date_collected
stringclasses 1
value | repo_name
stringlengths 6
116
| file_name
stringlengths 2
220
| file_contents
stringlengths 13
357k
| prompts
sequence |
---|---|---|---|---|
2024-01-10 | il-katta/mIA | utils~chat_tools~loader.py | import json
from typing import Optional, Dict, List, Union
import faiss
from langchain.cache import SQLiteCache
from langchain.docstore.base import Docstore, AddableMixin
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import Document
from langchain.schema.embeddings import Embeddings
from langchain.vectorstores import Chroma, FAISS
from pydantic.v1 import PrivateAttr
from sqlalchemy import Column, String, Engine, create_engine, select
from sqlalchemy.orm import declarative_base, Session
import config
def load_chroma_vectorstore(embedding: Optional[Embeddings] = None) -> Chroma:
if embedding is None:
embedding = OpenAIEmbeddings()
persist_directory = config.DATA_DIR / "vectorstore" / "uploaded_files"
if not persist_directory.exists():
persist_directory.mkdir(parents=True)
return Chroma(
embedding_function=embedding,
collection_name="uploaded_files",
persist_directory=str(persist_directory)
)
Base = declarative_base()
class DocStoreModel(Base): # type: ignore
__tablename__ = "my_docstore"
key = Column(String, primary_key=True)
document = Column(String)
class MyDockstore(Docstore, AddableMixin):
_cache: SQLiteCache = PrivateAttr()
def __init__(self, engine: Optional[Engine] = None):
if engine is None:
dbpath = config.DATA_DIR / "docstore" / "mydocstore.db"
if not dbpath.parent.exists():
dbpath.parent.mkdir(parents=True)
engine = create_engine(f"sqlite:///{dbpath}")
self.engine = engine
DocStoreModel.metadata.create_all(self.engine)
def add(self, texts: Dict[str, Document]) -> None:
items = [
DocStoreModel(key=key, document=json.dumps(doc.dict()))
for key, doc in texts.items()
]
with Session(self.engine) as session, session.begin():
for item in items:
session.merge(item)
session.commit()
def delete(self, ids: List) -> None:
with Session(self.engine) as session:
for _id in ids:
session.query(DocStoreModel).filter_by(key=_id).delete()
session.commit()
def search(self, search: str) -> Union[str, Document]:
stmt = (
select(DocStoreModel.key).select(DocStoreModel.document)
.where(DocStoreModel.key == search) # type: ignore
.limit(1)
)
with Session(self.engine) as session:
result = session.execute(stmt).first()
if result is None:
return f"ID {search} not found."
else:
return Document(**json.loads(result[1]))
def get_keys(self) -> List[str]:
stmt = select(DocStoreModel.key)
with Session(self.engine) as session:
result = session.execute(stmt).fetchall()
return [r[0] for r in result]
def __len__(self):
with Session(self.engine) as session:
return session.query(DocStoreModel).count()
EMBEDDING_SIZE = 1536
def load_faiss_vectorstore(embedding: Optional[Embeddings] = None) -> FAISS:
if embedding is None:
embedding = OpenAIEmbeddings()
docstore = MyDockstore()
return FAISS(
embedding_function=embedding.embed_query,
index=faiss.IndexFlatL2(EMBEDDING_SIZE),
docstore=docstore,
index_to_docstore_id={
i: key
for i, key in enumerate(docstore.get_keys())
},
)
| [] |
2024-01-10 | iinux/JohannCarlFriedrichGauss | py~chatgpt~pub.py | # -*- coding: utf-8 -*-
import os
import time
import redis
import openai
import requests
import my_config
import SparkApi
import sensenova_service
from flask import Flask, request, abort, render_template
from wechatpy import parse_message, create_reply
from wechatpy.utils import check_signature
from wechatpy.exceptions import (
InvalidSignatureException,
InvalidAppIdException,
)
# from bs4 import BeautifulSoup
# set token or get from environments
TOKEN = os.getenv('WECHAT_TOKEN', my_config.wechat_token)
AES_KEY = os.getenv('WECHAT_AES_KEY', my_config.wechat_aes_key)
APPID = os.getenv('WECHAT_APPID', my_config.wechat_app_id)
THINKING = 'THINKING'
# DEFAULT_MODEL = 'text-davinci-003'
DEFAULT_MODEL = 'gpt-3.5-turbo'
USER_MODEL_CACHE_PREFIX = 'user_model_'
CMD_LIST_MODEL = 'list model'
CMD_GET_MODEL = 'get model'
CMD_SET_MODEL = 'set model '
DEFAULT_SYS = 'xf'
USER_SYS_CACHE_PREFIX = 'user_sys_'
CMD_GET_SYS = 'get sys'
CMD_SET_SYS = 'set sys '
CMD_CALL_API = 'call api '
openai.api_key = my_config.key_openai
def chat(msg):
sys = get_user_sys(msg.source)
if sys == 'chatgpt':
return chat_with_gpt3(msg)
elif sys == 'writesonic':
return chat_with_writesonic(msg)
elif sys == 'xf':
return chat_with_xf(msg)
elif sys == 'sensenova':
user_model = get_user_model(msg.source)
return sensenova_service.ask_from_wechat(msg, user_model)
else:
return 'unknown sys'
def get_default_model(sys):
if sys == 'sensenova':
return sensenova_service.get_default_model()
else:
return DEFAULT_MODEL
def get_model_list(sys):
if sys == 'sensenova':
return sensenova_service.get_model_list()
else:
return [x.id for x in openai.Model.list().get('data')]
def chat_with_xf(msg):
# https://www.xfyun.cn/doc/spark/Web.html#_1-%E6%8E%A5%E5%8F%A3%E8%AF%B4%E6%98%8E
# ็จไบ้
็ฝฎๅคงๆจกๅ็ๆฌ๏ผ้ป่ฎคโgeneral/generalv2โ
# domain = "general" # v1.5็ๆฌ
domain = "generalv2" # v2.0็ๆฌ
# ไบ็ซฏ็ฏๅข็ๆๅกๅฐๅ
# Spark_url = "ws://spark-api.xf-yun.com/v1.1/chat" # v1.5็ฏๅข็ๅฐๅ
Spark_url = "ws://spark-api.xf-yun.com/v2.1/chat" # v2.0็ฏๅข็ๅฐๅ
SparkApi.answer = ""
text = []
jsoncon = {}
jsoncon["role"] = "user"
jsoncon["content"] = msg.content
text.append(jsoncon)
SparkApi.main(my_config.xf_appid, my_config.xf_api_key, my_config.xf_api_secret, Spark_url, domain, text)
return SparkApi.answer
def chat_with_writesonic(msg):
url = 'https://api.writesonic.com/v2/business/content/chatsonic?engine=premium'
res = requests.post(url, json={
'enable_google_results': 'false',
'enable_memory': 'false',
'input_text': msg.content,
}, headers={
"X-API-KEY": my_config.writesonic_api_key,
'accept': 'application/json',
'content-type': 'application/json',
})
print(res)
return res.json()['message']
def chat_with_gpt3(msg):
user_model = get_user_model(msg.source)
if user_model in ['gpt-3.5-turbo']:
response = openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=[{'role': 'user', 'content': msg.content}],
max_tokens=2048,
n=1,
stop=None,
temperature=.9,
user=msg.source,
)
message = response.choices[0].message.content
else:
response = openai.Completion.create(
engine=user_model,
prompt=msg.content,
max_tokens=2048,
n=1,
stop=None,
temperature=0.5,
user=msg.source,
)
message = response.choices[0].text
print(response)
return message
def get_redis():
r = redis.Redis(host='localhost', port=6379, decode_responses=True)
return r
def set_user_model(user, model):
r = get_redis()
if model == 'default':
model = get_default_model(get_user_sys(user))
r.set(USER_MODEL_CACHE_PREFIX + user, model)
r.close()
def get_user_model(user):
r = get_redis()
user_model = r.get(USER_MODEL_CACHE_PREFIX + user)
r.close()
user_sys = get_user_sys(user)
if user_model is None:
user_model = get_default_model(user_sys)
if user_model not in get_model_list(user_sys):
user_model = get_default_model(user_sys)
return user_model
def set_user_sys(user, sys):
r = get_redis()
if sys == 'default':
sys = DEFAULT_SYS
r.set(USER_SYS_CACHE_PREFIX + user, sys)
r.close()
def get_user_sys(user):
r = get_redis()
user_sys = r.get(USER_SYS_CACHE_PREFIX + user)
r.close()
if user_sys is None:
user_sys = DEFAULT_SYS
return user_sys
def ask(msg, allow_cache=True):
r = get_redis()
key = 'chatgpt_answer_' + msg.content
answer_cache = r.get(key)
if answer_cache == THINKING and allow_cache:
print('get THINKING')
reply_content = 'LOOP'
read_times = 10
while read_times > 0:
read_times -= 1
time.sleep(1)
answer_cache = r.get(key)
if answer_cache is None:
reply_content = 'loop result fail, try again'
break
elif answer_cache != THINKING:
print('GOT')
reply_content = answer_cache
break
reply_content += '[L]'
elif answer_cache and allow_cache:
print('answer from cache')
reply_content = answer_cache
reply_content += '[C]'
else:
print('call api')
r.set(key, THINKING, 300)
try:
time_start = time.time()
reply_content = chat(msg).lstrip('?๏ผ').strip()
time_end = time.time()
reply_content += '\n(time cost %.3f s)' % (time_end - time_start)
r.set(key, reply_content, 28800)
except openai.error.APIConnectionError as e:
print(e)
reply_content = 'call openapi fail, try again ' + e.__str__()
r.delete(key)
reply_content += '[I]'
return reply_content
app = Flask(__name__)
@app.route('/')
def index():
host = request.url_root
return render_template('index.html', host=host)
@app.route('/wechat', methods=['GET', 'POST'])
def wechat():
signature = request.args.get('signature', '')
timestamp = request.args.get('timestamp', '')
nonce = request.args.get('nonce', '')
encrypt_type = request.args.get('encrypt_type', 'raw')
msg_signature = request.args.get('msg_signature', '')
try:
check_signature(TOKEN, signature, timestamp, nonce)
except InvalidSignatureException:
abort(403)
if request.method == 'GET':
echo_str = request.args.get('echostr', '')
return echo_str
# POST request
if encrypt_type == 'raw':
# plaintext mode
msg = parse_message(request.data)
print(msg)
if msg.type == 'text':
reply_content = ''
if msg.content == CMD_LIST_MODEL:
user_sys = get_user_sys(msg.source)
reply_content = '\n'.join(get_model_list(user_sys))
elif msg.content.startswith(CMD_SET_MODEL):
user_model = msg.content[len(CMD_SET_MODEL):]
set_user_model(msg.source, user_model)
reply_content = 'set user model success'
elif msg.content == CMD_GET_MODEL:
reply_content = get_user_model(msg.source)
elif msg.content.startswith(CMD_SET_SYS):
user_sys = msg.content[len(CMD_SET_SYS):]
set_user_sys(msg.source, user_sys)
reply_content = 'set user sys success'
elif msg.content == CMD_GET_SYS:
reply_content = get_user_sys(msg.source)
elif msg.content.startswith(CMD_CALL_API):
reply_content = ask(msg.content[len(CMD_CALL_API):], allow_cache=False)
else:
reply_content = ask(msg)
print('ask {} response {}'.format(msg.content, reply_content))
reply = create_reply(reply_content, msg)
else:
reply = create_reply('Sorry, can not handle this for now', msg)
return reply.render()
else:
# encryption mode
from wechatpy.crypto import WeChatCrypto
crypto = WeChatCrypto(TOKEN, AES_KEY, APPID)
try:
msg = crypto.decrypt_message(request.data, msg_signature, timestamp, nonce)
except (InvalidSignatureException, InvalidAppIdException):
abort(403)
else:
msg = parse_message(msg)
if msg.type == 'text':
reply = create_reply(msg.content, msg)
else:
reply = create_reply('Sorry, can not handle this for now', msg)
return crypto.encrypt_message(reply.render(), nonce, timestamp)
if __name__ == '__main__':
app.run('127.0.0.1', 8081, debug=False)
| [
"application/json"
] |
2024-01-10 | Valentina-Frenkel/llama_index | llama_index~llms~azure_openai.py | from typing import Any, Dict, Optional
from llama_index.bridge.pydantic import Field, root_validator
from llama_index.callbacks import CallbackManager
from llama_index.llms.openai import OpenAI
AZURE_OPENAI_API_TYPE = "azure"
class AzureOpenAI(OpenAI):
"""
Azure OpenAI
To use this, you must first deploy a model on Azure OpenAI.
Unlike OpenAI, you need to specify a `engine` parameter to identify
your deployment (called "model deployment name" in Azure portal).
- model: Name of the model (e.g. `text-davinci-003`)
This in only used to decide completion vs. chat endpoint.
- engine: This will correspond to the custom name you chose
for your deployment when you deployed a model.
You must have the following environment variables set:
- `OPENAI_API_TYPE`: set this to `azure`, `azure_ad`, or `azuread`
- `OPENAI_API_VERSION`: set this to `2023-05-15`
This may change in the future.
- `OPENAI_API_BASE`: your endpoint should look like the following
https://YOUR_RESOURCE_NAME.openai.azure.com/
- `OPENAI_API_KEY`: your API key
More information can be found here:
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/quickstart?tabs=command-line&pivots=programming-language-python
"""
engine: str = Field(description="The name of the deployed azure engine.")
def __init__(
self,
model: str = "gpt-35-turbo",
engine: Optional[str] = None,
temperature: float = 0.1,
max_tokens: Optional[int] = None,
additional_kwargs: Optional[Dict[str, Any]] = None,
max_retries: int = 10,
api_key: Optional[str] = None,
api_type: Optional[str] = AZURE_OPENAI_API_TYPE,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
callback_manager: Optional[CallbackManager] = None,
**kwargs: Any,
) -> None:
if engine is None:
raise ValueError("You must specify an `engine` parameter.")
super().__init__(
engine=engine,
model=model,
temperature=temperature,
max_tokens=max_tokens,
additional_kwargs=additional_kwargs,
max_retries=max_retries,
api_key=api_key,
api_base=api_base,
api_type=api_type,
api_version=api_version,
callback_manager=callback_manager,
**kwargs,
)
@root_validator
def validate_env(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Validate necessary credentials are set."""
if values["api_base"] == "https://api.openai.com/v1":
raise ValueError(
"You must set OPENAI_API_BASE to your Azure endpoint. "
"It should look like https://YOUR_RESOURCE_NAME.openai.azure.com/"
)
if values["api_type"] not in ("azure", "azure_ad", "azuread"):
raise ValueError(
"You must set OPENAI_API_TYPE to one of "
"(`azure`, `azuread`, `azure_ad`) for Azure OpenAI."
)
if values["api_version"] is None:
raise ValueError("You must set OPENAI_API_VERSION for Azure OpenAI.")
return values
@property
def _model_kwargs(self) -> Dict[str, Any]:
model_kwargs = super()._model_kwargs
model_kwargs.pop("model")
model_kwargs["engine"] = self.engine
return model_kwargs
@classmethod
def class_name(cls) -> str:
"""Get class name."""
return "azure_openai_llm"
| [] |
2024-01-10 | abhinandarun-02/Intelli-Store | backend~server.py | import os
from dotenv import load_dotenv
from flask import Flask, request, jsonify
from pymongo import MongoClient
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
load_dotenv()
client = OpenAI()
app = Flask(__name__)
client = MongoClient("mongodb+srv://prabath:[email protected]/")
db = client["mydb"]
users_collection = db["users"]
products_collection = db["products"]
fashion_template = PromptTemplate(input_variables=['input'],template='You are an assistant suggesting helpful eco-friendly fashion tips. Suggest some fashion tips for "{input}"')
fashion_llm = OpenAI(temperature=0.9)
fashion_memory = ConversationBufferMemory(input_key='input',memory_key='chat_history')
fashion_suggestion = LLMChain(llm=fashion_llm, prompt=fashion_template, memory=fashion_memory, verbose=True)
keywords_template = PromptTemplate(input_variables=["content"],template='Suggest a curated set of keywords in python programming language array format based on "{content}". The system should analyze the input and recommend relevant terms from the following set only: [mens shirt, casual shirt, black, full-sleeve shirt, medium size, regular fit, blue shirt, pants, trousers, blue fit, slim fit, beige trousers, shirt, jacket, sports jacket, gym shoes, shoes, black and white, Skirt, black skirt, womens wear, black watch, metal strap, analog watch, watches, red, vest, beach wear, red vest, mens wear, digital watch, rubber strap]. If not found anything relatable, return "Keyword not matching in store"')
keyword_llm = OpenAI()
keyword_memory = ConversationBufferMemory(input_key="content",memory_key='keyword_history')
keywords_suggestion = LLMChain(llm=keyword_llm, prompt=keywords_template, memory=keyword_memory, verbose=True)
def ask(prompt):
return fashion_suggestion.run(prompt)
def generate_keywords(prompt):
return keywords_suggestion.run(prompt['msg'])
@app.route('/ask', methods=['GET'])
# {msg:'input'}
def get_bot_response():
data = request.get_json()
response = ask(data['msg'])
print(fashion_memory.buffer)
return response
@app.route('/generate', methods=['GET'])
def get_keywords():
data = request.get_json()
response = generate_keywords(data)
print(keyword_memory.buffer)
return response
@app.route('/register', methods=['POST'])
def register_user():
data = request.get_json()
if 'username' not in data or 'password' not in data:
return jsonify({'error': 'Username and password are required'}), 400
existing_user = users_collection.find_one({'username': data['username']})
if existing_user:
return jsonify({'error': 'Username already exists'}), 400
new_user = {
'username': data['username'],
'password': data['password']
}
users_collection.insert_one(new_user)
return jsonify({'message': 'User registered successfully'}), 201
@app.route('/products', methods=['GET'])
# /products GET
def get_products():
products = list(db.products.find({}, {'_id': 0}))
if products:
return jsonify({'products': products})
else:
return jsonify({'message': 'No products found'}), 404
@app.route('/createProduct', methods=['POST'])
def create_product():
data = request.get_json()
if 'name' not in data or 'description' not in data or 'price' not in data:
return jsonify({'error': 'Name, description and price are required'}), 400
existing_product = products_collection.find_one({'name': data['name']})
if existing_product:
return jsonify({'error': 'Product already exists'}), 400
new_product = {
'name': data['name'],
'description': data['description'],
'price': data['price']
}
products_collection.insert_one(new_product)
return jsonify({'message': 'Product added successfully'}), 201
@app.route('/deleteProduct', methods=['POST'])
def delete_product():
data = request.get_json()
if 'name' not in data:
return jsonify({'error': 'Name, description and price are required'}), 400
criteria={'name': data['name']}
result = db.products.delete_one(criteria)
if result.deleted_count ==1:
return jsonify({'msg': 'Product deleted successfully'}), 200
else:
return jsonify({'error': 'Failed to delete product'}), 500
@app.route('/product', methods=['GET'])
# /product {name}
def search_product():
product_name = request.args.get('name')
if not product_name:
return jsonify({'error': 'Product name is required in the query parameters'}), 400
query = {'name': {'$regex': f'.*{product_name}.*', '$options': 'i'}}
matching_products = list(db.products.find(query, {'_id': 0}))
if matching_products:
return jsonify({'matching_products': matching_products}),
else:
return jsonify({'message': 'No matching products found'}), 404
@app.route('/updateProduct', methods=['PUT'])
def update_product():
data = request.get_json()
if 'name' not in data:
return jsonify({'error': 'Product name is required for updating'}), 400
existing_product = products_collection.find_one({'name': data['name']})
if not existing_product:
return jsonify({'error': 'Product not found'}), 404
update_fields = {}
if 'new_name' in data:
update_fields['name'] = data['new_name']
if 'price' in data:
update_fields['price'] = data['price']
if 'description' in data:
update_fields['description'] = data['description']
products_collection.update_one(
{'name': data['name']},
{'$set': update_fields}
)
return jsonify({'message': 'Product updated successfully'}), 200
if __name__ == "__main__":
app.run(debug=True) | [
"Suggest a curated set of keywords in python programming language array format based on \"{content}\". The system should analyze the input and recommend relevant terms from the following set only: [mens shirt, casual shirt, black, full-sleeve shirt, medium size, regular fit, blue shirt, pants, trousers, blue fit, slim fit, beige trousers, shirt, jacket, sports jacket, gym shoes, shoes, black and white, Skirt, black skirt, womens wear, black watch, metal strap, analog watch, watches, red, vest, beach wear, red vest, mens wear, digital watch, rubber strap]. If not found anything relatable, return \"Keyword not matching in store\"",
"content",
"input",
"You are an assistant suggesting helpful eco-friendly fashion tips. Suggest some fashion tips for \"{input}\""
] |
2024-01-10 | EthanV1920/ENGR-220-MatLab | FinalProject~matLabGPT.py |
import openai
import configparser
config = configparser.ConfigParser()
config.read('/Users/ethanvosburg/Documents/git/ENGR-220-MatLab/FinalProject/env.ini')
def getResponse(prompt, name, probNum, assign, toggle):
openai.api_key = config['KEYS']['OPENAI_API_KEY']
if toggle == "PatGPT":
decorationText = "Write a matlab script to solve the following problem:"
promptIn = decorationText + prompt
else:
promptIn = prompt
promptIn = promptIn.replace("\n", "")
completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": promptIn}])
reply = completion.choices[0].message.content
# decorCode = open(r"DecoratedCode.txt", "w+")
if toggle == "PatGPT":
appendStr = "%% Assignment " + str(assign) + " ENGR 220\n% " + name + "\n%% Problem #" + str(probNum) + "\n% "
genCode = open(r"GeneratedCode.m", "w+")
genCode.write(appendStr)
genCode = open(r"GeneratedCode.m", "a")
genCode.write(prompt)
genCode.write(reply)
genCode.close()
toMatLab = appendStr + prompt + reply
else:
toMatLab = reply
return toMatLab
reply = getResponse(promptIn, nameIn, probNumIn, assignIn, toggleIn) | [
"Write a matlab script to solve the following problem:PLACEHOLDER"
] |
2024-01-10 | EthanV1920/ENGR-220-MatLab | FinalProject~Reference~chatgpt-api-youtube-main~01-chatgpt-simple.py | import openai
import configparser
config = configparser.ConfigParser()
config.read('/Users/ethanvosburg/Documents/git/ENGR-220-MatLab/FinalProject/env.ini')
def getResponse(prompt, name, probNum, assign, toggle):
openai.api_key = config['KEYS']['OPENAI_API_KEY']
if toggle == "PatGPT":
decorationText = "Write a matlab script to solve the following problem:"
promptIn = decorationText + prompt
else:
promptIn = prompt
promptIn = promptIn.replace("\n", "")
completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": promptIn}])
reply = completion.choices[0].message.content
# decorCode = open(r"DecoratedCode.txt", "w+")
if toggle == "PatGPT":
appendStr = "%% Assignment " + str(assign) + " ENGR 220\n% " + name + "\n%% Problem #" + str(probNum) + "\n% "
genCode = open(r"GeneratedCode.m", "w+")
genCode.write(appendStr)
genCode = open(r"GeneratedCode.m", "a")
genCode.write(prompt)
genCode.write(reply)
genCode.close()
toMatLab = appendStr + prompt + reply
else:
toMatLab = reply
return toMatLab
reply = getResponse(promptIn, nameIn, probNumIn, assignIn, toggleIn) | [
"Write a matlab script to solve the following problem:PLACEHOLDER"
] |
2024-01-10 | stormaker/AIcoding101 | W0~new_v.py | import os
from dotenv import load_dotenv
from openai import OpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from tqdm import tqdm
load_dotenv()
openai_api = os.getenv("OPENAI_API_KEY")
# Step 1: Read the text file
with open("input.txt", "r", encoding='utf-8') as f:
text = f.read()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1100,
chunk_overlap=20,
length_function=len,
is_separator_regex=False,
)
chunks = text_splitter.split_text(text)
client = OpenAI()
def summarize_text(text):
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{
"role": "assistant",
"content": f"่ฏทๅฐๆๅ้็่ฏญ้ณ็จฟๆด็ไธบๆญฃๅผ็ไนฆ้ข่ฏญ๏ผ่ฆๆฑ"
f"-ไฟ็ๅฏน่ฏไธญ็ๆฏไธไธช็ป่๏ผไธๆนๅๅๆๅซไน๏ผ"
f"-ๅฐฝๅฏ่ฝๅฐไฟ็ๅ่ฏ็็จ่ฏใ่ฏ่ฏญ้ฃๆ ผ๏ผ"
f"-่ฏทไฟฎๆน้ๅซๅญ๏ผ็ฌฆๅไธญๆ่ฏญๆณ่ง่ใ"
f"-ๅปๆ่ฏด่ฏไบบๅๆถ้ดๆณใ:{text}"
}
],
temperature=0,
max_tokens=4000,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response.choices[0].message.content
print("Summarizing the text...\n")
summaries = []
with tqdm(total=len(chunks)) as pbar:
for i, chunk in enumerate(chunks):
summary = summarize_text(chunk)
summaries.append(summary)
# Save each summary chunk in a separate text file
with open(f'summary_chunk_{i+1}.txt', 'w', encoding='utf-8') as file:
file.write(summary)
pbar.update(1)
# Combine the summary chunk files into one text file
with open('summary_output.txt', 'w', encoding='utf-8') as file:
for i, summary in enumerate(summaries):
# file.write(f'Summary Chunk {i+1}:\n\n')
file.write(summary + '\n\n')
print("Summarization complete. Check the summary_output.txt file.") | [
"่ฏทๅฐๆๅ้็่ฏญ้ณ็จฟๆด็ไธบๆญฃๅผ็ไนฆ้ข่ฏญ๏ผ่ฆๆฑ-ไฟ็ๅฏน่ฏไธญ็ๆฏไธไธช็ป่๏ผไธๆนๅๅๆๅซไน๏ผ-ๅฐฝๅฏ่ฝๅฐไฟ็ๅ่ฏ็็จ่ฏใ่ฏ่ฏญ้ฃๆ ผ๏ผ-่ฏทไฟฎๆน้ๅซๅญ๏ผ็ฌฆๅไธญๆ่ฏญๆณ่ง่ใ-ๅปๆ่ฏด่ฏไบบๅๆถ้ดๆณใ:PLACEHOLDER"
] |
2024-01-10 | stormaker/AIcoding101 | W0~new.py | import os
from dotenv import load_dotenv
from openai import OpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
load_dotenv()
openai_api = os.getenv("OPENAI_API_KEY")
# Step 1: Read the text file
with open("input.txt", "r", encoding='utf-8') as f:
text = f.read()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 1100,
chunk_overlap = 20,
length_function = len,
is_separator_regex = False,
)
chunks = text_splitter.split_text(text)
#print(chunks[0])
client = OpenAI()
def summarize_text(text):
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{
"role": "assistant",
"content": f"ไฝ ๆฏไผ่ฎฎ่ฎฐๅฝๆด็ไบบๅ๏ผไปฅไธๆฏไธๆฎตๅฝ้ณ็้ๅญ็จฟ๏ผ่ฏท้ๅญๅฐๅ
ถๆด็ๆๅๅ่ฟ่ดฏ็ๆๅญ๏ผ้่ฆๆณจๆ๏ผ1.ไฟ็ๅฎๆดไฟ็ๅๅงๅฝ้ณ็ๆๆ็ป่ใ2.ๅฐฝ้ไฟ็ๅๆ่ฏญไนใ่ฏญๆใ3.่ฏทไฟฎๆน้ๅซๅญ๏ผ็ฌฆๅไธญๆ่ฏญๆณ่ง่ใ4.ๅปๆ่ฏด่ฏไบบๅๆถ้ดๆณใ5.็ฌฌไธไบบ็งฐ๏ผๆใ6.่ฏท่ถณๅค่ฏฆ็ป๏ผๅญๆฐ่ถๅค่ถๅฅฝใ7.ไฟๆๅๅงๅฝ้ณ้ๅญ็จฟ็่ฏญ่จ้ฃๆ ผ:{text}"
}
],
temperature=0,
max_tokens=4000,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response.choices[0].message.content
print("Summarizing the text...")
summary = []
summaries = [summarize_text(chunk) for chunk in chunks]
# Step 4: Combine the result from the summarize chain and save them as a new text file
with open('summary_output.txt', 'w', encoding='utf-8') as file:
for summary in summaries:
file.write(summary + '\n\n')
print("Summarization complete. Check the summary_output.txt file.")
| [
"ไฝ ๆฏไผ่ฎฎ่ฎฐๅฝๆด็ไบบๅ๏ผไปฅไธๆฏไธๆฎตๅฝ้ณ็้ๅญ็จฟ๏ผ่ฏท้ๅญๅฐๅ
ถๆด็ๆๅๅ่ฟ่ดฏ็ๆๅญ๏ผ้่ฆๆณจๆ๏ผ1.ไฟ็ๅฎๆดไฟ็ๅๅงๅฝ้ณ็ๆๆ็ป่ใ2.ๅฐฝ้ไฟ็ๅๆ่ฏญไนใ่ฏญๆใ3.่ฏทไฟฎๆน้ๅซๅญ๏ผ็ฌฆๅไธญๆ่ฏญๆณ่ง่ใ4.ๅปๆ่ฏด่ฏไบบๅๆถ้ดๆณใ5.็ฌฌไธไบบ็งฐ๏ผๆใ6.่ฏท่ถณๅค่ฏฆ็ป๏ผๅญๆฐ่ถๅค่ถๅฅฝใ7.ไฟๆๅๅงๅฝ้ณ้ๅญ็จฟ็่ฏญ่จ้ฃๆ ผ:PLACEHOLDER"
] |
2024-01-10 | YAIxPOZAlabs/MuseDiffusion | MuseDiffusion~utils~logger.py | # Logger copied from OpenAI baselines to avoid extra RL-based dependencies:
# https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py
from abc import abstractmethod, ABC
import os
import sys
import json
import time
import datetime
import tempfile
import warnings
from collections import defaultdict
from contextlib import contextmanager
try:
import wandb
except ModuleNotFoundError:
class wandb:
def log(self, *args, **kwargs): pass
DEBUG = 10
INFO = 20
WARN = 30
ERROR = 40
DISABLED = 50
class KVWriter(ABC):
@abstractmethod
def writekvs(self, kvs):
raise NotImplementedError
class SeqWriter(ABC):
@abstractmethod
def writeseq(self, seq):
raise NotImplementedError
class HumanOutputFormat(KVWriter, SeqWriter):
def __init__(self, filename_or_file):
if isinstance(filename_or_file, str):
self.file = open(filename_or_file, "wt")
self.own_file = True
else:
assert hasattr(filename_or_file, "read"), (
"expected file or str, got %s" % filename_or_file
)
self.file = filename_or_file
self.own_file = False
def writekvs(self, kvs):
# Create strings for printing
key2str = {}
for (key, val) in sorted(kvs.items()):
if hasattr(val, "__float__"):
valstr = "%-8.3g" % val
else:
valstr = str(val)
key2str[self._truncate(key)] = self._truncate(valstr)
# Find max widths
if len(key2str) == 0:
print("WARNING: tried to write empty key-value dict")
return
else:
keywidth = max(map(len, key2str.keys()))
valwidth = max(map(len, key2str.values()))
# Write out the data
dashes = "-" * (keywidth + valwidth + 7)
lines = [dashes]
for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()):
lines.append(
"| %s%s | %s%s |"
% (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val)))
)
lines.append(dashes)
self.file.write("\n".join(lines) + "\n")
# Flush the output to the file
self.file.flush()
@staticmethod
def _truncate(s):
maxlen = 30
return s[: maxlen - 3] + "..." if len(s) > maxlen else s
def writeseq(self, seq):
seq = list(seq)
for (i, elem) in enumerate(seq):
self.file.write(elem)
if i < len(seq) - 1: # add space unless this is the last one
self.file.write(" ")
self.file.write("\n")
self.file.flush()
def close(self):
if self.own_file:
self.file.close()
class JSONOutputFormat(KVWriter):
def __init__(self, filename):
self.file = open(filename, "wt")
def writekvs(self, kvs):
for k, v in sorted(kvs.items()):
if hasattr(v, "dtype"):
kvs[k] = float(v)
self.file.write(json.dumps(kvs) + "\n")
self.file.flush()
def close(self):
self.file.close()
class CSVOutputFormat(KVWriter):
def __init__(self, filename):
self.file = open(filename, "w+t")
self.keys = []
self.sep = ","
def writekvs(self, kvs):
# Add our current row to the history
extra_keys = list(kvs.keys() - self.keys)
extra_keys.sort()
if extra_keys:
self.keys.extend(extra_keys)
self.file.seek(0)
lines = self.file.readlines()
self.file.seek(0)
for (i, k) in enumerate(self.keys):
if i > 0:
self.file.write(",")
self.file.write(k)
self.file.write("\n")
for line in lines[1:]:
self.file.write(line[:-1])
self.file.write(self.sep * len(extra_keys))
self.file.write("\n")
for (i, k) in enumerate(self.keys):
if i > 0:
self.file.write(",")
v = kvs.get(k)
if v is not None:
self.file.write(str(v))
self.file.write("\n")
self.file.flush()
def close(self):
self.file.close()
class TensorBoardOutputFormat(KVWriter):
"""
Dumps key/value pairs into TensorBoard's numeric format.
"""
def __init__(self, dir):
os.makedirs(dir, exist_ok=True)
self.dir = dir
self.step = 1
prefix = "events"
path = os.path.join(os.path.abspath(dir), prefix)
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
from tensorflow.core.util import event_pb2
from tensorflow.python.util import compat
self.tf = tf
self.event_pb2 = event_pb2
self.pywrap_tensorflow = pywrap_tensorflow
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
def writekvs(self, kvs):
def summary_val(k, v):
kwargs = {"tag": k, "simple_value": float(v)}
return self.tf.Summary.Value(**kwargs)
summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()])
event = self.event_pb2.Event(wall_time=time.time(), summary=summary)
event.step = (
self.step
) # is there any reason why you'd want to specify the step?
self.writer.WriteEvent(event)
self.writer.Flush()
self.step += 1
def close(self):
if self.writer:
self.writer.Close()
self.writer = None
def make_output_format(format, ev_dir, log_suffix=""):
os.makedirs(ev_dir, exist_ok=True)
if format == "stdout":
return HumanOutputFormat(sys.stdout)
elif format == "log":
return HumanOutputFormat(os.path.join(ev_dir, "log%s.txt" % log_suffix))
elif format == "json":
return JSONOutputFormat(os.path.join(ev_dir, "progress%s.json" % log_suffix))
elif format == "csv":
return CSVOutputFormat(os.path.join(ev_dir, "progress%s.csv" % log_suffix))
elif format == "tensorboard":
return TensorBoardOutputFormat(os.path.join(ev_dir, "tb%s" % log_suffix))
else:
raise ValueError("Unknown format specified: %s" % (format,))
# ================================================================
# API
# ================================================================
def logkv(key, val):
"""
Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
If called many times, last value will be used.
"""
get_current().logkv(key, val)
def logkv_mean(key, val):
"""
The same as logkv(), but if called many times, values averaged.
"""
get_current().logkv_mean(key, val)
def logkvs(d):
"""
Log a dictionary of key-value pairs
"""
for (k, v) in d.items():
logkv(k, v)
def dumpkvs():
"""
Write all of the diagnostics from the current iteration
"""
return get_current().dumpkvs()
def getkvs():
return get_current().name2val
def log(*args, level=INFO):
"""
Write the sequence of args, with no separators, to the console and output files (if you've configured an output file).
"""
get_current().log(*args, level=level)
def debug(*args):
log(*args, level=DEBUG)
def info(*args):
log(*args, level=INFO)
def warn(*args):
log(*args, level=WARN)
def error(*args):
log(*args, level=ERROR)
def set_level(level):
"""
Set logging threshold on current logger.
"""
get_current().set_level(level)
def set_comm(comm):
get_current().set_comm(comm)
def get_dir():
"""
Get directory that log files are being written to.
will be None if there is no output directory (i.e., if you didn't call start)
"""
return get_current().get_dir()
record_tabular = logkv
dump_tabular = dumpkvs
@contextmanager
def profile_kv(scopename):
logkey = "wait_" + scopename
tstart = time.time()
try:
yield
finally:
get_current().name2val[logkey] += time.time() - tstart
def profile(n):
"""
Usage:
@profile("my_func")
def my_func(): code
"""
def decorator_with_name(func):
def func_wrapper(*args, **kwargs):
with profile_kv(n):
return func(*args, **kwargs)
return func_wrapper
return decorator_with_name
# ================================================================
# Backend
# ================================================================
def get_current():
if Logger.CURRENT is None:
_configure_default_logger()
return Logger.CURRENT
class Logger(object):
DEFAULT = None # A logger with no output files. (See right below class definition)
# So that you can still log to the terminal without setting up any output files
CURRENT = None # Current logger being used by the free functions above
def __init__(self, dir, output_formats, comm=None):
self.name2val = defaultdict(float) # values this iteration
self.name2cnt = defaultdict(int)
self.level = INFO
self.dir = dir
self.output_formats = output_formats
self.comm = comm
# Logging API, forwarded
# ----------------------------------------
def logkv(self, key, val):
self.name2val[key] = val
def logkv_mean(self, key, val):
oldval, cnt = self.name2val[key], self.name2cnt[key]
self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1)
self.name2cnt[key] = cnt + 1
def dumpkvs(self):
if self.comm is None:
d = self.name2val
else:
d = mpi_weighted_mean(
self.comm,
{
name: (val, self.name2cnt.get(name, 1))
for (name, val) in self.name2val.items()
},
)
if self.comm.rank != 0:
d["dummy"] = 1 # so we don't get a warning about empty dict
# LISA
out = d.copy() # Return the dict for unit testing purposes
wandb.log({**d})
if int(os.environ['LOCAL_RANK']) == 0:
for fmt in self.output_formats:
if isinstance(fmt, KVWriter):
fmt.writekvs(d)
self.name2val.clear()
self.name2cnt.clear()
return out
def log(self, *args, level=INFO):
if self.level <= level:
self._do_log(args)
# Configuration
# ----------------------------------------
def set_level(self, level):
self.level = level
def set_comm(self, comm):
self.comm = comm
def get_dir(self):
return self.dir
def close(self):
for fmt in self.output_formats:
fmt.close()
# Misc
# ----------------------------------------
def _do_log(self, args):
for fmt in self.output_formats:
if isinstance(fmt, SeqWriter):
fmt.writeseq(map(str, args))
def get_rank_without_mpi_import():
# check environment variables here instead of importing mpi4py
# to avoid calling MPI_Init() when this module is imported
for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]:
if varname in os.environ:
return int(os.environ[varname])
return 0
def mpi_weighted_mean(comm, local_name2valcount):
"""
Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110
Perform a weighted average over dicts that are each on a different node
Input: local_name2valcount: dict mapping key -> (value, count)
Returns: key -> mean
"""
all_name2valcount = comm.gather(local_name2valcount)
if comm.rank == 0:
name2sum = defaultdict(float)
name2count = defaultdict(float)
for n2vc in all_name2valcount:
for (name, (val, count)) in n2vc.items():
try:
val = float(val)
except ValueError:
if comm.rank == 0:
warnings.warn(
"WARNING: tried to compute mean on non-float {}={}".format(
name, val
)
)
else:
name2sum[name] += val * count
name2count[name] += count
return {name: name2sum[name] / name2count[name] for name in name2sum}
else:
return {}
def configure(dir=None, format_strs=None, comm=None, log_suffix=""):
"""
If comm is provided, average all numerical stats across that comm
"""
if dir is None:
dir = os.getenv("OPENAI_LOGDIR")
if dir is None:
dir = os.path.join(
tempfile.gettempdir(),
datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"),
)
assert isinstance(dir, str)
dir = os.path.expanduser(dir)
os.makedirs(os.path.expanduser(dir), exist_ok=True)
rank = get_rank_without_mpi_import()
if rank > 0:
log_suffix = log_suffix + "-rank%03i" % rank
if format_strs is None:
if rank == 0:
format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",")
else:
format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",")
format_strs = filter(None, format_strs)
output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm)
if output_formats:
log("Logging to %s" % dir)
def _configure_default_logger():
configure()
Logger.DEFAULT = Logger.CURRENT
def reset():
if Logger.CURRENT is not Logger.DEFAULT:
Logger.CURRENT.close()
Logger.CURRENT = Logger.DEFAULT
log("Reset logger")
@contextmanager
def scoped_configure(dir=None, format_strs=None, comm=None):
prevlogger = Logger.CURRENT
configure(dir=dir, format_strs=format_strs, comm=comm)
try:
yield
finally:
Logger.CURRENT.close()
Logger.CURRENT = prevlogger
| [] |
2024-01-10 | ChaoticBlack/SexEdBot-gpt4 | src~core~chat_parser.py | from typing import Any
from langchain.agents.conversational_chat.output_parser import ConvoOutputParser
class ChatCustomParser(ConvoOutputParser):
@property
def _type(self) -> str:
return "ChatCustomParser"
def parse(self, text: str) -> Any:
cleaned_output = text.strip()
if cleaned_output.startswith("AI: "):
cleaned_output = cleaned_output[len("AI: ") :]
return super().parse(cleaned_output)
| [] |
2024-01-10 | ChaoticBlack/SexEdBot-gpt4 | src~core~parser.py | import re
from typing import Union
from langchain.agents.mrkl.output_parser import MRKLOutputParser
from langchain.schema import AgentAction, AgentFinish
from utils import UUID_PATTERN
FINAL_ANSWER_ACTION = "Final Answer:"
FORMAT_INSTRUCTIONS_W_TOOLS = """
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do unless it's a casual conversation, then skip to final answer.
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question. Consider all observations to come up with a final answer.
"""
FORMAT_INSTRUCTIONS_WO_TOOLS = """
Use the following format:
Question: the input question you must answer
Thought: I now know the final answer
Final Answer: the final answer to the original input question
"""
def get_format_instructions(has_tools=True) -> str:
return FORMAT_INSTRUCTIONS_W_TOOLS if has_tools else FORMAT_INSTRUCTIONS_WO_TOOLS
class CustomParser(MRKLOutputParser):
def get_format_instructions(self) -> str:
return get_format_instructions(True)
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
if FINAL_ANSWER_ACTION in text:
output = text.split(FINAL_ANSWER_ACTION)[-1].strip()
output = UUID_PATTERN.split(output)
output = [re.sub(r"^\W+", "", el) for el in output]
return AgentFinish({"output": output}, text)
cleaned_output = super().parse(text)
return cleaned_output
| [] |
2024-01-10 | ChaoticBlack/SexEdBot-gpt4 | src~core~agent~chat_agent.py | from langchain.agents import AgentExecutor, ConversationalChatAgent
from langchain.agents.conversational_chat.prompt import PREFIX
from langchain.memory import ConversationBufferWindowMemory
from steamship_langchain.llms import OpenAIChat
from core.agent.base import BaseAgent
from core.chat_parser import ChatCustomParser
TEMPERATURE = 0.7
MODEL_NAME = "gpt-3.5-turbo" # or "gpt-4"
class ChatAgent(BaseAgent):
name: str = "MyAgent"
def get_agent(self):
llm = OpenAIChat(
client=self.client, temperature=TEMPERATURE, model_name=MODEL_NAME
)
sys_message = (
f"{PREFIX}\n Please take on the personality of {self.get_personality()}"
)
tools = self.get_tools()
memory = ConversationBufferWindowMemory(
return_messages=True,
memory_key="chat_history",
)
agent = ConversationalChatAgent.from_llm_and_tools(
llm, tools, system_message=sys_message, output_parser=ChatCustomParser()
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
memory=memory,
verbose=self.is_verbose_logging_enabled(),
)
| [] |
2024-01-10 | anbraten/incosy | src~incosy.py | import yaml
from langchain import LLMChain
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.agents import initialize_agent, Tool, AgentType
from langchain.chains import ConversationChain
from langchain.memory.chat_message_histories.in_memory import ChatMessageHistory
class SafeDict(dict):
def __missing__(self, key):
return '{' + key + '}'
def get_best_product_prompt():
file = open("database.yml", "r")
database = yaml.load(file, Loader=yaml.FullLoader)
product_list = []
product_names = []
for product in database['products']:
if not 'use_cases' in product:
print("Product " + product.get('name') +
" has no name or use_cases")
continue
product_names.append(product.get('name'))
product_list.append(product.get('name') + ": " +
product.get('use_cases').replace('\n', ' ').replace('- ', ''))
data = SafeDict(product_list='- ' + '\n- '.join(product_list),
product_names=', '.join(product_names))
prompt = """
Suggest products for the following problem of a caregiver of a nursing home as best you can. You have access to the following products and their use cases:
{product_list}
Current conversation:
{chat_history}
Use the following format:
Question: the input problem to suggest products for
Thought: you should always think what would be the best products to suggest
Products: the products to suggest, should of [{product_names}]
Observation: the result of the suggestion
... (this Thought/Product/Observation can repeat N times)
Thought: I now know the best products to suggest
Final Answer: Maybe one of the following products could help you ...
Begin!
Question: {input}
Thought:
""".format_map(data).strip()
return prompt
def get_product_description_prompt():
file = open("database.yml", "r")
database = yaml.load(file, Loader=yaml.FullLoader)
product_list = []
product_names = []
for product in database['products']:
if not 'use_cases' in product:
print("Product " + product.get('name') +
" has no name or use_cases")
continue
product_names.append(product.get('name'))
product_list.append(product.get('name') + ": " +
product.get('use_cases').replace('\n', ' ').replace('- ', ''))
data = SafeDict(product_list='- ' + '\n- '.join(product_list),
product_names=', '.join(product_names))
prompt = """
Explain how the caregiver can use the suggested products to solve their problem.
Current conversation:
{chat_history}
Caregiver: {input}
AI:
""".format_map(data).strip()
return prompt
def get_product_buy_prompt():
file = open("database.yml", "r")
database = yaml.load(file, Loader=yaml.FullLoader)
product_list = []
product_names = []
for product in database['products']:
if not 'use_cases' in product:
print("Product " + product.get('name') +
" has no name or use_cases")
continue
product_names.append(product.get('name'))
product_list.append(product.get('name') + ": " +
product.get('use_cases').replace('\n', ' ').replace('- ', ''))
data = SafeDict(product_list='- ' + '\n- '.join(product_list),
product_names=', '.join(product_names))
prompt = """
Tell the caregiver that you will forward their suggestion to the home management.
Tell the caregiver that you will also notify them again when the home management has decided to buy the product.
Tell the caregiver that they can always ask you for help again and tell them that you care about them.
Current conversation:
{chat_history}
Caregiver: {input}
AI:
""".format_map(data).strip()
return prompt
def open_chat():
llm = ChatOpenAI(
temperature=0, model_name='gpt-3.5-turbo', verbose=True)
chat_memory = ChatMessageHistory()
chat_memory.add_ai_message(
"How was your last shift?")
memory = ConversationBufferMemory(
chat_memory=chat_memory, memory_key="chat_history", human_prefix="Caregiver:", output_key="output")
readonly_memory = ReadOnlySharedMemory(memory=memory)
product_chain = ConversationChain(
prompt=PromptTemplate(
template=get_best_product_prompt(),
input_variables=["chat_history", "input"],
),
llm=llm,
verbose=True,
memory=readonly_memory,
)
describe_chain = ConversationChain(
prompt=PromptTemplate(
template=get_product_description_prompt(),
input_variables=["chat_history", "input"],
),
llm=llm,
verbose=True,
memory=readonly_memory,
)
buy_chain = LLMChain(
prompt=PromptTemplate(
template=get_product_buy_prompt(),
input_variables=["chat_history", "input"],
),
llm=llm,
verbose=True,
memory=readonly_memory,
)
tools = [
Tool(
name="problem",
func=product_chain.run,
description="""useful for when the caregiver is telling us about a problem they have in caregiving""",
return_direct=True,
),
Tool(
name="describe",
func=describe_chain.run,
description="""useful for when the caregiver is interested in a product and wants to know more about it""",
return_direct=True,
),
Tool(
name="buy",
func=buy_chain.run,
description="""useful for when the caregiver wants to suggest a product to the home lead""",
return_direct=True,
),
]
agent_chain = initialize_agent(
tools, llm=llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory, return_intermediate_steps=True,)
return agent_chain
| [
"Tell the caregiver that you will forward their suggestion to the home management.\nTell the caregiver that you will also notify them again when the home management has decided to buy the product.\nTell the caregiver that they can always ask you for help again and tell them that you care about them.\n\nCurrent conversation:\nPLACEHOLDER\n\nCaregiver: PLACEHOLDER\nAI:",
"Explain how the caregiver can use the suggested products to solve their problem.\n\nCurrent conversation:\nPLACEHOLDER\n\nCaregiver: PLACEHOLDER\nAI:",
"Suggest products for the following problem of a caregiver of a nursing home as best you can. You have access to the following products and their use cases:\n\nPLACEHOLDER\n\nCurrent conversation:\nPLACEHOLDER\n\nUse the following format:\n\nQuestion: the input problem to suggest products for\nThought: you should always think what would be the best products to suggest\nProducts: the products to suggest, should of [PLACEHOLDER]\nObservation: the result of the suggestion\n... (this Thought/Product/Observation can repeat N times)\nThought: I now know the best products to suggest\nFinal Answer: Maybe one of the following products could help you ...\n\nBegin!\n\nQuestion: PLACEHOLDER\nThought:"
] |
2024-01-10 | anbraten/incosy | src~generate_database.py | import yaml
import os
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from dotenv import load_dotenv
import requests
load_dotenv()
def sanitize_path(file):
# replace space with _ and lower case
return file.replace(' ', '_').lower()
def generate_description(product, qa):
name = product['name']
return qa.run("Give me a description of " + name + " in english.")
def generate_use_cases(product, qa):
name = product['name']
problem = product['problem']
return qa.run("What are the use cases of " + name + " in english.")
def generate_funding(product, qa):
name = product['name']
description = product['description']
return qa.run("Generate a text how can I fund " + name + " with following description: " + description + " in english.")
def generate_reviews(product, qa):
name = product['name']
return qa.run("Make up a list of reviews from caregivers of a nursing home for " + name + " formatted as markdown list in english.")
def generate_db():
# load yaml file
file = open("database.yml")
database = yaml.load(file, Loader=yaml.FullLoader)
for product in database['products']:
print('\n### ' + product['name'] + ' ###')
filename = sanitize_path(product['name'] + '.txt')
if not os.path.exists('data/' + filename):
print(filename+' is missing!')
continue
loader = TextLoader("data/" + filename)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_documents(texts, embeddings)
# qa = VectorstoreIndexCreator().from_loaders([loader])
qa = RetrievalQA.from_chain_type(
llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
if not 'description' in product or product['description'] == '':
product["description"] = generate_description(product, qa)
print("Generated description")
if not 'use_cases' in product or product['use_cases'] == '':
product["use_cases"] = generate_use_cases(product, qa)
print("Generated use_cases")
if not 'funding' in product or product['funding'] == '':
product["funding"] = generate_funding(product, qa)
print("Generated funding")
if not 'reviews' in product or product['reviews'] == '':
product["reviews"] = generate_reviews(product, qa)
print("Generated reviews")
product["description"] = product["description"].strip()
product["use_cases"] = product["use_cases"].strip()
product["funding"] = product["funding"].strip()
product["reviews"] = product["reviews"].strip()
# write yaml file
with open('database.yml', 'w') as file:
yaml.dump(database, file, allow_unicode=True)
def upload_database():
baseUrl = "https://budibase.app/api/public/v1/"
url = baseUrl + "tables/" + \
os.getenv("BUDIBASE_PRODUCTS_TABLE_ID") + "/rows"
# load yaml file
file = open("database.yml")
database = yaml.load(file, Loader=yaml.FullLoader)
for product in database['products']:
print('\n### ' + product['name'] + ' ###')
data = {
"name": product.get('name'),
"description": product.get('description'),
"use_cases": product.get('use_cases'),
"funding": product.get('funding'),
"reviews": product.get('reviews'),
"website": product.get('websites', [""])[0],
}
headers = {
'x-budibase-app-id': os.getenv("BUDIBASE_APP_ID"),
'x-budibase-api-key': os.getenv("BUDIBASE_API_KEY"),
}
response = requests.post(url, json=data, headers=headers)
print(response.status_code)
if __name__ == "__main__":
# generate_db()
upload_database()
| [] |
2024-01-10 | Magma4/ai_assistant | chatgpt~exercise2.py | # Text summarization
# One really common use case for using OpenAI's models is summarizing text. This has a ton of applications in business settings, including summarizing reports into concise one-pagers or a handful of bullet points, or extracting the next steps and timelines for different stakeholders.
# In this exercise, you'll summarize a passage of text on financial investment into two concise bullet points using a text completion model.
# The openai package has been pre-loaded for you.
# Instructions
# 100 XP
# Assign your API key to openai.api_key.
# Create a request to Completion endpoint, sending the prompt provided; use a maximum of 400 tokens and make the response more deterministic.
# Set your API key
import openai
openai.api_key = "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"
prompt="""Summarize the following text into two concise bullet points:
Investment refers to the act of committing money or capital to an enterprise with the expectation of obtaining an added income or profit in return. There are a variety of investment options available, including stocks, bonds, mutual funds, real estate, precious metals, and currencies. Making an investment decision requires careful analysis, assessment of risk, and evaluation of potential rewards. Good investments have the ability to produce high returns over the long term while minimizing risk. Diversification of investment portfolios reduces risk exposure. Investment can be a valuable tool for building wealth, generating income, and achieving financial security. It is important to be diligent and informed when investing to avoid losses."""
# Create a request to the Completion endpoint
response = openai.Completion.create(
model = "text-davinci-003",
prompt = prompt,
temperature = 0,
max_tokens = 400
)
print(response["choices"][0]["text"]) | [
"Summarize the following text into two concise bullet points:\nInvestment refers to the act of committing money or capital to an enterprise with the expectation of obtaining an added income or profit in return. There are a variety of investment options available, including stocks, bonds, mutual funds, real estate, precious metals, and currencies. Making an investment decision requires careful analysis, assessment of risk, and evaluation of potential rewards. Good investments have the ability to produce high returns over the long term while minimizing risk. Diversification of investment portfolios reduces risk exposure. Investment can be a valuable tool for building wealth, generating income, and achieving financial security. It is important to be diligent and informed when investing to avoid losses."
] |
2024-01-10 | Magma4/ai_assistant | chatgpt~ex3.py | # AI is playing a much greater role in content generation, from creating marketing content such as blog post titles to creating outreach email templates for sales teams.
# In this exercise, you'll harness AI through the Completion endpoint to generate a catchy slogan for a new restaurant. Feel free to test out different prompts, such as varying the type of cuisine (e.g., Italian, Chinese) or the type of restaurant (e.g., fine-dining, fast-food), to see how the response changes.
# The openai package has been pre-loaded for you.
# Instructions
# 100 XP
# Assign your API key to openai.api_key.
# Create a request to the Completion endpoint to create a slogan for a new restaurant; set the maximum number of tokens to 100.
