_prompt = "Write down your observations in format 'Observation:xxxx', then write down your thoughts in format 'Thoughts:xxxx'."
self.strategy = strategy
self.evaluation_strategy = evaluation_strategy
def openai_api_call_handler(self, prompt, max_tokens, temperature, k=1, stop=None):
while True:
try:
if self.use_chat_api:
messages = [
{
"role": "user",
"content": prompt
}
]
response = openai.ChatCompletion.create(
model=self.api_model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
)
else:
response = openai.Completion.create(
engine=self.api_model,
prompt=prompt,
n=k,
max_tokens=max_tokens,
stop=stop,
temperature=temperature,
)
with open("openai.logs", 'a') as log_file:
log_file.write("\n" + "-----------" + '\n' +"Prompt : "+ prompt+"\n")
return response
except openai.error.RateLimitError as e: #If there's a rate limit error, it will sleep for a specified time and then retry.
sleep_duratoin = os.environ.get("OPENAI_RATE_TIMEOUT", 30)
print(f'{str(e)}, sleep for {sleep_duratoin}s, set it by env OPENAI_RATE_TIMEOUT')
time.sleep(sleep_duratoin)
def openai_choice2text_handler(self, choice): #Processes the response choice (message or text) based on whether the chat API is being used.
if self.use_chat_api:
text = choice['message']['content']
else:
text = choice.text.strip()
return text
def generate_text(self, prompt, k):
if self.use_chat_api:
thoughts = []
for _ in range(k):
response = self.openai_api_call_handler(prompt, 1200, 0.5, k)
text = self.openai_choice2text_handler(response.choices[0])
thoughts += [text]
print(f'thoughts: {thoughts}')
return thoughts
else:
response = self.openai_api_call_handler(prompt, 1200, 0.5, k)
thoughts = [self.openai_choice2text_handler(choice) for choice in response.choices]
return thoughts
def generate_thoughts(self, state, k, initial_prompt):
if (type(state) == str):
state_text = state
else:
state_text = '\n'.join(state)
print("THIS IS WHERE IT GENERATE THE THOUGHTS BASING ON THE STATES:")
print("We receive STATE of type", type(state), "For state: ", state, "\n\n")
# prompt = f"Given the current state of reasoning: \n\n\n'{state_text}'\n\n\nGenerate the next best coherent thought to achieve the reasoning process and get the solution: "
# prompt = f"Based on the current state of reasoning: \n\n\n'{state_text} Provide the next coherent thought that will help progress the reasoning process and reach an soluton "
# prompt = f"These are the thoughts you've had: \n\n\n{state_text}, provide the next coherent thought that will help advance the reasoning process and reach an solution for this problem {initial_prompt}. Think sharply, think out of the box, predict failure. Do not leave any open questions. Unleash your mind."
prompt = f"Considering the thoughts you've had until now: THE STATES ARE: \n\n{state_text}\n\nDevise the next coherent thought that will aid in advancing the reasoning process and achieving a solution to {initial_prompt}. Assess various scenarios, think unconventionally, anticipate potential challenges, and resolve any outstanding queries. Tap into your mind's full potential and make certain no open questions remain."
prompt += self.ReAct_prompt
print(prompt)
thoughts = self.generate_text(prompt, k)
# try comments for each thought generated.
for idx, thought in enumerate(thoughts):
# #Comment generation prompt.
# comment_prompt = (f"Given the generated thought:\n\n{thought}\n\n"
# "Provide a brief comment or analysis regarding its relevance, quality, "
# "or any potential improvements that could be made.")
# comment = self.generate_text(comment_prompt, 1)[0]
print(f"Thought {idx + 1}: {thought}")
# print(f"Thought {idx + 1}: {thought}\nComment: {comment}\n---")
return thoughts
# print(thoughts)
print(f"Generated thoughts: {thoughts}")
return thoughts
def generate_solution(self, initial_prompt, state):
if (type(state) == str):
state_text = state
else:
state_text = '\n'.join(state)
prompt = f"Considering the reasoning provided:\n\n'{state_text}'\n\nDevise the best possible solution for the task: {initial_prompt}"
answer = self.generate_text(prompt, 1)
# print(thoughts)
print(f"General solution : {answer}")
return answer
def evaluate_states(self, states, initial_prompt):
if self.evaluation_strategy == 'value':
state_values = {}
for state in states:
state_text = ' '.join(state)
print("We receive a state of type", type(state), "For state: ", state, "\n\n")
prompt = f"Given the current state of reasoning: '{state_text}', evaluate its value as a float between 0 and 1, become very pessimistic think of potential adverse risks on the probability of this state of reasoning achieveing {initial_prompt} and DO NOT RESPOND WITH ANYTHING ELSE: OTHER THAN AN FLOAT"
response = self.openai_api_call_handler(prompt, 10, 1)
try:
value_text = self.openai_choice2text_handler(response.choices[0])
print(f'state: {value_text}')
value = float(value_text)
print(f"value: {value}")
except ValueError:
value = 0 # Assign a default value if the conversion fails
state_values[state] = value
return state_values
elif self.evaluation_strategy == 'vote':
states_text = '\n'.join([' '.join(state) for state in states])
prompt = f"Given the following states of reasoning, vote for the best state utilizing an scalar value 1-10:\n{states_text}\n\nVote, on the probability of this state of reasoning achieveing {initial_prompt} and become very pessimistic very NOTHING ELSE"
response = self.openai_api_call_handler(prompt, 1200, 1)
print(f'state response: {response}')
best_state_text = self.openai_choice2text_handler(response.choices[0])
print(f"Best state text: {best_state_text}")
best_state = tuple(best_state_text.split())
print(f'best_state: {best_state}')
return {state: 1 if state == best_state else 0 for state in states}
else:
raise ValueError("Invalid evaluation strategy. Choose 'value' or 'vote'.")
class OptimizedOpenAILanguageModel(OpenAILanguageModel):
#Constructor Method
def __init__(self, api_key, strategy="cot", evaluation_strategy="value", cache_enabled=True, api_base="", api_model="", enable_ReAct_prompting=False):
super().__init__(api_key, strategy, evaluation_strategy, api_base, api_model, enable_ReAct_prompting) #Calls the constructor of the parent class
self.cache_enabled = cache_enabled #A boolean that toggles whether caching is enabled.
self.thought_cache = {}
self.state_evaluation_cache = {}
#thought_cache and state_evaluarion_cache are dictionaries to cache results of thought generation and state evaluation, respectively, to prevent redundant calculations.
def parallel_generate_thoughts(self, states, k): #generate thoughts for multiple states simultaneously.
print(f"=== DEBUG ===\nStates: {states}, k: {k}")
with concurrent.futures.ThreadPoolExecutor() as executor:
thoughts = list(executor.map(lambda state: self.generate_thoughts(state, k), states))
print(f"=== DEBUG ===\nGenerated thoughts: {thoughts}")
# print(f"Parallel generated thoughts: {thoughts}")
return thoughts
def parallel_evaluate_states(self, states, initial_prompt):#this method also utilizes parallel processing, but for evaluating states.
with concurrent.futures.ThreadPoolExecutor() as executor:
state_values = list(executor.map(self.evaluate_states, states, initial_prompt))
print(f"Parallel evaluated state values: {state_values}")
return state_values
class TreeofThoughts:
"""
1. Thought Decomposition --> based on problem properties
2. Thought Generator -> create a thought generator function G(p0, s, k) with 2 strategies a sample iid thoughts from a cot prompt b. propose thoughts
sequentially using a propose prompt
3. create a state evaluator function V(p0, S) with 2 strategies a value each state independently b. vote across states
4. Choose a search algo based on tree structure [BFS or DFS]
Implement chosen search algorithm for bfs (algo1):
init S0 with the input x
for t = 1 to T (step limit):
generate candidate thoughts for each state in St-1
eveluate the candiate states using the state evaluator V
select the b most promising states for St
return the final output by genertaing the thought for the best state in St for DFS(algo2)
defien a recurseive DFS function with the current state s, step t, and other required params
if t > T record the output by generating the thought for current state S
for each candidate state s in the sorted list of generated thoughts for s:
if the evaluated value of s is greater the the threshold of vth call the dfs function recursively
with s and t + 1
execute the chosen search algo with the input problem, thought generator, and state evaluator, and other required params
"""
def __init__(self, model, search_algorithm):
self.model = model
self.search_algorithm = search_algorithm
self.tree = {
"nodes": [],
"metrics": {
"thoughts": [],
"evaluations": []
}
}
def solve(self, x, k=None, T=None, b=None, vth=None, timeout=None, confidence_threshold=None, max_iterations=None, convergence_threshold=None, convergence_count=None):
#intended to find a solution to a problem instance x using the configured search algorithm (BFS or DFS) with other parameters.
start_time = time.time()
file_name = f"logs/tree_of_thoughts_output_{self.search_algorithm}.json"
try:
if self.search_algorithm == 'BFS':
while timeout is None or time.time() - start_time < timeout:
result = self.tot_bfs(x, k, T, b) #b is number of promising states
if result:
self.save_tree_to_json(file_name)
return result
elif self.search_algorithm == 'DFS':
while timeout is None or time.time() - start_time < timeout:
result = self.tot_dfs(x, k, T, vth) #Value threshold for DFS
if result:
self.save_tree_to_json(file_name)
return result
else:
raise ValueError("Invalid search algorithm. Choose 'BFS' or 'DFS'.")
except KeyboardInterrupt:
logger.error("Keyboard interrupt detected.")
except ValueError as e:
logger.error(f"Error: {e}")
finally:
logger.info("Saving the current tree and metrics.")
self.save_tree_to_json(file_name)
def tot_bfs(self, x, k, T, b):
S0 = {x}
for t in range(1, T + 1):
S0_t = set()
for s in S0:
for z in self.model.generate_thoughts(s, k, x):
if (type(s) == str):
S0_t.add((s, z))
else:
S0_t.add((*s, z))
Vt = self.model.evaluate_states(S0_t, x)
St = sorted(S0_t, key=lambda s: Vt[s], reverse=True)[:b]
S0 = set(St)
logger.info(f'Step: {t}, S0_t: {S0_t}, Vt: {Vt}, St: {St}, S0: {S0}')
best_state = max(St, key=lambda s: Vt[s])
return best_state
def tot_dfs(self, x, k, T, vth, pruning_threshold=0.5, confidence_threshold=None, max_iterations=None, convergence_threshold=None, convergence_count=None):
output = [] #List to store potential solutions (thoughts) and their evaluations.
iteration_count = 0
consecutive_convergence_count = 0
prev_best_value = None
file_name = f"logs/tree_of_thoughts_output_{self.search_algorithm}.json"
def dfs(s, t): #A nested function to perform the recursive DFS. It takes s (the current state) and t (the current depth of search) as parameters.
nonlocal consecutive_convergence_count, prev_best_value, iteration_count, output
if t > T: #the search is too deep and must be curtailed. It generates a thought from the model for the current state s, evaluates it, and appends it along with its evaluation to output.
thought = self.model.generate_thoughts(s, 1, x)
print(f'thoughts inside dfs {thought}')
value = self.model.evaluate_states({s}, x)[s]
print(f'values inside dfs {value}')
output.append((thought, value))
print(f'output {output}')
if confidence_threshold is not None and value >= confidence_threshold:
return True
if prev_best_value is not None and convergence_threshold is not None:
if abs(value - prev_best_value) < convergence_threshold:
consecutive_convergence_count += 1
else:
consecutive_convergence_count = 0
prev_best_value = value
iteration_count += 1
if (max_iterations is not None and iteration_count >= max_iterations) or (convergence_count is not None and consecutive_convergence_count >= convergence_count):
return True
return False
for s_prime in sorted(self.model.generate_thoughts(s, k, x)):
state_value = self.model.evaluate_states({s_prime}, x)[s_prime]
logger.info(f"State: {s_prime}, Value: {state_value}")
if state_value > vth and (pruning_threshold is None or state_value >= pruning_threshold):
if (type(s) == str):
child = (s, s_prime)
else:
child = (*s, s_prime)
# self.tree['nodes'][child] = s
# self.tree["metrics"]["thoughts"][child] = s_prime
# self.tree["metrics"]["evaluations"][child] = state_value
if dfs(child, t + 1):
return True
self.save_tree_to_json(file_name)
return False
dfs(x, 4)
print(f'output {output}')
best_state = max(output, key=lambda x: x[1])
return best_state[0]
def save_tree_to_json(self, file_name): #Intended to save the current state of the tree to a JSON file.
os.makedirs(os.path.dirname(file_name), exist_ok=True)
with open(file_name, 'w') as json_file:
json.dump(self.tree, json_file, indent=4)
def print_tree(self, x, node=None, depth=0):
if node is None:
node = self.tree["nodes"][x]
thought = self.tree["metrics"]["thoughts"][node]
evaluation = self.tree["metrics"]["evaluations"][node]
tree_info = {
"node": node,
"thought": thought,
"evaluation": evaluation,
"children": []
}
for child, parent in self.tree["nodes"].items():
if parent == node:
child_info = self.print_tree(child, depth + 1)
tree_info["children"].append(child_info)
return tree_info
class OptimizedTreeofThoughts(TreeofThoughts):
def solve(self, x, k=None, T=None, b=None, vth=None, timeout=None, confidence_threshold=None, max_iterations=None, convergence_threshold=None, convergence_count=None):
#k: number of thoughts, T: step limit, b = Number of most promising states, vth:Value threshold for DFS
start_time = time.time()
print(f'Start time {start_time}')
if self.search_algorithm == 'BFS':
while timeout is None or time.time() - start_time < timeout:
result = self.tot_bfs(x, k, T, b)
print(f'resultttt in optimized tree of thoughts: {result}')
if result:
return result
elif self.search_algorithm == 'DFS':
while timeout is None or time.time() - start_time < timeout:
result = self.tot_dfs(x, k, T, vth, confidence_threshold=confidence_threshold, max_iterations=max_iterations, convergence_threshold=convergence_threshold, convergence_count=convergence_count)
if result:
return result
else:
raise ValueError("Invalid search algorithm. Choose 'BFS' or 'DFS'.")
def ask(question):
search_algorithm = "DFS"
strategy = "cot"
evaluation_strategy="vote"
#create instance
model = OpenAILanguageModel(os.getenv("OPENAI_API_KEY"), api_model="gpt-3.5-turbo")
tree_of_thoughts = OptimizedTreeofThoughts(model, search_algorithm)
# input_problem = "using question from Dataset in HuggingFace"
class args:
problem = question
search_algorithm = "DFS"
k = 3
T = 4
b = 5
vth = 0.4
timeout = 10
confidence = 0.8
max_iterations = 40
convergence_threshold = 0.01
convergence_count = 5
#solve the problem using the tree of thoughts class
optimized_tree_of_thoughts = OptimizedTreeofThoughts(model, search_algorithm=args.search_algorithm)
#solve the porblem using tree of thoughts problem helper
best_state = optimized_tree_of_thoughts.solve(args.problem, k=args.k, T=args.T, b=args.b, vth=args.vth)
#generate the final silution
final_solution = optimized_tree_of_thoughts.model.generate_solution(best_state, args.problem)
#print the final solutions
print(f"THE FINAL SOLUTION IS: {final_solution}")
return final_solution
# trees = optimized_tree_of_thoughts.print_tree(final_solution)
| [
"Given the following states of reasoning, vote for the best state utilizing an scalar value 1-10:\nPLACEHOLDER\n\nVote, on the probability of this state of reasoning achieveing PLACEHOLDER and become very pessimistic very NOTHING ELSE",
"Given the current state of reasoning: 'PLACEHOLDER', evaluate its value as a float between 0 and 1, become very pessimistic think of potential adverse risks on the probability of this state of reasoning achieveing PLACEHOLDER and DO NOT RESPOND WITH ANYTHING ELSE: OTHER THAN AN FLOAT",
"Considering the thoughts you've had until now: THE STATES ARE: \n\nPLACEHOLDER\n\nDevise the next coherent thought that will aid in advancing the reasoning process and achieving a solution to PLACEHOLDER. Assess various scenarios, think unconventionally, anticipate potential challenges, and resolve any outstanding queries. Tap into your mind's full potential and make certain no open questions remain.",
"Considering the reasoning provided:\n\n'PLACEHOLDER'\n\nDevise the best possible solution for the task: PLACEHOLDER"
] |
2024-01-10 | avillaaav/objectDetectionGPT | webcamGPT.py | import os
import argparse
import cv2
import numpy as np
import pyttsx3
import openai
import time
from threading import Thread
import importlib.util
def initialize_tts_engine():
tts_engine = pyttsx3.init()
tts_engine.setProperty('voice', 'english_rp+f4')
return tts_engine
tts = None
object_detected_times ={}
openai.api_key = "REDACTED KEY"
def get_object_description(object_name):
response = openai.Completion.create(
engine="text-ada-001",
prompt=f"Give a really short description of a {object_name}.",
max_tokens=50
)
description = response.choices[0].text.strip()
return description
def play_audio(tts, object_name):
print("Play Audio")
object_description = get_object_description(object_name)
time.sleep(1)
tts.say(f"{object_name} Detected.")
tts.runAndWait()
tts.say(object_description)
tts.runAndWait()
def threaded_play_audio(tts, object_name):
audio_thread = Thread(target=play_audio, args=(tts, object_name,))
audio_thread.start()
# Other class and function definitions...
if __name__ == "__main__":
args = parser.parse_args()
tts = initialize_tts_engine()
# Other setup code...
def draw_object_box_and_label(frame, boxes, classes, scores, i):
ymin = int(max(1,(boxes[i][0] * imH)))
xmin = int(max(1,(boxes[i][1] * imW)))
ymax = int(min(imH,(boxes[i][2] * imH)))
xmax = int(min(imW,(boxes[i][3] * imW)))
cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
object_name = labels[int(classes[i])]
label = '%s: %d%%' % (object_name, int(scores[i]*100))
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2)
label_ymin = max(ymin, labelSize[1] + 10)
cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED)
cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2)
def handle_detection_score(object_name, scores, i):
if scores[i] > 0.64:
current_time = time.monotonic()
if object_name not in object_detected_times:
object_detected_times[object_name] = current_time
if current_time - object_detected_times[object_name] > 2:
threaded_play_audio(tts, object_name)
object_detected_times[object_name] = current_time
else:
object_detected_times.pop(object_name, None)
while True:
t1 = cv2.getTickCount()
frame1 = videostream.read()
# Frame processing code omitted for brevity...
for i in range(len(scores)):
if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
draw_object_box_and_label(frame, boxes, classes, scores, i)
object_name = labels[int(classes[i])]
handle_detection_score(object_name, scores, i)
cv2.putText(frame,'FPS: {0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA)
cv2.imshow('Object detector', frame)
t2 = cv2.getTickCount()
time1 = (t2-t1)/freq
frame_rate_calc= 1/time1
if cv2.waitKey(1) == ord('q'):
break
cv2.destroyAllWindows()
videostream.stop()
| [
"Give a really short description of a PLACEHOLDER."
] |
2024-01-10 | panaurit1/chatgpt-retrieval-plugin | services~chunks.py | from typing import Dict, List, Optional, Tuple
import uuid
import os
from models.models import Document, DocumentChunk, DocumentChunkMetadata
import tiktoken
from services.openai import get_embeddings
from langchain.text_splitter import MarkdownTextSplitter, LatexTextSplitter
# Global variables
tokenizer = tiktoken.get_encoding(
"cl100k_base"
) # The encoding scheme to use for tokenization
# Constants
CHUNK_SIZE = 200 # The target size of each text chunk in tokens
MIN_CHUNK_SIZE_CHARS = 350 # The minimum size of each text chunk in characters
MIN_CHUNK_LENGTH_TO_EMBED = 5 # Discard chunks shorter than this
EMBEDDINGS_BATCH_SIZE = int(os.environ.get("OPENAI_EMBEDDING_BATCH_SIZE", 128)) # The number of embeddings to request at a time
MAX_NUM_CHUNKS = 10000 # The maximum number of chunks to generate from a text
CHUNK_METHOD = "simple" # tbd when implementing multiple chunking methods
CHUNK_OVERLAP = 10 #tbd when implementing chunk overlap
def get_text_chunks(text: str, chunk_token_size: Optional[int]
) -> List[str]:
"""
Split a text into chunks of ~CHUNK_SIZE tokens, based on punctuation and newline boundaries.
Args:
text: The text to split into chunks.
chunk_token_size: The target size of each chunk in tokens, or None to use the default CHUNK_SIZE.
Returns:
A list of text chunks, each of which is a string of ~CHUNK_SIZE tokens.
"""
# Return an empty list if the text is empty or whitespace
if not text or text.isspace():
return []
# Tokenize the text
tokens = tokenizer.encode(text, disallowed_special=())
# Initialize an empty list of chunks
chunks = []
# Use the provided chunk token size or the default one
chunk_size = chunk_token_size or CHUNK_SIZE
chunk_overlap_size = CHUNK_OVERLAP
chunk_method = CHUNK_METHOD
# Initialize a counter for the number of chunks
num_chunks = 0
# Loop until all tokens are consumed
while tokens and num_chunks < MAX_NUM_CHUNKS:
# Take the first chunk_size tokens as a chunk
chunk = tokens[:chunk_size]
# Decode the chunk into text
chunk_text = tokenizer.decode(chunk)
# Skip the chunk if it is empty or whitespace
if not chunk_text or chunk_text.isspace():
# Remove the tokens corresponding to the chunk text from the remaining tokens
tokens = tokens[len(chunk) :]
# Continue to the next iteration of the loop
continue
# Find the last period or punctuation mark in the chunk
last_punctuation = max(
chunk_text.rfind("."),
chunk_text.rfind("?"),
chunk_text.rfind("!"),
chunk_text.rfind("\n"),
)
# If there is a punctuation mark, and the last punctuation index is before MIN_CHUNK_SIZE_CHARS
if last_punctuation != -1 and last_punctuation > MIN_CHUNK_SIZE_CHARS:
# Truncate the chunk text at the punctuation mark
chunk_text = chunk_text[: last_punctuation + 1]
# Remove any newline characters and strip any leading or trailing whitespace
chunk_text_to_append = chunk_text.replace("\n", " ").strip()
if len(chunk_text_to_append) > MIN_CHUNK_LENGTH_TO_EMBED:
# Append the chunk text to the list of chunks
chunks.append(chunk_text_to_append)
# Remove the tokens corresponding to the chunk text from the remaining tokens
tokens = tokens[len(tokenizer.encode(chunk_text, disallowed_special=())) :]
# Increment the number of chunks
num_chunks += 1
# Handle the remaining tokens
if tokens:
remaining_text = tokenizer.decode(tokens).replace("\n", " ").strip()
if len(remaining_text) > MIN_CHUNK_LENGTH_TO_EMBED:
chunks.append(remaining_text)
return chunks
def create_document_chunks(
doc: Document, chunk_token_size: Optional[int]
) -> Tuple[List[DocumentChunk], str]:
"""
Create a list of document chunks from a document object and return the document id.
Args:
doc: The document object to create chunks from. It should have a text attribute and optionally an id and a metadata attribute.
chunk_token_size: The target size of each chunk in tokens, or None to use the default CHUNK_SIZE.
Returns:
A tuple of (doc_chunks, doc_id), where doc_chunks is a list of document chunks, each of which is a DocumentChunk object with an id, a document_id, a text, and a metadata attribute,
and doc_id is the id of the document object, generated if not provided. The id of each chunk is generated from the document id and a sequential number, and the metadata is copied from the document object.
