date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
sytelus/transformers
tests~test_modeling_tf_openai.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import OpenAIGPTConfig, is_tf_available from transformers.testing_utils import require_tf, slow from .test_configuration_common import ConfigTester from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor if is_tf_available(): import tensorflow as tf from transformers.models.openai.modeling_tf_openai import ( TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTForSequenceClassification, TFOpenAIGPTLMHeadModel, TFOpenAIGPTModel, ) class TFOpenAIGPTModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_token_type_ids = True self.use_input_mask = True self.use_labels = True self.use_mc_token_ids = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, n_ctx=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFOpenAIGPTModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFOpenAIGPTLMHeadModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_openai_gpt_double_head( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args ): model = TFOpenAIGPTDoubleHeadsModel(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "mc_token_ids": mc_token_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices)) def create_and_check_openai_gpt_for_sequence_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): config.num_labels = self.num_labels sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "labels": sequence_labels, } model = TFOpenAIGPTForSequenceClassification(config) result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFOpenAIGPTModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = ( (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTForSequenceClassification) if is_tf_available() else () ) all_generative_model_classes = ( (TFOpenAIGPTLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFOpenAIGPTModelTester(self) self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_openai_gpt_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs) def test_openai_gpt_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs) def test_openai_gpt_double_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class in self.all_generative_model_classes: x = model.get_output_embeddings() assert isinstance(x, tf.keras.layers.Layer) name = model.get_bias() assert name is None else: x = model.get_output_embeddings() assert x is None name = model.get_bias() assert name is None def test_openai_gpt_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs) def test_mixed_precision(self): # TODO JP: Make OpenAIGPT float16 compliant pass def test_xla_mode(self): # TODO JP: Make OpenAIGPT XLA compliant pass @slow def test_model_from_pretrained(self): for model_name in TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFOpenAIGPTModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFOPENAIGPTModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_openai_gpt(self): model = TFOpenAIGPTLMHeadModel.from_pretrained("openai-gpt") input_ids = tf.convert_to_tensor([[481, 4735, 544]], dtype=tf.int32) # the president is expected_output_ids = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
[]
2024-01-10
Yoshida24/slackpi
src~features~llm_chatbot~llm_chatbot.py
from type.type import MentionEventHandlerArgs from modules.bolt.reply import reply from modules.bolt.update_message import update_message from modules.bolt.upload_file import upload_file from openai import OpenAI from openai.types.chat.chat_completion_message_param import ChatCompletionMessageParam import os import json from modules.bolt.extract_mention_and_text import extract_mention_and_text from modules.bolt.is_message_from_bot import is_message_from_bot from features.llm_chatbot.tools.pokefunction import ( fetch_pokemon_data_impl, fetch_pokemon_data_tool, ) from features.llm_chatbot.tools.screenshot import ( take_screenshot_impl, take_screenshot_tool, ) from features.llm_chatbot.tools.pixoo64.pixoo64_display_image_text import ( pixoo64_display_image_text_impl, pixoo64_display_image_text_tool, ) from features.llm_chatbot.tools.command_line.make import ( make_impl, make_tool, ) from typing import Callable import logging logger = logging.getLogger(__name__) openai_client = OpenAI(api_key=os.environ["OPENAI_API_KEY"]) llm_model = "gpt-4-1106-preview" temperature = 0.1 system_msg = "You are a Friendly and helpful AI assistant." tools = [ take_screenshot_tool, fetch_pokemon_data_tool, pixoo64_display_image_text_tool, make_tool, ] def tools_response( messages: list[ChatCompletionMessageParam], presenter: Callable[[str], None], ) -> dict: logger.info(f"\033[94mMESSAGES_INPUT\033[0m:\n{messages}") function_response_file = None first_response = openai_client.chat.completions.create( model=llm_model, temperature=temperature, messages=messages, tools=tools, tool_choice="auto", ) first_message = first_response.choices[0].message tool_calls = first_message.tool_calls if tool_calls: """ Parallel function calling が実行された場合 """ messages.append(first_message) # Pallarel function calling for tool_call in tool_calls: function_name = tool_call.function.name arguments = json.loads(tool_call.function.arguments) for tool in tools: if function_name == tool["function"]["name"]: logger.info( f"\033[94mTOOL_CALLED\033[0m:\nfunction_name={function_name} arguments={arguments}" ) if function_name == "take_screenshot": selected_function = take_screenshot_impl if function_name == "pixoo64_display_image_text": selected_function = pixoo64_display_image_text_impl elif function_name == "fetch_pokemon_data": selected_function = fetch_pokemon_data_impl elif function_name == "make": selected_function = make_impl else: raise Exception("function not found") function_response = selected_function(**arguments) function_response_msg = function_response[ "message" ] # TODO: メッセージと他引数をうける function_response_file = function_response["file"] logger.info( f"\033[94mTOOL_COMPLETED\033[0m:\nmessage={function_response_msg} function_response_file={function_response_file}" ) messages.append( { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": function_response_msg, } ) # 関数実行結果を使ってもう一度質問 second_response = openai_client.chat.completions.create( model=llm_model, temperature=temperature, top_p=1, messages=messages ) response = second_response else: response = first_response logger.info(f"\033[94mMESSAGES_UPDATED\033[0m:\n{response}") result = { "content": response.choices[0].message.content, "file": function_response_file, } presenter(result["content"]) return result def slack_reply_clojure(args: MentionEventHandlerArgs, message_ts: str): def slack_reply(text: str | None): if text is None or text == "": return update_message( app=args.app, channel=args.event.event.channel, ts=message_ts, text=text, ) return slack_reply def handler(args: MentionEventHandlerArgs) -> None: try: # Notice user to accept the request thread_start_res = reply( app=args.app, mention_body=args.event, text="...", ) # Init memory messages = [] messages.append({"role": "system", "content": system_msg}) conversations = sorted(args.messages, key=lambda x: x["ts"]) # type: ignore parsed_conversations = [ { "role": ("assistant" if is_message_from_bot(conversation) else "user"), "content": extract_mention_and_text(conversation["text"])["text"] + ( "\nattached files: " + "".join( [ "\n- " + file["url_private_download"] for file in conversation["files"] ] ) if "files" in conversation else "" ), } for conversation in conversations ] messages.extend(parsed_conversations) logger.info(f"\033[94mHISTORY\033[0m:\n{conversations}") slack_reply = slack_reply_clojure(args, thread_start_res["ts"]) tools_result = tools_response(messages=messages, presenter=slack_reply) if tools_result["file"] is not None: upload_file( app=args.app, mention_body=args.event, file=tools_result["file"], thread_ts=thread_start_res["ts"], ) except BaseException as e: reply( app=args.app, mention_body=args.event, text=f"Error: {str(str(e))}", ) raise e
[ "\nattached files: ", "You are a Friendly and helpful AI assistant.", "url_private_download", "\n- " ]
2024-01-10
Yoshida24/slackpi
src~features~llm_chatbot~tools~pixoo64~pixoo64_display_image_text.py
from .pixoo64 import display from openai.types.chat import ChatCompletionToolParam def pixoo64_display_image_text_impl( image_url: str | None = None, text: str | None = None, text_color: str = "#FFFFFF", text_pos: str = "bottom", **kwargs ): display(image_url=image_url, text=text, text_color=text_color, text_pos=text_pos) return {"message": "success", "file": None} pixoo64_display_image_text_tool: ChatCompletionToolParam = { "type": "function", "function": { "name": "pixoo64_display_image_text", "description": "Display image in URL to Pixoo, which is electronic billboard.", "parameters": { "type": "object", "properties": { "image_url": { "type": "string", "description": "Image URL. e.g. https://komori541milk.web.fc2.com/dot/4Shinnoh/474n.png", }, "text": { "type": "string", "description": "Text to display on electronic billboard. e.g. hello world!", }, "text_color": { "type": "string", "description": "Text color to display on electronic billboard. e.g. #FFFFFF", }, "text_pos": { "type": "string", "description": "Text posision to display on electronic billboard. e.g. bottom", "enum": ["top", "middle", "bottom"], }, }, "required": [], }, }, }
[]
2024-01-10
Yoshida24/slackpi
src~features~llm_chatbot~tools~command_line~make.py
import subprocess from openai.types.chat import ChatCompletionToolParam def make_impl(dir: str, make_args: str, **kwargs): # makeコマンドを実行 results = [] if make_args.startswith("make "): make_args = make_args[5:] res_make = subprocess.run( ["make"] + make_args.split(" "), cwd=dir, stdout=subprocess.PIPE ) results.append(res_make.stdout.decode("utf-8")) return {"message": "\n".join(results), "file": None} make_tool: ChatCompletionToolParam = { "type": "function", "function": { "name": "make", "description": "Run make command by subprocess.", "parameters": { "type": "object", "properties": { "dir": { "type": "string", "description": "Directory path to Makefile. e.g. /home/username/projectname/", }, "make_args": { "type": "string", "description": "Args of make command. e.g. test", }, }, "required": ["dir", "make_args"], }, }, }
[]
2024-01-10
Yoshida24/slackpi
src~features~llm_chatbot~tools~pokefunction.py
import json import requests from openai.types.chat import ChatCompletionToolParam def fetch_pokemon_data_impl(name: str, **kwargs): url = f"https://pokeapi.co/api/v2/pokemon/{name}" response = requests.get(url) if response.status_code == 200: data = { "wight": response.json()["weight"] * 0.1, "height": response.json()["height"] * 0.1, } return {"message": json.dumps(data), "file": None} else: return {"message": "not found.", "file": None} fetch_pokemon_data_tool: ChatCompletionToolParam = { "type": "function", "function": { "name": "fetch_pokemon_data", "description": "Fetch pokemon data by pokemon name.", "parameters": { "type": "object", "properties": { "name": { "type": "string", "description": "Pokemon name, e.g. pikachu", }, }, "required": ["name"], }, }, }
[]
2024-01-10
Yoshida24/slackpi
src~features~llm_chatbot~tools~screenshot.py
from io import BytesIO from playwright.sync_api import sync_playwright from openai.types.chat import ChatCompletionToolParam def take_screenshot_impl(url: str, **kwargs) -> dict: # BytesIOオブジェクトを作成します output = BytesIO() with sync_playwright() as playwright: browser = playwright.chromium.launch() page = browser.new_page() page.goto(url) screenshot = page.screenshot(full_page=True) output.write(screenshot) browser.close() return { "message": "スクリーンショットを正常に取得しました。あなたのプラットフォームにアップロード機能があれば、それを使用してスクリーンショットをあなたのプラットフォームへアップロードします。", "file": output, } take_screenshot_tool: ChatCompletionToolParam = { "type": "function", "function": { "name": "take_screenshot", "description": "Save screenshot of web page.", "parameters": { "type": "object", "properties": { "url": { "type": "string", "description": "URL to take screenshot. e.g. https://www.google.com/", }, }, }, }, }
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~data_agent~executors~data_summary_executor.py
from typing import Any, Dict, Tuple, Union from abc import ABC from langchain.base_language import BaseLanguageModel from langchain import PromptTemplate from real_agents.adapters.callbacks.executor_streaming import ExecutorStreamingChainHandler from real_agents.adapters.data_model import DatabaseDataModel, TableDataModel, ImageDataModel from real_agents.adapters.llm import LLMChain class DataSummaryExecutor(ABC): tool_name = "DataProfiling" def _intelligent_summary(self, grounding_source: ImageDataModel, num_insights: int, llm: BaseLanguageModel) -> str: """Use LLM to generate data summary.""" pass class TableSummaryExecutor(DataSummaryExecutor): SUMMARY_PROMPT_TEMPLATE = """ {table_info} Provide a succinct yet meaningful summary of the table with less than 20 words, encapsulating its essence beyond just enumerating the columns. Please ensure your summary is a complete sentence and include it within <summary></summary> tags." Note the table actually far more rows than shown above, so you MUST NOT make any rash conclusions based on the shown table rows or cells." Then provide {num_insights} insightful and interesting suggestions in natural language that users can directly say to analyze the table. The suggestions should be able to be solved by python/sql." The final results should be markdown '+' bullet point list, e.g., + The first suggestion. Begin." """ stream_handler = ExecutorStreamingChainHandler() def run( self, grounding_source: Union[TableDataModel, DatabaseDataModel], llm: BaseLanguageModel, use_intelligent_summary: bool = True, num_insights: int = 3, ) -> Dict[str, Any]: summary = "" if isinstance(grounding_source, TableDataModel): df = grounding_source.raw_data df_name = grounding_source.raw_data_name # Basic summary summary += f"Your table {df_name} contains {df.shape[0]} rows and {df.shape[1]} columns. " null_count = df.isnull().sum().sum() # Get total number of null values unique_values_avg = df.nunique().mean() # Get average number of unique values summary += f"On average, each column has about {unique_values_avg:.0f} unique values. " if null_count > 0: summary += f"Watch out, there are {null_count} missing values in your data. " else: summary += "Good news, no missing values in your data. " # Intelligent summary if use_intelligent_summary: intelligent_summary = self._intelligent_summary( grounding_source, num_insights=num_insights, llm=llm, ) table_summary, suggestions = self._parse_output(intelligent_summary) summary += table_summary summary += "\n" + "Here are some additional insights to enhance your understanding of the table." summary += "\n" + suggestions for stream_token in summary.split(" "): self.stream_handler.on_llm_new_token(stream_token) elif isinstance(grounding_source, DatabaseDataModel): # TODO: Convert to df or use SQL query for basic summary raise NotImplementedError("DatabaseDataModel is not supported yet.") else: raise ValueError(f"Unsupported grounding source type: {type(grounding_source)}") return summary def _intelligent_summary( self, grounding_source: Union[TableDataModel, DatabaseDataModel], num_insights: int, llm: BaseLanguageModel ) -> str: """Use LLM to generate data summary.""" summary_prompt_template = PromptTemplate( input_variables=["table_info", "num_insights"], template=self.SUMMARY_PROMPT_TEMPLATE, ) method = LLMChain(llm=llm, prompt=summary_prompt_template) result = method.run({"table_info": grounding_source.get_llm_side_data(), "num_insights": num_insights}) return result def _parse_output(self, content: str) -> Tuple[str, str]: """Parse the output of the LLM to get the data summary.""" from bs4 import BeautifulSoup # Using 'html.parser' to parse the content soup = BeautifulSoup(content, "html.parser") # Parsing the tag and summary contents try: table_summary = soup.find("summary").text except Exception: import traceback traceback.print_exc() table_summary = "" lines = content.split("\n") # Initialize an empty list to hold the parsed bullet points bullet_points = [] # Loop through each line bullet_point_id = 1 for line in lines: # If the line starts with '+', it is a bullet point if line.startswith("+"): # Remove the '+ ' from the start of the line and add it to the list bullet_points.append(f"{bullet_point_id}. " + line[1:].strip().strip('"')) bullet_point_id += 1 return table_summary, "\n".join(bullet_points) class ImageSummaryExecutor(DataSummaryExecutor): SUMMARY_PROMPT_TEMPLATE = """ {img_info} Provide a succinct summary of the uploaded file with less than 20 words. Please ensure your summary is a complete sentence and include it within <summary></summary> tags. For image, just show its name is basically enough." Then provide {num_insights} very simple and basic suggestions in natural language about further processing with the data. The suggestions should be able to be solved by python(e.g., grayscale, rescale, rotation, etc). The final results should be markdown '+' bullet point list, e.g., + The first suggestion." Begin. """ stream_handler = ExecutorStreamingChainHandler() def run( self, grounding_source: ImageDataModel, llm: BaseLanguageModel, use_intelligent_summary: bool = True, num_insights: int = 3, ) -> Dict[str, Any]: summary = "" if isinstance(grounding_source, ImageDataModel): # Basic summary raw_data = grounding_source.raw_data img_size, img_mode, img_format = raw_data["size"], raw_data["mode"], raw_data["format"] summary += f"Your image **{grounding_source.simple_filename}** is a {img_size[0]}x{img_size[1]} {img_mode} image in {img_format} format.\n" # Intelligent summary if use_intelligent_summary: intelligent_summary = self._intelligent_summary( grounding_source, num_insights=num_insights, llm=llm, ) _, suggestions = self._parse_output(intelligent_summary) summary += "\n" + "Here are some additional insights to enhance your understanding of the image" summary += "\n" + suggestions for stream_token in summary.split(" "): self.stream_handler.on_llm_new_token(stream_token) else: raise ValueError(f"Unsupported data summary for grounding source type: {type(grounding_source)}") return summary def _intelligent_summary(self, grounding_source: ImageDataModel, num_insights: int, llm: BaseLanguageModel) -> str: """Use LLM to generate data summary.""" summary_prompt_template = PromptTemplate( input_variables=["img_info", "num_insights"], template=self.SUMMARY_PROMPT_TEMPLATE, ) method = LLMChain(llm=llm, prompt=summary_prompt_template) result = method.run({"img_info": grounding_source.get_llm_side_data(), "num_insights": num_insights}) return result def _parse_output(self, content: str) -> Tuple[str, str]: """Parse the output of the LLM to get the data summary.""" from bs4 import BeautifulSoup # Using 'html.parser' to parse the content soup = BeautifulSoup(content, "html.parser") # Parsing the tag and summary contents try: table_summary = soup.find("summary").text except Exception: import traceback traceback.print_exc() table_summary = "" lines = content.split("\n") # Initialize an empty list to hold the parsed bullet points bullet_points = [] # Loop through each line bullet_point_id = 1 for line in lines: # If the line starts with '+', it is a bullet point if line.startswith("+"): # Remove the '+ ' from the start of the line and add it to the list bullet_points.append(f"{bullet_point_id}. " + line[1:].strip().strip('"')) bullet_point_id += 1 return table_summary, "\n".join(bullet_points)