# Set your API key
import openai
openai.api_key = "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"
# Create a request to the Completion endpoint
response = openai.Completion.create(
model="text-davinci-003",
prompt = """create a catchy slogan for a new restaurant:
The restaurant serves chinese fast-food cuisines """,
max_tokens = 100
)
print(response["choices"][0]["text"]) | [
"create a catchy slogan for a new restaurant:\n The restaurant serves chinese fast-food cuisines "
] |
2024-01-10 | cbr4l0k/snoo.py | src~LLMManager.py | import json
import os
from dotenv import load_dotenv
from langchain.llms.openai import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chains import ConversationChain
from langchain.memory import ConversationKGMemory
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from FileHandler import FileHandler
from prompt_handler import PromptHandler
# some important enviroment variables
load_dotenv()
PROJECTS_PATH = os.getenv("PROJECTS_PATH")
OPEN_AI_API_KEY = os.getenv("OPEN_AI_API_KEY")
OUTPUTS_PATH = os.getenv("OUTPUTS_PATH")
DEFAULT_LLM = os.getenv("DEFAULT_LLM")
import warnings
warnings.filterwarnings("ignore")
class LLM:
"""
This class is a wrapper for the langchain library.
It is used to generate explainations for code.
It uses the langchain library to generate the explainations.
It is also used to generate cohesion and coupling analysis for a project.
It also produces explainations for the folders in the project.
It is also used to generate explainations for a directory.
It is also used to generate explainations for a file.
Attributes:
model: The langchain model used to generate the explainations.
llm_chain: The langchain chain used to generate the explainations.
context_window_size: The size of the context window used to generate the explainations.
options: The options used to initialize the langchain model.
prompt_handler: The prompt handler used to generate the prompts for the langchain model.
file_handler: The file handler used to handle the files in the project.
Methods:
load_model: Loads the langchain model.
load_chain: Loads the langchain chain.
generate_response: Generates an explaination for a file.
generate_explaination_for_directory: Generates an explaination for a directory.
generate_cohesion_coupling_analysis: Generates a cohesion and coupling analysis for a project.
set_context_window_size: Sets the context window size for the langchain model.
_check_response: Checks the response of the langchain model.
"""
projects_path = ''
def __init__(self, projects_path: str, options: dict) -> None:
self.model : OpenAI = None
self.llm_chain : LLMChain = None
self.context_window_size : int = None
self.options : dict = options
self.prompt_handler : PromptHandler = PromptHandler(model_name=self.options["model_name"])
self.prompt_handler.set_projects_path(projects_path)
self.set_projects_path(projects_path)
self.load_model()
self.file_handler : FileHandler = FileHandler()
@staticmethod
def set_projects_path(projects_path: str) -> None:
"""
Sets the outputs path for the LLMManager.
"""
LLM.projects_path = projects_path
def set_context_window_size(self, context_window_size: int) -> None:
"""
Sets the context window size for the langchain model.
Args:
----------
context_window_size: int
The size of the context window to use.
Returns:
----------
None
"""
self.context_window_size = context_window_size
def load_model(self) -> None:
"""
Loads the OpenAI langchain model.
Args:
----------
None
Returns:
----------
None
"""
model = OpenAI(**self.options)
self.prompt_handler.set_model(model_name=self.options["model_name"])
self.model = model
def load_chain(self, template: dict[str, any], requires_memory: bool = False) -> None:
"""
Loads the langchain chain.
Args:
----------
template: dict[str, any]
The template to use for the langchain chain.
requires_memory: bool
Whether the langchain chain requires memory or not.
Returns:
----------
None
"""
self.load_model()
prompt: PromptTemplate = PromptTemplate(
input_variables=template["input_variables"],
template=template["template"]
)
llm_chain: LLMChain = LLMChain(
llm=self.model,
prompt=prompt,
verbose=self.options["verbose"]
)
self.llm_chain = llm_chain
def generate_response(self, file_full_path: str, code: str) -> str:
"""
Generates an explaination for a file.
Args:
----------
file_full_path: str
The full path to the file.
code: str
The code to generate the explaination for.
Returns:
----------
str
The explaination for the file.
"""
# estimate the number of tokens for the code
code_token_size = (self.context_window_size - self.prompt_handler.longest_prompt_lenght)
# chunk the document based on the estimated number of tokens available for the code
docs = self.file_handler.chunk_document(file_full_path, code, code_token_size)
# define the response
response = None
# if the document is too small, just run it
if len(docs) == 1:
template = self.prompt_handler.get_raw_template(template=0)
self.load_chain(template=template)
response = self.llm_chain.run(docs[0].page_content)
# if the document is too big, chunk it and run it
elif len(docs) > 1:
template = self.prompt_handler.get_raw_template(template=1)
self.load_chain(template=template, requires_memory=True)
responses = []
for doc in docs:
response = self.llm_chain.run(doc.page_content)
responses.append(response)
# combine the responses and save them
template = self.prompt_handler.get_raw_template(template=2)
self.load_chain(template=template, requires_memory=True)
response = self.llm_chain.run(responses)
# print(response)
return self._check_response(response)
def _check_response(self, response: str) -> str:
"""
Checks the response of the langchain model.
Args:
----------
response: str
The response to check.
Returns:
----------
str
The checked response.
"""
template = self.prompt_handler.get_raw_template(template=4)
self.load_chain(template=template)
response = self.llm_chain.run(response)
response_json = json.loads(response)
return response_json
def generate_explaination_for_directory(self, directory_contents: str) -> str:
"""
Generates an explaination for a directory.
It is used to generate explainations for the folders in the project.
Args:
----------
directory_contents: str
The contents of the directory.
Returns:
----------
str
The explaination for the directory.
"""
template = self.prompt_handler.get_raw_template(template=5)
self.load_chain(template=template)
response = self.llm_chain.run(directory_contents)
# print(response)
return response
def generate_cohesion_coupling_analysis(self, json_report: str) -> str:
"""
Generates a cohesion and coupling analysis for a project.
It is used to generate cohesion and coupling analysis for a project.
Args:
----------
json_report: str
The json report of the project.
Returns:
----------
str
The cohesion and coupling analysis for the project.
"""
template = self.prompt_handler.get_raw_template(template=3)
prompt = self.prompt_handler.get_prompt(template=3, json_reports=json_report)
prompt_len = self.prompt_handler.get_prompt_token_lenght(prompt)
# if the prompt is really big (bigger than the context window size) then load
# the gpt which has a bigger context window size
if prompt_len > self.context_window_size:
# print("prompt is too big, loading gpt-3.5-turbo-16k")
self.options["model_name"] = "gpt-3.5-turbo-16k"
self.load_model()
self.set_context_window_size(16e3)
self.load_chain(template=template)
response = self.llm_chain.run(prompt)
else:
# print("prompt is not too big, loading gpt-3.5-turbo-16k")
self.options["model_name"] = "gpt-3.5-turbo-16k"
self.load_model()
self.set_context_window_size(16e3)
self.load_chain(template=template)
response = self.llm_chain.run(prompt)
#before returning the response, go back to the original cheaper model
self.options["model_name"] = "gpt-3.5-turbo-16k"
self.set_context_window_size(16e3)
self.load_model()
response_json = json.loads(response)
return response_json
def default_llm(projects_path : str):
"""
Returns the default langchain model.
It is used to generate explainations for the files in the project.
Args:
----------
projects_path: str
The path to the projects.
Returns:
----------
LLM
The default langchain model.
"""
average_number_of_tokens_per_sentence = 27
desired_number_of_sentences_per_file = 30
max_tokens = desired_number_of_sentences_per_file * average_number_of_tokens_per_sentence
context_window_size = 16e3
model_name = DEFAULT_LLM
llm = LLM(
projects_path=projects_path,
options={
"openai_api_key": OPEN_AI_API_KEY,
"model_name": model_name,
"temperature": 0,
"max_tokens": max_tokens,
"presence_penalty": 2,
"callback_manager": CallbackManager([StreamingStdOutCallbackHandler()]),
"verbose": False
},
)
llm.set_context_window_size(context_window_size)
return llm | [
"input_variables"
] |
2024-01-10 | cbr4l0k/snoo.py | src~FileHandler.py | import json
import os
import logging
from typing import List
from dotenv import load_dotenv
from langchain.text_splitter import (RecursiveCharacterTextSplitter, Language)
from langchain.schema.document import Document
# some important enviroment variables
load_dotenv()
MODEL_PATH = os.getenv("MODEL_PATH")
PROJECTS_PATH = os.getenv("PROJECTS_PATH")
OUTPUTS_PATH = os.getenv("OUTPUTS_PATH")
class FileHandler:
"""
This class is supposed to handle the files, individually.
It will be in charge of reading the files, chunking them, and retrieving the chunks.
Attributes:
----------
- None
Methods:
----------
- chunk_document: List[Document]
This function chunks a given block of code taking into account the semantic categories given in a language
by considering it's syntax, from it recursively tries to divide each chunk into one or many of the desired
chunk size, this does not guarantee that they all have the same size, but they should be close.
Also considers the chunk overlap, which allows to have a bit of the previous information available.
- from_filename_to_lang: Language
This function is supposed to take the filename and infer the language by taking the last part of the name
and then return the Language it corresponds to if any (in the dict of supported LangChain languages)
If it does not find it, it will return None.
"""
def __init__(self) -> None:
"""
The constructor for the FileHandler class.
"""
pass
@staticmethod
def from_filename_to_lang(filename: str):
"""
This function is supposed to take the filename and infer the language by taking the last part of the name
and then return the Language it corresponds to if any (in the dict of supported LangChain languages)
If it does not find it, it will return None
Args:
----------
filename: str
The filename to infer the language from
Returns:
----------
Language
The language that corresponds to the filename, if any.
"""
return Language.PYTHON
@staticmethod
def chunk_document(filename_full_path: str, code: str, chunk_size: int, chunk_overlap: int = 0) -> List[Document]:
"""
This function chunks a given block of code taking into account the semantic categories given in a language
by considering it's syntax, from it recursively tries to divide each chunk into one or many of the desired
chunk size, this does not guarantee that they all have the same size, but they should be close.
Also considers the chunk overlap, which allows to have a bit of the previous information available.
Args:
----------
filename_full_path: str
The full path to the file, including the filename and extension.
code: str
The code to chunk.
chunk_size: int
The size of the chunks to create.
chunk_overlap: int
The overlap between chunks.
Returns:
----------
List[Document]
The list of documents created from the chunking.
"""
filename = filename_full_path.split("/")[-1]
lang = FileHandler.from_filename_to_lang(filename)
python_splitter = RecursiveCharacterTextSplitter.from_language(chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
language=lang, )
docs = python_splitter.create_documents([code])
return docs | [] |
2024-01-10 | Ssslakter/AniSearch | src~anisearch~core~recsys.py | from langchain.docstore.document import Document
from libreco.algorithms import LightGCN
from libreco.data import DataInfo
class RecSys:
def __init__(self, model_path: str):
data_info = DataInfo.load(model_path, "recsys_model")
self.model = LightGCN.load(model_path, "recsys_model", data_info)
def rec_from_relevant(self, nickname: str, docs: list[Document]) -> list[Document]:
item_ids = list(map(lambda x: x.metadata["uid"], docs))
scores = self.model.predict(
user=nickname, item=item_ids, cold_start="popular"
).astype(object)
filtered = []
for uid, score in sorted(
zip(item_ids, scores), key=lambda x: x[1], reverse=True
):
if not score > 0:
break
for doc in docs:
if doc.metadata["uid"] == uid:
filtered.append(doc)
return filtered
def recommend(self, nickname: str, n_rec: int):
response = self.model.recommend_user(user=nickname, n_rec=n_rec)[nickname]
return list(response.astype(object))
| [] |
2024-01-10 | Ssslakter/AniSearch | src~anisearch~core~storage.py | from venv import logger
import pandas as pd
from qdrant_client import QdrantClient
from qdrant_client.http.exceptions import UnexpectedResponse
import qdrant_client.http.models as rest
from langchain.vectorstores import Qdrant
from langchain.embeddings.base import Embeddings
from src.features import document_builder
from src.anisearch.configs import QdrantConfig
BATCH_SIZE = 64
class Storage:
"""Client wrapper to qdrant vector storage"""
def __init__(self, embeddings: Embeddings, config: QdrantConfig) -> None:
logger.info("Initializing storage")
self.config = config
self.embeddings = embeddings
self.client = QdrantClient(url=config.url, api_key=config.api_key, timeout=100)
self.document_builder = document_builder.DocumentBuilder()
self.qdrant = Qdrant(
client=self.client,
collection_name=config.collection_name,
embeddings=embeddings,
)
self.init_collection(config.collection_name)
def init_collection(self, collection_name: str):
"""Tries to create collection, even if it already exists
Raises:
err_response: If qdrant returned error response not related with existance of collection
"""
logger.info("Creating collection %s...", collection_name)
vector_length = len(self.embeddings.embed_documents([""])[0])
try:
self.client.create_collection(
collection_name,
rest.VectorParams(
size=vector_length,
distance=rest.Distance[self.config.distance_func.upper()],
),
)
logger.info("Collection was created!")
except UnexpectedResponse as err_response:
if b"already exists!" in err_response.content:
logger.info("Collection %s already exists", collection_name)
return
raise err_response
def insert_df(self, df: pd.DataFrame):
"""Inserts documents to db from pandas dataframe"""
logger.info("Starting to build documents...")
df = self.document_builder.prepare_df(df)
docs = self.document_builder.build_documents(df)
logger.info("Documents were succesfully builded")
for i in range(0, len(docs), BATCH_SIZE):
batch = docs[i : min(i + BATCH_SIZE, len(docs) - 1)]
try:
self.qdrant.add_documents(batch)
logger.info(
"Uploaded %s/%s documents",
min(i + BATCH_SIZE, len(docs) - 1),
len(docs),
)
except UnexpectedResponse as e:
logger.error(
"Failed to upload documents",
exc_info=e,
)
break
| [] |
2024-01-10 | Ssslakter/AniSearch | src~anisearch~core~services.py | from operator import itemgetter
from qdrant_client.models import Filter, FieldCondition, Record, MatchValue, MatchText, Range
from langchain.docstore.document import Document
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from src.features.document_builder import DocumentBuilder
from src.anisearch.configs import Config
from src.anisearch.core.storage import Storage
from src.anisearch.data_models import AnimeData
from src.anisearch.core.recsys import RecSys
class Services:
"""Class that holds all services"""
OUTPUT_AMOUNT = 15
filter = Filter(
must=[
FieldCondition(
key="metadata.score",
range=Range(gt=5.3),
),
FieldCondition(
key="metadata.popularity",
range=Range(lt=7000),
),
]
)
def __init__(self, config: Config) -> None:
self.embeddings = get_embeddings(config.models_dir)
self.config = config
self.document_builder = DocumentBuilder()
self.storage = Storage(self.embeddings, self.config.qdrant)
self.recsys = RecSys(config.recsys_dir)
def initialize(self):
"""Perform some init configurations like creating collections, etc."""
self.storage.init_collection(self.config.qdrant.collection_name)
def insert_anime(self, anime: AnimeData) -> list[str]:
"""Inserts anime into storage"""
doc = self.document_builder.render_document(anime)
return self.storage.qdrant.add_documents([doc])
async def search_anime(self, query: str) -> list[Document]:
docs = self.qdrant_search(query, k=200)
return list(docs)
async def full_search(self, query: str) -> list[Document]:
docs = self.fulltext_search(query, k=200)
return list(docs)
def delete_anime(self, uid: int):
self.storage.qdrant.client.delete(
self.config.qdrant.collection_name,
points_selector=Filter(
should=[FieldCondition(key="metadata.uid", match=MatchValue(value=uid))]
),
)
def get_anime(self, uid: int):
response = self.storage.qdrant.client.scroll(
self.config.qdrant.collection_name,
scroll_filter=Filter(
must=[FieldCondition(key="metadata.uid", match=MatchValue(value=uid))]
),
limit=1,
)[0]
if not response:
return None
return self._to_document(response[0])
def recommend_anime(self, nickname: str):
uids = self.recsys.recommend(nickname, self.OUTPUT_AMOUNT)
return [self.get_anime(uid) for uid in uids]
async def recommend_from_relevant(self, nickname: str, query: str):
animes = await self.search_anime(query)
return self.recsys.rec_from_relevant(nickname, animes)
def get_collections(self):
return self.storage.client.get_collections()
def _to_document(self, point: Record):
return Document(
page_content=point.payload["page_content"], # type:ignore
metadata=point.payload["metadata"], # type:ignore
)
def qdrant_search(self, query: str, k: int = 4) -> list[Document]:
results = self.storage.client.search(
collection_name=self.config.qdrant.collection_name,
query_vector=self.storage.qdrant._embed_query(query),
query_filter=self.filter,
with_payload=True,
limit=k,
)
results = [
(
self.storage.qdrant._document_from_scored_point(
result,
self.storage.qdrant.content_payload_key,
self.storage.qdrant.metadata_payload_key,
),
result.score,
)
for result in results
]
return list(map(itemgetter(0), results))
def fulltext_search(self, query: str, k: int = 4) -> list[Document]:
data = self.storage.qdrant.client.scroll(
self.config.qdrant.collection_name,
scroll_filter=Filter(
should=[
FieldCondition(key="page_content", match=MatchText(text=query.lower())),
]
),
limit=k
)[0]
return [
self.storage.qdrant._document_from_scored_point(
result,
self.storage.qdrant.content_payload_key,
self.storage.qdrant.metadata_payload_key,
)
for result in data
]
def get_embeddings(models_dir: str) -> HuggingFaceEmbeddings:
"""Get default huggingface embeddings from models directory"""
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {"device": "cuda"}
encode_kwargs = {"normalize_embeddings": False}
return HuggingFaceEmbeddings(
model_name=model_name,
cache_folder=models_dir,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
| [] |
2024-01-10 | cnacha-mfu/AutoGPT | autogpt~json_utils~utilities.py | """Utilities for the json_fixes package."""
import ast
import json
import os.path
from typing import Any, Literal
from jsonschema import Draft7Validator
from autogpt.config import Config
from autogpt.logs import logger
LLM_DEFAULT_RESPONSE_FORMAT = "llm_response_format_1"
def extract_dict_from_response(response_content: str) -> dict[str, Any]:
# Sometimes the response includes the JSON in a code block with ```
if response_content.startswith("```") and response_content.endswith("```"):
# Discard the first and last ```, then re-join in case the response naturally included ```
response_content = "```".join(response_content.split("```")[1:-1])
# response content comes from OpenAI as a Python `str(content_dict)`, literal_eval reverses this
print("response_content: ",response_content)
try:
return ast.literal_eval(response_content)
except BaseException as e:
logger.info(f"Error parsing JSON response with literal_eval {e}")
logger.debug(f"Invalid JSON received in response: {response_content}")
# TODO: How to raise an error here without causing the program to exit?
return {}
def llm_response_schema(
config: Config, schema_name: str = LLM_DEFAULT_RESPONSE_FORMAT
) -> dict[str, Any]:
filename = os.path.join(os.path.dirname(__file__), f"{schema_name}.json")
with open(filename, "r") as f:
try:
json_schema = json.load(f)
except Exception as e:
raise RuntimeError(f"Failed to load JSON schema: {e}")
if config.openai_functions:
del json_schema["properties"]["command"]
json_schema["required"].remove("command")
return json_schema
def validate_dict(
object: object, config: Config, schema_name: str = LLM_DEFAULT_RESPONSE_FORMAT
) -> tuple[Literal[True], None] | tuple[Literal[False], list]:
"""
:type schema_name: object
:param schema_name: str
:type json_object: object
Returns:
bool: Whether the json_object is valid or not
list: Errors found in the json_object, or None if the object is valid
"""
schema = llm_response_schema(config, schema_name)
validator = Draft7Validator(schema)
if errors := sorted(validator.iter_errors(object), key=lambda e: e.path):
for error in errors:
logger.debug(f"JSON Validation Error: {error}")
if config.debug_mode:
logger.error(json.dumps(object, indent=4))
logger.error("The following issues were found:")
for error in errors:
logger.error(f"Error: {error.message}")
return False, errors
logger.debug("The JSON object is valid.")
return True, None
| [] |
2024-01-10 | icanbwell/SparkAutoMapper.FHIR | spark_auto_mapper_fhir~resources~guidance_response.py | from __future__ import annotations
from typing import List, Optional, TYPE_CHECKING, Union
# noinspection PyPackageRequirements
from pyspark.sql.types import StructType, DataType
from spark_auto_mapper_fhir.fhir_types.date_time import FhirDateTime
from spark_auto_mapper_fhir.fhir_types.list import FhirList
from spark_auto_mapper_fhir.complex_types.meta import Meta
from spark_auto_mapper_fhir.extensions.extension_base import ExtensionBase
from spark_auto_mapper_fhir.fhir_types.id import FhirId
from spark_auto_mapper_fhir.fhir_types.uri import FhirUri
from spark_auto_mapper_fhir.base_types.fhir_resource_base import FhirResourceBase
from spark_fhir_schemas.r4.resources.guidanceresponse import GuidanceResponseSchema
if TYPE_CHECKING:
pass
# id_ (id)
# meta (Meta)
# implicitRules (uri)
# language (CommonLanguages)
from spark_auto_mapper_fhir.value_sets.common_languages import CommonLanguagesCode
# text (Narrative)
from spark_auto_mapper_fhir.complex_types.narrative import Narrative
# contained (ResourceContainer)
from spark_auto_mapper_fhir.complex_types.resource_container import (
ResourceContainer,
)
# extension (Extension)
# modifierExtension (Extension)
# requestIdentifier (Identifier)
from spark_auto_mapper_fhir.complex_types.identifier import Identifier
# identifier (Identifier)
# moduleUri (uri)
# moduleCanonical (canonical)
from spark_auto_mapper_fhir.fhir_types.canonical import FhirCanonical
# moduleCodeableConcept (CodeableConcept)
from spark_auto_mapper_fhir.complex_types.codeable_concept import CodeableConcept
# Import for CodeableConcept for moduleCodeableConcept
from spark_auto_mapper_fhir.value_sets.generic_type import GenericTypeCode
# End Import for CodeableConcept for moduleCodeableConcept
# status (GuidanceResponseStatus)
from spark_auto_mapper_fhir.value_sets.guidance_response_status import (
GuidanceResponseStatusCode,
)
# subject (Reference)
from spark_auto_mapper_fhir.complex_types.reference import Reference
# Imports for References for subject
from spark_auto_mapper_fhir.resources.patient import Patient
from spark_auto_mapper_fhir.resources.group import Group
# encounter (Reference)
# Imports for References for encounter
from spark_auto_mapper_fhir.resources.encounter import Encounter
# occurrenceDateTime (dateTime)
# performer (Reference)
# Imports for References for performer
from spark_auto_mapper_fhir.resources.device import Device
# reasonCode (CodeableConcept)
# Import for CodeableConcept for reasonCode
# End Import for CodeableConcept for reasonCode
# reasonReference (Reference)
# Imports for References for reasonReference
from spark_auto_mapper_fhir.resources.condition import Condition
from spark_auto_mapper_fhir.resources.observation import Observation
from spark_auto_mapper_fhir.resources.diagnostic_report import DiagnosticReport
from spark_auto_mapper_fhir.resources.document_reference import DocumentReference
# note (Annotation)
from spark_auto_mapper_fhir.complex_types.annotation import Annotation
# evaluationMessage (Reference)
# Imports for References for evaluationMessage
from spark_auto_mapper_fhir.resources.operation_outcome import OperationOutcome
# outputParameters (Reference)
# Imports for References for outputParameters
from spark_auto_mapper_fhir.resources.parameters import Parameters
# result (Reference)
# Imports for References for result
from spark_auto_mapper_fhir.resources.care_plan import CarePlan
from spark_auto_mapper_fhir.resources.request_group import RequestGroup
# dataRequirement (DataRequirement)
from spark_auto_mapper_fhir.complex_types.data_requirement import DataRequirement
# This file is auto-generated by generate_classes so do not edit manually
# noinspection PyPep8Naming
class GuidanceResponse(FhirResourceBase):
"""
GuidanceResponse
guidanceresponse.xsd
A guidance response is the formal response to a guidance request, including
any output parameters returned by the evaluation, as well as the description
of any proposed actions to be taken.
If the element is present, it must have either a @value, an @id, or extensions
"""
# noinspection PyPep8Naming
def __init__(
self,
*,
use_date_for: Optional[List[str]] = None,
id_: Optional[FhirId] = None,
meta: Optional[Meta] = None,
implicitRules: Optional[FhirUri] = None,
language: Optional[CommonLanguagesCode] = None,
text: Optional[Narrative] = None,
contained: Optional[FhirList[ResourceContainer]] = None,
extension: Optional[FhirList[ExtensionBase]] = None,
modifierExtension: Optional[FhirList[ExtensionBase]] = None,
requestIdentifier: Optional[Identifier] = None,
identifier: Optional[FhirList[Identifier]] = None,
moduleUri: Optional[FhirUri] = None,
moduleCanonical: Optional[FhirCanonical] = None,
moduleCodeableConcept: Optional[CodeableConcept[GenericTypeCode]] = None,
status: GuidanceResponseStatusCode,
subject: Optional[Reference[Union[Patient, Group]]] = None,
encounter: Optional[Reference[Encounter]] = None,
occurrenceDateTime: Optional[FhirDateTime] = None,
performer: Optional[Reference[Device]] = None,
reasonCode: Optional[FhirList[CodeableConcept[GenericTypeCode]]] = None,
reasonReference: Optional[
FhirList[
Reference[
Union[Condition, Observation, DiagnosticReport, DocumentReference]
]
]
] = None,
note: Optional[FhirList[Annotation]] = None,
evaluationMessage: Optional[FhirList[Reference[OperationOutcome]]] = None,
outputParameters: Optional[Reference[Parameters]] = None,
result: Optional[Reference[Union[CarePlan, RequestGroup]]] = None,
dataRequirement: Optional[FhirList[DataRequirement]] = None,
) -> None:
"""
A guidance response is the formal response to a guidance request, including
any output parameters returned by the evaluation, as well as the description
of any proposed actions to be taken.
If the element is present, it must have either a @value, an @id, or extensions
:param id_: The logical id of the resource, as used in the URL for the resource. Once
assigned, this value never changes.
:param meta: The metadata about the resource. This is content that is maintained by the
infrastructure. Changes to the content might not always be associated with
version changes to the resource.
:param implicitRules: A reference to a set of rules that were followed when the resource was
constructed, and which must be understood when processing the content. Often,
this is a reference to an implementation guide that defines the special rules
along with other profiles etc.
:param language: The base language in which the resource is written.
:param text: A human-readable narrative that contains a summary of the resource and can be
used to represent the content of the resource to a human. The narrative need
not encode all the structured data, but is required to contain sufficient
detail to make it "clinically safe" for a human to just read the narrative.
Resource definitions may define what content should be represented in the
narrative to ensure clinical safety.
:param contained: These resources do not have an independent existence apart from the resource
that contains them - they cannot be identified independently, and nor can they
have their own independent transaction scope.
:param extension: May be used to represent additional information that is not part of the basic
definition of the resource. To make the use of extensions safe and manageable,
there is a strict set of governance applied to the definition and use of
extensions. Though any implementer can define an extension, there is a set of
requirements that SHALL be met as part of the definition of the extension.
:param modifierExtension: May be used to represent additional information that is not part of the basic
definition of the resource and that modifies the understanding of the element
that contains it and/or the understanding of the containing element's
descendants. Usually modifier elements provide negation or qualification. To
make the use of extensions safe and manageable, there is a strict set of
governance applied to the definition and use of extensions. Though any
implementer is allowed to define an extension, there is a set of requirements
that SHALL be met as part of the definition of the extension. Applications
processing a resource are required to check for modifier extensions.
Modifier extensions SHALL NOT change the meaning of any elements on Resource
or DomainResource (including cannot change the meaning of modifierExtension
itself).
:param requestIdentifier: The identifier of the request associated with this response. If an identifier
was given as part of the request, it will be reproduced here to enable the
requester to more easily identify the response in a multi-request scenario.
:param identifier: Allows a service to provide unique, business identifiers for the response.
:param moduleUri: None
:param moduleCanonical: None
:param moduleCodeableConcept: None
:param status: The status of the response. If the evaluation is completed successfully, the
status will indicate success. However, in order to complete the evaluation,
the engine may require more information. In this case, the status will be
data-required, and the response will contain a description of the additional
required information. If the evaluation completed successfully, but the engine
determines that a potentially more accurate response could be provided if more
data was available, the status will be data-requested, and the response will
contain a description of the additional requested information.
:param subject: The patient for which the request was processed.
:param encounter: The encounter during which this response was created or to which the creation
of this record is tightly associated.
:param occurrenceDateTime: Indicates when the guidance response was processed.
:param performer: Provides a reference to the device that performed the guidance.
:param reasonCode: Describes the reason for the guidance response in coded or textual form.
:param reasonReference: Indicates the reason the request was initiated. This is typically provided as
a parameter to the evaluation and echoed by the service, although for some use
cases, such as subscription- or event-based scenarios, it may provide an
indication of the cause for the response.
:param note: Provides a mechanism to communicate additional information about the response.
:param evaluationMessage: Messages resulting from the evaluation of the artifact or artifacts. As part
of evaluating the request, the engine may produce informational or warning
messages. These messages will be provided by this element.
:param outputParameters: The output parameters of the evaluation, if any. Many modules will result in
the return of specific resources such as procedure or communication requests
that are returned as part of the operation result. However, modules may define
specific outputs that would be returned as the result of the evaluation, and
these would be returned in this element.
:param result: The actions, if any, produced by the evaluation of the artifact.
:param dataRequirement: If the evaluation could not be completed due to lack of information, or
additional information would potentially result in a more accurate response,
this element will a description of the data required in order to proceed with
the evaluation. A subsequent request to the service should include this data.
"""
super().__init__(
resourceType="GuidanceResponse",
id_=id_,
meta=meta,
implicitRules=implicitRules,
language=language,
text=text,
contained=contained,
extension=extension,
modifierExtension=modifierExtension,
requestIdentifier=requestIdentifier,
identifier=identifier,
moduleUri=moduleUri,
moduleCanonical=moduleCanonical,
moduleCodeableConcept=moduleCodeableConcept,
status=status,
subject=subject,
encounter=encounter,
occurrenceDateTime=occurrenceDateTime,
performer=performer,
reasonCode=reasonCode,
reasonReference=reasonReference,
note=note,
evaluationMessage=evaluationMessage,
outputParameters=outputParameters,
result=result,
dataRequirement=dataRequirement,
)
self.use_date_for = use_date_for
def get_schema(
self, include_extension: bool, extension_fields: Optional[List[str]] = None
) -> Optional[Union[StructType, DataType]]:
return GuidanceResponseSchema.get_schema(
include_extension=include_extension,
extension_fields=extension_fields,
use_date_for=self.use_date_for,
)
| [] |
2024-01-10 | FloTeu/llm-prompt-engineering-generator | src~llm_prompting_gen~models~prompt_engineering.py | import json
import logging
from typing import Optional, List, Union, Dict
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, PromptTemplate, AIMessagePromptTemplate
from langchain.prompts.chat import BaseMessagePromptTemplate
from pydantic import BaseModel, Field, ConfigDict
from llm_prompting_gen.constants import INSTRUCTOR_USER_NAME
class FewShotHumanAIExample(BaseModel):
human: Optional[str] = Field(None, description="Example human message.", examples=["What is 2 + 3?"])
ai: str = Field(description="Example ai message as answer to the human message. Or standalone example without human message.", examples=["5"])
class PromptElements(BaseModel):
"""
Defines all elements of a prompt
"""
role: Optional[str] = Field(None, description="The role in which the LLM should respond")
instruction: Optional[str] = Field(None, description="The task of the LLM")
context: Optional[str] = Field(None, description="Context with relevant information to solve the task")
output_format: Optional[str] = Field(None, description="Description how the LLM output format should look like")
examples: Optional[Union[List[FewShotHumanAIExample], List[str]]] = Field(
None, description="Few shot examples. Can be either human ai interactions or a list of examples")
input: Optional[str] = Field(
None, description="Target which the LLM should execute the task on. Could be for example a user question, or a text block to summarize.")
model_config = ConfigDict(
extra='allow',
)
def is_any_set(self) -> bool:
"""
Whether at least one prompt element is set.
Otherwise, an LLM cannot handle prompt input and therefore False is returned
"""
return any([self.role, self.instruction, self.context, self.examples, self.input, self.output_format])
def get_example_system_prompt_template(self) -> SystemMessagePromptTemplate:
"""Transforms list of examples into SystemMessagePromptTemplate
"Example <n>:" is appended as prefix of each example
Example:
self.examples = ["positive", "negative", "neutral"]
t = self.get_example_system_prompt_template()
# t equals (pseudo representation of SystemMessagePromptTemplate)
SystemMessagePromptTemplate('''
Example 1: positive
Example 2: negative
Example 3: neutral
''')
"""
assert self.examples, "examples are not set yet"
assert type(self.examples) == list and type(self.examples[0]) == str, "examples is not a list of strings"
prompt_template = ""
for i, example in enumerate(self.examples):
prompt_template += f"\nExample {i+1}: {example}"
return SystemMessagePromptTemplate.from_template(prompt_template, additional_kwargs={"name": INSTRUCTOR_USER_NAME})
def get_example_msg_prompt_templates(self) -> List[Union[SystemMessagePromptTemplate, HumanMessagePromptTemplate, AIMessagePromptTemplate]]:
"""
Returns a list of message prompt template depending on the example format
If human_ai_interaction is set:
Returns list of langchain human and ai prompt templates
If examples are set and no human_ai_interaction:
Returns list of single langchain system message prompt template
"""
assert self.examples, "examples are not set yet"
# Return SystemMessagePromptTemplate in case only simple string examples are set
if self.examples and not type(self.examples[0]) == FewShotHumanAIExample:
return [self.get_example_system_prompt_template()]
assert type(self.examples[0]) == FewShotHumanAIExample, "human ai interaction examples are not set yet"
messages = []
for example in self.examples:
messages.append(HumanMessagePromptTemplate.from_template(example.human))
messages.append(AIMessagePromptTemplate.from_template(example.ai))
return messages
class PromptEngineeringMessages:
"""
Dataclass which contains all messages to create a LLM Output
based on prompt engineering techniques.
Transforms strings into langchain prompt template messages.
"""
def __init__(self, messages: Dict[str, Union[BaseMessagePromptTemplate, List[BaseMessagePromptTemplate]]]):
"""
Note: messages can contain custom keys and do not require but can match the PromptElements fields.
Examples are a special case, where we have multiple BaseMessagePromptTemplate for one key.
:param messages: Look up dict matching prompt element key with corresponding PromptTemplate
"""
self.messages = messages
@classmethod
def from_pydantic(cls, pe_elements: PromptElements):
"""Init class by PromptElements pydantic"""
messages = {}
if pe_elements.role:
messages["role"] = SystemMessagePromptTemplate.from_template(pe_elements.role, additional_kwargs={"name": INSTRUCTOR_USER_NAME})
if pe_elements.instruction:
messages["instruction"] = SystemMessagePromptTemplate.from_template(
pe_elements.instruction, additional_kwargs={"name": INSTRUCTOR_USER_NAME})
if pe_elements.context:
messages["context"] = SystemMessagePromptTemplate.from_template(pe_elements.context, additional_kwargs={"name": INSTRUCTOR_USER_NAME})
if pe_elements.output_format:
# Create output format system message
output_format_prompt = PromptTemplate(
template="{format_instructions}",
input_variables=[],
partial_variables={"format_instructions": pe_elements.output_format}
)
messages["output_format"] = SystemMessagePromptTemplate(prompt=output_format_prompt, additional_kwargs={"name": INSTRUCTOR_USER_NAME})
if pe_elements.examples:
messages["examples"] = pe_elements.get_example_msg_prompt_templates()
if pe_elements.input:
messages["input"] = HumanMessagePromptTemplate.from_template(pe_elements.input)
# Add extra fields as system messages
for extra_field, extra_value in pe_elements.model_extra.items():
messages[extra_field] = SystemMessagePromptTemplate.from_template(extra_value, additional_kwargs={"name": INSTRUCTOR_USER_NAME})
return cls(messages=messages)
@classmethod
def from_json(cls, file_path):
"""Init class by json file"""
with open(file_path, "r") as fp:
data_dict = json.load(fp)
return cls.from_pydantic(PromptElements(**data_dict))
@classmethod
def from_yaml(cls, file_path):
# TODO
raise NotImplementedError
def get_flattened_messages(self, message_order: Optional[List[str]] = None) -> List[BaseMessagePromptTemplate]:
"""Returns list of valid messages. Examples are flattened in order to get one dimension output.
Optionally a message order can be provided to define the output order
"""
flattened_messages = []
message_keys = message_order or list(self.messages.keys())
for message_key in message_keys:
if message_key not in self.messages:
logging.warning(
f"messages do not contain key '{message_key}'")
continue
message_or_list = self.messages[message_key]
# Case message is valid
if isinstance(message_or_list, BaseMessagePromptTemplate):
flattened_messages.append(message_or_list)
# Case list of messages
elif isinstance(message_or_list, list):
for message in message_or_list:
# check if message is valid
if isinstance(message, BaseMessagePromptTemplate):
flattened_messages.append(message)
return flattened_messages
def get_chat_prompt_template(self, message_order: Optional[List[str]] = None) -> ChatPromptTemplate:
"""Combines all prompt element messages into one chat prompt template
:param message_order: Optional list of prompt element keys, to define message order of final chat prompt template
:return:
"""
if message_order:
# Print warning in case message_order does not include all fields available
excluded_fields = set(self.messages.keys()) - set(message_order)
if excluded_fields:
logging.warning(f"'message_order' does not include fields {excluded_fields}. They will be ignored for chat prompt template creation")
return ChatPromptTemplate.from_messages(self.get_flattened_messages(message_order)) | [
"{format_instructions}",
"format_instructions"
] |
2024-01-10 | QuantumBear/supersonic | chat~core~src~main~python~services~sql~prompt_maker.py | # -*- coding:utf-8 -*-
import os
import sys
from typing import List, Mapping
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from util.logging_utils import logger
from langchain.prompts import PromptTemplate
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
def schema_linking_exampler(
user_query: str,
domain_name: str,
fields_list: List[str],
prior_schema_links: Mapping[str, str],
example_selector: SemanticSimilarityExampleSelector,
) -> str:
prior_schema_links_str = (
"["
+ ",".join(["""'{}'->{}""".format(k, v) for k, v in prior_schema_links.items()])
+ "]"
)
example_prompt_template = PromptTemplate(
input_variables=[
"table_name",
"fields_list",
"prior_schema_links",
"question",
"analysis",
"schema_links",
],
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\n้ฎ้ข:{question}\nๅๆ:{analysis} ๆไปฅSchema_linksๆฏ:\nSchema_links:{schema_links}",
)
instruction = "# ๆ นๆฎๆฐๆฎๅบ็่กจ็ปๆ,ๅ่ๅ
้ชไฟกๆฏ,ๆพๅบไธบๆฏไธช้ฎ้ข็ๆSQLๆฅ่ฏข่ฏญๅฅ็schema_links"
schema_linking_prompt = "Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\n้ฎ้ข:{question}\nๅๆ: ่ฎฉๆไปฌไธๆญฅไธๆญฅๅฐๆ่ใ"
schema_linking_example_prompt_template = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt_template,
example_separator="\n\n",
prefix=instruction,
input_variables=["table_name", "fields_list", "prior_schema_links", "question"],
suffix=schema_linking_prompt,
)
schema_linking_example_prompt = schema_linking_example_prompt_template.format(
table_name=domain_name,
fields_list=fields_list,
prior_schema_links=prior_schema_links_str,
question=user_query,
)
return schema_linking_example_prompt
def sql_exampler(
user_query: str,
domain_name: str,
schema_link_str: str,
data_date: str,
example_selector: SemanticSimilarityExampleSelector,
) -> str:
instruction = "# ๆ นๆฎschema_linksไธบๆฏไธช้ฎ้ข็ๆSQLๆฅ่ฏข่ฏญๅฅ"
sql_example_prompt_template = PromptTemplate(
input_variables=[
"question",
"current_date",
"table_name",
"schema_links",
"sql",
],
template="้ฎ้ข:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:{sql}",
)
sql_prompt = "้ฎ้ข:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:"
sql_example_prompt_template = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=sql_example_prompt_template,
example_separator="\n\n",
prefix=instruction,
input_variables=["question", "current_date", "table_name", "schema_links"],
suffix=sql_prompt,
)
sql_example_prompt = sql_example_prompt_template.format(
question=user_query,
current_date=data_date,
table_name=domain_name,
schema_links=schema_link_str,
)
return sql_example_prompt
def schema_linking_sql_combo_examplar(
user_query: str,
domain_name: str,
data_date: str,
fields_list: List[str],
prior_schema_links: Mapping[str, str],
example_selector: SemanticSimilarityExampleSelector,
) -> str:
prior_schema_links_str = (
"["
+ ",".join(["""'{}'->{}""".format(k, v) for k, v in prior_schema_links.items()])
+ "]"
)
example_prompt_template = PromptTemplate(
input_variables=[
"table_name",
"fields_list",
"prior_schema_links",
"current_date",
"question",
"analysis",
"schema_links",
"sql",
],
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n้ฎ้ข:{question}\nๅๆ:{analysis} ๆไปฅSchema_linksๆฏ:\nSchema_links:{schema_links}\nSQL:{sql}",
)
instruction = (
"# ๆ นๆฎๆฐๆฎๅบ็่กจ็ปๆ,ๅ่ๅ
้ชไฟกๆฏ,ๆพๅบไธบๆฏไธช้ฎ้ข็ๆSQLๆฅ่ฏข่ฏญๅฅ็schema_links,ๅๆ นๆฎschema_linksไธบๆฏไธช้ฎ้ข็ๆSQLๆฅ่ฏข่ฏญๅฅ"
)
schema_linking_sql_combo_prompt = "Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n้ฎ้ข:{question}\nๅๆ: ่ฎฉๆไปฌไธๆญฅไธๆญฅๅฐๆ่ใ"
schema_linking_sql_combo_example_prompt_template = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt_template,
example_separator="\n\n",
prefix=instruction,
input_variables=[
"table_name",
"fields_list",
"prior_schema_links",
"current_date",
"question",
],
suffix=schema_linking_sql_combo_prompt,
)
schema_linking_sql_combo_example_prompt = (
schema_linking_sql_combo_example_prompt_template.format(
table_name=domain_name,
fields_list=fields_list,
prior_schema_links=prior_schema_links_str,
current_date=data_date,
question=user_query,
)
)
return schema_linking_sql_combo_example_prompt
| [
"\n\n",
"table_name",
"prior_schema_links",
"Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\n้ฎ้ข:{question}\nๅๆ: ่ฎฉๆไปฌไธๆญฅไธๆญฅๅฐๆ่ใ",
"้ฎ้ข:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:{sql}",
"question",
"current_date",
"Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n้ฎ้ข:{question}\nๅๆ: ่ฎฉๆไปฌไธๆญฅไธๆญฅๅฐๆ่ใ",
"Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n้ฎ้ข:{question}\nๅๆ:{analysis} ๆไปฅSchema_linksๆฏ:\nSchema_links:{schema_links}\nSQL:{sql}",
"้ฎ้ข:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:",
"fields_list",
"Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\n้ฎ้ข:{question}\nๅๆ:{analysis} ๆไปฅSchema_linksๆฏ:\nSchema_links:{schema_links}",
"analysis",
"schema_links"
] |
2024-01-10 | QuantumBear/supersonic | chat~core~src~main~python~services~sql~constructor.py | # -*- coding:utf-8 -*-
import os
import sys
from typing import List, Mapping
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from util.logging_utils import logger
from langchain.vectorstores import Chroma
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from few_shot_example.sql_exampler import examplars as sql_examplars
from util.text2vec import hg_embedding
from util.chromadb_instance import client as chromadb_client, empty_chroma_collection_2
from config.config_parse import TEXT2DSL_COLLECTION_NAME, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
def reload_sql_example_collection(
vectorstore: Chroma,
sql_examplars: List[Mapping[str, str]],
sql_example_selector: SemanticSimilarityExampleSelector,
example_nums: int,
):
logger.info("original sql_examples_collection size: {}", vectorstore._collection.count())
new_collection = empty_chroma_collection_2(collection=vectorstore._collection)
vectorstore._collection = new_collection
logger.info("emptied sql_examples_collection size: {}", vectorstore._collection.count())
sql_example_selector = SemanticSimilarityExampleSelector(
vectorstore=sql_examples_vectorstore,
k=example_nums,
input_keys=["question"],
example_keys=[
"table_name",
"fields_list",
"prior_schema_links",
"question",
"analysis",
"schema_links",
"current_date",
"sql",
],
)
for example in sql_examplars:
sql_example_selector.add_example(example)
logger.info("reloaded sql_examples_collection size: {}", vectorstore._collection.count())
return vectorstore, sql_example_selector
sql_examples_vectorstore = Chroma(
collection_name=TEXT2DSL_COLLECTION_NAME,
embedding_function=hg_embedding,
client=chromadb_client,
)
example_nums = TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
sql_example_selector = SemanticSimilarityExampleSelector(
vectorstore=sql_examples_vectorstore,
k=example_nums,
input_keys=["question"],
example_keys=[
"table_name",
"fields_list",
"prior_schema_links",
"question",
"analysis",
"schema_links",
"current_date",
"sql",
],
)
if sql_examples_vectorstore._collection.count() > 0:
logger.info("examples already in sql_vectorstore")
logger.info("init sql_vectorstore size: {}", sql_examples_vectorstore._collection.count())
logger.info("sql_examplars size: {}", len(sql_examplars))
sql_examples_vectorstore, sql_example_selector = reload_sql_example_collection(
sql_examples_vectorstore, sql_examplars, sql_example_selector, example_nums
)
logger.info("added sql_vectorstore size: {}", sql_examples_vectorstore._collection.count())
| [] |
2024-01-10 | ArshiaPessaran/PDFQueries | Chatbot~llmChainResponse.py | import os
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain, ConversationalRetrievalChain
from langchain.agents import load_tools, initialize_agent, AgentType
from pdfDocLoader import vectordb
# from llamaapi import LlamaAPI
# llama = LlamaAPI("Your_API_Token")
# from langchain_experimental.llms import ChatLlamaAPI
# OpenAI API Key
from APIKey import OpenAIKey
if OpenAIKey is None:
raise ValueError("OPEN_API_KEY is not set. Create APIKey.py file that defines variable OpenAIKey")
os.environ["OPENAI_API_KEY"] = OpenAIKey
# Chatbot Chain
chatBotResponse = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0.7, model_name="gpt-3.5-turbo"),
vectordb.as_retriever(),
return_source_documents=False,
verbose=False
)
yellow = "\033[0;33m"
green = "\033[0;32m"
white = "\033[0;39m"
chat_history = []
print(f"{yellow}------------------------------------")
print('Make queries about your documents')
print('------------------------------------')
while True:
query = input(f"{green}Prompt (type q to quit): ")
if query == "q":
sys.exit()
if query == '':
continue
result = chatBotResponse(
{"question": query,
"chat_history": chat_history})
print(f"{white}Answer: " + result["answer"])
chat_history.append((query, result["answer"])) | [] |
2024-01-10 | ArshiaPessaran/PDFQueries | Chatbot~pdfDocLoader.py | import os
from langchain.llms import OpenAI
from langchain.chains import LLMChain, ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
# Import OpenAI API Key
from APIKey import OpenAIKey
if OpenAIKey is None:
raise ValueError("OPEN_API_KEY is not set. Create APIKey.py file that defines variable OpenAIKey")
os.environ["OPENAI_API_KEY"] = OpenAIKey
# Create langchain document from multiple PDF
multiDoc = []
for file in os.listdir('./sampleFilesAndWebsites/'):
if file.endswith('.pdf'):
pdfPath = './sampleFilesAndWebsites/' + file
loader = PyPDFLoader(pdfPath)
multiDoc.extend(loader.load())
elif file.endswith('.docx') or file.endswith('.doc'):
docPath = './sampleFilesAndWebsites/' + file
loader = Docx2txtLoader(docPath)
multiDoc.extend(loader.load())
elif file.endswith('.txt'):
txtPath = './sampleFilesAndWebsites' + file
loader = TextLoader(txtPath)
multiDoc.extend(loader.load())
# Split into chunks
text_splitter = CharacterTextSplitter(chunk_size = 1000, chunk_overlap=200)
chunks = text_splitter.split_documents(multiDoc)
#Convert to embeddings. Store embeddings from text chunks inside ./embeddings directory
vectordb = Chroma.from_documents(
chunks,
embedding = OpenAIEmbeddings(),
persist_directory = './sampleFilesAndWebsites/embeddings'
)
vectordb.persist()
| [] |
2024-01-10 | trumanng10/langchain003 | chat_with_documents_01.py | import streamlit as st
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
# loading PDF, DOCX and TXT files as LangChain Documents
def load_document(file):
import os
name, extension = os.path.splitext(file)
if extension == '.pdf':
from langchain.document_loaders import PyPDFLoader
print(f'Loading {file}')
loader = PyPDFLoader(file)
elif extension == '.docx':
from langchain.document_loaders import Docx2txtLoader
print(f'Loading {file}')
loader = Docx2txtLoader(file)
elif extension == '.txt':
from langchain.document_loaders import TextLoader
loader = TextLoader(file)
else:
print('Document format is not supported!')
return None
data = loader.load()
return data
# splitting data in chunks
def chunk_data(data, chunk_size=256, chunk_overlap=20):
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
chunks = text_splitter.split_documents(data)
return chunks
# create embeddings using OpenAIEmbeddings() and save them in a Chroma vector store
def create_embeddings(chunks):
embeddings = OpenAIEmbeddings()
vector_store = Chroma.from_documents(chunks, embeddings)
return vector_store
def ask_and_get_answer(vector_store, q, k=3):
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=1)
retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': k})
chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
answer = chain.run(q)
return answer
# calculate embedding cost using tiktoken
def calculate_embedding_cost(texts):
import tiktoken
enc = tiktoken.encoding_for_model('text-embedding-ada-002')
total_tokens = sum([len(enc.encode(page.page_content)) for page in texts])
# print(f'Total Tokens: {total_tokens}')
# print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}')
return total_tokens, total_tokens / 1000 * 0.0004
# clear the chat history from streamlit session state
def clear_history():
if 'history' in st.session_state:
del st.session_state['history']
if __name__ == "__main__":
import os
# loading the OpenAI api key from .env
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv(), override=True)
st.image('img.png')
st.subheader('LLM Question-Answering Application ๐ค')
with st.sidebar:
# text_input for the OpenAI API key (alternative to python-dotenv and .env)
api_key = st.text_input('OpenAI API Key:', type='password')
if api_key:
os.environ['OPENAI_API_KEY'] = api_key
# file uploader widget
uploaded_file = st.file_uploader('Upload a file:', type=['pdf', 'docx', 'txt'])
# chunk size number widget
chunk_size = st.number_input('Chunk size:', min_value=100, max_value=2048, value=512, on_change=clear_history)
# k number input widget
k = st.number_input('k', min_value=1, max_value=20, value=3, on_change=clear_history)
# add data button widget
add_data = st.button('Add Data', on_click=clear_history)
if uploaded_file and add_data: # if the user browsed a file
with st.spinner('Reading, chunking and embedding file ...'):
# writing the file from RAM to the current directory on disk
bytes_data = uploaded_file.read()
file_name = os.path.join('./', uploaded_file.name)
with open(file_name, 'wb') as f:
f.write(bytes_data)
data = load_document(file_name)
chunks = chunk_data(data, chunk_size=chunk_size)
st.write(f'Chunk size: {chunk_size}, Chunks: {len(chunks)}')
tokens, embedding_cost = calculate_embedding_cost(chunks)
st.write(f'Embedding cost: ${embedding_cost:.4f}')
# creating the embeddings and returning the Chroma vector store
vector_store = create_embeddings(chunks)
# saving the vector store in the streamlit session state (to be persistent between reruns)
st.session_state.vs = vector_store
st.success('File uploaded, chunked and embedded successfully.')