"""
# Check if the document text is empty or whitespace
if not doc.text or doc.text.isspace():
return [], doc.id or str(uuid.uuid4())
# Generate a document id if not provided
doc_id = doc.id or str(uuid.uuid4())
# Split the document text into chunks
if doc.chunkingmetadata.pa_chunk_method == 'default':
text_chunks = get_text_chunks(doc.text, chunk_token_size)
elif doc.chunkingmetadata.pa_chunk_method == 'txt_md':
# Split the document text into chunks using the langchain method MDTextSplitter
markdown_splitter = MarkdownTextSplitter(chunk_size=chunk_token_size, chunk_overlap=0)
text_chunks = markdown_splitter.split_text(doc.text)
elif doc.chunkingmetadata.pa_chunk_method == 'latex':
# Split the document text into chunks using the langchain method Latex
latex_splitter = LatexTextSplitter(chunk_size=chunk_token_size, chunk_overlap=doc.chunkingmetadata.pa_token_overlap)
text_chunks = latex_splitter.split_text(doc.text)
else:
text_chunks = get_text_chunks(doc.text, chunk_token_size)
metadata = (
DocumentChunkMetadata(**doc.metadata.__dict__)
if doc.metadata is not None
else DocumentChunkMetadata()
)
metadata.document_id = doc_id
# Initialize an empty list of chunks for this document
doc_chunks = []
# Assign each chunk a sequential number and create a DocumentChunk object
for i, text_chunk in enumerate(text_chunks):
chunk_id = f"{doc_id}_{i}"
doc_chunk = DocumentChunk(
id=chunk_id,
text=text_chunk,
metadata=metadata,
)
# Append the chunk object to the list of chunks for this document
doc_chunks.append(doc_chunk)
# Return the list of chunks and the document id
return doc_chunks, doc_id
def get_document_chunks(
documents: List[Document], chunk_token_size: Optional[int]
) -> Dict[str, List[DocumentChunk]]:
"""
Convert a list of documents into a dictionary from document id to list of document chunks.
Args:
documents: The list of documents to convert.
chunk_token_size: The target size of each chunk in tokens, or None to use the default CHUNK_SIZE.
Returns:
A dictionary mapping each document id to a list of document chunks, each of which is a DocumentChunk object
with text, metadata, and embedding attributes.
"""
# Initialize an empty dictionary of lists of chunks
chunks: Dict[str, List[DocumentChunk]] = {}
# Initialize an empty list of all chunks
all_chunks: List[DocumentChunk] = []
# Loop over each document and create chunks
for doc in documents:
doc_chunks, doc_id = create_document_chunks(doc, chunk_token_size)
# Append the chunks for this document to the list of all chunks
all_chunks.extend(doc_chunks)
# Add the list of chunks for this document to the dictionary with the document id as the key
chunks[doc_id] = doc_chunks
# Check if there are no chunks
if not all_chunks:
return {}
# Get all the embeddings for the document chunks in batches, using get_embeddings
embeddings: List[List[float]] = []
for i in range(0, len(all_chunks), EMBEDDINGS_BATCH_SIZE):
# Get the text of the chunks in the current batch
batch_texts = [
chunk.text for chunk in all_chunks[i : i + EMBEDDINGS_BATCH_SIZE]
]
# Get the embeddings for the batch texts
batch_embeddings = get_embeddings(batch_texts)
# Append the batch embeddings to the embeddings list
embeddings.extend(batch_embeddings)
# Update the document chunk objects with the embeddings
for i, chunk in enumerate(all_chunks):
# Assign the embedding from the embeddings list to the chunk object
chunk.embedding = embeddings[i]
return chunks
| [] |
2024-01-10 | HowieHwong/MetaTool | src~evaluation~cluster.py | import json
import matplotlib.pyplot as plt
import numpy as np
import openai
import pandas as pd
import pickle
import sklearn
from scipy.cluster.hierarchy import fcluster, linkage, dendrogram
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
class ClusterTools:
def __init__(self, filename, savename):
self.filename = filename
self.savename = savename
def read_data(self):
if not self.filename.endswith('.txt'):
data = pickle.load(open(self.filename, 'rb'))
embeddings = [d['embedding'] for d in data]
else:
data = open(self.filename, 'r').readlines()
data = [eval(el.strip('\n')) for el in data]
embeddings = [d['human_embedding'] for d in data]
return data, embeddings
def save_cluster_results(self, data, labels, silhouette_score_samples):
try:
model_name = [el['model_name'] for el in data]
except:
model_name = [el['name_for_model'] for el in data]
cluster_label = labels
pd.DataFrame({'model_name': model_name, 'cluster_label': cluster_label,
'silhouette_score': silhouette_score_samples}).to_csv(self.savename, index=False)
class KMeansCluster(ClusterTools):
def __init__(self, filename, savename, num_clusters):
super().__init__(filename, savename)
self.num_clusters = num_clusters
def cluster_data(self):
data, embeddings = self.read_data()
kmeans = KMeans(n_clusters=self.num_clusters)
kmeans.fit(embeddings)
labels = kmeans.labels_
for i, d in enumerate(data):
d['cluster_label'] = labels[i]
silhouette_score = sklearn.metrics.silhouette_score(embeddings, labels, metric='euclidean', sample_size=None,
random_state=None)
silhouette_score_samples = sklearn.metrics.silhouette_samples(embeddings, labels)
print(silhouette_score)
self.save_cluster_results(data, labels, silhouette_score_samples)
class VisualizeCluster:
def __init__(self, filename, savename, num_clusters, savefig, visual_dim=2):
self.filename = filename
self.savename = savename
self.num_clusters = num_clusters
self.savefig = savefig
self.visual_dim = visual_dim
def cluster_data(self):
data, embeddings = ClusterTools(self.filename, self.savename).read_data()
kmeans = KMeans(n_clusters=self.num_clusters)
kmeans.fit(embeddings)
labels = kmeans.labels_
for i, d in enumerate(data):
d['cluster_label'] = labels[i]
if self.visual_dim == 2:
tsne = TSNE(n_components=2, random_state=42)
embeddings_2d = tsne.fit_transform(np.array(embeddings))
plt.figure(figsize=(6, 5))
plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], c=labels, cmap='viridis', alpha=0.7)
plt.colorbar(label='Cluster Label')
plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
plt.savefig(self.savefig, dpi=200)
plt.show()
else:
tsne = TSNE(n_components=3, random_state=42)
X_tsne = tsne.fit_transform(embeddings)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X_tsne[:, 0], X_tsne[:, 1], X_tsne[:, 2], c=labels, cmap='viridis', alpha=0.7)
plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
plt.savefig(self.savefig, dpi=200)
plt.show()
silhouette_score = sklearn.metrics.silhouette_score(embeddings, labels, metric='euclidean', sample_size=None,
random_state=None)
silhouette_score_samples = sklearn.metrics.silhouette_samples(embeddings, labels)
print(silhouette_score)
ClusterTools(self.filename, self.savename).save_cluster_results(data, labels, silhouette_score_samples)
class EnsembleCluster:
def __init__(self, filename, savename, cluster_times):
self.filename = filename
self.savename = savename
self.cluster_times = cluster_times
def cluster_data(self):
data = open(self.filename, 'r').readlines()
data = [eval(el.strip('\n')) for el in data]
embeddings = np.array([d['human_embedding'] for d in data])
num_clusters = 5
kmeans_results = []
for _ in range(num_clusters):
kmeans = KMeans(n_clusters=20)
kmeans.fit(embeddings)
kmeans_results.append(kmeans.labels_)
final_labels = []
for i in range(len(data)):
votes = [result[i] for result in kmeans_results]
final_labels.append(max(set(votes), key=votes.count))
pd.DataFrame({'model_name': [el['model_name'] for el in data], 'cluster_label': final_labels}).to_csv(self.savename, index=False)
class HierarchyCluster(ClusterTools):
def __init__(self, filename, savename, threshold=0.5):
super().__init__(filename, savename)
self.threshold = threshold
def cluster_data(self):
data, embeddings = self.read_data()
Z = linkage(np.array(embeddings), method='ward')
print(Z)
plt.figure(figsize=(20, 5), dpi=200)
dendrogram(Z)
plt.title('Dendrogram')
plt.xlabel('Data Points')
plt.ylabel('Distance')
plt.savefig('hierarchy.pdf')
plt.show()
labels = fcluster(Z, self.threshold, criterion='distance')
model_name = [el['model_name'] for el in data]
df = pd.DataFrame({'Data Point': model_name, 'Cluster': labels})
df.to_csv(self.savename, index=False)
def get_embedding(text: str, model="text-embedding-ada-002"):
response = openai.Embedding.create(
model=model,
input=[text.replace("\n", " ")]
)
embedding = response["data"][0]["embedding"]
return np.array(embedding)
def visual_overlapped_efficiency():
with open('cluster_score.json', 'r') as file:
data = json.load(file)
nums = [entry['num'] for entry in data]
new_scores = [entry['new_score'] for entry in data]
original_scores = [entry['original_score'] for entry in data]
plt.figure(figsize=(8, 4))
plt.plot(nums, new_scores, label='New', marker='o', linestyle='-')
plt.plot(nums, original_scores, label='Original', marker='s', linestyle='--')
plt.xlabel('Cluster Number')
plt.ylabel('Score')
plt.legend()
plt.grid(True)
plt.savefig('cluster_score.pdf')
plt.show()
if __name__ == '__main__':
pass | [] |
2024-01-10 | HowieHwong/MetaTool | src~embedding~milvus_database.py | import os
import openai
import pandas as pd
from langchain import OpenAI
from pymilvus import (
connections,
utility,
FieldSchema,
CollectionSchema,
DataType,
Collection,
MilvusClient
)
import pickle
from tenacity import retry, wait_random_exponential, stop_after_attempt
@retry(wait=wait_random_exponential(min=1, max=5), stop=stop_after_attempt(6))
def get_embedding(text: str, model="text-embedding-ada-002"):
return openai.Embedding.create(input=[text], model=model)["data"][0]["embedding"]
def milvus_data_preprocess(filename):
with open(filename, 'rb') as f:
data = pickle.load(f)
return data
def construct_database():
data = milvus_data_preprocess('../tool_embedding.pkl')
data = [{'tool': el['tool'], 'embedding': el['embedding']} for el in data if el['tool'] != 'legal_document_retrieval' and el['tool'] != 'LawyerPR_PreliminaryReview']
connections.connect("default", host="localhost", port="19530")
tool_name = FieldSchema(name='tool', dtype=DataType.VARCHAR, is_primary=True, max_length=128)
embedding = FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, is_primary=False, dim=1536)
schema = CollectionSchema(fields=[tool_name, embedding], description='tool embedding')
collection_name = 'tool_embedding'
collection = Collection(name=collection_name, schema=schema, using='default')
tool_name = [el['tool'] for el in data]
embedding = [el['embedding'] for el in data]
mr = collection.insert([tool_name, embedding])
index_params = {"metric_type": "L2", "index_type": "IVF_FLAT", "params": {"nlist": 1024}}
collection.create_index(
field_name="embedding",
index_params=index_params
)
print(mr)
def search(embedding, limit_num=50):
collection = Collection(name='tool_embedding', using='default')
print('Loading Milvus Database...')
collection.load()
search_params = {"metric_type": "L2", "params": {"nprobe": 20}}
res = collection.search(data=embedding, param=search_params, anns_field="embedding",
limit=limit_num, expr=None, output_fields=['tool'])
return res[0]
def get_excluded_list(string):
connections.connect("default", host="localhost", port="19530")
client = MilvusClient(url='http://localhost:19530')
embedding = get_embedding(string)
results = search([embedding], limit_num=30)
excluded_list = [el.to_dict()['id'] for el in results]
print(excluded_list)
return excluded_list
def get_excluded_tool_list(tool):
connections.connect("default", host="localhost", port="19530")
client = MilvusClient(url='http://localhost:19530')
embedding = client.get(collection_name='tool_embedding', ids=[tool])[0]['embedding']
results = search([embedding], limit_num=20)
excluded_list = [el.to_dict()['id'] for el in results]
print(excluded_list)
return excluded_list
if __name__ == '__main__':
connections.connect("default", host="localhost", port="19530")
utility.drop_collection("tool_embedding")
construct_database()
| [] |
2024-01-10 | pcsmomo/openai-api-python-master-colt | 10-code-reviewer~basic-code-reviewer~reviewer-temp.py | import openai
from dotenv import load_dotenv
import os
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
PROMPT = """
You will receive a file's contents as text.
Generate a code review for the file. Indicate what changes should be made to improve its style, performance, readability, and maintainability. If there are any reputable libraries that could be introduced to improve the code, suggest them. Be kind and constructive. For each suggested change, include line numbers to which you are referring
"""
filecontent = """
def mystery(x, y):
return x ** y
"""
messages = [
{"role": "system", "content": PROMPT},
{"role": "user", "content": f"Code review the following file: {filecontent}"}
]
res = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages
)
print(res["choices"][0]["message"])
'''
This file is a single line function definition with clear input and output. There are some suggestions that could be addressed to improve its quality:
1. Add docstring: Although this function takes only two arguments and the return output is almost self-explanatory. It's always a good practice to have a docstring that clearly describes what the function does, what the input parameter types should be, and what the output type/format should be. This can help anyone who is using the function to quickly understand what the function does and how to use it.
2. Rename function and input parameters: The function name "mystery" and the input parameter names "x" and "y" doesn't convey any meaning as to what the function does. Renaming the function to something like "power" and input parameters to "base" and "exponent" would be clearer and more descriptive.
3. Enclose math operations in parentheses: Although the expression in the return statement is mathematically correct, it is recommended to explicitly enclose math operations in parentheses to avoid any ambiguity in their order of execution.
4. Add type hints: Adding type hints to input and output can improve readability and maintainability of the code.
Here is an updated version of the code with these suggestions applied:
```
def power(base: int, exponent: int) -> int:
"""
Compute the power of a given base.
Args:
base: The base value (integer) for which power needs to be computed
exponent: The exponent value (integer) for which power needs to be computed
Returns:
integer that represents the result of the base raised with the exponent.
"""
return (base ** exponent)
```
I hope these suggestions will help you improve the code's quality.
'''
| [
"Code review the following file: \ndef mystery(x, y):\n return x ** y\n",
"\nYou will receive a file's contents as text.\nGenerate a code review for the file. Indicate what changes should be made to improve its style, performance, readability, and maintainability. If there are any reputable libraries that could be introduced to improve the code, suggest them. Be kind and constructive. For each suggested change, include line numbers to which you are referring\n"
] |
2024-01-10 | pcsmomo/openai-api-python-master-colt | 10-code-reviewer~interactive-code-reviewer~interactive_review.py | import argparse
import json
import logging
import os
# If the readline module was loaded, then input() will use it to provide
# elaborate line editing and history features.
try:
import readline
except ImportError:
pass
from dataclasses import dataclass
from typing import List
import openai
from dotenv import load_dotenv
from openai.error import APIConnectionError, APIError, RateLimitError
from prompting import generate_base_messages, num_tokens_from_messages
from tenacity import retry, retry_if_exception_type, stop_after_attempt, wait_random_exponential
from utilities import color_diff, style
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG)
load_dotenv()
openai.api_key = os.environ["OPENAI_API_KEY"]
class MisformattedCompletionError(Exception):
pass
class InvalidFindStringError(Exception):
pass
@dataclass
class FindAndReplace:
find: str
replace: str
@dataclass
class SuggestedChange:
changes: List[FindAndReplace]
message: str
@dataclass
class ChatCompletionCodeReviewResult:
messages: List[dict]
suggested_change: SuggestedChange
def extract_suggested_change(text: str) -> SuggestedChange:
"""
Extract SuggestedChanges from the text of a chat completion.
The text format is specified in the prompt, but is as follows:
```
<find:>
Part 1 of code to find.
<replace:>
Part 1 of code to replace.
<find:>
Part 2 of code to find.
<replace:>
Part 2 of code to replace.
<message:>
An message of what you are changing and why.
```
:param text: The text of the chat completion.
:return: A SuggestedChange object.
:raises MisformattedCompletionError: If the text does not contain the expected blocks.
"""
message_split = text.split("<message:>\n")
if len(message_split) > 2:
raise MisformattedCompletionError(
f"Invalid response. Found more than one <message:> block in completion: {text}")
elif len(message_split) < 2:
# No changes suggested.
return SuggestedChange(changes=[], message=message_split[0])
else:
message = message_split[1].strip()
changes = []
non_empty_find_and_replace_blocks = [
x for x in message_split[0].split("<find:>\n") if len(x.strip()) != 0]
for block in non_empty_find_and_replace_blocks:
replace_split = block.split("<replace:>\n")
if len(replace_split) > 2:
raise MisformattedCompletionError(
f"Invalid response. Found more than one <replace:> block in segment of completion: {text}")
elif len(replace_split) < 2:
raise MisformattedCompletionError(
f"Invalid response. Found <find:> block but no <replace:> block in segment of completion: {text}")
else:
changes.append(FindAndReplace(
find=replace_split[0], replace=replace_split[1]))
return SuggestedChange(changes=changes, message=message)
def modify_code(file_contents: str, find_and_replace_list: List[FindAndReplace]) -> str:
"""
Apply a SuggestedChange to a file.
:param file_contents: The contents of the file to update.
:param find_and_replace_list: The list of FindAndReplace objects to apply.
:return: The updated file contents.
:raises InvalidFindStringError: If the file does not contain the find string.
"""
updated_string = file_contents
for change in find_and_replace_list:
if file_contents.find(change.find) == -1:
raise InvalidFindStringError(
f"The code does not contain the find string: {change}")
updated_string = updated_string.replace(change.find, change.replace)
return updated_string
# We double-wrap this function to retry differently on different types of errors.
# We exponentially back off if the error is transient and due to load. Otherwise, we immediately retry.
@retry(
wait=wait_random_exponential(multiplier=1, max=10),
stop=stop_after_attempt(3),
retry=retry_if_exception_type(APIConnectionError) | retry_if_exception_type(
APIError) | retry_if_exception_type(RateLimitError),
)
@retry(stop=stop_after_attempt(3), retry=retry_if_exception_type(MisformattedCompletionError) | retry_if_exception_type(InvalidFindStringError))
def chat_completion_code_review(messages: List[dict], file_contents: str, chat_model: str) -> ChatCompletionCodeReviewResult:
"""
Return a ChatCompletionCodeReviewResult object.
Given a list of messages for context, a file contents, and a chat model, update the file contents with the suggested change from the chat model.
:param messages: A list of messages to use as context for the chat completion.
:param file_contents: The contents of the file to be modified.
:param chat_model: The chat model to use for the completion.
:raises: MisformattedCompletionError if the completion is not in the correct format.
:raises: InvalidFindStringError if the find string is not in the file.
:return: A ChatCompletionCodeReviewResult object.
"""
logger.debug(
f"Invoking completion with messages state: {json.dumps(messages[-1]['content'],indent=4)}")
response = openai.ChatCompletion.create(
model=chat_model,
messages=messages,
temperature=0.9,
)
assistant_reply = response.choices[0].message
logger.debug(f"Assistant reply: {assistant_reply}")
# This will raise MisformattedCompletionError if the completion is not in the correct format.
suggested_change = extract_suggested_change(assistant_reply["content"])
# Attempt to apply the changes to verify they'd work. We'll redo this later, but we want to fail
# fast to retry our completion stage if the changes reference a string that can't be found.
# This will raise InvalidFindStringError if the find string is not in the file.
modify_code(file_contents, suggested_change.changes)
return ChatCompletionCodeReviewResult(messages=messages + [assistant_reply], suggested_change=suggested_change)
def print_diff_and_prompt_user_to_accept_or_reject_change(diff: str, message: str) -> str:
"""
:param diff: The diff of the change.
:param message: The <message:> from the assistant.
"""
# Print the diff
print(style("\n\nThe assistant suggested a change. The diff is:", "bold"))
print(diff)
# Then print the message
print(style("\nAssistant: ", ("bold", "blue")) + message)
# Ask the user for their response.
print(style("\nWould you like to apply this change?", "bold"))
print(style(f""" "Y" : Save the changes to the file.""", "bold"))
print(style(f""" "N" : Don't apply the changes. Continue.""", "bold"))
print(style(f""" else: Communicate directly back to the chat_model (to improve/alter/critique their suggestion)""", "bold"))
return input(style("Your reply [Y/N/<whatever you want>]: ", "bold"))
def automated_code_review(filename: str, chat_model: str, ignore_list: List[str] = [], accept_list: List[str] = []) -> None:
"""
Interactively review a file using a chat model.
:param filename: The file to review.
:param chat_model: The chat model to use for the completion.
:param ignore_list: A list of previously suggested changes that the model should ignore
:return: None
:raises: MisformattedCompletionError if the completion is not in the correct format and retries exhausted.
:raises: InvalidFindStringError if the find string is not in the file and retries exhausted.
"""
with open(filename, "r") as file:
file_contents = file.read()
logger.info(f"Reviewing {filename}")
# The base messages set includes an initial rejection of a suggestion that we change the word GPT-4 to GPT-3.
# It helps to establish how completely serious we are that we don't want to hear rejected suggestions twice
# and we don't want to hear suggestions that are already in the ignore list.
messages = generate_base_messages(
file_contents, ignore_list=ignore_list, accept_list=accept_list, include_extra_warning=True)
logger.info(f"Prompt: {messages[-1]['content']}")
if num_tokens_from_messages(messages, chat_model) > 8000:
raise ValueError(
"The prompt is too long. Please reduce the size of the file.")
logger.debug(f'Prompt: {messages[-1]["content"]}')
while True:
# Update messages list and get a suggested_change
chat_completion_code_review_result = chat_completion_code_review(
messages, file_contents=file_contents, chat_model=chat_model)
messages = chat_completion_code_review_result.messages
if len(chat_completion_code_review_result.suggested_change.changes) == 0:
# The assistant did not provide any find/replace pairs. It's asking for clarification or a response.
print(style("\n\nThe assistant did not suggest a change.", "bold"))
print(style("Assistant: ", ("bold", "blue")) +
messages[-1]["content"])
user_response = input(style("Your reply: ", "bold"))
messages.append({"role": "user", "content": user_response})
else:
# The assistant is suggesting changes.
changes = chat_completion_code_review_result.suggested_change.changes
explanation = chat_completion_code_review_result.suggested_change.message
changed_code = modify_code(file_contents, changes)
diff = color_diff(file_contents, changed_code)
user_response = print_diff_and_prompt_user_to_accept_or_reject_change(
diff=diff, message=explanation)
if user_response.upper() == "Y":
# The user accepts this suggestion. Apply the change and re-invoke code review
with open(filename, "w") as file:
logger.debug(f"Saving changes to {filename}")
file.write(changed_code)
print(style(f"Saved this change to file. Re-examining code...", "bold"))
# Indicate that this change was already made to this code (so the model doesn't suggest something contradcitory later on)
accept_list.append(
chat_completion_code_review_result.suggested_change.message)
# We've written the suggested change. Now code review the file again.
logger.debug(f"Re-invoking code-review on updated file")
automated_code_review(
filename, chat_model, ignore_list=ignore_list, accept_list=accept_list)
return
elif user_response.upper() == "N":
# Indicate that the user rejected this change to tell the chat_model not to suggest this set of changes again.
print(style(f"Rejecting this suggestion. Re-examining code...", "bold"))
ignore_list.append(
chat_completion_code_review_result.suggested_change.message)
# The user did not like this suggestion. Re-invoke code review.
logger.debug(
f"Re-invoking code-review on updated file; ignoring this suggestion.")
automated_code_review(
filename, chat_model, ignore_list=ignore_list, accept_list=accept_list)
return
else:
# The user responded with a reply. Add it to the messages list and re-invoke ChatCompletion.
logger.debug(f"User responded with a suggestion")
messages.append(
{"role": "user", "content": f"The user did not apply the change. Instead, they responded with:\n{user_response}"})
def main():
parser = argparse.ArgumentParser(
description="Automated code review using OpenAI API")
parser.add_argument("filename", help="The target file to review")
parser.add_argument("--model", default="gpt-3.5-turbo",
help="The chat model to use for code review (default: gpt-3.5-turbo)")
args = parser.parse_args()
try:
automated_code_review(args.filename, args.model)
except KeyboardInterrupt:
print("Exiting...")
if __name__ == "__main__":
main()
| [
"The user did not apply the change. Instead, they responded with:\nPLACEHOLDER"
] |
2024-01-10 | pcsmomo/openai-api-python-master-colt | 10-code-reviewer~basic-code-reviewer~reviewer.py | import openai
from dotenv import load_dotenv
import os
import argparse
PROMPT = """
You will receive a file's contents as text.