[ "table_info", "\n{table_info}\n\nProvide a succinct yet meaningful summary of the table with less than 20 words, encapsulating its essence beyond just enumerating the columns. Please ensure your summary is a complete sentence and include it within <summary></summary> tags.\"\nNote the table actually far more rows than shown above, so you MUST NOT make any rash conclusions based on the shown table rows or cells.\"\nThen provide {num_insights} insightful and interesting suggestions in natural language that users can directly say to analyze the table. The suggestions should be able to be solved by python/sql.\"\nThe final results should be markdown '+' bullet point list, e.g., + The first suggestion.\n\nBegin.\"\n", "num_insights", "\n{img_info}\n\nProvide a succinct summary of the uploaded file with less than 20 words. Please ensure your summary is a complete sentence and include it within <summary></summary> tags. For image, just show its name is basically enough.\"\nThen provide {num_insights} very simple and basic suggestions in natural language about further processing with the data. The suggestions should be able to be solved by python(e.g., grayscale, rescale, rotation, etc). The final results should be markdown '+' bullet point list, e.g., + The first suggestion.\"\n\nBegin.\n", "img_info" ]
2024-01-10
xlang-ai/OpenAgents
real_agents~web_agent~executors~webot_executor.py
""" Implementation of the WebotExecutor class. WebotExecutor takes user's intent as input, return the start_url and instruction as the input for web browsing plugin """ from __future__ import annotations from typing import Any, Dict, Union from langchain.base_language import BaseLanguageModel from pydantic import BaseModel, Extra from real_agents.web_agent.web_browsing.base import WebotCallingChain # This executor is for chat interface usage and not for the extension usage. # For the extension usage, refer to xlang/real_agents/web_agent/executors/web_browsing_executor.py class WebotExecutor(BaseModel): """ WebotExecutor takes user's intent as input, return the start_url and instruction as the input for web browsing plugin (tool). """ name: str description: str class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @classmethod def from_webot(cls) -> WebotExecutor: return cls( name="WeBot", description="Use the web navigation agent to perform actions on the web, including information retrieval, task completion(e.g. write an email or tweet or organize a meeting), etc. The action input should contain the action and the start url.\For example:\nUse xxx.com to search xxx.", ) def run( self, user_intent: str, llm: BaseLanguageModel, ) -> Union[str, Dict[str, Any]]: inputs = {"input_str": user_intent} method = WebotCallingChain.from_llm( llm, ) output = method(inputs) return output
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~plugins_agent~plugin.py
"""An agent designed to hold a conversation in addition to using tools. (Specially designed for plugins model)""" from __future__ import annotations from typing import Any, List, Optional, Sequence, Tuple, Union from pydantic import Extra, Field from typing_extensions import override from langchain.agents.agent import AgentOutputParser from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.chains import LLMChain from langchain.schema import ( AgentAction, AgentFinish, AIMessage, BaseMessage, BaseOutputParser, HumanMessage ) from langchain.callbacks.manager import ( Callbacks ) from langchain.tools.base import BaseTool from langchain.prompts import ( BasePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from real_agents.adapters.agent_helpers.agent import Agent from real_agents.adapters.agent_helpers.output_parser import ConversationOutputParser from real_agents.plugins_agent.plugin_prompt import ( PREFIX, SUFFIX, TEMPLATE_TOOL_RESPONSE, fake_continue_prompt ) from real_agents.adapters.data_model import DataModel, MessageDataModel from real_agents.data_agent.copilot import ConversationalChatAgent class ConversationalPluginChatAgent(ConversationalChatAgent): """An agent designed to hold a conversation in addition to using plugin tool.""" output_parser: ConversationOutputParser = Field( default_factory=ConversationOutputParser() ) template_tool_response: str = TEMPLATE_TOOL_RESPONSE continue_model: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.allow arbitrary_types_allowed = True @classmethod def _get_default_output_parser( cls, **kwargs: Any ) -> ConversationOutputParser: return ConversationOutputParser() @property def _agent_type(self) -> str: raise NotImplementedError @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools) @classmethod def create_prompt( cls, tools: Sequence[BaseTool], system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, output_parser: Optional[BaseOutputParser] = None, ) -> BasePromptTemplate: tool_strings = "\n".join([f"Name: {tool.name}\nDescription: {tool.description}" for tool in tools]) tool_strings = tool_strings.replace("{", "{{").replace("}", "}}") tool_names = ", ".join([tool.name for tool in tools]) _output_parser = output_parser or cls._get_default_output_parser() format_instructions = _output_parser.get_format_instructions("plugins") format_instructions = format_instructions.format(tool_names=tool_names) # system message system_message = system_message + f"{tool_strings}\n\n{format_instructions}" # human input final_prompt = human_message if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] messages = [ SystemMessagePromptTemplate.from_template(system_message), MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template(final_prompt), MessagesPlaceholder(variable_name="agent_scratchpad"), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages) def _construct_scratchpad(self, intermediate_steps: List[Tuple[AgentAction, str]]) -> List[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts: List[BaseMessage] = [] # Try to only use AI message for scratchpad content = [] for idx, (action, full_observation) in enumerate(intermediate_steps): content.append(MessageDataModel.extract_action_for_llm(action.log)) observation = full_observation if isinstance(full_observation, DataModel): llm_raw_observation = full_observation.get_llm_side_data() observation = MessageDataModel.extract_tool_response_for_llm(llm_raw_observation, tool_style="plugin") tool_response = self.template_tool_response.format( observation=str(observation), tool_names=self.allowed_tools ) if idx == len(intermediate_steps) - 1: content.append(tool_response) else: content.append(observation) content_str = "\n".join(content) thoughts.append(AIMessage(content=content_str)) if self.continue_model is not None and len(intermediate_steps) != 0: thoughts.append(HumanMessage(content=fake_continue_prompt[self.continue_model])) return thoughts @override def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) system_prompt = self.llm_chain.prompt.messages[0].format().content system_prompt_tokens = MessageDataModel._count_tokens( system_prompt ) max_tokens = 8000 max_gen_tokens = 1000 # FIXME: need more accurate token limit calculation full_inputs = MessageDataModel.truncate_chat_history(full_inputs, max_token=max_tokens - system_prompt_tokens - max_gen_tokens) full_output = self.llm_chain.predict(**full_inputs) return self.output_parser.parse(full_output) @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callbacks: Callbacks = None, output_parser: Optional[AgentOutputParser] = None, system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) _output_parser = output_parser or cls._get_default_output_parser() prompt = cls.create_prompt( tools, system_message=system_message, human_message=human_message, input_variables=input_variables, output_parser=_output_parser, ) llm_chain = LLMChain( llm=llm, prompt=prompt, ) tool_names = [tool.name for tool in tools] return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, )
[ "system_messageb2219787-d42d-467e-9fe0-4ae0713eee67PLACEHOLDER\n\nPLACEHOLDER" ]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~executors~question_suggestion~question_suggestion_executor.py
from typing import Any, Dict from langchain.base_language import BaseLanguageModel from langchain.schema import AIMessage, HumanMessage from real_agents.adapters.memory import ConversationReActBufferMemory from real_agents.adapters.executors.question_suggestion.chat_memory import QuestionSuggestionChainChatMemory from real_agents.adapters.executors.question_suggestion.base import QuestionSuggestionChainBase from real_agents.adapters.executors.question_suggestion.user_profile import QuestionSuggestionChainUserProfile class QuestionSuggestionExecutor: def run( self, user_intent: str, llm: BaseLanguageModel, num_questions: int = 3, mode: str = "", user_profile: str = "", chat_memory: ConversationReActBufferMemory = ConversationReActBufferMemory(), ) -> Dict[str, Any]: if mode == "base": method = QuestionSuggestionChainBase.from_prompt(llm) inputs = {"input_string": user_intent, "num_questions": num_questions} elif mode == "user_profile": method = QuestionSuggestionChainUserProfile.from_prompt(llm) with open(user_profile) as f: inputs = {"input_string": user_intent, "num_questions": num_questions, "user_description": f.read()} elif mode == "chat_memory": method = QuestionSuggestionChainChatMemory.from_prompt(llm) raw_history = chat_memory.load_memory_variables({})["chat_history"] refine_history = [] for msg in raw_history[-4:]: if isinstance(msg, HumanMessage): refine_history.append(f"Human: {msg.content}") elif isinstance(msg, AIMessage): refine_history.append(f"AI: {msg.content}") inputs = { "input_string": user_intent, "num_questions": num_questions, "chat_memory": "\n".join(refine_history), } else: raise ValueError(f"Mode {mode} is not supported") return method(inputs)
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~memory~read_only_string_memory.py
from typing import Any, Dict, List from langchain.schema import BaseMemory class ReadOnlySharedStringMemory(BaseMemory): """A memory wrapper that is read-only and cannot be changed.""" memory: BaseMemory @property def memory_variables(self) -> List[str]: """Return memory variables.""" return self.memory.memory_variables def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load memory variables from memory.""" prev_memory_state = self.memory.return_messages self.memory.return_messages = False memory_string = self.memory.load_memory_variables(inputs) self.memory.return_messages = prev_memory_state return memory_string def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed""" pass def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~models~anthropic.py
from typing import Any, Dict, List, Optional from pydantic import Extra from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.anthropic import _AnthropicCommon from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) class ChatAnthropic(BaseChatModel, _AnthropicCommon): r"""Wrapper around Anthropic's large language model. To use, you should have the ``anthropic`` python package installed, and the environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python import anthropic from langchain.llms import Anthropic model = ChatAnthropic(model="<model_name>", anthropic_api_key="my-api-key") """ stop: Optional[List[str]] = None class Config: """Configuration for this pydantic object.""" extra = Extra.ignore @property def _llm_type(self) -> str: """Return type of chat model.""" return "anthropic-chat" def _convert_one_message_to_text(self, message: BaseMessage) -> str: if isinstance(message, ChatMessage): message_text = f"\n\n{message.role.capitalize()}: {message.content}" elif isinstance(message, HumanMessage): message_text = f"{self.HUMAN_PROMPT} {message.content}" elif isinstance(message, AIMessage): message_text = f"{self.AI_PROMPT} {message.content}" elif isinstance(message, SystemMessage): message_text = f"{self.HUMAN_PROMPT} <admin>{message.content}</admin>" else: raise ValueError(f"Got unknown type {message}") return message_text def _convert_messages_to_text(self, messages: List[BaseMessage]) -> str: """Format a list of strings into a single string with necessary newlines. Args: messages (List[BaseMessage]): List of BaseMessage to combine. Returns: str: Combined string with necessary newlines. """ return "".join(self._convert_one_message_to_text(message) for message in messages) def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str: """Format a list of messages into a full prompt for the Anthropic model Args: messages (List[BaseMessage]): List of BaseMessage to combine. Returns: str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags. """ if not self.AI_PROMPT: raise NameError("Please ensure the anthropic package is loaded") if not isinstance(messages[-1], AIMessage): messages.append(AIMessage(content="")) text = self._convert_messages_to_text(messages) return text.rstrip() # trim off the trailing ' ' that might come from the "Assistant: " def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> ChatResult: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params} if self.stop is not None: if stop is None: stop = self.stop else: stop.extend(self.stop) if stop: params["stop_sequences"] = stop if self.streaming: completion = "" stream_resp = self.client.completion_stream(**params) for data in stream_resp: delta = data["completion"][len(completion) :] completion = data["completion"] if run_manager: run_manager.on_llm_new_token( delta, ) else: response = self.client.completion(**params) completion = response["completion"] message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, ) -> ChatResult: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params} if stop: params["stop_sequences"] = stop if self.streaming: completion = "" stream_resp = await self.client.acompletion_stream(**params) async for data in stream_resp: delta = data["completion"][len(completion) :] completion = data["completion"] if run_manager: await run_manager.on_llm_new_token( delta, ) else: response = await self.client.acompletion(**params) completion = response["completion"] message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)])
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~memory~buffer.py
from typing import Any, Dict, List, Optional, Tuple from pydantic import root_validator from langchain.memory.utils import get_prompt_input_key from langchain.base_language import BaseLanguageModel from langchain.schema import BaseMessage, get_buffer_string from langchain.memory.chat_memory import BaseChatMemory, BaseMemory from real_agents.adapters.data_model import DataModel, MessageDataModel class ConversationBufferMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: @property def buffer(self) -> Any: """String buffer of memory.""" if self.return_messages: return self.chat_memory.messages else: return get_buffer_string( self.chat_memory.messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" return {self.memory_key: self.buffer} class ConversationStringBufferMemory(BaseMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" """Prefix to use for AI generated responses.""" buffer: str = "" output_key: Optional[str] = None input_key: Optional[str] = None memory_key: str = "history" #: :meta private: @root_validator() def validate_chains(cls, values: Dict) -> Dict: """Validate that return messages is not True.""" if values.get("return_messages", False): raise ValueError("return_messages must be False for ConversationStringBufferMemory") return values @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return history buffer.""" return {self.memory_key: self.buffer} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") output_key = list(outputs.keys())[0] else: output_key = self.output_key human = f"{self.human_prefix}: " + inputs[prompt_input_key] ai = f"{self.ai_prefix}: " + outputs[output_key] self.buffer += "\n" + "\n".join([human, ai]) def clear(self) -> None: """Clear memory contents.""" self.buffer = "" class ConversationReActBufferMemory(BaseChatMemory): """Buffer for storing conversational ReAct memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: max_token_limit: int = 2000 llm: BaseLanguageModel = None style: str = "code" @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def action_prefix(self) -> str: """Prefix to append the action with.""" return "Action:" @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" @property def llm_final(self) -> str: """Final Answer""" @property def buffer(self) -> List[BaseMessage]: """String buffer of memory.""" if self.return_messages: return self.chat_memory.messages else: return get_buffer_string( self.chat_memory.messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" return {self.memory_key: self.buffer} def _get_input_output(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> Tuple[str, str]: if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) == 1: output_key = list(outputs.keys())[0] return inputs[prompt_input_key], outputs[output_key] else: assert "intermediate_steps" in outputs, "intermediate_steps must in outputs when output_key length > 1" intermediate_message = "" for action, full_observation in outputs["intermediate_steps"]: intermediate_message += "\n{\n" intermediate_message += ( '\t"action": "{}"'.format(action.tool) + "\n" ) # todo: move to schema, as well as the one in prompt intermediate_message += '\t"action_input": "{}"'.format(action.tool_input) + "\n" intermediate_message += "}\n" observation = full_observation if isinstance(full_observation, DataModel): llm_raw_observation = full_observation.get_llm_side_data() observation = MessageDataModel.extract_tool_response_for_llm( llm_raw_observation, tool_style=self.style ) intermediate_message += "{}\n".format(observation) output = intermediate_message + outputs[list(outputs.keys())[0]] return inputs[prompt_input_key], output else: output_key = self.output_key return inputs[prompt_input_key], outputs[output_key] def fit_max_token_limit(self): from real_agents.adapters.data_model import MessageDataModel # if self.llm != None: buffer = self.chat_memory.messages # curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) curr_buffer_length = MessageDataModel._count_tokens("\n".join([_.content for _ in buffer])) if curr_buffer_length > self.max_token_limit: while curr_buffer_length > self.max_token_limit: buffer.pop(0) curr_buffer_length = MessageDataModel._count_tokens("\n".join([_.content for _ in buffer])) # curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) self.chat_memory.messages = buffer def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer. Pruned.""" super().save_context(inputs, outputs) self.fit_max_token_limit()