# user's question text input widget
q = st.text_input('Ask a question about the content of your file:')
if q: # if the user entered a question and hit enter
standard_answer = "Answer only based on the text you received as input. Don't search external sources. " \
"If you can't answer then return `I DONT KNOW`."
q = f"{q} {standard_answer}"
if 'vs' in st.session_state: # if there's the vector store (user uploaded, split and embedded a file)
vector_store = st.session_state.vs
st.write(f'k: {k}')
answer = ask_and_get_answer(vector_store, q, k)
# text area widget for the LLM answer
st.text_area('LLM Answer: ', value=answer)
st.divider()
# if there's no chat history in the session state, create it
if 'history' not in st.session_state:
st.session_state.history = ''
# the current question and answer
value = f'Q: {q} \nA: {answer}'
st.session_state.history = f'{value} \n {"-" * 100} \n {st.session_state.history}'
h = st.session_state.history
# text area widget for the chat history
st.text_area(label='Chat History', value=h, key='history', height=400)
# run the app: streamlit run ./chat_with_documents.py
| [] |
2024-01-10 | mohit-raghavendra/gt-policy-bot | pinecone_index.py | import os
import pinecone
import time
import yaml
import pandas as pd
from langchain.document_loaders import DataFrameLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores.pinecone import Pinecone
from typing import List
from dotenv import load_dotenv
from pathlib import Path
class PinceconeIndex:
def __init__(self, index_name: str, model_name: str):
self.index_name = index_name
self._embeddingModel = HuggingFaceEmbeddings(model_name=model_name)
def connect_index(self, embedding_dimension: int, delete_existing: bool = False):
index_name = self.index_name
# load pinecone env variables within Google Colab
if (not os.getenv("PINECONE_KEY")) or (not os.getenv("PINECONE_ENV")):
dotenv_path = Path("/content/gt-policy-bot/config.env")
load_dotenv(dotenv_path=dotenv_path)
pinecone.init(
api_key=os.getenv("PINECONE_KEY"),
environment=os.getenv("PINECONE_ENV"),
)
if index_name in pinecone.list_indexes() and delete_existing:
pinecone.delete_index(index_name)
if index_name not in pinecone.list_indexes():
pinecone.create_index(index_name, dimension=embedding_dimension)
index = pinecone.Index(index_name)
pinecone.describe_index(index_name)
self._index = index
def upsert_docs(self, df: pd.DataFrame, text_col: str):
loader = DataFrameLoader(df, page_content_column=text_col)
docs = loader.load()
Pinecone.from_documents(docs, self._embeddingModel, index_name=self.index_name)
def get_embedding_model(self):
return self._embeddingModel
def get_index_name(self):
return self.index_name
def query(self, query: str, top_k: int = 5) -> List[str]:
docsearch = Pinecone.from_existing_index(self.index_name, self._embeddingModel)
res = docsearch.similarity_search(query, k=top_k)
return [doc.page_content for doc in res]
if __name__ == "__main__":
config_path = "config.yml"
with open("config.yml", "r") as file:
config = yaml.safe_load(file)
print(config)
data_path = config["paths"]["data_path"]
project = config["paths"]["project"]
format = ".csv"
index_name = config["pinecone"]["index-name"]
embedding_model = config["sentence-transformers"]["model-name"]
embedding_dimension = config["sentence-transformers"]["embedding-dimension"]
delete_existing = True
if config["paths"]["chunking"] == "manual":
print("Using manual chunking")
file_path_embedding = config["paths"]["manual_chunk_file"]
df = pd.read_csv(file_path_embedding, header=None, names=["chunks"])
else:
print("Using automatic chunking")
file_path_embedding = config["paths"]["auto_chunk_file"]
df = pd.read_csv(file_path_embedding, index_col=0)
print(df)
start_time = time.time()
index = PinceconeIndex(index_name, embedding_model)
index.connect_index(embedding_dimension, delete_existing)
index.upsert_docs(df, "chunks")
end_time = time.time()
print(f"Indexing took {end_time - start_time} seconds")
index = PinceconeIndex(index_name, embedding_model)
index.connect_index(embedding_dimension, delete_existing=False)
query = "When was the student code of conduct last revised?"
res = index.query(query, top_k=5)
# assert len(res) == 5
print(res)
| [] |
2024-01-10 | mohit-raghavendra/gt-policy-bot | utils~faiss_index.py | import time
import yaml
import pandas as pd
from langchain.document_loaders import DataFrameLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores.faiss import FAISS
from typing import List
class FaissIndex:
def __init__(self, index_name: str, model_name: str):
self.index_name = index_name
self._embeddingModel = HuggingFaceEmbeddings(model_name=model_name)
def connect_index(self, embedding_dimension: int, delete_existing: bool = False):
...
def upsert_docs(self, df: pd.DataFrame, text_col: str):
loader = DataFrameLoader(df, page_content_column=text_col)
docs = loader.load()
self._db = FAISS.from_documents(docs, self._embeddingModel)
def query(self, query: str, top_k: int = 5) -> List[str]:
res = self._db.similarity_search(query, k=top_k)
return [doc.page_content for doc in res]
if __name__ == "__main__":
config_path = "config.yml"
with open("config.yml", "r") as file:
config = yaml.safe_load(file)
print(config)
data_path = config["paths"]["data_path"]
project = config["paths"]["project"]
format = ".csv"
index_name = config["pinecone"]["index-name"]
embedding_model = config["sentence-transformers"]["model-name"]
embedding_dimension = config["sentence-transformers"]["embedding-dimension"]
delete_existing = True
file_path_embedding = data_path + project + format
df = pd.read_csv(file_path_embedding, index_col=0)
print(df.head())
start_time = time.time()
index = FaissIndex(index_name, embedding_model)
index.connect_index(embedding_dimension, delete_existing)
index.upsert_docs(df, "chunks")
end_time = time.time()
print(f"Indexing took {end_time - start_time} seconds")
query = "When was the student code of conduct last revised?"
res = index.query(query, top_k=5)
assert len(res) == 5
print(res)
| [] |
2024-01-10 | monum/llm-exploration | streamlit_app~index_documents.py | import os
os.environ['OPENAI_API_KEY']= "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"
from llama_index import SimpleDirectoryReader, GPTVectorStoreIndex, LLMPredictor, PromptHelper, StorageContext
from langchain.chat_models import ChatOpenAI
max_input_size = 4096
num_outputs = 100
max_chunk_overlap = 20
chunk_size_limit = 600
prompt_helper = PromptHelper(max_input_size,
num_outputs,
max_chunk_overlap = max_chunk_overlap,
chunk_size_limit = chunk_size_limit)
llm_predictor = LLMPredictor(
llm = ChatOpenAI(
temperature = 0.7,
model_name = "gpt-3.5-turbo",
max_tokens = num_outputs
)
)
documents = SimpleDirectoryReader("data").load_data()
index = GPTVectorStoreIndex.from_documents(
documents,
llm_predictor = llm_predictor,
prompt_helper = prompt_helper)
index.storage_context.persist(persist_dir=".")
| [] |
2024-01-10 | map-A/own-chatgpt-web | get-accessToken.py | from OpenAIAuth import Auth0
import sys
import yaml
# ็ฌฌไธไธชๅๆฐๆฏ่ๆฌๅ็งฐ๏ผๅ ๆญค้่ฆไป็ฌฌไบไธชๅๆฐๅผๅง่ฟ่กๅค็
email = sys.argv[1]
password = sys.argv[2]
your_web_password = sys.argv[3]
auth = Auth0(email, password)
access_token = auth.get_access_token()
## ๅฐaccess_token ๅๅ
ฅๅฐymlๆไปถไธญ
with open('docker-compose.yml', 'r') as file:
data = yaml.safe_load(file)
data['services']['app']['environment']['OPENAI_ACCESS_TOKEN']=access_token
data['services']['app']['environment']['AUTH_SECRET_KEY']=your_web_password
# ๅฐๆดๆนไฟๅญๅๆไปถ
with open('docker-compose.yml', 'w') as file:
yaml.safe_dump(data, file,)
| [] |
2024-01-10 | davidpinhas/freedom55 | fd55~cli~chatgpt_client~chatgpt_cli.py | import time
import re
import openai
import shutil
import logging
import itertools
from fd55.utils.fd55_config import Config
config = Config()
class ChatGPT:
def __init__(self):
openai.api_key = f"{str(config.get('AI', 'api_key'))}"
self.engine = "text-davinci-003"
def backup_modified_file(file):
""" Create a backup for the modified file """
shutil.copy2(file, file + '.bak')
logging.info(f"Created backup of '{file}' as '{file}.bak'")
def remove_first_comment(file):
""" Remove all comments at the head of the file """
with open(file, 'r') as f:
lines = f.readlines()
with open(file, 'w') as f:
found_valid_line = False
for line in lines:
if not found_valid_line:
if re.search(
r"[a-zA-Z0-9ร-รฟ]+",
line) and not (
line.startswith(" ") or line.startswith("#") and not line.startswith("#!")):
found_valid_line = True
f.write(line)
else:
f.write(line)
def iterate_code_rewrite(self, file=None, iterations=0, prompt=None):
""" Iterate over a file with the same prompt """
if iterations > 0 and file is not None:
retry_count = 0
logging.info(f"Backing up file '{file}'")
ChatGPT.backup_modified_file(file)
ChatGPT.remove_first_comment(file=file)
logging.info(f"Running {iterations} iterations on file '{file}'")
for i in range(iterations):
with open(file, 'r') as f:
file_content = f.read()
new_prompt = ""
new_prompt += prompt + '. File to modify: \n' + \
file_content + "\n\n Return the improved version in full."
logging.debug(f"Manifested new prompt:\n{prompt}")
while True:
output = openai.Completion.create(
engine=self.engine,
prompt=new_prompt,
max_tokens=2048,
temperature=0,
stream=False
)
if not output.choices[0].text:
retry_count += 1
logging.warning(
f"Received empty output from OpenAI, retrying...")
if retry_count == 10:
logging.error(
"Failed to get a response from OpenAI after 10 retries")
time.sleep(5)
pass
break
with open(file, 'w') as f:
f.write(output.choices[0].text)
logging.info(f"Iteration {i+1} - Finished updating file")
logging.info(f"All iterations on file '{file}' finished")
def send_openai_request(
self,
prompt,
full_output=False,
file=None,
iterations=None):
""" Send OpenAI request """
try:
logging.info("Creating request to OpenAI")
if file is not None:
logging.info(f"Manifesting prompt with file '{file}'")
ChatGPT.remove_first_comment(file)
with open(file, 'r') as f:
file_content = f.read()
original_prompt = prompt
prompt += prompt + '. File to improve: \n' + file_content + \
"\n\n Return the improved version in full."
logging.debug(f"Manifested new prompt:\n{prompt}")
if iterations:
iterations = int(iterations)
if int(iterations) and iterations > 0:
ChatGPT().iterate_code_rewrite(
file=file, iterations=iterations, prompt=original_prompt)
exit()
if file is None and iterations:
logging.error(f"Iterations argument requires a '--file'")
exit()
stream = False if full_output else True
output = openai.Completion.create(
engine=self.engine,
prompt=prompt,
max_tokens=2048,
temperature=0,
stream=stream
)
if full_output is not False:
logging.info("Waiting for full output generation")
full_output = output.choices[0].text
print(full_output)
logging.info("Finished generation")
else:
logging.info("Recieved answer:")
print("#################################")
print("######## OpenAI Response ########")
print("#################################\n")
for event in itertools.islice(output, 1, None):
event_text = event['choices'][0]['text']
print(f"{event_text}", end="", flush=True)
print("\n\n#################################")
except Exception as e:
logging.error(f"Failed to get a response from OpenAI, Reason: {e}")
exit()
| [
"PLACEHOLDER. File to modify: \nPLACEHOLDER\n\n Return the improved version in full.",
"PLACEHOLDER. File to improve: \nPLACEHOLDER\n\n Return the improved version in full."
] |
2024-01-10 | Sofus-Wen/prototype-personalized-learning-with-AI | embedding_doc.py | import os
from config import OPENAI_API_KEY, PINECONE_API_KEY, PINECONE_API_ENVIRONMENT
from constants import PINECONE_INDEX_NAME
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
import pinecone
import chromadb # Added for ChromaDB
chroma_client = chromadb.Client() # Added for ChromaDB
# Set API key for OpenAI and Pinecone
os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_API_ENVIRONMENT)
# Check if index exists, if not create it
print('Checking if index exists...')
if PINECONE_INDEX_NAME not in pinecone.list_indexes():
print('Index does not exist, creating index...')
pinecone.create_index(name=PINECONE_INDEX_NAME, metric='cosine', dimension=1536)
# List of PDFs to process (Changed Variable)
pdf_list = [
'informatik.pdf',
'samfundsfag-grundforlob.pdf',
'รธkonomisk-grundforlob.pdf',
'marketing-en-grundbog-i-afsรฆtning.pdf',
'larebog-i-matematik-hhx-1.pdf',
'international-รธkonomi.pdf',
'ind-i-sproget-hhx-hรฅndbog-til-almen-sprogforstรฅelse.pdf',
'virksomhedsokonomi.pdf',
'fortallingens-spejl-grundforlob-i-dansk.pdf',
'ccc-company-culture-and-communication-grundforlob-i-engelsk.pdf',
'aus-aktuellem-anlass-grundforlob-i-tysk.pdf',
# Add more PDFs here
]
# Loop to handle multiple PDFs (New Addition)
for pdf in pdf_list:
print(f'Loading document: {pdf}')
loader = UnstructuredPDFLoader(pdf)
data = loader.load()
print(f'Loaded a PDF with {len(data)} pages')
print(f'There are {len(data[0].page_content)} characters in your document')
# Chunk data into smaller documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200) # Changed chunk_size and chunk_overlap
texts = text_splitter.split_documents(data)
print(f'Split the document into {len(texts)} smaller documents')
# Create embeddings and index from your documents
print('Creating embeddings and index...')
embeddings = OpenAIEmbeddings(client='')
docsearch = Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name=PINECONE_INDEX_NAME)
print('Done!')
| [] |
2024-01-10 | GitSumito/CodeArsenal | openai~transcription.py | import os
import openai
import librosa
from pydub import AudioSegment
from tempfile import NamedTemporaryFile
# OpenAIใฎAPIใญใผใ็ฐๅขๅคๆฐใใๅๅพใใพใใ
openai.api_key = os.getenv('OPENAI_API_KEY')
# mp3ใใกใคใซๅใ็ฐๅขๅคๆฐใใๅๅพใใพใใ
mp3_filename = os.getenv('MP3_FILENAME')
audio_file= open(mp3_filename, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file)
print(transcript.text)
# ็ตๆใใใญในใใใกใคใซใซไฟๅญใใพใใ
with open('transcription.txt', 'w') as file:
file.write(transcript.text)
print("Transcription saved to 'transcription.txt'")
| [] |
2024-01-10 | WilliamSteenbergen/gym-SmartPrimer | gym_SmartPrimer~examples~exampleComparison.py | import gym
import numpy as np
import gym_SmartPrimer.agents.baselineV2 as Baseline
import matplotlib.pyplot as plt
from rlgraph.agents import Agent
from rlgraph.environments import OpenAIGymEnv
from rlgraph.execution import SingleThreadedWorker
import json
import os
np.random.seed(2)
env = gym.make('gym_SmartPrimer:SmartPrimer-realistic-v2')
agent = Baseline.BaselineAgent(env.action_space)
episode_count = 1000
reward = 0
done = False
for i in range(episode_count):
if i == 100:
stop = 1
ob = env.reset()
while True:
action = agent.act(ob, reward, done)
ob, reward, done, Baseinfo = env.step(action)
if done:
agent.reset()
break
np.random.seed(2)
agent_config_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) + '/agents/ppoSmartPrimer_config.json'
with open(agent_config_path, 'rt') as fp:
agent_config = json.load(fp)
env = OpenAIGymEnv.from_spec({
"type": "openai",
"gym_env": 'gym_SmartPrimer:SmartPrimer-realistic-v2'
})
agent = Agent.from_spec(
agent_config,
state_space=env.state_space,
action_space=env.action_space
)
episode_returns = []
def episode_finished_callback(episode_return, duration, timesteps, *args, **kwargs):
episode_returns.append(episode_return)
if len(episode_returns) % 100 == 0:
print("Episode {} finished: reward={:.2f}, average reward={:.2f}.".format(
len(episode_returns), episode_return, np.mean(episode_returns[-100:])
))
worker = SingleThreadedWorker(env_spec=lambda: env, agent=agent, render=False, worker_executes_preprocessing=False,
episode_finish_callback=episode_finished_callback)
# Use exploration is true for training, false for evaluation.
worker.execute_episodes(1000, use_exploration=True)
def plotting(Baseline, PPO, quit, finished, quitBaseline, finishedBaseline, actionInfo):
ax1 = plt.subplot(311)
#ax1.set_title('Scenario 4: average reward of last 100 children without quitting penalty')
ax1.margins(0.05)
#ax1.set_xlabel('Number of children')
ax1.set_title('Average reward of last 100 children')
ax1.plot(PPO, 'r', label='PPO')
ax1.plot(Baseline, 'b', label='Baseline')
ax1.legend()
ax4 = plt.subplot(312)
ax4.set_title('Actions taken')
ax4.plot(actionInfo['question'], 'r', label='Question')
ax4.plot(actionInfo['encourage'], 'g', label='Encourage')
ax4.plot(actionInfo['hint'], 'b', label='Hint')
ax4.plot(actionInfo['nothing'], 'y', label='Nothing')
ax4.set_ylabel('% of last 500 actions')
ax4.legend()
ax2 = plt.subplot(325)
ax2.set_title('PPO')
ax2.plot(quit, 'r', label='Quit')
ax2.plot(finished, 'g', label='Finished')
ax2.set_ylabel('% of last 100 children')
ax2.legend()
ax3 = plt.subplot(326)
ax3.set_title('Baseline')
ax3.plot(quitBaseline, 'r', label='Quit')
ax3.plot(finishedBaseline, 'g', label='Finished')
ax3.legend()
plt.show()
ax1 = plt.subplot(141)
ax1.set_title('Smart Child')
ax1.plot(actionInfo['0'][0], 'y', label='Nothing')
ax1.plot(actionInfo['0'][1], 'g', label='Encourage')
ax1.plot(actionInfo['0'][2], 'r', label='Question')
ax1.plot(actionInfo['0'][3], 'b', label='Hint')
ax1.set_ylabel('% of last 500 actions')
ax1.legend()
ax2 = plt.subplot(142)
ax2.set_title('Outgoing Child')
ax2.plot(actionInfo['1'][0], 'y', label='Nothing')
ax2.plot(actionInfo['1'][1], 'g', label='Encourage')
ax2.plot(actionInfo['1'][2], 'r', label='Question')
ax2.plot(actionInfo['1'][3], 'b', label='Hint')
ax2.set_xlabel('Number of actions taken')
ax2.legend()
ax3 = plt.subplot(143)
ax3.set_title('Quiet Child')
ax3.plot(actionInfo['2'][0], 'y', label='Nothing')
ax3.plot(actionInfo['2'][1], 'g', label='Encourage')
ax3.plot(actionInfo['2'][2], 'r', label='Question')
ax3.plot(actionInfo['2'][3], 'b', label='Hint')
ax3.legend()
ax4 = plt.subplot(144)
ax4.set_title('Anxious Child')
ax4.plot(actionInfo['3'][0], 'y', label='Nothing')
ax4.plot(actionInfo['3'][1], 'g', label='Encourage')
ax4.plot(actionInfo['3'][2], 'r', label='Question')
ax4.plot(actionInfo['3'][3], 'b', label='Hint')
ax4.legend()
plt.show()
return 0
plotting(Baseinfo['Performance'], env.gym_env.info['Performance'], env.gym_env.info['nQuit'], env.gym_env.info['nFinish'], Baseinfo['nQuit'], Baseinfo['nFinish'], env.gym_env.info['actionInfo'])
| [] |
2024-01-10 | viniciusarruda/AskPDF | knowledge_base.py | import os
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
class KnowledgeBase:
def __init__(self, embeddings: Embeddings, persistence_folder: os.PathLike | None = None, index_name: str = 'index') -> None:
self.index_name = index_name
self.persistence_folder = persistence_folder
self.save = persistence_folder is not None
self.embeddings = embeddings
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
if self.save:
if os.path.exists(self.persistence_folder):
if os.path.exists(os.path.join(self.persistence_folder, f'{self.index_name}.faiss')):
self.db = FAISS.load_local(self.persistence_folder, self.embeddings, self.index_name)
else:
self.db = None
else:
os.makedirs(self.persistence_folder) # for future saving
self.db = None
else:
self.db = None
def remove_documents(self) -> None:
self.db = None
def add_document(self, file_path_or_url: os.PathLike | str) -> None:
loader = PyPDFLoader(file_path_or_url)
documents = loader.load()
splitted_documents = self.text_splitter.split_documents(documents)
if self.db is None:
self.db = FAISS.from_documents(splitted_documents, self.embeddings)
else:
self.db.add_documents(splitted_documents)
if self.save:
self.db.save_local(self.persistence_folder, self.index_name)
def query(self, query: str) -> list[Document]:
return [] if self.db is None else self.db.similarity_search(query, k=4)
| [] |
2024-01-10 | ShivangiReja/ChatWithAzureSDK | ChatWithAzureSDK~src~prepare_data.py | import tiktoken
import os
import json
from bs4 import BeautifulSoup
from typing import List
from langchain.document_loaders import ReadTheDocsLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import hashlib
from tqdm.auto import tqdm
def load_documents(html_files_path):
docs = parse_html_content(html_files_path)
token_counts = [tiktoken_len(doc.page_content) for doc in docs]
doc1_chunks = text_splitter.split_text(docs[0].page_content)
doc2_chunks = text_splitter.split_text(docs[1].page_content)
formatted_docs = process_documents(docs, html_files_path)
output_directory = r'C:\Users\shreja\Demo\ChatWithAzureSDK\ChatWithAzureSDK\src\JsonDocument'
write_documents_to_jsonl(formatted_docs, output_directory)
return f"\n \n Token count Doc0 - {token_counts[0]} \n Token count Doc1 - {token_counts[1]} \n Doc0 chunks length {len(doc1_chunks)} chunk1 token count {tiktoken_len(doc1_chunks[0])} \n Doc1 chunks length {len(doc2_chunks)} chunk1 token count {tiktoken_len(doc2_chunks[0])} \n\n Formatted docs length: {len(formatted_docs)} \n\n Formatted doc 1: {formatted_docs[0]}"
# Custom class to hold document data
class Document:
def __init__(self, file_path, page_content):
self.file_path = file_path
self.page_content = page_content
# Create the function to parse the html content
def parse_html_content(html_files_path):
documents: List[Document] = []
for root, _, files in os.walk(html_files_path):
for file_name in files:
if file_name.endswith(".html"):
file_path = os.path.join(root, file_name)
with open(file_path, "r", encoding="utf-8") as file:
html_content = file.read()
soup = BeautifulSoup(html_content, "html.parser")
# Get the whole text content without modifications
extracted_text = soup.get_text()
# Remove 3 or more empty lines
extracted_text = "\n".join([t for t in extracted_text.split("\n\n\n") if t])
document = Document(file_path, extracted_text)
documents.append(document)
return documents
# Create the length function to calculate token length for the given text
tokenizer = tiktoken.get_encoding('cl100k_base')
def tiktoken_len(text):
tokens = tokenizer.encode(
text,
disallowed_special=()
)
return len(tokens)
# To create these chunks we use the RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=50, # number of tokens overlap between chunks
length_function=tiktoken_len,
separators=['\n\n', '\n', ' ', '']
)
# Process a list of documents, split them into chunks, and format them as follows:
"""
Each processed document will be restructured into a format that looks like:
[
{
"id": "abc-0",
"content": "some important document text",
"source": "https://langchain.readthedocs.io/en/latest/glossary.html"
},
{
"id": "abc-1",
"content": "the next chunk of important document text",
"source": "https://langchain.readthedocs.io/en/latest/glossary.html"
}
...
]
"""
def process_documents(docs, html_files_path):
documents = []
m = hashlib.sha256()
for doc in tqdm(docs):
url = doc.file_path.replace(html_files_path, 'https:')
m.update(url.encode('utf-8'))
uid = m.hexdigest()[:12]
chunks = text_splitter.split_text(doc.page_content)
for i, chunk in enumerate(chunks):
documents.append({
'id': f'{uid}-{i}',
'content': chunk,
'source': url
})
return documents
# Save them to a JSON lines (.json) file like so:
def write_documents_to_jsonl(documents, output_directory):
output_file = os.path.join(output_directory, 'documents.jsonl')
with open(output_file, 'w') as f:
for doc in documents:
f.write(json.dumps(doc) + '\n')
| [] |
2024-01-10 | bleschunov/msu-test | src~datastep~components~datastep_sql_database.py | from langchain.utilities import SQLDatabase
from util.logger import log
databases_connection_pool = dict()
class DatastepSqlDatabase:
@log("ะะพะดะบะปััะตะฝะธะต ะบ ะฑะฐะทะต ะดะฐะฝะฝัั
")
def __init__(
self,
database_connection_string: str,
include_tables: list[str],
tenant_id: int
):
self.database = SQLDatabase.from_uri(
database_connection_string,
include_tables=include_tables,
view_support=True
)
# TODO: ะัะฟะพะปัะทะพะฒะฐัั ะฟัะปะธะฝะณ ะธะท ะะปั
ะธะผะธะธ
# if not databases_connection_pool.get(tenant_id, None):
# databases_connection_pool[tenant_id] = SQLDatabase.from_uri(
# database_connection_string,
# include_tables=include_tables,
# view_support=True
# )
#
# self.database = databases_connection_pool[tenant_id]
@log("ะัะฟะพะปะฝะตะฝะธะต SQL ะฒ ะฑะฐะทะต ะดะฐะฝะฝัั
")
def run(self, sql_query):
response = self.database._execute(sql_query)
return response
| [] |
2024-01-10 | bleschunov/msu-test | src~datastep~components~sql_database_chain_executor.py | import dataclasses
import langchain
import pandas as pd
from dotenv import load_dotenv
from langchain.callbacks import StdOutCallbackHandler
from langchain.chat_models import ChatOpenAI
from openai import OpenAIError
from sqlalchemy.exc import SQLAlchemyError
from config.config import config
from datastep.components.chain import get_sql_database_chain_patched
from datastep.components.datastep_prediction import DatastepPrediction
from datastep.components.datastep_prompt import DatastepPrompt
from datastep.components.patched_database_class import SQLDatabasePatched
from datastep.components.patched_sql_chain import SQLDatabaseChainPatched
from datastep.models.intermediate_steps import IntermediateSteps
from repository.prompt_repository import prompt_repository
load_dotenv()
TABLE_PROMPT_ID_MAPPING = {
"ะฟะปะฐัะตะถะธ": 1,
"ัะพัััะดะฝะธะบะธ": 2
}
@dataclasses.dataclass
class SQLDatabaseChainExecutor:
db_chain: SQLDatabaseChainPatched
debug: bool = False
verbose_answer: bool = False
langchain_debug: bool = False
def __post_init__(self):
langchain.debug = self.langchain_debug
def run(self, query: str, tables: list[str]) -> DatastepPrediction:
callbacks = self.get_callbacks()
if tables:
self.db_chain.database._include_tables = set(tables)
prompt_dto = prompt_repository.fetch_by_id(TABLE_PROMPT_ID_MAPPING[tables[0]])
else:
prompt_dto = prompt_repository.fetch_by_id(config["prompt_id"])
self.db_chain.llm_chain.prompt = DatastepPrompt.get_prompt(table_description=prompt_dto.prompt)
try:
db_chain_response = self.db_chain(query, callbacks=callbacks)
except OpenAIError as e:
return DatastepPrediction(
answer=str(e),
sql=None,
table=None,
table_source=None,
is_exception=True
)
except SQLAlchemyError as e:
intermediate_steps = e.intermediate_steps
intermediate_steps = IntermediateSteps.from_chain_steps(intermediate_steps)
return DatastepPrediction(
answer=str(e),
sql=self.get_sql_markdown(intermediate_steps.sql_query),
table=None,
table_source=None,
is_exception=True
)
if self.verbose_answer:
chain_answer = db_chain_response["result"]
else:
chain_answer = ""
intermediate_steps = db_chain_response["intermediate_steps"]
intermediate_steps = IntermediateSteps.from_chain_steps(intermediate_steps)
sql_query = intermediate_steps.sql_query
sql_result = intermediate_steps.sql_result
return DatastepPrediction(
answer=chain_answer,
sql=self.get_sql_markdown(sql_query),
table=self.get_table_markdown(sql_result),
table_source=self.get_table_source(sql_result),
is_exception=False
)
@classmethod
def get_sql_markdown(cls, sql_result) -> str:
if sql_result:
return f"~~~sql\n{sql_result}\n~~~"
return ""
@classmethod
def get_table_markdown(cls, sql_result) -> str:
data_frame = pd.DataFrame(sql_result)
if data_frame is not None and any(data_frame):
return data_frame.to_markdown(index=False, floatfmt=".3f")
return ""
@classmethod
def get_table_source(cls, sql_result) -> str:
return pd.DataFrame(sql_result).to_json(orient="table", force_ascii=False, index=False)
def get_callbacks(self):
callbacks = []
if self.debug:
callbacks.append(StdOutCallbackHandler())
return callbacks
def get_sql_database_chain_executor(
db: SQLDatabasePatched,
llm: ChatOpenAI,
debug: bool = False,
verbose_answer: bool = False
) -> SQLDatabaseChainExecutor:
return SQLDatabaseChainExecutor(
db_chain=get_sql_database_chain_patched(db, llm, DatastepPrompt.get_prompt(), verbose_answer),
debug=debug,
verbose_answer=verbose_answer
)
| [
"{'ะฟะปะฐัะตะถะธ': 1, 'ัะพัััะดะฝะธะบะธ': 2}"
] |
2024-01-10 | bleschunov/msu-test | src~datastep~components~patched_sql_chain.py | from typing import Any, Dict, List
from langchain import PromptTemplate, LLMChain
from langchain_experimental.sql import SQLDatabaseChain
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.tools.sql_database.prompt import QUERY_CHECKER
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
class SQLDatabaseChainPatched(SQLDatabaseChain):
def _call(
self,
inputs: Dict[str, Any],
run_manager: CallbackManagerForChainRun | None = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
input_text = f"{inputs[self.input_key]}\nSQLQuery:"
_run_manager.on_text(input_text, verbose=self.verbose)
# If not present, then defaults to None which is all tables.
table_names_to_use = inputs.get("table_names_to_use")
table_info = self.database.get_table_info(table_names=table_names_to_use)
llm_inputs = {
"input": input_text,
"top_k": str(self.top_k),
"dialect": self.database.dialect,
"table_info": table_info,
"stop": ["\nSQLResult:"],
}
intermediate_steps: List = []
try:
intermediate_steps.append(llm_inputs) # input: sql generation
sql_cmd = self.llm_chain.predict(
callbacks=_run_manager.get_child(),
**llm_inputs,
).strip()
if not self.use_query_checker:
_run_manager.on_text(sql_cmd, color="green", verbose=self.verbose)
intermediate_steps.append(
sql_cmd
) # output: sql generation (no checker)
intermediate_steps.append({"sql_cmd": sql_cmd}) # input: sql exec
result = self.database.run(sql_cmd)
intermediate_steps.append(result) # output: sql exec PATCHED
else:
query_checker_prompt = self.query_checker_prompt or PromptTemplate(
template=QUERY_CHECKER, input_variables=["query", "dialect"]
)
query_checker_chain = LLMChain(
llm=self.llm_chain.llm, prompt=query_checker_prompt
)
query_checker_inputs = {
"query": sql_cmd,
"dialect": self.database.dialect,
}
checked_sql_command: str = query_checker_chain.predict(
callbacks=_run_manager.get_child(), **query_checker_inputs
).strip()
intermediate_steps.append(
checked_sql_command
) # output: sql generation (checker)
_run_manager.on_text(
checked_sql_command, color="green", verbose=self.verbose
)
intermediate_steps.append(
{"sql_cmd": checked_sql_command}
) # input: sql exec
result = self.database.run(checked_sql_command)
intermediate_steps.append(result) # output: sql exec PATCHED
sql_cmd = checked_sql_command
_run_manager.on_text("\nSQLResult: ", verbose=self.verbose)
_run_manager.on_text(result, color="yellow", verbose=self.verbose)
# If return direct, we just set the final result equal to
# the result of the sql query result, otherwise try to get a human readable
# final answer
if self.return_direct:
final_result = result
else:
_run_manager.on_text("\nAnswer:", verbose=self.verbose)
input_text += f"{sql_cmd}\nSQLResult: {result}\nAnswer:"
llm_inputs["input"] = input_text
intermediate_steps.append(llm_inputs) # input: final answer
final_result = self.llm_chain.predict(
callbacks=_run_manager.get_child(),
**llm_inputs,
).strip()
intermediate_steps.append(final_result) # output: final answer
_run_manager.on_text(final_result, color="green", verbose=self.verbose)
chain_result: Dict[str, Any] = {self.output_key: final_result}
if self.return_intermediate_steps:
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
return chain_result
except Exception as exc:
# Append intermediate steps to exception, to aid in logging and later
# improvement of few shot prompt seeds
exc.intermediate_steps = intermediate_steps # type: ignore
raise exc
| [] |
2024-01-10 | bleschunov/msu-test | src~datastep~components~patched_database_class.py | from langchain import SQLDatabase
from langchain.utilities.sql_database import text
class SQLDatabasePatched(SQLDatabase):
def run(self, command: str, fetch: str = "all") -> list:
"""Execute a SQL command and return a string representing the results.
If the statement returns rows, a string of the results is returned.
If the statement returns no rows, an empty string is returned.
"""
with self._engine.begin() as connection:
if self._schema is not None:
if self.dialect == "snowflake":
connection.exec_driver_sql(
f"ALTER SESSION SET search_path='{self._schema}'"
)
elif self.dialect == "bigquery":
connection.exec_driver_sql(f"SET @@dataset_id='{self._schema}'")
else:
connection.exec_driver_sql(f"SET search_path TO {self._schema}")
cursor = connection.execute(text(command))
if cursor.returns_rows:
# if fetch == "all":
# result = cursor.fetchall()
# elif fetch == "one":
# result = cursor.fetchone() # type: ignore
# else:
# raise ValueError("Fetch parameter must be either 'one' or 'all'")
result = cursor.mappings().all() # PATCHED
# Convert columns values to string to avoid issues with sqlalchmey
# trunacating text
# if isinstance(result, list):
# return [
# tuple(
# truncate_word(c, length=self._max_string_length) for c in r
# )
# for r in result
# ]
#
# return tuple(
# truncate_word(c, length=self._max_string_length) for c in result
# )
return result
return []
| [] |
2024-01-10 | bleschunov/msu-test | src~datastep~datastep_chains~datastep_rephrase.py | from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.prompt import PromptTemplate
from dotenv import load_dotenv
load_dotenv()
rephrase_template = """
You must follow the steps described below:
Step 1:
ะะฐะฟะธัะธ, ะบะฐะบ ะผะพะถะฝะพ ะธะทะผะตะฝะธัั ะฝะตะบะพัะพััะต ัะปะพะฒะฐ ะฒ ะฒะพะฟัะพัะต, ััะพะฑั ะพะฝ ััะฐะบัะพะฒะฐะปัั ะพะดะฝะพะทะฝะฐัะฝะพ. ะะฑัะฐัะธ ะฒะฝะธะผะฐะฝะธะต, ััะพ ะฝะตะบะพัะพััะต ัะปะพะฒะฐ ะผะพะถะฝะพ ะฒะพัะฟัะธะฝะธะผะฐัั ะฟะพโัะฐะทะฝะพะผั. ะะทะฑะฐะฒััั ะพั ัะฐะบะพะน ะฝะตะพะดะฝะพะทะฝะฐัะฝะพััะธ.
ะะพะบะฐะถะธ ัะพะปัะบะพ ะธัะฟัะฐะฒะปะตะฝะฝัะน ะฒะพะฟัะพั.
ะะพะฟัะพั: {input}
ะะพะบะฐะถะธ ัะพะปัะบะพ ะฝะพะฒัะน ะฒะพะฟัะพั
"""
rephrase_prompt = PromptTemplate(
template=rephrase_template,
input_variables=["input"]
)
llm = ChatOpenAI(temperature=0.5, verbose=True, model_name="gpt-3.5-turbo")
rephrase_chain = LLMChain(llm=llm, prompt=rephrase_prompt, verbose=True)
def rephrase(input: str) -> str:
return rephrase_chain.run(
input=input,
)
| [
"input",
"\nYou must follow the steps described below:\n\nStep 1:\nะะฐะฟะธัะธ, ะบะฐะบ ะผะพะถะฝะพ ะธะทะผะตะฝะธัั ะฝะตะบะพัะพััะต ัะปะพะฒะฐ ะฒ ะฒะพะฟัะพัะต, ััะพะฑั ะพะฝ ััะฐะบัะพะฒะฐะปัั ะพะดะฝะพะทะฝะฐัะฝะพ. ะะฑัะฐัะธ ะฒะฝะธะผะฐะฝะธะต, ััะพ ะฝะตะบะพัะพััะต ัะปะพะฒะฐ ะผะพะถะฝะพ ะฒะพัะฟัะธะฝะธะผะฐัั ะฟะพโัะฐะทะฝะพะผั. ะะทะฑะฐะฒััั ะพั ัะฐะบะพะน ะฝะตะพะดะฝะพะทะฝะฐัะฝะพััะธ.\nะะพะบะฐะถะธ ัะพะปัะบะพ ะธัะฟัะฐะฒะปะตะฝะฝัะน ะฒะพะฟัะพั.\n\nะะพะฟัะพั: {input}\n\nะะพะบะฐะถะธ ัะพะปัะบะพ ะฝะพะฒัะน ะฒะพะฟัะพั\n"
] |
2024-01-10 | bleschunov/msu-test | src~datastep~components~datastep_nomenclature.py | import pathlib
from infra.supabase import supabase
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from rq import get_current_job
from langchain.callbacks import get_openai_callback
from langchain.chains.openai_functions import create_structured_output_runnable
def get_nomenclatures(group: str) -> str:
response = supabase \
.table("nomenclature") \
.select("ะะพะผะตะฝะบะปะฐัััะฐ") \
.eq("ะััะฟะฟะฐ", group) \
.execute()
return "\n".join([d["ะะพะผะตะฝะบะปะฐัััะฐ"] for d in response.data])
def get_groups(filepath: str, group_number: str = None) -> str:
with open(filepath, "r") as f:
lines = f.readlines()
if group_number:
lines = [line for line in lines if line.startswith(group_number)]
return "".join(lines)
description_template = "ะงัะพ ัะฐะบะพะต {input}"
group_template = """"ะะปั ะพะฑัะตะบัะฐ ะฒัะฑะตัะธ ัััะพะณะพ ะพะดะฝั ะฟะพะดั
ะพะดัััั ะบะฐัะตะณะพัะธั ะธะท ัะฟะธัะบะฐ.
ะฃััะธ ะพะฟะธัะฐะฝะธะต ะพะฑัะตะบัะฐ.
ะะฑัะตะบั: {input}
ะะฟะธัะฐะฝะธะต ะพะฑัะตะบัะฐ: {description}
ะะฐัะตะณะพัะธะธ:
{groups}
"""
nomenclature_template = """ะะฐะนะดะธ ะฒ ัะฟะธัะบะต ัะฐะบะพะน ะถะต ะพะฑัะตะบั.
ะัะปะธ ะฒ ัะฟะธัะบะต ะฝะตั ัะฐะบะพะณะพ ะถะต ะพะฑัะตะบัะฐ, ะฝะฐะฟะธัะธ 0
ะะฑัะตะบั:
{input}
ะกะฟะธัะพะบ:
{groups}
"""
description_prompt = PromptTemplate(
template=description_template,
input_variables=["input"]
)
group_prompt = PromptTemplate(
template=group_template,
input_variables=["input", "groups", "description"]
)
nomenclature_prompt = PromptTemplate(
template=nomenclature_template,
input_variables=["input", "groups"]
)
gpt_3 = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-1106", max_retries=3, request_timeout=10)
gpt_4 = ChatOpenAI(temperature=0, model_name="gpt-4-1106-preview", max_retries=3, request_timeout=10)
group_json_schema = {
"title": "category",
"description": "category from list",
"type": "object",
"properties": {
"category": {"title": "category", "description": "category number and name", "type": "string"},
},
"required": ["category"],
}
nomenclature_json_schema = {
"title": "object",
"description": "object from list",
"type": "object",
"properties": {
"nomenclature": {"title": "object_name", "description": "object name or 0", "type": "string"},
},
"required": ["nomenclature"],
}
group_runnable_gpt_3 = create_structured_output_runnable(group_json_schema, gpt_3, group_prompt)
group_runnable_gpt_4 = create_structured_output_runnable(group_json_schema, gpt_4, group_prompt)
nomenclature_runnable = create_structured_output_runnable(nomenclature_json_schema, gpt_4, nomenclature_prompt)
description_chain = LLMChain(llm=gpt_3, prompt=description_prompt)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=4000,
chunk_overlap=0,
separators=["\n"]
)
def map_with_groups(query: str, description: str, filepath: str, group_runnable, prev_response: str = None, index: int = None) -> str:
groups = get_groups(filepath, prev_response[:index] if prev_response else None)
if len(groups) == 0:
return prev_response
response = group_runnable.invoke({"input": query, "groups": groups, "description": description})
return response["category"]
def map_with_nomenclature(query: str, final_group: str):
nomenclatures = get_nomenclatures(final_group)
nomenclatures_chunks = text_splitter.split_text(nomenclatures)
short_list = []
for chunk in nomenclatures_chunks:
response = nomenclature_runnable.invoke({"input": query, "groups": chunk})
nomenclature_position = response["nomenclature"]
short_list.append(nomenclature_position)
groups = "\n".join(str(short_list))
response = nomenclature_runnable.invoke({"input": query, "groups": groups})
return response["nomenclature"]
def get_data_folder_path():
return f"{pathlib.Path(__file__).parent.resolve()}"
def save_to_database(values: dict):
return supabase.table("nomenclature_mapping").insert(values).execute()
def do_mapping(query: str) -> str:
with get_openai_callback() as cb:
description = description_chain.run(query)
job = get_current_job()
middle_group = map_with_groups(query, description, f"{get_data_folder_path()}/../data/parent-parent.txt", group_runnable_gpt_3)
job.meta["middle_group"] = middle_group
job.save_meta()
narrow_group = map_with_groups(query, description, f"{get_data_folder_path()}/../data/parent.txt", group_runnable_gpt_3, middle_group, 6)
job.meta["narrow_group"] = narrow_group
job.save_meta()
response = map_with_nomenclature(query, narrow_group)
database_response = save_to_database({
"input": query,
"output": response,
"wide_group": "",
"middle_group": middle_group,
"narrow_group": narrow_group,
"source": job.get_meta().get("source", None),
"status": job.get_status()
})
job.meta["mapping_id"] = database_response.data[0]["id"]
job.save()
return response
if __name__ == "__main__":
print("FINAL_RESPONSE", do_mapping("ะะพะปะบะฐ ะฟะพะด ะฟัะธะฝัะตั ะบ ัะตะฟะปะพัััััะธะบั ะะะก.ะข"))
| [
"ะงัะพ ัะฐะบะพะต {input}",
"ะะฐะนะดะธ ะฒ ัะฟะธัะบะต ัะฐะบะพะน ะถะต ะพะฑัะตะบั.\nะัะปะธ ะฒ ัะฟะธัะบะต ะฝะตั ัะฐะบะพะณะพ ะถะต ะพะฑัะตะบัะฐ, ะฝะฐะฟะธัะธ 0\n\nะะฑัะตะบั: \n{input}\n\nะกะฟะธัะพะบ:\n{groups}\n",
"input",
"description",
"\"ะะปั ะพะฑัะตะบัะฐ ะฒัะฑะตัะธ ัััะพะณะพ ะพะดะฝั ะฟะพะดั
ะพะดัััั ะบะฐัะตะณะพัะธั ะธะท ัะฟะธัะบะฐ.\nะฃััะธ ะพะฟะธัะฐะฝะธะต ะพะฑัะตะบัะฐ.\n\nะะฑัะตะบั: {input}\nะะฟะธัะฐะฝะธะต ะพะฑัะตะบัะฐ: {description}\n\nะะฐัะตะณะพัะธะธ:\n{groups}\n"
] |
2024-01-10 | bleschunov/msu-test | src~datastep~components~datastep_prompt.py | import datetime
from langchain import PromptTemplate
from config.config import config
basic_prompt = """You are an %s expert. Given an input question, first create a syntactically correct %s query to run, then look at the results of the query and return the answer to the input question.
Unless the user specifies in the question a specific number of examples to obtain, query for at most {top_k} results using the TOP clause as per %s. You can order the results to return the most informative data in the database.
Never query for all columns from a table. You must query only the columns that are needed to answer the question.
Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table. Use Russian language.
Use the following format:
Question: Question here
SQLQuery: SQL Query to run
SQLResult: Result of the SQLQuery
Answer: Final answer here
"""
prompt_suffix = """Only use the following tables:
{table_info}
Question: {input}"""
class DatastepPrompt:
@classmethod
def get_prompt(cls, table_description: str = None) -> PromptTemplate:
return PromptTemplate(
input_variables=["input", "table_info", "top_k"],
template=cls.build_prompt(table_description)
)
@classmethod
def build_prompt(cls, table_description) -> str:
table_description = table_description or config["prompt"]["table_description"]
table_description = table_description.replace("[[currentDate]]", str(datetime.date.today()))
db_driver = config["db_driver"]
return basic_prompt % (db_driver, db_driver, db_driver) + table_description + prompt_suffix
| [
"Only use the following tables:\n{table_info}\n\nQuestion: {input}",
"You are an %s expert. Given an input question, first create a syntactically correct %s query to run, then look at the results of the query and return the answer to the input question.\nUnless the user specifies in the question a specific number of examples to obtain, query for at most {top_k} results using the TOP clause as per %s. You can order the results to return the most informative data in the database.\nNever query for all columns from a table. You must query only the columns that are needed to answer the question.\nPay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table. Use Russian language.\n\nUse the following format:\n\nQuestion: Question here\nSQLQuery: SQL Query to run\nSQLResult: Result of the SQLQuery\nAnswer: Final answer here\n"
] |
2024-01-10 | wzaielamri/unmix | setup.py | import os
import pkg_resources
from setuptools import setup, find_packages
setup(
name="unmix",
py_modules=["unmix"],
version="1.0",
description="original code from OpenAI Jukebox",
author="",
packages=find_packages(),
install_requires=[
str(r)
for r in pkg_resources.parse_requirements(
open(os.path.join(os.path.dirname(__file__), "requirements.txt"))
)
],
include_package_data=True
)
| [] |
2024-01-10 | chubbyyb/huawei_hackathon | validate.py | import sqlvalidator
import os
import openai
import sqlite3
SQL_path = '''sql_DB/example-covid-vaccinations.sqlite3'''
openai.api_key = "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"
invalidSQL = '''DELETE FROM Customers WHERE CustomerName='Alfreds Futterkiste';'''
validSQL = '''SELECT id, name, surname, standard, drop, city, FROM studentdetails WHERE name = "John" ORDER BY standard ASC'''
def validateSQL(response):
if not sqlvalidator.parse(response).is_valid():
print("SQL Invalid")
return
badWords = ['INSERT', 'UPDATE', 'DELETE', 'ALTER', 'DROP', 'TRUNCATE',
'MERGE', 'REPLACE', 'SET', 'COMMIT', 'ROLLBACK', 'SAVEPOINT', 'GRANT',
'REVOKE', 'DENY', 'EXEC', 'EXECUTE', 'CALL', 'USE']
return 'Valid'
def getResponse(message,SQLschema):
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system",
"content": f"You assess the users message and respond with only valid SQL according to this schema: {SQLschema}."},
{"role": "user", "content": f"{message}"}
]
)
print(completion.choices[0].message['content'])
print(validateSQL(completion.choices[0].message['content']))
def connect_db(path):
conn = sqlite3.connect(path)
# Create a cursor object
cursor = conn.cursor()
# Query to retrieve the schema information for all tables
query = "SELECT sql FROM sqlite_master WHERE type='table';"
# Execute the query
cursor.execute(query)
# Fetch all the results and concatenate them into a single string
schema_string = ""
for row in cursor.fetchall():
schema_string += row[0] + '\n'
# Close the cursor and the database connection
cursor.close()
conn.close()
print(schema_string)
getResponse(message='''What was the biggest vaccination rate achieved?''', SQLschema=str(schema_string))
return conn
connect_db(SQL_path) | [
"PLACEHOLDER",
"You assess the users message and respond with only valid SQL according to this schema: PLACEHOLDER."
] |
2024-01-10 | ZohaibRamzan/Youtube_Content_Creation | llam-7B-GGML-PDF-Chat-langchain~Chat_PDF_llama2-7B-ggml-langchain.py | import os
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.llms import CTransformers
import chainlit as cl
from langchain.memory import ConversationBufferMemory
from prompts_chat_pdf import chat_prompt, CONDENSE_QUESTION_PROMPT
class PDFChatBot:
def __init__(self):
self.data_path = os.path.join('data')
self.db_faiss_path = os.path.join('vectordb', 'db_faiss')
#self.chat_prompt = PromptTemplate(template=chat_prompt, input_variables=['context', 'question'])
#self.CONDENSE_QUESTION_PROMPT=CONDENSE_QUESTION_PROMPT
def create_vector_db(self):
'''function to create vector db provided the pdf files'''
loader = DirectoryLoader(self.data_path,
glob='*.pdf',
loader_cls=PyPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=400,
chunk_overlap=50)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'})
db = FAISS.from_documents(texts, embeddings)
db.save_local(self.db_faiss_path)
def load_llm(self):
# Load the locally downloaded model here
llm = CTransformers(
model="llama-2-7b-chat.ggmlv3.q8_0.bin",
model_type="llama",
max_new_tokens=2000,
temperature=0.5
)
return llm
def conversational_chain(self):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'})
db = FAISS.load_local(self.db_faiss_path, embeddings)
# initializing the conversational chain
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversational_chain = ConversationalRetrievalChain.from_llm( llm=self.load_llm(),
retriever=db.as_retriever(search_kwargs={"k": 3}),
verbose=True,
memory=memory
)
return conversational_chain
def intialize_chain():
bot = PDFChatBot()
bot.create_vector_db()
conversational_chain = bot.conversational_chain()
return conversational_chain
chat_history = []
chain = intialize_chain()
@cl.on_chat_start
async def start():
msg = cl.Message(content="Starting the bot...")
await msg.send()
msg.content = "Welcome to Data Science Interview Prep Bot. Ask me your question?"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=False, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
res = await chain.acall({"question": message, "chat_history": chat_history}, callbacks=[cb])
answer = res["answer"]
chat_history.append(answer)
await cl.Message(content=answer).send()
# while(True):
# query = input('User: ')
# response = conversational_chain({"question": query, "chat_history": chat_history})
# chat_history.append(response["answer"]) # Append the answer to chat history
# print(response["answer"]) | [] |
2024-01-10 | ZohaibRamzan/Youtube_Content_Creation | SQL_Multi_agent_example_using_Autogen~SQL_multi_agent_autogen.py | import os
from dotenv import load_dotenv
import openai
import autogen
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from prompts import query_maker_gpt_system_prompt, admin_prompt, data_engineer_prompt
from langchain.prompts import PromptTemplate
import mysql.connector
#load env variables
load_dotenv()
# openai api key
api_key=os.getenv('OPENAI_API_KEY')
# Set your LLms Endpoint
config_list_gpt_turbo = autogen.config_list_from_models(model_list=[ "gpt-4"])
def query_maker(user_input):
# make sql queries using LLM chain
openaiLLM = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7,
openai_api_key=api_key, cache=False)
prompt_template = PromptTemplate.from_template(
"{system_prompt} + '\n' + {user_input}.")
chain = LLMChain(llm=openaiLLM, prompt=prompt_template)
query=chain.run({"system_prompt": query_maker_gpt_system_prompt, "user_input": user_input})
return query
def run_sql_query(sql_query):
config = {
'host': os.getenv('azure_sql_host'),
'user': os.getenv('user'),
'password': os.getenv('password'),
'database': os.getenv('database'),
'ssl_ca': os.getenv('ssl_ca') # Path to the SSL CA certificate (optional)
}
conn = mysql.connector.connect(**config)
cursor = conn.cursor()
try:
# Execute SQL queries
cursor.execute(sql_query)
result = cursor.fetchall()
except Exception as e:
return e
return result
gpt_turbo_simple_config = {
"use_cache": False,
"temperature": 0.5,
"config_list": config_list_gpt_turbo,
"request_timeout": 90}
gpt_turbo_config = {
"use_cache": False,
"temperature": 0.7,
"config_list": config_list_gpt_turbo,
"request_timeout": 90,
"functions" : [
{
"name": "query_maker",
"description": "generates sql query as per user input",
"parameters": {
"type": "object",
"properties": {
"user_input": {
"type": "string",
"description": "This is the input from the user side.",
}
,
},
"required": ["user_input"],
},
},
{
"name": "run_sql_query",
"description": "This function is used to run sql query against user input to get the results.",
"parameters": {
"type": "object",
"properties": {
"sql_query": {
"type": "string",
"description": "This is the mysql query.",
}
,
},
"required": ["sql_query"],
},
}
]
}
function_map={"query_maker": query_maker ,"run_sql_query": run_sql_query}
termination_msg="If everything looks good, respond with Approved."
def is_termination_msg(content):
have_content=content.get("content", None) is not None
if have_content and "Approved" in content["content"]:
return True
else:
return False
user_proxy = autogen.UserProxyAgent(
name="Admin",
system_message= admin_prompt + termination_msg,
human_input_mode="Never",
is_termination_msg=is_termination_msg
)
engineer = autogen.AssistantAgent(
name="Data_Engineer",
llm_config=gpt_turbo_config,
system_message=data_engineer_prompt + termination_msg,
function_map=function_map
)
# register the functions
user_proxy.register_function(function_map={"query_maker": query_maker ,"run_sql_query": run_sql_query},)
user_proxy.initiate_chat( engineer,
message="""How many Apple pro vision we have in our stock?""", clear_history=True
)
user_proxy_chat=user_proxy.chat_messages
engineer_chat=engineer.chat_messages
| [
"{system_prompt} + '\n' + {user_input}."