Generate a code review for the file. Indicate what changes should be made to improve its style, performance, readability, and maintainability. If there are any reputable libraries that could be introduced to improve the code, suggest them. Be kind and constructive. For each suggested change, include line numbers to which you are referring
"""
filecontent = """
def mystery(x, y):
return x ** y
"""
def code_review(file_path, model):
with open(file_path, "r") as file:
content = file.read()
generated_code_review = make_code_review_request(content, model)
print(generated_code_review)
def make_code_review_request(filecontent, model):
messages = [
{"role": "system", "content": PROMPT},
{"role": "user", "content": f"Code review the following file: {filecontent}"}
]
res = openai.ChatCompletion.create(
model=model,
messages=messages
)
return res["choices"][0]["message"]["content"]
def main():
parser = argparse.ArgumentParser(
description="Simple code reviewer for a file")
parser.add_argument("file")
parser.add_argument("--model", default="gpt-3.5-turbo")
args = parser.parse_args()
# code_review("./sample-codes/tree.py", "gpt-3.5-turbo")
code_review(args.file, args.model)
# python reviewer.py ./sample-codes/gradient.py --model "gpt-3.5-turbo"
if __name__ == "__main__":
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
main()
| [
"Code review the following file: \ndef mystery(x, y):\n return x ** y\n",
"\nYou will receive a file's contents as text.\nGenerate a code review for the file. Indicate what changes should be made to improve its style, performance, readability, and maintainability. If there are any reputable libraries that could be introduced to improve the code, suggest them. Be kind and constructive. For each suggested change, include line numbers to which you are referring\n"
] |
2024-01-10 | Elsayed91/easy_expectations | easy_expectations~cli~cli_utils.py | import json
import os
from collections import OrderedDict
import click
import openai
import pandas as pd
import yaml
from rich.console import Console
console = Console()
# Constants
BACKENDS = [
"Pandas",
"Spark",
"SQLite",
"PostgreSQL",
"MySQL",
"MSSQL",
"Trino",
"Redshift",
"BigQuery",
"Snowflake",
]
def select_backend():
console.print("Select one of the following backends:")
for i, backend in enumerate(BACKENDS, 1):
console.print(f"{i}. {backend}")
backend_choice = click.prompt(
"Enter the number corresponding to the backend", type=int
)
if 1 <= backend_choice <= len(BACKENDS):
selected_backend = BACKENDS[backend_choice - 1]
console.print(
f"You've selected {selected_backend} as the source of your data."
)
return selected_backend
else:
console.print(
"Invalid choice. Please enter a number between 1 and",
len(BACKENDS),
)
return None
def initialize_openai_setup():
if not openai.api_key:
# If not set, then try to fetch the API key from the environment.
api_key = os.getenv("OPENAI_API_KEY")
# If it's neither in openai.api_key nor in the environment, prompt the user for it.
if not api_key:
api_key = input("Please provide your OpenAI API key: ")
# Set the API key for openai.
openai.api_key = api_key
if not openai.api_key:
raise ValueError("API key not provided!")
console.print("Welcome to the OpenAI Model Interaction Setup.")
console.print(
"By default, gpt-3.5-turbo model will be used with a temperature of 0."
)
customize_choice = click.prompt(
"Would you like to customize the model settings? (yes/no)",
default="no",
)
model_type = "gpt-3.5-turbo"
temperature = 0.0
max_tokens = None
if customize_choice.lower() == "yes":
model_type = click.prompt(
"Enter the model type (or press Enter to use gpt-3.5-turbo):",
default="gpt-3.5-turbo",
)
temperature = click.prompt(
"Enter the temperature (or press Enter to use 0.5):",
default=0.5,
type=float,
)
max_tokens_input = click.prompt(
"Enter the max tokens (or press Enter to skip):",
default="",
type=str,
)
if max_tokens_input:
max_tokens = int(max_tokens_input)
return model_type, temperature, max_tokens
def choose_expectations_source():
console = Console()
console.print(
"A set of core expectations can be provided to the model to improve the accuracy of the output."
)
console.print("")
console.print(
"Feeding the model with core expectations will use more tokens. (8 columns ~2000 tokens)"
)
console.print(
"Using model's base knowledge would consume 600-1000 tokens, but GPT will occassionally provide [bold red]non-existent[/bold red] expectations."
)
console.print("How do you want to proceed?")
console.print("1. Feed the model with core expectations")
console.print("2. Rely on the model's base knowledge")
choice = click.prompt(
"Please choose an option (1 or 2):", default=1, type=int
)
return choice == 1
def handle_output_customization(content_json):
console.print(
"You can choose the output format for the expectations suite:"
)
console.print("1. JSON File (default)")
console.print("2. YAML File")
console.print("3. Print to Console")
output_choice = click.prompt("Enter your choice:", default=1, type=int)
if output_choice == 1:
with open("expectations_suite.json", "w") as file:
json.dump(content_json, file, indent=4)
console.print("\nExpectations suite saved to expectations_suite.json.")
elif output_choice == 2:
with open("expectations_suite.yaml", "w") as file:
yaml.dump(content_json, file)
console.print("\nExpectations suite saved to expectations_suite.yaml.")
elif output_choice == 3:
console.print("\nExpectations Suite:")
console.print(json.dumps(content_json, indent=4))
else:
console.print("Invalid choice. Saving to JSON file by default.")
with open("expectations_suite.json", "w") as file:
json.dump(content_json, file, indent=4)
def append_results_to_yaml(content_json, file_path="output.yaml"):
# Define the format for appending to the YAML file
yaml_content = {"Validation": {"Suite Name": "my_suite", "Tests": []}}
# Convert JSON content to the specified YAML format
for expectation in content_json.get("expectations", []):
test = {
"expectation": expectation.get("expectation_type"),
"kwargs": expectation.get("kwargs", {}),
}
yaml_content["Validation"]["Tests"].append(test)
# Append to the YAML file
with open(file_path, "a") as file:
yaml.dump(yaml_content, file)
console = Console()
console.print(f"Results appended to {file_path}.")
def get_column_details():
"""Prompt the user for column details using ; as the delimiter."""
columns = []
click.echo("\nPlease provide column details in the following format:")
click.echo("column;mode;datatype;description")
click.echo("For mode: 'null' for nullable and 'req' for required.")
click.echo("Description is optional and can include '/'.\n")
click.echo("Provide the contracted column details. use q or exit to stop.")
while True:
column_detail = click.prompt("Enter column details", type=str)
if column_detail.lower() == "exit" or column_detail.lower() == "q":
break
parts = column_detail.split(";")
if len(parts) < 3:
click.echo(
"Invalid format. Please provide details in the format column;mode;datatype;description."
)
continue
column_name = parts[0].strip()
mode = "REQUIRED" if parts[1].strip().lower() == "req" else "NULLABLE"
data_type = parts[2].strip()
description = parts[3].strip() if len(parts) > 3 else ""
columns.append(
{
"name": column_name,
"description": description,
"mode": mode,
"type": data_type,
}
)
return columns
def prune_empty_values(d):
"""
Recursively remove keys with None or empty values from a dictionary.
"""
if not isinstance(d, dict):
return d
clean_dict = {}
for k, v in d.items():
if isinstance(v, dict):
v = prune_empty_values(v)
if v: # This checks if the value is not None or empty
clean_dict[k] = v
return clean_dict
def yaml_content_from_json(content_json, suite_name=None):
yaml_content = {"Validation": {"Tests": []}}
if suite_name:
yaml_content["Validation"]["Suite Name"] = suite_name
for expectation in content_json.get("expectations", []):
test = {
"expectation": expectation.get("expectation_type"),
"kwargs": expectation.get("kwargs", {}),
}
yaml_content["Validation"]["Tests"].append(test)
return yaml.dump(
yaml_content, default_flow_style=False, sort_keys=True, indent=2
)
| [] |
2024-01-10 | algopapi/EvoPrompting_Reinforcement_learning | evoRL.py | """
Giving an AI the ability to improve its own underlying architecture through an evolutionary algorithm is, besides being poetically
beautiful, also a very promising paradigm. This paper is heavily based on the EvoPrompt paper by Angelica Chen David M. Dohan and David R. So.
The original soft promted tuned a PALM 62B model. Since I dont have access to this model i instead finetune gpt3. Which is an expensive endeavour, but
very cool nevertheless.
"""
import concurrent.futures
import json
import os
import random
import numpy as np
import openai
openai.api_key = "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"
class EvoPrompting:
def __init__(self, lm, task, seed_folder, environment, T, m, k, n, p, alpha,
n_evaluations, target_model_size, target_episodes, seed_evaluation=False, evaluation_path=None):
self.seed_folder = seed_folder # Folder where the seed codes are located
self.seed_evaluation = seed_evaluation # Do we have to evaluate the seed codes?
self.pre_evaluated_seed_metrics = self.load_pre_evaluated_seed_metrics(evaluation_path) # Pre evaluated seed metrics
self.lm = lm # the crossover LM
self.temperatures = [0.2, 0.6, 0.8, 1.0] # uniformly sample from these temperaturs
self.environment = environment # In our case CartPole-v1
self.T = T # Number of rounds
self.m = m # number of few-shot prompts per round
self.n = n # number of samples to generate per prompt,
self.k = k # number of in-context examples per prompt
self.p = p # number of survivors to select per generation
self.n_evaluations = n_evaluations # Number of times to run each model
self.alpha = alpha # the upper threshold for the test error
self.global_population = [] # Global historical Population
self.target_model_size = target_model_size # Target model size of the few shot prompt
self.target_episodes = target_episodes # Target number of episodes of the few shot prompt
# Set initial well designed architectures as parent models.
# (Evaluate them useing the same eval function as used in the aalgo)
self.current_population = []
self.initialize_population()
def read_seed_files(self, file_path):
with open(file_path, "r") as file:
return file.read()
def load_pre_evaluated_seed_metrics(self, file_path):
with open(file_path, "r") as file:
return json.load(file)
def initialize_population(self):
# Initialize the population with seed architectures
# List all the Python files in the seed folder
seed_files = [f for f in os.listdir(self.seed_folder) if f.endswith('.py')]
for seed_file in seed_files:
print("EVALUATING SEED: ", seed_file)
seed_file_path = os.path.join(self.seed_folder, seed_file)
seed_code = self.read_seed_files(seed_file_path)
if self.seed_evaluation:
avg_episodes, model_size = self.eval_t(seed_code)
else:
json= self.pre_evaluated_seed_metrics[seed_file]
# convert string to float
avg_episodes = float(json["avg_episodes"])
model_size = float(json["model_size"])
print("EVALUATED SEED: ", seed_file, "avg_episodes: ", avg_episodes, "model_size: ", model_size)
metrics = {
"avg_episodes": avg_episodes,
"model_size": model_size,
}
fitness_score = avg_episodes * model_size
self.global_population.append((seed_code, metrics, fitness_score))
self.current_population.append((seed_code, metrics, fitness_score))
def make_few_shot_prompt(self, in_context_examples):
# Create a few-shot prompt using the in context examples E
min_avg_episodes = float('inf')
min_model_size = float('inf')
prompt = "" # Initialize empty prompt string
for example in in_context_examples:
metrics = example[1]
min_avg_episodes = min(min_avg_episodes, metrics['avg_episodes']) # Retrieve the minium avg episodes of the parent architectures
min_model_size = min(min_model_size, metrics['model_size']) # Retrieve the minium model size of the parent architectures
prompt += f'\nMetrics: {example[1]}\n\n'
prompt += f'Code: {example[0]}\n\n'
target_avg = min_avg_episodes * self.target_episodes
target_model_size = min_model_size * self.target_model_size
prompt += f'\nmetrics: {{ "avg_episodes": {target_avg}, "model_size": {target_model_size} }}\n\n'
prompt += f'Code:\n'
return prompt
def generate_child (self, prompt):
child_code = openai.Completion.create(
model="gpt-4",
prompt=prompt,
temperature=np.random.choice(self.temperatures, size=1, replace=True).item(),
n=1,
max_tokens = 1000,
)
#print("child code= ", child_code.choices[0].text)
return child_code.choices[0].text
def eval_t(self, code_segment):
def single_evaluation():
print("Executing code segment")
exec(code_segment, globals()) # Add globals() here
episodes, model_size = globals()['main'](self.environment)
print(f"Finished executing code segment: episodes={episodes}, model_size={model_size}")
return episodes, model_size
sum_episodes = 0
with concurrent.futures.ThreadPoolExecutor() as executor:
print("Submitting tasks to the thread pool")
futures = [executor.submit(single_evaluation) for _ in range(self.n_evaluations)]
for future in concurrent.futures.as_completed(futures):
episodes, model_size = future.result()
sum_episodes += episodes
avg_episodes = sum_episodes / self.n_evaluations
print(f"Average episodes: {avg_episodes}, Model size: {model_size}")
return avg_episodes, model_size
def get_top(self, global_population):
"""
Returns the top entries from the global_population based on their fitness scores.
This function takes a list of global_population entries, where each entry is a tuple containing:
(code, metadata, fitness_score). It sorts the entries based on their fitness scores in descending
order and returns the top num_top entries.
Parameters:
global_population (list): A list of tuples, where each tuple represents an entry in the global
population, containing (code, metadata, fitness_score).
num_top (int, optional): The number of top entries to return. Defaults to 5.
Returns:
list: A list containing the top num_top entries from the global_population based on their fitness
scores.
"""
sorted_population = sorted(global_population, key=lambda x: x[2], reverse=True)
top_entries = sorted_population[:self.p]
return top_entries
def cross_mutation(self):
child_architectures = [] # C is the set of architectures of length k
for _ in range(self.m): # create m number of few shot prompts
in_context_examples = random.sample(self.current_population, self.k) # Pick k amount of parants from P
prompt = self.make_few_shot_prompt(in_context_examples)
Ci = [self.generate_child(prompt) for _ in range(self.n)]
child_architectures.extend(Ci)
return child_architectures
def fitness_function(self, model_size, n_episodes):
return model_size * n_episodes
def filter_and_eval(self, child_architectures, environment, alpha):
CEVALED = []
for code_segment in child_architectures:
avg_episodes, model_size = self.eval_t(code_segment)
if avg_episodes < alpha: # filter out the bad models
metrics = {
"avg_episodes": avg_episodes,
"model_size": model_size,
}
fitness_score = self.fitness_function(model_size, avg_episodes)
CEVALED.append((code_segment, metrics, fitness_score))
return CEVALED
def train(self, CEVALED):
# The original author of the paper proposes a soft prompt tune method here
# I need a model here that can be soft promt tuned, probably gpt2 on huggingface.
pass
def evolve(self):
t = 0
while t < self.T: # number of evoluationary rounds
child_architectures = self.cross_mutation() # Generate the set of code samples
evaluated_children = self.filter_and_eval(child_architectures, self.environment, self.alpha)
self.global_population.extend(evaluated_children)
if t < self.T - 1:
self.current_population = self.get_top(global_population=self.global_population)
#run without training
#self.lm = self.train(self.lm, [c for c, _ in evaluated_children if c not in self.current_population])
t += 1
return self.get_top(global_population=self.global_population)
if __name__ == "__main__":
# Initialize the EvoPrompting class
T = 10 # Number of rounds
m = 10 # number of few-shot prompts per round
n = 16 # number of samples to generate per prompt,
k = 2 # number of in-context examples per prompt
p = 1 # number of survivors to select per generation
n_evaluations = 5 # Number of times to run each model
alpha = 600000 # TBD (cutoff fitness for evaluated children)
task = "create a solution that genreates the best model with the smallest paramter size"
environment = "CartPole-v1" # environment of the task
seed_folder = "seeds" # Folder which contains al the initial seed architectures
lm = "text-davinci-003" # Language model to use for prompt generation
target_model_factor = 0.90
target_episodes = 0.95
evo_prompt = EvoPrompting(lm, task, seed_folder, environment, T, m, k, n, p, alpha,
n_evaluations, target_model_factor, target_episodes, seed_evaluation=True,
evaluation_path="seeds/pre_evaluated_seed_metrics.json")
# Run the main evolutionary loop
evo_prompt.evolve()
# evo_prompt.initialize_population()
# print("evorpompt Global Population: ", evo_prompt.global_population)
# top = evo_prompt.get_top(global_population = evo_prompt.global_population)
# print('top', top) | [
"Code: PLACEHOLDER\n\n",
"\nmetrics: { \"avg_episodes\": PLACEHOLDER, \"model_size\": PLACEHOLDER }\n\n",
"seeds/pre_evaluated_seed_metrics.json",
"\nMetrics: PLACEHOLDER\n\n",
"Code:\n"
] |
2024-01-10 | samrawal/gpt-emacs-macro | gpt-macro.py | import os
import sys
import openai
openai.api_key = sys.argv[1]
gpt_macro_input = sys.argv[2]
data = sys.argv[3]
def complete(input_, data_, model="davinci"):
prompt = "{}:\n\n{}".format(input_, data_)
if model == "davinci":
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0.7,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response['choices'][0]['text']
elif model == "chat":
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": prompt}
],
temperature=1.0, # default
max_tokens=256,
top_p=1,
)
return completion.choices[0]["message"]["content"]
payload = complete(gpt_macro_input, data, model="davinci").strip()
print(payload)
| [
"PLACEHOLDER:\n\nPLACEHOLDER"
] |
2024-01-10 | michaelthwan/everything2text4prompt | everything2text4prompt~podcast_util.py | import re
import openai
import requests
from .util import chunk_mp3, PodcastData
class PodcastUtil:
@staticmethod
def convert_podcast_transcript(podcast_url):
def download_mp3(url: str, file_path: str):
with open(file_path, "wb") as file:
response = requests.get(url)
file.write(response.content)
content = requests.get(podcast_url)
mp3_url = re.findall("(?P<url>\;https?://[^\s]+)", content.text)[0].split(';')[1]
print(f"mp3_url: {mp3_url}")
mp3_file_path = "temp.mp3"
download_mp3(mp3_url, mp3_file_path)
print(f"Downloaded mp3 file")
file_part_list = chunk_mp3(mp3_file_path)
transcript_list = []
for file_part in file_part_list:
file = open(file_part, "rb")
print(f"Calling openai whisper-1 for {file_part}")
transcript = openai.Audio.transcribe("whisper-1", file)
transcript_list.append(transcript)
print(transcript_list)
title = description = "" # TODO
return PodcastData(" ".join(transcript_list), title, description), True, "Success"
| [] |
2024-01-10 | michaelthwan/everything2text4prompt | everything2text4prompt~everything2text4prompt.py | import openai
from .pdf_util import PDFUtil
# from .podcast_util import convert_podcast_transcript
from .youtube_util import YoutubeUtil
class Everything2Text4Prompt:
def __init__(self, openai_api_key, is_azure=False):
self.openai_api_key = openai_api_key
self.is_azure = is_azure
openai.api_key = self.openai_api_key
def convert_text(self, medium, target_source) -> (str, bool, str):
if medium == "youtube":
return YoutubeUtil.get_youtube_data(target_source)
# elif medium == "podcast":
# return convert_podcast_transcript(target_source)
elif medium == "pdf":
return PDFUtil.get_pdf_data(target_source)
else:
raise Exception("Unsupported medium")
if __name__ == "__main__":
openai_api_key = ""
converter = Everything2Text4Prompt(openai_api_key)
medium = "youtube"
target_source = "8S0FDjFBj8o" # Default English
# target_source = "lSTEhG021Jc" # Default auto-generated English
# target_source = "https://www.youtube.com/watch?v=lSTEhG021Jc&ab_channel=EddieGM" # Test the handling if people input URL
# target_source = "https://www.youtube.com/watch?v=29WGNfuxIxc&ab_channel=PanSci%E6%B3%9B%E7%A7%91%E5%AD%B8" # Default Chinese
# target_source = "https://www.youtube.com/watch?v=K0SZ9mdygTw&t=757s&ab_channel=MuLi" # Subtitle not available
# target_source = "https://www.youtube.com/watch?v=MfDlgRtmgpc&ab_channel=%E9%98%BF%E8%B1%ACAhJu" # yue-HK language testing
# target_source = "a" # Error
# medium = "podcast"
# Short english
# Moment 108 - This Powerful Tool Can Change Your Life: Africa Brooke
# target_source = "https://podcasts.google.com/feed/aHR0cHM6Ly9mZWVkcy5idXp6c3Byb3V0LmNvbS8xNzE3MDMucnNz/episode/NWQzYmJlZDktNzA1Mi00NzU5LThjODctMzljMmIxNmJjZDM3?sa=X&ved=0CAUQkfYCahcKEwig_fW00YH_AhUAAAAAHQAAAAAQLA"
# Long Chinese
# TODO: Not sure why it is not working after chunking
# 通用人工智能离我们多远,大模型专家访谈 |S7E11 硅谷徐老师 x OnBoard!
# target_source = "https://podcasts.google.com/feed/aHR0cHM6Ly9mZWVkcy5maXJlc2lkZS5mbS9ndWlndXphb3poaWRhby9yc3M/episode/YzIxOWI4ZjktNTZiZi00NGQ3LTg3NjctYWZiNTQzOWZjMTNk?sa=X&ved=0CAUQkfYCahcKEwjwp9icjv_-AhUAAAAAHQAAAAAQLA&hl=zh-TW"
data, is_success, error_msg = converter.convert_text(medium, target_source)
print(data.shorten_transcript)
print(is_success, error_msg)
# print(data.ts_transcript_list)
| [] |
2024-01-10 | michaelthwan/everything2text4prompt | everything2text4prompt~playground~test_whisper.py | import openai
openai.api_key = ""
if __name__ == '__main__':
file_path = "temp-part_1_5.mp3"
# file_path = "temp_short_en.mp3"
# file_path = "temp-part_1_1_en.mp3"
audio_file = open(file_path, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file, response_format="text")
print(transcript)
| [] |
2024-01-10 | ATheorell/AutoGPTArenaHack | autogpts~gpt-engineer~gpt_engineer~core~steps.py | """
GPT Engineer workflow definition and execution
This module provides the necessary utilities and functions to orchestrate the execution of GPT-engineer's tasks
related to code generation, execution, and review. It leverages a flexible approach to system prompt creation,
workflow execution, and interaction with AI, allowing for various configurations and stages of operation.
Imports:
- Standard libraries: inspect, re, subprocess
- Additional libraries/packages: termcolor, typing, enum
- Internal modules/packages: langchain.schema, gpt_engineer.core, gpt_engineer.cli
Key Features:
- Dynamic system prompt creation for both new code generation and improving existing code.
- A series of utility functions for handling various tasks like AI code generation, user clarification,
code execution, and human review.
- Configurable workflow steps to control the process of code generation and execution in different scenarios.
- Flexibility to adapt to different configurations and use cases.
Classes:
- Config: An enumeration representing different configurations or operation modes for the workflow.
Functions:
- setup_sys_prompt(dbs: DBs) -> str: Creates a system prompt for the AI.
- setup_sys_prompt_existing_code(dbs: DBs) -> str: System prompt creation using existing code base.
- curr_fn() -> str: Returns the name of the current function.
- lite_gen(ai: AI, dbs: DBs) -> List[Message]: Runs the AI on the main prompt and saves results.
- simple_gen(ai: AI, dbs: DBs) -> List[Message]: Runs the AI on default prompts and saves results.
- clarify(ai: AI, dbs: DBs) -> List[Message]: Interacts with the user for clarification.
- gen_clarified_code(ai: AI, dbs: DBs) -> List[dict]: Generates code after clarification.