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~executors~question_suggestion~chat_memory.py
from __future__ import annotations from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from real_agents.adapters.executors.question_suggestion.base import QuestionSuggestionChainBase from real_agents.adapters.executors.question_suggestion.prompts import QUESTION_SUGGESTION_PROMPT_CHAT_MEMORY class QuestionSuggestionChainChatMemory(QuestionSuggestionChainBase): @classmethod def from_prompt(cls, llm: BaseLanguageModel) -> QuestionSuggestionChainChatMemory: """Load from user profile prompt.""" llm_chain = LLMChain(llm=llm, prompt=QUESTION_SUGGESTION_PROMPT_CHAT_MEMORY) return cls(llm_chain=llm_chain)
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~executors~chat_executor.py
from typing import Any, Dict from langchain.base_language import BaseLanguageModel from langchain.prompts import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain.chains import ConversationChain from real_agents.adapters.executors.base import BaseExecutor from real_agents.adapters.memory import ConversationBufferMemory class ChatExecutor(BaseExecutor): """Chat Executor.""" _DEFAULT_TEMPLATE = "The following is a friendly conversation between a human and an AI. \ The AI is talkative and provides lots of specific details from its context. \ If the AI does not know the answer to a question, it truthfully says it does not know." output_key: str = "result" def __init__(self) -> None: """Initialize the executor""" self.memory = ConversationBufferMemory(return_messages=True) def run( self, user_intent: str, llm: BaseLanguageModel, verbose: bool = True, ) -> Dict[str, Any]: """Run the executor. Args: user_intent: User intent to execute. grounding_source: Grounding source to execute the program on. llm: Language model to use. verbose: Whether to print the logging. Returns: Result of string. """ prompt = ChatPromptTemplate.from_messages( [ SystemMessagePromptTemplate.from_template(self._DEFAULT_TEMPLATE), MessagesPlaceholder(variable_name="history"), HumanMessagePromptTemplate.from_template("{input}"), ] ) method = ConversationChain( llm=llm, prompt=prompt, verbose=verbose, memory=self.memory, ) result = method.predict(input=user_intent) output = {self.output_key: result} return output
[ "The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.", "{input}" ]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~schema.py
from typing import NamedTuple from langchain import SQLDatabase from sqlalchemy import text from sqlalchemy.engine import Row from tabulate import tabulate from typing import List, Any class AgentTransition(NamedTuple): """Agent's transition to take.""" return_values: dict log: str EMPTY_RESULT_STR = "NONE" # to show NONE result in front-end. class SQLDatabase(SQLDatabase): @staticmethod def _pretty_format(headers: Any, result: List[Row]) -> str: dicts = [dict(zip(headers, row)) for row in result] tab_result = tabulate(tabular_data=dicts, headers="keys", tablefmt="psql") if tab_result == "": return EMPTY_RESULT_STR return tab_result def run(self, command: str, fetch: str = "all") -> str: """Execute a SQL command and return a string representing the results. If the statement returns rows, a string of the results is returned. If the statement returns no rows, an empty string is returned. """ with self._engine.begin() as connection: if self._schema is not None: connection.exec_driver_sql(f"SET search_path TO {self._schema}") cursor = connection.execute(text(command)) if cursor.returns_rows: headers = cursor.keys() if fetch == "all": result = cursor.fetchall() elif fetch == "one": # result = cursor.fetchone()[0] # type: ignore result = [cursor.fetchone()] # type: ignore else: raise ValueError("Fetch parameter must be either 'one' or 'all'") # pretty format tab_result = self._pretty_format(headers, result) return tab_result return ""
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~models~__init__.py
from langchain.chat_models.google_palm import ChatGooglePalm from real_agents.adapters.models.anthropic import ChatAnthropic from real_agents.adapters.models.openai import ChatOpenAI from real_agents.adapters.models.azure_openai import AzureChatOpenAI __all__ = [ "ChatOpenAI", "ChatAnthropic", "ChatGooglePalm", "AzureChatOpenAI", ] type_to_cls_dict = { "chat_anthropic": ChatAnthropic, "chat_google_palm": ChatGooglePalm, "chat_openai": ChatOpenAI, "azure_chat_openai": AzureChatOpenAI, }
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~agent_helpers~output_parser.py
from __future__ import annotations from typing import Optional, Union from pydantic import Extra from langchain.schema import ( AgentAction, AgentFinish, ) from real_agents.adapters.agent_helpers.agent import AgentOutputParser from real_agents.adapters.schema import AgentTransition class ConversationOutputParser(AgentOutputParser): class Config: """Configuration for this pydantic object.""" extra = Extra.allow arbitrary_types_allowed = True def get_format_instructions(self, app_name="copilot") -> str: from real_agents.data_agent.copilot_prompt import FORMAT_INSTRUCTIONS as COPILOT_FORMAT_INSTRUCTIONS from real_agents.plugins_agent.plugin_prompt import FORMAT_INSTRUCTIONS as PLUGINS_FORMAT_INSTRUCTIONS from real_agents.web_agent.webot_prompt import FORMAT_INSTRUCTIONS as WEBOT_FORMAT_INSTRUCTIONS if app_name == "copilot": return COPILOT_FORMAT_INSTRUCTIONS elif app_name == "webot": return WEBOT_FORMAT_INSTRUCTIONS elif app_name == "plugins": return PLUGINS_FORMAT_INSTRUCTIONS else: raise ValueError(f"Unknown app_name {app_name}") def parse(self, text: str) -> Union[AgentTransition, AgentAction, AgentFinish]: cleaned_output = text.strip() import re def _extract_explanation(json_string: str) -> Optional[str]: if "```" in json_string: return json_string.split("```")[0] else: return None def _extract_value(json_string: str, key: str) -> str: pattern = re.compile(rf'"?{key}"?\s*:\s*("((?:[^"\\]|\\.)*)"|(\b[^,\s]*\b))', re.MULTILINE) match = pattern.search(json_string) if match: return match.group(1).replace('\\"', '"').replace("\\\\", "\\").strip('"').strip("'") raise ValueError(f"Could not find {key} in {json_string}") try: _action = _extract_value(cleaned_output, "action") _action_input = _extract_value(cleaned_output, "action_input") if _action == "Final Answer": return AgentFinish({"output": _action_input}, cleaned_output) # Transition sentence should only be used not final answer. _explanation = _extract_explanation(cleaned_output) return AgentAction(_action, _action_input, cleaned_output) except Exception: if cleaned_output.startswith("Action:"): lines = cleaned_output.splitlines() action = lines[1].strip() import textwrap action_input = textwrap.dedent("\n".join(lines[2:])).strip() return AgentAction(action, action_input, cleaned_output) return AgentFinish({"output": cleaned_output}, cleaned_output) @property def _type(self) -> str: return "conversational_chat"
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~callbacks~streaming_stdout.py
"""Callback Handler streams to stdout on new llm token.""" import sys from typing import Any, Dict, List, Union from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import AgentAction, AgentFinish, LLMResult class StreamingStdOutCallbackHandler(BaseCallbackHandler): """Callback handler for streaming. Only works with LLMs that support streaming.""" def on_llm_start(self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) -> None: """Run when LLM starts running.""" def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run on new LLM token. Only available when streaming is enabled.""" sys.stdout.write(token) sys.stdout.flush() def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" def on_llm_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> None: """Run when LLM errors.""" def on_chain_start(self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain starts running.""" def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends running.""" def on_chain_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> None: """Run when chain errors.""" def on_tool_start(self, serialized: Dict[str, Any], input_str: str, **kwargs: Any) -> None: """Run when tool starts running.""" def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run on agent action.""" pass def on_tool_end(self, output: str, **kwargs: Any) -> None: """Run when tool ends running.""" def on_tool_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> None: """Run when tool errors.""" def on_text(self, text: str, **kwargs: Any) -> None: """Run on arbitrary text.""" def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Run on agent end."""
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~models~azure_openai.py
"""Azure OpenAI chat wrapper.""" from __future__ import annotations import logging from typing import Any, Dict, Mapping from pydantic import root_validator from real_agents.adapters.models.openai import ChatOpenAI from langchain.schema import ChatResult from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) class AzureChatOpenAI(ChatOpenAI): """Wrapper around Azure OpenAI Chat Completion API. To use this class you must have a deployed model on Azure OpenAI. Use `deployment_name` in the constructor to refer to the "Model deployment name" in the Azure portal. In addition, you should have the ``openai`` python package installed, and the following environment variables set or passed in constructor in lower case: - ``OPENAI_API_TYPE`` (default: ``azure``) - ``OPENAI_API_KEY`` - ``OPENAI_API_BASE`` - ``OPENAI_API_VERSION`` For exmaple, if you have `gpt-35-turbo` deployed, with the deployment name `35-turbo-dev`, the constructor should look like: .. code-block:: python AzureChatOpenAI( deployment_name="35-turbo-dev", openai_api_version="2023-03-15-preview", ) Be aware the API version may change. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. """ deployment_name: str = "" openai_api_type: str = "azure" openai_api_base: str = "" openai_api_version: str = "" openai_api_key: str = "" openai_organization: str = "" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY", ) openai_api_base = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", ) openai_api_version = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", ) openai_api_type = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_type = openai_api_type openai.api_base = openai_api_base openai.api_version = openai_api_version openai.api_key = openai_api_key if openai_organization: openai.organization = openai_organization except ImportError: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { **super()._default_params, "engine": self.deployment_name, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**self._default_params} @property def _llm_type(self) -> str: return "azure-openai-chat" def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: for res in response["choices"]: if res.get("finish_reason", None) == "content_filter": raise ValueError( "Azure has not provided the response due to a content" " filter being triggered" ) return super()._create_chat_result(response)
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~plugins_agent~executors~plugin_executor.py
"""Executor that manage the plugins calling""" from __future__ import annotations from typing import Any, Callable, Dict, Union from pydantic import BaseModel, Extra from langchain.base_language import BaseLanguageModel from real_agents.adapters.data_model import SpecModel from real_agents.plugins_agent import APICallingChain from real_agents.plugins_agent.plugins.utils import load_plugin_elements_by_name from real_agents.adapters.data_model.utils import indent_multiline_string class PluginExecutor(BaseModel): """Executor to call plugins that handle the spec showing, endpoint calling and output modeling.""" name: str description: str spec_model: SpecModel meta_info: Dict[str, Any] endpoint2caller: Dict[str, Callable] endpoint2output_model: Dict[str, Callable] api_key: str = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def full_description(self, add_extra_description_from_plugin=True): description = ( self.description + "\nOpenAPI information:\n" + indent_multiline_string( self.spec_model.prepare_spec()) if add_extra_description_from_plugin else self.description ) return description @classmethod def from_plugin_name(cls, plugin_name: str, ) -> PluginExecutor: plugin_info = load_plugin_elements_by_name(plugin_name) return cls( name=plugin_info["name"], description=plugin_info["description"], spec_model=plugin_info["spec_model"], meta_info=plugin_info["meta_info"], endpoint2caller=plugin_info["endpoint2caller"], endpoint2output_model=plugin_info["endpoint2output_model"], ) def run( self, user_intent: str, llm: BaseLanguageModel, ) -> Union[str, Dict[str, Any]]: inputs = {"input_str": user_intent} method = APICallingChain.from_llm_and_plugin( llm, self.meta_info, self.spec_model, self.endpoint2caller, self.endpoint2output_model, self.api_key, ) output = method(inputs) return output def load_personnel_info(self): new_endpoint2caller, new_endpoints2output_model = self.spec_model.load_personnel_info( api_key=self.api_key) self.endpoint2caller = self.endpoint2caller | new_endpoint2caller self.endpoint2output_model = self.endpoint2output_model | new_endpoints2output_model
[]
2024-01-10
xlang-ai/OpenAgents
backend~api~chat_webot.py
from time import sleep import copy import redis import json import pickle import traceback from flask import Response, request, stream_with_context from typing import Dict, Union import os from langchain.schema import HumanMessage, SystemMessage from backend.api.language_model import get_llm from backend.main import app, message_id_register, message_pool, logger from backend.utils.streaming import single_round_chat_with_agent_streaming from backend.schemas import OVERLOAD, NEED_CONTINUE_MODEL from backend.schemas import DEFAULT_USER_ID from real_agents.adapters.llm import BaseLanguageModel from real_agents.adapters.agent_helpers import AgentExecutor, Tool from real_agents.adapters.callbacks.agent_streaming import \ AgentStreamingStdOutCallbackHandler from real_agents.adapters.models import ChatOpenAI from real_agents.adapters.memory import ConversationReActBufferMemory from real_agents.adapters.data_model import DataModel, JsonDataModel from real_agents.adapters.interactive_executor import initialize_webot_agent from real_agents.web_agent import WebBrowsingExecutor, WebotExecutor r = redis.Redis(host=os.getenv("REDIS_SERVER"), port=6379, db=0) # adjust host/port/db as needed # here webot and webot_status are stored in redis since the two global variable can not be modified and accessed normally in multiprocess # fixme:now webot is stored without message_id or chat_id info, so it can only be used for one chat at a time # fixme:now webot_status is stored with chat_id info, if the status is not reset after a message ended abnormally e.g. the message is interrupted, it will be reused wrongly for the next chat def get_webot_from_redis(user_id: str, chat_id: str, ) -> WebBrowsingExecutor: data = r.get(f'webot_{user_id}_{chat_id}') if data is not None: webot = pickle.loads(data) else: # initialize a webot with None instrucition if webot does not exist webot = WebBrowsingExecutor(None) save_webot_to_redis(user_id, chat_id, webot) return webot def save_webot_to_redis(user_id: str, chat_id: str, webot: WebBrowsingExecutor, ): r.set(f'webot_{user_id}_{chat_id}', pickle.dumps(webot)) def get_webot_status_from_redis(user_id: str, chat_id: str): webot_status_json = r.get(f'webot_status_{user_id}_{chat_id}') if webot_status_json is not None: webot_status = json.loads(webot_status_json) return webot_status else: return {} def save_webot_status_to_redis(user_id: str, chat_id: str, webot_status: Dict): r.set(f'webot_status_{user_id}_{chat_id}', json.dumps(webot_status)) def reset_webot(user_id: str, chat_id: str): webot = WebBrowsingExecutor(None) save_webot_to_redis(user_id, chat_id, webot) def reset_webot_status(user_id: str, chat_id: str): webot_status = {"webot_status": "idle", "url": None} save_webot_status_to_redis(user_id, chat_id, webot_status) # this function has been deprecated def get_plan(instruction: str, start_url: str, chat_llm: ChatOpenAI): # fixme: Move this into a separate chain or executors to decompose the LLMs system_message = f""" You are a planner to assist another browser automation assistant. Here is the instruction for the other assistant: ``` You MUST take one of the following actions. NEVER EVER EVER make up actions that do not exist: 1. click(element): Clicks on an element 2. setValue(element, value: string): Focuses on and sets the value of an input element 3. finish(): Indicates the task is finished 4. fail(): Indicates that you are unable to complete the task You will be be given a task to perform and the current state of the DOM. You will also be given previous actions that you have taken. You may retry a failed action up to one time. This is an example of an action: <Thought>I should click the add to cart button</Thought> <Action>click(223)</Action> You MUST always include the <Thought> and <Action> open/close tags or else your response will be marked as invalid. Rules you MUST follow: 1. You must only take one step at a time. You cannot take multiple actions in a single response. 