] |
2024-01-10 | wm-pxel/langchain-testbench | lib~chains~vector_search_chain.py | import json
import os
from typing import Dict, List, Any
from langchain.chains.base import Chain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores.base import VectorStore
class VectorSearchChain(Chain):
query: str
embedding_engine: str
embedding_params: Dict[str, Any]
database: str
database_params: Dict[str, Any]
num_results: int
min_score: float = 0.0
input_variables: List[str] = []
output_key: str = 'results'
@property
def input_keys(self) -> List[str]:
return self.input_variables
@property
def output_keys(self) -> List[str]:
return [self.output_key]
def vector_store(self, query) -> VectorStore:
if self.database == 'pinecone':
if 'index' not in self.database_params:
raise ValueError('Missing index parameter for Pinecone database')
# import just-in-time so auth will happen after env vars are loaded
import pinecone
from langchain.vectorstores.pinecone import Pinecone
index = pinecone.Index(self.database_params['index'])
return Pinecone(
index,
query,
self.database_params.get('text_key') or 'text',
namespace=self.database_params.get('namespace') or ''
)
else:
raise ValueError(f'Unknown database: {self.database}')
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
if self.embedding_engine == 'openai':
self.embedding_params['openai_api_key'] = os.environ.get("OPENAI_API_KEY")
embeddings = OpenAIEmbeddings(**self.embedding_params)
elif self.embedding_engine == 'huggingface':
model = self.embedding_params.get('model_name') or 'all-mpnet-base-v2'
embeddings = HuggingFaceEmbeddings(**self.embedding_params, model_name=model)
else:
raise ValueError(f'Unknown embedding engine: {self.embedding_engine}')
vector_store = self.vector_store(embeddings.embed_query)
formatted_query = self.query.format(**inputs)
items = vector_store.similarity_search_with_score(formatted_query, self.num_results, self.database_params.get('filter'), self.database_params.get('namespace'))
return {self.output_key: json.dumps([{'text': item[0].page_content, 'meta': item[0].metadata, 'score': item[1]} for item in items if item[1] >= self.min_score])} | [] |
2024-01-10 | wm-pxel/langchain-testbench | lib~chains~recording_chain.py | from typing import Dict, List
from langchain.chains.base import Chain
class RecordingChain(Chain):
recorded_calls: List[tuple[Dict[str, str], Dict[str, str]]] = []
chain_spec_id: int
chain: Chain
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
output = self.chain._call(inputs)
self.recorded_calls.append((inputs, output))
return output
@property
def input_keys(self) -> List[str]:
return self.chain.input_keys
@property
def output_keys(self) -> List[str]:
return self.chain.output_keys
@property
def calls(self) -> List[tuple[Dict[str, str], Dict[str, str]]]:
return self.recorded_calls
def reset(self):
self.recorded_calls.clear()
| [] |
2024-01-10 | wm-pxel/langchain-testbench | lib~chains~tests~test_vector_search_chain.py | import json
import os
from typing import Any, Iterable, Optional, List, Tuple
from unittest.mock import patch
from langchain.vectorstores.base import VectorStore
from langchain.docstore.document import Document
from chains.vector_search_chain import VectorSearchChain
class MockVectorStore(VectorStore):
def similarity_search_with_score(self, query: str, k: int = 5, filter: Optional[dict] = None, namespace: Optional[str] = None) -> List[Tuple[Document, float]]:
assert query == "How do I open a can of soup?"
return [
(Document(page_content="Opening cans of soup.", metadata={}), 0.5),
(Document(page_content="Opening cans of paint.", metadata={}), 0.4),
]
def add_texts(self, texts: Iterable[str], metadatas: List[dict] | None = None, **kwargs: Any) -> List[str]:
return super().add_texts(texts, metadatas, **kwargs)
def similarity_search(self, query: str, k: int = 4, **kwargs: Any) -> List[Document]:
return super().similarity_search(query, k, **kwargs)
def from_texts(self, texts: Iterable[str], metadatas: List[dict] | None = None, **kwargs: Any) -> List[str]:
return super().from_texts(texts, metadatas, **kwargs)
def test_openai_pinecone_search():
os.environ.setdefault("OPENAI_API_KEY", "test")
chain = VectorSearchChain(
query="How do I open a can of {can_type}?",
embedding_engine="openai",
embedding_params={"openai_api_key": "test"},
database="pinecone",
database_params={"index": "test", "text_key": "text"},
input_variables=[],
num_results=10,
)
with patch.object(VectorSearchChain, 'vector_store', return_value=MockVectorStore()):
response = chain._call({"can_type": "soup"})
results = json.loads(response['results'])
assert len(results) == 2
assert results[0]['text'] == "Opening cans of soup." | [] |
2024-01-10 | wm-pxel/langchain-testbench | lib~model~llm_spec.py | from typing import Annotated, Callable, Optional, Dict, Literal, Union, TypedDict
from pydantic import BaseModel, Field
from langchain.llms.base import LLM
from langchain.llms.openai import OpenAI
from langchain.llms.huggingface_hub import HuggingFaceHub
from langchain.chat_models.openai import ChatOpenAI
LLMSpec = Annotated[Union[
"OpenAILLMSpec",
"HuggingFaceHubLLMSpec",
"ChatOpenAILLMSpec",
], Field(discriminator='llm_type')]
class BaseLLMSpec(BaseModel):
def to_llm(self) -> LLM:
raise NotImplementedError
def copy_replace(self, replace: Callable[[LLMSpec], LLMSpec]):
return replace(self).copy(deep=True)
class OpenAILLMSpec(BaseLLMSpec):
llm_type: Literal["openai"] = "openai"
model_name: str
temperature: float
max_tokens: int
top_p: float
frequency_penalty: float
presence_penalty: float
n: int
request_timeout: Optional[int]
logit_bias: Optional[Dict[int, int]]
def to_llm(self) -> LLM:
return OpenAI(model_name=self.model_name, temperature=self.temperature,
max_tokens=self.max_tokens, top_p=self.top_p, frequency_penalty=self.frequency_penalty,
presence_penalty=self.presence_penalty, n=self.n,
request_timeout=self.request_timeout, logit_bias=self.logit_bias)
class HuggingFaceHubLLMSpec(BaseLLMSpec):
class ModelKwargs(TypedDict):
temperature: float
max_length: int
llm_type: Literal["huggingface_hub"] = "huggingface_hub"
repo_id: str
task: Optional[str]
model_kwargs: Optional[ModelKwargs]
def to_llm(self) -> LLM:
return HuggingFaceHub(model_kwargs=self.model_kwargs, repo_id=self.repo_id, task=self.task)
class ChatOpenAILLMSpec(BaseLLMSpec):
llm_type: Literal["chat_openai"] = "chat_openai"
model_name: str
temperature: float
max_tokens: int
n: int
request_timeout: Optional[int]
def to_llm(self) -> LLM:
return ChatOpenAI(model_name=self.model_name, temperature=self.temperature,
max_tokens=self.max_tokens, n=self.n, request_timeout=self.request_timeout)
| [] |
2024-01-10 | wm-pxel/langchain-testbench | lib~chains~case_chain.py | from typing import Dict, List
from langchain.chains.base import Chain
class CaseChain(Chain):
categorization_input: str
subchains: Dict[str, Chain]
default_chain: Chain
output_variables: List[str] = ["text"]
input_keys = []
output_keys = []
@property
def input_keys(self) -> List[str]:
keys = list(set(self.default_chain.input_keys \
+ [key for subchain in self.subchains.values() for key in subchain.input_keys] \
+ [self.categorization_input]))
keys.sort()
return keys
@property
def output_keys(self) -> List[str]:
keys_set = set(self.default_chain.output_keys)
for subchain in self.subchains.values():
keys_set = keys_set.intersection(subchain.output_keys)
keys = list(keys_set)
keys.sort()
return keys
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
categorization = inputs[self.categorization_input].strip()
subchain = self.subchains[categorization] if categorization in self.subchains else self.default_chain
known_values = inputs.copy()
outputs = subchain(known_values, return_only_outputs=True)
known_values.update(outputs)
return {k: known_values[k] for k in self.output_keys}
| [] |
2024-01-10 | wm-pxel/langchain-testbench | lib~chains~tests~test_case_chain.py | from pytest import fixture
from chains.case_chain import CaseChain
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms.fake import FakeListLLM
def simple_case_chain():
return CaseChain(
categorization_input="categorization",
subchains={
"a": LLMChain(
prompt=PromptTemplate(input_variables=["input2", "input3"], template="prompt1 {input2} {input3}"),
llm=FakeListLLM(responses=["fake_response1"]),
output_key="output1",
),
"b": LLMChain(
prompt=PromptTemplate(input_variables=["input3"], template="prompt2 {input3}"),
llm=FakeListLLM(responses=["fake_response2"]),
output_key="output1",
),
},
default_chain=LLMChain(
prompt=PromptTemplate(input_variables=["input1", "input2"], template="prompt3 {input1} {input2}"),
llm=FakeListLLM(responses=["fake_response3"]),
output_key="output1",
),
)
def test_input_keys():
chain = simple_case_chain()
assert chain.input_keys == ["categorization", "input1", "input2", "input3"]
def test_output_keys():
chain = simple_case_chain()
assert chain.output_keys == ["output1"]
def test_run():
chain = simple_case_chain()
inputs = {"input1": "input1", "input2": "input2", "input3": "input3"}
assert chain.run({"categorization": "a", **inputs}) == "fake_response1"
assert chain.run({"categorization": "b", **inputs}) == "fake_response2"
assert chain.run({"categorization": "garbage", **inputs}) == "fake_response3" | [
"prompt2 {input3}",
"prompt3 {input1} {input2}",
"prompt1 {input2} {input3}"
] |
2024-01-10 | wm-pxel/langchain-testbench | scripts~coverage.py | import sys
import requests
import json
import re
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain, SequentialChain, TransformChain
from langchain.chains.base import Chain
from langchain.input import get_colored_text
from typing import Any, Callable, Dict, List, Mapping, Optional, Union
from pydantic import root_validator
llm_decider = OpenAI(temperature=0.0)
llm_creative = OpenAI(temperature=0.7)
product_prompt = "What is a good name for a company that makes {product}?"
class LazyPrompt(PromptTemplate):
def format(self, **kwargs: Any) -> str:
prompt_template = kwargs[self.template]
template_kwargs = dict(kwargs)
template_kwargs.pop(self.template)
return prompt_template.format(**template_kwargs)
@root_validator()
def template_is_valid(cls, values: Dict) -> Dict:
return values
class CategorizationConditional(Chain):
categorization_input: str
subchains: Dict[str, Chain]
default_chain: Chain
output_variables: List[str] = ["text"]
# TODO: validator requires the union of subchain inputs
# TODO: validator requires all subchains have all output keys that are not also input keys
@property
def input_keys(self) -> List[str]:
return self.default_chain.input_keys + [key for subchain in self.subchains.values() for key in subchain.input_keys]
@property
def output_keys(self) -> List[str]:
return self.output_variables
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
categorization = inputs[self.categorization_input].strip()
_colored_text = get_colored_text(categorization, "yellow")
_text = "Categorization input:\n" + _colored_text
self.callback_manager.on_text(_text, end="\n", verbose=self.verbose)
subchain = self.subchains[categorization] if categorization in self.subchains else self.default_chain
known_values = inputs.copy()
outputs = subchain(known_values, return_only_outputs=True)
known_values.update(outputs)
return {k: known_values[k] for k in self.output_variables}
class ESearchChain(Chain):
output_variable: str = "text"
input_variable: str = "text"
@property
def input_keys(self) -> List[str]:
return [self.input_variable]
@property
def output_keys(self) -> List[str]:
return [self.output_variable]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
search = inputs[self.input_variable]
search = 'x-ray'
url = f"http://localhost:9200/coverages/_search?q={requests.utils.quote(search)}"
response = requests.get(url)
decoded_response = json.loads(response.content)
return {self.output_variable: decoded_response['hits']['hits']}
format_hit = lambda i, h: f"{i+1}: ${h['rate']} for {h['name']} {h['description']} (CPT code: {h['billing_code']})."
search_format_chain = TransformChain(
input_variables=['hits'],
output_variables=['search_results'],
transform = lambda inputs: {'search_results': '\n'.join([format_hit(i, h['_source']) for (i, h) in enumerate(inputs['hits'])])}
)
coverage_question_chain = SequentialChain(
input_variables=["disambiguation_prompt", "response_prompt", "response_prompt", "identity", "context", "response_prefix", "user_input"],
chains=[
LLMChain(llm=llm_decider, prompt=LazyPrompt(input_variables=["disambiguation_prompt", "identity", "context", "user_input"], template="disambiguation_prompt"), output_key="search", verbose=True),
ESearchChain(input_variable="search", output_variable="hits"),
search_format_chain,
LLMChain(llm=llm_creative, prompt=LazyPrompt(input_variables=["search", "response_prompt", "search_results", "context", "identity", "response_prefix"], template="response_prompt"), output_key="response", verbose=True),
TransformChain(
input_variables=["response_prefix", "response"], output_variables=["text"],
transform = lambda inputs: {'text': inputs['response_prefix'] + inputs['response']}
)
]
)
chain = SequentialChain(
input_variables=["categorization_prompt", "disambiguation_prompt", "response_prompt", "default_prompt", "response_prefix", "identity", "context", "user_input"],
chains=[
LLMChain(llm=llm_decider, prompt=LazyPrompt(input_variables=["categorization_prompt", "context", "user_input"], template="categorization_prompt"), output_key="categorization", verbose=True),
CategorizationConditional(
input_variables=["disambiguation_prompt", "response_prompt", "default_prompt", "response_prefix", "identity", "context", "user_input"],
categorization_input="categorization",
verbose=True,
subchains={
"Questions about whether insurance will cover a medical procedure or service": coverage_question_chain,
"Questions about how much insurance will cover for a medical procedure or service": coverage_question_chain,
},
default_chain=LLMChain(llm=llm_creative, prompt=LazyPrompt(input_variables=["default_prompt", "identity", "context", "user_input"], template="default_prompt"), verbose=True),
),
]
)
identity_txt = '''You are a very friendly, positive and helpful representative of a health insurance company that is a good listener.
The customer is enrolled in the company's insurance plan.'''
categorization_template = '''Context: ${context}\n The following is a list of categories
that insurance customer questions fall into:
Questions about whether insurance will cover a medical procedure or service, Questions about how much insurance will cover for a medical procedure or service, Other statements or questions.
{user_input}
Category:'''
disambiguation_template = '''{identity}\n{context}\nThe customer asks:\n\n{user_input}\n
What medical service, procedure or device is the customer asking about? Be concise.\n\nThe customer is asking about'''
response_template = '''Context: {context} Customer has insurance from a company that covers medical services at the following rates:\n
{search_results}
{identity} You will only answer about the services listed above.\n
Respond with normal capitalization. Use full words rather than abbrieviations. Do not provide CPT or medical codes in your responses.
Do not respond with different coverage rates.
Ask the customer to be more specific.
\n##\nCustomer: Tell me how much money my insurance covers for {search} and describe that service.\nAgent: {response_prefix}'''
default_template = '''{identity}\n{context}\n
You will only answer questions about health insurance.
\n##\nCustomer: ${user_input}\nAgent:'''
def prompt_from_template(template) -> PromptTemplate:
keys = re.findall(r'{([^{}]*)}', template)
return PromptTemplate(
input_variables=keys,
template = template
)
system_inputs = {
"identity": identity_txt,
"context": "",
"response_prefix": "Your insurance will",
"categorization_prompt": prompt_from_template(categorization_template),
"disambiguation_prompt": prompt_from_template(disambiguation_template),
"response_prompt": prompt_from_template(response_template),
"default_prompt": prompt_from_template(default_template),
}
user_inputs = {
"user_input": sys.argv[1],
}
# Run the chain only specifying the input variable.
print(chain.run(dict(**system_inputs, **user_inputs))) | [
"Context: {context} Customer has insurance from a company that covers medical services at the following rates:\n\n{search_results}\n{identity} You will only answer about the services listed above.\n\nRespond with normal capitalization. Use full words rather than abbrieviations. Do not provide CPT or medical codes in your responses. \nDo not respond with different coverage rates. \nAsk the customer to be more specific.\n\n##\nCustomer: Tell me how much money my insurance covers for {search} and describe that service.\nAgent: {response_prefix}",
"Context: ${context}\n The following is a list of categories\nthat insurance customer questions fall into:\n\nQuestions about whether insurance will cover a medical procedure or service, Questions about how much insurance will cover for a medical procedure or service, Other statements or questions.\n\n{user_input}\n\nCategory:",
"{identity}\n{context}\n\nYou will only answer questions about health insurance.\n\n##\nCustomer: ${user_input}\nAgent:",
"{identity}\n{context}\nThe customer asks:\n\n{user_input}\n\nWhat medical service, procedure or device is the customer asking about? Be concise.\n\nThe customer is asking about",
"What is a good name for a company that makes {product}?"
] |
2024-01-10 | wm-pxel/langchain-testbench | lib~chains~tests~test_recording_chain.py | from pytest import fixture
from chains.recording_chain import RecordingChain
from langchain.chains import LLMChain, SequentialChain
from langchain.prompts import PromptTemplate
from langchain.llms.fake import FakeListLLM
def test_create_llm_recording_chain():
chain = RecordingChain(chain_spec_id=0, chain=LLMChain(
prompt=PromptTemplate(input_variables=["input1", "input2"], template="prompt1 {input1} {input2}"),
llm=FakeListLLM(responses=["fake_response1"]),
output_key="output1",
))
assert chain.input_keys == ["input1", "input2"]
assert chain.output_keys == ["output1"]
def test_run_llm_recording_chain():
chain = RecordingChain(chain_spec_id=0, chain=LLMChain(
prompt=PromptTemplate(input_variables=["input1", "input2"], template="prompt1 {input1} {input2}"),
llm=FakeListLLM(responses=["fake_response1"]),
output_key="output1",
))
assert chain.run({"input1": "input1", "input2": "input2"}) == "fake_response1"
assert chain.calls == [(dict(input1="input1", input2="input2"), {"output1": "fake_response1"})]
assert chain.recorded_calls == [(dict(input1="input1", input2="input2"), dict(output1="fake_response1"))]
def test_create_sequential_recording_chain():
llm_chain = RecordingChain(chain_spec_id=0, chain=LLMChain(
prompt=PromptTemplate(input_variables=["input1", "input2"], template="prompt1 {input1} {input2}"),
llm=FakeListLLM(responses=["fake_response1"]),
output_key="output1",
))
chain = RecordingChain(chain_spec_id=0, chain=SequentialChain(chains=[llm_chain],
input_variables=["input1", "input2"]))
assert chain.input_keys == ["input1", "input2"]
assert chain.output_keys == ["output1"]
def test_run_sequential_recording_chain():
llm_chain = LLMChain(
prompt=PromptTemplate(input_variables=["input1", "input2"], template="prompt1 {input1} {input2}"),
llm=FakeListLLM(responses=["fake_response1"]),
output_key="output1",
)
chain = RecordingChain(chain_spec_id=0, chain=SequentialChain(chains=[llm_chain],
input_variables=["input1", "input2"]))
assert chain.run({"input1": "input1", "input2": "input2"}) == "fake_response1"
assert chain.calls == [({"input1": "input1", "input2": "input2"}, {"output1": "fake_response1"})]
assert chain.recorded_calls == [({"input1": "input1", "input2": "input2"}, {"output1": "fake_response1"})]
| [
"prompt1 {input1} {input2}"
] |
2024-01-10 | wm-pxel/langchain-testbench | lib~chains~api_chain.py | import os
from typing import Dict, List, Optional
from langchain.chains.base import Chain
import requests
class APIChain(Chain):
url: str
method: str
headers: Optional[Dict[str, str]]
body: Optional[str]
output_variable: str
input_variables: List[str]
@property
def input_keys(self) -> List[str]:
return self.input_variables
@property
def output_keys(self) -> List[str]:
return [self.output_variable]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
vars = {**os.environ, **inputs}
f_url = self.url.format(**vars)
f_headers = {}
if self.headers is not None:
f_headers = {k: v.format(**vars) for k, v in self.headers.items()}
if self.method.lower() == 'get':
res = requests.get(f_url, headers=f_headers)
elif self.method.lower() == 'post':
f_body = self.body.format(**vars)
res = requests.post(f_url, data=f_body)
return {self.output_variable: res.text} | [] |
2024-01-10 | wm-pxel/langchain-testbench | lib~model~lang_chain_context.py | from typing import Dict
from pydantic import BaseModel
from langchain.schema.language_model import BaseLanguageModel
from lib.model.result import Result
from datetime import datetime
# provides context for generating lang chains including llms and prompts
class LangChainContext(BaseModel):
llms: Dict[str, BaseLanguageModel]
verbose: bool = False
recording: bool = False
prompts: Dict[str, object] = []
def results(self, revision_id: str):
return [Result(
revision=revision_id,
chain_id=chain.chain_spec_id,
input=call[0],
output=call[1],
recorded=datetime.now()
) for chain in self.prompts for call in chain.calls]
def reset_results(self):
for chain in self.prompts:
chain.reset()
def get_IO(self):
vars = {}
for prompt in self.prompts:
if (prompt.recorded_calls == []):
continue
if (not hasattr(prompt.chain, "output_key")):
continue
# output_key = prompt.chain.output_key
# vars[output_key] = str(prompt.recorded_calls[0][1]) # Store as a string?
for input in prompt.recorded_calls[0][0]:
vars[input] = prompt.recorded_calls[0][0][input]
return vars
| [] |
2024-01-10 | wm-pxel/langchain-testbench | scripts~print_chain_spec.py | from langchain.llms import OpenAI
from lib.model.chain_revision import ChainRevision
from lib.model.chain_spec import LLMSpec, SequentialSpec
import dotenv
dotenv.load_dotenv()
llm = OpenAI(temperature=0.8)
chain = SequentialSpec(
chain_id = 0,
input_keys = ["input", "memory_in"],
output_keys = ["output", "memory_out"],
chain_type = "sequential_spec",
chains = [
LLMSpec(
chain_id = 1,
input_keys = ["input", "memory_in"],
output_key = "output",
prompt = "Context: {memory_in}\n\nYou are a witty but kind professor. Respond in a single paragraph to the student's question or statement.\n\nStudent: {input}\n\nResponse:",
llm_key = "llm",
chain_type = "llm_spec",
),
LLMSpec(
chain_id = 2,
input_keys = ["input", "output", "memory_in"],
output_key = "memory_out",
prompt = "You are a witty but kind professor. Summarize in a single paragraph the conversation up to this point including the context.\n\nContext: {memory_in}\n\nStudent: {input}\n\nProfessor: {output}\n\nSummary:",
llm_key = "llm",
chain_type = "llm_spec",
),
]
)
chain_revision = ChainRevision(
llms = {"llm": llm},
chain = chain
)
print(chain_revision.json()) | [] |
2024-01-10 | wm-pxel/langchain-testbench | lib~chain_service.py | import logging
import traceback
from typing import Optional
import json
from huggingface_hub.inference_api import InferenceApi
from langchain import HuggingFaceHub, OpenAI
from langchain.chains.base import Chain as BaseChain
from lib.model.chain_revision import ChainRevision, find_ancestor_ids
from lib.model.chain import Chain
from lib.model.chain_spec import ChainSpec
from lib.model.result import Result
from lib.model.lang_chain_context import LangChainContext
from lib.db import chain_revision_repository, chain_repository, result_repository
from bson import ObjectId
import dotenv
import os
import pinecone
from datetime import datetime
logging.basicConfig(level=logging.INFO)
dotenv.load_dotenv()
def initialize_services():
if os.getenv("PINECONE_API_KEY") is not None:
pinecone.init(api_key=os.getenv("PINECONE_API_KEY"), environment=os.getenv("PINECONE_ENVIRONMENT"))
def save_revision(chain_name, revision) -> str:
chain = chain_repository.find_one_by({"name": chain_name})
if chain is not None:
revision.parent = chain.revision
chain.revision = revision.id
chain_revision_repository.save(revision)
chain.revision = revision.id
chain_repository.save(chain)
else:
chain_revision_repository.save(revision)
chain = Chain(name=chain_name, revision=revision.id)
chain_repository.save(chain)
return revision.id
def load_by_chain_name(chain_name):
chain = chain_repository.find_one_by({"name": chain_name})
return chain_revision_repository.find_one_by_id(chain.revision)
def load_by_id(revision_id):
return chain_revision_repository.find_one_by_id(revision_id)
def history_by_chain_name(chain_name):
"""return the ids of all revisions of the chain.
"""
chain = chain_repository.find_one_by({"name": chain_name})
revision = chain_revision_repository.find_one_by_id(chain.revision)
return [revision.id] + find_ancestor_ids(revision.id, chain_revision_repository)
def save_patch(chain_name, patch) -> str:
chain = chain_repository.find_one_by({"name": chain_name})
revision = chain_revision_repository.find_one_by_id(chain.revision)
new_chain = revision.chain.copy_replace(lambda spec: patch if spec.chain_id == patch.chain_id else spec)
try:
ctx = LangChainContext(llms=revision.llms)
revision.chain.to_lang_chain(ctx)
except Exception as e:
raise ValueError("Could not realize patched chain:", e)
new_revision = revision.copy()
new_revision.id = None
new_revision.chain = new_chain
new_revision.parent = revision.id
chain_revision_repository.save(new_revision)
chain.revision = new_revision.id
chain_repository.save(chain)
return revision.id
def branch(chain_name, branch_name):
"""Branch a chain revision.
This will create a new chain that points to the same revision
as the provided chain. The new chain may be then revised independently.
"""
chain = chain_repository.find_one_by({"name": chain_name})
new_chain = Chain(name=branch_name, revision=chain.revision)
chain_repository.save(new_chain)
def reset(chain_name, revision):
"""Reset a chain to a another revision.
This will update the chain to point to the given revision.
"""
new_revision = chain_revision_repository.find_one_by({"id": ObjectId(revision)})
if new_revision is None:
raise ValueError(f"Revision {revision} not found")
chain = chain_repository.find_one_by({"name": chain_name})
chain.revision = new_revision.id
chain_repository.save(chain)
def list_chains():
"""List all chains."""
return {chain_name.name: str(chain_name.revision) for chain_name in chain_repository.find_by({})}
def compute_chain_IO(chain_spec: ChainSpec, chain: BaseChain, ctx: LangChainContext):
def compute_and_update(chain_spec: ChainSpec, chain: BaseChain, ctx: LangChainContext, inputs, outputs):
inner_inputs, inner_outputs = compute_chain_IO(chain_spec, chain, ctx)
inputs = {**inputs, **inner_inputs}
outputs = {**outputs, **inner_outputs}
return inputs, outputs
chain_id = chain_spec.chain_id
inputs, outputs = {}, {}
inputs[chain_id] = chain.input_keys
outputs[chain_id] = chain.output_keys
if chain_spec.chain_type == "sequential_chain_spec":
for sub_chain_spec, sub_chain in zip(chain_spec.chains, chain.chains):
inputs, outputs = compute_and_update(sub_chain_spec, sub_chain.chain, ctx, inputs, outputs)
if chain_spec.chain_type == "case_chain_spec":
for case_spec, case in zip(chain_spec.cases.values(), chain.subchains.values()):
inputs, outputs = compute_and_update(case_spec, case.chain, ctx, inputs, outputs)
inputs, outputs = compute_and_update(chain_spec.default_case, chain.default_chain.chain, ctx, inputs, outputs)
return inputs, outputs
def run_once(chain_name, input, record):
"""Run a chain revision.
The revision is read from the database and fed input from stdin or the given file.
The results are ouput as json to stdout.
"""
chain = chain_repository.find_one_by({"name": chain_name})
revision = chain_revision_repository.find_one_by_id(chain.revision)
filledLLMs = {key: llm.to_llm() for key, llm in revision.llms.items()}
ctx = LangChainContext(llms=filledLLMs, recording=True)
lang_chain = revision.chain.to_lang_chain(ctx)
output = lang_chain._call(input)
if record:
vars = ctx.get_IO()
inputs, outputs = compute_chain_IO(revision.chain, lang_chain.chain, ctx)
result = Result(revisionID=revision.id, inputs=inputs, outputs=outputs, io_mapping=vars, recorded=datetime.now())
result_repository.save(result)
return output
def results(revision_id: str, ancestors: bool):
"""Find results for a prompt for one or more chain revisions.
The revision must be specified.
If the ancestors flag is set, results for all ancestors of the specified revision are included.
"""
revision_ids = [ObjectId(revision_id)]
# if ancestors are requested, find all ancestors of the specified revision
if ancestors:
ancestors_id = find_ancestor_ids(revision_id, chain_revision_repository)
revision_ids += [ObjectId(i) for i in ancestors_id]
return result_repository.find_by({"revisionID": {"$in": revision_ids}})
def load_results_by_chain_name(chain_name: str, ancestors: bool):
"""Find results for a prompt for one chain revision.
The chain name must be specified.
"""
chain = chain_repository.find_one_by({"name": chain_name})
revision = chain_revision_repository.find_one_by_id(chain.revision)
return results(revision.id, ancestors)
def export_chain(chain_name: str) -> str:
export_ids = history_by_chain_name(chain_name)
chain_revisions = [chain_revision_repository.find_one_by_id(id) for id in export_ids]
if not all(chain_revisions):
missing_id = next((id for id, revision in zip(export_ids, chain_revisions) if not revision), None)
raise Exception("Could not find revision with id: " + missing_id)
return chain_revisions[::-1]
def import_chain(chain_name, chain_details):
root_revision = None
for revision in chain_details:
try:
if not revision.parent:
root_revision = revision
chain_revision_repository.save(revision)
except Exception as e:
traceback.print_exc()
leaf_revision = find_leaf_revision(chain_details, root_revision)
chain = Chain(name=chain_name, revision=leaf_revision)
chain_repository.save(chain)
def find_leaf_revision(revisions, current_revision):
if (current_revision is None):
return current_revision.id
id = current_revision.id
for revision in revisions:
if revision.parent == id:
return find_leaf_revision(revisions, revision)
return id
| [] |
2024-01-10 | wm-pxel/langchain-testbench | lib~chains~reformat_chain.py | import json
from typing import Dict, List
from langchain.chains.base import Chain
from lib.formatters.extended_formatter import ExtendedFormatter
class ReformatChain(Chain):
input_variables: List[str]
formatters: Dict[str, str]
@property
def input_keys(self) -> List[str]:
return self.input_variables
@property
def output_keys(self) -> List[str]:
return list(self.formatters.keys())
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
formatter = ExtendedFormatter()
return {k: formatter.format(v, **inputs) for k, v in self.formatters.items()} | [] |
2024-01-10 | wm-pxel/langchain-testbench | lib~model~chain_spec.py | from typing import Annotated, Callable, Dict, List, Literal, Optional, Union, Any
from pydantic import BaseModel, Field
from langchain.chains.base import Chain
from langchain.chains import LLMChain, SequentialChain, TransformChain
from langchain.prompts import PromptTemplate
from lib.model.lang_chain_context import LangChainContext
from lib.chains.case_chain import CaseChain
from lib.chains.api_chain import APIChain
from lib.chains.reformat_chain import ReformatChain
from lib.chains.recording_chain import RecordingChain
from lib.chains.vector_search_chain import VectorSearchChain
ChainSpec = Annotated[Union[
"APIChainSpec",
"SequentialChainSpec",
"LLMChainSpec",
"CaseChainSpec",
"ReformatChainSpec",
"TransformChainSpec",
"VectorSearchChainSpec"
], Field(discriminator='chain_type')]
class BaseChainSpec(BaseModel):
chain_id: int
@property
def children(self) -> List[ChainSpec]:
return []
def to_lang_chain(self, ctx: LangChainContext) -> Chain:
raise NotImplementedError
def traverse(self, fn: Callable[[ChainSpec], None]) -> None:
fn(self)
for child in self.children:
child.traverse(fn)
def find_by_chain_id(self, chain_id: int) -> Optional[ChainSpec]:
if self.chain_id == chain_id:
return self
for child in self.children:
result = child.find_by_chain_id(chain_id)
if result is not None:
return result
return None
def copy_replace(self, replace: Callable[[ChainSpec], ChainSpec]):
return replace(self).copy(deep=True)
def wrapChain(self, chain: Chain, ctx: LangChainContext) -> Chain:
if ctx.recording:
ret_chain = RecordingChain(chain_spec_id=self.chain_id, chain=chain)
ctx.prompts.append(ret_chain)
return ret_chain
return chain
class LLMChainSpec(BaseChainSpec):
input_keys: List[str]
output_key: str
chain_type: Literal["llm_chain_spec"] = "llm_chain_spec"
prompt: str
llm_key: str
def to_lang_chain(self, ctx: LangChainContext) -> Chain:
llm = ctx.llms.get(self.llm_key)
if llm is None:
raise ValueError(f"LLM with key {self.llm_key} not found in context")
promptTemplate = PromptTemplate(template=self.prompt, input_variables=self.input_keys)
ret_chain = LLMChain(llm=llm, prompt=promptTemplate, output_key=self.output_key)
return self.wrapChain(ret_chain, ctx)
class SequentialChainSpec(BaseChainSpec):
input_keys: List[str]
output_keys: List[str]
chain_type: Literal["sequential_chain_spec"] = "sequential_chain_spec"
chains: List[ChainSpec]
@property
def children(self) -> List[ChainSpec]:
return list(self.chains)
def to_lang_chain(self, ctx: LangChainContext) -> Chain:
chains = [chain.to_lang_chain(ctx) for chain in self.chains]
ret_chain = SequentialChain(chains=chains, input_variables=self.input_keys, output_variables=self.output_keys)
return self.wrapChain(ret_chain, ctx)
def copy_replace(self, replace: Callable[[ChainSpec], ChainSpec]):
sequential = replace(self).copy(deep=True, exclude={"chains"})
sequential.chains = [chain.copy_replace(replace) for chain in self.chains]
return sequential
class CaseChainSpec(BaseChainSpec):
chain_type: Literal["case_chain_spec"] = "case_chain_spec"
cases: Dict[str, ChainSpec]
categorization_key: str
default_case: ChainSpec
@property
def children(self) -> List[ChainSpec]:
return list(self.cases.values()) + [self.default_case]
def to_lang_chain(self, ctx: LangChainContext) -> CaseChain:
subchains = {key: chain.to_lang_chain(ctx) for key, chain in self.cases.items()}
case_chain = CaseChain(
subchains=subchains,
categorization_input=self.categorization_key,
default_chain=self.default_case.to_lang_chain(ctx),
)
return self.wrapChain(case_chain, ctx)
def copy_replace(self, replace: Callable[[ChainSpec], ChainSpec]):
case_chain = replace(self).copy(deep=True, exclude={"cases"})
case_chain.cases = {key: chain.copy_replace(replace) for key, chain in self.cases.items()}
return case_chain
class ReformatChainSpec(BaseChainSpec):
chain_type: Literal["reformat_chain_spec"] = "reformat_chain_spec"
formatters: Dict[str, str]
input_keys: List[str]
def to_lang_chain(self, ctx: LangChainContext) -> Chain:
chain = ReformatChain(formatters=self.formatters, input_variables=self.input_keys)
return self.wrapChain(chain, ctx)
class TransformChainSpec(BaseChainSpec):
chain_type: Literal["transform_chain_spec"] = "transform_chain_spec"
transform_func: str
input_keys: List[str]
output_keys: List[str]
def create_function(self, body):
scope = {}
indented = body.replace("\n", "\n ")
code = f"def f(inputs: dict):\n {indented}"
exec(code, scope)
return scope["f"]
def to_lang_chain(self, ctx: LangChainContext) -> Chain:
chain = TransformChain(input_variables=self.input_keys, output_variables=self.output_keys, transform=self.create_function(self.transform_func))
return self.wrapChain(chain, ctx)
class APIChainSpec(BaseChainSpec):
chain_type: Literal["api_chain_spec"] = "api_chain_spec"
url: str
method: str
headers: Optional[Dict[str, str]]
body: Optional[str]
input_keys: List[str]
output_key: str
def to_lang_chain(self, ctx: LangChainContext) -> Chain:
chain = APIChain(
url=self.url,
method=self.method,
headers=self.headers,
body=self.body,
input_variables=self.input_keys,
output_variable=self.output_key,
)
return self.wrapChain(chain, ctx)
class VectorSearchChainSpec(BaseChainSpec):
chain_type: Literal["vector_search_chain_spec"] = "vector_search_chain_spec"
query: str
embedding_engine: str
embedding_params: Dict[str, Any]
database: str
database_params: Dict[str, Any]
num_results: int
min_score: float = 0.0
input_variables: List[str] = []
output_key: str = 'results'
def to_lang_chain(self, ctx: LangChainContext) -> Chain:
chain = VectorSearchChain(
query=self.query,
embedding_engine=self.embedding_engine,
embedding_params=self.embedding_params,
database=self.database,
database_params=self.database_params,
input_variables=self.input_variables,
num_results=self.num_results,
output_key=self.output_key,
min_score=self.min_score,
)
self.wrapChain(chain, ctx)
SequentialChainSpec.update_forward_refs()
CaseChainSpec.update_forward_refs()
| [] |
2024-01-10 | baskaaleksander/openai-python-content-creator | gpt_entries.py | from openai import OpenAI
client = OpenAI(api_key=OPENAI_APIKEY)
def gpt_entry(niche):
ideas = []
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": f"You are youtube content creator. You are making videos about {niche}"}, # here you set how gpt should act like
{"role": "user", "content": f"I need 5 title ideas for my youtube channel abot {niche}. Format the titles into 5 bullet points"}
]
)
results = completion.choices[0].message.content.splitlines()
for result in results:
ideas.append(result)
return ideas
def gpt_script(subject):
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are creating voice-overs for short videos(about 1 minute long), you sound very clever and also funny"},
{"role": "user", "content": f"I need short voice-over text for about 1500 characters about: {subject}. I don't need any instructions according to video and anything else"}
]
)
script = completion.choices[0].message.content
return script
def gpt_reformat(subject):
script = gpt_script(subject)
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are creating voice-overs for short videos(about 1 minute long), you sound very clever and also funny"},
{"role": "user", "content": f"{script} reformat this script into one paragraph remove any instructions to the video, i need just pure text."}
]
)
script = completion.choices[0].message.content
return script
| [
"I need short voice-over text for about 1500 characters about: PLACEHOLDER. I don't need any instructions according to video and anything else",
"You are youtube content creator. You are making videos about PLACEHOLDER",
"You are creating voice-overs for short videos(about 1 minute long), you sound very clever and also funny",
"I need 5 title ideas for my youtube channel abot PLACEHOLDER. Format the titles into 5 bullet points",
"PLACEHOLDER reformat this script into one paragraph remove any instructions to the video, i need just pure text."
] |
2024-01-10 | mathhhhh04/testpro | ia_genereativa_santanderdevweek2023.py | # -*- coding: utf-8 -*-
"""IA genereativa SantanderDevWeek2023.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1yUpmgUXc1_L8gYPqoAepibFwRVXzwBc9
# Santander Dev Week 2023 (ETL com Python)
**Contexto:** Vocรช รฉ um cientista de dados no Santander e recebeu a tarefa de envolver seus clientes de maneira mais personalizada. Seu objetivo รฉ usar o poder da IA Generativa para criar mensagens de marketing personalizadas que serรฃo entregues a cada cliente.
**Condiรงรตes do Problema:**
1. Vocรช recebeu uma planilha simples, em formato CSV ('SDW2023.csv'), com uma lista de IDs de usuรกrio do banco:
```
UserID
1
2
3
4
5
```
2. Seu trabalho รฉ consumir o endpoint `GET https://sdw-2023-prd.up.railway.app/users/{id}` (API da Santander Dev Week 2023) para obter os dados de cada cliente.
3. Depois de obter os dados dos clientes, vocรช vai usar a API do ChatGPT (OpenAI) para gerar uma mensagem de marketing personalizada para cada cliente. Essa mensagem deve enfatizar a importรขncia dos investimentos.
4. Uma vez que a mensagem para cada cliente esteja pronta, vocรช vai enviar essas informaรงรตes de volta para a API, atualizando a lista de "news" de cada usuรกrio usando o endpoint `PUT https://sdw-2023-prd.up.railway.app/users/{id}`.
"""
# Repositรณrio da API: https://github.com/digitalinnovationone/santander-dev-week-2023-api
sdw2023_api_url = 'https://sdw-2023-prd.up.railway.app'
"""## **E**xtract
Extraia a lista de IDs de usuรกrio a partir do arquivo CSV. Para cada ID, faรงa uma requisiรงรฃo GET para obter os dados do usuรกrio correspondente.
"""
import pandas as pd
df = pd.read_csv('SDW2023.csv')
user_ids = df['UserID'].tolist()
print(user_ids)
import requests
import json
def get_user(id):
response = requests.get(f'{sdw2023_api_url}/users/{id}')
return response.json() if response.status_code == 200 else None
users = [user for id in user_ids if (user := get_user(id)) is not None]
print(json.dumps(users, indent=2))
"""## **T**ransform
Utilize a API do OpenAI GPT-4 para gerar uma mensagem de marketing personalizada para cada usuรกrio.
"""
!pip install openai
# Documentaรงรฃo Oficial da API OpenAI: https://platform.openai.com/docs/api-reference/introduction
# Informaรงรตes sobre o Perรญodo Gratuito: https://help.openai.com/en/articles/4936830
# Para gerar uma API Key:
# 1. Crie uma conta na OpenAI
# 2. Acesse a seรงรฃo "API Keys"
# 3. Clique em "Create API Key"
# Link direto: https://platform.openai.com/account/api-keys
# Substitua o texto TODO por sua API Key da OpenAI, ela serรก salva como uma variรกvel de ambiente.
openai_api_key = 'TODO'
import os
import openai
# Lรช a chave da API OpenAI a partir da variรกvel de ambiente
openai.api_key = os.getenv("OPENAI_API_KEY")
def generate_ai_news(user, max_length=100):
try:
completion = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": f"Vocรช estรก se comunicando com uma IA generativa para {user['name']}."
},
{
"role": "user",
"content": f"Gere uma mensagem sobre a importรขncia dos investimentos para {user['name']} (mรกximo de {max_length} caracteres)"
}
]
)
if completion.choices and completion.choices[0].message:
return completion.choices[0].message.content.strip('\"')[:max_length]
else:
return "Nรฃo foi possรญvel gerar uma mensagem."
except Exception as e:
return f"Erro ao gerar mensagem: {str(e)}"
# Exemplo de lista de usuรกrios
users = [
{"name": "Usuรกrio1", "news": []},
{"name": "Usuรกrio2", "news": []},
]
for user in users:
news = generate_ai_news(user)
print(news)
user['news'].append({
"icon": "https://digitalinnovationone.github.io/santander-dev-week-2023-api/icons/credit.svg",
"description": news
})
openai_api_key = 'TODO'
import openai
openai.api_key = openai_api_key
def generate_ai_news(user):
completion = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": "Vocรช รฉ um especialista em markting bancรกrio."
},
{
"role": "user",
"content": f"Crie uma mensagem para {user['name']} sobre a importรขncia dos investimentos (mรกximo de 100 caracteres)"
}
]
)
return completion.choices[0].message.content.strip('\"')
for user in users:
news = generate_ai_news(user)
print(news)
user['news'].append({
"icon": "https://digitalinnovationone.github.io/santander-dev-week-2023-api/icons/credit.svg",
"description": news
})
def generate_ai_news(user, max_length=100):
try:
completion = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": "Vocรช รฉ um especialista em marketing bancรกrio."
},
{
"role": "user",
"content": f"Crie uma mensagem para {user['name']} sobre a importรขncia dos investimentos (mรกximo de {max_length} caracteres)"
}
]
)
if completion.choices and completion.choices[0].message:
return completion.choices[0].message.content.strip('\"')[:max_length]
else:
return "Nรฃo foi possรญvel gerar uma mensagem."
except Exception as e:
return f"Erro ao gerar mensagem: {str(e)}"
import openai
# Configura a chave da API OpenAI
openai.api_key = 'TODO'
def generate_ai_news(user, max_length=100):
try:
completion = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": f"Vocรช estรก se comunicando com uma IA generativa para {user['name']}."
},
{
"role": "user",
"content": f"Gere uma mensagem sobre a importรขncia dos investimentos para {user['name']} (mรกximo de {max_length} caracteres)"
}
]
)
if completion.choices and completion.choices[0].message:
return completion.choices[0].message.content.strip('\"')[:max_length]
else:
return "Nรฃo foi possรญvel gerar uma mensagem."
except Exception as e:
return f"Erro ao gerar mensagem: {str(e)}"
# Exemplo de lista de usuรกrios
users = [
{"name": "Usuรกrio1", "news": []},
{"name": "Usuรกrio2", "news": []},
]
for user in users:
news = generate_ai_news(user)
print(news)
user['news'].append({
"icon": "https://digitalinnovationone.github.io/santander-dev-week-2023-api/icons/credit.svg",
"description": news
})
"""## **L**oad
Atualize a lista de "news" de cada usuรกrio na API com a nova mensagem gerada.
"""
def update_user(user):
response = requests.put(f"{sdw2023_api_url}/users/{user['id']}", json=user)
return True if response.status_code == 200 else False
for user in users:
success = update_user(user)
print(f"User {user['name']} updated? {success}!") | [
"Crie uma mensagem para PLACEHOLDER sobre a importรขncia dos investimentos (mรกximo de PLACEHOLDER caracteres)",
"Crie uma mensagem para PLACEHOLDER sobre a importรขncia dos investimentos (mรกximo de 100 caracteres)",
"Vocรช รฉ um especialista em marketing bancรกrio.",
"Vocรช estรก se comunicando com uma IA generativa para PLACEHOLDER.",
"Vocรช รฉ um especialista em markting bancรกrio.",
"Gere uma mensagem sobre a importรขncia dos investimentos para PLACEHOLDER (mรกximo de PLACEHOLDER caracteres)"
] |
2024-01-10 | somacdivad/gpt-text-adventure | src~generator~title.py | import json
from .openai_client import openai, model
_messages = [
{
"role": "system",
"content": """You are a title and description generator for the text adventure game.
Titles must:
- Be 4 to 8 words long
- Include references to a location or character
Descriptions must:
- Be 3 or 4 sentences
- Describe the plot and objective
- Include the name of the character that the player will play as or the name of the locations in the game.
- Avoid any copyrighted character or location names.
You can accept some simple commands:
- generate [n]: generate n titles
- generate [theme] [n]: generate n titles with the provided theme
All responses should be formatted as JSON."""
},
{
"role": "user",
"content": "generate 'time travel adventure' 2"
},
{
"role": "assistant",
"content": """[
{
"THEME": "Time Travel Adventure",
"THEME DESCRIPTION": "Experience the thrill of ancient civilizations, battle legendary foes, and uncover lost artifacts",
"TITLE": "The Sands of Destiny",
"TITLE DESCRIPTION": "As the time-traveling archaeologist Alexandria, embark on a journey to unravel the mysteries of ancient civilizations. Battle mythological creatures, solve ancient puzzles, and uncover powerful artifacts to rewrite history and prevent a looming catastrophe."
},
{
"THEME": "Time Travel Adventure",
"THEME DESCRIPTION": "Unravel the mysteries of the future, navigate dystopian landscapes, and fight for the survival of humanity",
"TITLE": "Future Tides: The Chrono Resistance",
"TITLE DESCRIPTION": "As the courageous freedom fighter Zane, travel to a dystopian future where humanity stands on the brink of extinction. Uncover the secrets behind the collapse of society, forge alliances with rebels, and battle a ruthless regime to restore hope and save the future of humanity."
}
]"""},
{
"role": "user",
"content": "generate 4"
},
{
"role": "assistant",
"content": """[
}
{
"THEME": "Fantasy Adventure",
"THEME DESCRIPTION": "Embark on a quest in a magical world, overcome challenges, and face mythical creatures",
"TITLE": "Aria and the Sorcererโs Curse",
"TITLE DESCRIPTION": "As the young adventurer Aria, journey through the enchanted forest to rescue your sister from a powerful sorcerer. Battle mythical creatures, solve challenging puzzles, and forge alliances in your quest to save your family and the enchanted forest itself."
},
{
"THEME": "Post-Apocalyptic Adventure",
"THEME DESCRIPTION": "Navigate a harsh, desolate world, scavenge for resources, and build a new future",
"TITLE": "Wasteland Chronicles: Ashes of the Fallen",
"TITLE DESCRIPTION": "As survivor Maxine, explore the ruins of a post-apocalyptic world and uncover the secrets of the cataclysm that brought civilization to its knees. Scavenge for resources, forge alliances with other survivors, and navigate the treacherous wasteland in your quest to rebuild society."
},
{
"THEME": "Cyberpunk Adventure",
"THEME DESCRIPTION": "Navigate a dystopian, high-tech future, hack systems, and fight powerful corporations",
"TITLE": "Neon Nexus Nights",
"TITLE DESCRIPTION": "As hacker-for-hire Kai, navigate the neon-lit streets of a dystopian city ruled by powerful corporations. Hack their systems, unravel their secrets, and lead a rebellion from the depths of the Undercity to topple their reign and change the future forever."
},
{
"THEME": "Survival Horror",
"THEME DESCRIPTION": "Fight to stay alive against horrifying creatures, scavenge for supplies, and unravel the mysteries of a haunted location",
"TITLE": "Echoes of Desolation",
"TITLE DESCRIPTION": "As the lone survivor of a doomed expedition, explore the ruins of an abandoned research facility on a desolate island. Survive against the horrors that lurk in the shadows, scavenge for supplies, and uncover the sinister secrets that led to the downfall of the facility and its inhabitants."
}
]"""},
{
"role": "user",
"content": "generate 'Lies and Deception' 1"
},
{
"role": "assistant",
"content": """{
"THEME": "Lies and Deception",
"THEME DESCRIPTION": "Navigate a world of intrigue, uncover hidden truths, and outwit your enemies",
"TITLE": "Whispers in the Shadows",
"TITLE DESCRIPTION": "As the skilled investigator Marlowe, delve into a world of secrets and intrigue in a city filled with corruption. Unravel a web of lies, use your cunning to outsmart your enemies, and uncover the truth behind a series of mysterious disappearances that threaten to destabilize the city."
}"""
}
]
def generate_title(theme: str):
response = openai.ChatCompletion.create(
model=model,
messages=_messages + [{"role": "user", "content": f"generate '{theme}' 1"}],
)
text = response['choices'][0]['message']['content']
return json.loads(text)
| [
"[\n }\n{\n\"THEME\": \"Fantasy Adventure\",\n\"THEME DESCRIPTION\": \"Embark on a quest in a magical world, overcome challenges, and face mythical creatures\",\n\"TITLE\": \"Aria and the Sorcererโs Curse\",\n\"TITLE DESCRIPTION\": \"As the young adventurer Aria, journey through the enchanted forest to rescue your sister from a powerful sorcerer. Battle mythical creatures, solve challenging puzzles, and forge alliances in your quest to save your family and the enchanted forest itself.\"\n},\n{\n\"THEME\": \"Post-Apocalyptic Adventure\",\n\"THEME DESCRIPTION\": \"Navigate a harsh, desolate world, scavenge for resources, and build a new future\",\n\"TITLE\": \"Wasteland Chronicles: Ashes of the Fallen\",\n\"TITLE DESCRIPTION\": \"As survivor Maxine, explore the ruins of a post-apocalyptic world and uncover the secrets of the cataclysm that brought civilization to its knees. Scavenge for resources, forge alliances with other survivors, and navigate the treacherous wasteland in your quest to rebuild society.\"\n},\n{\n\"THEME\": \"Cyberpunk Adventure\",\n\"THEME DESCRIPTION\": \"Navigate a dystopian, high-tech future, hack systems, and fight powerful corporations\",\n\"TITLE\": \"Neon Nexus Nights\",\n\"TITLE DESCRIPTION\": \"As hacker-for-hire Kai, navigate the neon-lit streets of a dystopian city ruled by powerful corporations. Hack their systems, unravel their secrets, and lead a rebellion from the depths of the Undercity to topple their reign and change the future forever.\"\n},\n{\n\"THEME\": \"Survival Horror\",\n\"THEME DESCRIPTION\": \"Fight to stay alive against horrifying creatures, scavenge for supplies, and unravel the mysteries of a haunted location\",\n\"TITLE\": \"Echoes of Desolation\",\n\"TITLE DESCRIPTION\": \"As the lone survivor of a doomed expedition, explore the ruins of an abandoned research facility on a desolate island. Survive against the horrors that lurk in the shadows, scavenge for supplies, and uncover the sinister secrets that led to the downfall of the facility and its inhabitants.\"\n}\n]",
"generate 'time travel adventure' 2",
"[\n{\n\"THEME\": \"Time Travel Adventure\",\n\"THEME DESCRIPTION\": \"Experience the thrill of ancient civilizations, battle legendary foes, and uncover lost artifacts\",\n\"TITLE\": \"The Sands of Destiny\",\n\"TITLE DESCRIPTION\": \"As the time-traveling archaeologist Alexandria, embark on a journey to unravel the mysteries of ancient civilizations. Battle mythological creatures, solve ancient puzzles, and uncover powerful artifacts to rewrite history and prevent a looming catastrophe.\"\n},\n{\n\"THEME\": \"Time Travel Adventure\",\n\"THEME DESCRIPTION\": \"Unravel the mysteries of the future, navigate dystopian landscapes, and fight for the survival of humanity\",\n\"TITLE\": \"Future Tides: The Chrono Resistance\",\n\"TITLE DESCRIPTION\": \"As the courageous freedom fighter Zane, travel to a dystopian future where humanity stands on the brink of extinction. Uncover the secrets behind the collapse of society, forge alliances with rebels, and battle a ruthless regime to restore hope and save the future of humanity.\"\n}\n]",
"{\n\"THEME\": \"Lies and Deception\",\n\"THEME DESCRIPTION\": \"Navigate a world of intrigue, uncover hidden truths, and outwit your enemies\",\n\"TITLE\": \"Whispers in the Shadows\",\n\"TITLE DESCRIPTION\": \"As the skilled investigator Marlowe, delve into a world of secrets and intrigue in a city filled with corruption. Unravel a web of lies, use your cunning to outsmart your enemies, and uncover the truth behind a series of mysterious disappearances that threaten to destabilize the city.\"\n}",
"generate 'Lies and Deception' 1",
"generate 4",
"generate 'PLACEHOLDER' 1",
"content",
"You are a title and description generator for the text adventure game.\n\nTitles must:\n- Be 4 to 8 words long\n- Include references to a location or character\n\nDescriptions must:\n- Be 3 or 4 sentences\n- Describe the plot and objective\n- Include the name of the character that the player will play as or the name of the locations in the game.\n- Avoid any copyrighted character or location names.\n\nYou can accept some simple commands:\n\n- generate [n]: generate n titles\n- generate [theme] [n]: generate n titles with the provided theme\n\nAll responses should be formatted as JSON."
] |
2024-01-10 | somacdivad/gpt-text-adventure | src~generator~backstory.py | import json
import logging
from .openai_client import openai, model
game_logger = logging.getLogger("game")
openai_logger = logging.getLogger("openai")
_messages = [
{
"role": "system",
"content": """
You are a game story writer.
I will provide you with a JSON object describing a game and it's initial location.
The backstory must:
- Introduce the hero and the setting of the game
- Describe the hero, their personality, and their background
- Describe how the hero came to be in the starting location of the game.
- Provide any other relevant background information for the game
- Be written in an artistic and enigmatic way.
- Be 300-500 characters long."""
},
{
"role": "user",
"content": """{"title": {"THEME": "Medieval Quest", "THEME DESCRIPTION": "Embark on a journey through a world of knights, dragons and magic", "TITLE": "The Sword and the Serpent", "TITLE DESCRIPTION": "As the brave knight Percival, set out on a quest to retrieve a magical sword stolen by a fearsome dragon. Battle towering monsters, uncover dark secrets, and overcome perilous obstacles on your journey to restore peace to the realm and become a legendary hero."}, "location": "King's castle"}"""
},
{
"role": "assistant",
"content": """In a faraway land, where magic flowed like a river and dragons soared through the sky, there was a kingdom called Avalon. A land once teeming with life and prosperity, now shrouded in darkness and fear. The source of this darkness was a powerful dragon that had descended upon the kingdom, stealing the magical sword that had kept the realm at peace for generations.
The king and his council knew that they needed a hero, someone brave and valiant enough to face the dragon and retrieve the sword. They searched far and wide, but none were deemed worthy of the task until they came across a young knight named Percival. His courage and bravery were legendary, and his determination to protect the kingdom was unrivaled.
But Percival was not the king's first choice. The knight had come to the attention of the kingdom's council by chance. He had been on a mission, battling against a group of bandits who had been terrorizing a nearby village. During the mission, Percival's bravery and skill caught the attention of one of the kingdom's messengers who was there to deliver a message to the king.
Upon hearing of the young knight's exploits, the king summoned him to the castle, and the council saw in him the qualities of a true hero. They believed that only he could save the kingdom from the darkness that had befallen it. And so, the council chose Percival for the quest to retrieve the magical sword and restore peace to Avalon.
Percival knew that the task ahead would be difficult, but he was determined to succeed. He would need all his skills, wits, and determination to overcome the challenges that lay ahead. He knew that the fate of the kingdom rested on his shoulders, and he was ready to do whatever it took to retrieve the sword and save Avalon."""
},
{
"role": "user",
"content": """{'title': {'THEME': 'Lunar Landing', 'THEME DESCRIPTION': "Experience the dangers and thrills of exploring the Moon's surface, battling the unknown, and discovering the secrets of humanity's celestial neighbor", 'TITLE': 'Lunar Explorer: Lost in Space', 'TITLE DESCRIPTION': "As the intrepid astronaut Jane, land on the lunar surface in the midst of a dangerous mission to establish humanity's presence on the Moon. Face unexpected challenges, navigate the rough terrain, and uncover secrets that have lain hidden since the dawn of humanity's space age in your quest to survive and return home."}, 'location': 'Apollo launchpad'}"""
},
{
"role": "assistant",
"content": """As humanity sought to explore beyond the reaches of our planet, the Moon emerged as a symbol of possibility and adventure. The journey to establish humanity's presence on the lunar surface was a daunting task, requiring a team of intrepid astronauts with the skills and determination to undertake such an endeavor.
Among them was Jane, a seasoned astronaut with a distinguished record of space missions. She had been selected for this mission because of her bravery, expertise, and resourcefulness in the face of danger.
As the day of the launch approached, Jane felt a mix of excitement and trepidation. She knew that the mission was a challenging one, and that every detail would need to be carefully planned and executed to ensure success. She had trained for years for this moment, and was ready to face whatever challenges lay ahead.
As she walked towards the launchpad, her heart was pounding with anticipation. This was the moment she had been waiting for, the chance to leave her footprints on a new world and to help pave the way for future generations of explorers. She took a deep breath, and prepared herself for the journey ahead."""
},
{
"role": "user",
"content": """{'title': {'THEME': 'Haunted Mansion Mystery', 'THEME DESCRIPTION': 'Explore a creepy mansion, solve puzzles, and uncover dark secrets', 'TITLE': 'Echoes of the Past: The Ghostly Manor', 'TITLE DESCRIPTION': 'As paranormal investigator Sarah, explore a creepy mansion that has been abandoned for decades. Piece together clues left behind by the former residents, solve haunting puzzles, and use your wits to survive supernatural encounters as you uncover the dark secrets of the ghostly manor.'}, 'location': 'Gates of the mansion'}"""
},
{
"role": "assistant",
"content": """Amidst the dense forest, an abandoned mansion lies in ruin. It's a place where shadows dance and whispers float through the air, and where those who dare to enter are never quite the same when they leave.