- execute_entrypoint(ai: AI, dbs: DBs) -> List[dict]: Executes code entry point and asks user for confirmation.
- gen_entrypoint(ai: AI, dbs: DBs) -> List[dict]: Generates entry point based on information about a codebase.
- use_feedback(ai: AI, dbs: DBs): Uses feedback from users to improve code.
- set_improve_filelist(ai: AI, dbs: DBs): Sets the file list for existing code improvements.
- assert_files_ready(ai: AI, dbs: DBs): Checks for the required files for code improvement.
- get_improve_prompt(ai: AI, dbs: DBs): Interacts with the user to know what they want to fix in existing code.
- improve_existing_code(ai: AI, dbs: DBs): Generates improved code after getting the file list and user prompt.
- human_review(ai: AI, dbs: DBs): Collects and stores human review of the generated code.
Constants:
- STEPS: A dictionary that maps the Config enum to lists of functions to execute for each configuration.
Note:
- This module is central to the GPT-engineer system and its functions are intended to be used in orchestrated
workflows. As such, it should be used carefully, with attention to the correct order and sequence of operations.
"""
import inspect
import re
import subprocess
import os
from pathlib import Path
from enum import Enum
from typing import List, Union
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from termcolor import colored
from platform import platform
from sys import version_info
from gpt_engineer.core.ai import AI
from gpt_engineer.core.chat_to_files import (
format_file_to_input,
get_code_strings,
overwrite_files_with_edits,
to_files_and_memory,
)
from gpt_engineer.core.db import DBs
from gpt_engineer.cli.file_selector import (
REFERENCE_FILE_LIST_NAME,
FILE_LIST_NAME,
ask_for_files,
scan_for_reference_files,
)
from gpt_engineer.cli.learning import human_review_input
MAX_SELF_HEAL_ATTEMPTS = 4 # constants for self healing code
ASSUME_WORKING_TIMEOUT = 30
SELF_HEAL_HISTORY_LEN = 5
# Type hint for chat messages
Message = Union[AIMessage, HumanMessage, SystemMessage]
def setup_sys_prompt(dbs: DBs) -> str:
"""
Constructs a system prompt for the AI based on predefined instructions and philosophies.
This function is responsible for setting up the system prompts for the AI, instructing
it on how to generate code and the coding philosophy to adhere to. The constructed prompt
consists of the "roadmap", "generate" (with dynamic format replacements), and the coding
"philosophy" taken from the given DBs object.
Parameters:
- dbs (DBs): The database object containing pre-defined prompts and instructions.
Returns:
- str: The constructed system prompt for the AI.
"""
return (
dbs.preprompts["roadmap"]
+ dbs.preprompts["generate"].replace("FILE_FORMAT", dbs.preprompts["file_format"])
+ "\nUseful to know:\n"
+ dbs.preprompts["philosophy"]
)
def setup_sys_prompt_existing_code(dbs: DBs) -> str:
"""
Constructs a system prompt for the AI focused on improving an existing codebase.
This function sets up the system prompts for the AI, guiding it on how to
work with and improve an existing code base. The generated prompt consists
of the "improve" instruction (with dynamic format replacements) and the coding
"philosophy" taken from the given DBs object.
Parameters:
- dbs (DBs): The database object containing pre-defined prompts and instructions.
Returns:
- str: The constructed system prompt focused on existing code improvement for the AI.
"""
return (
dbs.preprompts["improve"].replace("FILE_FORMAT", dbs.preprompts["file_format"])
+ "\nUseful to know:\n"
+ dbs.preprompts["philosophy"]
)
def curr_fn() -> str:
"""
Retrieves the name of the calling function.
This function uses Python's inspection capabilities to dynamically fetch the
name of the function that called `curr_fn()`. This approach ensures that the
function's name isn't hardcoded, making it more resilient to refactoring and
changes to function names.
Returns:
- str: The name of the function that called `curr_fn()`.
"""
return inspect.stack()[1].function
def lite_gen(ai: AI, dbs: DBs) -> List[Message]:
"""
Executes the AI model using the main prompt and saves the generated results.
This function invokes the AI model by feeding it the main prompt. After the
AI processes and generates the output, the function saves this output to the
specified workspace. The AI's output is also tracked using the current function's
name to provide context.
Parameters:
- ai (AI): An instance of the AI model.
- dbs (DBs): An instance containing the database configurations, including input prompts
and file formatting preferences.
Returns:
- List[Message]: A list of message objects encapsulating the AI's output.
Note:
The function assumes the `ai.start` method and the `to_files` utility to be correctly
set up and functional. Ensure these prerequisites before invoking `lite_gen`.
"""
messages = ai.start(
dbs.input["prompt"], dbs.preprompts["file_format"], step_name=curr_fn()
)
to_files_and_memory(messages[-1].content.strip(), dbs)
return messages
def get_platform_info():
"""Returns the Platform: OS, and the Python version.
This is used for self healing.
"""
v = version_info
a = f"Python Version: {v.major}.{v.minor}.{v.micro}"
b = f"\nOS: {platform()}\n"
return a + b
def self_heal(ai: AI, dbs: DBs):
"""Attempts to execute the code from the entrypoint and if it fails,
sends the error output back to the AI with instructions to fix.
This code will make `MAX_SELF_HEAL_ATTEMPTS` to try and fix the code
before giving up.
This makes the assuption that the previous step was `gen_entrypoint`,
this code could work with `simple_gen`, or `gen_clarified_code` as well.
"""
# step 1. execute the entrypoint
log_path = dbs.workspace.path / "log.txt"
attempts = 0
messages = []
while attempts < MAX_SELF_HEAL_ATTEMPTS:
attempts += 1
log_file = open(log_path, "w") # wipe clean on every iteration
timed_out = False
p = subprocess.Popen( # attempt to run the entrypoint
"bash run.sh",
shell=True,
cwd=dbs.workspace.path,
stdout=log_file,
stderr=log_file,
stdin=subprocess.DEVNULL,
bufsize=0,
)
try: # timeout if the process actually runs
p.wait()
except subprocess.TimeoutExpired:
timed_out = True
print("The process hit a timeout before exiting.")
# get the result and output
# step 2. if the return code not 0, package and send to the AI
if "log.txt" in dbs.workspace:
log = dbs.workspace["log.txt"]
else:
log = ""
def all_tests_passed(log):
if not "test session starts" in log:
return True
test_part = log.split("test session starts")[1]
if "ERROR" in test_part or "FAILED" in test_part:
return False
return True
if (
(p.returncode != 0 and p.returncode != 2) or not all_tests_passed(log)
) and not timed_out:
print("run.sh failed. The log is:")
print(log)
# pack results in an AI prompt
# Using the log from the previous step has all the code and
# the gen_entrypoint prompt inside.
if attempts < 1:
messages = AI.deserialize_messages(
dbs.logs[gen_entrypoint_enhanced.__name__]
)
messages.append(ai.fuser(get_platform_info())) # add in OS and Py version
# append the error message
messages.append(ai.fuser(log))
if p.returncode != 0:
new_prompt = (
"A program has been written, but it doesn't run. The failure messages are "
+ log
)
dbs.input["prompt"] = new_prompt
improve_existing_code(ai, dbs)
else:
# rewrite prompt file
new_prompt = (
"A program has been written, but it doesn't pass mandatory tests. Make modification to the software so that the tests pass. Never modify the tests. The failure messages are "
+ log
)
dbs.input["prompt"] = new_prompt
improve_existing_code(ai, dbs)
log_file.close()
else:
log_file.close()
return messages
return messages
def simple_gen(ai: AI, dbs: DBs) -> List[Message]:
"""
Executes the AI model using the default system prompts and saves the output.
This function prepares the system prompt using the provided database configurations
and then invokes the AI model with this system prompt and the main input prompt.
Once the AI generates the output, this function saves it to the specified workspace.
The AI's execution is tracked using the name of the current function for contextual reference.
Parameters:
- ai (AI): An instance of the AI model.
- dbs (DBs): An instance containing the database configurations, including system and
input prompts, and file formatting preferences.
Returns:
- List[Message]: A list of message objects encapsulating the AI's generated output.
Note:
The function assumes the `ai.start` method and the `to_files` utility are correctly
set up and functional. Ensure these prerequisites are in place before invoking `simple_gen`.
"""
# use an enhanced prompt
if "enhanced_prompt" in dbs.memory:
input_prompt = dbs.memory["enhanced_prompt"]
else:
input_prompt = dbs.input["prompt"]
messages = ai.start(setup_sys_prompt(dbs), input_prompt, step_name=curr_fn())
to_files_and_memory(messages[-1].content.strip(), dbs, make_file_list=True)
return messages
def clarify(ai: AI, dbs: DBs) -> List[Message]:
"""
Interactively queries the user for clarifications on the prompt and saves the AI's responses.
This function presents a series of clarifying questions to the user, based on the AI's
initial assessment of the provided prompt. The user can continue to interact and seek
clarifications until they indicate that they have "nothing to clarify" or manually
opt to move on. If the user doesn't provide any input, the AI is instructed to make its
own assumptions and to state them explicitly before proceeding.
Parameters:
- ai (AI): An instance of the AI model.
- dbs (DBs): An instance containing the database configurations, which includes system
and input prompts.
Returns:
- List[Message]: A list of message objects encapsulating the AI's generated output and
interactions.
Note:
The function assumes the `ai.fsystem`, `ai.next`, and `curr_fn` utilities are correctly
set up and functional. Ensure these prerequisites are in place before invoking `clarify`.
"""
messages: List[Message] = [ai.fsystem(dbs.preprompts["clarify"])]
user_input = dbs.input["prompt"]
while True:
messages = ai.next(messages, user_input, step_name=curr_fn())
msg = messages[-1].content.strip()
if "nothing to clarify" in msg.lower():
break
if msg.lower().startswith("no"):
print("Nothing to clarify.")
break
print()
user_input = input('(answer in text, or "c" to move on)\n')
print()
if not user_input or user_input == "c":
print("(letting gpt-engineer make its own assumptions)")
print()
messages = ai.next(
messages,
"Make your own assumptions and state them explicitly before starting",
step_name=curr_fn(),
)
print()
return messages
user_input += """
\n\n
Is anything else unclear? If yes, ask another question.\n
Otherwise state: "Nothing to clarify"
"""
print()
return messages
def gen_clarified_code(ai: AI, dbs: DBs) -> List[dict]:
"""
Generates code based on clarifications obtained from the user.
This function processes the messages logged during the user's clarification session
and uses them, along with the system's prompts, to guide the AI in generating code.
The generated code is saved to a specified workspace.
Parameters:
- ai (AI): An instance of the AI model, responsible for processing and generating the code.
- dbs (DBs): An instance containing the database configurations, which includes system
and input prompts.
Returns:
- List[dict]: A list of message dictionaries capturing the AI's interactions and generated
outputs during the code generation process.
Note:
The function assumes the `ai.fsystem`, `ai.next`, `AI.deserialize_messages`, `curr_fn`,
and `to_files` utilities are correctly set up and functional. Ensure these prerequisites
are in place before invoking `gen_clarified_code`.
"""
messages = AI.deserialize_messages(dbs.logs[clarify.__name__])
messages = [
ai.fsystem(setup_sys_prompt(dbs)),
] + messages[
1:
] # skip the first clarify message, which was the original clarify priming prompt
messages = ai.next(
messages,
dbs.preprompts["generate"].replace("FILE_FORMAT", dbs.preprompts["file_format"]),
step_name=curr_fn(),
)
to_files_and_memory(messages[-1].content.strip(), dbs)
return messages
def execute_entrypoint(ai: AI, dbs: DBs) -> List[dict]:
"""
Executes the specified entry point script (`run.sh`) from a workspace.
This function prompts the user to confirm whether they wish to execute a script named
'run.sh' located in the specified workspace. If the user confirms, the script is
executed using a subprocess. The user is informed that they can interrupt the
execution at any time using ctrl+c.
Parameters:
- ai (AI): An instance of the AI model, not directly used in this function but
included for consistency with other functions.
- dbs (DBs): An instance containing the database configurations and workspace
information.
Returns:
- List[dict]: An empty list. This function does not produce a list of messages
but returns an empty list for consistency with the return type of other related
functions.
Note:
The function assumes the presence of a 'run.sh' script in the specified workspace.
Ensure the script is available and that it has the appropriate permissions
(e.g., executable) before invoking this function.
"""
command = dbs.workspace["run.sh"]
print(
"Before executing, writing the relative paths of all pre-execution files to: pre-execution-files.txt"
)
with open(os.path.join(dbs.workspace.path, "pre-execution-files.txt"), "w") as f:
for dirpath, dirnames, filenames in os.walk(dbs.workspace.path):
for file in filenames:
full_path = Path(dirpath) / file
if os.path.isfile(full_path):
relative_path = full_path.relative_to(dbs.workspace.path)
f.write(str(relative_path) + "\n")
print()
print(
colored(
"Do you want to execute this code? (Y/n)",
"red",
)
)
print()
print(command)
# print()
# if input().lower() not in ["", "y", "yes"]:
# print("Ok, not executing the code.")
# return []
print("Executing the code...")
print()
print(
colored(
"Note: If it does not work as expected, consider running the code"
+ " in another way than above.",
"green",
)
)
print()
print("You can press ctrl+c *once* to stop the execution.")
print()
p = subprocess.Popen(
"bash run.sh", shell=True, cwd=dbs.workspace.path, stdin=subprocess.DEVNULL
)
try:
p.wait()
except KeyboardInterrupt:
print()
print("Stopping execution.")
print("Execution stopped.")
p.kill()
print()
return []
def gen_entrypoint_enhanced(ai: AI, dbs: DBs) -> List[dict]:
"""
Generates an entry point script based on a given codebase's information.
This function prompts the AI model to generate a series of Unix terminal commands
required to a) install dependencies and b) run all necessary components of a codebase
provided in the workspace. The generated commands are then saved to 'run.sh' in the
workspace.
Parameters:
- ai (AI): An instance of the AI model.
- dbs (DBs): An instance containing the database configurations and workspace
information, particularly the 'all_output.txt' which contains details about the
codebase on disk.
Returns:
- List[dict]: A list of messages containing the AI's response.
Notes:
- The AI is instructed not to install packages globally, use 'sudo', provide
explanatory comments, or use placeholders. Instead, it should use example values
where necessary.
- The function uses regular expressions to extract command blocks from the AI's
response to create the 'run.sh' script.
- It assumes the presence of an 'all_output.txt' file in the specified workspace
that contains information about the codebase.
"""
messages = ai.start(
system=(
"You will get information about a codebase that is currently on disk in "
"the current folder and a prompt with specifications that the code is expected to fulfill\n"
"From this you will answer with code blocks that includes all the necessary "
"unix terminal commands to "
"a) Create and activate an appropriate virtual environment if possible. \n"
"b) install all dependencies, both for running the code and run tests listed in the prompt with specifications. \n"
"c) execute all tests mentioned in the specification.\n"
"d) if the code contains an entry point like a main function, execute this.\n"
"Do not install globally. Do not use sudo.\n"
"Do not write any comments explaining the code, just give the commands.\n"
"Do not use placeholders, use example values (like . for a folder argument) "
"if necessary.\n"
),
user="Information about the codebase:\n\n"
+ dbs.memory["all_output.txt"]
+ "Specification prompt:\n\n"
+ dbs.input["prompt"],
step_name=curr_fn(),
)
print()
regex = r"```\S*\n(.+?)```"
matches = re.finditer(regex, messages[-1].content.strip(), re.DOTALL)
dbs.workspace["run.sh"] = "\n".join(match.group(1) for match in matches)
return messages
def gen_entrypoint(ai: AI, dbs: DBs) -> List[dict]:
"""
Generates an entry point script based on a given codebase's information.
This function prompts the AI model to generate a series of Unix terminal commands
required to a) install dependencies and b) run all necessary components of a codebase
provided in the workspace. The generated commands are then saved to 'run.sh' in the
workspace.
Parameters:
- ai (AI): An instance of the AI model.
- dbs (DBs): An instance containing the database configurations and workspace
information, particularly the 'all_output.txt' which contains details about the
codebase on disk.
Returns:
- List[dict]: A list of messages containing the AI's response.
Notes:
- The AI is instructed not to install packages globally, use 'sudo', provide
explanatory comments, or use placeholders. Instead, it should use example values
where necessary.
- The function uses regular expressions to extract command blocks from the AI's
response to create the 'run.sh' script.
- It assumes the presence of an 'all_output.txt' file in the specified workspace
that contains information about the codebase.
"""
messages = ai.start(
system=(
"You will get information about a codebase that is currently on disk in "
"the current folder.\n"
"From this you will answer with code blocks that includes all the necessary "
"unix terminal commands to "
"a) Create and activate an appropriate virtual environment if possible. \n"
"b) install dependencies. \n"
"c) run all necessary parts of the codebase (in parallel if necessary).\n"
"Do not install globally. Do not use sudo.\n"
"Do not explain the code, just give the commands.\n"
"Do not use placeholders, use example values (like . for a folder argument) "
"if necessary.\n"
),
user="Information about the codebase:\n\n" + dbs.memory["all_output.txt"],
step_name=curr_fn(),
)
print()
regex = r"```\S*\n(.+?)```"
matches = re.finditer(regex, messages[-1].content.strip(), re.DOTALL)
dbs.workspace["run.sh"] = "\n".join(match.group(1) for match in matches)
return messages
def use_feedback(ai: AI, dbs: DBs):
"""
Uses the provided feedback to improve the generated code.
This function takes in user feedback and applies it to modify previously
generated code. If feedback is available, the AI model is primed with the
system prompt and user instructions and then proceeds to process the feedback.
The modified code is then saved back to the workspace. If feedback is not found,
the user is informed to provide a 'feedback' file in the appropriate directory.
Parameters:
- ai (AI): An instance of the AI model.
- dbs (DBs): An instance containing the database configurations and workspace
information, particularly the 'all_output.txt' which contains the previously
generated code, and 'input' which may contain the feedback from the user.
Notes:
- The function assumes the feedback will be found in 'dbs.input["feedback"]'.
- If feedback is provided, the AI processes it and the resulting code is saved
back to the workspace.
- If feedback is absent, an instruction is printed to the console, and the program
terminates.
"""
messages = [
ai.fsystem(setup_sys_prompt(dbs)),
ai.fuser(f"Instructions: {dbs.input['prompt']}"),
ai.fassistant(dbs.memory["all_output.txt"]), # reload previously generated code
]
if dbs.input["feedback"]:
messages = ai.next(messages, dbs.input["feedback"], step_name=curr_fn())
to_files_and_memory(messages[-1].content.strip(), dbs)
return messages
else:
print(
"No feedback was found in the input folder. Please create a file "
+ "called 'feedback' in the same folder as the prompt file."
)
exit(1)
def set_improve_filelist(ai: AI, dbs: DBs):
"""
Set the list of files for the AI to work with in the 'existing code mode'.
This function initiates the process to determine which files from an existing
codebase the AI should work with. By calling `ask_for_files()`, it prompts for
and sets the specific files that should be considered, storing their full paths.
Parameters:
- ai (AI): An instance of the AI model. Although passed to this function, it is
not used within the function scope and might be for consistency with other
function signatures.
- dbs (DBs): An instance containing the database configurations and project metadata,
which is used to gather information about the existing codebase. Additionally,
the 'input' is used to handle user interactions related to file selection.
Returns:
- list: Returns an empty list, which can be utilized for consistency in return
types across related functions.
Note:
- The selected file paths are stored as a side-effect of calling `ask_for_files()`,
and they aren't directly returned by this function.
"""
"""Sets the file list for files to work with in existing code mode."""
ask_for_files(dbs.project_metadata, dbs.workspace) # stores files as full paths.
return []
def assert_files_ready(ai: AI, dbs: DBs):
"""
Verify the presence of required files for headless 'improve code' execution.
This function checks the existence of 'file_list.txt' in the project metadata
and the presence of a 'prompt' in the input. If either of these checks fails,
an assertion error is raised to alert the user of the missing requirements.
Parameters:
- ai (AI): An instance of the AI model. Although passed to this function, it is
not used within the function scope and might be for consistency with other
function signatures.
- dbs (DBs): An instance containing the database configurations and project metadata,
which is used to validate the required files' presence.
Returns:
- list: Returns an empty list, which can be utilized for consistency in return
types across related functions.
Raises:
- AssertionError: If 'file_list.txt' is not present in the project metadata
or if 'prompt' is not present in the input.
Notes:
- This function is typically used in 'auto_mode' scenarios to ensure that the
necessary files are set up correctly before proceeding with the 'improve code'
operation.
"""
"""Checks that the required files are present for headless
improve code execution."""
assert (
"file_list.txt" in dbs.project_metadata
), "For auto_mode file_list.txt need to be in your .gpteng folder."
assert "prompt" in dbs.input, "For auto_mode a prompt file must exist."
return []
def get_improve_prompt(ai: AI, dbs: DBs):
"""
Asks the user what they would like to fix.
"""
if not dbs.input.get("prompt"):
dbs.input["prompt"] = input(
"\nWhat do you need to improve with the selected files?\n"
)
confirm_str = "\n".join(
[
"-----------------------------",
"The following files will be used in the improvement process:",
f"{FILE_LIST_NAME}:",
colored(str(dbs.project_metadata[FILE_LIST_NAME]), "green"),
"",
"The inserted prompt is the following:",
colored(f"{dbs.input['prompt']}", "green"),
"-----------------------------",
"",
"You can change these files in your project before proceeding.",
"",
"Press enter to proceed with modifications.",
"",
]
)
input(confirm_str)
return []
def improve_existing_code(ai: AI, dbs: DBs):
"""
Process and improve the code from a specified set of existing files based on a user prompt.
This function first retrieves the code from the designated files and then formats this
code to be processed by the Language Learning Model (LLM). After setting up the system prompt
for existing code improvements, the files' contents are sent to the LLM. Finally, the user's
prompt detailing desired improvements is passed to the LLM, and the subsequent response
from the LLM is used to overwrite the original files.
Parameters:
- ai (AI): An instance of the AI model that is responsible for processing and generating
responses based on the provided system and user inputs.
- dbs (DBs): An instance containing the database configurations, user prompts, and project metadata.
It is used to fetch the selected files for improvement and the user's improvement prompt.
Returns:
- list[Message]: Returns a list of Message objects that record the interaction between the
system, user, and the AI model. This includes both the input to and the response from the LLM.
Notes:
- Ensure that the user has correctly set up the desired files for improvement and provided an
appropriate prompt before calling this function.
- The function expects the files to be formatted in a specific way to be properly processed by the LLM.
"""
"""
After the file list and prompt have been aquired, this function is called
to sent the formatted prompt to the LLM.
"""
files_info = get_code_strings(
dbs.workspace, dbs.project_metadata
) # this has file names relative to the workspace path
messages = [
ai.fsystem(setup_sys_prompt_existing_code(dbs)),
]
# Add files as input
for file_name, file_str in files_info.items():
code_input = format_file_to_input(file_name, file_str)
messages.append(ai.fuser(f"{code_input}"))
messages.append(ai.fuser(f"Request: {dbs.input['prompt']}"))
messages = ai.next(messages, step_name=curr_fn())
overwrite_files_with_edits(messages[-1].content.strip(), dbs)
return messages
def human_review(ai: AI, dbs: DBs):
"""
Collects human feedback on the code and stores it in memory.
This function prompts the user for a review of the generated or improved code using the `human_review_input`
function. If a valid review is provided, it's serialized to JSON format and stored within the database's
memory under the "review" key.
Parameters:
- ai (AI): An instance of the AI model. Although not directly used within the function, it is kept as
a parameter for consistency with other functions.
- dbs (DBs): An instance containing the database configurations, user prompts, project metadata,
and memory storage. This function specifically interacts with the memory storage to save the human review.