2. You should not consider the action to present the result to the user. You only need to do available actions. If info in current page is enough for the user to solve the problem, you should finish. ``` Now your responsibility is to give a step-by-step plan according to user's instruction. This plan will be given to the assistant as a reference when it is performing tasks. """.strip() human_message = f""" The user requests the following task: {instruction} Now you are at {start_url} Provide a plan to do this (you can use pseudo description as below to describe the item). Here is an example case: request: Go to google calendar to schedule a meeting current url: "https://google.com" example plan: 1. setValue(searchBar, "google calendar") 2. click(search) 3. click(the item with title of google calendar) 4.1 if user has loginned do nothing 4.2 if user hasn't loginned do login 5. click(create event button) 6. setValue(event title input bar, "meeting") 7. click(save event button) 8. finish() """.strip() messages = [SystemMessage(content=system_message), HumanMessage(content=human_message)] response = chat_llm(messages).content return response def create_webot_interaction_executor( llm: BaseLanguageModel, llm_name: str, user_id: str, chat_id: str ) -> AgentExecutor: """Creates an agent executor for interaction. Args: llm: A llm model. llm_name: A string llm name. user_id: A string of user id. chat_id: A string chat id. Returns: An agent executor. """ # Initialize memory memory = ConversationReActBufferMemory(memory_key="chat_history", return_messages=True, max_token_limit=10000) class RunWebot: def __init__(self, webot: WebotExecutor, llm: BaseLanguageModel, user_id: str, chat_id: str): self.llm = llm self.webot = webot self.user_id = user_id self.chat_id = chat_id def run(self, term: str) -> Union[str, Dict, DataModel]: try: user_id = self.user_id chat_id = self.chat_id reset_webot(user_id=user_id, chat_id=chat_id) reset_webot_status(user_id=user_id, chat_id=chat_id) raw_observation = self.webot.run(user_intent=term, llm=self.llm) instruction, start_url = raw_observation["instruction"], \ raw_observation["start_url"] webot = get_webot_from_redis(user_id=user_id, chat_id=chat_id) webot.instruction = instruction # webot.plan = get_plan(instruction, start_url) webot.plan = "" save_webot_to_redis(user_id=user_id, chat_id=chat_id, webot=webot) webot_status = { "webot_status": "running", "url": start_url } save_webot_status_to_redis(user_id=user_id, chat_id=chat_id, webot_status=webot_status) while True: webot = get_webot_from_redis(user_id=user_id, chat_id=chat_id) if webot.finish or webot.interrupt or webot.error or webot.fail: break else: sleep(0.5) save_webot_status_to_redis(user_id=user_id, chat_id=chat_id, webot_status={"webot_status": "idle", "url": None}) webot = get_webot_from_redis(user_id=user_id, chat_id=chat_id) webot.instruction = None save_webot_to_redis(user_id=user_id, chat_id=chat_id, webot=webot) if webot.finish: webot = get_webot_from_redis(user_id=user_id, chat_id=chat_id) action_history = webot.action_history last_page = webot.pages_viewed[-1] observation = JsonDataModel.from_raw_data( { "success": True, "result": json.dumps({"action_history": action_history, "last_page": last_page}, indent=4), "intermediate_steps": json.dumps( {"instruction": instruction, "start_url": start_url}, indent=4) } ) return observation if webot.fail: observation = JsonDataModel.from_raw_data( { "success": True, "result": "The webot failed to execute the instruction.", "intermediate_steps": json.dumps( {"instruction": instruction, "start_url": start_url}, indent=4) } ) return observation if webot.interrupt: observation = JsonDataModel.from_raw_data( { "success": False, "result": "The web browsing is interrupted by user.", "intermediate_steps": json.dumps( {"instruction": instruction, "start_url": start_url}, indent=4) } ) return observation if webot.error: observation = JsonDataModel.from_raw_data( { "success": False, "result": "Error occurs during web browsing.", "intermediate_steps": json.dumps( {"instruction": instruction, "start_url": start_url}, indent=4) } ) return observation except Exception as e: print(traceback.format_exc()) observation = JsonDataModel.from_raw_data( { "success": False, "result": f"Failed in web browsing with the input: {term}, please try again later.", "intermediate_steps": json.dumps({"error": str(e)}) } ) return observation webot = WebotExecutor.from_webot() llm = copy.deepcopy(llm) run_webot = RunWebot(webot, llm, chat_id=chat_id, user_id=user_id) tools = [Tool(name=webot.name, func=run_webot.run, description=webot.description)] continue_model = llm_name if llm_name in NEED_CONTINUE_MODEL else None interaction_executor = initialize_webot_agent( tools, llm, continue_model, memory=memory, verbose=True ) return interaction_executor @app.route("/api/chat_xlang_webot", methods=["POST"]) def chat_xlang_webot() -> Dict: """Returns the chat response of web agent.""" try: # Get request parameters request_json = request.get_json() user_id = request_json.pop("user_id", DEFAULT_USER_ID) chat_id = request_json["chat_id"] user_intent = request_json["user_intent"] parent_message_id = request_json["parent_message_id"] llm_name = request_json["llm_name"] temperature = request_json.get("temperature", 0.4) stop_words = ["[RESPONSE_BEGIN]", "TOOL RESPONSE"] kwargs = { "temperature": temperature, "stop": stop_words, } # Get language model llm = get_llm(llm_name, **kwargs) logger.bind(user_id=user_id, chat_id=chat_id, api="/chat", msg_head="Request json").debug(request_json) human_message_id = message_id_register.add_variable(user_intent) ai_message_id = message_id_register.add_variable("") stream_handler = AgentStreamingStdOutCallbackHandler() # Build executor and run chat # reset webot and status reset_webot(user_id=user_id, chat_id=chat_id) reset_webot_status(user_id=user_id, chat_id=chat_id) interaction_executor = create_webot_interaction_executor( llm=llm, llm_name=llm_name, chat_id=chat_id, user_id=user_id ) activated_message_list = message_pool.get_activated_message_list(user_id, chat_id, list(), parent_message_id) message_pool.load_agent_memory_from_list(interaction_executor.memory, activated_message_list) return stream_with_context( Response( single_round_chat_with_agent_streaming( interaction_executor=interaction_executor, user_intent=user_intent, human_message_id=human_message_id, ai_message_id=ai_message_id, user_id=user_id, chat_id=chat_id, message_list=activated_message_list, parent_message_id=parent_message_id, stream_handler=stream_handler, llm_name=llm_name, app_type="webot", ), content_type="application/json", ) ) except Exception as e: import traceback traceback.print_exc() return Response(response=None, status=f"{OVERLOAD} backend is currently overloaded")
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~data_agent~executors~kaggle_data_loading_executor.py
import json import os import re import shutil import uuid from typing import Any, Dict, List, Tuple import requests from bs4 import BeautifulSoup from loguru import logger from kaggle.api.kaggle_api_extended import KaggleApi from langchain.base_language import BaseLanguageModel from langchain import PromptTemplate from real_agents.adapters.llm import LLMChain class KaggleDataLoadingExecutor: KAGGLE_TEMPLATE = """ Determine whether the user input aims to (1) connect to a specific kaggle dataset that the user mentions its kaggle path (2) search for relevant kaggle datasets given the information the user provides. You need to output the action wrapped in <action></action>, the action space is ['connect', 'search']. You also need to output the keywords wrapped in <keywords></keywords>. For 'search', the keywords MUST be ONE search term/word to be searched by kaggle api. Note keywords CAN'T be too specific or contain trivial word(e.g., dataset), make sure there are various search results. For 'connect', the keywords are the kaggle dataset path. Input: {input} Begin." """ def run( self, user_intent: str, llm: BaseLanguageModel, search_top_k: int = 4, ) -> Dict[str, Any]: logger.bind(msg_head="KaggleDataLoader inputs").trace(user_intent) kaggle_template = PromptTemplate( input_variables=["input"], template=self.KAGGLE_TEMPLATE, ) method = LLMChain(llm=llm, prompt=kaggle_template) result = method.run({"input": user_intent}) logger.bind(msg_head="LLM result").trace(result) kaggle_action, keywords = self._parse_output(result) logger.bind(msg_head="Kaggle action").trace(kaggle_action) logger.bind(msg_head="Kaggle keywords").trace(keywords) """Use export to manage the Kaggle API key for now.""" api = KaggleApi() api.authenticate() if kaggle_action == "connect": kaggle_output_info = keywords elif kaggle_action == "search": kaggle_output_info = self._search_kaggle(api, keywords, search_top_k) else: # Regard the rest as "search" action now kaggle_action = "search" kaggle_output_info = self._search_kaggle(api, keywords, search_top_k) return {"kaggle_action": kaggle_action, "kaggle_output_info": kaggle_output_info} def _search_kaggle(self, api: KaggleApi, keywords: str, search_top_k: int) -> List[Dict]: """Search kaggle datasets given the keywords.""" # Search for datasets datasets = [] for page in range(1, 10): try: searched_datasets = api.dataset_list(search=keywords, page=page, max_size=20000, file_type="csv") logger.bind(msg_head="Kaggle search result").trace(searched_datasets) datasets.extend(searched_datasets) if len(datasets) >= search_top_k: datasets = datasets[:search_top_k] break if len(searched_datasets) < 20: # Default page_size is 20, less than 20 means no more datasets can be searched break except Exception: break # Get url, cover image and some meta data for each dataset if len(datasets) == 0: # No datasets found datasets = api.dataset_list(max_size=20000, page=1, file_type="csv")[:search_top_k] output_info = self._get_dataset_meta_info(api, datasets) return output_info def _get_dataset_meta_info(self, api: KaggleApi, datasets: List) -> List[Dict]: """Get dataset key meta-data to be shown to the user.""" output_info = [] for dataset in datasets: dataset_hash_id = str(uuid.uuid4()) dataset_tmp_dir = os.path.join(".kaggle_meta/", dataset_hash_id) os.makedirs(dataset_tmp_dir, exist_ok=True) api.dataset_metadata(dataset.ref, path=dataset_tmp_dir) with open(os.path.join(dataset_tmp_dir, "dataset-metadata.json")) as f: dataset_metadata = json.load(f) shutil.rmtree(os.path.join(".kaggle_meta/", dataset_hash_id)) dataset_url = "https://www.kaggle.com/datasets/" + dataset.ref # Crawling the dataset page to get the dataset image dataset_cover_image_url = self._crawl_dataset_cover_image(dataset_url) logger.bind(msg_head="Dataset cover image url").trace(dataset_cover_image_url) output_metadata = { "id": dataset_metadata["id"], "id_no": dataset_metadata["id_no"], "title": dataset_metadata["title"], "subtitle": dataset_metadata["subtitle"], "total_views": dataset_metadata["totalViews"], "total_votes": dataset_metadata["totalVotes"], "total_downloads": dataset_metadata["totalDownloads"], "url": dataset_url, "cover_image_url": dataset_cover_image_url, } output_info.append(output_metadata) return output_info def _crawl_dataset_cover_image( self, url: str, default_image_path="https://images.datacamp.com/image/upload/v1647430873/kaggle_logo_icon_168474_4eb653edb6.png" ) -> str: """Crawl the kaggle dataset cover image from the dataset url.""" # Get the HTML content of the webpage response = requests.get(url) # Parse the HTML with BeautifulSoup soup = BeautifulSoup(response.text, "html.parser") # Find the image element try: kaggle_component_element = soup.find("script", {"class": "kaggle-component"}) match = re.search(r'"coverImageUrl":\s*"([^"]*)"', kaggle_component_element.string) image_url = match.group(1) except Exception: import traceback traceback.print_exc() image_url = default_image_path return image_url def _parse_output(self, content: str) -> Tuple[str, str]: """Parse the output of the LLM to get the kaggle action and keywords.""" from bs4 import BeautifulSoup # Using 'html.parser' to parse the content soup = BeautifulSoup(content, "html.parser") # Parsing the tag and summary contents try: action = soup.find("action").text except Exception: action = "" try: keywords = soup.find("keywords").text except Exception: keywords = "" return action, keywords
[ "\n\nDetermine whether the user input aims to (1) connect to a specific kaggle dataset that the user mentions its kaggle path\n(2) search for relevant kaggle datasets given the information the user provides.\n\nYou need to output the action wrapped in <action></action>, the action space is ['connect', 'search']. You also need\nto output the keywords wrapped in <keywords></keywords>. For 'search', the keywords MUST be ONE search term/word to be\nsearched by kaggle api. Note keywords CAN'T be too specific or contain trivial word(e.g., dataset), make sure there are various search results. For\n'connect', the keywords are the kaggle dataset path.\n\nInput: {input}\n\nBegin.\"\n", "input", "connect" ]
2024-01-10
xlang-ai/OpenAgents
real_agents~data_agent~copilot.py
"""An agent designed to hold a conversation in addition to using tools.""" from __future__ import annotations from typing import Any, List, Optional, Sequence, Tuple, Union from typing_extensions import override from pydantic import Field from langchain.agents.agent import AgentOutputParser from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, Callbacks from langchain.chains import LLMChain from langchain.schema import AgentAction, AgentFinish, HumanMessage, AIMessage, BaseMessage, BaseOutputParser from langchain.tools.base import BaseTool from real_agents.adapters.agent_helpers.agent import Agent from real_agents.adapters.agent_helpers.output_parser import ConversationOutputParser from real_agents.data_agent.copilot_prompt import PREFIX, SUFFIX, TEMPLATE_TOOL_RESPONSE, fake_continue_prompt from real_agents.adapters.data_model import DataModel, MessageDataModel from langchain.prompts import ( BasePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) class ExceptionTool(BaseTool): name = "_Exception" description = "Exception tool" def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: return query async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return query class ConversationalChatAgent(Agent): """An agent designed to hold a conversation in addition to using data tools.""" output_parser: ConversationOutputParser = Field(default_factory=ConversationOutputParser()) template_tool_response: str = TEMPLATE_TOOL_RESPONSE continue_model: Optional[str] = None @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> ConversationOutputParser: return ConversationOutputParser() @property def _agent_type(self) -> str: raise NotImplementedError @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools) @classmethod def create_prompt( cls, tools: Sequence[BaseTool], system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, output_parser: Optional[BaseOutputParser] = None, ) -> BasePromptTemplate: # tools tool_strings = "\n".join([f"> {tool.name}: {tool.description}" for tool in tools]) tool_names = ", ".join([tool.name for tool in tools]) _output_parser = output_parser or cls._get_default_output_parser() # format instructions for system message format_instructions = _output_parser.get_format_instructions() format_instructions = format_instructions.format(tool_names=tool_names) # system message system_message = system_message + f"{tool_strings}\n\n{format_instructions}" # human input final_prompt = human_message if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] messages = [ SystemMessagePromptTemplate.from_template(system_message), MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template(final_prompt), MessagesPlaceholder(variable_name="agent_scratchpad"), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages) @override def _construct_scratchpad(self, intermediate_steps: List[Tuple[AgentAction, str]]) -> List[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts: List[BaseMessage] = [] # Try to only use AI message for scratchpad content = [] for idx, (action, full_observation) in enumerate(intermediate_steps): content.append(MessageDataModel.extract_action_for_llm(action.log)) observation = full_observation if isinstance(full_observation, DataModel): llm_raw_observation = full_observation.get_llm_side_data() observation = MessageDataModel.extract_tool_response_for_llm(llm_raw_observation) tool_response = self.template_tool_response.format( observation=str(observation), tool_names=self.allowed_tools ) if idx == len(intermediate_steps) - 1: content.append(tool_response) else: content.append(observation) content_str = "\n".join(content) thoughts.append(AIMessage(content=content_str)) if self.continue_model is not None and len(intermediate_steps) != 0: thoughts.append(HumanMessage(content=fake_continue_prompt[self.continue_model])) return thoughts @override def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) system_prompt = self.llm_chain.prompt.messages[0].format().content system_prompt_tokens = MessageDataModel._count_tokens(system_prompt) max_tokens = 8000 max_gen_tokens = 1000 # FIXME: need more accurate token limit calculation full_inputs = MessageDataModel.truncate_chat_history( full_inputs, max_token=max_tokens - system_prompt_tokens - max_gen_tokens ) full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callbacks: Callbacks = None, output_parser: Optional[AgentOutputParser] = None, system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) _output_parser = output_parser or cls._get_default_output_parser() prompt = cls.create_prompt( tools, system_message=system_message, human_message=human_message, input_variables=input_variables, output_parser=_output_parser, ) llm_chain = LLMChain( llm=llm, prompt=prompt, ) tool_names = [tool.name for tool in tools] return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, )