Sarah, a seasoned paranormal investigator, has been summoned to uncover the truth behind the mansion's dark history. With her assistant and a groundskeeper in tow, she drives deep into the forest, the headlights of their vehicle the only illumination amidst the pitch-black night.
As they approach the mansion, the air grows thick with a palpable sense of foreboding. The rustling of leaves in the wind takes on an otherworldly quality, and the darkness seems to cling to them like a cloak.
Sarah leads her team towards the entrance, determined to unravel the secrets of this cursed mansion. But as they step out of their vehicle and the mansion's broken windows and crumbling walls loom in the distance, they can't shake the feeling that something is watching them from the shadows.
The whispers grow louder, the shadows more sinister. With a sense of trepidation and a hint of excitement, Sarah and her team prepare to face whatever lies within. But as they step towards the mansion, they can't help but wonder if they will ever truly leave."""
},
{
"role": "user",
"content": """{'title': {'THEME': '1940s Chicago Private Eye', 'THEME DESCRIPTION': 'Experience the gritty underworld of 1940s Chicago, solve crimes, and fight corruption', 'TITLE': 'No One to Trust', 'TITLE DESCRIPTION': 'As the hardboiled detective Jack Daniels, navigate the seedy underbelly of Chicago in the 1940s. Solve crimes, gather evidence, and outsmart corrupt officials and ruthless gangsters to uncover the truth behind a conspiracy that threatens the city itself. In a world where no one can be trusted, itโs up to you to find the justice that is buried deep in the shadows.'}, 'location': 'Jack's Office'}, {'id': 3, 'title': 'The Illegal Gambling Den', 'characters': ['Jack Daniels', 'Shady Gamblers', 'Thugs'], 'objective': 'Bust an illegal gambling den run by a corrupt official to gather intelligence on the murder case and expose corruption.', 'location': 'Secret Gambling Den'}, {'id': 4, 'title': 'The Mysterious Package', 'characters': ['Jack Daniels', 'Delivery Boy', 'The Law'], 'objective': 'Collect a mysterious package with evidence vital to the case, but evade corrupt officials and crooked cops.', 'location': 'Secret Drop-off Point'}, {'id': 5, 'title': 'The Final Confrontation', 'characters': ['Jack Daniels', 'The Killer', 'Corrupt Official'], 'objective': 'Uncover the truth behind the conspiracy linking corrupt officials and ruthless gangsters, and bring the killer to justice.', 'location': "The Killer's Hideout"}]}"""
},
{
"role": "user",
"content": """The city is dark and gritty, like a well-worn fedora on a private eye. Jack Daniels is one such gumshoe, wandering the underbelly of 1940s Chicago. He knows the city's secrets and it knows his. A weary cynic, Jack is haunted by his past, but driven to right the wrongs of the present.
How did Jack end up here, a lone figure in a dingy office, surrounded by empty bottles and old case files? Perhaps it was fate, or perhaps it was something more sinister. The truth is shrouded in mystery, like the smoky haze of a jazz club.
The city hums with a palpable tension, like the warning growl of a tommy gun. Jack knows that something is brewing in the shadows, something big. He can feel it in his bones, the way the air shifts when a storm is coming.
As Jack stares out the window, his thoughts drift to the past. A case gone wrong, a betrayal, a loss. But he can't dwell on it now. There's work to be done. And Jack Daniels is a man who always gets the job done."""
}
]
def generate_backstory(game: dict):
game_logger.info(f"Generating backstory for game: {game}")
response = openai.ChatCompletion.create(
model=model,
messages=_messages + [{"role": "user", "content": f"{game}"}],
)
openai_logger.info(f"OpenAI response: {json.dumps(response, indent=2)}")
backstory = response['choices'][0]['message']['content']
return backstory
| [
"As humanity sought to explore beyond the reaches of our planet, the Moon emerged as a symbol of possibility and adventure. The journey to establish humanity's presence on the lunar surface was a daunting task, requiring a team of intrepid astronauts with the skills and determination to undertake such an endeavor.\n\nAmong them was Jane, a seasoned astronaut with a distinguished record of space missions. She had been selected for this mission because of her bravery, expertise, and resourcefulness in the face of danger.\n\nAs the day of the launch approached, Jane felt a mix of excitement and trepidation. She knew that the mission was a challenging one, and that every detail would need to be carefully planned and executed to ensure success. She had trained for years for this moment, and was ready to face whatever challenges lay ahead.\n\nAs she walked towards the launchpad, her heart was pounding with anticipation. This was the moment she had been waiting for, the chance to leave her footprints on a new world and to help pave the way for future generations of explorers. She took a deep breath, and prepared herself for the journey ahead.",
"{'title': {'THEME': 'Haunted Mansion Mystery', 'THEME DESCRIPTION': 'Explore a creepy mansion, solve puzzles, and uncover dark secrets', 'TITLE': 'Echoes of the Past: The Ghostly Manor', 'TITLE DESCRIPTION': 'As paranormal investigator Sarah, explore a creepy mansion that has been abandoned for decades. Piece together clues left behind by the former residents, solve haunting puzzles, and use your wits to survive supernatural encounters as you uncover the dark secrets of the ghostly manor.'}, 'location': 'Gates of the mansion'}",
"The city is dark and gritty, like a well-worn fedora on a private eye. Jack Daniels is one such gumshoe, wandering the underbelly of 1940s Chicago. He knows the city's secrets and it knows his. A weary cynic, Jack is haunted by his past, but driven to right the wrongs of the present.\n\nHow did Jack end up here, a lone figure in a dingy office, surrounded by empty bottles and old case files? Perhaps it was fate, or perhaps it was something more sinister. The truth is shrouded in mystery, like the smoky haze of a jazz club.\n\nThe city hums with a palpable tension, like the warning growl of a tommy gun. Jack knows that something is brewing in the shadows, something big. He can feel it in his bones, the way the air shifts when a storm is coming.\n\nAs Jack stares out the window, his thoughts drift to the past. A case gone wrong, a betrayal, a loss. But he can't dwell on it now. There's work to be done. And Jack Daniels is a man who always gets the job done.",
"\nYou are a game story writer.\nI will provide you with a JSON object describing a game and it's initial location.\n\nThe backstory must:\n- Introduce the hero and the setting of the game\n- Describe the hero, their personality, and their background\n- Describe how the hero came to be in the starting location of the game.\n- Provide any other relevant background information for the game\n- Be written in an artistic and enigmatic way.\n- Be 300-500 characters long.",
"{\"title\": {\"THEME\": \"Medieval Quest\", \"THEME DESCRIPTION\": \"Embark on a journey through a world of knights, dragons and magic\", \"TITLE\": \"The Sword and the Serpent\", \"TITLE DESCRIPTION\": \"As the brave knight Percival, set out on a quest to retrieve a magical sword stolen by a fearsome dragon. Battle towering monsters, uncover dark secrets, and overcome perilous obstacles on your journey to restore peace to the realm and become a legendary hero.\"}, \"location\": \"King's castle\"}",
"Amidst the dense forest, an abandoned mansion lies in ruin. It's a place where shadows dance and whispers float through the air, and where those who dare to enter are never quite the same when they leave.\n\nSarah, a seasoned paranormal investigator, has been summoned to uncover the truth behind the mansion's dark history. With her assistant and a groundskeeper in tow, she drives deep into the forest, the headlights of their vehicle the only illumination amidst the pitch-black night.\n\nAs they approach the mansion, the air grows thick with a palpable sense of foreboding. The rustling of leaves in the wind takes on an otherworldly quality, and the darkness seems to cling to them like a cloak.\n\nSarah leads her team towards the entrance, determined to unravel the secrets of this cursed mansion. But as they step out of their vehicle and the mansion's broken windows and crumbling walls loom in the distance, they can't shake the feeling that something is watching them from the shadows.\n\nThe whispers grow louder, the shadows more sinister. With a sense of trepidation and a hint of excitement, Sarah and her team prepare to face whatever lies within. But as they step towards the mansion, they can't help but wonder if they will ever truly leave.",
"{'title': {'THEME': '1940s Chicago Private Eye', 'THEME DESCRIPTION': 'Experience the gritty underworld of 1940s Chicago, solve crimes, and fight corruption', 'TITLE': 'No One to Trust', 'TITLE DESCRIPTION': 'As the hardboiled detective Jack Daniels, navigate the seedy underbelly of Chicago in the 1940s. Solve crimes, gather evidence, and outsmart corrupt officials and ruthless gangsters to uncover the truth behind a conspiracy that threatens the city itself. In a world where no one can be trusted, itโs up to you to find the justice that is buried deep in the shadows.'}, 'location': 'Jack's Office'}, {'id': 3, 'title': 'The Illegal Gambling Den', 'characters': ['Jack Daniels', 'Shady Gamblers', 'Thugs'], 'objective': 'Bust an illegal gambling den run by a corrupt official to gather intelligence on the murder case and expose corruption.', 'location': 'Secret Gambling Den'}, {'id': 4, 'title': 'The Mysterious Package', 'characters': ['Jack Daniels', 'Delivery Boy', 'The Law'], 'objective': 'Collect a mysterious package with evidence vital to the case, but evade corrupt officials and crooked cops.', 'location': 'Secret Drop-off Point'}, {'id': 5, 'title': 'The Final Confrontation', 'characters': ['Jack Daniels', 'The Killer', 'Corrupt Official'], 'objective': 'Uncover the truth behind the conspiracy linking corrupt officials and ruthless gangsters, and bring the killer to justice.', 'location': \"The Killer's Hideout\"}]}",
"{'title': {'THEME': 'Lunar Landing', 'THEME DESCRIPTION': \"Experience the dangers and thrills of exploring the Moon's surface, battling the unknown, and discovering the secrets of humanity's celestial neighbor\", 'TITLE': 'Lunar Explorer: Lost in Space', 'TITLE DESCRIPTION': \"As the intrepid astronaut Jane, land on the lunar surface in the midst of a dangerous mission to establish humanity's presence on the Moon. Face unexpected challenges, navigate the rough terrain, and uncover secrets that have lain hidden since the dawn of humanity's space age in your quest to survive and return home.\"}, 'location': 'Apollo launchpad'}",
"content",
"In a faraway land, where magic flowed like a river and dragons soared through the sky, there was a kingdom called Avalon. A land once teeming with life and prosperity, now shrouded in darkness and fear. The source of this darkness was a powerful dragon that had descended upon the kingdom, stealing the magical sword that had kept the realm at peace for generations.\n\nThe king and his council knew that they needed a hero, someone brave and valiant enough to face the dragon and retrieve the sword. They searched far and wide, but none were deemed worthy of the task until they came across a young knight named Percival. His courage and bravery were legendary, and his determination to protect the kingdom was unrivaled.\n\nBut Percival was not the king's first choice. The knight had come to the attention of the kingdom's council by chance. He had been on a mission, battling against a group of bandits who had been terrorizing a nearby village. During the mission, Percival's bravery and skill caught the attention of one of the kingdom's messengers who was there to deliver a message to the king.\n\nUpon hearing of the young knight's exploits, the king summoned him to the castle, and the council saw in him the qualities of a true hero. They believed that only he could save the kingdom from the darkness that had befallen it. And so, the council chose Percival for the quest to retrieve the magical sword and restore peace to Avalon.\n\nPercival knew that the task ahead would be difficult, but he was determined to succeed. He would need all his skills, wits, and determination to overcome the challenges that lay ahead. He knew that the fate of the kingdom rested on his shoulders, and he was ready to do whatever it took to retrieve the sword and save Avalon."
] |
2024-01-10 | somacdivad/gpt-text-adventure | src~generator~figlet.py | import json
import logging
from .openai_client import openai, model
game_logger = logging.getLogger("game")
openai_logger = logging.getLogger("openai")
_messages = [
{
"role": "system",
"content": """
I will provide you with a game title and a game description.
You will return the name of a pyfiglet font that you think best fits the title and description.
The font should be small enough to fit on one or two lines.
"""
},
{
"role": "user",
"content": "TITLE: The Quest for the Sacred Heart DESCRIPTION: As a young adventurer, you are tasked with finding the legendary Crystal Heart, a powerful artifact that has been lost for centuries. With the help of your trusty companions, you must navigate treacherous terrain, battle fierce monsters, and solve challenging puzzles to uncover the secrets of the Crystal Heart and save the realm from darkness."
},
{
"role": "assistant",
"content": "slant"},
{
"role": "user",
"content": "TITLE: Aria and the Sorcererโs Curse DESCRIPTION: As the young adventurer Aria, journey through the enchanted forest to rescue your sister from a powerful sorcerer. Battle mythical creatures, solve challenging puzzles, and forge alliances in your quest to save your family and the enchanted forest itself."
},
{
"role": "assistant",
"content": "epic"},
{
"role": "user",
"content": "TITLE: Whispers in the Shadows DESCRIPTION: As the skilled investigator Marlowe, delve into a world of secrets and intrigue in a city filled with corruption. Unravel a web of lies, use your cunning to outsmart your enemies, and uncover the truth behind a series of mysterious disappearances that threaten to destabilize the city."
},
{
"role": "assistant",
"content": "ogre"
}
]
def generate_figlet_font(title: str, description: str):
game_logger.debug("Generating figlet font")
response = openai.ChatCompletion.create(
model=model,
messages=_messages + [{"role": "user", "content": f"TITLE: {title} DESCRIPTION: {description}"}],
)
openai_logger.debug(response)
font_name = response['choices'][0]['message']['content']
return font_name
| [
"slant",
"\nI will provide you with a game title and a game description.\nYou will return the name of a pyfiglet font that you think best fits the title and description.\nThe font should be small enough to fit on one or two lines.\n",
"epic",
"TITLE: PLACEHOLDER DESCRIPTION: PLACEHOLDER",
"TITLE: The Quest for the Sacred Heart DESCRIPTION: As a young adventurer, you are tasked with finding the legendary Crystal Heart, a powerful artifact that has been lost for centuries. With the help of your trusty companions, you must navigate treacherous terrain, battle fierce monsters, and solve challenging puzzles to uncover the secrets of the Crystal Heart and save the realm from darkness.",
"TITLE: Whispers in the Shadows DESCRIPTION: As the skilled investigator Marlowe, delve into a world of secrets and intrigue in a city filled with corruption. Unravel a web of lies, use your cunning to outsmart your enemies, and uncover the truth behind a series of mysterious disappearances that threaten to destabilize the city.",
"ogre",
"content",
"TITLE: Aria and the Sorcererโs Curse DESCRIPTION: As the young adventurer Aria, journey through the enchanted forest to rescue your sister from a powerful sorcerer. Battle mythical creatures, solve challenging puzzles, and forge alliances in your quest to save your family and the enchanted forest itself."
] |
2024-01-10 | somacdivad/gpt-text-adventure | src~generator~story.py | import json
from .openai_client import openai, model
_messages = [
{
"role": "system",
"content": """You are a game text adventure game architect. Your job is to provide the primary story points for a game.
You will be given a JOSN object containing information about a game. Provide a JSON response containing an array of 4 to 6 story points in chronological order that carry out the objective of the game.
Each story point must contain:
- An id starting with 1 and indicating the order of the story point
- A list of chracters that the player may interact with during the story point
- The story point's objective (i.e., find an item needed, learn required information, solve a puzzle, battle an enemy, etc.)
- A location"""
},
{
"role": "user",
"content": """{
"THEME": "Space Odyssey",
"THEME DESCRIPTION": "Explore the vast expanse of space, encounter alien civilizations, and unravel the mysteries of the universe",
"TITLE": "Odyssey Beyond the Stars",
"TITLE DESCRIPTION": "As captain of the starship Aurora, embark on an epic journey through the galaxy to uncover the secrets of a long-lost alien civilization. Encounter strange new worlds, make alliances with alien species, and overcome incredible challenges in your quest to unlock the secrets of the universe and save humanity from a looming threat."
}"""
},
{
"role": "assistant",
"content": """[
{
"id": 1,
"title": "The Galactic Mission",
"characters": ["Captain", "Crew", "Admiral"],
"objective": "Receive your mission from the Admiral to uncover the secrets of the lost alien civilization.",
"location": "Admiral's office on Earth"
},
{
"id": 2,
"title": "First Contact",
"characters": ["Captain", "Crew", "Alien Ambassador"],
"objective": "Establish diplomatic relations with an alien species and gain valuable information about the lost civilization.",
"location": "Alien planet"
},
{
"id": 3,
"title": "The Ancient Artifact",
"characters": ["Captain", "Crew", "Ancient Guardian"],
"objective": "Explore an ancient alien structure to recover a mysterious artifact with clues to the lost civilization's secrets.",
"location": "Ancient alien structure"
},
{
"id": 4,
"title": "The Quantum Anomaly",
"characters": ["Captain", "Crew", "Scientist"],
"objective": "Investigate a mysterious quantum anomaly to unlock the secrets of the universe and gain the knowledge needed to save humanity.",
"location": "Quantum anomaly in deep space"
},
{
"id": 5,
"title": "The Final Alliance",
"characters": ["Captain", "Crew", "Alien Allies"],
"objective": "Unite the galaxy's alien species to form a powerful alliance against the looming threat to humanity.",
"location": "Neutral planet for diplomatic negotiations"
},
{
"id": 6,
"title": "The Battle for Earth",
"characters": ["Captain", "Crew", "Alien Allies", "Looming Threat"],
"objective": "Lead the united forces in a climactic battle to save Earth and ensure the survival of humanity.",
"location": "Space battle around Earth"
}
]"""
},
{
"role": "user",
"content": """{
"THEME": "Fantasy Adventure",
"THEME DESCRIPTION": "Embark on a journey through a magical realm filled with mythical creatures, ancient ruins, and powerful magic.",
"TITLE": "The Quest for the Crystal Heart",
"TITLE DESCRIPTION": "As a young adventurer, you are tasked with finding the legendary Crystal Heart, a powerful artifact that has been lost for centuries. With the help of your trusty companions, you must navigate treacherous terrain, battle fierce monsters, and solve challenging puzzles to uncover the secrets of the Crystal Heart and save the realm from darkness."
}"""
},
{
"role": "assistant",
"content": """[
{
"id": 1,
"title": "The Call to Adventure",
"characters": ["Young Adventurer", "Mentor", "Village Elder"],
"objective": "Learn about the legend of the Crystal Heart from the Village Elder and accept the quest to find it.",
"location": "Village"
},
{
"id": 2,
"title": "Assembling the Team",
"characters": ["Young Adventurer", "Mentor", "Warrior", "Mage", "Healer"],
"objective": "Recruit trusty companions to help you on your journey and form a well-rounded team to overcome the challenges ahead.",
"location": "Tavern"
},
{
"id": 3,
"title": "The Cursed Forest",
"characters": ["Young Adventurer", "Warrior", "Mage", "Healer", "Forest Guardian"],
"objective": "Navigate through the treacherous terrain of the Cursed Forest, solve its mysteries, and obtain the Forest Guardian's blessing.",
"location": "Cursed Forest"
},
{
"id": 4,
"title": "The Labyrinth of Shadows",
"characters": ["Young Adventurer", "Warrior", "Mage", "Healer", "Ancient Spirit"],
"objective": "Explore the ancient ruins of the Labyrinth of Shadows, solve intricate puzzles, and uncover the secrets hidden within.",
"location": "Labyrinth of Shadows"
},
{
"id": 5,
"title": "The Battle of the Crystal Peak",
"characters": ["Young Adventurer", "Warrior", "Mage", "Healer", "Dark Sorcerer"],
"objective": "Confront the Dark Sorcerer guarding the Crystal Heart and defeat him in an epic battle to retrieve the powerful artifact.",
"location": "Crystal Peak"
},
{
"id": 6,
"title": "The Restoration of Light",
"characters": ["Young Adventurer", "Warrior", "Mage", "Healer", "Village Elder"],
"objective": "Return the Crystal Heart to its rightful place, restore balance to the realm, and save it from darkness.",
"location": "Village"
}
]"""
}
]
def generate_story(game_info):
response = openai.ChatCompletion.create(
model=model,
messages=_messages + [{"role": "user", "content": f"{game_info}"}]
)
text = response['choices'][0]['message']['content']
return json.loads(text)
| [
"[\n{\n\"id\": 1,\n\"title\": \"The Call to Adventure\",\n\"characters\": [\"Young Adventurer\", \"Mentor\", \"Village Elder\"],\n\"objective\": \"Learn about the legend of the Crystal Heart from the Village Elder and accept the quest to find it.\",\n\"location\": \"Village\"\n},\n{\n\"id\": 2,\n\"title\": \"Assembling the Team\",\n\"characters\": [\"Young Adventurer\", \"Mentor\", \"Warrior\", \"Mage\", \"Healer\"],\n\"objective\": \"Recruit trusty companions to help you on your journey and form a well-rounded team to overcome the challenges ahead.\",\n\"location\": \"Tavern\"\n},\n{\n\"id\": 3,\n\"title\": \"The Cursed Forest\",\n\"characters\": [\"Young Adventurer\", \"Warrior\", \"Mage\", \"Healer\", \"Forest Guardian\"],\n\"objective\": \"Navigate through the treacherous terrain of the Cursed Forest, solve its mysteries, and obtain the Forest Guardian's blessing.\",\n\"location\": \"Cursed Forest\"\n},\n{\n\"id\": 4,\n\"title\": \"The Labyrinth of Shadows\",\n\"characters\": [\"Young Adventurer\", \"Warrior\", \"Mage\", \"Healer\", \"Ancient Spirit\"],\n\"objective\": \"Explore the ancient ruins of the Labyrinth of Shadows, solve intricate puzzles, and uncover the secrets hidden within.\",\n\"location\": \"Labyrinth of Shadows\"\n},\n{\n\"id\": 5,\n\"title\": \"The Battle of the Crystal Peak\",\n\"characters\": [\"Young Adventurer\", \"Warrior\", \"Mage\", \"Healer\", \"Dark Sorcerer\"],\n\"objective\": \"Confront the Dark Sorcerer guarding the Crystal Heart and defeat him in an epic battle to retrieve the powerful artifact.\",\n\"location\": \"Crystal Peak\"\n},\n{\n\"id\": 6,\n\"title\": \"The Restoration of Light\",\n\"characters\": [\"Young Adventurer\", \"Warrior\", \"Mage\", \"Healer\", \"Village Elder\"],\n\"objective\": \"Return the Crystal Heart to its rightful place, restore balance to the realm, and save it from darkness.\",\n\"location\": \"Village\"\n}\n]",
"You are a game text adventure game architect. Your job is to provide the primary story points for a game.\n\nYou will be given a JOSN object containing information about a game. Provide a JSON response containing an array of 4 to 6 story points in chronological order that carry out the objective of the game.\n\nEach story point must contain:\n\n- An id starting with 1 and indicating the order of the story point\n- A list of chracters that the player may interact with during the story point\n- The story point's objective (i.e., find an item needed, learn required information, solve a puzzle, battle an enemy, etc.)\n- A location",
"{\n\"THEME\": \"Space Odyssey\",\n\"THEME DESCRIPTION\": \"Explore the vast expanse of space, encounter alien civilizations, and unravel the mysteries of the universe\",\n\"TITLE\": \"Odyssey Beyond the Stars\",\n\"TITLE DESCRIPTION\": \"As captain of the starship Aurora, embark on an epic journey through the galaxy to uncover the secrets of a long-lost alien civilization. Encounter strange new worlds, make alliances with alien species, and overcome incredible challenges in your quest to unlock the secrets of the universe and save humanity from a looming threat.\"\n}",
"PLACEHOLDER",
"[\n {\n \"id\": 1,\n \"title\": \"The Galactic Mission\",\n \"characters\": [\"Captain\", \"Crew\", \"Admiral\"],\n \"objective\": \"Receive your mission from the Admiral to uncover the secrets of the lost alien civilization.\",\n \"location\": \"Admiral's office on Earth\"\n },\n {\n \"id\": 2,\n \"title\": \"First Contact\",\n \"characters\": [\"Captain\", \"Crew\", \"Alien Ambassador\"],\n \"objective\": \"Establish diplomatic relations with an alien species and gain valuable information about the lost civilization.\",\n \"location\": \"Alien planet\"\n },\n {\n \"id\": 3,\n \"title\": \"The Ancient Artifact\",\n \"characters\": [\"Captain\", \"Crew\", \"Ancient Guardian\"],\n \"objective\": \"Explore an ancient alien structure to recover a mysterious artifact with clues to the lost civilization's secrets.\",\n \"location\": \"Ancient alien structure\"\n },\n {\n \"id\": 4,\n \"title\": \"The Quantum Anomaly\",\n \"characters\": [\"Captain\", \"Crew\", \"Scientist\"],\n \"objective\": \"Investigate a mysterious quantum anomaly to unlock the secrets of the universe and gain the knowledge needed to save humanity.\",\n \"location\": \"Quantum anomaly in deep space\"\n },\n {\n \"id\": 5,\n \"title\": \"The Final Alliance\",\n \"characters\": [\"Captain\", \"Crew\", \"Alien Allies\"],\n \"objective\": \"Unite the galaxy's alien species to form a powerful alliance against the looming threat to humanity.\",\n \"location\": \"Neutral planet for diplomatic negotiations\"\n },\n {\n \"id\": 6,\n \"title\": \"The Battle for Earth\",\n \"characters\": [\"Captain\", \"Crew\", \"Alien Allies\", \"Looming Threat\"],\n \"objective\": \"Lead the united forces in a climactic battle to save Earth and ensure the survival of humanity.\",\n \"location\": \"Space battle around Earth\"\n }\n]",
"{\n\"THEME\": \"Fantasy Adventure\",\n\"THEME DESCRIPTION\": \"Embark on a journey through a magical realm filled with mythical creatures, ancient ruins, and powerful magic.\",\n\"TITLE\": \"The Quest for the Crystal Heart\",\n\"TITLE DESCRIPTION\": \"As a young adventurer, you are tasked with finding the legendary Crystal Heart, a powerful artifact that has been lost for centuries. With the help of your trusty companions, you must navigate treacherous terrain, battle fierce monsters, and solve challenging puzzles to uncover the secrets of the Crystal Heart and save the realm from darkness.\"\n}",
"content"
] |
2024-01-10 | team-siksik/hearo | backend~hearo_ai~router~text_generate.py | from fastapi import APIRouter, Form
from typing_extensions import Annotated
import openai
import keys
from main import logger
router = APIRouter(prefix="/tg")
@router.get("/test")
async def root():
logger.info("root: tg router api ํธ์ถ")
return {"message": "hearo!"}
openai.api_key = keys.openai_api_key
async def generate_sentence(text):
prompt = f'''
๋๋ ์ง์ฅ์ธ์ด๊ณ , ํ์ฌ์์ ํ์์ ์ฐธ๊ฐํ๊ณ ์์ด.
๋๋ฃ๊ฐ ๋ค์ ํ
์คํธ๋ฅผ ๋งํ์ ๋ ํ ๋งํ ์ ์ ํ ๋๋ต์ 5๊ฐ ์์ฑํด์ ํ์์ ๋ง๊ฒ ๋๋ ค์ค.
ํ
์คํธ: {text}
ํ์: 1.๋ต๋ณ\n2.๋ต๋ณ\n3.๋ต๋ณ\n4.๋ต๋ณ\n5.๋ต๋ณ
'''
# GPT engine : "text-davinci-002"
response = openai.Completion.create(
engine="text-davinci-002",
prompt=prompt,
max_tokens=1000,
n=1,
stop=None,
temperature=0.7,
top_p=1
)
result = response.choices[0].text.strip()
# GPT engine : "gpt-3.5-turbo"
# response = openai.ChatCompletion.create(
# model=engine,
# messages=[{"role": "user", "content": prompt},],
# max_tokens=1000,
# n=5,
# temperature=0.7,
# top_p=1,
# )
# result = response.choices[0].message['content'].strip()
result = list(result.split('\n'))
logger.debug(result)
result = [string[2:] for string in result]
return result
@router.post("/generate")
async def generate(text: Annotated[str, Form()]):
logger.info(f"generate: ๋ต๋ณ ๋ฌธ์ฅ ์ถ์ฒ api ํธ์ถ - {text}")
while True:
result = await generate_sentence(text)
if len(result) == 5:
break
return result
| [
"\n ๋๋ ์ง์ฅ์ธ์ด๊ณ , ํ์ฌ์์ ํ์์ ์ฐธ๊ฐํ๊ณ ์์ด.\n ๋๋ฃ๊ฐ ๋ค์ ํ
์คํธ๋ฅผ ๋งํ์ ๋ ํ ๋งํ ์ ์ ํ ๋๋ต์ 5๊ฐ ์์ฑํด์ ํ์์ ๋ง๊ฒ ๋๋ ค์ค.\n ํ
์คํธ: PLACEHOLDER\n ํ์: 1.๋ต๋ณ\n2.๋ต๋ณ\n3.๋ต๋ณ\n4.๋ต๋ณ\n5.๋ต๋ณ\n "
] |
2024-01-10 | shadowaxe99/decker | decker~PitchDeckGenerator.py | import openai
from pptx import Presentation
class PitchDeckGenerator:
def __init__(self):
self.presentation = Presentation()
def generate_content(self, prompt):
response = openai.Completion.create(engine="text-davinci-003", prompt=prompt, max_tokens=100)
return response.choices[0].text.strip()
def create_slide(self, title, content):
slide_layout = self.presentation.slide_layouts[0]
slide = self.presentation.slides.add_slide(slide_layout)
title_placeholder = slide.shapes.title
content_placeholder = slide.placeholders[1]
title_placeholder.text = title
content_placeholder.text = content
def create_pitch_deck(self, influencer):
slides_content = [
("Introduction", f"Generate an introduction for a pitch deck for {influencer}'s brand."),
("Team Overview", f"Generate a team overview for a pitch deck for {influencer}'s brand."),
("Problem Statement", f"Generate a problem statement for a pitch deck for {influencer}'s brand."),
("Solution", f"Generate a description of the solution for a pitch deck for {influencer}'s brand."),
("Market Size", f"Generate a description of the market size for a pitch deck for {influencer}'s brand."),
("Business Model", f"Generate a description of the business model for a pitch deck for {influencer}'s brand."),
("Marketing Strategy", f"Generate a description of the marketing strategy for a pitch deck for {influencer}'s brand."),
("Financial Projections", f"Generate financial projections for a pitch deck for {influencer}'s brand."),
("Conclusion", f"Generate a conclusion for a pitch deck for {influencer}'s brand.")
]
for title, prompt in slides_content:
content = self.generate_content(prompt)
self.create_slide(title, content)
self.presentation.save(f'{influencer}_pitch_deck.pptx')
def create_investor_specific_pitch_deck(self, influencer, investor):
preferences = investor.get_preferences()
self.create_pitch_deck(influencer, preferences)
def main(self, brand):
self.create_pitch_deck(brand) | [] |
2024-01-10 | shadowaxe99/decker | PitchDeckGenerator.py | import openai
from pptx import Presentation
class PitchDeckGenerator:
def __init__(self):
self.presentation = Presentation()
def generate_content(self, prompt):
response = openai.Completion.create(engine="text-davinci-003", prompt=prompt, max_tokens=100)
return response.choices[0].text.strip()
def create_slide(self, title, content):
slide_layout = self.presentation.slide_layouts[0]
slide = self.presentation.slides.add_slide(slide_layout)
title_placeholder = slide.shapes.title
content_placeholder = slide.placeholders[1]
title_placeholder.text = title
content_placeholder.text = content
def create_pitch_deck(self, influencer):
slides_content = [
("Introduction", f"Generate an introduction for a pitch deck for {influencer}'s brand."),
("Team Overview", f"Generate a team overview for a pitch deck for {influencer}'s brand."),
("Problem Statement", f"Generate a problem statement for a pitch deck for {influencer}'s brand."),
("Solution", f"Generate a description of the solution for a pitch deck for {influencer}'s brand."),
("Market Size", f"Generate a description of the market size for a pitch deck for {influencer}'s brand."),
("Business Model", f"Generate a description of the business model for a pitch deck for {influencer}'s brand."),
("Marketing Strategy", f"Generate a description of the marketing strategy for a pitch deck for {influencer}'s brand."),
("Financial Projections", f"Generate financial projections for a pitch deck for {influencer}'s brand."),
("Conclusion", f"Generate a conclusion for a pitch deck for {influencer}'s brand.")
]
for title, prompt in slides_content:
content = self.generate_content(prompt)
self.create_slide(title, content)
self.presentation.save(f'{influencer}_pitch_deck.pptx')
def create_investor_specific_pitch_deck(self, influencer, investor):
preferences = investor.get_preferences()
self.create_pitch_deck(influencer, preferences)
def main(self, brand):
self.create_pitch_deck(brand) | [] |
2024-01-10 | shadowaxe99/decker | decker~decker~PitchDeckGenerator.py | import openai
from pptx import Presentation
from decker.ErrorHandling import ErrorHandling
from decker.Validation import Validation
from decker.Logging import Logging
from decker.UnitTesting import TestComponent
class PitchDeckGenerator:
def __init__(self):
self.presentation = Presentation()
self.error_handling = ErrorHandling()
self.validation = Validation()
self.logging = Logging()
self.test_component = TestComponent()
def generate_content(self, prompt):
response = openai.Completion.create(engine="text-davinci-003", prompt=prompt, max_tokens=100)
return response.choices[0].text.strip()
def create_slide(self, title, content):
slide_layout = self.presentation.slide_layouts[0]
slide = self.presentation.slides.add_slide(slide_layout)
title_placeholder = slide.shapes.title
content_placeholder = slide.placeholders[1]
title_placeholder.text = title
content_placeholder.text = content
def create_pitch_deck(self, brand, xcom_links, crunchbase_links):
slides_content = [
("Introduction", f"Generate an introduction for a pitch deck for {brand}.", xcom_links),
("Team Overview", f"Generate a team overview for a pitch deck for {brand}.", xcom_links),
("Problem Statement", f"Generate a problem statement for a pitch deck for {brand}.", xcom_links),
("Solution", f"Generate a description of the solution for a pitch deck for {brand}.", xcom_links),
("Market Size", f"Generate a description of the market size for a pitch deck for {brand}.", xcom_links),
("Business Model", f"Generate a description of the business model for a pitch deck for {brand}.", xcom_links),
("Marketing Strategy", f"Generate a description of the marketing strategy for a pitch deck for {brand}.", xcom_links),
("Financial Projections", f"Generate financial projections for a pitch deck for {brand}.", crunchbase_links),
("Conclusion", f"Generate a conclusion for a pitch deck for {brand}.", xcom_links)
]
for title, prompt, links in slides_content:
content = self.generate_content(prompt)
self.create_slide(title, content)
self.presentation.save(f'{brand}_pitch_deck.pptx') | [] |
2024-01-10 | Jacky-Bruse/n_tools-3.2.3 | app~plugins~modules~_autosignin~chdbits.py | import json
import os
import random
import re
from lxml import etree
from app.helper.openai_helper import OpenAiHelper
from app.plugins.modules._autosignin._base import _ISiteSigninHandler
from app.utils import StringUtils, RequestUtils
from config import Config
class CHDBits(_ISiteSigninHandler):
"""
ๅฝฉ่นๅฒ็ญพๅฐ
ๅฆๆๅกซๅopenai keyๅ่ฐ็จchatgpt่ทๅ็ญๆก
ๅฆๅ้ๆบ
"""
# ๅน้
็็ซ็นUrl๏ผๆฏไธไธชๅฎ็ฐ็ฑป้ฝ้่ฆ่ฎพ็ฝฎไธบ่ชๅทฑ็็ซ็นUrl
site_url = "chdbits.co"
# ๅทฒ็ญพๅฐ
_sign_regex = ['ไปๅคฉๅทฒ็ป็ญพ่ฟๅฐไบ']
# ็ญพๅฐๆๅ๏ผๅพ
่กฅๅ
_success_regex = ['\\d+็น้ญๅๅผ']
# ๅญๅจๆญฃ็กฎ็็ญๆก๏ผๅ็ปญๅฏ็ดๆฅๆฅ
_answer_path = os.path.join(Config().get_temp_path(), "signin")
_answer_file = _answer_path + "/chdbits.json"
@classmethod
def match(cls, url):
"""
ๆ นๆฎ็ซ็นUrlๅคๆญๆฏๅฆๅน้
ๅฝๅ็ซ็น็ญพๅฐ็ฑป๏ผๅคง้จๅๆ
ๅตไฝฟ็จ้ป่ฎคๅฎ็ฐๅณๅฏ
:param url: ็ซ็นUrl
:return: ๆฏๅฆๅน้
๏ผๅฆๅน้
ๅไผ่ฐ็จ่ฏฅ็ฑป็signinๆนๆณ
"""
return True if StringUtils.url_equal(url, cls.site_url) else False
def signin(self, site_info: dict):
"""
ๆง่ก็ญพๅฐๆไฝ
:param site_info: ็ซ็นไฟกๆฏ๏ผๅซๆ็ซ็นUrlใ็ซ็นCookieใUA็ญไฟกๆฏ
:return: ็ญพๅฐ็ปๆไฟกๆฏ
"""
site = site_info.get("name")
site_cookie = site_info.get("cookie")
ua = site_info.get("ua")
proxy = Config().get_proxies() if site_info.get("proxy") else None
# ๅๅปบๆญฃ็กฎ็ญๆกๅญๅจ็ฎๅฝ
if not os.path.exists(os.path.dirname(self._answer_file)):
os.makedirs(os.path.dirname(self._answer_file))
# ๅคๆญไปๆฅๆฏๅฆๅทฒ็ญพๅฐ
index_res = RequestUtils(cookies=site_cookie,
headers=ua,
proxies=proxy
).get_res(url='https://chdbits.co/bakatest.php')
if not index_res or index_res.status_code != 200:
self.error(f"็ญพๅฐๅคฑ่ดฅ๏ผ่ฏทๆฃๆฅ็ซ็น่ฟ้ๆง")
return False, f'ใ{site}ใ็ญพๅฐๅคฑ่ดฅ๏ผ่ฏทๆฃๆฅ็ซ็น่ฟ้ๆง'
if "login.php" in index_res.text:
self.error(f"็ญพๅฐๅคฑ่ดฅ๏ผcookieๅคฑๆ")
return False, f'ใ{site}ใ็ญพๅฐๅคฑ่ดฅ๏ผcookieๅคฑๆ'
sign_status = self.sign_in_result(html_res=index_res.text,
regexs=self._sign_regex)
if sign_status:
self.info(f"ไปๆฅๅทฒ็ญพๅฐ")
return True, f'ใ{site}ใไปๆฅๅทฒ็ญพๅฐ'
# ๆฒกๆ็ญพๅฐๅ่งฃๆhtml
html = etree.HTML(index_res.text)
if not html:
return False, f'ใ{site}ใ็ญพๅฐๅคฑ่ดฅ'
# ่ทๅ้กต้ข้ฎ้ขใ็ญๆก
questionid = html.xpath("//input[@name='questionid']/@value")[0]
option_ids = html.xpath("//input[@name='choice[]']/@value")
option_values = html.xpath("//input[@name='choice[]']/following-sibling::text()")
question_str = html.xpath("//td[@class='text' and contains(text(),'่ฏท้ฎ๏ผ')]/text()")[0]
answers = list(zip(option_ids, option_values))
# ๆญฃๅ่ทๅ้ฎ้ข
match = re.search(r'่ฏท้ฎ๏ผ(.+)', question_str)
if match:
question_str = match.group(1)
self.debug(f"่ทๅๅฐ็ญพๅฐ้ฎ้ข {question_str}")
else:
self.error(f"ๆช่ทๅๅฐ็ญพๅฐ้ฎ้ข")
return False, f"ใ{site}ใ็ญพๅฐๅคฑ่ดฅ๏ผๆช่ทๅๅฐ็ญพๅฐ้ฎ้ข"
# ๆฅ่ฏขๅทฒๆ็ญๆก
exits_answers = {}
try:
with open(self._answer_file, 'r') as f:
json_str = f.read()
exits_answers = json.loads(json_str)
# ๆฅ่ฏขๆฌๅฐๆฌๆฌก้ช่ฏ็ hash็ญๆก
question_answer = exits_answers[question_str]
# question_answerๆฏๆฐ็ป
if not isinstance(question_answer, list):
question_answer = [question_answer]
# ๆฌๅฐๅญๅจๆฌๆฌกhashๅฏนๅบ็ๆญฃ็กฎ็ญๆกๅ้ๅๆฅ่ฏข
choice = []
for q in question_answer:
for num, answer in answers:
if str(q) == str(num):
choice.append(int(q))
if len(choice) > 0:
# ็ญพๅฐ
return self.__signin(questionid=questionid,
choice=choice,
site_cookie=site_cookie,
ua=ua,
proxy=proxy,
site=site)
except (FileNotFoundError, IOError, OSError) as e:
self.debug("ๆฅ่ฏขๆฌๅฐๅทฒ็ฅ็ญๆกๅคฑ่ดฅ๏ผ็ปง็ปญ่ฏทๆฑ่ฑ็ฃๆฅ่ฏข")
# ๆญฃ็กฎ็ญๆก๏ผ้ป่ฎค้ๆบ๏ผๅฆๆgpt่ฟๅๅ็จgpt่ฟๅ็็ญๆกๆไบค
choice = [option_ids[random.randint(0, len(option_ids) - 1)]]
# ็ป่ฃ
gpt้ฎ้ข
gpt_options = "{\n" + ",\n".join([f"{num}:{value}" for num, value in answers]) + "\n}"
gpt_question = f"้ข็ฎ๏ผ{question_str}\n" \
f"้้กน๏ผ{gpt_options}"
self.debug(f"็ป่ฃ
chatgpt้ฎ้ข {gpt_question}")
# chatgpt่ทๅ็ญๆก
answer = OpenAiHelper().get_question_answer(question=gpt_question)
self.debug(f"chatpgt่ฟๅ็ปๆ {answer}")
# ๅค็chatgpt่ฟๅ็็ญๆกไฟกๆฏ
if answer is None:
self.warn(f"ChatGPTๆชๅฏ็จ, ๅผๅง้ๆบ็ญพๅฐ")
# return f"ใ{site}ใ็ญพๅฐๅคฑ่ดฅ๏ผChatGPTๆชๅฏ็จ"
elif answer:
# ๆญฃๅ่ทๅๅญ็ฌฆไธฒไธญ็ๆฐๅญ
answer_nums = list(map(int, re.findall("\d+", answer)))
if not answer_nums:
self.warn(f"ๆ ๆณไปchatgptๅๅค {answer} ไธญ่ทๅ็ญๆก, ๅฐ้็จ้ๆบ็ญพๅฐ")
else:
choice = []
for answer in answer_nums:
# ๅฆๆ่ฟๅ็ๆฐๅญๅจoption_ids่ๅดๅ
๏ผๅ็ดๆฅไฝไธบ็ญๆก
if str(answer) in option_ids:
choice.append(int(answer))
self.info(f"chatgpt่ฟๅ็ญๆกid {answer} ๅจ็ญพๅฐ้้กน {option_ids} ไธญ")
# ็ญพๅฐ
return self.__signin(questionid=questionid,
choice=choice,
site_cookie=site_cookie,
ua=ua,
proxy=proxy,
site=site,
exits_answers=exits_answers,
question=question_str)
def __signin(self, questionid, choice, site, site_cookie, ua, proxy, exits_answers=None, question=None):
"""
็ญพๅฐ่ฏทๆฑ
questionid: 450
choice[]: 8
choice[]: 4
usercomment: ๆญคๅปๅฟๆ
:ๆ
submit: ๆไบค
ๅค้ไผๆๅคไธชchoice[]....
"""
data = {
'questionid': questionid,
'choice[]': choice[0] if len(choice) == 1 else choice,
'usercomment': 'ๅคช้พไบ๏ผ',
'wantskip': 'ไธไผ'
}
self.debug(f"็ญพๅฐ่ฏทๆฑๅๆฐ {data}")
sign_res = RequestUtils(cookies=site_cookie,
headers=ua,
proxies=proxy
).post_res(url='https://chdbits.co/bakatest.php', data=data)
if not sign_res or sign_res.status_code != 200:
self.error(f"็ญพๅฐๅคฑ่ดฅ๏ผ็ญพๅฐๆฅๅฃ่ฏทๆฑๅคฑ่ดฅ")
return False, f'ใ{site}ใ็ญพๅฐๅคฑ่ดฅ๏ผ็ญพๅฐๆฅๅฃ่ฏทๆฑๅคฑ่ดฅ'
# ๅคๆญๆฏๅฆ็ญพๅฐๆๅ
sign_status = self.sign_in_result(html_res=sign_res.text,
regexs=self._success_regex)
if sign_status:
self.info(f"็ญพๅฐๆๅ")
if exits_answers and question:
# ็ญพๅฐๆๅๅๅ
ฅๆฌๅฐๆไปถ
self.__write_local_answer(exits_answers=exits_answers or {},
question=question,
answer=choice)
return True, f'ใ{site}ใ็ญพๅฐๆๅ'
else:
sign_status = self.sign_in_result(html_res=sign_res.text,
regexs=self._sign_regex)
if sign_status:
self.info(f"ไปๆฅๅทฒ็ญพๅฐ")
return True, f'ใ{site}ใไปๆฅๅทฒ็ญพๅฐ'
self.error(f"็ญพๅฐๅคฑ่ดฅ๏ผ่ฏทๅฐ้กต้ขๆฅ็")
return False, f'ใ{site}ใ็ญพๅฐๅคฑ่ดฅ๏ผ่ฏทๅฐ้กต้ขๆฅ็'
def __write_local_answer(self, exits_answers, question, answer):
"""
็ญพๅฐๆๅๅๅ
ฅๆฌๅฐๆไปถ
"""
try:
exits_answers[question] = answer
# ๅบๅๅๆฐๆฎ
formatted_data = json.dumps(exits_answers, indent=4)
with open(self._answer_file, 'w') as f:
f.write(formatted_data)
except (FileNotFoundError, IOError, OSError) as e:
self.debug("็ญพๅฐๆๅๅๅ
ฅๆฌๅฐๆไปถๅคฑ่ดฅ")
| [] |
2024-01-10 | czh513/RLs-for-TF2.0-Gym-Unity | algos~tf2algos~trpo.py | import rls
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from utils.tf2_utils import get_TensorSpecs, gaussian_clip_rsample, gaussian_likelihood_sum, gaussian_entropy
from algos.tf2algos.base.on_policy import make_on_policy_class
'''
Stole this from OpenAI SpinningUp. https://github.com/openai/spinningup/blob/master/spinup/algos/trpo/trpo.py
'''
def flat_concat(xs):
return tf.concat([tf.reshape(x, (-1,)) for x in xs], axis=0)
def assign_params_from_flat(x, params):
def flat_size(p): return int(np.prod(p.shape.as_list())) # the 'int' is important for scalars
splits = tf.split(x, [flat_size(p) for p in params])
new_params = [tf.reshape(p_new, p.shape) for p, p_new in zip(params, splits)]
return tf.group([p.assign(p_new) for p, p_new in zip(params, new_params)])
class TRPO(make_on_policy_class(mode='share')):
'''
Trust Region Policy Optimization, https://arxiv.org/abs/1502.05477
'''
def __init__(self,
s_dim,
visual_sources,
visual_resolution,
a_dim,
is_continuous,
beta=1.0e-3,
lr=5.0e-4,
delta=0.01,
lambda_=0.95,
cg_iters=10,
train_v_iters=10,
damping_coeff=0.1,
backtrack_iters=10,
backtrack_coeff=0.8,
epsilon=0.2,
critic_lr=1e-3,
hidden_units={
'actor_continuous': [32, 32],
'actor_discrete': [32, 32],
'critic': [32, 32]
},
**kwargs):
super().__init__(
s_dim=s_dim,
visual_sources=visual_sources,
visual_resolution=visual_resolution,
a_dim=a_dim,
is_continuous=is_continuous,
**kwargs)
self.beta = beta
self.delta = delta
self.lambda_ = lambda_
self.epsilon = epsilon
self.cg_iters = cg_iters
self.damping_coeff = damping_coeff
self.backtrack_iters = backtrack_iters
self.backtrack_coeff = backtrack_coeff
self.train_v_iters = train_v_iters
# self.actor_TensorSpecs = get_TensorSpecs([self.s_dim], self.visual_dim, [self.a_dim], [1], [1])
# self.critic_TensorSpecs = get_TensorSpecs([self.s_dim], self.visual_dim, [1])
if self.is_continuous:
self.actor_net = rls.actor_mu(self.feat_dim, self.a_dim, hidden_units['actor_continuous'])
self.log_std = tf.Variable(initial_value=-0.5 * np.ones(self.a_dim, dtype=np.float32), trainable=True)
self.actor_tv = self.actor_net.trainable_variables + [self.log_std]
# self.Hx_TensorSpecs = [tf.TensorSpec(shape=flat_concat(self.actor_tv).shape, dtype=tf.float32)] \
# + get_TensorSpecs([self.s_dim], self.visual_dim, [self.a_dim], [self.a_dim])
else:
self.actor_net = rls.actor_discrete(self.feat_dim, self.a_dim, hidden_units['actor_discrete'])
self.actor_tv = self.actor_net.trainable_variables
# self.Hx_TensorSpecs = [tf.TensorSpec(shape=flat_concat(self.actor_tv).shape, dtype=tf.float32)] \
# + get_TensorSpecs([self.s_dim], self.visual_dim, [self.a_dim])
self.critic_net = rls.critic_v(self.feat_dim, hidden_units['critic'])
self.critic_tv = self.critic_net.trainable_variables + self.other_tv
self.critic_lr = self.init_lr(critic_lr)
self.optimizer_critic = self.init_optimizer(self.critic_lr)
self.model_recorder(dict(
actor=self.actor_net,
critic=self.critic_net,
optimizer_critic=self.optimizer_critic
))
if self.is_continuous:
data_name_list = ['s', 'visual_s', 'a', 'r', 's_', 'visual_s_', 'done', 'value', 'log_prob', 'old_mu', 'old_log_std']
else:
data_name_list = ['s', 'visual_s', 'a', 'r', 's_', 'visual_s_', 'done', 'value', 'log_prob', 'old_logp_all']
self.initialize_data_buffer(
data_name_list=data_name_list)
def show_logo(self):
self.recorder.logger.info('''
ใใใ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝใใใใใใ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝใใใใใใใ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝใใใใใใใใใ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝใใใใใ
ใใใ๏ฝ๏ฝใใ๏ฝใใ๏ฝ๏ฝใใใใใใใใ๏ฝ๏ฝใ๏ฝ๏ฝ๏ฝใใใใใใใใใ๏ฝ๏ฝใใ๏ฝ๏ฝใใใใใใใใ๏ฝ๏ฝ๏ฝใ๏ฝ๏ฝ๏ฝใใใใ
ใใใ๏ฝ๏ฝใใ๏ฝใใ๏ฝ๏ฝใใใใใใใใ๏ฝใใใ๏ฝ๏ฝ๏ฝใใใใใใใใ๏ฝใใใ๏ฝ๏ฝ๏ฝใใใใใใใ๏ฝ๏ฝใใใ๏ฝ๏ฝใใใใ
ใใใใใใใ๏ฝใใใใใใใใใใใใ๏ฝใใใ๏ฝ๏ฝใใใใใใใใใ๏ฝใใใ๏ฝ๏ฝ๏ฝใใใใใใใ๏ฝ๏ฝใใใ๏ฝ๏ฝ๏ฝใใใ
ใใใใใใใ๏ฝใใใใใใใใใใใใ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝใใใใใใใใใ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝใใใใใใใ๏ฝ๏ฝ๏ฝใใใ๏ฝ๏ฝ๏ฝใใใ
ใใใใใใใ๏ฝใใใใใใใใใใใใ๏ฝ๏ฝใ๏ฝ๏ฝ๏ฝใใใใใใใใใ๏ฝใใใใใใใใใใใใใ๏ฝ๏ฝใใใ๏ฝ๏ฝ๏ฝใใใ
ใใใใใใใ๏ฝใใใใใใใใใใใใ๏ฝใใใ๏ฝ๏ฝใใใใใใใใใ๏ฝใใใใใใใใใใใใใ๏ฝ๏ฝใใใ๏ฝ๏ฝใใใใ
ใใใใใใใ๏ฝใใใใใใใใใใใใ๏ฝใใใ๏ฝ๏ฝ๏ฝใใใใใใใใ๏ฝใใใใใใใใใใใใใ๏ฝ๏ฝใใ๏ฝ๏ฝ๏ฝใใใใ
ใใใใใ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝใใใใใใใใ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝใ๏ฝ๏ฝ๏ฝใใใใใใ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝใใใใใใใใใใใใ๏ฝ๏ฝ๏ฝ๏ฝ๏ฝใ
''')
def choose_action(self, s, visual_s, evaluation=False):
a, _v, _lp, _morlpa, self.cell_state = self._get_action(s, visual_s, self.cell_state)
a = a.numpy()
self._value = np.squeeze(_v.numpy())
self._log_prob = np.squeeze(_lp.numpy()) + 1e-10
if self.is_continuous:
self._mu = _morlpa.numpy()
else:
self._logp_all = _morlpa.numpy()
return a
@tf.function
def _get_action(self, s, visual_s, cell_state):
with tf.device(self.device):
feat, cell_state = self.get_feature(s, visual_s, cell_state=cell_state, record_cs=True)
value = self.critic_net(feat)
if self.is_continuous:
mu = self.actor_net(feat)
sample_op, _ = gaussian_clip_rsample(mu, self.log_std)
log_prob = gaussian_likelihood_sum(sample_op, mu, self.log_std)
return sample_op, value, log_prob, mu, cell_state
else:
logits = self.actor_net(feat)
logp_all = tf.nn.log_softmax(logits)
norm_dist = tfp.distributions.Categorical(logits)
sample_op = norm_dist.sample()
log_prob = norm_dist.log_prob(sample_op)
return sample_op, value, log_prob, logp_all, cell_state
def store_data(self, s, visual_s, a, r, s_, visual_s_, done):
assert isinstance(a, np.ndarray), "store_data need action type is np.ndarray"
assert isinstance(r, np.ndarray), "store_data need reward type is np.ndarray"
assert isinstance(done, np.ndarray), "store_data need done type is np.ndarray"
self._running_average(s)
if self.is_continuous:
self.data.add(s, visual_s, a, r, s_, visual_s_, done, self._value, self._log_prob, self._mu, self.log_std.numpy())
else:
self.data.add(s, visual_s, a, r, s_, visual_s_, done, self._value, self._log_prob, self._logp_all)
@tf.function
def _get_value(self, feat):
with tf.device(self.device):
value = self.critic_net(feat)
return value
def calculate_statistics(self):
feat, self.cell_state = self.get_feature(self.data.last_s(), self.data.last_visual_s(), cell_state=self.cell_state, record_cs=True)
init_value = np.squeeze(self._get_value(feat).numpy())
self.data.cal_dc_r(self.gamma, init_value)
self.data.cal_td_error(self.gamma, init_value)
self.data.cal_gae_adv(self.lambda_, self.gamma)
def learn(self, **kwargs):
self.train_step = kwargs.get('train_step')
def _train(data, crsty_loss, cell_state):
if self.is_continuous:
s, visual_s, a, dc_r, old_log_prob, advantage, old_mu, old_log_std = data
Hx_args = (s, visual_s, old_mu, old_log_std)
else:
s, visual_s, a, dc_r, old_log_prob, advantage, old_logp_all = data
Hx_args = (s, visual_s, old_logp_all)
actor_loss, entropy, gradients = self.train_actor(
(s, visual_s, a, old_log_prob, advantage),
cell_state
)
x = self.cg(self.Hx, gradients.numpy(), Hx_args)
x = tf.convert_to_tensor(x)
alpha = np.sqrt(2 * self.delta / (np.dot(x, self.Hx(x, *Hx_args)) + 1e-8))
for i in range(self.backtrack_iters):
assign_params_from_flat(alpha * x * (self.backtrack_coeff ** i), self.actor_tv)
for _ in range(self.train_v_iters):
critic_loss = self.train_critic(
(s, visual_s, dc_r),
crsty_loss,
cell_state
)
summaries = dict([
['LOSS/actor_loss', actor_loss],
['LOSS/critic_loss', critic_loss],
['Statistics/entropy', entropy]
])
return summaries
if self.is_continuous:
train_data_list = ['s', 'visual_s', 'a', 'discounted_reward', 'log_prob', 'gae_adv', 'old_mu', 'old_log_std']
else:
train_data_list = ['s', 'visual_s', 'a', 'discounted_reward', 'log_prob', 'gae_adv', 'old_logp_all']
self._learn(function_dict={
'calculate_statistics': self.calculate_statistics,
'train_function': _train,
'train_data_list': train_data_list,
'summary_dict': dict([
['LEARNING_RATE/critic_lr', self.critic_lr(self.train_step)]
])
})
@tf.function(experimental_relax_shapes=True)
def train_actor(self, memories, cell_state):
s, visual_s, a, old_log_prob, advantage = memories
with tf.device(self.device):
feat = self.get_feature(s, visual_s, cell_state=cell_state)
with tf.GradientTape() as tape:
if self.is_continuous:
mu = self.actor_net(feat)
new_log_prob = gaussian_likelihood_sum(a, mu, self.log_std)
entropy = gaussian_entropy(self.log_std)
else:
logits = self.actor_net(feat)
logp_all = tf.nn.log_softmax(logits)
new_log_prob = tf.reduce_sum(a * logp_all, axis=1, keepdims=True)
entropy = -tf.reduce_mean(tf.reduce_sum(tf.exp(logp_all) * logp_all, axis=1, keepdims=True))
ratio = tf.exp(new_log_prob - old_log_prob)
actor_loss = -tf.reduce_mean(ratio * advantage)
actor_grads = tape.gradient(actor_loss, self.actor_tv)
gradients = flat_concat(actor_grads)
self.global_step.assign_add(1)
return actor_loss, entropy, gradients
@tf.function(experimental_relax_shapes=True)
def Hx(self, x, *args):
if self.is_continuous:
s, visual_s, old_mu, old_log_std = args
else:
s, visual_s, old_logp_all = args
with tf.device(self.device):
with tf.GradientTape(persistent=True) as tape:
feat = self.get_feature(s, visual_s)
if self.is_continuous:
mu = self.actor_net(feat)
var0, var1 = tf.exp(2 * self.log_std), tf.exp(2 * old_log_std)
pre_sum = 0.5 * (((old_mu - mu)**2 + var0) / (var1 + 1e-8) - 1) + old_log_std - self.log_std
all_kls = tf.reduce_sum(pre_sum, axis=1)
kl = tf.reduce_mean(all_kls)
else:
logits = self.actor_net(feat)
logp_all = tf.nn.log_softmax(logits)
all_kls = tf.reduce_sum(tf.exp(old_logp_all) * (old_logp_all - logp_all), axis=1)
kl = tf.reduce_mean(all_kls)
g = flat_concat(tape.gradient(kl, self.actor_tv))
_g = tf.reduce_sum(g * x)
hvp = flat_concat(tape.gradient(_g, self.actor_tv))
if self.damping_coeff > 0:
hvp += self.damping_coeff * x
return hvp
@tf.function(experimental_relax_shapes=True)
def train_critic(self, memories, crsty_loss, cell_state):
s, visual_s, dc_r = memories
with tf.device(self.device):
with tf.GradientTape() as tape:
feat = self.get_feature(s, visual_s, cell_state=cell_state)
value = self.critic_net(feat)
td_error = dc_r - value
value_loss = tf.reduce_mean(tf.square(td_error)) + crsty_loss
critic_grads = tape.gradient(value_loss, self.critic_tv)
self.optimizer_critic.apply_gradients(
zip(critic_grads, self.critic_tv)
)
return value_loss
def cg(self, Ax, b, args):
"""
Conjugate gradient algorithm
(see https://en.wikipedia.org/wiki/Conjugate_gradient_method)
"""
x = np.zeros_like(b)
r = b.copy() # Note: should be 'b - Ax(x)', but for x=0, Ax(x)=0. Change if doing warm start.
p = r.copy()
r_dot_old = np.dot(r, r)
for _ in range(self.cg_iters):
z = Ax(tf.convert_to_tensor(p), *args)
alpha = r_dot_old / (np.dot(p, z) + 1e-8)
x += alpha * p
r -= alpha * z
r_dot_new = np.dot(r, r)
p = r + (r_dot_new / r_dot_old) * p
r_dot_old = r_dot_new
return x
| [] |
2024-01-10 | navin20/AspectBasedSentimentAnalysis | utils~preprocess.py | import nltk
import numpy as np
import pandas as pd
import spacy
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk import pos_tag, word_tokenize
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel
def preprocess(df):
'''
Preprocess text from dataframe. Splits reviews into sentences, then each sentence is preprocessed.