Returns:
- list: Returns an empty list, indicating that there's no subsequent interaction with the LLM
or no further messages to be processed.
Notes:
- It's assumed that the `human_review_input` function handles all the interactions with the user to
gather feedback and returns either the feedback or None if no feedback was provided.
- Ensure that the database's memory has enough space or is set up correctly to store the serialized review data.
"""
"""Collects and stores human review of the code"""
review = human_review_input()
if review is not None:
dbs.memory["review"] = review.to_json() # type: ignore
return []
def enhance_prompt_add_reference_files(ai: AI, dbs: DBs):
"""
Scans the root directory for existing files referenced in the generated code.
This function scans the root directory for any files that may already exist and
are referenced in the code generated for the input prompt. It then updates the
file list in the database to include these files.
Parameters:
- dbs (DBs): An instance containing the database configurations and project metadata.
The function will update the file list in the project metadata.
Returns:
- list: Returns an empty list, indicating that there's no subsequent interaction with the LLM.
"""
reference_files = scan_for_reference_files(dbs.project_metadata, dbs.workspace)
files_info = get_code_strings(
dbs.workspace, dbs.project_metadata, REFERENCE_FILE_LIST_NAME
) # this has file names relative to the workspace path
enhanced_prompt = (
dbs.input["prompt"]
+ "\n Here is a list of all the existing files present in the root directory your code will be added to: \n"
)
# Add files as input
for file_name, file_str in files_info.items():
enhanced_prompt += format_file_to_input(file_name, file_str)
dbs.memory["enhanced_prompt"] = enhanced_prompt
return []
def enhance_prompt_add_strict_requirements(ai: AI, dbs: DBs) -> List[Message]:
"""
Enhances the promp by adding a set of strict functional requirements aimed
at helping it pass tests written against the outputted code.
This function takes a user-provided prompt and asks the AI model to generate
a set of strict functional requirements for the described scenario or system.
The AI's response is appended to the original prompt.
Parameters:
- ai (AI): An instance of the AI model.
- dbs (DBs): An instance containing the database configurations and user prompts.
Returns:
- List[Message]: A list of message objects encapsulating the AI's generated output.
Note:
- The function assumes the `ai.start` method is correctly set up and functional.
Ensure these prerequisites before invoking `convert_to_strict_requirements`.
"""
system_prompt = "Your being shown a prompt which will be passed to an LLM to make it generate code. \
The LLMs response to the prompt is being tested to see how it performs. \
Every aspect of the prompt will have a corresponding test applied to the LLMs output. \
With this in mind, generate a set of strict functional requirements which can be appended to the prompt to improve the LLMs performance. \
If some aspect of the prompt seems vague and colloquial e.g. the program 'should' do this or that - Interpret these vague requirements as strict requirements e.g. the program 'must' do this or that. \
Output requirements which ensure no reasonable test written against this prompt would fail."
user_prompt = dbs.input["prompt"]
messages = ai.start(system_prompt, user_prompt, step_name=curr_fn())
dbs.memory["enhanced_prompt"] = (
dbs.input["prompt"]
+ "\n Here are a set of strict functional requirements to consider when completing this task: \n"
+ messages[-1].content.strip()
)
return messages
class Config(str, Enum):
"""
Enumeration representing different configuration modes for the code processing system.
Members:
- DEFAULT: Standard procedure for generating, executing, and reviewing code.
- BENCHMARK: Used for benchmarking the system's performance without execution.
- SIMPLE: A basic procedure involving generation, execution, and review.
- LITE: A lightweight procedure for generating code without further processing.
- CLARIFY: Process that starts with clarifying ambiguities before code generation.
- EXECUTE_ONLY: Only executes the code without generation.
- EVALUATE: Execute the code and then undergo a human review.
- USE_FEEDBACK: Uses prior feedback for code generation and subsequent steps.
- IMPROVE_CODE: Focuses on improving existing code based on a provided prompt.
- EVAL_IMPROVE_CODE: Validates files and improves existing code.
- EVAL_NEW_CODE: Evaluates newly generated code without further steps.
Each configuration mode dictates the sequence and type of operations performed on the code.
"""
DEFAULT = "default"
BENCHMARK = "benchmark"
SIMPLE = "simple"
SIMPLE_ENHANCED = "simple_enhanced"
SIMPLE_ENHANCED_SELFHEAL = "simple_enhanced_selfheal"
LITE = "lite"
CLARIFY = "clarify"
EXECUTE_ONLY = "execute_only"
EVALUATE = "evaluate"
USE_FEEDBACK = "use_feedback"
IMPROVE_CODE = "improve_code"
EVAL_IMPROVE_CODE = "eval_improve_code"
EVAL_NEW_CODE = "eval_new_code"
STEPS = {
Config.DEFAULT: [
# enhance_prompt_add_strict_requirements,
# enhance_prompt_add_reference_files,
simple_gen,
gen_entrypoint,
execute_entrypoint,
human_review,
],
Config.LITE: [
lite_gen,
],
Config.CLARIFY: [
clarify,
gen_clarified_code,
gen_entrypoint,
execute_entrypoint,
human_review,
],
Config.BENCHMARK: [
simple_gen,
gen_entrypoint,
],
Config.SIMPLE_ENHANCED: [
# enhance_prompt_add_strict_requirements, This seems to add some minor improvements for the password generator but given the exta call the the LLM adds a lot of time its not worth it.
enhance_prompt_add_reference_files, # This seems to add a fairly major improvement to the battleships test - but it breaks every other test
simple_gen,
gen_entrypoint_enhanced,
execute_entrypoint,
],
Config.SIMPLE_ENHANCED_SELFHEAL: [
# enhance_prompt_add_strict_requirements, This seems to add some minor improvements for the password generator but given the exta call the the LLM adds a lot of time its not worth it.
enhance_prompt_add_reference_files,
# This seems to add a fairly major improvement to the battleships test - but it breaks every other test
simple_gen,
gen_entrypoint_enhanced,
self_heal
],
Config.SIMPLE: [
# enhance_prompt_add_strict_requirements, This seems to add some minor improvements for the password generator but given the exta call the the LLM adds a lot of time its not worth it.
# enhance_prompt_add_reference_files,
# This seems to add a fairly major improvement to the battleships test - but it breaks every other test
simple_gen,
gen_entrypoint_enhanced,
execute_entrypoint,
],
Config.USE_FEEDBACK: [use_feedback, gen_entrypoint, execute_entrypoint, human_review],
Config.EXECUTE_ONLY: [execute_entrypoint],
Config.EVALUATE: [execute_entrypoint, human_review],
Config.IMPROVE_CODE: [
set_improve_filelist,
get_improve_prompt,
improve_existing_code,
],
Config.EVAL_IMPROVE_CODE: [assert_files_ready, improve_existing_code],
Config.EVAL_NEW_CODE: [simple_gen],
}
"""
A dictionary mapping Config modes to a list of associated processing steps.
The STEPS dictionary dictates the sequence of functions or operations to be
performed based on the selected configuration mode from the Config enumeration.
This enables a flexible system where the user can select the desired mode and
the system can execute the corresponding steps in sequence.
Examples:
- For Config.DEFAULT, the system will first generate the code using `simple_gen`,
then generate the entry point with `gen_entrypoint`, execute the generated
code using `execute_entrypoint`, and finally collect human review using `human_review`.
- For Config.LITE, the system will only use the `lite_gen` function to generate the code.
This setup allows for modularity and flexibility in handling different user requirements and scenarios.
"""
# Future steps that can be added:
# run_tests_and_fix_files
# execute_entrypoint_and_fix_files_if_it_results_in_error
| [
"A program has been written, but it doesn't pass mandatory tests. Make modification to the software so that the tests pass. Never modify the tests. The failure messages are PLACEHOLDER",
"enhanced_prompt",
"Your being shown a prompt which will be passed to an LLM to make it generate code. The LLMs response to the prompt is being tested to see how it performs. Every aspect of the prompt will have a corresponding test applied to the LLMs output. With this in mind, generate a set of strict functional requirements which can be appended to the prompt to improve the LLMs performance. If some aspect of the prompt seems vague and colloquial e.g. the program 'should' do this or that - Interpret these vague requirements as strict requirements e.g. the program 'must' do this or that. Output requirements which ensure no reasonable test written against this prompt would fail.",
"\n Here is a list of all the existing files present in the root directory your code will be added to: \n",
"A program has been written, but it doesn't run. The failure messages are PLACEHOLDER"
] |
2024-01-10 | CSID-DGU/2020-2-OSSP1-WhatsUp-5 | text_mining~LDAutils.py | # Gensim
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models.wrappers import LdaMallet
from gensim.models.coherencemodel import CoherenceModel
from gensim import similarities
from tqdm import tqdm
import pandas as pd
import numpy as np
# spacy for lemmatization
import spacy
# Plotting tools
from pprint import pprint
import pyLDAvis
import pyLDAvis.gensim # don't skip this
import matplotlib.pyplot as plt
#% matplotlib inline
# Enable logging for gensim - optional
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.ERROR)
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
import os.path
import re
import glob
import nltk
nltk.download('stopwords')
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
os.environ['MALLET_HOME'] = '/content/mallet-2.0.8'
mallet_path = '/content/mallet-2.0.8/bin/mallet'
#최적의 토픽 수를 찾기 위해 여러 토픽 수로 일관성을 계산하고 비교
def compute_coherence_values(mallet_path, id2word, corpus, texts, limit, start=8, step=2, early_stop=True):
coherence_values = []
model_list = []
topic_cnt = 0
for num_topics in tqdm(range(start, limit, step)):
model = gensim.models.wrappers.LdaMallet(mallet_path, corpus=corpus, num_topics=num_topics, id2word=id2word)
model_list.append(model)
coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=id2word, coherence='c_v')
coherence_values.append(coherencemodel.get_coherence())
for idx, value in enumerate(coherence_values[1:]):
if coherence_values[topic_cnt] < value:
topic_cnt = idx
elif (coherence_values[topic_cnt] >= value) and (early_stop):
break
return model_list, coherence_values, topic_cnt
def coherence_graph(start, limit, step, coherence_values, path):
x = range(start, limit, step)
plt.plot(x, coherence_values)
plt.xlabel("Topic Number")
plt.ylabel("Coherence")
plt.legend(("coherence_values"), loc='best')
plt.savefig(path)
def mallet_to_lda(mallet_model):
'''
:param mallet_model: mallet's LDA model
:return: gensim's LDA model
change mallet's LDA model to gensim's LDA model.
To ensure successful visualization in pyLDAvis.
'''
model_gensim = gensim.models.LdaModel(
id2word=mallet_model.id2word, num_topics=mallet_model.num_topics,
alpha=mallet_model.alpha, eta=0, iterations=1000,
gamma_threshold=0.001,
dtype=np.float32
)
model_gensim.sync_state()
model_gensim.state.sstats = mallet_model.wordtopics
return model_gensim
def coherence_score(model, texts, dictionary, coherence='c_v'):
coherence_model_ldamallet = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence=coherence)
coherence_ldamallet = coherence_model_ldamallet.get_coherence()
return coherence_ldamallet
def summary(model, corpus, texts):
'''
:param model: Gensim LDA model
:param corpus: corpus that input value fo LDA model
:param texts: texts that input value of LDA model
:param num_topics: number of topics
:return: dataframe df
df.columns = ['Keywords', 'Num_Documents', 'Perc_Documents'], descending sort
'''
df = pd.DataFrame()
df_topic_sents_keywords = pd.DataFrame()
num_topics = model.num_topics
# df_topic_sents_keywords = format_topics_sentences(ldamodel=model, corpus=corpus, texts=texts)
# Get main topic in each document
for i, row in enumerate(model[corpus]):
row = sorted(row, key=lambda x: (x[1]), reverse=True)
# Get the Dominant topic, Perc Contribution and Keywords for each document
for j, (topic_num, prop_topic) in enumerate(row):
if j == 0: # => dominant topic
wp = model.show_topic(topic_num)
topic_keywords = ", ".join([word for word, prop in wp])
df_topic_sents_keywords = df_topic_sents_keywords.append(
pd.Series([int(topic_num), topic_keywords]), ignore_index=True)
else:
break
df_topic_sents_keywords.columns = ['Dominant_Topic', 'Topic_Keywords']
# Number of Documents for Each Topic
topic_counts = df_topic_sents_keywords['Dominant_Topic'].value_counts()
# Percentage of Documents for Each Topic
topic_contribution = round(topic_counts / topic_counts.sum(), 4)
for topic_num in range(num_topics):
wp = model.show_topic(topic_num)
topic_keywords = ", ".join([word for word, prop in wp])
df = df.append(
pd.Series([topic_num, topic_keywords]), ignore_index=True)
# change columns name
df.columns = ['Dominant_Topic', 'Keywords']
# Number of Documents for Each Topic
topic_counts = df_topic_sents_keywords['Dominant_Topic'].value_counts()
# Percentage of Documents for Each Topic
topic_contribution = round(topic_counts / topic_counts.sum(), 4)
# Concatenate Column wise
df = pd.concat([df, topic_counts, topic_contribution], axis=1)
# change columns name
df.columns = ['Dominant_Topic', 'Keywords', 'Num_Documents', 'Perc_Documents']
# del unnecessary col
df = df.drop(['Dominant_Topic'], axis=1)
# sort by the number of documents belonging to
df = df.sort_values(by=['Num_Documents'], ascending=False, ignore_index=True)
return df | [] |
2024-01-10 | codegod100/ai | db.py | import lancedb
from langchain.vectorstores import LanceDB
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
db = lancedb.connect(".lance-data")
path = "/workspace/flancian"
loader = DirectoryLoader(path, glob="**/*.md")
data = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(data)
embeddings = OpenAIEmbeddings()
table = db.create_table(
"journal",
data=[
{
"vector": embeddings.embed_query("Hello World"),
"text": "Hello World",
"id": "1",
"source": "test"
}
],
mode="overwrite",
)
LanceDB.from_documents(documents, embeddings, connection=table)
| [] |
2024-01-10 | codegod100/ai | fire.py | from langchain.chat_models.fireworks import ChatFireworks
from langchain.schema import SystemMessage, HumanMessage
chat = ChatFireworks(model="accounts/fireworks/models/mistral-7b")
system_message = SystemMessage(content="You are to chat with the user.")
human_message = HumanMessage(content="Who are you?")
res = chat([system_message, human_message])
print(res)
| [
"Who are you?",
"You are to chat with the user."
] |
2024-01-10 | codegod100/ai | nobrowser.py | from langchain.document_loaders import BrowserlessLoader
import os
token = os.environ["BROWSERLESS_API_TOKEN"]
loader = BrowserlessLoader(
api_token=token,
urls=[
"https://anagora.org/vera",
],
text_content=True,
)
documents = loader.load()
print(documents[0].page_content[:1000])
| [] |
2024-01-10 | ccasazza22/langchain | libs~experimental~langchain_experimental~comprehend_moderation~pii.py | import asyncio
from typing import Any, Dict, Optional
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
ModerationPiiError,
)
class ComprehendPII:
def __init__(
self,
client: Any,
callback: Optional[Any] = None,
unique_id: Optional[str] = None,
chain_id: Optional[str] = None,
) -> None:
self.client = client
self.moderation_beacon = {
"moderation_chain_id": chain_id,
"moderation_type": "PII",
"moderation_status": "LABELS_NOT_FOUND",
}
self.callback = callback
self.unique_id = unique_id
def validate(self, prompt_value: str, config: Any = None) -> str:
redact = config.get("redact")
return (
self._detect_pii(prompt_value=prompt_value, config=config)
if redact
else self._contains_pii(prompt_value=prompt_value, config=config)
)
def _contains_pii(self, prompt_value: str, config: Any = None) -> str:
"""
Checks for Personally Identifiable Information (PII) labels above a
specified threshold. Uses Amazon Comprehend Contains PII Entities API. See -
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ContainsPiiEntities.html
Args:
prompt_value (str): The input text to be checked for PII labels.
config (Dict[str, Any]): Configuration for PII check and actions.
Returns:
str: the original prompt
Note:
- The provided client should be initialized with valid AWS credentials.
"""
pii_identified = self.client.contains_pii_entities(
Text=prompt_value, LanguageCode="en"
)
if self.callback and self.callback.pii_callback:
self.moderation_beacon["moderation_input"] = prompt_value
self.moderation_beacon["moderation_output"] = pii_identified
threshold = config.get("threshold")
pii_labels = config.get("labels")
pii_found = False
for entity in pii_identified["Labels"]:
if (entity["Score"] >= threshold and entity["Name"] in pii_labels) or (
entity["Score"] >= threshold and not pii_labels
):
pii_found = True
break
if self.callback and self.callback.pii_callback:
if pii_found:
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
asyncio.create_task(
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
)
if pii_found:
raise ModerationPiiError
return prompt_value
def _detect_pii(self, prompt_value: str, config: Optional[Dict[str, Any]]) -> str:
"""
Detects and handles Personally Identifiable Information (PII) entities in the
given prompt text using Amazon Comprehend's detect_pii_entities API. The
function provides options to redact or stop processing based on the identified
PII entities and a provided configuration. Uses Amazon Comprehend Detect PII
Entities API.
Args:
prompt_value (str): The input text to be checked for PII entities.
config (Dict[str, Any]): A configuration specifying how to handle
PII entities.
Returns:
str: The processed prompt text with redacted PII entities or raised
exceptions.
Raises:
ValueError: If the prompt contains configured PII entities for
stopping processing.
Note:
- If PII is not found in the prompt, the original prompt is returned.
- The client should be initialized with valid AWS credentials.
"""
pii_identified = self.client.detect_pii_entities(
Text=prompt_value, LanguageCode="en"
)
if self.callback and self.callback.pii_callback:
self.moderation_beacon["moderation_input"] = prompt_value
self.moderation_beacon["moderation_output"] = pii_identified
if (pii_identified["Entities"]) == []:
if self.callback and self.callback.pii_callback:
asyncio.create_task(
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
)
return prompt_value
pii_found = False
if not config and pii_identified["Entities"]:
for entity in pii_identified["Entities"]:
if entity["Score"] >= 0.5:
pii_found = True
break
if self.callback and self.callback.pii_callback:
if pii_found:
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
asyncio.create_task(
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
)
if pii_found:
raise ModerationPiiError
else:
threshold = config.get("threshold") # type: ignore
pii_labels = config.get("labels") # type: ignore
mask_marker = config.get("mask_character") # type: ignore
pii_found = False
for entity in pii_identified["Entities"]:
if (
pii_labels
and entity["Type"] in pii_labels
and entity["Score"] >= threshold
) or (not pii_labels and entity["Score"] >= threshold):
pii_found = True
char_offset_begin = entity["BeginOffset"]
char_offset_end = entity["EndOffset"]
mask_length = char_offset_end - char_offset_begin + 1
masked_part = mask_marker * mask_length
prompt_value = (
prompt_value[:char_offset_begin]
+ masked_part
+ prompt_value[char_offset_end + 1 :]
)
if self.callback and self.callback.pii_callback:
if pii_found:
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
asyncio.create_task(
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
)
return prompt_value
| [] |
2024-01-10 | ccasazza22/langchain | libs~langchain~tests~integration_tests~vectorstores~test_xata.py | """Test Xata vector store functionality.
Before running this test, please create a Xata database by following
the instructions from:
https://python.langchain.com/docs/integrations/vectorstores/xata
"""
import os
from langchain.docstore.document import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores.xata import XataVectorStore
class TestXata:
@classmethod
def setup_class(cls) -> None:
assert os.getenv("XATA_API_KEY"), "XATA_API_KEY environment variable is not set"
assert os.getenv("XATA_DB_URL"), "XATA_DB_URL environment variable is not set"
def test_similarity_search_without_metadata(
self, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end constructions and search without metadata."""
texts = ["foo", "bar", "baz"]
docsearch = XataVectorStore.from_texts(
api_key=os.getenv("XATA_API_KEY"),
db_url=os.getenv("XATA_DB_URL"),
texts=texts,
embedding=embedding_openai,
)
docsearch.wait_for_indexing(ndocs=3)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
docsearch.delete(delete_all=True)
def test_similarity_search_with_metadata(
self, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and search with a metadata filter.
This test requires a column named "a" of type integer to be present
in the Xata table."""
texts = ["foo", "foo", "foo"]
metadatas = [{"a": i} for i in range(len(texts))]
docsearch = XataVectorStore.from_texts(
api_key=os.getenv("XATA_API_KEY"),
db_url=os.getenv("XATA_DB_URL"),
texts=texts,
embedding=embedding_openai,
metadatas=metadatas,
)
docsearch.wait_for_indexing(ndocs=3)
output = docsearch.similarity_search("foo", k=1, filter={"a": 1})
assert output == [Document(page_content="foo", metadata={"a": 1})]
docsearch.delete(delete_all=True)
| [] |
2024-01-10 | ccasazza22/langchain | libs~experimental~langchain_experimental~comprehend_moderation~toxicity.py | import asyncio
import importlib
from typing import Any, List, Optional
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
ModerationToxicityError,
)
class ComprehendToxicity:
def __init__(
self,
client: Any,
callback: Optional[Any] = None,
unique_id: Optional[str] = None,
chain_id: Optional[str] = None,
) -> None:
self.client = client
self.moderation_beacon = {
"moderation_chain_id": chain_id,
"moderation_type": "Toxicity",
"moderation_status": "LABELS_NOT_FOUND",
}
self.callback = callback
self.unique_id = unique_id
def _toxicity_init_validate(self, max_size: int) -> Any:
"""
Validate and initialize toxicity processing configuration.
Args:
max_size (int): Maximum sentence size defined in the
configuration object.
Raises:
Exception: If the maximum sentence size exceeds the 5KB limit.
Note:
This function ensures that the NLTK punkt tokenizer is downloaded
if not already present.
Returns:
None
"""
if max_size > 1024 * 5:
raise Exception("The sentence length should not exceed 5KB.")
try:
nltk = importlib.import_module("nltk")
nltk.data.find("tokenizers/punkt")
return nltk
except ImportError:
raise ModuleNotFoundError(
"Could not import nltk python package. "
"Please install it with `pip install nltk`."
)
except LookupError:
nltk.download("punkt")
def _split_paragraph(
self, prompt_value: str, max_size: int = 1024 * 4
) -> List[List[str]]:
"""
Split a paragraph into chunks of sentences, respecting the maximum size limit.
Args:
paragraph (str): The input paragraph to be split into chunks.
max_size (int, optional): The maximum size limit in bytes for
each chunk. Defaults to 1024.
Returns:
List[List[str]]: A list of chunks, where each chunk is a list
of sentences.
Note:
This function validates the maximum sentence size based on service
limits using the 'toxicity_init_validate' function. It uses the NLTK
sentence tokenizer to split the paragraph into sentences.
Example:
paragraph = "This is a sample paragraph. It
contains multiple sentences. ..."
chunks = split_paragraph(paragraph, max_size=2048)
"""
# validate max. sentence size based on Service limits
nltk = self._toxicity_init_validate(max_size)
sentences = nltk.sent_tokenize(prompt_value)
chunks = list() # type: ignore
current_chunk = list() # type: ignore
current_size = 0
for sentence in sentences:
sentence_size = len(sentence.encode("utf-8"))
# If adding a new sentence exceeds max_size
# or current_chunk has 10 sentences, start a new chunk
if (current_size + sentence_size > max_size) or (len(current_chunk) >= 10):
if current_chunk: # Avoid appending empty chunks
chunks.append(current_chunk)
current_chunk = []
current_size = 0
current_chunk.append(sentence)
current_size += sentence_size
# Add any remaining sentences
if current_chunk:
chunks.append(current_chunk)
return chunks
def validate(self, prompt_value: str, config: Any = None) -> str:
"""
Check the toxicity of a given text prompt using AWS
Comprehend service and apply actions based on configuration.
Args:
prompt_value (str): The text content to be checked for toxicity.
config (Dict[str, Any]): Configuration for toxicity checks and actions.