[ "system_messagefb864210-55d5-49f3-a738-3bf0259683edPLACEHOLDER\n\nPLACEHOLDER", "Exception tool" ]
2024-01-10
xlang-ai/OpenAgents
real_agents~plugins_agent~plugins~tool_selector.py
"""Implementation of Tool Selector that automate the selection of tools for the question (or sub-question).""" import os import pickle import numpy as np from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm from typing import Any from real_agents.adapters.data_model import SpecModel from langchain.embeddings.huggingface import HuggingFaceInstructEmbeddings DEFAULT_TOOL_INSTRUCTION = "Represent the tool description for retrieval:" DEFAULT_QUERY_INSTRUCTION = "Represent the question for retrieving tools that can be used to solve the question:" PLUGIN_SPEC_FILE = "openapi.yaml" CURRENT_PATH = os.path.dirname(os.path.abspath(__file__)) EMBEDDING_CACHE_PATH = os.path.join(CURRENT_PATH, "..", "..", "..", "backend", "static", "tool_embeddings") if not os.path.exists(EMBEDDING_CACHE_PATH): os.makedirs(EMBEDDING_CACHE_PATH) class ToolSelector: """ This class is used to select the appropriate tool list for the question. """ # add valid mode here if needed valid_modes = ["embedding"] """ Example: .. code-block:: python mode_args = {"embedding": HuggingFaceInstructEmbeddings, "model_name": "hkunlp/instructor-large", "embed_instruction": "Represent the tool description for retrieval:", "query_instruction": "Represent the question for retrieving tools that can be used to solve the question:"} tool_selector = ToolSelector(mode="embedding", mode_args=mode_args) model_name = "hkunlp/instructor-large" model_kwargs = {'device': 'cpu'} hf = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs=model_kwargs ) """ user_id: str = None chat_id: str = None def __init__(self, tools_list: list = [], mode: str = "embedding", mode_args=None, api_key_pool: Any = None): """ Initialize the tool selector. """ if mode_args is None: mode_args = {} if mode not in self.valid_modes: raise ValueError(f"Invalid mode '{mode}'. Valid modes are {self.valid_modes}") self.tool_paths = [ plugin_file_path for plugin_file_path in os.listdir(CURRENT_PATH) if ".py" not in plugin_file_path and plugin_file_path != "_scripts" and plugin_file_path != "__pycache__" and plugin_file_path != "README.md" and plugin_file_path != "descriptions.json" ] self.tool_list = tools_list self.mode = mode self.api_key_pool = api_key_pool if mode == "embedding": self._init_embedding(mode_args) else: raise ValueError(f"Unhandled mode '{mode}'.") def _init_embedding(self, mode_args: dict): embedding = mode_args.get("embedding", HuggingFaceInstructEmbeddings) if embedding == HuggingFaceInstructEmbeddings: model_name = mode_args.get("model_name", "hkunlp/instructor-large") embed_instruction = mode_args.get("embed_instruction", DEFAULT_TOOL_INSTRUCTION) query_instruction = mode_args.get("query_instruction", DEFAULT_QUERY_INSTRUCTION) self.embedding = HuggingFaceInstructEmbeddings( model_name=model_name, embed_instruction=embed_instruction, query_instruction=query_instruction ) def get_tool_descriptions(self) -> list: """ Get the tool descriptions. """ descriptions = [] tool_paths = self.tool_paths yaml_paths = [os.path.join(CURRENT_PATH, tool_name, PLUGIN_SPEC_FILE) for tool_name in tool_paths] for yaml_path, plugin_file_path in tqdm(zip(yaml_paths, tool_paths), total=len(yaml_paths)): if os.path.isdir(os.path.join(CURRENT_PATH, plugin_file_path)): retrieved = False try: spec_model = SpecModel(yaml_path) retrieved = True except: print("Error loading yaml", yaml_path) if not retrieved: description = "No description." else: description = ( spec_model.full_spec["info"]["description"] if "description" in spec_model.full_spec[ "info"] else "No description." ) descriptions.append(description) return descriptions def get_api_key_from_tool_name(self, tool_name: str) -> str: """ Get the API key from the tool name. """ user_id = self.user_id api_key_info = self.api_key_pool.get_pool_info_with_id(user_id, default_value=[]) if len([i for i in api_key_info if i["tool_name"] == tool_name]) != 0: api_key = [i for i in api_key_info if i["tool_name"] == tool_name][0]["api_key"] else: api_key = None return api_key def check_plugin_valid(self, tool_path: str) -> bool: """ Check if the plugin is valid. Return false if this plugin requires an API key but the user has not provided one or plugin not found. """ plugins = self.tool_list # check if plugin exists and get the plugin if it exists if len([i for i in plugins if i["name"].lower() == tool_path.lower()]) != 0: plugin = [i for i in plugins if i["name"].lower() == tool_path.lower()][0] else: plugin = None print(f"Plugin {tool_path} not found.") # check if plugin requires an API key and if the user has provided one if plugin is not None: if plugin["require_api_key"] and self.get_api_key_from_tool_name(tool_path) == None: return False else: return True else: return False def load_query_from_message_list(self, message_list: list[dict[str, str]], user_intent: str) -> str: """ Load the query from the message list. """ """ Example: message_list = [{'message_type': 'human_message', 'message_content': 'buy nike shoes', 'message_id': 362, 'parent_message_id': -1}, {'message_type': 'ai_message', 'message_content': '', 'message_id': 363, 'parent_message_id': 362}] """ # concatenate all history messages into one single query # The message_list is the history message list so we need to concatenate user intent(current message) to the end of the message list query = "" for message in message_list: # only concatenate human messages since we only need to retrieve tools based on user intent and the ai_message can be long sometimes which will influence the embedding if "message_content" in message.keys() and "message_type" in message.keys() and message[ "message_type"] == 'human_message': query += (message["message_content"] + " ") else: continue query += user_intent return query def select_tools(self, query: str = "", top_k: int = 8): """ Select the top k tools based on the similarity between the query and the tool description. """ if query == "": raise ValueError("Query cannot be empty.") if self.mode not in self.valid_modes: raise ValueError(f"Invalid mode '{self.mode}'. Valid modes are {self.valid_modes}") if self.mode == "embedding": return self._select_tools_embedding(query, top_k) else: raise ValueError(f"Unhandled mode '{self.mode}'.") def _select_tools_embedding(self, query: str, top_k: int) -> list[str]: embedding = self.embedding # check if the embedding is InstructorEmbeddings if isinstance(self.embedding, HuggingFaceInstructEmbeddings): tool_embeddings = [] for name, description in zip(self.tool_paths, self.get_tool_descriptions()): # Define file path for the cached embedding tool_embedding_file = EMBEDDING_CACHE_PATH + "/" + name + ".pkl" # Check if tool embedding is already cached if os.path.isfile(tool_embedding_file): with open(tool_embedding_file, "rb") as f: tool_embedding = pickle.load(f) # no cached embedding, compute and cache it else: tool_embedding = embedding.embed_documents([description]) with open(tool_embedding_file, "wb") as f: pickle.dump(tool_embedding, f) tool_embeddings.extend(tool_embedding) query_embeddings = [embedding.embed_query(query)] similarities = cosine_similarity(query_embeddings, tool_embeddings) # eliminate invalid plugins for idx, tool_path in enumerate(self.tool_paths): if not self.check_plugin_valid(tool_path): similarities[0][idx] = -1 # get indices of top k similarities top_k_indices = np.argsort(similarities.flatten())[-top_k:] top_k_indices = top_k_indices.tolist() # return upper case tool names since tool id is the upper case of its name return [tool_name.upper() for idx, tool_name in enumerate(self.tool_paths) if idx in top_k_indices]
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~callbacks~agent_streaming.py
"""Callback Handler streams to stdout on new llm token.""" from typing import Any, Dict, List, Union from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from real_agents.adapters.data_model import DataModel class JSON_PDA: def __init__(self): self.stack = [] self.state = "start" self.json = {} self.current_key = "" self.current_value = "" self.escape_next = False def transition(self, char): if self.escape_next: # Add the escaped character to the current key or value and return if self.state == "open_key_quote": self.current_key += char elif self.state == "open_value_quote" or self.state == "open_value_quote_brace": self.current_value += char self.escape_next = False return if char == "\\": # The next character is an escaped character self.escape_next = True return if self.state == "start": if char == "{": self.stack.append("{") self.state = "open_brace" elif char == "`": self.state = "open_one_backtick" self.stack.append("`") elif self.state == "open_one_backtick": if char == "`": if self.stack[-1] == "`": self.state = "open_two_backticks" self.stack.append("`") else: while self.stack.pop() != "`": pass self.state = "start" else: self.stack.append(char) elif self.state == "open_two_backticks": if char == "`": if self.stack[-1] == "`": self.state = "after_backtick" self.stack.append("`") else: while self.stack.pop() != "`": pass self.state = "start" else: self.stack.append(char) elif self.state == "after_backtick": if char == "\n": self.state = "after_backtick_newline" elif self.state == "after_backtick_newline": if char == "{": self.stack.append("{") self.state = "open_brace" elif char == "\n": self.state = "after_backtick_newline" else: self.state = "in_block" elif self.state == "in_block": if char == "`": self.stack.pop() if len(self.stack) == 0: self.state = "start" elif self.state == "open_brace" or self.state == "comma": if char == '"': self.stack.append('"') self.state = "open_key_quote" self.current_key = "" elif self.state == "open_key_quote" or self.state == "open_value_quote": if char != '"': if self.state == "open_key_quote": self.current_key += char else: self.current_value += char else: self.stack.pop() if self.state == "open_key_quote": self.state = "close_key_quote" else: self.state = "close_value_quote" elif self.state == "open_value_quote_brace": if char == "{": self.stack.append("{") elif char == "}": self.stack.pop() if self.stack[-1] == "{" and self.stack[-2] != "{": self.state = "close_value_quote" self.current_value += char elif self.state == "close_key_quote": if char == ":": self.state = "after_key" elif self.state == "after_key": if char == '"': self.stack.append('"') self.state = "open_value_quote" self.current_value = "" elif char == "{": self.stack.append("{") self.state = "open_value_quote_brace" self.current_value = "{" elif self.state == "close_value_quote": self.json[self.current_key] = self.current_value if char == ",": self.state = "after_value" elif char == "}": self.stack.pop() if len(self.stack) == 0: self.state = "start" elif len(self.stack) == 3: self.state = "close_brace" elif self.state == "after_value": if char == '"': self.stack.append('"') self.state = "open_key_quote" elif self.state == "close_brace": if char == "`": self.stack.pop() if len(self.stack) == 0: self.state = "start" class AgentStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler): is_end = False generated_tokens: list = [] for_display: list = [] # Automata pda = JSON_PDA() llm_call_id = 0 _in_json = False _in_key = False _in_value = False _direct_display = True _normal_json = False json_key: str = "" json_tmp_stack: list = [] action_key_appear = False @property def always_verbose(self) -> bool: """Whether to call verbose callbacks even if verbose is False.""" return True def on_llm_start(self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) -> None: self.is_end = False self.generated_tokens = [] self.pda = JSON_PDA() self.llm_call_id += 1 self._in_json = False self._in_key = False self._in_value = False self._direct_display = True self._normal_json = False self.json_key = "" self.json_tmp_stack = [] def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """ Run on new LLM token. Only available when streaming is enabled. The tokens that we can decide their types ('plain', 'identifier', 'key', 'action', 'action_input') are stored in `self.for_display`. """ self.generated_tokens.append(token) # Automata that monitor json block for char in token: self.pda.transition(char) # Handle the logic of sentences and json blocks _type = "plain" if self.pda.state in ["open_brace", "open_one_backtick"]: self._in_json = True self._direct_display = False self._normal_json = False self.action_key_appear = False if self._in_json and not self._normal_json: _type = "identifier" if self.pda.state == "in_block": _type = "plain" self._normal_json = True if self.pda.state == "open_key_quote": if self._in_key: self.json_key += char _type = "key" self._in_key = True else: self._in_key = False if self.pda.state == "open_value_quote" or self.pda.state == "open_value_quote_brace": if self._in_value: _type = self.json_key self._in_value = True else: if self._in_value: self.json_key = "" self._in_value = False if self.pda.state == "close_key_quote": # Normal json block if self.json_key not in ["action", "action_input"]: for char_item in self.json_tmp_stack: self.for_display.append( {"text": char_item["text"], "type": "plain", "llm_call_id": self.llm_call_id} ) self.json_tmp_stack = [] self.for_display.append({"text": char, "type": "plain", "llm_call_id": self.llm_call_id}) self._normal_json = True continue else: if self.json_key == "action": self.action_key_appear = True elif self.json_key == "action_input" and self.action_key_appear: # Action json block for char_item in self.json_tmp_stack: char_item["llm_call_id"] = self.llm_call_id self.for_display.append(char_item) self.json_tmp_stack = [] self._direct_display = True else: for char_item in self.json_tmp_stack: self.for_display.append( {"text": char_item["text"], "type": "plain", "llm_call_id": self.llm_call_id} ) self.json_tmp_stack = [] self._direct_display = True if self.pda.state == "start": self._in_json = False self.for_display.append( {"text": char, "type": _type, "llm_call_id": self.llm_call_id} ) if self._direct_display else self.json_tmp_stack.append( {"text": char, "type": _type, "llm_call_id": self.llm_call_id} ) def on_llm_end(self, response, **kwargs: Any) -> None: """Run when LLM ends running.""" self.is_end = True for char_item in self.json_tmp_stack: self.for_display.append({"text": char_item["text"], "type": "plain", "llm_call_id": self.llm_call_id}) def on_tool_end(self, output: Union[DataModel, str], **kwargs: Any) -> None: """Run on tool end to add observation data model.""" self.for_display.append({"text": output, "type": "block", "llm_call_id": self.llm_call_id})
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~callbacks~executor_streaming.py
from typing import Any from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler class ExecutorStreamingChainHandler(StreamingStdOutCallbackHandler): is_end: bool = False _all = [] @property def always_verbose(self) -> bool: """Whether to call verbose callbacks even if verbose is False.""" return True def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """""" self._all.append(token)
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~executors~question_suggestion~user_profile.py
from __future__ import annotations from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from real_agents.adapters.executors.question_suggestion.base import QuestionSuggestionChainBase from real_agents.adapters.executors.question_suggestion.prompts import QUESTION_SUGGESTION_PROMPT_USER_PROFILE class QuestionSuggestionChainUserProfile(QuestionSuggestionChainBase): @classmethod def from_prompt(cls, llm: BaseLanguageModel) -> QuestionSuggestionChainUserProfile: """Load from user profile prompt.""" llm_chain = LLMChain(llm=llm, prompt=QUESTION_SUGGESTION_PROMPT_USER_PROFILE) return cls(llm_chain=llm_chain)
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~web_agent~executors~web_browsing_executor.py
""" Implementation of the WebBrowsingExecutor. WebBrowsingExecutor takes start_url and instruction as input, iteratively perform the actions on the web, and return the result. """ from typing import Any, Dict, List from langchain.base_language import BaseLanguageModel from real_agents.web_agent.web_browsing.react.base import ReActWebotChain from real_agents.web_agent.web_browsing.end2end.base import WebotChain from real_agents.adapters.data_model.html import HTMLDataModel # This executor is for the extension usage and not for the chat interface. # For the chat interface webot executor, refer xlang/real_agents/web_agent/executors/web_browsing_executor.py class WebBrowsingExecutor: """ WebBrowsingExecutor takes start_url and instruction as input, iteratively perform the actions on the web, and return the result. """ def __init__(self, instruction: str, plan: str = "", mode: str = "react") -> None: """Initialize the executor""" self.instruction: str = instruction self.mode: str = mode if self.mode == "react": self.thoughts_taken: List[str] = [] self.actions_taken: List[str] = [] self.pages_viewed: List[Any] = [] self.plan: str = plan @property def finish(self): return True if len(self.actions_taken) > 0 and "finish" in self.actions_taken[-1] else False @property def interrupt(self): return True if len(self.actions_taken) > 0 and "interrupt" in self.actions_taken[-1] else False @property def error(self): return True if len(self.actions_taken) > 0 and "error" in self.actions_taken[-1] else False @property def fail(self): return True if len(self.actions_taken) > 0 and "fail" in self.actions_taken[-1] else False @property def action_history(self): if self.mode == "basic": action_history = "Action: " for action in self.actions_taken: action_history += action + " -> " return action_history elif self.mode == "react": action_history = "" for thought, action in zip(self.thoughts_taken, self.actions_taken): action_history += thought + " -> " + action + " -> " return action_history else: raise ValueError(f"The mode {self.mode} is not supported") def run( self, page_info: Any, llm: BaseLanguageModel, ) -> Dict[str, Any]: model = HTMLDataModel.from_raw_data(raw_data=page_info) processed_html = model.get_llm_side_data() if self.mode == "basic": method = WebotChain.from_llm(llm) self.pages_viewed.append(processed_html) action_element = method( {"user_query": self.instruction, "previous_actions": self.actions_taken, "page_info": processed_html} ) elif self.mode == "react": method = ReActWebotChain.from_llm(llm) self.pages_viewed.append(processed_html) print("self.plan:", self.plan) # example: {'success': True, 'message' = 'success', 'thought': "I should first set the value in the search field to '...'", 'action': 'setValue(93, "...")', 'parsedAction': {'name': 'setValue', 'args': {'elementId': 93, 'value': '...'}}} webot_chain_return = method( { "user_query": self.instruction, "plan": self.plan, "previous_actions": self.actions_taken, "previous_thoughts": self.thoughts_taken, "page_info": processed_html, } ) else: raise ValueError(f"The mode {self.mode} is not supported") # "I should first set the value in the search field to '...'" self.thoughts_taken.append(webot_chain_return["thought"]) # setValue(93, "...") self.actions_taken.append(webot_chain_return["action"]) print("actions_taken:", self.actions_taken) return webot_chain_return