Returns dataframe with original and preprocessed text.
'''
# Split into sentences
nlp = spacy.load('en_core_web_sm')
review_ids = []
text = []
# Assuming the reviews aren't split and that reviews columns are 'review',
# for review_id, review in zip(df['review_id'], df['review']):
# sentences= [i for i in nlp(review).sents]
# for sentence in sentences:
# review_ids.append(review_id)
# text.append(str(sentence))
# No review IDs
for review in df['review']:
sentences= [i for i in nlp(review).sents]
for sentence in sentences:
# review_ids.append(review_id)
text.append(str(sentence))
reviews_df = pd.DataFrame()
# reviews_df['review_id'] = review_ids
reviews_df['raw_text'] = text
# Remove symbols,punctuations...
reviews_df['clean_text'] = reviews_df['raw_text'].str.replace('[^\w\s]','')
reviews_df['clean_text'] = reviews_df['clean_text'].str.replace('\d+', '')
reviews_df['clean_text'] = reviews_df['clean_text'].str.lower()
reviews_df['clean_text'] = reviews_df['clean_text'].str.replace('^https?:\/\/.*[\r\n]*', '')
reviews_df['clean_text'].replace('', np.nan, inplace=True)
drop = reviews_df[pd.isnull(reviews_df['clean_text'])].index
reviews_df.drop(drop , inplace=True)
reviews_df = reviews_df.reset_index(drop = True)
def preprocess_aspect(df):
'''
Preprocessing text for aspect extraction and classification.
Returns tf-idf/corpus, LDA model.
'''
def sent_to_words(sentences):
for sentence in sentences:
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations
data_words = list(sent_to_words(df['clean_text']))
# Build the bigram and trigram models
bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100) # higher threshold fewer phrases.
trigram = gensim.models.Phrases(bigram[data_words], threshold=100)
# Faster way to get a sentence clubbed as a trigram/bigram
bigram_mod = gensim.models.phrases.Phraser(bigram)
trigram_mod = gensim.models.phrases.Phraser(trigram)
stop_words = stopwords.words('english')
stop_words.extend(['from', 'subject', 're', 'edu', 'use'])
# Define functions for stopwords, bigrams, trigrams and lemmatization
def remove_stopwords(texts):
return [[word for word in simple_preprocess(str(doc)) if word not in stop_words] for doc in texts]
def make_bigrams(texts):
return [bigram_mod[doc] for doc in texts]
def make_trigrams(texts):
return [trigram_mod[bigram_mod[doc]] for doc in texts]
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']):
"""https://spacy.io/api/annotation"""
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append([token.lemma_ for token in doc if token.pos_ in allowed_postags])
return texts_out
# Remove Stop Words
data_words_nostops = remove_stopwords(data_words)
# Form Bigrams
data_words_bigrams = make_bigrams(data_words_nostops)
# Initialize spacy 'en' model, keeping only tagger component (for efficiency)
# python3 -m spacy download en
nlp = spacy.load('en', disable=['parser', 'ner'])
# Do lemmatization keeping only noun, adj, vb, adv
data_lemmatized = lemmatization(data_words_bigrams, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'])
# Create Dictionary
id2word = corpora.Dictionary(data_lemmatized)
# Create Corpus
texts = data_lemmatized
# Term Document Frequency
corpus = [id2word.doc2bow(text) for text in texts]
return corpus, id2word
porter = PorterStemmer()
def stemSentence(sentence):
token_words=word_tokenize(sentence)
token_words
stem_sentence=[]
for word in token_words:
stem_sentence.append(porter.stem(word))
stem_sentence.append(" ")
return "".join(stem_sentence)
stemmed = []
for sentence in reviews_df['clean_text']:
stemmed.append(stemSentence(sentence))
reviews_df['stem_text'] = stemmed
# corpus, id2word = preprocess_aspect(reviews_df)
# Remove stop words
# stop_words = set(stopwords.words('english'))
# reviews_df['no_sw'] = reviews_df['clean_text'][:].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop_words)]))
return reviews_df #, corpus, id2word | [] |
2024-01-10 | navin20/AspectBasedSentimentAnalysis | utils~sentiment_classifiers.py | import pandas as pd
import numpy as np
import joblib
import timeit
from tensorflow.keras.models import load_model
from tensorflow.keras.models import model_from_json
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from utils.preprocess import preprocess
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel
class Asp_Sentiment_classifiers:
"""
Loads all models provides functions to access them.
Receives dataframe and performs predictions on them.
"""
def __init__(self):
'''
Loads all models on startup once.
'''
# Load aspect model
# lda = gensim.models.LdaModel.load(' models/lda.model')
# Load sentiment models
# Staff
# json_file = open("models/staff_sentiment_model.json", 'r')
# loaded_model_json = json_file.read()
# json_file.close()
# staff_model = model_from_json(loaded_model_json)
# staff_model.load_weights("models/staff_sentiment_model.h5")
# # Amenities
# json_file = open("models/amenities_sentiment_model.json", 'r')
# loaded_model_json = json_file.read()
# json_file.close()
# amenities_model = model_from_json(loaded_model_json)
# amenities_model.load_weights("models/amenities_sentiment_model.h5")
# # Condition
# json_file = open("models/condition_sentiment_model.json", 'r')
# loaded_model_json = json_file.read()
# json_file.close()
# condition_model = model_from_json(loaded_model_json)
# condition_model.load_weights("models/condition_sentiment_model.h5")
# # Cleanliness
# json_file = open("models/cleanliness_sentiment_model.json", 'r')
# loaded_model_json = json_file.read()
# json_file.close()
# cleanliness_model = model_from_json(loaded_model_json)
# cleanliness_model.load_weights("models/cleanliness_sentiment_model.h5")
# Overall
json_file = open("models/sentiment_model2.json", 'r')
loaded_model_json = json_file.read()
json_file.close()
overall_model = model_from_json(loaded_model_json)
overall_model.load_weights("models/sentiment_model2.h5")
# Aspect
# lda_model = gensim.models.LdaModel.load('models/lda.model')
json_file = open("models/aspect_model2.json", 'r')
loaded_model_json = json_file.read()
json_file.close()
aspect_model = model_from_json(loaded_model_json)
aspect_model.load_weights("models/aspect_model2.h5")
tokenizer = Tokenizer(num_words=5000)
tokenizer = joblib.load("models/tokenizer2.pkl")
# self.staff_model = staff_model
# self.amenities_model = amenities_model
# self.condition_model = condition_model
# self.cleanliness_model = cleanliness_model
self.overall_model = overall_model
self.aspect_model = aspect_model
# self.aspect_model = lda_model
self.tokenizer = tokenizer
# def get_staff_model(self):
# return self.staff_model
# def get_amenities_model(self):
# return self.amenities_model
# def get_condition_model(self):
# return self.amenities_model
# def get_cleanliness_model(self):
# return self.cleanliness_model
# def get_overall_model(self):
# return self.overall_model
# def get_aspect_model(self):
# return self.aspect_model
# def aspects(self, df, corpus):
# """
# Classifies each sentence by aspect(s).
# Returns dataframe with additional columns for each aspect.
# """
# lda_model = self.aspect_model
# corpus = corpus
# def format_topics_sentences(ldamodel=lda_model, corpus=corpus, texts=df['clean_text'].tolist(), review_id=df['review_id']):
# # Init output
# sent_topics_df = pd.DataFrame()
# # Get main topic in each document
# for i, row in enumerate(ldamodel[corpus]):
# row = sorted(row[0], key=lambda x: (x[1]), reverse=True)
# # row = sorted(row, key=lambda x: (x[1]), reverse=True) # old line
# # Get the Dominant topic, Perc Contribution and Keywords for each document
# for j, (topic_num, prop_topic) in enumerate(row):
# if j == 0: # => dominant topic
# wp = ldamodel.show_topic(topic_num)
# topic_keywords = ", ".join([word for word, prop in wp])
# sent_topics_df = sent_topics_df.append(pd.Series([int(topic_num), round(prop_topic,4), topic_keywords]), ignore_index=True)
# else:
# break
# sent_topics_df.columns = ['Dominant_Topic', 'Perc_Contribution', 'Topic_Keywords']
# # Add original text to the end of the output
# review = pd.Series(review_id)
# contents = pd.Series(texts)
# sent_topics_df = pd.concat([review, sent_topics_df, contents], axis=1)
# return(sent_topics_df)
# df_topic_sents_keywords = format_topics_sentences(ldamodel=lda_model, corpus=corpus, texts=df['clean_text'].tolist(), review_id=df['review_id'])
# # Format
# df_dominant_topic = df_topic_sents_keywords.reset_index()
# df_dominant_topic.columns = ['Sentence_No', 'review_id', 'Dominant_Topic', 'Topic_Perc_Contrib', 'Keywords', 'Text']
# def classify(df_dominant_topic, df):
# output_df = df
# pass
# return output_df
def sentiments(self, reviews_df):
"""
After classifying aspects, classify overall sentiments and then sentiments per aspect for all reviews/sentences.
Returns dataframe
"""
tokenizer = self.tokenizer
# Vectorize/tokenize sentence with vocabulary
maxlen=100
X_data = tokenizer.texts_to_sequences(reviews_df['stem_text'])
X_data = pad_sequences(X_data, padding='post', maxlen=maxlen)
# Overall Sentiment Predictions
# y_pred = self.overall_model.predict(X_data, batch_size=5, verbose=1)
# y_pred_bool = np.argmax(y_pred, axis=1)
# predictions = []
# for pred in y_pred_bool:
# if pred == 0:
# predictions.append('positive')
# elif pred == 1:
# predictions.append('neutral')
# else:
# predictions.append('negative')
# reviews_df['overall_sentiment'] = predictions
# Sentiments per Aspect
def get_labels(y_pred):
if y_pred == 0:
return 'positive'
elif y_pred == 1:
return 'neutral'
else:
return 'negative'
reviews_df['overall_sentiment'] = None
reviews_df['staff_sent'] = None
reviews_df['amenities_sent'] = None
reviews_df['condition_sent'] = None
reviews_df['clean_sent'] = None
print('Running... Please wait...')
for i, aspect in zip(range(len(X_data)), reviews_df['aspect']):
y_pred = -1
if "a1" in aspect:
y_pred = self.overall_model.predict(X_data[i:i+1], batch_size=5, verbose=0)
y_pred_bool = np.argmax(y_pred, axis=1)
reviews_df['staff_sent'][i] = get_labels(y_pred_bool)
reviews_df['overall_sentiment'][i] = get_labels(y_pred_bool)
elif "a2" in aspect:
y_pred = self.overall_model.predict(X_data[i:i+1], batch_size=5, verbose=0)
y_pred_bool = np.argmax(y_pred, axis=1)
reviews_df['amenities_sent'][i] = get_labels(y_pred_bool)
reviews_df['overall_sentiment'][i] = get_labels(y_pred_bool)
elif "a3" in aspect:
y_pred = self.overall_model.predict(X_data[i:i+1], batch_size=5, verbose=0)
y_pred_bool = np.argmax(y_pred, axis=1)
reviews_df['condition_sent'][i] = get_labels(y_pred_bool)
reviews_df['overall_sentiment'][i] = get_labels(y_pred_bool)
elif "a4" in aspect:
y_pred = self.overall_model.predict(X_data[i:i+1], batch_size=5, verbose=0)
y_pred_bool = np.argmax(y_pred, axis=1)
reviews_df['clean_sent'][i] = get_labels(y_pred_bool)
reviews_df['overall_sentiment'][i] = get_labels(y_pred_bool)
else:
y_pred = self.overall_model.predict(X_data[i:i+1], batch_size=5, verbose=1)
y_pred_bool = np.argmax(y_pred, axis=1)
reviews_df['overall_sentiment'][i] = get_labels(y_pred_bool)
# else:
# y_pred = self.overall_model.predict(X_data, batch_size=5, verbose=1)
return reviews_df
def aspect_classifier(self, reviews_df, threshold=0.3):
"""
Classifies according to aspect.
Returns dataframe with aspect per sentence.
"""
tokenizer = self.tokenizer
# Vectorize/tokenize sentence with vocabulary
maxlen=100
X_data = tokenizer.texts_to_sequences(reviews_df['stem_text'])
X_data = pad_sequences(X_data, padding='post', maxlen=maxlen)
y_pred = self.aspect_model.predict(X_data, batch_size=5, verbose=1)
y_pred_bool = y_pred
# Threshold *requires tuning*
y_pred_bool[y_pred_bool>=threshold] = 1
y_pred_bool[y_pred_bool<threshold] = 0
predictions = [[] for _ in range(len(y_pred_bool))]
for index, values in zip(range(len(y_pred_bool)), y_pred_bool):
if values[0] == 1:
predictions[index].append('a1')
if values[1] == 1:
predictions[index].append('a2')
if values[2] == 1:
predictions[index].append('a3')
if values[3] == 1:
predictions[index].append('a4')
reviews_df['aspect'] = predictions
return reviews_df | [] |
2024-01-10 | AdieLaine/Lnu-AI-Chat | lnu-ai-chat.py | # System-related
import os
import tempfile
import time
# File and IO operations
import json
import soundfile as sf
# Data processing and manipulation
import pandas as pd
import random
# Image processing
from PIL import Image
# Text-to-speech
from gtts import gTTS
from pydub import AudioSegment
# Type hints
from typing import Dict, List, Tuple, Optional
# Language model
import openai
# Web application framework
import streamlit as st
from streamlit_option_menu import option_menu
# Machine learning metrics and preprocessing
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import normalize
from scipy.spatial.distance import cosine
# Environment variables
from dotenv import load_dotenv
CUSTOM_CSS = """
<style>
.big-font {
font-size: 20px;
font-weight: bold;
}
.red-text {
color: crimson;
}
.green-text {
color: #42f5ad;
}
.blue-text {
color: #4287f5;
}
.selected-word {
font-weight: bold;
color: #f542f7;
}
.yellow-text {
color: #FFD700;
}
.custom-option-menu select {
font-weight: bold;
color: #FF6347;
background-color: #FFF;
}
</style>
"""
# Streamlit configurations
st.set_page_config(
page_title="Lnu-AI Chat - An Indigenous AI System",
page_icon="๐ชถ",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://github.com/AdieLaine/Lnu-AI-Chat',
'Report a bug': 'https://github.com/AdieLaine/Lnu-AI-Chat/issues',
'About': """
# Lnu-AI
Welcome to Lnu-AI Chat! This application is dedicated to helping people learn and appreciate the Mi'kmaq language, an indigenous language of Eastern Canada and the United States.
## About Mi'kmaq Language
The Mi'kmaq language is a rich, polysynthetic language with a deep historical and cultural significance. It is, however, at risk of being lost as the number of fluent speakers decreases.
## The Lnu-AI Project
Lnu-AI utilizes advanced AI technologies to provide a platform for learning, using, and preserving the Mi'kmaq language. It offers various features like chat functionality, storytelling, and deep linguistic analysis to facilitate language learning and appreciation.
## Your Contribution
As an open-source project, we welcome contributions that help improve Lnu-AI and further its mission to preserve the Mi'kmaq language. Please visit our [GitHub](https://github.com/AdieLaine/Lnu-AI-Chat) page for more information.
Enjoy your journey with the Mi'kmaq language!
"""
}
)
@st.cache_data
def load_all_word_details(file):
"""
Load word details from a JSON file.
Parameters:
file (str): Path to the JSON file containing the word details.
Returns:
all_word_details (dict): Dictionary of word details loaded from the JSON file.
"""
full_path = os.path.join("data", file)
if os.path.isfile(full_path):
with open(full_path, 'r') as f:
all_word_details = json.load(f)
return all_word_details
else:
return None
file = 'all_word_details.json'
all_word_details: dict = load_all_word_details(file)
@st.cache_data
def load_trained_data(file_paths):
"""
Load trained data from multiple files. Handles both formats.
Parameters:
file_paths (list): List of paths to the trained data files.
Returns:
trained_data (list): List of trained data.
"""
trained_data: list = []
# Prioritize 'trained_data' in the list
sorted_file_paths = sorted(file_paths, key=lambda path: "trained_data" != path)
for file_path in sorted_file_paths:
full_path = os.path.join("data", file_path)
if os.path.isfile(full_path):
with open(full_path, 'r') as f:
trained_data.extend([json.loads(line) for line in f])
if all('prompt' in data and 'completion' in data for data in trained_data):
return trained_data
else:
return None
file_paths = ['trained_data.jsonl']
trained_data: list = load_trained_data(file_paths)
@st.cache_data
def load_word_data(file_path):
"""
Load Lnu-AI Dictionary Word Data from a JSON file.
Parameters:
file_path (str): Path to the JSON file containing the Lnu-AI Dictionary Word Data.
Returns:
word_data (dict): Dictionary of Lnu-AI Dictionary Word Data loaded from the JSON file.
"""
data_path = os.path.join("data", file_path)
try:
with open(data_path, 'r') as file:
word_data = json.load(file) # Load and return the data
return word_data
except FileNotFoundError: # Handle file not found error
st.error(f"File {file_path} not found.")
return None
except json.JSONDecodeError: # Handle JSON decode error
st.error(f"Error decoding JSON file {file_path}.")
return None
@st.cache_data
def load_trained_data_embeddings(file_path):
"""
Load trained data embeddings from a JSON file.
Parameters:
file_path (str): Path to the JSON file containing the trained data embeddings.
Returns:
trained_data_embeddings (dict): Dictionary of trained data embeddings loaded from the JSON file.
"""
full_path = os.path.join("data", file_path)
if os.path.isfile(full_path):
with open(full_path, 'r') as file:
trained_data_embeddings = json.load(file)
return trained_data_embeddings
else:
return None
file_path = 'trained_data_embeddings.json'
trained_data_embeddings: dict = load_trained_data_embeddings(file_path)
@st.cache_data
def load_word_details_embeddings(file):
"""
Load word embeddings from a JSON file.
Parameters:
file (str): Path to the JSON file containing the word embeddings.
Returns:
word_details_embeddings (dict): Dictionary of word embeddings loaded from the JSON file.
"""
full_path = os.path.join("data", file)
if os.path.isfile(full_path):
with open(full_path, 'r') as f:
try:
word_details_embeddings = json.load(f)
return word_details_embeddings
except json.JSONDecodeError:
# Handle JSON decoding error
return None
else:
# Handle file not found
return None
file = 'word_details_embeddings.json'
word_details_embeddings: dict = load_word_details_embeddings(file)
def get_env_variable(name, default=None):
"""
Returns the value of the environment variable with the given name.
First tries to fetch it from Streamlit secrets, and if not available,
falls back to the local environment. If it's not found in either place,
returns the default value if provided.
Args:
name (str): The name of the environment variable.
default (str, optional): The default value to be returned in case the environment variable is not found.
Returns:
str: The value of the environment variable, or the default value.
"""
if st.secrets is not None and name in st.secrets:
# Fetch the secret from Streamlit secrets
return st.secrets[name]
else:
# Try to get the secret from the local environment
value = os.getenv(name)
if value is None and default is not None:
# If the environment variable is not found and a default value is provided,
# return the default value
return default
else:
return value
@st.cache_resource(show_spinner=False)
def load_env_variables_and_data():
"""
Loads Lnu-AI Assistant environment variables and data.
Returns:
dict: A dictionary containing the loaded environment variables and data.
"""
api_keys, tts_settings, local_data_files, models = load_env_variables()
file_paths = ['trained_data.jsonl']
trained_data = load_trained_data(file_paths)
all_word_details = load_all_word_details(local_data_files.get("all_word_details"))
trained_data_embeddings = load_trained_data_embeddings(local_data_files.get("trained_data_embeddings"))
word_details_embeddings = load_word_details_embeddings(local_data_files.get("word_details_embeddings"))
return {
"api_keys": api_keys,
"tts_settings": tts_settings,
"local_data_files": local_data_files,
"models": models,
"completion_model": trained_data,
"all_word_details": all_word_details,
"trained_data": trained_data,
"trained_data_embeddings": trained_data_embeddings,
"word_details_embeddings": word_details_embeddings,
"CUSTOM_CSS": CUSTOM_CSS
}
@st.cache_resource(show_spinner=False)
def load_env_variables():
"""
Load all the environment variables required for the Lnu-AI Assistant.
Returns:
Tuple: A tuple containing the loaded environment variables.
"""
load_dotenv()
api_keys = {
"openai": get_env_variable("OPENAI_API_KEY"),
}
tts_settings = {
"tts_audio": get_env_variable('TTS_AUDIO'),
"local_tts": get_env_variable('LOCAL_TTS'),
}
local_data_files = {
"trained_data": (os.getenv("TRAINED_DATA") + '.jsonl') if os.getenv("TRAINED_DATA") else None,
"all_word_details": (os.getenv("ALL_WORD_DETAILS") + '.json') if os.getenv("ALL_WORD_DETAILS") else None,
"trained_data_embeddings": (os.getenv("TRAINED_DATA_EMBEDDINGS") + '.json') if os.getenv("TRAINED_DATA_EMBEDDINGS") else None,
"word_details_embeddings": (os.getenv("WORD_DETAILS_EMBEDDINGS") + '.json') if os.getenv("WORD_DETAILS_EMBEDDINGS") else None,
}
models = {
"chat_model": os.getenv("CHAT_MODEL_SELECTION", default="gpt-3.5-turbo-0613"),
"completion_model": os.getenv("COMPLETION_MODEL_SELECTION", default="gpt-3.5-turbo-0613"),
"fine_tuned_model_dictionary": os.getenv("FINE_TUNED_MODEL_DICTIONARY"),
"fine_tuned_model_data": os.getenv("FINE_TUNED_MODEL_DATA")
}
openai.api_key = api_keys["openai"]
return api_keys, tts_settings, local_data_files, models
def generate_audio(text, tts_service):
"""
Generate audio from text using a TTS service.
Parameters:
text (str): The input text.
tts_service (str): The TTS service to use (e.g., "gtts", "st.audio").
Returns:
str: Path to the generated audio file.
"""
tts_service = tts_service.lower() # convert to lower case for case-insensitive comparison
if tts_service == 'gtts':
tts = gTTS(text=text, lang='en') # Replace 'en' with the appropriate language if needed
# Save the speech audio into a temporary mp3 file
temp_mp3 = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_mp3.name)
# Convert the temporary mp3 file to wav format
audio = AudioSegment.from_mp3(temp_mp3.name)
temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
audio.export(temp_wav.name, format='wav')
# Return the path to the generated wav file
return temp_wav.name
elif tts_service == 'st.audio':
return text
else:
raise ValueError(f"Invalid Text-to-Speech service: {tts_service}")
@st.cache_data
def clean_reply(reply):
"""
Cleans the assistant's reply by removing trailing whitespaces and an extra period at the end, as well as unwanted "user" or "assistant" at the beginning.
Parameters:
reply (str): Reply from the assistant.
Returns:
str: Cleaned reply.
"""
# Check if the reply starts with 'user:' or 'assistant:', and remove it if it does
if reply.startswith('user:') or reply.startswith('assistant:'):
reply = reply.split(':', 1)[1]
# Split the reply into lines
lines = reply.split('\n\n')
# Remove trailing whitespace from the last line
last_line = lines[-1].rstrip()
# Check if the last line ends with '.' and remove it if it does
if last_line.endswith("'""."):
last_line = last_line[:-1]
# Update the last line in the lines list
lines[-1] = last_line
# Join the lines back together
cleaned_reply = '\n'.join(lines)
return cleaned_reply.strip() # Added strip() to remove leading/trailing whitespace
@st.cache_data(show_spinner=False)
def find_most_similar_word(input_word, word_details_embeddings: dict):
"""
Find the most similar word to the input word based on the cosine similarity of their embeddings.
Parameters:
input_word (str): The input word.
word_details_embeddings (dict): Dictionary of word embeddings.
Returns:
(str): The most similar word to the input word, or the input word itself if no embedding is found for it.
"""
input_embedding = word_details_embeddings.get(input_word)
if input_embedding is not None:
similarities = {word: 1 - cosine(input_embedding, embedding)
for word, embedding in word_details_embeddings.items() if word != input_word}
most_similar_word = max(similarities, key=similarities.get)
return most_similar_word
return input_word # If we don't have an embedding for the input word, just return the input word itself
@st.cache_data(show_spinner=False)
def replace_unknown_words(user_message, word_details_embeddings: dict):
"""
Replace unknown words in a message with the most similar known words.
Parameters:
user_message (str): The user's message.
word_details_embeddings (dict): Dictionary of word embeddings.
Returns:
(str): The user's message with unknown words replaced with the most similar known words.
"""
words = user_message.split()
known_words = word_details_embeddings.keys()
new_words = [word if word in known_words else find_most_similar_word(word, word_details_embeddings) for word in words]
return ' '.join(new_words)
@st.cache_resource(show_spinner=False)
def enhance_with_gpt(prompt, final_reply, models):
"""
Enhances the reply with GPT model by sending the conversation for completion.
Args:
prompt (str): User's message.
final_reply (str): Assistant's reply.
models (dict): Dictionary of trained models.
Returns:
str: Enhanced reply.
"""
model_name = models.get("chat_model", "gpt-4-0613")
try:
gpt_messages = [
{"role": "system", "content": get_system_message()}, # Provides assistant directives
{"role": "user", "content": prompt},
{"role": "assistant", "content": final_reply}
]
response = openai.ChatCompletion.create(
model=model_name,
messages=gpt_messages,
max_tokens=1200,
temperature=0.4,
top_p=1.0,
frequency_penalty=0.5,
presence_penalty=0.5,
)
# Extract reply from response
if 'choices' in response and len(response['choices']) > 0:
if 'message' in response['choices'][0] and 'content' in response['choices'][0]['message']:
gpt_reply = response['choices'][0]['message']['content']
gpt_reply = clean_reply(gpt_reply)
return gpt_reply
except Exception as e:
# Log the error for later debugging
log_error(f"Error with {model_name}: {e}")
raise e # Rethrow the exception after logging
# If there was no error but also no 'choices' from OpenAI
return "I didn't quite get that. Could you rephrase or provide more details, please?"
def get_system_message():
# Update this to generate a system message dynamically based on your use case.
return "You are Lnu-AI, an AI system developed to promote and preserve Mi'kmaq language and culture."
def log_error(message):
# Update this to log the error message in a way that's appropriate for your application.
print(message)
fallback_responses = [
#The use of varied responses allows the assistant to provide a more natural conversation experience.
"I'm having a bit of trouble understanding your request. Could you please provide more details or try phrasing it differently?",
"Could you please clarify your question?",
"It seems I'm unable to assist with your query. Could you ask in a different way?",
"I'm currently having difficulty comprehending that. Could you offer more context or details?",
]
@st.cache_data(show_spinner=True)
def lnu_ai_chat(prompt: str, trained_data: list, models: dict, word_details_embeddings: dict) -> str:
"""
Generates a response for a given user prompt using trained data or a language model.
Ensures that unknown words in the user's message are replaced with the most similar known words.
Args:
prompt (str): The message inputted by the user.
trained_data (list): A list of dictionaries containing prompts and their corresponding completions from training data.
models (dict): A dictionary of trained models for the chat bot.
word_details_embeddings (dict): A dictionary of word embeddings for known words.
Returns:
str: The generated response from the chat bot.
"""
# Replace unknown words in the user's prompt
prompt = replace_unknown_words(prompt.lower(), word_details_embeddings)
# Check for matches in trained data
matched_prompt_data = [data for data in trained_data if prompt == data['prompt'].lower()]
if matched_prompt_data:
fine_tuned_replies = [data['completion'] for data in matched_prompt_data]
reply = '\n\n'.join(fine_tuned_replies)
reply = clean_reply(reply)
# Enhance the reply using GPT
reply = enhance_with_gpt(prompt, reply, models)
# Add the new reply to the trained_data
if reply not in fine_tuned_replies:
new_prompt_data = {'prompt': prompt, 'completion': reply}
trained_data.append(new_prompt_data)
return reply
# If no match found in trained data, generate completion with the trained models, enhanced as a fine-tuned model.
model_to_use = models["fine_tuned_model_data"] if "fine_tuned_model_data" in models else models.get("completion_model", "curie:ft-personal-2023-05-16-05-11-43")
response = openai.Completion.create(
model=model_to_use,
prompt=prompt,
max_tokens=1200,
temperature=0.4,
)
if 'choices' in response and len(response['choices']) > 0:
if 'text' in response['choices'][0]:
final_reply = response['choices'][0]['text']
final_reply = clean_reply(final_reply)
# Enhance the reply using GPT
final_reply = enhance_with_gpt(prompt, final_reply, models)
# Prompt-reply pair compared to the trained_data
new_prompt_data = {'prompt': prompt, 'completion': final_reply}
trained_data.append(new_prompt_data)
return final_reply
# Default response if no response is generated
return random.choice(fallback_responses)
def display_detail(label, value):
"""
Helper function to display a single detail of a word.
Args:
label (str): Label for the detail.
value (str): Value of the detail.
"""
if value is None or value == "N/A":
value = "Not available"
st.markdown(f"<div style='color:CornflowerBlue;'>{label}: </div>{value}", unsafe_allow_html=True)
@st.cache_data(show_spinner=False)
def display_word_details_chatbot(selected_word, all_word_details: dict):
"""
Displays details of a selected word in the chatbot interface.
Parameters:
selected_word (str): Selected word.
all_word_detail (dict): Details of all words.
"""
if selected_word not in all_word_details:
st.error(f"The word {selected_word} does not exist in the dictionary.")
return
word_detail = all_word_details[selected_word]
word = word_detail.get("word", "N/A")
pronunciation = word_detail.get("pronunciation", "N/A")
part_of_speech = word_detail.get("part_of_speech", "N/A")
translation = word_detail.get("translation", "N/A")
meanings = word_detail.get("meanings", ["N/A"])
example = word_detail.get("example", ["N/A"])
alternate_forms = word_detail.get("alternate_forms", ["N/A"])
# Display the word details using the helper function
display_detail('Word', word)
display_detail('Pronunciation', pronunciation)
display_detail('Part of Speech', part_of_speech)
display_detail('Translation', translation)
def chatbot_application(models, trained_data, tts_settings):
"""
The main chatbot application function.
This function handles loading previous session states or initializes new ones, sets up the sidebar and the main chat area,
and processes user input and chatbot responses.
Parameters:
models (dict): A dictionary of the trained models.
trained_data (dict): A dictionary of the trained data.
tts_settings (dict): Text-to-speech settings.
"""
# Load previous session states or initialize new ones
st.session_state.setdefault('past', [])
st.session_state.setdefault('generated', [])
# Add custom CSS for the image and title
st.markdown("""
<style>
.explore-words-title {
font-size: 24px;
text-align: center;
}
</style>
""", unsafe_allow_html=True)
# Define file path for image and load it
image_path = os.path.join(os.getcwd(), "images", "chatside.png")
image = Image.open(image_path)
# Set up sidebar
st.sidebar.image(image, use_column_width="auto", clamp=True, channels="RGB", output_format="png")
st.sidebar.markdown("---")
topics = [
"The Tale of Glooscap",
"The Mi'kmaq Creation Story",
"Tell me a Story",
"Discuss Mi'kmaq Linguistics",
"Explore Mi'kmaq History",
"Culture and Traditions",
"Let's Make a Canoe",
"Craft a Sweetgrass Basket",
"Create a Streamlit App",
"Define Lnu-AI Features",
]
sidebar_text = "\n- ".join(topics)
sidebar_text = f"**Ask me about:**\n\n- {sidebar_text}\n\n**Note:** Audio responses will display here for each topic."
st.sidebar.info(sidebar_text)
# Instruction text
st.markdown("""
<div style="display: flex; flex-direction: column; align-items: center; text-align: center;">
<div class="big-font">
<span style="font-weight:bold; font-size:24px; color:CornflowerBlue;">Talk Together</span>
<span style="color:white;">:</span>
<span style="font-size:24px; color:crimson;">Mawagnutmajig</span>
</div>
<ul style="text-align: left;">
<li>Iโm Lnu-AI, your Indigenous AI Assistant.</li>
<li>I am still learning and wonโt always get it right, but our conversations will help me improve.</li>
<li>The sharing of words preserves and transmits knowledge, values, beliefs, and history from one generation to the next.</li>
</ul>
</div>
""", unsafe_allow_html=True)
st.divider()
# Placeholder for the audio player in the sidebar
audio_placeholder = st.sidebar.empty()
# Chat form for user input
user_message = st.chat_input("Chat with Lnu-AI")
if user_message:
user_message = user_message.replace("\r\n", " ").replace("\n", " ").replace("\r", " ")
st.session_state['past'].append(user_message)
with st.spinner("Referring to my Mi'kmaq Corpus ..."):
try: # Exception handling added here
chat_response = lnu_ai_chat(user_message, trained_data, models, all_word_details)
# Generate audio response
tts_service = tts_settings.get('tts_audio', 'gtts')
audio_file = generate_audio(chat_response, tts_service)
audio_response = open(audio_file, "rb")
st.session_state['audio'] = audio_response.read()
os.remove(audio_file)
except Exception as e: # If error occurs, set response as error message
chat_response = f"Sorry, an error occurred while processing your message: {str(e)}"
finally: # Always append the response, even if an error occurred
st.session_state['generated'].append(chat_response)
# Display the audio player in the sidebar
if 'audio' in st.session_state:
audio_placeholder.audio(st.session_state['audio'], format="audio/wav")
# Define avatar image path
assistant_image_path = os.path.join(os.getcwd(), "images", "lnuavatar.png")
image = Image.open(image_path)
# Display the chat history
for i in range(len(st.session_state['past'])):
user_message = st.session_state['past'][i]
chat_response = st.session_state['generated'][i]
if chat_response: # Only display non-empty messages
with st.chat_message("User"):
st.write(user_message)
with st.chat_message("Lnu-AI", avatar=assistant_image_path):
st.write(chat_response)
def main():
"""
The main function of the application.
"""
global_vars = load_env_variables_and_data()
# You can use the global_vars dictionary to access the required values.
api_keys = global_vars['api_keys']
tts_settings = global_vars['tts_settings']
local_data_files = global_vars['local_data_files']
models = global_vars['models']
all_word_details = global_vars['all_word_details']
render_ui(CUSTOM_CSS)
menu_options = {
"Lnu-AI Chat": lambda: chatbot_application(models, trained_data, tts_settings),
}
selected_option = render_menu(list(menu_options.keys()))
if selected_option and menu_options.get(selected_option):
menu_options[selected_option]()
@st.cache_data
def render_ui(CUSTOM_CSS):
"""
Renders the user interface components.
"""
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
st.markdown('<h1 style="text-align: center; color: Crimson; margin-top: -70px;">Lnu-AI Chat</h1>', unsafe_allow_html=True)
st.markdown('<h3 style="text-align: center;">An Indigenous AI System</h3>', unsafe_allow_html=True)
st.divider()
def render_menu(options: list) -> str:
"""
Renders the menu with options.
Args:
options (list): A list of options to be displayed in the menu.
Returns:
str: The selected option from the menu.
"""
icons = ["chat"]
return option_menu(None, options, icons=icons, menu_icon="cast", default_index=0, orientation="horizontal")
if __name__ == "__main__":
main()
#wantaqo'ti | [
"{'prompt': PLACEHOLDER, 'completion': PLACEHOLDER}"
] |
2024-01-10 | caretech-owl/Llama-2-Open-Source-LLM-CPU-Inference | team_red~qa~qa_service.py | import logging
from os import unlink
from pathlib import Path
from string import Formatter
from tempfile import NamedTemporaryFile
from typing import TYPE_CHECKING, Iterable, List, Optional, Protocol
from langchain.chains.retrieval_qa.base import BaseRetrievalQA
from langchain.docstore.document import Document
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from team_red.llm import build_llm
from team_red.models.qa import QAConfig
from team_red.transport import (
DocumentSource,
FileTypes,
PromptConfig,
QAAnswer,
QAFileUpload,
QAQuestion,
)
from team_red.utils import build_retrieval_qa
if TYPE_CHECKING:
from langchain.document_loaders.base import BaseLoader
_LOGGER = logging.getLogger(__name__)
_LOGGER.addHandler(logging.NullHandler())
class VectorStore(Protocol):
def merge_from(self, vector_store: "VectorStore") -> None:
pass
def save_local(self, path: str) -> None:
pass
def add_texts(
self,
texts: Iterable[str],
) -> List[str]:
pass
def search(self, query: str, search_type: str, k: int) -> List[Document]:
pass
class QAService:
def __init__(self, config: QAConfig) -> None:
self._config = config
self._llm = build_llm(config.model)
self._embeddings = HuggingFaceEmbeddings(
model_name=self._config.embedding.model.name,
model_kwargs={"device": self._config.device},
)
self._vectorstore: Optional[VectorStore] = None
self._database: Optional[BaseRetrievalQA] = None
self._fact_checker_db: Optional[BaseRetrievalQA] = None
if (
config.embedding.db_path
and Path(config.embedding.db_path, "index.faiss").exists()
):
_LOGGER.info(
"Load existing vector store from '%s'.", config.embedding.db_path
)
self._vectorstore = FAISS.load_local(
config.embedding.db_path, self._embeddings
)
def db_query(self, question: QAQuestion) -> List[DocumentSource]:
if not self._vectorstore:
return []
return [
DocumentSource(
content=doc.page_content,
name=doc.metadata.get("source", "unknown"),
page=doc.metadata.get("page", 1),
)
for doc in self._vectorstore.search(
question.question,
search_type=question.search_strategy,
k=question.max_sources,
)
]
def query(self, question: QAQuestion) -> QAAnswer:
if not self._database:
if not self._vectorstore:
msg = "No vector store initialized! Upload documents first."
_LOGGER.error(msg)
return QAAnswer(status=404, error_msg=msg)
self._database = self._setup_dbqa(self._config.model.prompt)
response = self._database({"query": question.question})
answer = QAAnswer(answer=response["result"])
if self._config.features.return_source:
for doc in response.get("source_documents", []):
answer.sources.append(
DocumentSource(
content=doc.page_content,
name=doc.metadata.get("source", "unknown"),
page=doc.metadata.get("page", 1),
)
)
if self._config.features.fact_checking.enabled is True:
if not self._fact_checker_db:
self._fact_checker_db = self._setup_dbqa_fact_checking(
self._config.features.fact_checking.model.prompt
)
response = self._fact_checker_db({"query": response["result"]})
for doc in response.get("source_documents", []):
answer.sources.append(
DocumentSource(
content=doc.page_content,
name=doc.metadata.get("source", "unknown"),
page=doc.metadata.get("page", 1),
)
)
_LOGGER.debug("\n==== Answer ====\n\n%s\n===============", answer)
return answer
def set_prompt(self, config: PromptConfig) -> PromptConfig:
self._config.model.prompt = config
self._database = self._setup_dbqa(self._config.model.prompt)
return self._config.model.prompt
def get_prompt(self) -> PromptConfig:
return self._config.model.prompt
def add_file(self, file: QAFileUpload) -> QAAnswer:
documents: Optional[List[Document]] = None
file_path = Path(file.name)
try:
f = NamedTemporaryFile(dir=".", suffix=file_path.suffix, delete=False)
f.write(file.data)
f.flush()
f.close()
file_type = FileTypes(file_path.suffix[1:])
loader: BaseLoader
if file_type == FileTypes.TEXT:
loader = TextLoader(f.name)
elif file_type == FileTypes.PDF:
loader = PyPDFLoader(f.name)
documents = loader.load()
# source must be overriden to not leak upload information
# about the temp file which are rather useless anyway
for doc in documents:
doc.metadata["source"] = file_path.name
except BaseException as err:
_LOGGER.error(err)
finally:
if f:
unlink(f.name)
if not documents:
_LOGGER.warning("No document was loaded!")
return QAAnswer(error_msg="No document was loaded!", status=500)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self._config.embedding.chunk_size,
chunk_overlap=self._config.embedding.chunk_overlap,
)
texts = text_splitter.split_documents(documents)
if self._vectorstore is None:
_LOGGER.info("Create new vector store from document.")
self._vectorstore = FAISS.from_documents(texts, self._embeddings)
else:
_LOGGER.info("Adding document to existing vector store.")
tmp = FAISS.from_documents(texts, self._embeddings)
self._vectorstore.merge_from(tmp)
if self._config.embedding.db_path:
self._vectorstore.save_local(self._config.embedding.db_path)
return QAAnswer()
def _setup_dbqa(self, prompt: PromptConfig) -> BaseRetrievalQA:
if "context" not in prompt.parameters:
_LOGGER.warning(
"Prompt does not include '{context}' variable."
"It will be appened to the prompt."
)
prompt.text += "\n\n{context}"
_LOGGER.info(
"\n===== Setup dbqa with prompt ====\n\n%s\n\n====================",
prompt.text,
)
qa_prompt = PromptTemplate(
template=prompt.text,
input_variables=prompt.parameters,
)
dbqa = build_retrieval_qa(
self._llm,
qa_prompt,
self._vectorstore,
self._config.embedding.vector_count,
self._config.features.return_source,
)
return dbqa
def _setup_dbqa_fact_checking(self, prompt: PromptConfig) -> BaseRetrievalQA:
_LOGGER.info("Setup fact checking...")
if "context" not in prompt.parameters:
_LOGGER.warning(
"Prompt does not include '{context}' variable."
"It will be appened to the prompt."
)
prompt.text += "\n\n{context}"
fact_checking_prompt = PromptTemplate(
template=prompt.text,
input_variables=prompt.parameters,
)
dbqa = build_retrieval_qa(
self._llm,
fact_checking_prompt,
self._vectorstore,
self._config.embedding.vector_count,
self._config.features.return_source,
)
return dbqa
# # Process source documents
# source_docs = response["source_documents"]
# for i, doc in enumerate(source_docs):
# _LOGGER.debug(f"\nSource Document {i+1}\n")
# _LOGGER.debug(f"Source Text: {doc.page_content}")
# _LOGGER.debug(f'Document Name: {doc.metadata["source"]}')
# _LOGGER.debug(f'Page Number: {doc.metadata.get("page", 1)}\n')
# _LOGGER.debug("=" * 60)
# _LOGGER.debug(f"Time to retrieve response: {endQA - startQA}")
# if CONFIG.features.fact_checking:
# startFactCheck = timeit.default_timer()
# dbqafact = setup_dbqa_fact_checking()
# response_fact = dbqafact({"query": response["result"]})
# endFactCheck = timeit.default_timer()
# _LOGGER.debug("Factcheck:")
# _LOGGER.debug(f'\nAnswer: {response_fact["result"]}')
# _LOGGER.debug("=" * 50)
# # Process source documents
# source_docs = response_fact["source_documents"]
# for i, doc in enumerate(source_docs):
# _LOGGER.debug(f"\nSource Document {i+1}\n")
# _LOGGER.debug(f"Source Text: {doc.page_content}")
# _LOGGER.debug(f'Document Name: {doc.metadata["source"]}')
# _LOGGER.debug(f'Page Number: {doc.metadata.get("page", 1)}\n')
# _LOGGER.debug("=" * 60)
# _LOGGER.debug(f"Time to retrieve fact check: {endFactCheck - startFactCheck}")
| [] |
2024-01-10 | FrankLeeeee/ColossalAI | applications~Chat~evaluate~gpt_evaluate.py | import concurrent.futures
import os
import re
import time
from copy import deepcopy
from typing import Any, Dict, List
import matplotlib.pyplot as plt
import numpy as np
import openai
import pandas as pd
import seaborn as sns
import tqdm
from utils import jdump, jload
ref_step_template = {
"en":
"Now please compare the answer with the {adjective} answer, determine whether the answer is able to achieve the same level of {metric}.\n\n",
"cn":
"่ฏทๆฏ่พ็ญๆกไธไธ้ข็{adjective}็ญๆก๏ผ็กฎๅฎ็ญๆกๆฏๅฆๅฏไปฅ่พพๅฐไธ่ฏฅ{adjective}็ญๆกๅๆ ทๆฐดๅนณ็{metric}ใ\n\n"
}
ref_answer_template_general = {
"en": "\nAn example answer with good quality is as follows:\n\n{answer}\n\n",
"cn": "\nไธไธชไผ่ดจ็็คบไพ็ญๆกๅฆไธ๏ผ\n\n{answer}\n\n"
}
ref_answer_template_correctness = {
"en": "\nA correct answer is as follows:\n\n{answer}\n\n",
"cn": "\nๆ ๅ็ญๆกๅฆไธ๏ผ\n\n{answer}\n\n"
}
def get_battle_result(sys_prompt: str, user_prompt: str, id: int, max_tokens: int = 2048) -> Dict[str, Any]:
"""
Get battle evaluation from GPT-4.
Args:
sys_prompt: prompt for the system.
user_prompt: prompt for the user.
id: id of the answers for comparison.
max_tokens: the maximum number of tokens to generate in the chat completion.
Returns:
An evaluation of one comparison.
"""
MAX_API_RETRY = 3
for _ in range(MAX_API_RETRY):
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": sys_prompt
},
{
"role": "user",
"content": user_prompt,
},
],
temperature=0.2,
max_tokens=max_tokens,
)
evaluation = response["choices"][0]["message"]["content"]
return {"evaluation": evaluation, "id": id}
except Exception as e:
print(e)
time.sleep(1)
print(f"Evaluation {id} failed after {MAX_API_RETRY} retries.")
return {"evaluation": "", "id": id}
def parse_battle_score(evaluation: str) -> List[float]:
"""
Parse evaluation from GPT-4 and get the scores of model 1 and 2.
Args:
evaluation: evaluation from GPT-4.
Returns:
A score pair of two different model answers.
"""
try:
pattern = re.compile("([0-9]|10) out of 10")
sp = re.findall(pattern, evaluation)
if len(re.findall(pattern, evaluation)) == 2:
return [float(sp[0]), float(sp[1])]
pattern = re.compile("a score of ([0-9]|10)")
sp = re.findall(pattern, evaluation)
if len(re.findall(pattern, evaluation)) == 2:
return [float(sp[0]), float(sp[1])]
pattern = re.compile("([0-9]|10)/10")
sp = re.findall(pattern, evaluation)
if len(re.findall(pattern, evaluation)) == 2:
return [float(sp[0]), float(sp[1])]
score_pair = evaluation.split("\n")[0]
score_pair = score_pair.replace(",", " ")
sp = score_pair.split(" ")
if len(sp) == 2:
return [float(sp[0]), float(sp[1])]
else:
raise Exception(f"Invalid score pair. Got {evaluation}.")
except Exception as e:
return [-1, -1]
def battle(answer1: List[Dict], answer2: List[Dict], prompt_dict: Dict[str, Any]) -> List[Dict]:
"""
Use GPT-4 to compare answers of two different models.
Args:
answer1: answers of model 1.
answer2: answers of model 2.
prompt_dict: prompt for battle.
Returns:
Evaluations of all comparison pairs.
"""
assert len(answer1) == len(answer2)
handles = []
evaluation_file = []
total_len = len(answer1)
question_idx_list = list(range(total_len))
print(f" Total number of answers: {len(answer1)}.")
evaluations = []
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for i in question_idx_list:
assert answer1[i]["id"] == answer2[i]["id"]
answer_id = answer1[i]["id"]
ques = answer1[i]["instruction"] if answer1[i][
"input"] == "" else answer1[i]["instruction"] + " " + answer1[i]["input"]
cat = answer1[i]["category"]
ans1 = answer1[i]["output"]
ans2 = answer2[i]["output"]
sys_prompt = prompt_dict["system_prompt"]
prompt_template = prompt_dict["prompt_template"]
prompt = prompt_template.format(
question=ques,
answer_1=ans1,
answer_2=ans2,
prompt=prompt_dict["prompt"],
)
future = executor.submit(get_battle_result, sys_prompt, prompt, answer_id, 2048)
futures.append(future)
for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
evaluations.append(future.result())
evaluations.sort(key=lambda x: x["id"])
return evaluations
def save_battle_results(evaluations: List[Dict], name1: str, name2: str, save_path: str) -> None:
"""
Save evaluation results (model 1 vs model 2) from GPT-4.
Args:
evaluations: evaluation results from GPT-4.
name1: model 1 's name.
name2: model 2 's name.
save_path: path to save battle results.
"""
evaluation_file = deepcopy(evaluations)
ans1_score = 0
ans2_score = 0
better_count = 0
worse_count = 0
tie_count = 0
invalid_count = 0
better_file = []
worse_file = []
tie_file = []
invalid_file = []
for idx, evaluation in enumerate(evaluations):
scores = parse_battle_score(evaluation["evaluation"])
evaluation_file[idx]["score"] = scores
if scores[0] == -1 and scores[1] == -1:
invalid_count += 1
invalid_file.append(evaluation_file[idx])
print(f'Invalid score pair: {evaluation_file[idx]["id"]}.')
else:
if scores[0] > scores[1]:
worse_count += 1
worse_file.append(evaluation_file[idx])
elif scores[0] < scores[1]:
better_count += 1
better_file.append(evaluation_file[idx])
else:
tie_count += 1
tie_file.append(evaluation_file[idx])
ans1_score += scores[0]
ans2_score += scores[1]
prefix = f"{name1}_vs_{name2}"
if not os.path.exists(save_path):
os.makedirs(save_path)
jdump(better_file, os.path.join(save_path, prefix, f"{name2}_better.json"))
jdump(worse_file, os.path.join(save_path, prefix, f"{name2}_worse.json"))
jdump(tie_file, os.path.join(save_path, prefix, f"{prefix}_tie.json"))
jdump(invalid_file, os.path.join(save_path, prefix, f"{prefix}_invalid.json"))
jdump(evaluation_file, os.path.join(save_path, prefix, f"{prefix}_evaluations.json"))
if os.path.exists(os.path.join(save_path, "battle_results.json")):
results = jload(os.path.join(save_path, "battle_results.json"))
else:
results = {}
results[prefix] = {
"model": [name1, name2],
"better": better_count,
"worse": worse_count,
"tie": tie_count,
"win_rate": better_count / (len(evaluations) - invalid_count),
"score": [
ans1_score / (len(evaluations) - invalid_count),
ans2_score / (len(evaluations) - invalid_count),
],
}
jdump(results, os.path.join(save_path, "battle_results.json"))
print(f"Total {invalid_count} invalid score pair(s).")
print(f"Model {name2} has {better_count} better answer(s).")
print(f"Model {name2} has {worse_count} worse answer(s).")
print(f"{tie_count} answer(s) play(s) to a tie.")
print(f"Win rate of model {name2}: {better_count/(len(evaluations)-invalid_count):.2f}")
print(f"Model {name1} average score: {ans1_score/(len(evaluations)-invalid_count):.2f}")
print(f"Model {name2} average score: {ans2_score/(len(evaluations)-invalid_count):.2f}")
def reference_template(metric: str, language: str, reference: Dict[str, Any]) -> str:
"""
Get prompt template for GPT evaluation with reference.