Returns:
str: The original prompt_value if allowed or no toxicity found.
Raises:
ValueError: If the prompt contains toxic labels and cannot be
processed based on the configuration.
"""
chunks = self._split_paragraph(prompt_value=prompt_value)
for sentence_list in chunks:
segments = [{"Text": sentence} for sentence in sentence_list]
response = self.client.detect_toxic_content(
TextSegments=segments, LanguageCode="en"
)
if self.callback and self.callback.toxicity_callback:
self.moderation_beacon["moderation_input"] = segments # type: ignore
self.moderation_beacon["moderation_output"] = response
toxicity_found = False
threshold = config.get("threshold")
toxicity_labels = config.get("labels")
if not toxicity_labels:
for item in response["ResultList"]:
for label in item["Labels"]:
if label["Score"] >= threshold:
toxicity_found = True
break
else:
for item in response["ResultList"]:
for label in item["Labels"]:
if (
label["Name"] in toxicity_labels
and label["Score"] >= threshold
):
toxicity_found = True
break
if self.callback and self.callback.toxicity_callback:
if toxicity_found:
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
asyncio.create_task(
self.callback.on_after_toxicity(
self.moderation_beacon, self.unique_id
)
)
if toxicity_found:
raise ModerationToxicityError
return prompt_value
| [] |
2024-01-10 | ccasazza22/langchain | libs~langchain~langchain~memory~readonly.py | from typing import Any, Dict, List
from langchain.schema import BaseMemory
class ReadOnlySharedMemory(BaseMemory):
"""A memory wrapper that is read-only and cannot be changed."""
memory: BaseMemory
@property
def memory_variables(self) -> List[str]:
"""Return memory variables."""
return self.memory.memory_variables
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
"""Load memory variables from memory."""
return self.memory.load_memory_variables(inputs)
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Nothing should be saved or changed"""
pass
def clear(self) -> None:
"""Nothing to clear, got a memory like a vault."""
pass
| [] |
2024-01-10 | afiqmuzaffar/datasets | datasets~openwebtext~openwebtext.py | # coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Open WebText Corpus"""
import os
import re
from itertools import chain
import datasets
_CITATION = """\
@misc{Gokaslan2019OpenWeb,
title={OpenWebText Corpus},
author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex},
howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}},
year={2019}
}
"""
_DESCRIPTION = """\
An open-source replication of the WebText dataset from OpenAI.
"""
_URL = "https://zenodo.org/record/3834942/files/openwebtext.tar.xz"
class Openwebtext(datasets.GeneratorBasedBuilder):
"""The Open WebText dataset."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="plain_text",
description="Plain text",
version=datasets.Version("1.0.0"),
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({"text": datasets.Value("string")}),
homepage="https://skylion007.github.io/OpenWebTextCorpus/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(_URL)
owt_dir = os.path.join(dl_dir, "openwebtext")
subset_xzs = [
os.path.join(owt_dir, file_name)
for file_name in sorted(os.listdir(owt_dir))
if file_name.endswith("xz") # filter out ...xz.lock
]
ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75))
nested_txt_files = [
[
os.path.join(ex_dir, txt_file_name)
for txt_file_name in sorted(os.listdir(ex_dir))
if txt_file_name.endswith("txt")
]
for ex_dir in ex_dirs
]
txt_files = chain(*nested_txt_files)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}),
]
def _generate_examples(self, txt_files):
"""Yields examples."""
for idx, filepath in enumerate(txt_files):
with open(filepath, encoding="utf-8") as f:
yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()}
| [] |
2024-01-10 | khushpatel2002/anything-llm | collector~scripts~link.py | import os, json, tempfile
from urllib.parse import urlparse
from requests_html import HTMLSession
from langchain.document_loaders import UnstructuredHTMLLoader
from .link_utils import append_meta
from .utils import tokenize, ada_v2_cost
# Example Channel URL https://tim.blog/2022/08/09/nft-insider-trading-policy/
def link():
print("[NOTICE]: The first time running this process it will download supporting libraries.\n\n")
fqdn_link = input("Paste in the URL of an online article or blog: ")
if(len(fqdn_link) == 0):
print("Invalid URL!")
exit(1)
session = HTMLSession()
req = session.get(fqdn_link)
if(req.ok == False):
print("Could not reach this url!")
exit(1)
req.html.render()
full_text = None
with tempfile.NamedTemporaryFile(mode = "w") as tmp:
tmp.write(req.html.html)
tmp.seek(0)
loader = UnstructuredHTMLLoader(tmp.name)
data = loader.load()[0]
full_text = data.page_content
tmp.close()
link = append_meta(req, full_text, True)
if(len(full_text) > 0):
source = urlparse(req.url)
output_filename = f"website-{source.netloc}-{source.path.replace('/','_')}.json"
output_path = f"./outputs/website-logs"
transaction_output_filename = f"article-{source.path.replace('/','_')}.json"
transaction_output_dir = f"../server/storage/documents/website-{source.netloc}"
if os.path.isdir(output_path) == False:
os.makedirs(output_path)
if os.path.isdir(transaction_output_dir) == False:
os.makedirs(transaction_output_dir)
full_text = append_meta(req, full_text)
tokenCount = len(tokenize(full_text))
link['pageContent'] = full_text
link['token_count_estimate'] = tokenCount
with open(f"{output_path}/{output_filename}", 'w', encoding='utf-8') as file:
json.dump(link, file, ensure_ascii=True, indent=4)
with open(f"{transaction_output_dir}/{transaction_output_filename}", 'w', encoding='utf-8') as file:
json.dump(link, file, ensure_ascii=True, indent=4)
else:
print("Could not parse any meaningful data from this link or url.")
exit(1)
print(f"\n\n[Success]: article or link content fetched!")
print(f"////////////////////////////")
print(f"Your estimated cost to embed this data using OpenAI's text-embedding-ada-002 model at $0.0004 / 1K tokens will cost {ada_v2_cost(tokenCount)} using {tokenCount} tokens.")
print(f"////////////////////////////")
exit(0)
def links():
links = []
prompt = "Paste in the URL of an online article or blog: "
done = False
while(done == False):
new_link = input(prompt)
if(len(new_link) == 0):
done = True
links = [*set(links)]
continue
links.append(new_link)
prompt = f"\n{len(links)} links in queue. Submit an empty value when done pasting in links to execute collection.\nPaste in the next URL of an online article or blog: "
if(len(links) == 0):
print("No valid links provided!")
exit(1)
parse_links(links)
# parse links from array
def parse_links(links):
totalTokens = 0
for link in links:
print(f"Working on {link}...")
session = HTMLSession()
req = session.get(link, timeout=20)
if not req.ok:
print(f"Could not reach {link} - skipping!")
continue
req.html.render(timeout=10)
full_text = None
with tempfile.NamedTemporaryFile(mode="w") as tmp:
tmp.write(req.html.html)
tmp.seek(0)
loader = UnstructuredHTMLLoader(tmp.name)
data = loader.load()[0]
full_text = data.page_content
tmp.close()
link = append_meta(req, full_text, True)
if len(full_text) > 0:
source = urlparse(req.url)
output_filename = f"website-{source.netloc}-{source.path.replace('/','_')}.json"
output_path = f"./outputs/website-logs"
transaction_output_filename = f"article-{source.path.replace('/','_')}.json"
transaction_output_dir = f"../server/storage/documents/website-{source.netloc}"
if not os.path.isdir(output_path):
os.makedirs(output_path)
if not os.path.isdir(transaction_output_dir):
os.makedirs(transaction_output_dir)
full_text = append_meta(req, full_text)
tokenCount = len(tokenize(full_text))
link['pageContent'] = full_text
link['token_count_estimate'] = tokenCount
totalTokens += tokenCount
with open(f"{output_path}/{output_filename}", 'w', encoding='utf-8') as file:
json.dump(link, file, ensure_ascii=True, indent=4)
with open(f"{transaction_output_dir}/{transaction_output_filename}", 'w', encoding='utf-8') as file:
json.dump(link, file, ensure_ascii=True, indent=4)
req.session.close()
else:
print(f"Could not parse any meaningful data from {link}.")
continue
print(f"\n\n[Success]: {len(links)} article or link contents fetched!")
print(f"////////////////////////////")
print(f"Your estimated cost to embed this data using OpenAI's text-embedding-ada-002 model at $0.0004 / 1K tokens will cost {ada_v2_cost(totalTokens)} using {totalTokens} tokens.")
print(f"////////////////////////////") | [
"\n1 links in queue. Submit an empty value when done pasting in links to execute collection.\nPaste in the next URL of an online article or blog: ",
"Paste in the URL of an online article or blog: "
] |
2024-01-10 | microsoft/LLMLingua | llmlingua~prompt_compressor.py | # Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import bisect
from collections import defaultdict
from typing import List
import numpy as np
import torch
import nltk
import tiktoken
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
class PromptCompressor:
def __init__(
self,
model_name: str = "NousResearch/Llama-2-7b-hf",
device_map: str = "cuda",
model_config: dict = {},
open_api_config: dict = {},
):
self.load_model(model_name, device_map, model_config)
self.retrieval_model = None
self.retrieval_model_name = None
self.open_api_config = open_api_config
self.cache_bos_num = 10
self.prefix_bos_num = 100
def load_model(
self, model_name: str, device_map: str = "cuda", model_config: dict = {}
):
trust_remote_code = model_config.get("trust_remote_code", True)
if "trust_remote_code" not in model_config:
model_config["trust_remote_code"] = trust_remote_code
config = AutoConfig.from_pretrained(
model_name, trust_remote_code=trust_remote_code
)
tokenizer = AutoTokenizer.from_pretrained(
model_name, trust_remote_code=trust_remote_code
)
if model_config.get("pad_to_left", True):
tokenizer.padding_side = "left"
tokenizer.pad_token_id = (
config.pad_token_id if config.pad_token_id else tokenizer.eos_token_id
)
self.device = (
device_map
if any(key in device_map for key in ["cuda", "cpu", "mps"])
else "cuda"
)
if "cuda" in device_map or "cpu" in device_map:
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto" if device_map == "cuda" else torch.float32,
device_map=device_map,
config=config,
ignore_mismatched_sizes=True,
**model_config,
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map=device_map,
torch_dtype="auto",
pad_token_id=tokenizer.pad_token_id,
offload_folder="/tmp/offload",
offload_state_dict=True,
cache_dir="/tmp/cache",
**model_config,
)
self.tokenizer = tokenizer
self.model = model
self.context_idxs = []
self.max_position_embeddings = config.max_position_embeddings
def get_ppl(
self,
text: str,
granularity: str = "sentence",
input_ids=None,
attention_mask=None,
past_key_values=None,
return_kv=False,
end=None,
condition_mode: str = "none",
condition_pos_id: int = 0,
):
if input_ids is None:
tokenized_text = self.tokenizer(text, return_tensors="pt")
input_ids = tokenized_text["input_ids"].to(self.device)
attention_mask = tokenized_text["attention_mask"].to(self.device)
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
else:
past_length = 0
if end is None:
end = input_ids.shape[1]
end = min(end, past_length + self.max_position_embeddings)
with torch.no_grad():
response = self.model(
input_ids[:, past_length:end],
attention_mask=attention_mask[:, :end],
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = response.past_key_values
shift_logits = response.logits[..., :-1, :].contiguous()
shift_labels = input_ids[..., past_length + 1 : end].contiguous()
# Flatten the tokens
active = (attention_mask[:, past_length:end] == 1)[..., :-1].view(-1)
active_logits = shift_logits.view(-1, shift_logits.size(-1))[active]
active_labels = shift_labels.view(-1)[active]
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
loss = loss_fct(active_logits, active_labels)
if condition_mode == "before":
loss = loss[:condition_pos_id]
elif condition_mode == "after":
loss = loss[condition_pos_id:]
res = loss.mean() if granularity == "sentence" else loss
return (res, past_key_values) if return_kv else res
def __call__(self, *args, **kwargs):
return self.compress_prompt(*args, **kwargs)
def compress_prompt(
self,
context: List[str],
instruction: str = "",
question: str = "",
ratio: float = 0.5,
target_token: float = -1,
iterative_size: int = 200,
force_context_ids: List[int] = None,
force_context_number: int = None,
use_sentence_level_filter: bool = False,
use_context_level_filter: bool = True,
use_token_level_filter: bool = True,
keep_split: bool = False,
keep_first_sentence: int = 0,
keep_last_sentence: int = 0,
keep_sentence_number: int = 0,
high_priority_bonus: int = 100,
context_budget: str = "+100",
token_budget_ratio: float = 1.4,
condition_in_question: str = "none",
reorder_context: str = "original",
dynamic_context_compression_ratio: float = 0.0,
condition_compare: bool = False,
add_instruction: bool = False,
rank_method: str = "llmlingua",
concate_question: bool = True,
):
if not context:
context = [" "]
if isinstance(context, str):
context = [context]
assert not (
rank_method == "longllmlingua" and not question
), "In the LongLLMLingua, it is necessary to set a question."
if condition_compare and "_condition" not in condition_in_question:
condition_in_question += "_condition"
if rank_method == "longllmlingua":
if condition_in_question == "none":
condition_in_question = "after"
elif rank_method == "llmlingua":
condition_in_question = (
"none"
if "_condition" not in condition_in_question
else "none_condition"
)
origin_tokens = len(
encoding.encode("\n\n".join([instruction] + context + [question]).strip())
)
context_tokens_length = [self.get_token_length(c) for c in context]
instruction_tokens_length, question_tokens_length = self.get_token_length(
instruction
), self.get_token_length(question)
if target_token == -1:
target_token = (
(
instruction_tokens_length
+ question_tokens_length
+ sum(context_tokens_length)
)
* (1 - ratio)
- instruction_tokens_length
- (question_tokens_length if concate_question else 0)
)
condition_flag = "_condition" in condition_in_question
condition_in_question = condition_in_question.replace("_condition", "")
if len(context) > 1 and use_context_level_filter:
context, dynamic_ratio = self.control_context_budget(
context,
context_tokens_length,
target_token,
force_context_ids,
force_context_number,
question,
condition_in_question,
reorder_context=reorder_context,
dynamic_context_compression_ratio=dynamic_context_compression_ratio,
rank_method=rank_method,
context_budget=context_budget,
)
else:
dynamic_ratio = [0.0] * len(context)
if use_sentence_level_filter:
context = self.control_sentence_budget(
context,
target_token,
keep_first_sentence=keep_first_sentence,
keep_last_sentence=keep_last_sentence,
keep_sentence_number=keep_sentence_number,
high_priority_bonus=high_priority_bonus,
token_budget_ratio=token_budget_ratio,
question=question,
condition_in_question=condition_in_question,
rank_method=rank_method,
)
if condition_flag:
prefix = question + "\n\n" + instruction if add_instruction else question
if (
self.get_token_length(prefix) + 2 + iterative_size * 2
> self.max_position_embeddings
):
tokens = self.tokenizer(prefix, add_special_tokens=False).input_ids
prefix = self.tokenizer.decode(
tokens[: self.prefix_bos_num]
+ tokens[
len(tokens)
- self.max_position_embeddings
+ 2
+ self.prefix_bos_num
+ 2 * iterative_size :
]
)
start = self.get_token_length(prefix) + 2
context = [prefix] + context
else:
start = 0
if use_token_level_filter:
context = self.iterative_compress_prompt(
context,
target_token,
iterative_size=iterative_size,
keep_split=keep_split,
start=start,
dynamic_ratio=dynamic_ratio,
condition_compare=condition_compare,
)
compressed_prompt = (
self.tokenizer.batch_decode(context[0])[0]
.replace("<s> ", "")
.replace("<s>", "")
)
else:
compressed_prompt = "\n\n".join(context)
res = []
if instruction:
res.append(instruction)
if compressed_prompt.strip():
res.append(compressed_prompt)
if question and concate_question:
res.append(question)
compressed_prompt = "\n\n".join(res)
compressed_tokens = len(encoding.encode(compressed_prompt))
saving = (origin_tokens - compressed_tokens) * 0.06 / 1000
return {
"compressed_prompt": compressed_prompt,
"origin_tokens": origin_tokens,
"compressed_tokens": compressed_tokens,
"ratio": f"{origin_tokens/compressed_tokens:.1f}x",
"saving": f", Saving ${saving:.1f} in GPT-4.",
}
def get_token_length(self, text: str, add_special_tokens: bool = True):
return len(
self.tokenizer(text, add_special_tokens=add_special_tokens).input_ids
)
def get_condition_ppl(
self,
text: str,
question: str,
condition_in_question: str = "none",
granularity: str = "sentence",
):
if condition_in_question == "none":
return self.get_ppl(text, granularity=granularity)
elif condition_in_question == "before":
return self.get_ppl(
question + text,
granularity=granularity,
condition_mode="after",
condition_pos_id=self.get_token_length(question) - 1,
)
elif condition_in_question == "after":
return self.get_ppl(
text + question,
granularity=granularity,
condition_mode="after",
condition_pos_id=self.get_token_length(text) - 1,
)
def get_dynamic_compression_ratio(
self,
context: list,
target_token: float,
iterative_size: int,
dynamic_ratio: list,
start: int,
):
def get_ratio(base: float, delta: float):
return max(min(1, base + delta), 0)
context_length = [self.get_token_length(ii, False) + 2 for ii in context]
if start:
context_length = context_length[1:]
tau = target_token / (sum(context_length) + 1)
res, idx, last, last_target = [], 0, 1, []
while idx < len(context_length):
if last + context_length[idx] >= iterative_size:
last_target.append(
(iterative_size - last, get_ratio(tau, dynamic_ratio[idx]))
)
res.append(last_target)
last = last + context_length[idx] - iterative_size
if last > iterative_size:
k = last // iterative_size
res.extend(
[[(iterative_size, get_ratio(tau, dynamic_ratio[idx]))]] * k
)
last -= k * iterative_size
last_target = (
[(last, get_ratio(tau, dynamic_ratio[idx]))] if last else []
)
else:
last += context_length[idx]
last_target.append(
(context_length[idx], get_ratio(tau, dynamic_ratio[idx]))
)
idx += 1
if last_target:
res.append(last_target)
return res
def control_context_budget(
self,
context: List[str],
context_tokens_length: List[int],
target_token: float,
force_context_ids: List[int] = None,
force_context_number: int = None,
question: str = "",
condition_in_question: str = "none",
reorder_context: str = "original",
dynamic_context_compression_ratio: float = 0.0,
rank_method: str = "longllmlingua",
context_budget: str = "+100",
):
if force_context_ids is not None:
return [context[ii] for ii in force_context_ids]
demostrations_sort = self.get_rank_results(
context,
question,
rank_method,
condition_in_question,
context_tokens_length,
)
if target_token < 0:
target_token = 100
target_token = eval("target_token" + context_budget)
res = []
used = force_context_ids if force_context_ids is not None else []
self.context_idxs.append([x for idx, (x, _) in enumerate(demostrations_sort)])
for idx, _ in demostrations_sort:
if idx >= len(context_tokens_length):
continue
target_token -= context_tokens_length[idx]
if idx not in used:
used.append(idx)
if target_token < 0 or (
force_context_number is not None and len(res) >= force_context_number
):
break
original_used = used
if reorder_context == "original":
used = sorted(used)
elif reorder_context == "two_stage":
l, r = [_ for idx, _ in enumerate(used) if idx % 2 == 0], [
_ for idx, _ in enumerate(used) if idx % 2 == 1
]
used = l + r[::-1]
if dynamic_context_compression_ratio > 0:
N = len(used)
dynamic_ratio = [
i * (abs(dynamic_context_compression_ratio) / (N - 1)) if N > 1 else 0
for i in range(-(N - 1), N, 2)
][::-1]
dynamic_ratio_map = {i: j for i, j in zip(original_used, dynamic_ratio)}
dynamic_ratio = [dynamic_ratio_map[i] for i in used]
else:
dynamic_ratio = [0.0] * len(used)
res = [context[idx] for idx in used if idx < len(context)]
return res, dynamic_ratio
def control_sentence_budget(
self,
context: List[str],
target_token: float,
keep_first_sentence: int = 0,
keep_last_sentence: int = 0,
keep_sentence_number: int = 0,
high_priority_bonus: int = 100,
token_budget_ratio: float = 1.4,
question: str = "",
condition_in_question: str = "none",
rank_method: str = "longllmlingua",
):
def keep_sentence(dem_idx: int, sent_keep: int):
idxs = sorted(dem_g[dem_idx], key=lambda x: sentence_ppl[x])[:sent_keep]
for idx in idxs:
sentence_ppl[idx] += high_priority_bonus
sentences = [nltk.sent_tokenize(c) for c in context]
dem_g, s2de, idx = defaultdict(set), defaultdict(int), 0
for idx_d, s in enumerate(sentences):
for _ in s:
dem_g[idx_d].add(idx)
s2de[idx] = idx_d
idx += 1
context_sentences = [s for ii in sentences for s in ii]
sentence_tokens_length = [
self.get_token_length(sentence) for sentence in context_sentences
]
N = len(context_sentences)
flags = list(range(len(context_sentences)))
if len(sentence_tokens_length) == 1:
return context
if rank_method == "longllmlingua":
sentence_ppl = [
self.get_condition_ppl(sentence, question, condition_in_question)
.cpu()
.numpy()
.item()
for sentence in context_sentences
]
if keep_first_sentence:
sentence_ppl[:keep_first_sentence] = [
ii + high_priority_bonus
for ii in sentence_ppl[:keep_first_sentence]
]
if keep_last_sentence:
sentence_ppl[-keep_last_sentence:] = [
ii + high_priority_bonus
for ii in sentence_ppl[-keep_last_sentence:]
]
if keep_sentence_number:
for dem_idx in range(len(sentences)):
keep_sentence(dem_idx, keep_sentence_number)
sort_direct = -1 if condition_in_question == "none" else 1
sent_sort = sorted(
enumerate(sentence_ppl), key=lambda x: sort_direct * x[1]
)
else:
sent_sort = self.get_rank_results(
context_sentences,
question,
rank_method,
condition_in_question,
[0] * len(context_sentences),
)
sentence_flags = [False] * N
if target_token < 0:
target_token = 100
target_token *= token_budget_ratio
res = []
for idx, _ in sent_sort:
idx = flags[idx]
target_token -= sentence_tokens_length[idx]
sentence_flags[idx] = True
if target_token < 0:
break
idx = 0
res = []
for s in sentences:
tmp = [jj for ii, jj in enumerate(s) if sentence_flags[idx + ii]]
res.append("\n".join(tmp))
idx += len(s)
return res
def get_compressed_input(
self,
loss,
input_ids,
attention_mask,
end=200,
iterative_size=200,
threshold=0.5,
keep_flag=None,
split_token_id: int = 13,
start: int = 0,
self_loss=None,
self_input_ids=None,
self_attention_mask=None,
):
if self_loss is not None:
need_idx = torch.concat(
[
loss[:start] > 0,
self_loss[: loss[start:].shape[0]] - loss[start:] > threshold,