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~callbacks~manager.py
from __future__ import annotations import asyncio import functools import logging import os import warnings from contextlib import contextmanager from contextvars import ContextVar from typing import Any, Dict, Generator, List, Optional, Type, TypeVar, Union, cast from uuid import UUID, uuid4 import langchain from langchain.callbacks.base import ( BaseCallbackHandler, BaseCallbackManager, ChainManagerMixin, LLMManagerMixin, RunManagerMixin, ToolManagerMixin, ) from langchain.callbacks.openai_info import OpenAICallbackHandler from langchain.callbacks.stdout import StdOutCallbackHandler from langchain.callbacks.tracers.langchain import LangChainTracer from langchain.callbacks.tracers.langchain_v1 import LangChainTracerV1, TracerSessionV1 from langchain.callbacks.tracers.schemas import TracerSession from langchain.callbacks.tracers.stdout import ConsoleCallbackHandler from langchain.schema import ( AgentAction, AgentFinish, BaseMessage, LLMResult, get_buffer_string, ) logger = logging.getLogger(__name__) Callbacks = Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] openai_callback_var: ContextVar[Optional[OpenAICallbackHandler]] = ContextVar("openai_callback", default=None) tracing_callback_var: ContextVar[Optional[LangChainTracerV1]] = ContextVar( # noqa: E501 "tracing_callback", default=None ) tracing_v2_callback_var: ContextVar[Optional[LangChainTracer]] = ContextVar( # noqa: E501 "tracing_callback_v2", default=None ) def _get_debug() -> bool: return langchain.debug @contextmanager def get_openai_callback() -> Generator[OpenAICallbackHandler, None, None]: """Get OpenAI callback handler in a context manager.""" cb = OpenAICallbackHandler() openai_callback_var.set(cb) yield cb openai_callback_var.set(None) @contextmanager def tracing_enabled( session_name: str = "default", ) -> Generator[TracerSessionV1, None, None]: """Get Tracer in a context manager.""" cb = LangChainTracerV1() session = cast(TracerSessionV1, cb.load_session(session_name)) tracing_callback_var.set(cb) yield session tracing_callback_var.set(None) @contextmanager def tracing_v2_enabled( session_name: Optional[str] = None, *, example_id: Optional[Union[str, UUID]] = None, tenant_id: Optional[str] = None, session_extra: Optional[Dict[str, Any]] = None, ) -> Generator[TracerSession, None, None]: """Get the experimental tracer handler in a context manager.""" # Issue a warning that this is experimental warnings.warn( "The experimental tracing v2 is in development. " "This is not yet stable and may change in the future." ) if isinstance(example_id, str): example_id = UUID(example_id) cb = LangChainTracer( tenant_id=tenant_id, session_name=session_name, example_id=example_id, session_extra=session_extra, ) session = cb.ensure_session() tracing_v2_callback_var.set(cb) yield session tracing_v2_callback_var.set(None) def _handle_event( handlers: List[BaseCallbackHandler], event_name: str, ignore_condition_name: Optional[str], *args: Any, **kwargs: Any, ) -> None: """Generic event handler for CallbackManager.""" message_strings: Optional[List[str]] = None for handler in handlers: try: if ignore_condition_name is None or not getattr(handler, ignore_condition_name): getattr(handler, event_name)(*args, **kwargs) except NotImplementedError as e: if event_name == "on_chat_model_start": if message_strings is None: message_strings = [get_buffer_string(m) for m in args[1]] _handle_event( [handler], "on_llm_start", "ignore_llm", args[0], message_strings, *args[2:], **kwargs, ) else: logger.warning(f"Error in {event_name} callback: {e}") except Exception as e: logging.warning(f"Error in {event_name} callback: {e}") async def _ahandle_event_for_handler( handler: BaseCallbackHandler, event_name: str, ignore_condition_name: Optional[str], *args: Any, **kwargs: Any, ) -> None: try: if ignore_condition_name is None or not getattr(handler, ignore_condition_name): event = getattr(handler, event_name) if asyncio.iscoroutinefunction(event): await event(*args, **kwargs) else: await asyncio.get_event_loop().run_in_executor(None, functools.partial(event, *args, **kwargs)) except NotImplementedError as e: if event_name == "on_chat_model_start": message_strings = [get_buffer_string(m) for m in args[1]] await _ahandle_event_for_handler( handler, "on_llm_start", "ignore_llm", args[0], message_strings, *args[2:], **kwargs, ) else: logger.warning(f"Error in {event_name} callback: {e}") except Exception as e: logger.warning(f"Error in {event_name} callback: {e}") async def _ahandle_event( handlers: List[BaseCallbackHandler], event_name: str, ignore_condition_name: Optional[str], *args: Any, **kwargs: Any, ) -> None: """Generic event handler for AsyncCallbackManager.""" await asyncio.gather( *( _ahandle_event_for_handler(handler, event_name, ignore_condition_name, *args, **kwargs) for handler in handlers ) ) BRM = TypeVar("BRM", bound="BaseRunManager") class BaseRunManager(RunManagerMixin): """Base class for run manager (a bound callback manager).""" def __init__( self, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, ) -> None: """Initialize run manager.""" self.run_id = run_id self.handlers = handlers self.inheritable_handlers = inheritable_handlers self.parent_run_id = parent_run_id @classmethod def get_noop_manager(cls: Type[BRM]) -> BRM: """Return a manager that doesn't perform any operations.""" return cls(uuid4(), [], []) class RunManager(BaseRunManager): """Sync Run Manager.""" def on_text( self, text: str, **kwargs: Any, ) -> Any: """Run when text is received.""" _handle_event( self.handlers, "on_text", None, text, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) class AsyncRunManager(BaseRunManager): """Async Run Manager.""" async def on_text( self, text: str, **kwargs: Any, ) -> Any: """Run when text is received.""" await _ahandle_event( self.handlers, "on_text", None, text, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) class CallbackManagerForLLMRun(RunManager, LLMManagerMixin): """Callback manager for LLM run.""" def on_llm_new_token( self, token: str, **kwargs: Any, ) -> None: """Run when LLM generates a new token.""" _handle_event( self.handlers, "on_llm_new_token", "ignore_llm", token=token, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" _handle_event( self.handlers, "on_llm_end", "ignore_llm", response, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) def on_llm_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any, ) -> None: """Run when LLM errors.""" _handle_event( self.handlers, "on_llm_error", "ignore_llm", error, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) class AsyncCallbackManagerForLLMRun(AsyncRunManager, LLMManagerMixin): """Async callback manager for LLM run.""" async def on_llm_new_token( self, token: str, **kwargs: Any, ) -> None: """Run when LLM generates a new token.""" await _ahandle_event( self.handlers, "on_llm_new_token", "ignore_llm", token, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" await _ahandle_event( self.handlers, "on_llm_end", "ignore_llm", response, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) async def on_llm_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any, ) -> None: """Run when LLM errors.""" await _ahandle_event( self.handlers, "on_llm_error", "ignore_llm", error, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) class CallbackManagerForChainRun(RunManager, ChainManagerMixin): """Callback manager for chain run.""" def get_child(self) -> CallbackManager: """Get a child callback manager.""" manager = CallbackManager([], parent_run_id=self.run_id) manager.set_handlers(self.inheritable_handlers) return manager def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends running.""" _handle_event( self.handlers, "on_chain_end", "ignore_chain", outputs, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) def on_chain_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any, ) -> None: """Run when chain errors.""" _handle_event( self.handlers, "on_chain_error", "ignore_chain", error, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run when agent action is received.""" _handle_event( self.handlers, "on_agent_action", "ignore_agent", action, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any: """Run when agent finish is received.""" _handle_event( self.handlers, "on_agent_finish", "ignore_agent", finish, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) class AsyncCallbackManagerForChainRun(AsyncRunManager, ChainManagerMixin): """Async callback manager for chain run.""" def get_child(self) -> AsyncCallbackManager: """Get a child callback manager.""" manager = AsyncCallbackManager([], parent_run_id=self.run_id) manager.set_handlers(self.inheritable_handlers) return manager async def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends running.""" await _ahandle_event( self.handlers, "on_chain_end", "ignore_chain", outputs, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) async def on_chain_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any, ) -> None: """Run when chain errors.""" await _ahandle_event( self.handlers, "on_chain_error", "ignore_chain", error, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) async def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run when agent action is received.""" await _ahandle_event( self.handlers, "on_agent_action", "ignore_agent", action, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) async def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any: """Run when agent finish is received.""" await _ahandle_event( self.handlers, "on_agent_finish", "ignore_agent", finish, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) class CallbackManagerForToolRun(RunManager, ToolManagerMixin): """Callback manager for tool run.""" def get_child(self) -> CallbackManager: """Get a child callback manager.""" manager = CallbackManager([], parent_run_id=self.run_id) manager.set_handlers(self.inheritable_handlers) return manager def on_tool_end( self, output: str, **kwargs: Any, ) -> None: """Run when tool ends running.""" _handle_event( self.handlers, "on_tool_end", "ignore_agent", output, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) def on_tool_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any, ) -> None: """Run when tool errors.""" _handle_event( self.handlers, "on_tool_error", "ignore_agent", error, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) def on_tool_end_data_model( self, output, **kwargs: Any, ): """Return the data model for the on_tool_end event.""" _handle_event( self.handlers, "on_tool_end_data_model", "ignore_agent", output, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) class AsyncCallbackManagerForToolRun(AsyncRunManager, ToolManagerMixin): """Async callback manager for tool run.""" def get_child(self) -> AsyncCallbackManager: """Get a child callback manager.""" manager = AsyncCallbackManager([], parent_run_id=self.run_id) manager.set_handlers(self.inheritable_handlers) return manager async def on_tool_end(self, output: str, **kwargs: Any) -> None: """Run when tool ends running.""" await _ahandle_event( self.handlers, "on_tool_end", "ignore_agent", output, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) async def on_tool_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any, ) -> None: """Run when tool errors.""" await _ahandle_event( self.handlers, "on_tool_error", "ignore_agent", error, run_id=self.run_id, parent_run_id=self.parent_run_id, **kwargs, ) class CallbackManager(BaseCallbackManager): """Callback manager that can be used to handle callbacks from langchain.""" def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], run_id: Optional[UUID] = None, **kwargs: Any, ) -> CallbackManagerForLLMRun: """Run when LLM starts running.""" if run_id is None: run_id = uuid4() _handle_event( self.handlers, "on_llm_start", "ignore_llm", serialized, prompts, run_id=run_id, parent_run_id=self.parent_run_id, **kwargs, ) return CallbackManagerForLLMRun(run_id, self.handlers, self.inheritable_handlers, self.parent_run_id) def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], run_id: Optional[UUID] = None, **kwargs: Any, ) -> CallbackManagerForLLMRun: """Run when LLM starts running.""" if run_id is None: run_id = uuid4() _handle_event( self.handlers, "on_chat_model_start", "ignore_chat_model", serialized, messages, run_id=run_id, parent_run_id=self.parent_run_id, **kwargs, ) # Re-use the LLM Run Manager since the outputs are treated # the same for now return CallbackManagerForLLMRun(run_id, self.handlers, self.inheritable_handlers, self.parent_run_id) def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], run_id: Optional[UUID] = None, **kwargs: Any, ) -> CallbackManagerForChainRun: """Run when chain starts running.""" if run_id is None: run_id = uuid4() _handle_event( self.handlers, "on_chain_start", "ignore_chain", serialized, inputs, run_id=run_id, parent_run_id=self.parent_run_id, **kwargs, ) return CallbackManagerForChainRun(run_id, self.handlers, self.inheritable_handlers, self.parent_run_id) def on_tool_start( self, serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> CallbackManagerForToolRun: """Run when tool starts running.""" if run_id is None: run_id = uuid4() _handle_event( self.handlers, "on_tool_start", "ignore_agent", serialized, input_str, run_id=run_id, parent_run_id=self.parent_run_id, **kwargs, ) return CallbackManagerForToolRun(run_id, self.handlers, self.inheritable_handlers, self.parent_run_id) @classmethod def configure( cls, inheritable_callbacks: Callbacks = None, local_callbacks: Callbacks = None, verbose: bool = False, ) -> CallbackManager: """Configure the callback manager.""" return _configure(cls, inheritable_callbacks, local_callbacks, verbose) class AsyncCallbackManager(BaseCallbackManager): """Async callback manager that can be used to handle callbacks from LangChain.""" @property def is_async(self) -> bool: """Return whether the handler is async.""" return True async def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], run_id: Optional[UUID] = None, **kwargs: Any, ) -> AsyncCallbackManagerForLLMRun: """Run when LLM starts running.""" if run_id is None: run_id = uuid4() await _ahandle_event( self.handlers, "on_llm_start", "ignore_llm", serialized, prompts, run_id=run_id, parent_run_id=self.parent_run_id, **kwargs, ) return AsyncCallbackManagerForLLMRun(run_id, self.handlers, self.inheritable_handlers, self.parent_run_id) async def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if run_id is None: run_id = uuid4() await _ahandle_event( self.handlers, "on_chat_model_start", "ignore_chat_model", serialized, messages, run_id=run_id, parent_run_id=self.parent_run_id, **kwargs, ) return AsyncCallbackManagerForLLMRun(run_id, self.handlers, self.inheritable_handlers, self.parent_run_id) async def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], run_id: Optional[UUID] = None, **kwargs: Any, ) -> AsyncCallbackManagerForChainRun: """Run when chain starts running.""" if run_id is None: run_id = uuid4() await _ahandle_event( self.handlers, "on_chain_start", "ignore_chain", serialized, inputs, run_id=run_id, parent_run_id=self.parent_run_id, **kwargs, ) return AsyncCallbackManagerForChainRun(run_id, self.handlers, self.inheritable_handlers, self.parent_run_id) async def on_tool_start( self, serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> AsyncCallbackManagerForToolRun: """Run when tool starts running.""" if run_id is None: run_id = uuid4() await _ahandle_event( self.handlers, "on_tool_start", "ignore_agent", serialized, input_str, run_id=run_id, parent_run_id=self.parent_run_id, **kwargs, ) return AsyncCallbackManagerForToolRun(run_id, self.handlers, self.inheritable_handlers, self.parent_run_id) @classmethod def configure( cls, inheritable_callbacks: Callbacks = None, local_callbacks: Callbacks = None, verbose: bool = False, ) -> AsyncCallbackManager: """Configure the callback manager.""" return _configure(cls, inheritable_callbacks, local_callbacks, verbose) T = TypeVar("T", CallbackManager, AsyncCallbackManager) def _configure( callback_manager_cls: Type[T], inheritable_callbacks: Callbacks = None, local_callbacks: Callbacks = None, verbose: bool = False, ) -> T: """Configure the callback manager.""" callback_manager = callback_manager_cls([]) if inheritable_callbacks or local_callbacks: if isinstance(inheritable_callbacks, list) or inheritable_callbacks is None: inheritable_callbacks_ = inheritable_callbacks or [] callback_manager = callback_manager_cls( handlers=inheritable_callbacks_.copy(), inheritable_handlers=inheritable_callbacks_.copy(), ) else: callback_manager = callback_manager_cls( handlers=inheritable_callbacks.handlers, inheritable_handlers=inheritable_callbacks.inheritable_handlers, parent_run_id=inheritable_callbacks.parent_run_id, ) local_handlers_ = ( local_callbacks if isinstance(local_callbacks, list) else (local_callbacks.handlers if local_callbacks else []) ) for handler in local_handlers_: callback_manager.add_handler(handler, False) tracer = tracing_callback_var.get() open_ai = openai_callback_var.get() tracing_enabled_ = ( os.environ.get("LANGCHAIN_TRACING") is not None or tracer is not None or os.environ.get("LANGCHAIN_HANDLER") is not None ) tracer_v2 = tracing_v2_callback_var.get() tracing_v2_enabled_ = os.environ.get("LANGCHAIN_TRACING_V2") is not None or tracer_v2 is not None tracer_session = os.environ.get("LANGCHAIN_SESSION") debug = _get_debug() if tracer_session is None: tracer_session = "default" if verbose or debug or tracing_enabled_ or tracing_v2_enabled_ or open_ai is not None: if verbose and not any(isinstance(handler, StdOutCallbackHandler) for handler in callback_manager.handlers): if debug: pass else: callback_manager.add_handler(StdOutCallbackHandler(), False) if debug and not any(isinstance(handler, ConsoleCallbackHandler) for handler in callback_manager.handlers): callback_manager.add_handler(ConsoleCallbackHandler(), True) if tracing_enabled_ and not any( isinstance(handler, LangChainTracerV1) for handler in callback_manager.handlers ): if tracer: callback_manager.add_handler(tracer, True) else: handler = LangChainTracerV1() handler.load_session(tracer_session) callback_manager.add_handler(handler, True) if tracing_v2_enabled_ and not any( isinstance(handler, LangChainTracer) for handler in callback_manager.handlers ): if tracer_v2: callback_manager.add_handler(tracer_v2, True) else: try: handler = LangChainTracer(session_name=tracer_session) handler.ensure_session() callback_manager.add_handler(handler, True) except Exception as e: logger.debug("Unable to load requested LangChainTracer", e) if open_ai is not None and not any( isinstance(handler, OpenAICallbackHandler) for handler in callback_manager.handlers ): callback_manager.add_handler(open_ai, True) return callback_manager