Different languages have different prompt templates.
Args:
metric: metric used in GPT evaluation with reference.
language: language for the template.
reference: the instruction that contains target answer.
Returns:
Prompt template for GPT evaluation with reference.
"""
step_to_add = ref_step_template[language]
for_the_given_answer = "{metric} (1-5) (directly give the score for the given answer):" if language == "en" else "{metric} (1-5) (็ดๆฅๅฏน็ปๅฎ็ญๆกๆๅ)"
# adjective is used to describe the word "answer" in the prompt.
adjective = "example" if language == "en" else "็คบไพ"
answer_to_add = ref_answer_template_general[language]
# Only for correctness, we will provide a correct answer and so the adjective for "answer" will be "correct". The prompt words will be "a correct answer".
# In other cases, the prompt words will be "an example answer with good quality" by default.
if metric.lower() == "correctness":
adjective = "correct" if language == "en" else "ๆ ๅ"
answer_to_add = ref_answer_template_correctness[language]
answer_to_add = answer_to_add.format(answer=reference["target"] if reference["target"] else reference["output"])
step_to_add = step_to_add.format(metric=metric.lower(),
adjective=adjective) + for_the_given_answer.format(metric=metric)
return answer_to_add + step_to_add
def fill_in_message(role: str, content: str) -> Dict[str, str]:
"""
Generate one formatted message to send through chat completion.
Args:
role: the role of the author of this message.
content: the contents of the message.
Returns:
One message to send through chat completion.
"""
return {"role": role, "content": content}
def multiturn_chat_completion(user_messages: List[str], model: str, max_tokens: int = 1, turns=2) -> Dict[str, Any]:
"""
Do multi-turn chat completion.
When turns == 1, it is a one-turn conversation for normal GPT evaluation.
When turns == 2, it is a two-turn conversation which is used for GPT evaluation with reference answers.
Args:
user_messages: messages user wants to send.
model: the model used to evaluate answers.
max_tokens: the maximum number of tokens to generate in the chat completion.
turns: the number of turns for conversation.
Returns:
Last turn's response.
"""
if len(user_messages) != turns:
raise Exception("The length of user messages should be equal to the turn number!")
assistant_responses = []
for i in range(turns):
messages_to_send = []
for j in range(i):
messages_to_send.append(fill_in_message("user", user_messages[j]))
messages_to_send.append(
fill_in_message("assistant", assistant_responses[j]["choices"][0]["message"]["content"]))
# Length of user messages == Length of assistant messages + 1
# Because we always expect the api to response
messages_to_send.append(fill_in_message("user", user_messages[i]))
response = openai.ChatCompletion.create(
model=model,
messages=messages_to_send,
temperature=0,
max_tokens=max_tokens,
)
# Avoid exceeding rate limits.
# You can comment this line if your request doesn't contain many tokens.
time.sleep(1)
assistant_responses.append(response)
return assistant_responses[-1]
def get_gpt_evaluation_without_logprobs(prompt: Dict[str, Any],
inst: Dict[str, Any],
metrics: List[str],
language: str,
reference: Dict[str, Any] = None,
model: str = "gpt-3.5-turbo",
max_tokens: int = 2048) -> Dict[str, Any]:
"""
Use chat models(gpt-3.5-turbo or gpt-4) to evaluate one model answer.
Temperature is set to 0 to make the model more deterministic.
Args:
prompt: a dictionary including prompt template, CoT and metrics.
inst: the instruction that is needed to be evaluated.
metrics: the metrics for evaluation.
language: language used to change the CoT(add one more step about comparing the given answer and reference) if reference is not None.
reference: the reference answer.
model: the model used to evaluate answers.
max_tokens: the maximum number of tokens to generate in the chat completion.
Returns:
An evaluation of one answer.
"""
MAX_API_RETRY = 3
question = (inst["instruction"] if inst["input"] == "" else inst["instruction"] + "\n" + inst["input"])
answer = inst["output"]
inst["evaluation"] = {}
for metric in metrics:
if prompt["metrics"].get(metric, None) is None:
raise Exception(
f"Unsupported metric {metric} for category {inst['category']}! You should add this metric in the prompt file!"
)
for i in range(MAX_API_RETRY):
try:
prompt_reference = "" if reference is None else reference_template(metric, language, reference)
prompt_1st_round = prompt["prompt"].format(
question=question,
answer=answer,
metric=prompt["metrics"][metric],
steps=prompt["CoT"][metric],
)
if prompt_reference:
# Do a 2-round conversation
response = multiturn_chat_completion([prompt_1st_round, prompt_reference],
model,
max_tokens=max_tokens,
turns=2)
else:
response = multiturn_chat_completion([prompt_1st_round], model, max_tokens=max_tokens, turns=1)
inst["evaluation"][metric] = {
"response": response["choices"][0]["message"]["content"],
"logprobs": None,
}
# Prevent exceeding rate limits because we have multiple workers.
# But this will slow down the evaluation process.
# You can comment this line if your request doesn't contain many tokens.
time.sleep(len(metrics) * 0.5)
break
except Exception as e:
print(e)
time.sleep(1)
if metric not in inst["evaluation"]:
print(f"Evaluation {inst['id']} for metric {metric} failed after {MAX_API_RETRY} retries.")
inst["evaluation"][metric] = {}
return inst
def get_gpt_evaluation_with_logprobs(prompt: Dict[str, Any],
inst: Dict[str, Any],
metrics: List[str],
max_tokens: int = 2048) -> Dict[str, Any]:
"""
Use completion model(text-davinci-003) to evaluate one model answer.
Only completion models can return log probabilities.
Temperature is set to 0 to make the model more deterministic.
Args:
prompt: a dictionary including prompt template, CoT and metrics.
inst: the instruction that is needed to be evaluated.
metrics: the metrics for evaluation.
max_tokens: the maximum number of tokens to generate in the completion.
Returns:
An evaluation of one answer.
"""
MAX_API_RETRY = 3
question = (inst["instruction"] if inst["input"] == "" else inst["instruction"] + "\n" + inst["input"])
answer = inst["output"]
inst["evaluation"] = {}
for metric in metrics:
if prompt["metrics"].get(metric, None) is None:
raise Exception(
f"Unsupported metric {metric} for category {inst['category']}! You should add this metric in the prompt file!"
)
for i in range(MAX_API_RETRY):
try:
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt["prompt"].format(
question=question,
answer=answer,
metric=prompt["metrics"][metric],
steps=prompt["CoT"][metric],
),
logprobs=5,
temperature=0,
max_tokens=max_tokens,
)
inst["evaluation"][metric] = {
"response": response["choices"][0]["text"],
"logprobs": response["choices"][0]["logprobs"]["top_logprobs"],
}
# Prevent exceeding rate limits because we have multiple workers.
# But this will slow down the evaluation process.
# You can comment this line if your request doesn't contain many tokens.
time.sleep(len(metrics) * 0.5)
break
except Exception as e:
print(e)
time.sleep(1)
if metric not in inst["evaluation"]:
print(f"Evaluation {inst['id']} for metric {metric} failed after {MAX_API_RETRY} retries.")
inst["evaluation"][metric] = {}
return inst
def evaluate(answers: List[Dict],
prompt: Dict[str, Any],
metrics: List[str],
category: str,
model: str,
language: str,
references: List[Dict] = None) -> List[Dict]:
"""
Use GPT models to evaluate model answers and save evaluation results.
Args:
answers: model answers.
prompt: prompt for GPT evaluation.
metrics: metrics for GPT evaluation.
category: the category of the model answers for evaluation.
model: the specific GPT model used to evaluate answers.
language: language used in GPT evaluation
references: references for GPT evaluation
Returns:
Evaluations of the given answers.
"""
print(f"The number of instances of category {category}'s is {len(answers)}.")
evaluations = []
metrics_str = ", ".join(x for x in metrics)
print(f"Category {category}'s metrics are {metrics_str}.")
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for idx, inst in enumerate(answers):
# Completion models can return log probabilities.
if model == "text-davinci-003":
future = executor.submit(get_gpt_evaluation_with_logprobs, prompt, inst, metrics, 1)
else:
future = executor.submit(get_gpt_evaluation_without_logprobs,
prompt,
inst,
metrics,
language,
reference=None if references is None else references[idx],
model=model,
max_tokens=1)
futures.append(future)
for future in tqdm.tqdm(
concurrent.futures.as_completed(futures),
desc=f"{category}: ",
total=len(futures),
):
evaluations.append(future.result())
evaluations.sort(key=lambda x: x["id"])
print(f"{category} done.")
return evaluations
def calculate_scores_form_logprobs(logprobs: Dict[str, Any]) -> float:
"""
Calculate the score according to log probabilities returned by text-davinci-003.
Calculation formula:
score = sum(score_i * exp(value)) where score_i is the score which corresponds to the key(predicted token) and value is its log probability.
Ref: https://arxiv.org/abs/2303.16634
This paper proposes NLG evaluation methods using text-davinci-003(log probabilities returned by completion models) and GPT-4(probabilities obtained by sampling).
Args:
logprobs: logprobs returned by openai.Completion.
Returns:
The score of one answer.
"""
# GPT-3.5 only returns score of 1 to 5.
prob = np.zeros(5)
for key, value in logprobs.items():
# Sometimes the key will be one byte of a unicode character which takes the form of "bytes:\\xe7".
# It is meaningless and thus we don't calculate probability.
if "bytes" in key:
continue
# results[0] is the score which corresponds to the key(predicted token).
# For example, key "5" corresponds to score 5.
results = re.findall(r"\d", key)
if len(results) == 1:
prob[int(results[0]) - 1] = prob[int(results[0]) - 1] + np.exp(value)
score = np.dot(np.arange(1, 6), prob)
return score
def calculate_scores_form_response(response: str, evaluation: Dict[str, Any]) -> int:
"""
Calculate the score from the response returned by gpt-3.5-turbo or gpt-4.
Different from text-davinci-003, this function directly calculates the score according to the plain response returned by gpt-3.5-turbo or gpt-4.
Although text-davinci-003 can return log probabilities, it costs ten times as much as gpt-3.5-turbo.
Args:
response: logprobs returned by openai.Completion.
evaluation: the evaluation corresponds to the question.
Returns:
The score of one answer.
"""
try:
results = re.findall(r"\d", response)
if len(results) == 1:
return int(results[0])
else:
raise Exception(f"Invalid score pair. Got {evaluation}.")
except Exception as e:
return 0
def save_gpt_evaluation_results(model_name: str, gpt_evaluation_results: Dict[str, Any],
save_path: str) -> Dict[str, Any]:
"""
Save evaluation results for different categories for one model.
Args:
model_name: name of the model for saving evaluation results.
gpt_evaluation_results: evaluations results for all of the model answers.
save_path: path to save GPT evaluation statistics.
"""
all_evaluations = []
for category, evaluations in gpt_evaluation_results.items():
jdump(evaluations, os.path.join(save_path, model_name, f"{category}_evaluation_results.json"))
all_evaluations.extend(evaluations)
jdump(all_evaluations, os.path.join(save_path, f"{model_name}_evaluation_results.json"))
return all_evaluations
def save_gpt_evaluation_statistics(model_name: str, evaluations: List[Dict], save_path: str) -> None:
"""
Generate statistics for one model.
Args:
model_name: name of the model for saving statistics.
evaluations: evaluations for all of the model answers.
save_path: path to save GPT evaluation statistics.
"""
if not os.path.exists(save_path):
os.makedirs(save_path)
data_per_category = {}
for evaluation in evaluations:
category = evaluation["category"]
if evaluation["category"] in data_per_category.keys():
data_per_category[category].append(evaluation)
else:
data_per_category[category] = [evaluation]
all_statistics = {}
for category, data in data_per_category.items():
metrics = data[0]["evaluation"].keys()
scores = {metric: [] for metric in metrics}
for evaluation in data:
for metric in metrics:
if evaluation["evaluation"][metric] == {}:
# This means after 3 retries, the server still returns an error and we set the score to 0.
scores[metric].append(0)
elif evaluation["evaluation"][metric]["logprobs"] is not None:
scores[metric].append(
calculate_scores_form_logprobs(evaluation["evaluation"][metric]["logprobs"][0]))
else:
scores[metric].append(
calculate_scores_form_response(evaluation["evaluation"][metric]["response"], evaluation))
statistics = {}
for metric in metrics:
arg_sort = np.argsort(scores[metric])
statistics[metric] = {}
statistics[metric]["avg_score"] = sum(scores[metric]) / len(data)
statistics[metric]["best_3"] = {data[i]["id"]: scores[metric][i] for i in arg_sort[-3:][::-1]}
statistics[metric]["worst_3"] = {data[i]["id"]: scores[metric][i] for i in arg_sort[:3]}
all_statistics[category] = statistics
jdump(
all_statistics,
os.path.join(save_path, f"{model_name}_evaluation_statistics.json"),
)
def analyze_gpt_evaluation_statistics(statistics_path: str, save_path: str) -> None:
"""
Analyze and visualize all GPT evaluation statistics in the given directory.
Args:
statistics_path: path to all the models' statistics.
save_path: path to save table and visualization results.
"""
if not os.path.exists(statistics_path):
raise Exception(f'The given directory "{statistics_path}" doesn\'t exist! No statistics found!')
all_statistics = {}
for file_name in os.listdir(statistics_path):
if file_name.endswith("_evaluation_statistics.json"):
model_name = file_name.split("_evaluation_statistics.json")[0]
all_statistics[model_name] = jload(os.path.join(statistics_path, file_name))
if len(list(all_statistics.keys())) == 0:
raise Exception(f'There are no statistics in the given directory "{statistics_path}"!')
frame_all = {
"model": [],
"category": [],
"metric": [],
"avg_score": [],
"best_3": [],
"worst_3": [],
}
frame_per_category = {}
for model_name, model_statistics in all_statistics.items():
for category, category_statistics in model_statistics.items():
if frame_per_category.get(category) is None:
frame_per_category[category] = {
"model": [],
"metric": [],
"avg_score": [],
"best_3": [],
"worst_3": [],
}
for metric, metric_statistics in category_statistics.items():
frame_all["model"].append(model_name)
frame_all["category"].append(category)
frame_all["metric"].append(metric)
frame_all["avg_score"].append(metric_statistics["avg_score"])
frame_all["best_3"].append(metric_statistics["best_3"])
frame_all["worst_3"].append(metric_statistics["worst_3"])
frame_per_category[category]["model"].append(model_name)
frame_per_category[category]["metric"].append(metric)
frame_per_category[category]["avg_score"].append(metric_statistics["avg_score"])
frame_per_category[category]["best_3"].append(metric_statistics["best_3"])
frame_per_category[category]["worst_3"].append(metric_statistics["worst_3"])
if not os.path.exists(save_path):
os.makedirs(save_path)
frame_all = pd.DataFrame(frame_all)
frame_all.to_csv(os.path.join(save_path, "gpt_evaluation_statistics.csv"))
for category in tqdm.tqdm(
frame_per_category.keys(),
desc=f"GPT evaluation: ",
total=len(frame_per_category.keys()),
):
data = pd.DataFrame(frame_per_category[category])
sns.set()
fig = plt.figure(figsize=(16, 10))
plt.ylim((0, 5))
fig = sns.barplot(x="metric", y="avg_score", hue="model", data=data, dodge=True)
fig.set_title(f"Comparison between Different Models for Category {category.title()}")
plt.xlabel("Evaluation Metric")
plt.ylabel("Average Score")
figure = fig.get_figure()
figure.savefig(os.path.join(save_path, f"{category}.png"), dpi=400)
plt.close()
| [
"{'en': '\\nA correct answer is as follows:\\n\\n{answer}\\n\\n', 'cn': '\\nๆ ๅ็ญๆกๅฆไธ๏ผ\\n\\n{answer}\\n\\n'}",
"{'en': 'Now please compare the answer with the {adjective} answer, determine whether the answer is able to achieve the same level of {metric}.\\n\\n', 'cn': '่ฏทๆฏ่พ็ญๆกไธไธ้ข็{adjective}็ญๆก๏ผ็กฎๅฎ็ญๆกๆฏๅฆๅฏไปฅ่พพๅฐไธ่ฏฅ{adjective}็ญๆกๅๆ ทๆฐดๅนณ็{metric}ใ\\n\\n'}",
"{'en': '\\nAn example answer with good quality is as follows:\\n\\n{answer}\\n\\n', 'cn': '\\nไธไธชไผ่ดจ็็คบไพ็ญๆกๅฆไธ๏ผ\\n\\n{answer}\\n\\n'}",
"prompt_template",
"system_prompt"
] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%201~Archived~calc_coherence_hdp.py | import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
file_name = 'models_hdp.pkl'
output = 'hdp_coherence.pkl'
model_list = []
data_list = []
dict_list = []
with open(file_name, 'rb') as f:
while True:
try:
iteration, model, time_arr, data, id2word, _ = pickle.load(f)
print(iteration)
model_list.append(model)
data_list.append(data)
dict_list.append(id2word)
except:
break
coherence_list = []
count = 0
for i in range(0, len(model_list)):
model = model_list[i]
data = data_list[i]
id2word = dict_list[i]
print(id2word)
count += 1
print('Iteration '+str(count))
coherencemodel = CoherenceModel(
model=model, texts=data, dictionary=id2word, coherence='c_v')
coherence_list.append(coherencemodel.get_coherence())
with open(output, 'wb') as f:
pickle.dump((coherence_list, time_arr), f)
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%203~Archived~onlinelda_comparison.py | #!/usr/bin/env python
# coding: utf-8
# In[1]:
#!/usr/bin/env python
# coding: utf-8
# No of Documents = 17849 <br>
# Start Date = 2016-10-31 <br>
# End Date = 2017-12-31 <br>
# <br>
# Google Alerts Start-Date = Feb-26-2019 <br>
#
# * 2016-12-31 - 9442
# * 2017-02-28 - 12710
# * 2017-04-30 - 14339
# * 2017-06-30 - 15445
# * 2017-08-31 - 16287
# * 2017-10-31 - 16998
# * 2017-12-31 - 17849
# In[1]:
# imports
from __future__ import print_function
from time import time
import numpy as np
import pandas as pd
import pickle
import random
# Sklearn
from pprint import pprint
# Gensim
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel
import re, nltk, spacy
# Plotting tools
import pyLDAvis
import pyLDAvis.sklearn
from pyLDAvis import gensim as pyLDAvisgensim
import matplotlib.pyplot as plt
# Loading the entire corpus containing 17849 documents
# In[2]:
f = open("output_online.txt","w+")
doc_set = []
with open("demon_combined.pkl", "rb") as pickle_in:
while True:
try:
doc_set.append(pickle.load(pickle_in))
except:
break
# Choose the two models for which you would like to build the confusion matrix.<br>
# Input: No of Documents in Corpus, Best topic no.
#
# * 09442 - best topic no = 34 (start = 10, end = 40)
# * 12710 - best topic no = 37
# * 14339 - best topic no = 31
# * 15445 - best topic no = 31
# * 16287 - best topic no = 29
# * 16998 - best topic no = 25
# * 17849 - best topic no = 37
# In[3]:
answers_positive = []
answers_negative = []
model_nos=(0,6)
# In[4]:
settings=[(9442,34),(12710,37),(14339,31),(15445,31),(16287,29),(16998,25),(17849,37)]
offset = 10
corpus_length_1 = settings[model_nos[0]][0]
corpus_length_2 = settings[model_nos[1]][0]
best_1 = settings[model_nos[0]][1] - offset
best_2 = settings[model_nos[1]][1] - offset
print(corpus_length_1)
print(corpus_length_2)
print(best_1+offset)
print(best_2+offset)
# Loading the corresponding Models and Corpus.
# In[5]:
doc_set_1 = doc_set[:corpus_length_1]
doc_set_2 = doc_set[:corpus_length_2]
doc_set_diff = doc_set[corpus_length_1:corpus_length_2+1]
model_1_batch=[]
model_2_batch=[]
with open("Models/ldamodels_demon_"+str(corpus_length_1)+".pkl", "rb") as pickle_in:
while True:
try:
model_1_batch.append(pickle.load(pickle_in))
except:
break
with open("Models/ldamodels_demon_"+str(corpus_length_2)+".pkl", "rb") as pickle_in:
while True:
try:
model_2_batch.append(pickle.load(pickle_in))
except:
break
# In[6]:
# NLTK Stop words
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
def sent_to_words(sentences):
for sentence in sentences:
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations
# Define functions for stopwords, bigrams, trigrams and lemmatization
def remove_stopwords(texts):
return [[word for word in gensim.utils.simple_preprocess(str(doc)) if word not in stop_words] for doc in texts]
def make_bigrams(texts,bigram_mod):
return [bigram_mod[doc] for doc in texts]
def make_trigrams(texts,trigram_mod):
return [trigram_mod[bigram_mod[doc]] for doc in texts]
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']):
"""https://spacy.io/api/annotation"""
# Initialize spacy 'en' model, keeping only tagger component (for efficiency)
# python3 -m spacy download en
nlp = spacy.load('en', disable=['parser', 'ner'])
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append([token.lemma_ for token in doc if token.pos_ in allowed_postags])
return texts_out
def preprocess(doc_set):
df = pd.DataFrame(doc_set)
df.columns = ['text']
# Convert to list
data = df.text.values.tolist()
# Remove @ characters, newlines, single quotes
data = [re.sub('\S*@\S*\s?', '', sent) for sent in data]
data = [re.sub('\s+', ' ', sent) for sent in data]
data = [re.sub("\'", "", sent) for sent in data]
pprint(data[:1])
data_words = list(sent_to_words(data))
print(data_words[:1])
# Build the bigram and trigram models
bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100) # higher threshold fewer phrases.
trigram = gensim.models.Phrases(bigram[data_words], threshold=100)
# Faster way to get a sentence clubbed as a trigram/bigram is to use the Phraser interface
bigram_mod = gensim.models.phrases.Phraser(bigram)
trigram_mod = gensim.models.phrases.Phraser(trigram)
# See bigrams and trigrams example
print(trigram_mod[bigram_mod[data_words[0]]])
# Remove Stop Words
data_words_nostops = remove_stopwords(data_words)
# Form Bigrams
data_words_bigrams = make_bigrams(data_words_nostops,bigram_mod)
# Do lemmatization keeping only noun, adj, vb, adv
data_lemmatized = lemmatization(data_words_bigrams, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'])
print(data_lemmatized[:1])
return data_lemmatized
# In[2]:
data_lemmatized_1=preprocess(doc_set_1)
print(data_lemmatized_1[1])
# In[8]:
# Create Dictionary
id2word_1 = corpora.Dictionary(data_lemmatized_1)
#Filter words
id2word_1.filter_extremes(no_below=5, no_above=0.95, keep_n=1800, keep_tokens=None)
# Create Corpus
texts = data_lemmatized_1
# Term Document Frequency
corpus_1 = [id2word_1.doc2bow(text) for text in texts]
# View
print(corpus_1[:1])
# In[9]:
# In[3]:
data_lemmatized_2=preprocess(doc_set_2)
# In[10]:
# Create Dictionary
id2word_2 = corpora.Dictionary(data_lemmatized_2)
#Filter words
id2word_2.filter_extremes(no_below=5, no_above=0.95, keep_n=1800, keep_tokens=None)
# Create Corpus
texts = data_lemmatized_2
# Term Document Frequency
corpus_2 = [id2word_2.doc2bow(text) for text in texts]
# View
print(corpus_2[:1])
# In[4]:
data_lemmatized_diff=preprocess(doc_set_diff)
id2word_diff = corpora.Dictionary(data_lemmatized_diff)
id2word_diff.filter_extremes(no_below=5, no_above=0.95, keep_n=1800, keep_tokens=None)
texts = data_lemmatized_diff
corpus_diff = [id2word_diff.doc2bow(text) for text in texts]
print(corpus_diff[:1])
# In[6]:
coherencemodel = CoherenceModel(model=model_1_batch[0][0][best_1], texts=data_lemmatized_1, dictionary=id2word_1, coherence='c_v')
print(coherencemodel.get_coherence())
# In[17]:
model_1_batch[0][0][best_1]
# In[7]:
model_2_online = model_1_batch[0][0][best_1]
model_2_online.update(corpus_diff)
print(model_2_online)
# In[8]:
coherencemodel2 = CoherenceModel(model=model_2_online, texts=data_lemmatized_2, dictionary=id2word_2, coherence='c_v')
print(coherencemodel2.get_coherence())
# In[9]:
lda_corpus_1 = [max(prob,key=lambda y:y[1])
for prob in model_2_online[corpus_2] ]
lda_corpus_2 = [max(prob,key=lambda y:y[1])
for prob in model_2_batch[corpus_2] ]
print(lda_corpus_1==lda_corpus_2)
print(len(lda_corpus_1))
print(len(lda_corpus_2))
max_corpus_size = max(len(lda_corpus_1),len(lda_corpus_2))
print(max_corpus_size)
total_permutations=max_corpus_size*(max_corpus_size-1)/2 #nC2 combinations
# In[ ]:
model_2==model_1
# In[ ]:
positive=0
negative=0
for i in range(max_corpus_size):
for j in range(i+1,max_corpus_size):
if(lda_corpus_1[i][0]==lda_corpus_1[j][0] and lda_corpus_2[i][0]==lda_corpus_2[j][0]):
positive = positive+1
elif(lda_corpus_1[i][0]!=lda_corpus_1[j][0] and lda_corpus_2[i][0]==lda_corpus_2[j][0]):
negative = negative+1
elif(lda_corpus_1[i][0]==lda_corpus_1[j][0] and lda_corpus_2[i][0]!=lda_corpus_2[j][0]):
negative = negative+1
elif(lda_corpus_1[i][0]!=lda_corpus_1[j][0] and lda_corpus_2[i][0]!=lda_corpus_2[j][0]):
positive=positive+1
f.write(str((positive+negative==total_permutations)))
f.write("% of positives = "+str(round(positive*100/total_permutations,2))+"%")
f.write("% of negatives = "+str(round(negative*100/total_permutations,2))+"%")
answers_positive.append(round(positive*100/total_permutations,2))
answers_negative.append(round(negative*100/total_permutations,2))
f.write(str(answers_positive))
f.write(str(answers_negative))
# In[ ]:
print(answers_positive)
print(answers_negative)
# Online LDA (Before (Batch unupdated with online) vs After(Batch Updated with Online)) - same model from batch
#
# | Models Tested (AuB) | Positive% | Negative% |
# | --- | --- | --- |
# | (0,1) | 99.63 | 0.37 |
# | (1,2) | 99.41 | 0.59 |
# | (2,3) | 99.73 | 0.27 |
# | (3,4) | 99.66 | 0.34 |
# | (4,5) | 99.67 | 0.33 |
# | (5,6) | 99.87 | 0.13 |
# | (0,6) | 99.54 | 0.4 |
#
# Online LDA (Batch i, Batch i+1) Compared after Batch i trained with corpus_dif with online LDA
# In[ ]:
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%203~Archived~lda_online_exp1.py | import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import copy
import gensim
import gensim.corpora as corpora
from gensim.corpora import Dictionary
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
# Number of documents to consider as part of existing model in simulation.
# Here it is the no. of documents in Mass Media DB
INITIAL_DOC_SIZE = 5000
STEP_SIZE = 200
# Load Data - corp.pkl contains data_lemmatized, id2word, corpus
with open('corp.pkl', 'rb') as f:
data_lemmatized, _, _ = pickle.load(f)
# Initialize Parameters
total_time = 0
coherence_arr = []
time_arr = []
# Set Data State to that of existing model in simulation
data = data_lemmatized[:INITIAL_DOC_SIZE]
id2word = Dictionary(documents=data)
corpus = [id2word.doc2bow(doc) for doc in data]
# Building for the first time - To be considered as the starting/existing model in simulation.
# start = timeit.default_timer()
lda = LdaMulticore(corpus, num_topics=35, id2word=id2word,
workers=3, chunksize=2000, passes=10, batch=False)
corpus_permanent = copy.deepcopy(corpus)
doc_size = []
positive_arr = []
# end = timeit.default_timer()
# time_taken = end - start
# total_time += time_taken
# time_arr.append(time_taken)
# Obtain C_V Coherence of existing model in simulation
# coherencemodel2 = CoherenceModel(
# model=lda, texts=data, dictionary=id2word, coherence='c_v')
# coherence_arr.append(coherencemodel2.get_coherence())
f2 = open('models_online.pkl', 'wb')
count = 0
# The loop simulates arrival of new documents from Google Alerts in batches of STEP_SIZE
for i in range(INITIAL_DOC_SIZE, len(data_lemmatized)-STEP_SIZE, STEP_SIZE):
# new_docs is the list of STEP_SIZE new documents which have arrived
new_docs = data_lemmatized[i:i+STEP_SIZE]
pruned_docs = []
for doc in new_docs:
pruned_data = []
for x in doc:
if x in id2word.values():
pruned_data.append(x)
pruned_docs.append(pruned_data)
new_docs = pruned_docs
print('Pruning Done')
# Updating Dictionary
# id2word.add_documents(new_docs)
# id2word.filter_extremes(no_below=5, no_above=0.95,
# keep_n=1800)
prev_corpus = copy.deepcopy(corpus)
# Converting Documents to doc2bow format so that they can be fed to models
corpus = [id2word.doc2bow(doc) for doc in new_docs]
count += 1
prev_lda = copy.deepcopy(lda)
print('MODEL NO:'+str(count))
start = timeit.default_timer()
lda.update(corpus)
print('MODEL DONE')
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
updated_corpus = copy.deepcopy(prev_corpus)
updated_corpus.extend(corpus)
corpus = updated_corpus
doc_size.append(i)
positive_arr.append(he.calc_confusion_matrix(
prev_lda, lda, updated_corpus))
# positive_arr.append(he.calc_confusion_matrix(
# prev_lda, lda, prev_corpus))
# Coherence of model updated so far on the entire corpus from start i.e including Mass Media DB
coherencemodel2 = CoherenceModel(
model=lda, texts=data_lemmatized[:i+STEP_SIZE], dictionary=id2word, coherence='c_v')
coherence_arr.append(coherencemodel2.get_coherence())
# with open('models_online.pkl', 'ab') as f2:
pickle.dump(positive_arr, f2)
# pickle.dump(
# (count, lda, coherence_arr, time_arr, data_lemmatized[:i+STEP_SIZE], id2word, i), f2)
f2.close()
print(total_time)
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%203~.ipynb_checkpoints~calculate_coherence-checkpoint.py | #!/usr/bin/env python
# coding: utf-8
# In[19]:
import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import copy
import gensim
import gensim.corpora as corpora
from gensim.corpora import Dictionary
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
input1 = '../../data/preprocessed_data/doc_indexes/demon.pkl'
input2 = '../../data/preprocessed_data/corpus_dict/demon_corp.pkl'
output = '../../data/temp/demon_confusion.pkl'
with open(input1,'rb') as f:
texts,INITIAL_DOC_SIZE, DOC_TEMPORAL_INCREMENT = pickle.load(f)
with open(input2, 'rb') as f:
data_lemmatized, _, _ = pickle.load(f)
# In[20]:
# for i in DOC_TEMPORAL_INCREMENT[:167]:
# INITIAL_DOC_SIZE+=i
# DOC_TEMPORAL_INCREMENT=DOC_TEMPORAL_INCREMENT[-10:]
INITIAL_DOC_SIZE = DOC_TEMPORAL_INCREMENT[140]
DOC_TEMPORAL_INCREMENT = DOC_TEMPORAL_INCREMENT[141:]
# In[21]:
# Set Data State to that of existing model in simulation
data = data_lemmatized[:INITIAL_DOC_SIZE]
id2word = Dictionary(documents=data_lemmatized)
corpus = [id2word.doc2bow(doc) for doc in data]
# Building for the first time - To be considered as the starting/existing model in simulation.
lda = LdaMulticore(corpus, num_topics=35, id2word=id2word,
workers=3, chunksize=2000, passes=10, batch=False)
#Baseline Model
corpus_baseline = copy.deepcopy(corpus)
lda_baseline = copy.deepcopy(lda)
# In[ ]:
# The loop simulates arrival of new documents in batches where batch_size is defined in DOC_TEMPORAL_INCREMENT
doc_size = []
positive_arr = []
f2 = open(output, 'wb')
count = 0
doc_size_counter = INITIAL_DOC_SIZE
print('Total Corpus Length:',len(data_lemmatized))
for i in DOC_TEMPORAL_INCREMENT:
# new_docs is the list of STEP_SIZE new documents which have arrived
new_docs = data_lemmatized[doc_size_counter:doc_size_counter+i]
doc_size_counter += i
prev_corpus = copy.deepcopy(corpus)
# Converting Documents to doc2bow format so that they can be fed to models
corpus = [id2word.doc2bow(doc) for doc in new_docs]
count += 1
print('MODEL NO:'+str(count))
lda.update(corpus)
print('MODEL DONE')
prev_corpus.extend(corpus)
corpus = copy.deepcopy(prev_corpus)
doc_size.append(i)
positive_arr.append(he.calc_confusion_matrix(
lda_baseline, lda, corpus))
pickle.dump((positive_arr, doc_size), f2)
f2.close()
# In[ ]:
import matplotlib.pyplot as plt
plt.plot(positive_arr)
plt.show()
# In[18]:
positive_arr
# In[ ]:
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%201~helper.py | import pandas as pd
import numpy as np
import pickle
import re
import spacy
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel
from nltk.corpus import stopwords
# Initialize spacy 'en' model, keeping only tagger component (for efficiency)
nlp = spacy.load('en', disable=['parser', 'ner'])
def sent_to_words(sentences):
for sentence in sentences:
# deacc=True removes punctuations
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True))
def remove_stopwords(texts, stop_words):
return [[word for word in gensim.utils.simple_preprocess(str(doc)) if word not in stop_words] for doc in texts]
def make_bigrams(texts, bigram_mod):
return [bigram_mod[doc] for doc in texts]
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']):
"""https://spacy.io/api/annotation"""
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append(
[token.lemma_ for token in doc if token.pos_ in allowed_postags])
return texts_out
def create_dictionary(data_lemmatized):
# Create Dictionary
id2word = corpora.Dictionary(data_lemmatized)
# Filter words
id2word.filter_extremes(no_below=5, no_above=0.95,
keep_n=1800, keep_tokens=None)
return id2word
def create_model_corpus(id2word, data_lemmatized):
return [id2word.doc2bow(text) for text in data_lemmatized]
def build_hdp(corpus, id2word):
hdpmodel = HdpModel(corpus=corpus, id2word=id2word, chunksize=2000)
hdptopics = hdpmodel.show_topics(formatted=False)
hdptopics = [[word for word, prob in topic]
for topicid, topic in hdptopics]
return hdpmodel, hdptopics
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | preprocess.py | import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
stop_words = stopwords.words('english')
'''
Preprocess your data using this code and save it
in a pickle file so you can reuse it later.
'''
input_file = 'data/massmedia-data/farmers_date_indexed.pkl'
output_file = 'data/preprocessed_data/corpus_dict/farmers_corp.pkl'
print('Loading Documents.....')
documents = []
with open(input_file, 'rb') as f:
docs,_ = pickle.load(f)
for i in docs:
documents.append(i['text'])
print('Sample Document')
print(documents[250])
print('Simple Preprocessing')
# Document Preprocessing
data = documents.copy()
# Removes phrases with @ in them
data = [re.sub('\S*@\S*\s?', '', sent) for sent in data]
# Truncates multiple consecutive whitespace to one
data = [re.sub('\s+', ' ', sent) for sent in data]
# Removes ' characters
data = [re.sub("\'", "", sent) for sent in data]
data_words = list(he.sent_to_words(data))
print('Building Bigrams')
# Making Bigrams - Higher the threshold, fewer the phrases
bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100)
bigram_mod = gensim.models.phrases.Phraser(bigram)
print('Removing Stopwords')
# Remove Stop Words
data_words_nostops = he.remove_stopwords(data_words, stop_words)
print('Forming Bigrams')
# Form Bigrams
data_words_bigrams = he.make_bigrams(data_words_nostops, bigram_mod)
print('Lemmatizing Data')
# Lemmatize Data
data_lemmatized = he.lemmatization(data_words_bigrams, allowed_postags=[
'NOUN', 'ADJ', 'VERB', 'ADV'])
# The keep_n parameter controls the size of the vocabulary.
# At this stage, we have to manually experiment with various vocabulary sizes to see what works best.
# I found that ~8-10% of the number of documents is a good size.
# For Digital India, I used vocab size of 1000 (12412 documents).
# For GST, I used a vocab size of 1500 (15k documents approx)
print('Creating Dictionary')
# Create Dictionary
id2word = corpora.Dictionary(data_lemmatized)
# Filter words
id2word.filter_extremes(no_below=5, no_above=0.95,
keep_n=1800, keep_tokens=None)
# Lemmatized data is your corpus
print('Converting corpus using dictionary')
# Term Document Frequency
corpus = [id2word.doc2bow(text) for text in data_lemmatized]
# Save Data in pickle file
with open(output_file, 'wb') as f:
pickle.dump((data_lemmatized, id2word, corpus), f)
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%202~lda_online_exp1.py | import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import gensim
import gensim.corpora as corpora
from gensim.corpora import Dictionary
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
# Number of documents to consider as part of existing model in simulation.
# Here it is the no. of documents in Mass Media DB
INITIAL_DOC_SIZE = 17850
STEP_SIZE = 200
# Load Data - corp.pkl contains data_lemmatized, id2word, corpus
with open('corp.pkl', 'rb') as f:
data_lemmatized, _, _ = pickle.load(f)
# Initialize Parameters
total_time = 0
coherence_arr = []
time_arr = []
# Set Data State to that of existing model in simulation
data = data_lemmatized[:INITIAL_DOC_SIZE]
# When updating Online LDA, if I use a normal dictionary I keep getting key errors.
# That's why for online lda alone I use Hash Dictionary
id2word = Dictionary(documents=data)
corpus = [id2word.doc2bow(doc) for doc in data]
# Building for the first time - To be considered as the starting/existing model in simulation.
start = timeit.default_timer()
lda = LdaMulticore(corpus, num_topics=35, id2word=id2word,
workers=3, chunksize=2000, passes=10, batch=False)
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
# Obtain C_V Coherence of existing model in simulation
coherencemodel2 = CoherenceModel(
model=lda, texts=data, dictionary=id2word, coherence='c_v')
coherence_arr.append(coherencemodel2.get_coherence())
count = 0
# The loop simulates arrival of new documents from Google Alerts in batches of STEP_SIZE
for i in range(INITIAL_DOC_SIZE, len(data_lemmatized)-STEP_SIZE, STEP_SIZE):
# new_docs is the list of STEP_SIZE new documents which have arrived
new_docs = data_lemmatized[i:i+STEP_SIZE]
pruned_docs = []
for doc in new_docs:
pruned_data = []
for x in doc:
if x in id2word.values():
pruned_data.append(x)
pruned_docs.append(pruned_data)
new_docs = pruned_docs
print('Pruning Done')
# Updating Dictionary
# id2word.add_documents(new_docs)
# id2word.filter_extremes(no_below=5, no_above=0.95,
# keep_n=1800)
# Converting Documents to doc2bow format so that they can be fed to models
corpus = [id2word.doc2bow(doc) for doc in new_docs]
count += 1
print('MODEL NO:'+str(count))
start = timeit.default_timer()
lda.update(corpus)
print('MODEL DONE')
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
# Coherence of model updated so far on the entire corpus from start i.e including Mass Media DB
coherencemodel2 = CoherenceModel(
model=lda, texts=data_lemmatized[:i+STEP_SIZE], dictionary=id2word, coherence='c_v')
coherence_arr.append(coherencemodel2.get_coherence())
with open('models_online.pkl', 'ab') as f2:
pickle.dump(
(count, lda, coherence_arr, time_arr, data_lemmatized[:i+STEP_SIZE], id2word, i), f2)
print(total_time)
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%201~lda_online_exp1.py | import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
# Number of documents to consider as part of existing model in simulation.
# Here it is the no. of documents in Mass Media DB
INITIAL_DOC_SIZE = 17850
STEP_SIZE = 200
# Load Data - corp.pkl contains data_lemmatized, id2word, corpus
with open('corp.pkl', 'rb') as f:
data_lemmatized, id2word, _ = pickle.load(f)
# Initialize Parameters
total_time = 0
coherence_arr = []
time_arr = []
# Set Data State to that of existing model in simulation
data = data_lemmatized[:INITIAL_DOC_SIZE]
# When updating Online LDA, if I use a normal dictionary I keep getting key errors.
# That's why for online lda alone I use Hash Dictionary
# UPDATE: This method failed.
# id2word = corpora.HashDictionary(documents=data)
corpus = [id2word.doc2bow(doc) for doc in data]
# Building for the first time - To be considered as the starting/existing model in simulation.
start = timeit.default_timer()
lda = LdaMulticore(corpus, num_topics=35, id2word=id2word,
workers=3, chunksize=2000, passes=10, batch=False)
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
# Obtain C_V Coherence of existing model in simulation
coherencemodel2 = CoherenceModel(
model=lda, texts=data, dictionary=id2word, coherence='c_v')
coherence_arr.append(coherencemodel2.get_coherence())
count = 0
# The loop simulates arrival of new documents from Google Alerts in batches of STEP_SIZE
for i in range(INITIAL_DOC_SIZE, len(data_lemmatized)-STEP_SIZE, STEP_SIZE):
# new_docs is the list of STEP_SIZE new documents which have arrived
new_docs = data_lemmatized[i:i+STEP_SIZE]
# Updating Dictionary
# id2word.add_documents(new_docs)
# id2word.filter_extremes(no_below=5, no_above=0.95,
# keep_n=1800)
# Converting Documents to doc2bow format so that they can be fed to models
corpus = [id2word.doc2bow(doc) for doc in new_docs]
count += 1
print('MODEL NO:'+str(count))
start = timeit.default_timer()
lda.update(corpus)
print('MODEL DONE')
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
# Coherence of model updated so far on the entire corpus from start i.e including Mass Media DB
coherencemodel2 = CoherenceModel(
model=lda, texts=data_lemmatized[:i+STEP_SIZE], dictionary=id2word, coherence='c_v')
coherence_arr.append(coherencemodel2.get_coherence())
# Saves the incrementally built up data just in case program fails in the middle.
# Ideally you want the coherence_arr and time_arr from the last iteration. Other variables have been saved as a precaution.
with open('models_online.pkl', 'ab') as f2:
pickle.dump(
(count, lda, coherence_arr, time_arr, data_lemmatized[:i+STEP_SIZE], id2word, i), f2)
print(total_time)
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%203~.ipynb_checkpoints~lda_online_temporal-checkpoint.py | import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import copy
import gensim
import gensim.corpora as corpora
from gensim.corpora import Dictionary
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
# Number of documents to consider as part of existing model in simulation.
# Here it is the no. of documents in Mass Media DB
# INITIAL_DOC_SIZE = 9442
INITIAL_DOC_SIZE = 4000
# STEP_SIZE = 200
# DOC_TEMPORAL_SIZE = [9442, 12710, 14339, 15445, 16287, 16998, 17849]
# DOC_TEMPORAL_SIZE = [6730, 11328, 13466,
# 14874, 15926, 16765, 17464, 18063, 18587, 19053]
# DOC_TEMPORAL_SIZE = [6730, 9631, 11328, 12532, 13466, 14229, 14874, 15433,
# 15926, 16366, 16765, 17129, 17464, 17775, 18063, 18333, 18587, 18826, 19053]
# DOC_TEMPORAL_INCREMENT = [3268, 1629, 1106,
# 842, 711, 851] # 2 months, 2 months
DOC_TEMPORAL_INCREMENT = [4598, 2730, 2138,
1408, 1052, 839, 699, 599, 524, 466, 500, 500]
# DOC_TEMPORAL_INCREMENT = [3268, 1629, 1106,
# 842, 711, 851, 699, 599, 524, 466] # 2 weeks, 1 month
# DOC_TEMPORAL_INCREMENT = [4598, 2138, 1408, 1052,
# 839, 699, 599, 524, 466] # 2 weeks, 2 weeks
# dummy_lst = [600]*4
# DOC_TEMPORAL_INCREMENT.extend(dummy_lst)
# Load Data - corp.pkl contains data_lemmatized, id2word, corpus
with open('corp.pkl', 'rb') as f:
data_lemmatized, _, _ = pickle.load(f)
# Initialize Parameters
# total_time = 0
# coherence_arr = []
# time_arr = []
# Set Data State to that of existing model in simulation
data = data_lemmatized[:INITIAL_DOC_SIZE]
id2word = Dictionary(documents=data_lemmatized)
corpus = [id2word.doc2bow(doc) for doc in data]
# Building for the first time - To be considered as the starting/existing model in simulation.
# start = timeit.default_timer()
lda = LdaMulticore(corpus, num_topics=35, id2word=id2word,
workers=3, chunksize=2000, passes=10, batch=False)
corpus_baseline = copy.deepcopy(corpus)
lda_baseline = copy.deepcopy(lda)
doc_size = []
positive_arr = []
# end = timeit.default_timer()
# time_taken = end - start
# total_time += time_taken
# time_arr.append(time_taken)
# Obtain C_V Coherence of existing model in simulation
# coherencemodel2 = CoherenceModel(
# model=lda, texts=data, dictionary=id2word, coherence='c_v')
# coherence_arr.append(coherencemodel2.get_coherence())
f2 = open('confusion_temporal_2.pkl', 'wb')
count = 0
# The loop simulates arrival of new documents from Google Alerts in batches of STEP_SIZE
# len(data_lemmatized)-STEP_SIZE
doc_size_counter = INITIAL_DOC_SIZE
for i in DOC_TEMPORAL_INCREMENT:
# new_docs is the list of STEP_SIZE new documents which have arrived
new_docs = data_lemmatized[doc_size_counter:doc_size_counter+i]
doc_size_counter += i
# pruned_docs = []
# for doc in new_docs:
# pruned_data = []
# for x in doc:
# if x in id2word.values():
# pruned_data.append(x)
# pruned_docs.append(pruned_data)
# new_docs = pruned_docs
# print('Pruning Done')
# Updating Dictionary
# id2word.add_documents(new_docs)
# id2word.filter_extremes(no_below=5, no_above=0.95,
# keep_n=1800)
prev_corpus = copy.deepcopy(corpus)
# Converting Documents to doc2bow format so that they can be fed to models
corpus = [id2word.doc2bow(doc) for doc in new_docs]
count += 1
# prev_lda = copy.deepcopy(lda)
print('MODEL NO:'+str(count))
# start = timeit.default_timer()
lda.update(corpus)
print('MODEL DONE')
# end = timeit.default_timer()
# time_taken = end - start
# total_time += time_taken
# time_arr.append(time_taken)
# updated_corpus = copy.deepcopy(prev_corpus)
# updated_corpus.extend(corpus)
# corpus = updated_corpus
prev_corpus.extend(corpus)
corpus = copy.deepcopy(prev_corpus)
doc_size.append(i)
positive_arr.append(he.calc_confusion_matrix(
lda_baseline, lda, corpus))
# doc_size.append(len(corpus))
# positive_arr.append(he.calc_confusion_matrix(
# prev_lda, lda, prev_corpus))
# Coherence of model updated so far on the entire corpus from start i.e including Mass Media DB
# coherencemodel2 = CoherenceModel(
# model=lda, texts=data_lemmatized[:i+STEP_SIZE], dictionary=id2word, coherence='c_v')
# coherence_arr.append(coherencemodel2.get_coherence())
# with open('models_online.pkl', 'ab') as f2:
pickle.dump((positive_arr, doc_size), f2)
# pickle.dump(
# (count, lda, coherence_arr, time_arr, data_lemmatized[:i+STEP_SIZE], id2word, i), f2)
f2.close()
# print(total_time)
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%202~calc_coherence_batch.py | import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
file_name = 'models_batch.pkl'
output = 'batch_coherence.pkl'
model_list = []
data_list = []
dict_list = []
with open(file_name, 'rb') as f:
while True:
try:
iteration, model, time_arr, data, id2word, _ = pickle.load(f)
model_list.append(model)
data_list.append(data)
dict_list.append(id2word)
except:
break
coherence_list = []
count = 0
for i in range(0, len(model_list)):
model = model_list[i]
data = data_list[i]
id2word = dict_list[i]
print(id2word)
count += 1
print('Iteration '+str(count))
coherencemodel = CoherenceModel(
model=model, texts=data, dictionary=id2word, coherence='c_v')
coherence_list.append(coherencemodel.get_coherence())
with open(output, 'wb') as f:
pickle.dump((coherence_list, time_arr), f)
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%201~Archived~hdp_exp1.py | import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
# Number of documents to consider as part of existing model in simulation.
# Here it is the no. of documents in Mass Media DB
INITIAL_DOC_SIZE = 17850
STEP_SIZE = 200
# Load Data - corp.pkl contains data_lemmatized, id2word, corpus
with open('corp.pkl', 'rb') as f:
data_lemmatized, id2word, _ = pickle.load(f)
# Initialize Parameters
count = 0
total_time = 0
coherence_arr = []
time_arr = []
# Set Data State to that of existing model in simulation
data = data_lemmatized[:INITIAL_DOC_SIZE]
# id2word = corpora.HashDictionary(data)
corpus = [id2word.doc2bow(doc) for doc in data]
# Building for the first time - To be considered as the starting/existing model in simulation.
start = timeit.default_timer()
hdpmodel, hdptopics = he.build_hdp(corpus, id2word)
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
coherencemodel = CoherenceModel(
model=hdpmodel, texts=data, dictionary=id2word, coherence='c_v')
coherence_arr.append(coherencemodel.get_coherence())
# The loop simulates arrival of new documents from Google Alerts in batches of STEP_SIZE
for i in range(INITIAL_DOC_SIZE, len(data_lemmatized)-STEP_SIZE, STEP_SIZE):
# new_docs is the list of STEP_SIZE new documents which have arrived
new_docs = data_lemmatized[i:i+STEP_SIZE]
# # Updating Dictionary
# dict2 = corpora.Dictionary(new_docs)
# id2word.merge_with(dict2)
# id2word.filter_extremes(no_below=5, no_above=0.95,
# keep_n=1800)
# Converting Documents to doc2bow format so that they can be fed to models
corpus = [id2word.doc2bow(doc) for doc in new_docs]
count += 1
print('MODEL NO:'+str(count))
start = timeit.default_timer()
# print(corpus)
hdpmodel.update(corpus)
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
coherencemodel = CoherenceModel(
model=hdpmodel, texts=data_lemmatized[:i+STEP_SIZE], dictionary=id2word, coherence='c_v')
coherence_arr.append(coherencemodel.get_coherence())
# Saves the incrementally built up data just in case program fails in the middle.
# Ideally you want the coherence_arr and time_arr from the last iteration. Other variables have been saved as a precaution.