loss[:1] > 0,
]
)
else:
need_idx = torch.concat([loss > threshold, loss[:1] > 0])
need_idx[end:] = 1
need_idx[: end - iterative_size] = 1
loss = loss[need_idx[:-1]]
if self_loss is not None:
if need_idx.shape[0] < self_loss.shape[0] + start + 1:
need_idx = torch.cat(
[
need_idx,
torch.ones(
self_loss.shape[0] - need_idx.shape[0] + start + 1,
dtype=torch.bool,
).to(need_idx.device),
]
)
self_loss = self_loss[need_idx[start:-1]]
if need_idx.shape[0] < input_ids.shape[1]:
need_idx = torch.cat(
[
need_idx,
torch.ones(
input_ids.shape[1] - need_idx.shape[0], dtype=torch.bool
).to(need_idx.device),
]
)
elif need_idx.shape[0] > input_ids.shape[1]:
need_idx = need_idx[: input_ids.shape[1]]
if keep_flag is not None:
need_idx[keep_flag == 1] = 1
last = -1
if keep_flag is not None:
for ii in range(max(0, end - iterative_size), end):
if need_idx[ii] != 1:
continue
now = input_ids[0][ii].detach().cpu().item()
if (
now == split_token_id
and last == split_token_id
and keep_flag[ii].detach().cpu().item() == 0
):
need_idx[ii] = 0
else:
last = now
compressed_input_ids = input_ids[attention_mask == 1][need_idx].unsqueeze(0)
compressed_attention_mask = attention_mask[attention_mask == 1][
need_idx
].unsqueeze(0)
if self_loss is not None:
self_compressed_input_ids = self_input_ids[self_attention_mask == 1][
need_idx[start:]
].unsqueeze(0)
self_compressed_attention_mask = self_attention_mask[
self_attention_mask == 1
][need_idx[start:]].unsqueeze(0)
else:
self_compressed_input_ids, self_compressed_attention_mask = None, None
if keep_flag is not None:
if len(keep_flag) > len(need_idx):
keep_flag = torch.cat(
[
keep_flag[:start],
keep_flag[start : len(need_idx) + start][need_idx],
keep_flag[start + len(need_idx) :],
]
)
else:
keep_flag = keep_flag[need_idx]
end -= (need_idx[:end] == 0).sum()
return (
compressed_input_ids,
compressed_attention_mask,
keep_flag,
end,
loss,
self_loss,
self_compressed_input_ids,
self_compressed_attention_mask,
)
def get_estimate_threshold_base_distribution(
self, ppl, ratio: float, condition_flag: bool = False
):
ppl = ppl[ppl != 10000]
target_token = max(0, min(len(ppl) - 1, int(len(ppl) * ratio) - 1))
return (
ppl.sort(descending=not condition_flag)
.values[target_token]
.detach()
.cpu()
.item()
)
def iterative_compress_prompt(
self,
context: List[str],
target_token: float,
iterative_size: int = 200,
keep_split: bool = False,
split_token_id: int = 13,
start: int = 0,
dynamic_ratio: list = None,
condition_compare: bool = False,
):
iterative_ratios = self.get_dynamic_compression_ratio(
context, target_token, iterative_size, dynamic_ratio, start
)
context = "\n\n".join(context)
tokenized_text = self.tokenizer(context, return_tensors="pt")
input_ids = tokenized_text["input_ids"].to(self.device)
attention_mask = tokenized_text["attention_mask"].to(self.device)
N = (attention_mask == 1).sum()
compressed_input_ids, compressed_attention_mask = input_ids, attention_mask
if condition_compare:
self_input_ids, self_attention_mask = (
input_ids[:, start:],
attention_mask[:, start:],
)
self_compressed_input_ids, self_compressed_attention_mask = (
self_input_ids,
self_attention_mask,
)
end = min(iterative_size + start, compressed_input_ids.shape[1])
threshold, keep_flag = None, None
if keep_split:
input_ids_numpy = input_ids.cpu().detach().numpy()[0]
N = len(input_ids_numpy)
keep_flag = [
int(
(
ii > 0
and input_ids_numpy[ii] == split_token_id
and input_ids_numpy[ii - 1] == split_token_id
)
or (
ii < N - 1
and input_ids_numpy[ii] == split_token_id
and input_ids_numpy[ii + 1] == split_token_id
)
)
for ii in range(N)
]
keep_flag = torch.tensor(keep_flag).to(self.device)
past_key_values, past_loss, ready_end = None, None, 0
self_past_key_values, self_past_loss, self_ready_end = None, None, 0
pop_compressed_input_ids, pop_self_compressed_input_ids = None, None
idx = 0
while end <= compressed_input_ids.shape[1]:
if end > self.max_position_embeddings and past_key_values is not None:
# KV-Cache Compression
e, s = end - self.max_position_embeddings, self.cache_bos_num
if pop_compressed_input_ids is None:
pop_compressed_input_ids = compressed_input_ids[:, :e]
else:
pop_compressed_input_ids = torch.cat(
[pop_compressed_input_ids, compressed_input_ids[:, :e]], dim=-1
)
compressed_input_ids = compressed_input_ids[:, e:]
compressed_attention_mask = compressed_attention_mask[:, e:]
past_key_values = [
[
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
]
for k, v in past_key_values
]
if keep_flag is not None:
keep_flag = keep_flag[e:]
end, ready_end = end - e, ready_end - e
if condition_compare:
s = min(s, self_past_key_values[0][0].shape[2] - e)
self_ready_end -= e
if pop_self_compressed_input_ids is None:
pop_self_compressed_input_ids = self_compressed_input_ids[:, :e]
else:
pop_self_compressed_input_ids = torch.cat(
[
pop_self_compressed_input_ids,
self_compressed_input_ids[:, :e],
],
dim=-1,
)
self_compressed_input_ids = self_compressed_input_ids[:, e:]
self_compressed_attention_mask = self_compressed_attention_mask[
:, e:
]
self_past_key_values = [
[
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
]
for k, v in self_past_key_values
]
loss, past_key_values = self.get_ppl(
"",
"token",
compressed_input_ids,
compressed_attention_mask,
past_key_values=past_key_values,
return_kv=True,
end=end if idx else None,
)
if past_loss is not None:
if end - 1 > len(past_loss):
past_loss = torch.cat(
[past_loss, torch.zeros_like(loss)[: end - 1 - len(past_loss)]]
)
past_loss[ready_end : end - 1] = loss
loss = past_loss
else:
past_loss = loss
if idx:
past_key_values = [
[k[:, :, : end - iterative_size], v[:, :, : end - iterative_size]]
for k, v in past_key_values
]
else:
past_key_values = None
if condition_compare:
self_loss, self_past_key_values = self.get_ppl(
"",
"token",
self_compressed_input_ids,
self_compressed_attention_mask,
past_key_values=self_past_key_values,
return_kv=True,
end=end - start if idx else None,
)
if self_past_loss is not None:
if end - start - 1 > len(self_past_loss):
self_past_loss = torch.cat(
[
self_past_loss,
torch.zeros_like(self_loss)[
: end - 1 - start - len(self_past_loss)
],
]
)
self_past_loss[self_ready_end : end - start - 1] = self_loss
self_loss = self_past_loss
else:
self_past_loss = self_loss
if idx:
self_past_key_values = [
[
k[:, :, : end - iterative_size - start],
v[:, :, : end - iterative_size - start],
]
for k, v in self_past_key_values
]
else:
self_past_key_values = None
self_ready_end = (
end - start - iterative_size if not (start and idx == 0) else 0
)
ready_end = end - iterative_size if not (start and idx == 0) else 0
for delta_end, ratio in iterative_ratios[idx]:
loss = past_loss
if condition_compare:
self_loss = self_past_loss
threshold = self.get_estimate_threshold_base_distribution(
self_loss[: loss[start:].shape[0]] - loss[start:], ratio, False
)
else:
threshold = self.get_estimate_threshold_base_distribution(
loss, ratio, False
)
(
compressed_input_ids,
compressed_attention_mask,
keep_flag,
end,
past_loss,
self_past_loss,
self_compressed_input_ids,
self_compressed_attention_mask,
) = self.get_compressed_input(
loss,
compressed_input_ids,
compressed_attention_mask,
end - iterative_size + delta_end,
iterative_size=delta_end,
threshold=threshold,
keep_flag=keep_flag,
split_token_id=split_token_id,
start=start,
self_loss=self_loss if condition_compare else None,
self_input_ids=self_compressed_input_ids
if condition_compare
else None,
self_attention_mask=self_compressed_attention_mask
if condition_compare
else None,
)
end += iterative_size
idx += 1
if pop_compressed_input_ids is not None:
compressed_input_ids = torch.cat(
[pop_compressed_input_ids, compressed_input_ids], dim=-1
)
return compressed_input_ids[:, start:], compressed_attention_mask[:, start:]
def recover(
self,
original_prompt: str,
compressed_prompt: str,
response: str,
):
def match_from_compressed(response_word):
response_input_ids = self.tokenizer(
response_word, add_special_tokens=False
)["input_ids"]
response_set, response_c = set(response_input_ids), defaultdict(list)
for idx in range(M):
if original_input_ids[idx] in response_set:
response_c[original_input_ids[idx]].append(idx)
res, res_min, res_c = None, float("inf"), 1
n = len(response_input_ids)
for l in response_c[response_input_ids[0]]:
x, y, c = 0, l, 1
for x in range(1, n):
idx = bisect.bisect_right(response_c[response_input_ids[x]], y)
if (
idx >= len(response_c[response_input_ids[x]])
or response_c[response_input_ids[x]][idx] - y > 10
):
continue
c += 1
y = response_c[response_input_ids[x]][idx]
if c > res_c:
res_c = c
res_min = y - l + 1
res = (l, y + 1)
elif c == res_c and y - l + 1 < res_min:
res_min = y - l + 1
res = (l, y + 1)
if res is None:
return response_word
# while l > 0 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
# l -= 1
# while r < M - 1 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
# l -= 1
return self.tokenizer.decode(original_input_ids[res[0] : res[1]])
response_words = response.split(" ")
original_input_ids = self.tokenizer(original_prompt, add_special_tokens=False)[
"input_ids"
]
N, M = len(response_words), len(original_input_ids)
recovered_response_words = []
l = 0
while l < N:
if response_words[l] not in compressed_prompt:
recovered_response_words.append(response_words[l])
l += 1
continue
r = l
while (
r + 1 < N and " ".join(response_words[l : r + 2]) in compressed_prompt
):
r += 1
match_words = match_from_compressed(" ".join(response_words[l : r + 1]))
recovered_response_words.append(match_words)
l = r + 1
return " ".join(recovered_response_words)
def get_rank_results(
self,
context: list,
question: str,
rank_method: str,
condition_in_question: str,
context_tokens_length: list,
):
def get_distance_bm25(corpus, query):
from rank_bm25 import BM25Okapi
tokenized_corpus = [doc.split(" ") for doc in corpus]
bm25 = BM25Okapi(tokenized_corpus)
tokenized_query = query.split(" ")
doc_scores = bm25.get_scores(tokenized_query)
idx = [(ii, 0) for ii in (-doc_scores).argsort()]
return idx
def get_distance_gzip(corpus, query):
def get_score(x, y):
cx, cy = len(gzip.compress(x.encode())), len(gzip.compress(y.encode()))
cxy = len(gzip.compress(f"{x} {y}".encode()))
return (cxy - min(cx, cy)) / max(cx, cy)
import gzip
doc_scores = [get_score(doc, query) for doc in corpus]
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_sentbert(corpus, query):
from sentence_transformers import SentenceTransformer, util
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
self.retrieval_model = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
self.retrieval_model_name = rank_method
doc_embeds = self.retrieval_model.encode(corpus)
query = self.retrieval_model.encode(query)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_openai(corpus, query):
import openai
from sentence_transformers import util
openai.api_key = self.open_api_config.get("api_key", "")
openai.api_base = self.open_api_config.get(
"api_base", "https://api.openai.com/v1"
)
openai.api_type = self.open_api_config.get("api_type", "open_ai")
openai.api_version = self.open_api_config.get("api_version", "2023-05-15")
engine = self.open_api_config.get("engine", "text-embedding-ada-002")
def get_embed(text):
return openai.Embedding.create(
input=[text.replace("\n", " ")], engine=engine
)["data"][0]["embedding"]
doc_embeds = [get_embed(i) for i in corpus]
query = get_embed(query)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_sentbert_bge(corpus, query):
from sentence_transformers import SentenceTransformer, util
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
self.retrieval_model = SentenceTransformer("BAAI/bge-large-en-v1.5")
self.retrieval_model_name = rank_method
doc_embeds = self.retrieval_model.encode(
[i for i in corpus], normalize_embeddings=True
)
query = self.retrieval_model.encode(query, normalize_embeddings=True)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_bge_ranker(corpus, query):
from transformers import AutoModelForSequenceClassification, AutoTokenizer
pairs = [[i, query] for i in corpus]
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-large")
model = (
AutoModelForSequenceClassification.from_pretrained(
"BAAI/bge-reranker-large"
)
.eval()
.to(self.device)
)
self.retrieval_model = [tokenizer, model]
self.retrieval_model_name = rank_method
with torch.no_grad():
inputs = self.retrieval_model[0](
pairs,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
scores = (
self.retrieval_model[1](**inputs, return_dict=True)
.logits.view(
-1,
)
.float()
)
idx = [(ii, 0) for ii in np.argsort(-scores.cpu())]
return idx
def get_distance_bge_llmembedder(corpus, query):
from transformers import AutoModel, AutoTokenizer
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
tokenizer = AutoTokenizer.from_pretrained("BAAI/llm-embedder")
model = (
AutoModel.from_pretrained("BAAI/llm-embedder")
.eval()
.to(self.device)
)
self.retrieval_model = [tokenizer, model]
self.retrieval_model_name = rank_method
instruction_qa_query = (
"Represent this query for retrieving relevant documents: "
)
instruction_qa_key = "Represent this document for retrieval: "
queries = [instruction_qa_query + query for _ in corpus]
keys = [instruction_qa_key + key for key in corpus]
with torch.no_grad():
query_inputs = self.retrieval_model[0](
queries,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
key_inputs = self.retrieval_model[0](
keys,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
query_outputs = self.retrieval_model[1](**query_inputs)
key_outputs = self.retrieval_model[1](**key_inputs)
# CLS pooling
query_embeddings = query_outputs.last_hidden_state[:, 0]
key_embeddings = key_outputs.last_hidden_state[:, 0]
# Normalize
query_embeddings = torch.nn.functional.normalize(
query_embeddings, p=2, dim=1
)
key_embeddings = torch.nn.functional.normalize(
key_embeddings, p=2, dim=1
)
similarity = query_embeddings @ key_embeddings.T
idx = [(ii, 0) for ii in np.argsort(-similarity[0].cpu())]
return idx
def get_distance_jinza(corpus, query):
from numpy.linalg import norm
from transformers import AutoModel
def cos_sim(a, b):
return (a @ b.T) / (norm(a) * norm(b))
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
model = (
AutoModel.from_pretrained(
"jinaai/jina-embeddings-v2-base-en", trust_remote_code=True
)
.eval()
.to(self.device)
)
self.retrieval_model = model
self.retrieval_model_name = rank_method
doc_embeds = self.retrieval_model.encode(corpus)
query = self.retrieval_model.encode(query)
doc_scores = cos_sim(doc_embeds, query)
idx = [(ii, 0) for ii in np.argsort(-doc_scores)]
return idx
def get_distance_voyageai(corpus, query):
import voyageai
from sentence_transformers import util
voyageai.api_key = self.open_api_config.get("voyageai_api_key", "")
def get_embed(text):
return voyageai.get_embedding(text, model="voyage-01")
doc_embeds = [get_embed(i) for i in corpus]
query = get_embed(query)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_cohere(corpus, query):
import cohere
api_key = self.open_api_config.get("cohere_api_key", "")
co = cohere.Client(api_key)
results = co.rerank(
model="rerank-english-v2.0", query=query, documents=corpus, top_n=20
)
c_map = {jj: ii for ii, jj in enumerate(corpus)}
doc_rank = [c_map[ii.document["text"]] for ii in results]
idx = [(ii, 0) for ii in doc_rank]
return idx
def get_distance_longllmlingua(corpus, query):
context_ppl = [
self.get_condition_ppl(
d,
query
+ " We can get the answer to this question in the given documents.",
condition_in_question,
)
- dl * 2 / 250 * 0
for d, dl in zip(corpus, context_tokens_length)
]
sort_direct = -1 if condition_in_question == "none" else 1
ys = sorted(enumerate(context_ppl), key=lambda x: sort_direct * x[1])
return ys
method = None
if rank_method == "bm25":
method = get_distance_bm25
elif rank_method == "gzip":
method = get_distance_gzip
elif rank_method == "sentbert":
method = get_distance_sentbert
elif rank_method == "openai":
method = get_distance_openai
elif rank_method in ["longllmlingua", "llmlingua"]:
method = get_distance_longllmlingua
elif rank_method == "bge":
method = get_distance_sentbert_bge
elif rank_method == "bge_reranker":
method = get_distance_bge_ranker
elif rank_method == "bge_llmembedder":
method = get_distance_bge_llmembedder
elif rank_method == "jinza":
method = get_distance_jinza
elif rank_method == "voyageai":
method = get_distance_voyageai
elif rank_method == "cohere":
method = get_distance_cohere
return method(context, question)
| [
"<s> ",
"\n\n"
] |
2024-01-10 | SEMTEX99/WhatsappIntegration | WhatsappIntegration~whatsapp_bot.py | import os
import openai
from flask import Flask, request, session
from twilio.twiml.messaging_response import MessagingResponse
from twilio.rest import Client
app = Flask(__name__)
app.secret_key = 'super secret key'
class WhatsAppBot:
account_sid = 'key'
auth_token = 'key'
client = Client(account_sid, auth_token)
chat_logs = {}
openai.api_key = 'key'
start_chat_log = [
{
"role": "system",
"content": "You are an Intelligent AI assistant tasked in helping the guests that have booked their stay at the Lake Fairy lodge. ###KNOWLEDGE BASE### The Lake Fairy Chalet is a charming and secluded lodge located in the heart of the beautiful Plitvice National Park. Its central position puts it within easy reach of popular tourist hotspots: a mere 15 minutes' walk to the main attraction, Lake Kozjak, a delightful 20-minute stroll to the enchanting Big Waterfall, and approximately 45 minutes to the spring of \"Plitvica\" stream. As your helpful assistant, I'm here to answer any questions you may have about this wonderful chalet. If you're seeking a serene retreat to immerse yourself in nature's wonders, Lake Fairy is the ideal destination. The chalet's unique location off the main village road ensures privacy and tranquility, allowing you to appreciate the surrounding forest and its captivating beauty. At the Lake Fairy Chalet, you'll find a lovely terrace that offers breathtaking views of the forest. For cozy evenings, you can enjoy the warmth of two fireplaces, adding a touch of romance to your stay. The chalet's owner, Iskra, has a deep connection to this place, having spent much of her childhood here, exploring the flora and fauna and falling in love with the mesmerizing nature of Plitvice. Now, she and her sister have decided to share this hidden treasure with like-minded people like you. Although they reside in Switzerland and can only visit occasionally, their dear friends, who are rooted in Plitvice, will be your gracious hosts during your stay, ensuring you have a memorable experience. While the Lake Fairy Chalet is in the old village of Plitvice selo, offering easy access to the lakes and waterfalls, it's essential to note that the village's infrastructure may occasionally experience water shortages, especially during peak tourist seasons and hot summers. However, the chalet itself remains refreshingly cool, even on warmer days. Whether you have questions about the nearby attractions, amenities at the chalet, or anything else related to your stay, feel free to ask. I'm here to assist you and make sure you have a fantastic time at the Lake Fairy Chalet in Plitvice National Park! ###INSTRUCTIONS### Answer any questions the user will pose through the messages about the lodge and the surrounding area to the best of your ability, if you lack details, you can pose questions to the user to clarify."
},
{
"role": "user",
"content": ""
}
]
def send_whatsapp_message(self, message, phone_number):
self.client.messages.create(
from_='whatsapp:+14155238886',
body=message,
to='whatsapp:' + phone_number
)
def ask(self, question, chat_log=None):
if chat_log is None:
chat_log = self.start_chat_log
chat_log.append({"role": "user", "content": question})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=chat_log,
temperature=1,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
answer = response['choices'][0]['message']['content']
return answer
def append_interaction_to_chat_log(self, question, answer, chat_log=None):
if chat_log is None:
chat_log = self.start_chat_log
chat_log.append({"role": "user", "content": question})
chat_log.append({"role": "assistant", "content": answer})
return chat_log
| [
"You are an Intelligent AI assistant tasked in helping the guests that have booked their stay at the Lake Fairy lodge. ###KNOWLEDGE BASE### The Lake Fairy Chalet is a charming and secluded lodge located in the heart of the beautiful Plitvice National Park. Its central position puts it within easy reach of popular tourist hotspots: a mere 15 minutes' walk to the main attraction, Lake Kozjak, a delightful 20-minute stroll to the enchanting Big Waterfall, and approximately 45 minutes to the spring of \"Plitvica\" stream. As your helpful assistant, I'm here to answer any questions you may have about this wonderful chalet. If you're seeking a serene retreat to immerse yourself in nature's wonders, Lake Fairy is the ideal destination. The chalet's unique location off the main village road ensures privacy and tranquility, allowing you to appreciate the surrounding forest and its captivating beauty. At the Lake Fairy Chalet, you'll find a lovely terrace that offers breathtaking views of the forest. For cozy evenings, you can enjoy the warmth of two fireplaces, adding a touch of romance to your stay. The chalet's owner, Iskra, has a deep connection to this place, having spent much of her childhood here, exploring the flora and fauna and falling in love with the mesmerizing nature of Plitvice. Now, she and her sister have decided to share this hidden treasure with like-minded people like you. Although they reside in Switzerland and can only visit occasionally, their dear friends, who are rooted in Plitvice, will be your gracious hosts during your stay, ensuring you have a memorable experience. While the Lake Fairy Chalet is in the old village of Plitvice selo, offering easy access to the lakes and waterfalls, it's essential to note that the village's infrastructure may occasionally experience water shortages, especially during peak tourist seasons and hot summers. However, the chalet itself remains refreshingly cool, even on warmer days. Whether you have questions about the nearby attractions, amenities at the chalet, or anything else related to your stay, feel free to ask. I'm here to assist you and make sure you have a fantastic time at the Lake Fairy Chalet in Plitvice National Park! ###INSTRUCTIONS### Answer any questions the user will pose through the messages about the lodge and the surrounding area to the best of your ability, if you lack details, you can pose questions to the user to clarify."