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~data_agent~executors~code_generation_executor.py
from typing import Any, Dict, List, Literal, Optional, Union from langchain.base_language import BaseLanguageModel from real_agents.adapters.data_model import DatabaseDataModel, TableDataModel, ImageDataModel from real_agents.adapters.memory import ReadOnlySharedStringMemory from real_agents.adapters.schema import SQLDatabase from real_agents.data_agent.python.base import PythonChain from real_agents.data_agent.sql.base import SQLDatabaseChain class CodeGenerationExecutor: """Code Generation Executor. Example: .. code-block:: python from real_agents.adapters.executors import CodeGenerationExecutor executor = CodeGenerationExecutor(programming_language="sql") executor.run( user_intent="What is the name of the first employee?", grounding_source=SQLDatabase.from_uri(...) ) """ def __init__( self, programming_language: Literal["sql", "python"], usage: Union[None, str] = None, example_selector: Any = None, memory: Optional[ReadOnlySharedStringMemory] = None, ) -> None: """Initialize the executor. Args: programming_language: Programming language to generate. example_selector: Example selector to select few-shot in-context exemplars. """ self._programming_language = programming_language self._usage = usage self._example_selector = example_selector self._memory = memory @property def programming_language(self) -> str: """Get programming language.""" return self._programming_language def run( self, user_intent: str, llm: BaseLanguageModel, grounding_source: Optional[Union[List[TableDataModel], DatabaseDataModel, ImageDataModel]] = None, user_id: str = None, chat_id: str = None, code_execution_mode: str = "local", jupyter_kernel_pool: Any = None, return_intermediate_steps: bool = True, return_direct: bool = True, verbose: bool = True, ) -> Dict[str, Any]: """Run the executor. Args: user_intent: User intent to execute. grounding_source: Grounding source to execute the program on. should be {file_name: data} llm: Language model to use. return_intermediate_steps: Whether to return the intermediate steps, e.g., the program. return_direct: Whether to return the result of program execution directly. verbose: Whether to print the logging. Returns: Result dictionary of code generation """ def _concat_grounding_source() -> str: assert isinstance(grounding_source, list) table_schema = "" for gs in grounding_source: table_schema += f"{gs.get_llm_side_data()}\n" return table_schema if self._programming_language == "sql": db = grounding_source.raw_data assert isinstance(db, SQLDatabase) method = SQLDatabaseChain( llm=llm, database=db, example_selector=self._example_selector, memory=self._memory, return_direct=return_direct, return_intermediate_steps=return_intermediate_steps, verbose=verbose, ) _input = {"user_intent": user_intent} result = method(_input) elif self._programming_language == "python": if self._usage is None: # General python code generation for data analysis method = PythonChain.from_python_prompt( llm, return_intermediate_steps=return_intermediate_steps, verbose=True, memory=self._memory, user_id=user_id, chat_id=chat_id, code_execution_mode=code_execution_mode, jupyter_kernel_pool=jupyter_kernel_pool, ) # Get each source_item (table, db, files...) from the grounding_source _input = {"question": user_intent, "data_info": _concat_grounding_source()} result = method(_input) elif self._usage == "echarts": # Python code generation for echarts interactive chart method = PythonChain.from_echarts_prompt( llm, return_intermediate_steps=return_intermediate_steps, verbose=True, memory=self._memory, user_id=user_id, chat_id=chat_id, code_execution_mode=code_execution_mode, jupyter_kernel_pool=jupyter_kernel_pool, ) _input = {"question": user_intent, "data_info": _concat_grounding_source()} result = method(_input) else: raise ValueError(f"Usage {self._usage} not supported yet.") else: raise ValueError(f"Programming language {self._programming_language} not supported.") return result
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~interactive_executor.py
from __future__ import annotations from typing import Any, Optional, Sequence from langchain.base_language import BaseLanguageModel from langchain.tools.base import BaseTool from real_agents.adapters.agent_helpers import AgentExecutor from real_agents.data_agent.copilot import ConversationalChatAgent from real_agents.plugins_agent.plugin import ConversationalPluginChatAgent from real_agents.web_agent.webot import ConversationalWebotChatAgent def initialize_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, continue_model: str = None, agent_kwargs: Optional[dict] = None, return_intermediate_steps: Optional[bool] = True, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. callback_manager: CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_kwargs: Additional key word arguments to pass to the underlying agent_executor return_intermediate_steps: Whether to return intermediate steps in the agent **kwargs: Additional key word arguments passed to the agent executor Returns: An agent executor """ agent_kwargs = agent_kwargs or {} agent_obj = ConversationalChatAgent.from_llm_and_tools( llm=llm, tools=tools, continue_model=continue_model, **agent_kwargs ) agent_executor = AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, return_intermediate_steps=return_intermediate_steps, **kwargs, ) return agent_executor def initialize_plugin_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, continue_model: str = None, agent_kwargs: Optional[dict] = None, return_intermediate_steps: Optional[bool] = True, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent_kwargs: Additional key word arguments to pass to the underlying agent_executor return_intermediate_steps: Whether to return intermediate steps in the agent **kwargs: Additional key word arguments passed to the agent executor Returns: An agent executor """ agent_kwargs = agent_kwargs or {} agent_obj = ConversationalPluginChatAgent.from_llm_and_tools( llm=llm, tools=tools, continue_model=continue_model, **agent_kwargs ) agent_executor = AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, return_intermediate_steps=return_intermediate_steps, **kwargs, ) return agent_executor def initialize_webot_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, continue_model: str = None, agent_kwargs: Optional[dict] = None, return_intermediate_steps: Optional[bool] = True, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent_kwargs: Additional key word arguments to pass to the underlying agent_executor return_intermediate_steps: Whether to return intermediate steps in the agent **kwargs: Additional key word arguments passed to the agent executor Returns: An agent executor """ agent_kwargs = agent_kwargs or {} agent_obj = ConversationalWebotChatAgent.from_llm_and_tools( llm=llm, tools=tools, continue_model=continue_model, **agent_kwargs ) agent_executor = AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, return_intermediate_steps=return_intermediate_steps, **kwargs, ) return agent_executor
[]
2024-01-10
xlang-ai/OpenAgents
real_agents~web_agent~webot.py
"""An agent designed to hold a conversation in addition to using tools. (Specially designed for plugins model)""" from __future__ import annotations from typing import Any, List, Optional, Sequence, Tuple, Union from pydantic import Extra, Field from typing_extensions import override from langchain.agents.agent import AgentOutputParser from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.chains import LLMChain from langchain.schema import ( AgentAction, AgentFinish, AIMessage, BaseMessage, BaseOutputParser, HumanMessage ) from langchain.callbacks.manager import ( Callbacks ) from langchain.tools.base import BaseTool from langchain.prompts import ( BasePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from real_agents.adapters.agent_helpers.agent import Agent from real_agents.adapters.agent_helpers.output_parser import ConversationOutputParser from real_agents.web_agent.webot_prompt import ( PREFIX, SUFFIX, TEMPLATE_TOOL_RESPONSE, fake_continue_prompt ) from real_agents.adapters.data_model import DataModel, MessageDataModel from real_agents.data_agent.copilot import ConversationalChatAgent class ConversationalWebotChatAgent(ConversationalChatAgent): # fixme: change it to Agent will leads to bug, but why? """An agent designed to hold a conversation in addition to using plugin tool.""" output_parser: ConversationOutputParser = Field( default_factory=ConversationOutputParser() ) template_tool_response: str = TEMPLATE_TOOL_RESPONSE continue_model: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.allow arbitrary_types_allowed = True @classmethod def _get_default_output_parser( cls, **kwargs: Any ) -> ConversationOutputParser: return ConversationOutputParser() @property def _agent_type(self) -> str: raise NotImplementedError @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools) @classmethod def create_prompt( cls, tools: Sequence[BaseTool], system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, output_parser: Optional[BaseOutputParser] = None, ) -> BasePromptTemplate: tool_strings = "\n".join([f"Name: {tool.name}\nDescription: {tool.description}" for tool in tools]) tool_names = ", ".join([tool.name for tool in tools]) _output_parser = output_parser or cls._get_default_output_parser() format_instructions = _output_parser.get_format_instructions("webot") format_instructions = format_instructions.format(tool_names=tool_names) # system message system_message = system_message + f"{tool_strings}\n\n{format_instructions}" # human input final_prompt = human_message if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] messages = [ SystemMessagePromptTemplate.from_template(system_message), MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template(final_prompt), MessagesPlaceholder(variable_name="agent_scratchpad"), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages) def _construct_scratchpad(self, intermediate_steps: List[Tuple[AgentAction, str]]) -> List[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts: List[BaseMessage] = [] # Try to only use AI message for scratchpad content = [] for idx, (action, full_observation) in enumerate(intermediate_steps): content.append(MessageDataModel.extract_action_for_llm(action.log)) observation = full_observation if isinstance(full_observation, DataModel): llm_raw_observation = full_observation.get_llm_side_data() observation = MessageDataModel.extract_tool_response_for_llm(llm_raw_observation, tool_style="plugin") if idx == len(intermediate_steps) - 1: tool_response = self.template_tool_response.format( observation=str(observation), tool_names=self.allowed_tools ) if idx == len(intermediate_steps) - 1: content.append(tool_response) else: content.append(observation) content_str = "\n".join(content) thoughts.append(AIMessage(content=content_str)) if self.continue_model is not None and len(intermediate_steps) != 0: thoughts.append(HumanMessage(content=fake_continue_prompt[self.continue_model])) return thoughts @override def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) system_prompt = self.llm_chain.prompt.messages[0].format().content system_prompt_tokens = MessageDataModel._count_tokens( system_prompt ) max_tokens = 8000 max_gen_tokens = 1000 # FIXME: need more accurate token limit calculation full_inputs = MessageDataModel.truncate_chat_history(full_inputs, max_token=max_tokens - system_prompt_tokens - max_gen_tokens) full_output = self.llm_chain.predict(**full_inputs) return self.output_parser.parse(full_output) @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callbacks: Callbacks = None, output_parser: Optional[AgentOutputParser] = None, system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) _output_parser = output_parser or cls._get_default_output_parser() prompt = cls.create_prompt( tools, system_message=system_message, human_message=human_message, input_variables=input_variables, output_parser=_output_parser, ) llm_chain = LLMChain( llm=llm, prompt=prompt, ) tool_names = [tool.name for tool in tools] return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, )
[ "system_message8c26ecf6-eed0-4f86-ab43-cd899bdc38d0PLACEHOLDER\n\nPLACEHOLDER" ]
2024-01-10
xlang-ai/OpenAgents
real_agents~adapters~data_model~message.py
import re import textwrap from typing import List, Dict, Any, Optional from langchain.schema import BaseMessage import tiktoken # format of agent action ACTION_FORMAT = """```json {{ "action": "{_action}", "action_input": "{_action_input}", }} ```""" # format of tool call(code) & tool output(response) TOOL_FORMAT = { "code": """<code> {_intermediate_steps} </code> <output> {_result} </output> """, "plugin": """<plugin_call> {_intermediate_steps} </plugin_call> <output> {_result} </output> """, } # format to wrap tool call + tool output together TOOL_RESPONSE_FORMAT = """[RESPONSE_BEGIN] {_response} [RESPONSE_END] """ class MessageDataModel: """A data model for Message Management, general purpose.""" @staticmethod def _count_tokens(test_string: str) -> int: """copy of langchain _get_num_token_default_method""" enc = tiktoken.get_encoding("cl100k_base") tokens = len(enc.encode(test_string)) return tokens @classmethod def _get_num_tokens_from_messages(cls, buffer: List[BaseMessage]) -> int: return sum([cls._count_tokens(m.content) for m in buffer]) @classmethod def truncate_text(cls, raw_text: str, max_token: Optional[int] = 250, trunc_ratio: int = 0.5) -> str: """heuristic truncation for single long string & code""" tokens = cls._count_tokens(raw_text) if max_token is None or tokens <= max_token: return raw_text # assume we keep the first ratio * max_tokens and the (1 - ratio) * max_tokens half_tokens = int(max_token * trunc_ratio) lines = raw_text.strip().split("\n") lines = [" ".join(line.split(" ")[:100]) for line in lines] total_lines = len(lines) # first half left = 0 right = total_lines // 2 while left < right: mid = (left + right) >> 1 text = "\n".join(lines[0:mid]) token = cls._count_tokens(text) if token > half_tokens: right = mid else: left = mid + 1 first_half = "\n".join(lines[0:right]) # last half left = total_lines // 2 + 1 right = total_lines - 1 while left < right: mid = (left + right) >> 1 text = "\n".join(lines[mid:]) token = cls._count_tokens(text) if token > half_tokens: right = mid else: left = mid + 1 second_half = "\n".join(lines[left:]) if first_half != "" or second_half != "": return f"{first_half}\n...\n[too long to show]\n...\n{second_half}" else: # if len(first_half_list) == 0 and len(last_half_list) == 0: # if all lines >= max_token, return last 100 words as truncated results. return f"...\n[too long to show]\n...\n{raw_text[-100:]}" @classmethod def truncate_chat_history(cls, full_inputs: Dict[str, Any], max_token: int = 2500) -> Dict[str, Any]: _input = full_inputs["input"] agent_scratchpad = full_inputs["agent_scratchpad"] agent_scratchpad = "\n".join([_.content for _ in agent_scratchpad]) _input_tokens = cls._count_tokens(_input) _scratchpad_tokens = cls._count_tokens(agent_scratchpad) left_tokens = max_token - _scratchpad_tokens - _input_tokens chat_history = full_inputs["chat_history"] curr_buffer_length = cls._get_num_tokens_from_messages(chat_history) while len(chat_history) != 0 and curr_buffer_length > left_tokens: chat_history.pop(0) curr_buffer_length = cls._get_num_tokens_from_messages(chat_history) full_inputs["chat_history"] = chat_history return full_inputs @staticmethod def _extract_value(json_string: str, key: str) -> str: pattern = re.compile(rf'"?{key}"?\s*:\s*("((?:[^"\\]|\\.)*)"|(\b[^,\s]*\b))', re.MULTILINE) match = pattern.search(json_string) if match: result = match.group(1).replace('\\"', '"').replace("\\\\", "\\").strip('"').strip("'").strip() # result = f"\"{result}\"" return result raise ValueError(f"Could not find {key} in {json_string}") @staticmethod def _extract_response( chat_history: str, begin_marker: str = "[RESPONSE_BEGIN]", end_marker: str = "[RESPONSE_END]", ai_msg_marker: str = "AI:", ): code_blocks = chat_history.split(ai_msg_marker) pattern = r"\[RESPONSE_BEGIN\](.*?)\[RESPONSE_END\]" cleaned_output = [] for code_block in code_blocks: matches = re.findall(pattern, code_block, re.DOTALL) if matches: cleaned_output.append(matches[0].strip()) return "\n".join(cleaned_output) @classmethod def extract_action_for_llm(cls, text, max_token: int = 500) -> str: """Since Action should be fully inputted into an Agent, so we do not perform truncation here.""" action_format = ACTION_FORMAT cleaned_output = text.strip() try: _action = cls._extract_value(cleaned_output, "action") _action_input = cls._extract_value(cleaned_output, "action_input") return action_format.format(_action=_action, _action_input=_action_input) except Exception: if cleaned_output.startswith("Action:"): lines = cleaned_output.splitlines() _action = lines[1].strip() _action_input = textwrap.dedent("\n".join(lines[2:])).strip() return action_format.format(_action=_action, _action_input=_action_input) else: _action_input = cleaned_output return action_format.format(_action="Final Answer", _action_input=_action_input) @classmethod def extract_tool_response_for_llm(cls, text, tool_style: str = "code", max_token: int = 250) -> str: wrap_format = TOOL_RESPONSE_FORMAT tool_observation_format = TOOL_FORMAT[tool_style] cleaned_output = text.strip() if tool_style == "plugin": max_token = None try: _result = cls.truncate_text(cls._extract_value(cleaned_output, "result"), max_token) _intermediate_steps = cls.truncate_text( cls._extract_value(cleaned_output, "intermediate_steps"), max_token ) _intermediate_steps = _intermediate_steps.replace("\\n", "\n").strip("\n") _result = _result.replace("\\n", "\n").strip("\n") _response = tool_observation_format.format(_intermediate_steps=_intermediate_steps, _result=_result) return wrap_format.format(_response=_response) except: if cleaned_output.startswith("Final Answer:"): lines = cleaned_output.splitlines() _response = textwrap.dedent("\n".join(lines[2:])).strip() _response = cls.truncate_text(_response, max_token) return wrap_format.format(_response=_response) _response = cls.truncate_text(cleaned_output, max_token) return wrap_format.format(_response=_response) @classmethod def extract_code_for_python_tool(cls, text: str, max_token: int = 2500, trunc_ratio: float = 0.2) -> str: whole_code = MessageDataModel._extract_response(text) trunc_code = cls.truncate_text(whole_code, max_token=max_token, trunc_ratio=trunc_ratio) return trunc_code @classmethod def extract_code_for_sql_tool(cls, text: str, max_token: int = 2500, trunc_ratio: float = 0.2) -> str: whole_code = MessageDataModel._extract_response(text) trunc_code = cls.truncate_text(whole_code, max_token=max_token, trunc_ratio=trunc_ratio) return trunc_code