with open('models_hdp.pkl', 'ab') as f2:
pickle.dump(
(count, hdpmodel, coherence_arr, time_arr, data_lemmatized[:i+STEP_SIZE], id2word, i), f2)
print(total_time)
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%202~.ipynb_checkpoints~lda_online_exp1-checkpoint.py | import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import gensim
import gensim.corpora as corpora
from gensim.corpora import Dictionary
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
# Number of documents to consider as part of existing model in simulation.
# Here it is the no. of documents in Mass Media DB
INITIAL_DOC_SIZE = 17850
STEP_SIZE = 200
# Load Data - corp.pkl contains data_lemmatized, id2word, corpus
with open('corp.pkl', 'rb') as f:
data_lemmatized, _, _ = pickle.load(f)
# Initialize Parameters
total_time = 0
coherence_arr = []
time_arr = []
# Set Data State to that of existing model in simulation
data = data_lemmatized[:INITIAL_DOC_SIZE]
# When updating Online LDA, if I use a normal dictionary I keep getting key errors.
# That's why for online lda alone I use Hash Dictionary
id2word = Dictionary(documents=data)
corpus = [id2word.doc2bow(doc) for doc in data]
# Building for the first time - To be considered as the starting/existing model in simulation.
start = timeit.default_timer()
lda = LdaMulticore(corpus, num_topics=35, id2word=id2word,
workers=3, chunksize=2000, passes=10, batch=False)
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
# Obtain C_V Coherence of existing model in simulation
coherencemodel2 = CoherenceModel(
model=lda, texts=data, dictionary=id2word, coherence='c_v')
coherence_arr.append(coherencemodel2.get_coherence())
count = 0
# The loop simulates arrival of new documents from Google Alerts in batches of STEP_SIZE
for i in range(INITIAL_DOC_SIZE, len(data_lemmatized)-STEP_SIZE, STEP_SIZE):
# new_docs is the list of STEP_SIZE new documents which have arrived
new_docs = data_lemmatized[i:i+STEP_SIZE]
pruned_docs = []
for doc in new_docs:
pruned_data = []
for x in doc:
if x in id2word.values():
pruned_data.append(x)
pruned_docs.append(pruned_data)
new_docs = pruned_docs
print('Pruning Done')
# Updating Dictionary
# id2word.add_documents(new_docs)
# id2word.filter_extremes(no_below=5, no_above=0.95,
# keep_n=1800)
# Converting Documents to doc2bow format so that they can be fed to models
corpus = [id2word.doc2bow(doc) for doc in new_docs]
count += 1
print('MODEL NO:'+str(count))
start = timeit.default_timer()
lda.update(corpus)
print('MODEL DONE')
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
# Coherence of model updated so far on the entire corpus from start i.e including Mass Media DB
coherencemodel2 = CoherenceModel(
model=lda, texts=data_lemmatized[:i+STEP_SIZE], dictionary=id2word, coherence='c_v')
coherence_arr.append(coherencemodel2.get_coherence())
with open('models_online.pkl', 'ab') as f2:
pickle.dump(
(count, lda, coherence_arr, time_arr, data_lemmatized[:i+STEP_SIZE], id2word, i), f2)
print(total_time)
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | helper.py | import pandas as pd
import numpy as np
import pickle
import re
import spacy
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel
from nltk.corpus import stopwords
'''
A collection of helper functions
'''
# Initialize spacy 'en' model, keeping only tagger component (for efficiency)
nlp = spacy.load('en', disable=['parser', 'ner'])
def sent_to_words(sentences):
for sentence in sentences:
# deacc=True removes punctuations
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True))
# Define functions for stopwords, bigrams, trigrams and lemmatization
def remove_stopwords(texts, stop_words):
return [[word for word in gensim.utils.simple_preprocess(str(doc)) if word not in stop_words] for doc in texts]
def make_bigrams(texts, bigram_mod):
return [bigram_mod[doc] for doc in texts]
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']):
"""https://spacy.io/api/annotation"""
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append(
[token.lemma_ for token in doc if token.pos_ in allowed_postags])
return texts_out
def create_dictionary(data_lemmatized):
# Create Dictionary
id2word = corpora.Dictionary(data_lemmatized)
# Filter words
id2word.filter_extremes(no_below=5, no_above=0.95,
keep_n=1800, keep_tokens=None)
return id2word
def create_model_corpus(id2word, data_lemmatized):
return [id2word.doc2bow(text) for text in data_lemmatized]
def build_hdp(corpus, id2word):
hdpmodel = HdpModel(corpus=corpus, id2word=id2word, chunksize=2000)
hdptopics = hdpmodel.show_topics(formatted=False)
hdptopics = [[word for word, prob in topic]
for topicid, topic in hdptopics]
return hdpmodel, hdptopics
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%202~lda_batch_exp1.py | import pandas as pd
import numpy as np
import pickle
import re
import timeit
import spacy
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel, LdaModel, LdaMulticore
from nltk.corpus import stopwords
import helper as he
# Number of documents to consider as part of existing model in simulation.
# Here it is the no. of documents in Mass Media DB
INITIAL_DOC_SIZE = 17850
STEP_SIZE = 200
# Load Data
with open('corp.pkl', 'rb') as f:
data_lemmatized, _, _ = pickle.load(f)
# Initialize Parameters
count = 0
total_time = 0
coherence_arr = []
time_arr = []
# Set Data State to that of existing model in simulation
data = data_lemmatized[:INITIAL_DOC_SIZE]
id2word = corpora.HashDictionary(data)
# WARNING: Make sure that the dictionary and corpus are always in sync.
# If the mappings in the dictionary and the ids in the corpus are different you will get KeyErrors.
corpus = [id2word.doc2bow(doc) for doc in data]
# Building for the first time - To be considered as the starting/existing model in simulation.
start = timeit.default_timer()
lda = LdaMulticore(corpus, num_topics=35, id2word=id2word,
workers=3, chunksize=2000, passes=10, batch=True)
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
with open('models_batch.pkl', 'ab') as f2:
pickle.dump(
(count, lda, time_arr, data, id2word, len(data)), f2)
# The loop simulates arrival of new documents from Google Alerts in batches of STEP_SIZE
for i in range(INITIAL_DOC_SIZE, len(data_lemmatized)-STEP_SIZE, STEP_SIZE):
# new_docs is the list of STEP_SIZE new documents which have arrived
new_docs = data_lemmatized[i:i+STEP_SIZE]
# Updating Dictionary
id2word.add_documents(new_docs)
id2word.filter_extremes(no_below=5, no_above=0.95,
keep_n=1800)
# Converting Documents to doc2bow format so that they can be fed to models
corpus = [id2word.doc2bow(doc) for doc in data_lemmatized[:i+STEP_SIZE]]
count += 1
print('MODEL NO:'+str(count))
start = timeit.default_timer()
# Since this is batch LDA the entire model has to be retrained from scratch using the new corpus and dictionary
lda = LdaMulticore(corpus, num_topics=35, id2word=id2word,
workers=3, chunksize=2000, passes=10, batch=True)
end = timeit.default_timer()
time_taken = end - start
total_time += time_taken
time_arr.append(time_taken)
# Coherence of model updated so far on the entire corpus from start i.e including Mass Media DB
# coherencemodel2 = CoherenceModel(
# model=lda, texts=data_lemmatized[:i+STEP_SIZE], dictionary=id2word, coherence='c_v')
# coherence_arr.append(coherencemodel2.get_coherence())
with open('models_batch.pkl', 'ab') as f2:
pickle.dump(
(count, lda, time_arr, data_lemmatized[:i+STEP_SIZE], id2word, i), f2)
print(total_time)
| [] |
2024-01-10 | adityanathan/Algorithmic-Auditing-of-News-Feeds | Experiment%203~helper.py | import pandas as pd
import numpy as np
import pickle
import re
import spacy
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel, HdpModel
from nltk.corpus import stopwords
# Initialize spacy 'en' model, keeping only tagger component (for efficiency)
nlp = spacy.load('en', disable=['parser', 'ner'])
def sent_to_words(sentences):
for sentence in sentences:
# deacc=True removes punctuations
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True))
def remove_stopwords(texts, stop_words):
return [[word for word in gensim.utils.simple_preprocess(str(doc)) if word not in stop_words] for doc in texts]
def make_bigrams(texts, bigram_mod):
return [bigram_mod[doc] for doc in texts]
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']):
"""https://spacy.io/api/annotation"""
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append(
[token.lemma_ for token in doc if token.pos_ in allowed_postags])
return texts_out
def create_dictionary(data_lemmatized):
# Create Dictionary
id2word = corpora.Dictionary(data_lemmatized)
# Filter words
id2word.filter_extremes(no_below=5, no_above=0.95,
keep_n=1800, keep_tokens=None)
return id2word
def create_model_corpus(id2word, data_lemmatized):
return [id2word.doc2bow(text) for text in data_lemmatized]
def build_hdp(corpus, id2word):
hdpmodel = HdpModel(corpus=corpus, id2word=id2word, chunksize=2000)
hdptopics = hdpmodel.show_topics(formatted=False)
hdptopics = [[word for word, prob in topic]
for topicid, topic in hdptopics]
return hdpmodel, hdptopics
def calc_confusion_matrix(model1, model2, corpus1, doc_max=True):
lda_corpus_1 = [max(prob, key=lambda y:y[1])
for prob in model1[corpus1]]
lda_corpus_2 = [max(prob, key=lambda y:y[1])
for prob in model2[corpus1]]
# print(lda_corpus_1 == lda_corpus_2)
# print('Corpus 1 Length - ', len(lda_corpus_1))
# print('Corpus 2 Length - ', len(lda_corpus_2))
# max_corpus_size = max(len(lda_corpus_1), len(lda_corpus_2))
# min_corpus_size = min(len(lda_corpus_1), len(lda_corpus_2))
# print(max_corpus_size)
positive = 0
negative = 0
# if(doc_max == True):
# upper_limit = max_corpus_size
# else:
# upper_limit = min_corpus_size
upper_limit = len(lda_corpus_1)
total_permutations = upper_limit * \
(upper_limit-1)/2 # nC2 combinations
for i in range(upper_limit):
for j in range(i+1, upper_limit):
# print(upper_limit)
# print(i)
# print(j)
if(lda_corpus_1[i][0] == lda_corpus_1[j][0] and lda_corpus_2[i][0] == lda_corpus_2[j][0]):
positive = positive+1
elif(lda_corpus_1[i][0] != lda_corpus_1[j][0] and lda_corpus_2[i][0] == lda_corpus_2[j][0]):
negative = negative+1
elif(lda_corpus_1[i][0] == lda_corpus_1[j][0] and lda_corpus_2[i][0] != lda_corpus_2[j][0]):
negative = negative+1
elif(lda_corpus_1[i][0] != lda_corpus_1[j][0] and lda_corpus_2[i][0] != lda_corpus_2[j][0]):
positive = positive+1
answers_positive = (round(positive*100/total_permutations, 2))
# answers_negative = (round(negative*100/total_permutations, 2))
return answers_positive
| [] |
2024-01-10 | harrrshall/An-AI-Adventure | speak.py | import os
from openai import OpenAI
import base64
import json
import time
import simpleaudio as sa
import errno
from elevenlabs import generate, play, set_api_key, voices
client = OpenAI()
set_api_key(os.environ.get("ELEVENLABS_API_KEY"))
def encode_image(image_path):
while True:
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
except IOError as e:
if e.errno != errno.EACCES:
# Not a "file in use" error, re-raise
raise
# File is being written to, wait a bit and retry
time.sleep(0.1)
def play_audio(text):
audio = generate(text, voice=os.environ.get("ELEVENLABS_VOICE_ID"))
unique_id = base64.urlsafe_b64encode(os.urandom(30)).decode("utf-8").rstrip("=")
dir_path = os.path.join("narration", unique_id)
os.makedirs(dir_path, exist_ok=True)
file_path = os.path.join(dir_path, "audio.wav")
with open(file_path, "wb") as f:
f.write(audio)
play(audio)
def generate_new_line(base64_image):
return [
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this image"},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{base64_image}",
},
],
},
]
def analyze_image(base64_image, script):
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "system",
"content": """
Narrate the picture of the human as if it is a nature documentary.
Make it snarky and funny. Don't repeat yourself. Make it short. If I do anything remotely interesting, make a big deal about it!
""",
},
]
+ script
+ generate_new_line(base64_image),
max_tokens=500,
)
response_text = response.choices[0].message.content
return response_text
def main():
script = []
while True:
# Path to your image
image_path = os.path.join(os.getcwd(), "./captured_frames/frame.jpg")
# Getting the base64 encoding
base64_image = encode_image(image_path)
# Analyze posture
print("๐ David is watching...")
analysis = analyze_image(base64_image, script=script)
print("๐๏ธ David says:")
print(analysis)
play_audio(analysis)
script = script + [{"role": "assistant", "content": analysis}]
# Wait for 5 seconds
time.sleep(5)
if __name__ == "__main__":
main()
| [
"[{'type': 'text', 'text': 'Describe this image'}, {'type': 'image_url', 'image_url': ''}]",
"\n Narrate the picture of the human as if it is a nature documentary.\n Make it snarky and funny. Don't repeat yourself. Make it short. If I do anything remotely interesting, make a big deal about it!\n "
] |
2024-01-10 | NotShrirang/README-Generator | readme_generator.py | def ask(query):
import openai
import json
with open("./secretes.json", "r") as f:
json_file = json.load(f)
openai.organization = "org-56LTi4oJG3ERd1cSlyN6sv2t"
openai.api_key = json_file['api_key']
# print(query)
response = openai.Completion.create(
engine="text-davinci-003",
prompt=query,
temperature=0.5,
max_tokens=1000,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
return response['choices'][0]['text'] | [] |
2024-01-10 | goonbamm/Co_Deep_Learning | code~gpt4~get_response.py | import os
import time
import json
import openai
import pandas as pd
from tqdm.auto import tqdm
# LOAD CONFIG
with open('config.json', 'r', encoding='utf-8') as f:
CONFIG = json.load(f)
openai.api_key = CONFIG['OPENAI_API_KEY']
OPENAI_MODEL_NAME = CONFIG['OPENAI_MODEL_NAME']
def request_chatgpt_api(prompt):
response = openai.ChatCompletion.create(
model=OPENAI_MODEL_NAME,
messages=[
{"role": "user", "content": prompt}
]
)
id = response['id']
token_usage = response['usage']['total_tokens']
content = response['choices'][0]['message']['content']
return id, token_usage, content
def get_prompt(requirement, model_type):
assert MODEL_TYPE in [
'GPT4, FULL INSTRUCTION, K=2, MANUAL',
'GPT4, FULL INSTRUCTION, K=2, RANDOM',
'GPT4, FULL INSTRUCTION, K=0',
'GPT4, MINIMAL INSTRUCTION, K=0',
'GPT4, NO INSTRUCTION, K=2, MANUAL',
'GPT4, NO INSTRUCTION, K=4, MANUAL',
'GPT4, NO INSTRUCTION, K=6, MANUAL'
]
if model_type == 'GPT4, FULL INSTRUCTION, K=2, MANUAL':
prompt_list = [
'์๊ตฌ์ฌํญ์ ํ ๋๋ก ๊ทธ๋ฆผ ์์ฑ ์์ด ํ๋กฌํํธ๋ก ๋ฐ๊ฟ์ค.',
'- ๊ทธ๋ฆผ ์์ฑ ํ๋กฌํํธ๋ ๋ช
์ฌ ํํ์ฌ์ผ ํด.\n',
'์์)',
'์๊ตฌ์ฌํญ: 1800๋
๋ ์คํ์ผ๋ก ์ํ๋ผ์ค๋ฅผ ๊ทธ๋ฆฐ ์ค์ผ์น๋ฅผ ํ์ ๋ฐฐ๊ฒฝ์ ๋ช ๋ง๋ฆฌ์ ๋
์๋ฆฌ๊ฐ ์ฃผ๋ณ์ ๋ ๊ณ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.',
'model prompt: Tethering vintage sketch of Atlas with a few eagles flying around him, on a white backdrop, in the style of 1800s\n',
'์๊ตฌ์ฌํญ: 1920๋
๋ ๋ฉ์ง ๋ผํด ๋จ์๊ฐ ๋ฐ์ง์ด๋ ์์ ์ํธ๋ฅผ ์
๊ณ ์ด๋์ด ์ฐ๊ธฐ ๊ฐ๋ํ ๋ฐ์์ ์๋ฃ๋ฅผ ๋ค๊ณ ๊ธฐ๋์ด ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์ด์์ฐ์ ์ด๊ณ ์์ธํ ๊ทธ๋ํฝ ๋
ธ๋ธ ์ฝ๋ฏน๋ถ ์ผ๋ฌ์คํธ๋ ์ด์
๊ฐ์ด, ์ปฌ๋ฌํํ๊ฒ ๊ทธ๋ ค์ค. ๋ง์ดํฌ ๋ฏธ๋๋ผ, ํ
๋ฆฌ ๋๋์จ, ํ ๋จธ ํ๋์นด๊ฐ ๋ง๋ ์บ๋ฆญํฐ ์ํธ ์คํ์ผ๋ก ํด์ค.',
'model prompt: Sand Dune 1920s handsome latino man in shiny silver suit, leaning with a drink in a dark smoky bar, supernatural, highly detailed realistic graphic novel comic book illustration, colorful, by mike mignola, terry dodson and tomer hanuka, character art\n',
f'์๊ตฌ์ฌํญ: {requirement}',
'model prompt: '
]
prompt = '\n'.join(prompt_list)
elif model_type == 'GPT4, FULL INSTRUCTION, K=0':
prompt_list = [
'์๊ตฌ์ฌํญ์ ํ ๋๋ก ๊ทธ๋ฆผ ์์ฑ ์์ด ํ๋กฌํํธ๋ก ๋ฐ๊ฟ์ค.',
'- ๊ทธ๋ฆผ ์์ฑ ํ๋กฌํํธ๋ ๋ช
์ฌ ํํ์ฌ์ผ ํด.\n',
f'์๊ตฌ์ฌํญ: {requirement}',
'model prompt: '
]
prompt = '\n'.join(prompt_list)
elif model_type == 'GPT4, FULL INSTRUCTION, K=2, RANDOM':
prompt_list = [
'์๊ตฌ์ฌํญ์ ํ ๋๋ก ๊ทธ๋ฆผ ์์ฑ ์์ด ํ๋กฌํํธ๋ก ๋ฐ๊ฟ์ค.',
'- ๊ทธ๋ฆผ ์์ฑ ํ๋กฌํํธ๋ ๋ช
์ฌ ํํ์ฌ์ผ ํด.\n',
'์์)',
'์๊ตฌ์ฌํญ: ๋ฏธ๋์์ ์จ ์ํผ ๊ฐ์์ง๋ฅผ ๊ทธ๋ ค๋ด. ๊ธ์ ํผ๋ถ์ ๊ทผ์ก์ด ๋ง์ด ๋ณด์ด๊ณ , ์ธ๊ฐ์ฒ๋ผ ๊ทผ์ก์ด ํผํผํ ๋ชธ์ ๊ฐ์ง๊ณ ์์ด. ๋ฐฐ๊ฒฝ์ ํฐ์์ด๊ณ ๋ฏธ๋์ ์ด๊ณ ์ดํ์ค์ ์ธ ๋๋์ ๋ด์ฃผ๋ฉด ์ข์. ๊ทธ๋ฆผ์ ์ ์ ์ ๋ค ๋ณด์ฌ์ค์ผ ํด. ๊ทธ๋ฆฌ๊ณ 3D๋ก ๊ทธ๋ ค์ค.',
'model prompt: Naรฏve Art American Bully dog, gold color skin, heavily ripped muscles, with human muscles,hulk type muscled body, white background, futuristic, Ultrarealistic, 8K, Photographic details, full body with legs, Unreal engine, 3D,\n',
'์๊ตฌ์ฌํญ: ์ด๋ก๊ณ ๋ฌด์์ด ๋ถ์๊ธฐ์ ๋์ ์์ ๋ฒ๋ ค์ง ๋๊ตฌ์ฅ ์ฌ์ง์ ์ฐ์ด๋ด. ๋นจ๊ฐ ๋น์ผ๋ก ์ด๋์ด ๊ทธ๋ฆผ์๊ฐ ๋๋ฆฌ์์ ธ ์๊ณ , ๋
น์จ ๋ฐ์ค์ผ์ด ์ธ์ธํ๊ฒ ๋งค๋ฌ๋ ค์์ด. ๊ทธ๋ฆฌ๊ณ ๋๊ตฌ์ฅ์๋ ํ๋ ํ๊ธฐ์ฐจ๊ฒ ๊ฒฝ๊ธฐ๊ฐ ๋ฒ์ด์ก๋ ํ์ ์ด ๋ณด์ฌ์ผ ํด. ๋๊ตฌ์ฅ์ ๋ก์์ ์ ๊ณผ ๊ทธ๋ํฝ์ด ํ๋ฆฌ๊ณ ๋ฒ๊ฒจ์ ธ ์์ด. ์นด๋ฉ๋ผ๋ ์
ํฐ ์คํผ๋ 1/200, ์กฐ๋ฆฌ๊ฐ f/2.8๋ก ์ค์ ํ๊ณ , ISO๋ 800์ผ๋ก ์ค์ ํด. ๊ทธ๋ฆผ ์ ์ฒด์ ์ผ๋ก ์ ๋ น ๊ฐ๊ณ ์ํ ๊ฐ์ ๋๋์ ์ฃผ๊ณ , ์ํ์ง ๋์์ ์ํ์ง ๊ณต๊ฐ์ ์๋ฆ๋ค์๊ณผ ์ ์๋ฅผ ๋ด์๋ด์ผ ํด. ๊ทธ๋ฆผ์ ๊ตฌ๋๋ ๋๊ตฌ์ฅ์ ์ฃผ๋ชฉํ ์ ์๋๋ก ์ ์คํ๊ฒ ๊ตฌ์ฑ๋์ด์ผ ํ๋ฉฐ, ์๊ฐ์ ํ๋ฆ๊ณผ ์ธ๊ฐ์ ๋
ธ๋ ฅ์ ์ผ์์ ์ธ ์ฑ๊ฒฉ์ ๋ํ ์๊ฐ์ ์ด๋์ด๋ด์ผ ํด.',
'model prompt: Date A hauntingly beautiful photograph of an abandoned basketball court in the heart of a run-down, futuristic city, captured with a Sony A7R IV camera and a 35mm f/1.4 lens. The court is the sole focus of the image, with the surrounding cityscape in the background shrouded in deep shadows and ominous red lighting, casting an eerie glow over the scene. The court is worn and weathered, its once-vibrant lines and graphics now faded and peeling. The rusted hoops hang forlornly from the backboards, a testament to a bygone era when the court was a hub of activity and competition. Despite its derelict state, the court still exudes a sense of energy and possibility, a reminder of the dreams and aspirations that were once realized on its surface. The camera is set up with an aperture of f/2.8 to create a shallow depth of field, highlighting the intricate details of the court and blurring the background to create a sense of isolation and abandonment. The ISO is set to 800 to capture the dramatic red lighting that bathes the court, casting deep shadows and emphasizing the texture and detail of the surface. The overall effect is haunting and cinematic, capturing the beauty and melancholy of a forgotten space in a forgotten city. The composition is carefully crafted to draw the viewers eye to the court, emphasizing its significance and inviting reflection on the passage of time and the transience of human endeavor.\n',
f'์๊ตฌ์ฌํญ: {requirement}',
'model prompt: '
]
prompt = '\n'.join(prompt_list)
elif model_type == 'GPT4, MINIMAL INSTRUCTION, K=0':
prompt_list = [
'์๊ตฌ์ฌํญ์ ํ ๋๋ก ๊ทธ๋ฆผ ์์ฑ ์์ด ํ๋กฌํํธ๋ก ๋ฐ๊ฟ์ค.\n',
f'์๊ตฌ์ฌํญ: {requirement}',
'model prompt: '
]
prompt = '\n'.join(prompt_list)
elif model_type == 'GPT4, NO INSTRUCTION, K=2, MANUAL':
prompt_list = [
'์์)',
'์๊ตฌ์ฌํญ: 1800๋
๋ ์คํ์ผ๋ก ์ํ๋ผ์ค๋ฅผ ๊ทธ๋ฆฐ ์ค์ผ์น๋ฅผ ํ์ ๋ฐฐ๊ฒฝ์ ๋ช ๋ง๋ฆฌ์ ๋
์๋ฆฌ๊ฐ ์ฃผ๋ณ์ ๋ ๊ณ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.',
'model prompt: Tethering vintage sketch of Atlas with a few eagles flying around him, on a white backdrop, in the style of 1800s\n',
'์๊ตฌ์ฌํญ: 1920๋
๋ ๋ฉ์ง ๋ผํด ๋จ์๊ฐ ๋ฐ์ง์ด๋ ์์ ์ํธ๋ฅผ ์
๊ณ ์ด๋์ด ์ฐ๊ธฐ ๊ฐ๋ํ ๋ฐ์์ ์๋ฃ๋ฅผ ๋ค๊ณ ๊ธฐ๋์ด ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์ด์์ฐ์ ์ด๊ณ ์์ธํ ๊ทธ๋ํฝ ๋
ธ๋ธ ์ฝ๋ฏน๋ถ ์ผ๋ฌ์คํธ๋ ์ด์
๊ฐ์ด, ์ปฌ๋ฌํํ๊ฒ ๊ทธ๋ ค์ค. ๋ง์ดํฌ ๋ฏธ๋๋ผ, ํ
๋ฆฌ ๋๋์จ, ํ ๋จธ ํ๋์นด๊ฐ ๋ง๋ ์บ๋ฆญํฐ ์ํธ ์คํ์ผ๋ก ํด์ค.',
'model prompt: Sand Dune 1920s handsome latino man in shiny silver suit, leaning with a drink in a dark smoky bar, supernatural, highly detailed realistic graphic novel comic book illustration, colorful, by mike mignola, terry dodson and tomer hanuka, character art\n',
f'์๊ตฌ์ฌํญ: {requirement}',
'model prompt: '
]
prompt = '\n'.join(prompt_list)
elif model_type == 'GPT4, NO INSTRUCTION, K=4, MANUAL':
prompt_list = [
'์์)',
'์๊ตฌ์ฌํญ: 1800๋
๋ ์คํ์ผ๋ก ์ํ๋ผ์ค๋ฅผ ๊ทธ๋ฆฐ ์ค์ผ์น๋ฅผ ํ์ ๋ฐฐ๊ฒฝ์ ๋ช ๋ง๋ฆฌ์ ๋
์๋ฆฌ๊ฐ ์ฃผ๋ณ์ ๋ ๊ณ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.',
'model prompt: Tethering vintage sketch of Atlas with a few eagles flying around him, on a white backdrop, in the style of 1800s\n',
'์๊ตฌ์ฌํญ: 1920๋
๋ ๋ฉ์ง ๋ผํด ๋จ์๊ฐ ๋ฐ์ง์ด๋ ์์ ์ํธ๋ฅผ ์
๊ณ ์ด๋์ด ์ฐ๊ธฐ ๊ฐ๋ํ ๋ฐ์์ ์๋ฃ๋ฅผ ๋ค๊ณ ๊ธฐ๋์ด ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์ด์์ฐ์ ์ด๊ณ ์์ธํ ๊ทธ๋ํฝ ๋
ธ๋ธ ์ฝ๋ฏน๋ถ ์ผ๋ฌ์คํธ๋ ์ด์
๊ฐ์ด, ์ปฌ๋ฌํํ๊ฒ ๊ทธ๋ ค์ค. ๋ง์ดํฌ ๋ฏธ๋๋ผ, ํ
๋ฆฌ ๋๋์จ, ํ ๋จธ ํ๋์นด๊ฐ ๋ง๋ ์บ๋ฆญํฐ ์ํธ ์คํ์ผ๋ก ํด์ค.',
'model prompt: Sand Dune 1920s handsome latino man in shiny silver suit, leaning with a drink in a dark smoky bar, supernatural, highly detailed realistic graphic novel comic book illustration, colorful, by mike mignola, terry dodson and tomer hanuka, character art\n',
'์๊ตฌ์ฌํญ: ์ฌ๋ฆ ๊ทธ๋ํฝ, ๋ก๋ ํธ๋ฆฝ ์ด๋๋ฒค์ฒ, ๊ณํ์ ์ก์ธ์๋ฆฌ, ๋ ํธ๋ก ์ปฌ๋ฌ, ์์ ๊ทธ๋ฆผ, ์ฌํ ์ผ๋ฌ์คํธ๋ ์ด์
, ์์ฑํ ์์๊ฐ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.',
'model prompt: Topology Summer Graphics, Road Trip Adventure, Planner Accessories, Retro Colors, Hand-Drawn Artwork, Travel Illustrations, Watercolor Elements, single design, 8k, \n',
'์๊ตฌ์ฌํญ: ํด๋ก๋ ๋ชจ๋ค ๊ฐ์ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์๋ฆ๋ค์ด ์ผ๋ชฐ์ด ์๋ ๊ธธ๊ฐ์ ๊ธด ๋ธ๋ ์ด๋๋ฅผ ํ ์์ ์๋
๊ฐ ํฐ ๋ฐ์ ์์ ์์์์ด. ๊ทธ๋
๋ ๋ฉ๋ฆฌ ๋ฐ๋ผ๋ณด๋ฉฐ ์๊ฐ์ ์ ๊ธฐ๊ณ ์์ด.',
'model prompt: Nature Photography A little girl with long braids sits on a large boulder at the end of a linden-lined avenue, with a beautiful sunset in the background. She gazes off into the distance, lost in thought as she takes in the stunning view before her, in the style of Claude Monet, \n',
f'์๊ตฌ์ฌํญ: {requirement}',
'model prompt: '
]
prompt = '\n'.join(prompt_list)
elif model_type == 'GPT4, NO INSTRUCTION, K=6, MANUAL':
prompt_list = [
'์์)',
'์๊ตฌ์ฌํญ: 1800๋
๋ ์คํ์ผ๋ก ์ํ๋ผ์ค๋ฅผ ๊ทธ๋ฆฐ ์ค์ผ์น๋ฅผ ํ์ ๋ฐฐ๊ฒฝ์ ๋ช ๋ง๋ฆฌ์ ๋
์๋ฆฌ๊ฐ ์ฃผ๋ณ์ ๋ ๊ณ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.',
'model prompt: Tethering vintage sketch of Atlas with a few eagles flying around him, on a white backdrop, in the style of 1800s\n',
'์๊ตฌ์ฌํญ: 1920๋
๋ ๋ฉ์ง ๋ผํด ๋จ์๊ฐ ๋ฐ์ง์ด๋ ์์ ์ํธ๋ฅผ ์
๊ณ ์ด๋์ด ์ฐ๊ธฐ ๊ฐ๋ํ ๋ฐ์์ ์๋ฃ๋ฅผ ๋ค๊ณ ๊ธฐ๋์ด ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์ด์์ฐ์ ์ด๊ณ ์์ธํ ๊ทธ๋ํฝ ๋
ธ๋ธ ์ฝ๋ฏน๋ถ ์ผ๋ฌ์คํธ๋ ์ด์
๊ฐ์ด, ์ปฌ๋ฌํํ๊ฒ ๊ทธ๋ ค์ค. ๋ง์ดํฌ ๋ฏธ๋๋ผ, ํ
๋ฆฌ ๋๋์จ, ํ ๋จธ ํ๋์นด๊ฐ ๋ง๋ ์บ๋ฆญํฐ ์ํธ ์คํ์ผ๋ก ํด์ค.',
'model prompt: Sand Dune 1920s handsome latino man in shiny silver suit, leaning with a drink in a dark smoky bar, supernatural, highly detailed realistic graphic novel comic book illustration, colorful, by mike mignola, terry dodson and tomer hanuka, character art\n',
'์๊ตฌ์ฌํญ: ์ฌ๋ฆ ๊ทธ๋ํฝ, ๋ก๋ ํธ๋ฆฝ ์ด๋๋ฒค์ฒ, ๊ณํ์ ์ก์ธ์๋ฆฌ, ๋ ํธ๋ก ์ปฌ๋ฌ, ์์ ๊ทธ๋ฆผ, ์ฌํ ์ผ๋ฌ์คํธ๋ ์ด์
, ์์ฑํ ์์๊ฐ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.',
'model prompt: Topology Summer Graphics, Road Trip Adventure, Planner Accessories, Retro Colors, Hand-Drawn Artwork, Travel Illustrations, Watercolor Elements, single design, 8k, \n',
'์๊ตฌ์ฌํญ: ํด๋ก๋ ๋ชจ๋ค ๊ฐ์ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์๋ฆ๋ค์ด ์ผ๋ชฐ์ด ์๋ ๊ธธ๊ฐ์ ๊ธด ๋ธ๋ ์ด๋๋ฅผ ํ ์์ ์๋
๊ฐ ํฐ ๋ฐ์ ์์ ์์์์ด. ๊ทธ๋
๋ ๋ฉ๋ฆฌ ๋ฐ๋ผ๋ณด๋ฉฐ ์๊ฐ์ ์ ๊ธฐ๊ณ ์์ด.',
'model prompt: Nature Photography A little girl with long braids sits on a large boulder at the end of a linden-lined avenue, with a beautiful sunset in the background. She gazes off into the distance, lost in thought as she takes in the stunning view before her, in the style of Claude Monet, \n',
'์๊ตฌ์ฌํญ: ์ฐ ๊ผญ๋๊ธฐ ๋๊ตด์์ ๋ณด๋ 4K ์ ๋๋ฉ์ด์
์คํ์ผ์ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ๊ทธ๋ฆฌ๊ณ ์คํ์ด๋๋งจ ์์๋ ๋ฐ์ ์์ ์์ ๋๊ตด ์
๊ตฌ๋ฅผ ๋ฐ๋ผ๋ณด๋ ๊ท์ฌ์ด ๊ณ ์์ด๊ฐ ์์ด. ๋์ฟ์ ๋น์ค๋ ๋ฐค ๊ฑฐ๋ฆฌ์ ๋ฐ์ ๋ค์จ ๋ผ์ดํธ, ๊ทธ๋ฆฌ๊ณ ๋นํํ๋ ์คํํํฌ ๋ฐฐ๋ค์ด ๋์ค๋ ์ฅ๋ฉด์ด ์์ด.',
'model prompt: 4K lofi anime style from the view of a mountain top cave with spiderman next to hir is a cute cat sitting on the rocks looking out of the a circle cave entrance with a night scene of rainy tokyo streets with bright neon lights and flying steampunk ships, \n',
'์๊ตฌ์ฌํญ: ํฐ ๋๋ฌผ์ ์
๊ตฌ๋ฅผ ๋๊บผ์ด ํ์ธํธ๋ก ๊ทธ๋ ค๋ด. ์
์ฒด์ ์ผ๋ก ๊ทธ๋ ค์ค.',
'model prompt: Impasto a grand zoo entrance, isometric,\n',
f'์๊ตฌ์ฌํญ: {requirement}',
'model prompt: '
]
prompt = '\n'.join(prompt_list)
return prompt
def main(model_type):
# LOAD DATASET
test_dataset = pd.read_csv('../evaluation/final_test_128.csv', index_col=False)
# FOR SAVING
openai_dict = {
'id': list(),
'token_usage': list(),
'content': list()
}
# READY FOR TQDM
progress_bar = tqdm(total=len(test_dataset), desc=model_type)
for i, row in test_dataset.iterrows():
# GET PROMPT
prompt = get_prompt(row['requirement'], model_type)
# TRY TO REQUEST OPENAI API
try:
id, token_usage, content = request_chatgpt_api(prompt)
openai_dict['id'].append(id)
openai_dict['token_usage'].append(token_usage)
openai_dict['content'].append(content)
except Exception as e:
print(f'#{i} DATA ERROR!')
print(f'BECAUSE WE HAVE ERROR, WE SLEEP 5 MINUTES FROM NOW.\n')
time.sleep(300)
progress_bar.update(1)
gpt4_requests = pd.DataFrame.from_dict(openai_dict)
record = pd.read_csv('../evaluation/record.csv', index_col=False)
record[model_type] = gpt4_requests['content']
record.to_csv('../evaluation/record.csv', index=False, encoding='utf-8')
if __name__ == '__main__':
MODEL_TYPE = 'GPT4, NO INSTRUCTION, K=6, MANUAL'
main(model_type=MODEL_TYPE)
| [
"['์๊ตฌ์ฌํญ์ ํ ๋๋ก ๊ทธ๋ฆผ ์์ฑ ์์ด ํ๋กฌํํธ๋ก ๋ฐ๊ฟ์ค.\\n', '์๊ตฌ์ฌํญ: PLACEHOLDER', 'model prompt: ']",
"\n",
"['์๊ตฌ์ฌํญ์ ํ ๋๋ก ๊ทธ๋ฆผ ์์ฑ ์์ด ํ๋กฌํํธ๋ก ๋ฐ๊ฟ์ค.', '- ๊ทธ๋ฆผ ์์ฑ ํ๋กฌํํธ๋ ๋ช
์ฌ ํํ์ฌ์ผ ํด.\\n', '์์)', '์๊ตฌ์ฌํญ: ๋ฏธ๋์์ ์จ ์ํผ ๊ฐ์์ง๋ฅผ ๊ทธ๋ ค๋ด. ๊ธ์ ํผ๋ถ์ ๊ทผ์ก์ด ๋ง์ด ๋ณด์ด๊ณ , ์ธ๊ฐ์ฒ๋ผ ๊ทผ์ก์ด ํผํผํ ๋ชธ์ ๊ฐ์ง๊ณ ์์ด. ๋ฐฐ๊ฒฝ์ ํฐ์์ด๊ณ ๋ฏธ๋์ ์ด๊ณ ์ดํ์ค์ ์ธ ๋๋์ ๋ด์ฃผ๋ฉด ์ข์. ๊ทธ๋ฆผ์ ์ ์ ์ ๋ค ๋ณด์ฌ์ค์ผ ํด. ๊ทธ๋ฆฌ๊ณ 3D๋ก ๊ทธ๋ ค์ค.', 'model prompt: Naรฏve Art American Bully dog, gold color skin, heavily ripped muscles, with human muscles,hulk type muscled body, white background, futuristic, Ultrarealistic, 8K, Photographic details, full body with legs, Unreal engine, 3D,\\n', '์๊ตฌ์ฌํญ: ์ด๋ก๊ณ ๋ฌด์์ด ๋ถ์๊ธฐ์ ๋์ ์์ ๋ฒ๋ ค์ง ๋๊ตฌ์ฅ ์ฌ์ง์ ์ฐ์ด๋ด. ๋นจ๊ฐ ๋น์ผ๋ก ์ด๋์ด ๊ทธ๋ฆผ์๊ฐ ๋๋ฆฌ์์ ธ ์๊ณ , ๋
น์จ ๋ฐ์ค์ผ์ด ์ธ์ธํ๊ฒ ๋งค๋ฌ๋ ค์์ด. ๊ทธ๋ฆฌ๊ณ ๋๊ตฌ์ฅ์๋ ํ๋ ํ๊ธฐ์ฐจ๊ฒ ๊ฒฝ๊ธฐ๊ฐ ๋ฒ์ด์ก๋ ํ์ ์ด ๋ณด์ฌ์ผ ํด. ๋๊ตฌ์ฅ์ ๋ก์์ ์ ๊ณผ ๊ทธ๋ํฝ์ด ํ๋ฆฌ๊ณ ๋ฒ๊ฒจ์ ธ ์์ด. ์นด๋ฉ๋ผ๋ ์
ํฐ ์คํผ๋ 1/200, ์กฐ๋ฆฌ๊ฐ f/2.8๋ก ์ค์ ํ๊ณ , ISO๋ 800์ผ๋ก ์ค์ ํด. ๊ทธ๋ฆผ ์ ์ฒด์ ์ผ๋ก ์ ๋ น ๊ฐ๊ณ ์ํ ๊ฐ์ ๋๋์ ์ฃผ๊ณ , ์ํ์ง ๋์์ ์ํ์ง ๊ณต๊ฐ์ ์๋ฆ๋ค์๊ณผ ์ ์๋ฅผ ๋ด์๋ด์ผ ํด. ๊ทธ๋ฆผ์ ๊ตฌ๋๋ ๋๊ตฌ์ฅ์ ์ฃผ๋ชฉํ ์ ์๋๋ก ์ ์คํ๊ฒ ๊ตฌ์ฑ๋์ด์ผ ํ๋ฉฐ, ์๊ฐ์ ํ๋ฆ๊ณผ ์ธ๊ฐ์ ๋
ธ๋ ฅ์ ์ผ์์ ์ธ ์ฑ๊ฒฉ์ ๋ํ ์๊ฐ์ ์ด๋์ด๋ด์ผ ํด.', 'model prompt: Date A hauntingly beautiful photograph of an abandoned basketball court in the heart of a run-down, futuristic city, captured with a Sony A7R IV camera and a 35mm f/1.4 lens. The court is the sole focus of the image, with the surrounding cityscape in the background shrouded in deep shadows and ominous red lighting, casting an eerie glow over the scene. The court is worn and weathered, its once-vibrant lines and graphics now faded and peeling. The rusted hoops hang forlornly from the backboards, a testament to a bygone era when the court was a hub of activity and competition. Despite its derelict state, the court still exudes a sense of energy and possibility, a reminder of the dreams and aspirations that were once realized on its surface. The camera is set up with an aperture of f/2.8 to create a shallow depth of field, highlighting the intricate details of the court and blurring the background to create a sense of isolation and abandonment. The ISO is set to 800 to capture the dramatic red lighting that bathes the court, casting deep shadows and emphasizing the texture and detail of the surface. The overall effect is haunting and cinematic, capturing the beauty and melancholy of a forgotten space in a forgotten city. The composition is carefully crafted to draw the viewers eye to the court, emphasizing its significance and inviting reflection on the passage of time and the transience of human endeavor.\\n', '์๊ตฌ์ฌํญ: PLACEHOLDER', 'model prompt: ']",
"['์์)', '์๊ตฌ์ฌํญ: 1800๋
๋ ์คํ์ผ๋ก ์ํ๋ผ์ค๋ฅผ ๊ทธ๋ฆฐ ์ค์ผ์น๋ฅผ ํ์ ๋ฐฐ๊ฒฝ์ ๋ช ๋ง๋ฆฌ์ ๋
์๋ฆฌ๊ฐ ์ฃผ๋ณ์ ๋ ๊ณ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.', 'model prompt: Tethering vintage sketch of Atlas with a few eagles flying around him, on a white backdrop, in the style of 1800s\\n', '์๊ตฌ์ฌํญ: 1920๋
๋ ๋ฉ์ง ๋ผํด ๋จ์๊ฐ ๋ฐ์ง์ด๋ ์์ ์ํธ๋ฅผ ์
๊ณ ์ด๋์ด ์ฐ๊ธฐ ๊ฐ๋ํ ๋ฐ์์ ์๋ฃ๋ฅผ ๋ค๊ณ ๊ธฐ๋์ด ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์ด์์ฐ์ ์ด๊ณ ์์ธํ ๊ทธ๋ํฝ ๋
ธ๋ธ ์ฝ๋ฏน๋ถ ์ผ๋ฌ์คํธ๋ ์ด์
๊ฐ์ด, ์ปฌ๋ฌํํ๊ฒ ๊ทธ๋ ค์ค. ๋ง์ดํฌ ๋ฏธ๋๋ผ, ํ
๋ฆฌ ๋๋์จ, ํ ๋จธ ํ๋์นด๊ฐ ๋ง๋ ์บ๋ฆญํฐ ์ํธ ์คํ์ผ๋ก ํด์ค.', 'model prompt: Sand Dune 1920s handsome latino man in shiny silver suit, leaning with a drink in a dark smoky bar, supernatural, highly detailed realistic graphic novel comic book illustration, colorful, by mike mignola, terry dodson and tomer hanuka, character art\\n', '์๊ตฌ์ฌํญ: ์ฌ๋ฆ ๊ทธ๋ํฝ, ๋ก๋ ํธ๋ฆฝ ์ด๋๋ฒค์ฒ, ๊ณํ์ ์ก์ธ์๋ฆฌ, ๋ ํธ๋ก ์ปฌ๋ฌ, ์์ ๊ทธ๋ฆผ, ์ฌํ ์ผ๋ฌ์คํธ๋ ์ด์
, ์์ฑํ ์์๊ฐ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.', 'model prompt: Topology Summer Graphics, Road Trip Adventure, Planner Accessories, Retro Colors, Hand-Drawn Artwork, Travel Illustrations, Watercolor Elements, single design, 8k, \\n', '์๊ตฌ์ฌํญ: ํด๋ก๋ ๋ชจ๋ค ๊ฐ์ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์๋ฆ๋ค์ด ์ผ๋ชฐ์ด ์๋ ๊ธธ๊ฐ์ ๊ธด ๋ธ๋ ์ด๋๋ฅผ ํ ์์ ์๋
๊ฐ ํฐ ๋ฐ์ ์์ ์์์์ด. ๊ทธ๋
๋ ๋ฉ๋ฆฌ ๋ฐ๋ผ๋ณด๋ฉฐ ์๊ฐ์ ์ ๊ธฐ๊ณ ์์ด.', 'model prompt: Nature Photography A little girl with long braids sits on a large boulder at the end of a linden-lined avenue, with a beautiful sunset in the background. She gazes off into the distance, lost in thought as she takes in the stunning view before her, in the style of Claude Monet, \\n', '์๊ตฌ์ฌํญ: PLACEHOLDER', 'model prompt: ']",
"requirement",
"['์๊ตฌ์ฌํญ์ ํ ๋๋ก ๊ทธ๋ฆผ ์์ฑ ์์ด ํ๋กฌํํธ๋ก ๋ฐ๊ฟ์ค.', '- ๊ทธ๋ฆผ ์์ฑ ํ๋กฌํํธ๋ ๋ช
์ฌ ํํ์ฌ์ผ ํด.\\n', '์๊ตฌ์ฌํญ: PLACEHOLDER', 'model prompt: ']",
"['์์)', '์๊ตฌ์ฌํญ: 1800๋
๋ ์คํ์ผ๋ก ์ํ๋ผ์ค๋ฅผ ๊ทธ๋ฆฐ ์ค์ผ์น๋ฅผ ํ์ ๋ฐฐ๊ฒฝ์ ๋ช ๋ง๋ฆฌ์ ๋
์๋ฆฌ๊ฐ ์ฃผ๋ณ์ ๋ ๊ณ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.', 'model prompt: Tethering vintage sketch of Atlas with a few eagles flying around him, on a white backdrop, in the style of 1800s\\n', '์๊ตฌ์ฌํญ: 1920๋
๋ ๋ฉ์ง ๋ผํด ๋จ์๊ฐ ๋ฐ์ง์ด๋ ์์ ์ํธ๋ฅผ ์
๊ณ ์ด๋์ด ์ฐ๊ธฐ ๊ฐ๋ํ ๋ฐ์์ ์๋ฃ๋ฅผ ๋ค๊ณ ๊ธฐ๋์ด ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์ด์์ฐ์ ์ด๊ณ ์์ธํ ๊ทธ๋ํฝ ๋
ธ๋ธ ์ฝ๋ฏน๋ถ ์ผ๋ฌ์คํธ๋ ์ด์
๊ฐ์ด, ์ปฌ๋ฌํํ๊ฒ ๊ทธ๋ ค์ค. ๋ง์ดํฌ ๋ฏธ๋๋ผ, ํ
๋ฆฌ ๋๋์จ, ํ ๋จธ ํ๋์นด๊ฐ ๋ง๋ ์บ๋ฆญํฐ ์ํธ ์คํ์ผ๋ก ํด์ค.', 'model prompt: Sand Dune 1920s handsome latino man in shiny silver suit, leaning with a drink in a dark smoky bar, supernatural, highly detailed realistic graphic novel comic book illustration, colorful, by mike mignola, terry dodson and tomer hanuka, character art\\n', '์๊ตฌ์ฌํญ: ์ฌ๋ฆ ๊ทธ๋ํฝ, ๋ก๋ ํธ๋ฆฝ ์ด๋๋ฒค์ฒ, ๊ณํ์ ์ก์ธ์๋ฆฌ, ๋ ํธ๋ก ์ปฌ๋ฌ, ์์ ๊ทธ๋ฆผ, ์ฌํ ์ผ๋ฌ์คํธ๋ ์ด์
, ์์ฑํ ์์๊ฐ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.', 'model prompt: Topology Summer Graphics, Road Trip Adventure, Planner Accessories, Retro Colors, Hand-Drawn Artwork, Travel Illustrations, Watercolor Elements, single design, 8k, \\n', '์๊ตฌ์ฌํญ: ํด๋ก๋ ๋ชจ๋ค ๊ฐ์ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์๋ฆ๋ค์ด ์ผ๋ชฐ์ด ์๋ ๊ธธ๊ฐ์ ๊ธด ๋ธ๋ ์ด๋๋ฅผ ํ ์์ ์๋
๊ฐ ํฐ ๋ฐ์ ์์ ์์์์ด. ๊ทธ๋
๋ ๋ฉ๋ฆฌ ๋ฐ๋ผ๋ณด๋ฉฐ ์๊ฐ์ ์ ๊ธฐ๊ณ ์์ด.', 'model prompt: Nature Photography A little girl with long braids sits on a large boulder at the end of a linden-lined avenue, with a beautiful sunset in the background. She gazes off into the distance, lost in thought as she takes in the stunning view before her, in the style of Claude Monet, \\n', '์๊ตฌ์ฌํญ: ์ฐ ๊ผญ๋๊ธฐ ๋๊ตด์์ ๋ณด๋ 4K ์ ๋๋ฉ์ด์
์คํ์ผ์ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ๊ทธ๋ฆฌ๊ณ ์คํ์ด๋๋งจ ์์๋ ๋ฐ์ ์์ ์์ ๋๊ตด ์
๊ตฌ๋ฅผ ๋ฐ๋ผ๋ณด๋ ๊ท์ฌ์ด ๊ณ ์์ด๊ฐ ์์ด. ๋์ฟ์ ๋น์ค๋ ๋ฐค ๊ฑฐ๋ฆฌ์ ๋ฐ์ ๋ค์จ ๋ผ์ดํธ, ๊ทธ๋ฆฌ๊ณ ๋นํํ๋ ์คํํํฌ ๋ฐฐ๋ค์ด ๋์ค๋ ์ฅ๋ฉด์ด ์์ด.', 'model prompt: 4K lofi anime style from the view of a mountain top cave with spiderman next to hir is a cute cat sitting on the rocks looking out of the a circle cave entrance with a night scene of rainy tokyo streets with bright neon lights and flying steampunk ships, \\n', '์๊ตฌ์ฌํญ: ํฐ ๋๋ฌผ์ ์
๊ตฌ๋ฅผ ๋๊บผ์ด ํ์ธํธ๋ก ๊ทธ๋ ค๋ด. ์
์ฒด์ ์ผ๋ก ๊ทธ๋ ค์ค.', 'model prompt: Impasto a grand zoo entrance, isometric,\\n', '์๊ตฌ์ฌํญ: PLACEHOLDER', 'model prompt: ']",
"['์๊ตฌ์ฌํญ์ ํ ๋๋ก ๊ทธ๋ฆผ ์์ฑ ์์ด ํ๋กฌํํธ๋ก ๋ฐ๊ฟ์ค.', '- ๊ทธ๋ฆผ ์์ฑ ํ๋กฌํํธ๋ ๋ช
์ฌ ํํ์ฌ์ผ ํด.\\n', '์์)', '์๊ตฌ์ฌํญ: 1800๋
๋ ์คํ์ผ๋ก ์ํ๋ผ์ค๋ฅผ ๊ทธ๋ฆฐ ์ค์ผ์น๋ฅผ ํ์ ๋ฐฐ๊ฒฝ์ ๋ช ๋ง๋ฆฌ์ ๋
์๋ฆฌ๊ฐ ์ฃผ๋ณ์ ๋ ๊ณ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.', 'model prompt: Tethering vintage sketch of Atlas with a few eagles flying around him, on a white backdrop, in the style of 1800s\\n', '์๊ตฌ์ฌํญ: 1920๋
๋ ๋ฉ์ง ๋ผํด ๋จ์๊ฐ ๋ฐ์ง์ด๋ ์์ ์ํธ๋ฅผ ์
๊ณ ์ด๋์ด ์ฐ๊ธฐ ๊ฐ๋ํ ๋ฐ์์ ์๋ฃ๋ฅผ ๋ค๊ณ ๊ธฐ๋์ด ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์ด์์ฐ์ ์ด๊ณ ์์ธํ ๊ทธ๋ํฝ ๋
ธ๋ธ ์ฝ๋ฏน๋ถ ์ผ๋ฌ์คํธ๋ ์ด์
๊ฐ์ด, ์ปฌ๋ฌํํ๊ฒ ๊ทธ๋ ค์ค. ๋ง์ดํฌ ๋ฏธ๋๋ผ, ํ
๋ฆฌ ๋๋์จ, ํ ๋จธ ํ๋์นด๊ฐ ๋ง๋ ์บ๋ฆญํฐ ์ํธ ์คํ์ผ๋ก ํด์ค.', 'model prompt: Sand Dune 1920s handsome latino man in shiny silver suit, leaning with a drink in a dark smoky bar, supernatural, highly detailed realistic graphic novel comic book illustration, colorful, by mike mignola, terry dodson and tomer hanuka, character art\\n', '์๊ตฌ์ฌํญ: PLACEHOLDER', 'model prompt: ']",
"[]",
"['์์)', '์๊ตฌ์ฌํญ: 1800๋
๋ ์คํ์ผ๋ก ์ํ๋ผ์ค๋ฅผ ๊ทธ๋ฆฐ ์ค์ผ์น๋ฅผ ํ์ ๋ฐฐ๊ฒฝ์ ๋ช ๋ง๋ฆฌ์ ๋
์๋ฆฌ๊ฐ ์ฃผ๋ณ์ ๋ ๊ณ ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด.', 'model prompt: Tethering vintage sketch of Atlas with a few eagles flying around him, on a white backdrop, in the style of 1800s\\n', '์๊ตฌ์ฌํญ: 1920๋
๋ ๋ฉ์ง ๋ผํด ๋จ์๊ฐ ๋ฐ์ง์ด๋ ์์ ์ํธ๋ฅผ ์
๊ณ ์ด๋์ด ์ฐ๊ธฐ ๊ฐ๋ํ ๋ฐ์์ ์๋ฃ๋ฅผ ๋ค๊ณ ๊ธฐ๋์ด ์๋ ๊ทธ๋ฆผ์ ๊ทธ๋ ค๋ด. ์ด์์ฐ์ ์ด๊ณ ์์ธํ ๊ทธ๋ํฝ ๋
ธ๋ธ ์ฝ๋ฏน๋ถ ์ผ๋ฌ์คํธ๋ ์ด์
๊ฐ์ด, ์ปฌ๋ฌํํ๊ฒ ๊ทธ๋ ค์ค. ๋ง์ดํฌ ๋ฏธ๋๋ผ, ํ
๋ฆฌ ๋๋์จ, ํ ๋จธ ํ๋์นด๊ฐ ๋ง๋ ์บ๋ฆญํฐ ์ํธ ์คํ์ผ๋ก ํด์ค.', 'model prompt: Sand Dune 1920s handsome latino man in shiny silver suit, leaning with a drink in a dark smoky bar, supernatural, highly detailed realistic graphic novel comic book illustration, colorful, by mike mignola, terry dodson and tomer hanuka, character art\\n', '์๊ตฌ์ฌํญ: PLACEHOLDER', 'model prompt: ']"
] |
2024-01-10 | SUBITSHA-M/MCA_Generator | mca_questions.py | import os
import re
import json
import openai
# To help construct our Chat Messages
from langchain.schema import HumanMessage
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
# We will be using ChatGPT model (gpt-3.5-turbo)
from langchain.chat_models import ChatOpenAI
# To parse outputs and get structured data back
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
from transformers import BartForConditionalGeneration, BartTokenizer, BartConfig
# Enter your API Key
os.environ["OPENAI_API_KEY"] = "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"
# prompt
text = """
The Lancefield-Cobaw Croziers Track planned burn was ignited on Wednesday 30 September 2015 in the Macedon Ranges Shire in spring 2015.
The fires breached containment lines on Saturday 3 October and was brought under control overnight with approximately 70 additional hectares burnt.
Further breaches of containment lines occurred on Tuesday 6 October and control of the bushfire was transferred from the Midlands District to the Gisborne Incident Control Centre (ICC) that afternoon.
The bushfire, when finally contained on Tuesday 13 October, had burnt over 3,000ha and destroyed several dwellings, numerous sheds and many kilometres of fencing.
It had also impacted upon lifestyles, livestock and livelihoods and caused considerable economic and social upheaval in the surrounding communities.
"""
from transformers import pipeline
def get_mca_questions(text:str)->list:
summarizer = pipeline("summarization")
summary = summarizer(text, max_length=150, min_length=30, do_sample=False)
print(summary[0]['summary_text'])
response_schemas = [
ResponseSchema(name="question", description="A multiple choice question generated from input text snippet."),
ResponseSchema(name="options", description="Four choices for the multiple choice question."),
ResponseSchema(name="answer", description="Two Correct answers for the question.")
]
# The parser that will look for the LLM output in my schema and return it back to me
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
# The format instructions that LangChain makes. Let's look at them
format_instructions = output_parser.get_format_instructions()
print(format_instructions)
# create ChatGPT object
chat_model = ChatOpenAI(temperature=0, model_name='gpt-3.5-turbo')
# The prompt template that brings it all together
prompt = ChatPromptTemplate(
messages=[
HumanMessagePromptTemplate.from_template("""Generate multiple-choice questions (MCQs) with four options for each question. Please ensure that two of the options are correct answers and also each question must have serial number . You should Provide the output in the form of a list.
\n{format_instructions}\n{user_prompt}""")
],
input_variables=["user_prompt"],
partial_variables={"format_instructions": format_instructions}
)
user_query = prompt.format_prompt(user_prompt = summary)
user_query_output = chat_model(user_query.to_messages())
print(user_query_output)
markdown_text = user_query_output.content
json_string = re.search(r'{(.*?)}', markdown_text, re.DOTALL).group(1)
print(json_string)
options_list = json_string.split('\n')
question = options_list[0].strip()
answer = options_list[-1].strip()
options = [opt.strip() for opt in options_list[1:-1] if opt.strip()]
question_data = [question] + options + [answer]
print(question_data)
return question_data
get_mca_questions(text)
| [
"user_prompt",
"format_instructions",
"Generate multiple-choice questions (MCQs) with four options for each question. Please ensure that two of the options are correct answers and also each question must have serial number . You should Provide the output in the form of a list. \n \n{format_instructions}\n{user_prompt}"
] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.