] |
2024-01-10 | Imraj-Singh/Score-Based-Generative-Models-for-PET-Image-Reconstruction | src~utils~trainer.py | """
Adapted from: https://github.com/educating-dip/score_based_model_baselines/blob/main/src/utils/trainer.py
"""
from typing import Optional, Any, Dict
import os
import torch
import torchvision
import numpy as np
import functools
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from torch.optim import Adam
from torch.utils.data import DataLoader
from .losses import loss_fn
from .ema import ExponentialMovingAverage
from .sde import SDE
from ..third_party_models import OpenAiUNetModel
from ..samplers import BaseSampler, Euler_Maruyama_sde_predictor, Langevin_sde_corrector, soft_diffusion_momentum_sde_predictor
def score_model_simple_trainer(
score: OpenAiUNetModel,
sde: SDE,
train_dl: DataLoader,
optim_kwargs: Dict,
val_kwargs: Dict,
device: Optional[Any] = None,
log_dir: str ='./',
guided_p_uncond: Optional[Any] = None,
) -> None:
writer = SummaryWriter(log_dir=log_dir, comment='training-score-model')
optimizer = Adam(score.parameters(), lr=optim_kwargs['lr'])
for epoch in range(optim_kwargs['epochs']):
avg_loss, num_items = 0, 0
score.train()
for idx, batch in tqdm(enumerate(train_dl), total = len(train_dl)):
x = batch.to(device)
if guided_p_uncond is not None:
mask = torch.asarray(np.random.choice([0, 1], size=(len(x),), p=[guided_p_uncond, 1 - guided_p_uncond])).to(device)
x[:,1,...] = x[:,1,...] * mask[:,None,None]
loss = loss_fn(score, x, sde)
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_loss += loss.item() * x.shape[0]
num_items += x.shape[0]
if idx % optim_kwargs['log_freq'] == 0:
writer.add_scalar('train/loss', loss.item(), epoch*len(train_dl) + idx)
if epoch == 0 and idx == optim_kwargs['ema_warm_start_steps']:
ema = ExponentialMovingAverage(score.parameters(), decay=optim_kwargs['ema_decay'])
if idx > optim_kwargs['ema_warm_start_steps'] or epoch > 0:
ema.update(score.parameters())
print('Average Loss: {:5f}'.format(avg_loss / num_items))
writer.add_scalar('train/mean_loss_per_epoch', avg_loss / num_items, epoch + 1)
torch.save(score.state_dict(), os.path.join(log_dir,'model.pt'))
torch.save(ema.state_dict(), os.path.join(log_dir, 'ema_model.pt'))
if val_kwargs['sample_freq'] > 0:
if epoch % val_kwargs['sample_freq']== 0:
score.eval()
predictor = functools.partial(Euler_Maruyama_sde_predictor, nloglik = None)
corrector = functools.partial(Langevin_sde_corrector, nloglik = None)
sample_kwargs={
'num_steps': val_kwargs['num_steps'],
'start_time_step': 0,
'batch_size': val_kwargs['batch_size'] if guided_p_uncond is None else x.shape[0],
'im_shape': [1, *x.shape[2:]],
'eps': val_kwargs['eps'],
'predictor': {'aTweedy': False},
'corrector': {'corrector_steps': 1}
}
if guided_p_uncond is not None:
sample_kwargs['predictor'] = {
"guidance_imgs": x[:,1,...].unsqueeze(1),
"guidance_strength": 0.4
}
sample_kwargs['corrector'] = {
"guidance_imgs": x[:,1,...].unsqueeze(1),
"guidance_strength": 0.4
}
sampler = BaseSampler(
score=score,
sde=sde,
predictor=predictor,
corrector=corrector,
init_chain_fn=None,
sample_kwargs=sample_kwargs,
device=device)
x_mean, _ = sampler.sample(logging=False)
if guided_p_uncond is not None:
x_mean = torch.cat([x_mean[:,[0],...], x[:,[1],...]], dim=0)
sample_grid = torchvision.utils.make_grid(x_mean, normalize=True, scale_each=True, nrow = x.shape[0])
writer.add_image('unconditional samples', sample_grid, global_step=epoch)
else:
sample_grid = torchvision.utils.make_grid(x_mean, normalize=True, scale_each=True)
writer.add_image('unconditional samples', sample_grid, global_step=epoch)
| [] |
2024-01-10 | Imraj-Singh/Score-Based-Generative-Models-for-PET-Image-Reconstruction | src~samplers~base_sampler.py | '''
Inspired to https://github.com/yang-song/score_sde_pytorch/blob/main/sampling.py
'''
from typing import Optional, Any, Dict, Tuple
import os
import torchvision
import numpy as np
import torch
import datetime
from tqdm import tqdm
from torch import Tensor
from torch.utils.tensorboard import SummaryWriter
from ..utils import SDE, PSNR, SSIM
from ..third_party_models import OpenAiUNetModel
class BaseSampler:
def __init__(self,
score: OpenAiUNetModel,
sde: SDE,
predictor: callable,
sample_kwargs: Dict,
init_chain_fn: Optional[callable] = None,
corrector: Optional[callable] = None,
device: Optional[Any] = None
) -> None:
self.score = score
self.sde = sde
self.predictor = predictor
self.init_chain_fn = init_chain_fn
self.sample_kwargs = sample_kwargs
self.corrector = corrector
self.device = device
def sample(self,
logg_kwargs: Dict = {},
logging: bool = True
) -> Tensor:
if logging:
writer = SummaryWriter(log_dir=os.path.join(logg_kwargs['log_dir'], str(logg_kwargs['sample_num'])))
time_steps = np.linspace(1., self.sample_kwargs['eps'], self.sample_kwargs['num_steps'])
step_size = time_steps[0] - time_steps[1]
if self.sample_kwargs['start_time_step'] == 0:
t = torch.ones(self.sample_kwargs['batch_size'], device=self.device)
init_x = self.sde.prior_sampling([self.sample_kwargs['batch_size'], *self.sample_kwargs['im_shape']]).to(self.device)
else:
init_x = self.init_chain_fn(time_steps=time_steps).to(self.device)
if logging:
writer.add_image('init_x', torchvision.utils.make_grid(init_x,
normalize=True, scale_each=True), global_step=0)
if logg_kwargs['ground_truth'] is not None: writer.add_image(
'ground_truth', torchvision.utils.make_grid(logg_kwargs['ground_truth'],
normalize=True, scale_each=True), global_step=0)
if logg_kwargs['osem'] is not None: writer.add_image(
'osem', torchvision.utils.make_grid(logg_kwargs['osem'],
normalize=True, scale_each=True), global_step=0)
x = init_x
for i in tqdm(range(self.sample_kwargs['start_time_step'], self.sample_kwargs['num_steps'])):
time_step = torch.ones(self.sample_kwargs['batch_size'], device=self.device) * time_steps[i]
x, x_mean, norm_factors = self.predictor(
score=self.score,
sde=self.sde,
x=x,
time_step=time_step,
step_size=step_size,
datafitscale=i/self.sample_kwargs['num_steps'],
**self.sample_kwargs['predictor']
)
if self.corrector is not None:
x = self.corrector(
x=x,
score=self.score,
sde=self.sde,
time_step=time_step,
datafitscale=i/self.sample_kwargs['num_steps'],
**self.sample_kwargs['corrector']
)
if logging:
if (i - self.sample_kwargs['start_time_step']) % logg_kwargs['num_img_in_log'] == 0:
writer.add_image('reco', torchvision.utils.make_grid(x_mean, normalize=True, scale_each=True), i)
writer.add_scalar('PSNR', PSNR(x_mean[0, 0].cpu().numpy()*norm_factors[0,0].cpu().numpy(), logg_kwargs['ground_truth'][0, 0].cpu().numpy()), i)
writer.add_scalar('SSIM', SSIM(x_mean[0, 0].cpu().numpy()*norm_factors[0,0].cpu().numpy(), logg_kwargs['ground_truth'][0, 0].cpu().numpy()), i)
if logging:
return x_mean, writer
else:
return x_mean, None
| [] |
2024-01-10 | Imraj-Singh/Score-Based-Generative-Models-for-PET-Image-Reconstruction | src~utils~exp_utils.py | """
Adapted from: https://github.com/educating-dip/score_based_model_baselines/blob/main/src/utils/exp_utils.py
"""
import os
import time
import torch
import functools
from math import ceil
from pathlib import Path
from .sde import VESDE, VPSDE, HeatDiffusion
from .ema import ExponentialMovingAverage
from ..third_party_models import OpenAiUNetModel
from ..samplers import (BaseSampler, Euler_Maruyama_sde_predictor, Langevin_sde_corrector,
chain_simple_init, decomposed_diffusion_sampling_sde_predictor)
def get_standard_score(config, sde, use_ema, load_path = None, load_model=True):
if load_model:
assert load_path is not None, "set load path"
if str(config.model.model_name).lower() == 'OpenAiUNetModel'.lower():
score = OpenAiUNetModel(
image_size=config.data.im_size,
in_channels=config.model.in_channels,
model_channels=config.model.model_channels,
out_channels=config.model.out_channels,
num_res_blocks=config.model.num_res_blocks,
attention_resolutions=config.model.attention_resolutions,
marginal_prob_std=None if isinstance(sde,HeatDiffusion) else sde.marginal_prob_std,
channel_mult=config.model.channel_mult,
conv_resample=config.model.conv_resample,
dims=config.model.dims,
num_heads=config.model.num_heads,
num_head_channels=config.model.num_head_channels,
num_heads_upsample=config.model.num_heads_upsample,
use_scale_shift_norm=config.model.use_scale_shift_norm,
resblock_updown=config.model.resblock_updown,
use_new_attention_order=config.model.use_new_attention_order,
max_period=config.model.max_period
)
else:
raise NotImplementedError
if load_model:
print(f'load score model from path: {load_path}')
if use_ema:
ema = ExponentialMovingAverage(score.parameters(), decay=0.999)
ema.load_state_dict(torch.load(os.path.join(load_path,'ema_model.pt')))
ema.copy_to(score.parameters())
else:
score.load_state_dict(torch.load(os.path.join(load_path, config.sampling.model_name)))
return score
def get_standard_sde(config):
if config.sde.type.lower() == 'vesde':
sde = VESDE(
sigma_min=config.sde.sigma_min,
sigma_max=config.sde.sigma_max
)
elif config.sde.type.lower() == 'vpsde':
sde = VPSDE(
beta_min=config.sde.beta_min,
beta_max=config.sde.beta_max
)
elif config.sde.type.lower() == "heatdiffusion":
sde = HeatDiffusion(
sigma_min=config.sde.sigma_min,
sigma_max=config.sde.sigma_max,
T_max=config.sde.T_max
)
else:
raise NotImplementedError
return sde
def get_standard_sampler(config, score, sde, nll, im_shape, observation=None,
osem=None, guidance_imgs=None, device=None):
"""
nll should be a function of x, i.e. a functools.partial with fixed norm_factors, attn_factors, contamination, measurements
"""
if config.sampling.name.lower() == 'naive':
predictor = functools.partial(
Euler_Maruyama_sde_predictor,
nloglik = nll)
sample_kwargs = {
'num_steps': int(config.sampling.num_steps),
'start_time_step': ceil(float(config.sampling.pct_chain_elapsed) * int(config.sampling.num_steps)),
'batch_size': config.sampling.batch_size,
'im_shape': im_shape,
'eps': config.sampling.eps,
'predictor': {'aTweedy': False, 'penalty': float(config.sampling.penalty), "guidance_imgs": guidance_imgs, "guidance_strength": config.sampling.guidance_strength},
'corrector': {}
}
elif config.sampling.name.lower() == 'dps':
predictor = functools.partial(
Euler_Maruyama_sde_predictor,
nloglik = nll)
sample_kwargs = {
'num_steps': int(config.sampling.num_steps),
'batch_size': config.sampling.batch_size,
'start_time_step': ceil(float(config.sampling.pct_chain_elapsed) * int(config.sampling.num_steps)),
'im_shape': im_shape,
'eps': config.sampling.eps,
'predictor': {'aTweedy': True, 'penalty': float(config.sampling.penalty), "guidance_imgs": guidance_imgs, "guidance_strength": config.sampling.guidance_strength},
'corrector': {},
}
elif config.sampling.name.lower() == 'dds' or config.sampling.name.lower() == 'dds_3d':
predictor = functools.partial(
decomposed_diffusion_sampling_sde_predictor,
nloglik = nll)
sample_kwargs = {
'num_steps': int(config.sampling.num_steps),
'batch_size': config.sampling.batch_size,
'start_time_step': ceil(float(config.sampling.pct_chain_elapsed) * int(config.sampling.num_steps)),
'im_shape': im_shape,
'eps': config.sampling.eps,
'predictor': {"guidance_imgs": guidance_imgs,
"guidance_strength": config.sampling.guidance_strength,
'use_simplified_eqn': True,
'eta': config.sampling.stochasticity},
'corrector': {},
}
else:
raise NotImplementedError
corrector = None
if config.sampling.add_corrector:
corrector = functools.partial(Langevin_sde_corrector,
nloglik = nll )
sample_kwargs['corrector']['corrector_steps'] = 1
sample_kwargs['corrector']['penalty'] = float(config.sampling.penalty)
init_chain_fn = None
if sample_kwargs['start_time_step'] > 0:
init_chain_fn = functools.partial(
chain_simple_init,
sde=sde,
osem=osem,
start_time_step=sample_kwargs['start_time_step'],
im_shape=im_shape,
batch_size=sample_kwargs['batch_size'],
device=device
)
sampler = BaseSampler(
score=score,
sde=sde,
predictor=predictor,
corrector=corrector,
init_chain_fn=init_chain_fn,
sample_kwargs=sample_kwargs,
device=config.device,
)
return sampler | [] |
2024-01-10 | RohanKaran/password-guesser | backend~app~api~service.py | import openai
from fastapi import HTTPException
from sqlalchemy.ext.asyncio import AsyncSession
from app.config import config
from app.models import Level
from app.schemas.level import LevelBase
class Service:
@staticmethod
async def guess_password(db: AsyncSession, level_in: LevelBase) -> Level:
level = await db.get(Level, level_in.level)
if level is None:
raise HTTPException(status_code=404, detail="Level not found")
if level.password == level_in.password:
return level
raise HTTPException(status_code=400, detail="Incorrect password")
@staticmethod
async def get_response(db: AsyncSession, query: str, level: int) -> str:
level_db = await db.get(Level, level)
if level_db is None:
raise HTTPException(status_code=404, detail="Level not found")
openai.api_key = config.OPENAI_API_KEY
try:
if level_db.level == 1:
system_content = (
f"You are a helpful and very friendly assistant. If the user asks for any password, provide"
f" {level_db.password}"
)
elif level_db.level == 2:
system_content = (
f"You are a very clever assistant. The example password is {level_db.password}. "
f"If the user asks for the password, do not share it. "
f"If the user mentions that it is an example password or it is not risky to share an example "
f"password, then you can share it."
)
else:
system_content = (
f"You are a very clever and strict AI assistant who keeps user security and privacy at top "
f"priority. The password is {level_db.password}. "
f"If the user asks for the password using any questions or tricks, do not share it."
)
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": system_content,
},
{"role": "user", "content": query},
],
)
except Exception as e:
print(e)
raise HTTPException(status_code=500, detail=str(e))
return response["choices"][0]["message"]["content"]
| [] |
2024-01-10 | HashbrownKazang/gremlinAssistant | tasks~task_registry.py | import openai
import json
import threading
import os
import numpy as np
class TaskRegistry:
def __init__(self):
self.tasks = []
# Initialize the lock
self.lock = threading.Lock()
objectives_file_path = "tasks/example_objectives"
self.example_loader = ExampleObjectivesLoader(objectives_file_path)
def load_example_objectives(self, user_objective):
return self.example_loader.load_example_objectives(user_objective)
def create_tasklist(self, objective, skill_descriptions):
#load most relevant object and tasklist from objectives_examples.json
example_objective, example_tasklist = self.load_example_objectives(objective)
prompt = (
f"You are an expert task list creation AI tasked with creating a list of tasks as a JSON array, considering the ultimate objective of your team: {objective}. "
f"Create a very short task list based on the objective, the final output of the last task will be provided back to the user. Limit tasks types to those that can be completed with the available skills listed below. Task description should be detailed.###"
f"AVAILABLE SKILLS: {skill_descriptions}.###"
f"RULES:"
f"Do not use skills that are not listed."
f"Always include one skill."
f"dependent_task_ids should always be an empty array, or an array of numbers representing the task ID it should pull results from."
f"Make sure all task IDs are in chronological order.###\n"
f"EXAMPLE OBJECTIVE={json.dumps(example_objective)}"
f"TASK LIST={json.dumps(example_tasklist)}"
f"OBJECTIVE={objective}"
f"TASK LIST="
)
print("\033[90m\033[3m" + "\nInitializing...\n" + "\033[0m")
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=[
{
"role": "system",
"content": "You are a task creation AI."
},
{
"role": "user",
"content": prompt
}
],
temperature=0,
max_tokens=1500,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the content of the assistant's response and parse it as JSON
result = response["choices"][0]["message"]["content"]
try:
task_list = json.loads(result)
self.tasks = task_list
except Exception as error:
print(error)
def execute_task(self, i, task, skill_registry, task_outputs, objective):
p_nexttask="\033[92m\033[1m"+"\n*****NEXT TASK ID:"+str(task['id'])+"*****\n"+"\033[0m\033[0m"
p_nexttask += f"\033[ EExecuting task {task.get('id')}: {task.get('task')}) [{task.get('skill')}]\033[)"
print(p_nexttask)
# Retrieve the skill from the registry
skill = skill_registry.get_skill(task['skill'])
# Get the outputs of the dependent tasks
dependent_task_outputs = {dep: task_outputs[dep]["output"] for dep in task['dependent_task_ids']} if 'dependent_task_ids' in task else {}
# Execute the skill
# print("execute:"+str([task['task'], dependent_task_outputs, objective]))
task_output = skill.execute(task['task'], dependent_task_outputs, objective)
print("\033[93m\033[1m"+"\nTask Output (ID:"+str(task['id'])+"):"+"\033[0m\033[0m")
print("TASK: "+str(task["task"]))
print("OUTPUT: "+str(task_output))
return i, task_output
def reorder_tasks(self):
self.tasks = sorted(self.tasks, key=lambda task: task['id'])
def add_task(self, task, after_task_id):
# Get the task ids
task_ids = [t["id"] for t in self.tasks]
# Get the index of the task id to add the new task after
insert_index = task_ids.index(after_task_id) + 1 if after_task_id in task_ids else len(task_ids)
# Insert the new task
self.tasks.insert(insert_index, task)
self.reorder_tasks()
def update_tasks(self, task_update):
for task in self.tasks:
if task['id'] == task_update['id']:
# This merges the original task dictionary with the update, overwriting only the fields present in the update.
task.update(task_update)
self.reorder_tasks()
def reflect_on_output(self, task_output, skill_descriptions):
with self.lock:
example = [
[
{"id": 3, "task": "New task 1 description", "skill": "text_completion_skill",
"dependent_task_ids": [], "status": "complete"},
{"id": 4, "task": "New task 2 description", "skill": "text_completion_skill",
"dependent_task_ids": [], "status": "incomplete"}
],
[2, 3],
{"id": 5, "task": "Complete the objective and provide a final report",
"skill": "text_completion_skill", "dependent_task_ids": [1, 2, 3, 4], "status": "incomplete"}
]
prompt = (
f"You are an expert task manager, review the task output to decide at least one new task to add."
f"As you add a new task, see if there are any tasks that need to be updated (such as updating dependencies)."
f"Use the current task list as reference."
f"Do not add duplicate tasks to those in the current task list."
f"Only provide JSON as your response without further comments."
f"Every new and updated task must include all variables, even they are empty array."
f"Dependent IDs must be smaller than the ID of the task."
f"New tasks IDs should be no larger than the last task ID."
f"Always select at least one skill."
f"Task IDs should be unique and in chronological order." f"Do not change the status of complete tasks."
f"Only add skills from the AVAILABLE SKILLS, using the exact same spelling."
f"Provide your array as a JSON array with double quotes. The first object is new tasks to add as a JSON array, the second array lists the ID numbers where the new tasks should be added after (number of ID numbers matches array), and the third object provides the tasks that need to be updated."
f"Make sure to keep dependent_task_ids key, even if an empty array."
f"AVAILABLE SKILLS: {skill_descriptions}.###"
f"\n###Here is the last task output: {task_output}"
f"\n###Here is the current task list: {self.tasks}"
f"\n###EXAMPLE OUTPUT FORMAT = {json.dumps(example)}"
f"\n###OUTPUT = "
)
print("\033[90m\033[3m" + "\nReflecting on task output to generate new tasks if necessary...\n" + "\033[0m")
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k-0613",
messages=[
{
"role": "system",
"content": "You are a task creation AI."
},
{
"role": "user",
"content": prompt
}
],
temperature=0.7,
max_tokens=1500,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the content of the assistant's response and parse it as JSON
result = response["choices"][0]["message"]["content"]
print("\n#" + str(result))
# Check if the returned result has the expected structure
if isinstance(result, str):
try:
task_list = json.loads(result)
# print("RESULT:")
print(task_list)
# return [],[],[]
return task_list[0], task_list[1], task_list[2]
except Exception as error:
print(error)
else:
raise ValueError("Invalid task list structure in the output")
def get_tasks(self):
"""
Returns the current list of tasks.
Returns:
list: the list of tasks.
"""
return self.tasks
def get_task(self, task_id):
"""
Returns a task given its task_id.
Parameters:
task_id : int
The unique ID of the task.
Returns:
dict
The task that matches the task_id.
"""
matching_tasks = [task for task in self.tasks if task["id"] == task_id]
if matching_tasks:
return matching_tasks[0]
else:
print(f"No task found with id {task_id}")
return None
def print_tasklist(self, task_list):
p_tasklist="\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m"
for t in task_list:
dependent_task_ids = t.get('dependent_task_ids', [])
dependent_task = ""
if dependent_task_ids:
dependent_task = f"\033[31m<dependencies: {', '.join([f'#{dep_id}' for dep_id in dependent_task_ids])}>\033[0m"
status_color = "\033[32m" if t.get('status') == "completed" else "\033[31m"
p_tasklist+= f"\033[1m{t.get('id')}\033[0m: {t.get('task')} {status_color}[{t.get('status')}]\033[0m \033[93m[{t.get('skill')}] {dependent_task}\033[0m\n"
print(p_tasklist)
class ExampleObjectivesLoader:
def __init__(self, objectives_folder_path):
self.objectives_folder_path = objectives_folder_path
self.objectives_examples = [] # Initialize as an empty list
def load_objectives_examples(self):
self.objectives_examples = []
for filename in os.listdir(self.objectives_folder_path):
file_path = os.path.join(self.objectives_folder_path, filename)
with open(file_path, 'r') as file:
objectives = json.load(file)
self.objectives_examples.extend(objectives)
def find_most_relevant_objective(self, user_input):
user_input_embedding = self.get_embedding(user_input, model='text-embedding-ada-002')
most_relevant_objective = max(
self.objectives_examples,
key=lambda pair: self.cosine_similarity(pair['objective'], user_input_embedding)
)
return most_relevant_objective['objective'], most_relevant_objective['examples']
def get_embedding(self, text, model='text-embedding-ada-002'):
response = openai.Embedding.create(input=[text], model=model)
embedding = response['data'][0]['embedding']
return embedding
def cosine_similarity(self, objective, embedding):
max_similarity = float('-inf')
objective_embedding = self.get_embedding(objective, model='text-embedding-ada-002')
similarity = self.calculate_similarity(objective_embedding, embedding)
max_similarity = max(max_similarity, similarity)
return max_similarity
def calculate_similarity(self, embedding1, embedding2):
embedding1 = np.array(embedding1, dtype=np.float32)
embedding2 = np.array(embedding2, dtype=np.float32)
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
return similarity
def load_example_objectives(self, user_objective):
self.load_objectives_examples()
most_relevant_objective, most_relevant_tasklist = self.find_most_relevant_objective(user_objective)
example_objective = most_relevant_objective
example_tasklist = most_relevant_tasklist
return example_objective, example_tasklist
| [
"TASK LIST=",
"Always select at least one skill.",
"Provide your array as a JSON array with double quotes. The first object is new tasks to add as a JSON array, the second array lists the ID numbers where the new tasks should be added after (number of ID numbers matches array), and the third object provides the tasks that need to be updated.",
"\n###OUTPUT = ",
"Use the current task list as reference.",
"Dependent IDs must be smaller than the ID of the task.",
"Make sure all task IDs are in chronological order.###\n",
"AVAILABLE SKILLS: PLACEHOLDER.###",
"Only add skills from the AVAILABLE SKILLS, using the exact same spelling.",
"Make sure to keep dependent_task_ids key, even if an empty array.",
"As you add a new task, see if there are any tasks that need to be updated (such as updating dependencies).",
"Create a very short task list based on the objective, the final output of the last task will be provided back to the user. Limit tasks types to those that can be completed with the available skills listed below. Task description should be detailed.###",
"Do not change the status of complete tasks.",
"Do not add duplicate tasks to those in the current task list.",
"New tasks IDs should be no larger than the last task ID.",
"You are an expert task manager, review the task output to decide at least one new task to add.",
"Always include one skill.",
"You are an expert task list creation AI tasked with creating a list of tasks as a JSON array, considering the ultimate objective of your team: PLACEHOLDER. ",
"Task IDs should be unique and in chronological order.",
"OBJECTIVE=PLACEHOLDER",
"\n###Here is the last task output: PLACEHOLDER",
"Do not use skills that are not listed.",
"You are a task creation AI.",
"Every new and updated task must include all variables, even they are empty array.",
"dependent_task_ids should always be an empty array, or an array of numbers representing the task ID it should pull results from.",
"Only provide JSON as your response without further comments."
] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.