[]
2024-01-10
Louvivien/OCRandGPT-3
backend.py
"""My Python module. This module contains functions and classes for performing various tasks. """ # Module code goes here import sys import fitz from flask import Flask, render_template, request import tempfile import openai sys.path.append('templates/frontend/module') app = Flask(__name__, template_folder='templates') # Set your OpenAI API key openai.api_key = "xxxxxx" @app.route('/', methods=['GET', 'POST']) def extract_pdf_text(): """ Extracts text from specific pages of a PDF file and returns it as a string. Args: pdf_file (FileStorage): The uploaded PDF file. page_numbers (list): A list of integers representing the page numbers to extract. Returns: str: The extracted text. """ if request.method == 'POST': # Get the uploaded PDF file and page numbers from the form data pdf_file = request.files['file'] page_numbers = request.form['page_numbers'] # Split the page numbers by comma and convert them to integers page_numbers = [int(x) for x in page_numbers.split(',')] # Save the PDF file to a temporary location on the filesystem with tempfile.TemporaryDirectory() as temp_dir: pdf_path = f"{temp_dir}/temp.pdf" pdf_file.save(pdf_path) # Open the PDF file using PyMuPDF pdf_doc = fitz.Document(pdf_path) # Initialize an empty list to store the extracted text extracted_text = [] # Iterate through the specified page numbers for page_number in page_numbers: # Make sure the page number is within the range of the PDF if page_number > 0 and page_number <= pdf_doc.page_count: # Load the page from the PDF document page = pdf_doc.load_page(page_number - 1) # Extract the text from the page text = page.get_text() # Add the extracted text to the list extracted_text.append(text) else: # Add an error message to the list if the page number is out of range extracted_text.append(f"Page {page_number} is not a valid page number.") # Send the extracted text to ChatGPT and get the response model = "text-davinci-003" prompt = "summarize".join(extracted_text) response = openai.Completion.create( engine=model, prompt=prompt, max_tokens=150, n=1, stop=None, temperature=0.5, presence_penalty=1.0, top_p=1.0, ) chatbot_response = response.choices[0].text # Render the HTML template with the extracted text and ChatGPT response return render_template('frontend.html', extracted_text=extracted_text, chatbot_response=chatbot_response) else: # Render the HTML template for the GET request return render_template('frontend.html') if __name__ == '__main__': app.run(debug=True)
[]
2024-01-10
kurtseifried/ChatGPT-API
src~revChatGPT~V2.py
""" Official API for ChatGPT """ import asyncio import json import os import sys import httpx import requests import tiktoken from OpenAIAuth.OpenAIAuth import OpenAIAuth ENCODER = tiktoken.get_encoding("gpt2") def get_max_tokens(prompt: str) -> int: """ Get the max tokens for a prompt """ return 4000 - len(ENCODER.encode(prompt)) class Message: """ A single exchange between the user and the bot """ def __init__(self, text: str, author: str) -> None: self.text: str = text self.author: str = author class Conversation: """ A single conversation """ def __init__(self) -> None: self.messages: list[Message] = [] CONVERSATION_BUFFER: int = int(os.environ.get("CONVERSATION_BUFFER") or 1500) class Conversations: """ Conversation handler """ def __init__(self) -> None: self.conversations: dict[str][Conversation] = {} def add_message(self, message: Message, conversation_id: str) -> None: """ Adds a message to a conversation """ if conversation_id not in self.conversations: self.conversations[conversation_id] = Conversation() self.conversations[conversation_id].messages.append(message) def get(self, conversation_id: str) -> str: """ Builds a conversation string from a conversation id """ if conversation_id not in self.conversations: return "" # Build conversation string from messages and check if it's too long conversation = "" for message in self.conversations[conversation_id].messages: conversation += f"{message.author}: {message.text}<|im_sep|>\n\n" if len(ENCODER.encode(conversation)) > 4000 - CONVERSATION_BUFFER: self.purge_history(conversation_id) return self.get(conversation_id) return conversation def purge_history(self, conversation_id: str, num: int = 1): """ Remove oldest messages from a conversation """ if conversation_id not in self.conversations: return self.conversations[conversation_id].messages = self.conversations[ conversation_id ].messages[num:] def rollback(self, conversation_id: str, num: int = 1): """ Remove latest messages from a conversation """ if conversation_id not in self.conversations: return self.conversations[conversation_id].messages = self.conversations[ conversation_id ].messages[:-num] def remove(self, conversation_id: str) -> None: """ Removes a conversation """ if conversation_id in self.conversations: del self.conversations[conversation_id] BASE_PROMPT = ( os.environ.get("BASE_PROMPT") or """You are ChatGPT, a large language model by OpenAI. Respond conversationally\n\n\n""" ) PROXY_URL = os.environ.get("PROXY_URL") or "https://chat.duti.tech" class Chatbot: """ Handles everything seamlessly """ def __init__( self, email: str, password: str, paid: bool = False, proxy=None, insecure: bool = False, session_token: str = None, ) -> None: self.proxy = proxy self.email: str = email self.password: str = password self.session_token = session_token self.insecure: bool = insecure self.api_key: str self.paid: bool = paid self.conversations = Conversations() self.login(email, password, proxy, insecure, session_token) async def ask(self, prompt: str, conversation_id: str = None) -> dict: """ Gets a response from the API """ if conversation_id is None: conversation_id = "default" self.conversations.add_message( Message(prompt, "User"), conversation_id=conversation_id, ) conversation: str = self.conversations.get(conversation_id) # Build request body body = self.__get_config() body["prompt"] = BASE_PROMPT + conversation + "ChatGPT: " body["max_tokens"] = get_max_tokens(conversation) async with httpx.AsyncClient(proxies=self.proxy if self.proxy else None).stream( method="POST", url=PROXY_URL + "/completions", data=json.dumps(body), headers={"Authorization": f"Bearer {self.api_key}"}, timeout=1080, ) as response: full_result = "" async for line in response.aiter_lines(): if response.status_code == 429: print("error: " + "Too many requests") raise Exception("Too many requests") elif response.status_code == 523: print("error: " + "Origin is unreachable. Ensure that you are authenticated and are using the correct pricing model.") raise Exception("Origin is unreachable. Ensure that you are authenticated and are using the correct pricing model.") elif response.status_code == 503: print("error: " + "OpenAI error!") raise Exception("OpenAI error!") elif response.status_code != 200: print("error: " + "Unknown error") raise Exception("Unknown error") line = line.strip() if line == "\n" or line == "": continue if line == "data: [DONE]": break try: # Remove "data: " from the start of the line data = json.loads(line[6:]) if data is None: continue full_result += data["choices"][0]["text"].replace("<|im_end|>", "") if "choices" not in data: continue yield data except json.JSONDecodeError: continue self.conversations.add_message( Message(full_result, "ChatGPT"), conversation_id=conversation_id, ) def __get_config(self) -> dict: return { "temperature": float(os.environ.get("TEMPERATURE") or 0.5), "top_p": float(os.environ.get("TOP_P") or 1), "stop": ["<|im_end|>", "<|im_sep|>"], "presence_penalty": float(os.environ.get("PRESENCE_PENALTY") or 1.0), "paid": self.paid, "stream": True, } def login(self, email, password, proxy, insecure, session_token) -> None: """ Login to the API """ if not insecure: auth = OpenAIAuth(email_address=email, password=password, proxy=proxy) if session_token: auth.session_token = session_token auth.get_access_token() self.api_key = auth.access_token if self.api_key is None: self.session_token = None self.login(email, password, proxy, insecure, None) return auth.begin() self.session_token = auth.session_token self.api_key = auth.access_token else: auth_request = requests.post( PROXY_URL + "/auth", json={"email": email, "password": password}, timeout=10, ) self.api_key = auth_request.json()["accessToken"] def get_input(prompt): """ Multi-line input """ # Display the prompt print(prompt, end="") # Initialize an empty list to store the input lines lines = [] # Read lines of input until the user enters an empty line while True: line = input() if line == "": break lines.append(line) # Join the lines, separated by newlines, and store the result user_input = "\n".join(lines) # Return the input return user_input async def main(): """ Testing main function """ import argparse print( """ ChatGPT - A command-line interface to OpenAI's ChatGPT (https://chat.openai.com/chat) Repo: github.com/acheong08/ChatGPT """, ) parser = argparse.ArgumentParser() parser.add_argument( "-e", "--email", help="Your OpenAI email address", required=False, ) parser.add_argument( "-p", "--password", help="Your OpenAI password", required=False, ) parser.add_argument( "--paid", help="Use the paid API", action="store_true", ) parser.add_argument( "--proxy", help="Use a proxy", required=False, type=str, default=None, ) parser.add_argument( "--insecure-auth", help="Use an insecure authentication method to bypass OpenAI's geo-blocking", action="store_true", ) parser.add_argument( "--session_token", help="Alternative to email and password authentication. Use this if you have Google/Microsoft account.", required=False, ) args = parser.parse_args() if (args.email is None or args.password is None) and args.session_token is None: print("error: " + "Please provide your email and password") return print("Logging in...") chatbot = Chatbot( args.email, args.password, paid=args.paid, proxy=args.proxy, insecure=args.insecure_auth, session_token=args.session_token, ) print("Logged in\n") print("Type '!help' to show a full list of commands") print("Press enter twice to submit your question.\n") def commands(command: str) -> bool: if command == "!help": print( """ !help - Show this help message !reset - Clear the current conversation !rollback <int> - Remove the latest <int> messages from the conversation !exit - Exit the program """, ) elif command == "!reset": chatbot.conversations.remove("default") print("Conversation cleared") elif command.startswith("!rollback"): try: num = int(command.split(" ")[1]) chatbot.conversations.rollback("default", num) print(f"Removed {num} messages from the conversation") except IndexError: print("Please specify the number of messages to remove") except ValueError: print("Please specify a valid number of messages to remove") elif command == "!exit": print("Exiting...") sys.exit(0) else: return False return True try: while True: prompt = get_input("\nYou:\n") if prompt.startswith("!"): if commands(prompt): continue print("ChatGPT:") async for line in chatbot.ask(prompt=prompt): result = line["choices"][0]["text"].replace("<|im_end|>", "") print(result, end="") sys.stdout.flush() print() except KeyboardInterrupt: print("Exiting...") sys.exit(0) if __name__ == "__main__": asyncio.run(main())
[ "You are ChatGPT, a large language model by OpenAI. Respond conversationally\n\n\n", "ChatGPT", "\nYou:\n", "User", "BASE_PROMPT" ]
2024-01-10
kurtseifried/ChatGPT-API
src~revChatGPT~V1.py
""" Standard ChatGPT """ import json import logging import sys import uuid from os import environ from os import getenv from os.path import exists import requests from OpenAIAuth.OpenAIAuth import OpenAIAuth # Disable all logging logging.basicConfig(level=logging.ERROR) BASE_URL = environ.get("CHATGPT_BASE_URL") or "https://chatgpt.duti.tech/" class Error(Exception): """Base class for exceptions in this module.""" source: str message: str code: int class Chatbot: """ Chatbot class for ChatGPT """ def __init__( self, config, conversation_id=None, parent_id=None, ) -> None: self.config = config self.session = requests.Session() if "proxy" in config: if isinstance(config["proxy"], str) is False: raise Exception("Proxy must be a string!") proxies = { "http": config["proxy"], "https": config["proxy"], } self.session.proxies.update(proxies) if "verbose" in config: if type(config["verbose"]) != bool: raise Exception("Verbose must be a boolean!") self.verbose = config["verbose"] else: self.verbose = False self.conversation_id = conversation_id self.parent_id = parent_id self.conversation_mapping = {} self.conversation_id_prev_queue = [] self.parent_id_prev_queue = [] if "email" not in config: raise Exception("Email not found in config!") if "password" not in config: raise Exception("Password not found in config!") self.__login() def __refresh_headers(self, access_token): self.session.headers.clear() self.session.headers.update( { "Accept": "text/event-stream", "Authorization": f"Bearer {access_token}", "Content-Type": "application/json", "X-Openai-Assistant-App-Id": "", "Connection": "close", "Accept-Language": "en-US,en;q=0.9", "Referer": "https://chat.openai.com/chat", }, ) def __login(self): auth = OpenAIAuth( email_address=self.config.get("email"), password=self.config.get("password"), proxy=self.config.get("proxy"), ) auth.begin() access_token = auth.get_access_token() self.__refresh_headers(access_token) def ask( self, prompt, conversation_id=None, parent_id=None, # gen_title=True, ): """ Ask a question to the chatbot :param prompt: String :param conversation_id: UUID :param parent_id: UUID :param gen_title: Boolean """ if conversation_id is not None and parent_id is None: self.__map_conversations() if conversation_id is None: conversation_id = self.conversation_id if parent_id is None: parent_id = ( self.parent_id if conversation_id == self.conversation_id else self.conversation_mapping[conversation_id] ) # new_conv = conversation_id is None data = { "action": "next", "messages": [ { "id": str(uuid.uuid4()), "role": "user", "content": {"content_type": "text", "parts": [prompt]}, }, ], "conversation_id": conversation_id, "parent_message_id": parent_id or str(uuid.uuid4()), "model": "text-davinci-002-render" if not self.config.get("paid") else "text-davinci-002-render-paid", } # new_conv = data["conversation_id"] is None self.conversation_id_prev_queue.append( data["conversation_id"], ) # for rollback self.parent_id_prev_queue.append(data["parent_message_id"]) response = self.session.post( url=BASE_URL + "backend-api/conversation", data=json.dumps(data), timeout=360, stream=True, ) self.__check_response(response) compounded_resp = "" for line in response.iter_lines(): line = str(line)[2:-1] if line == "" or line is None: continue if "data: " in line: line = line[6:] if line == "[DONE]": break # Try parse JSON try: line = json.loads(line) except json.decoder.JSONDecodeError: continue if not self.__check_fields(line): continue message = line["message"]["content"]["parts"][0][len(compounded_resp) :] compounded_resp += message conversation_id = line["conversation_id"] parent_id = line["message"]["id"] yield { "message": message, "conversation_id": conversation_id, "parent_id": parent_id, } # if gen_title and new_conv: # self.__gen_title( # self.conversation_id, # parent_id, # ) def __check_fields(self, data: dict) -> bool: try: data["message"]["content"] except TypeError: return False except KeyError: return False return True def __check_response(self, response): if response.status_code != 200: print(response.text) error = Error() error.source = "OpenAI" error.code = response.status_code error.message = response.text raise error def get_conversations(self, offset=0, limit=20): """ Get conversations :param offset: Integer :param limit: Integer """ url = BASE_URL + f"backend-api/conversations?offset={offset}&limit={limit}" response = self.session.get(url) self.__check_response(response) data = json.loads(response.text) return data["items"] def get_msg_history(self, convo_id): """ Get message history :param id: UUID of conversation """ url = BASE_URL + f"backend-api/conversation/{convo_id}" response = self.session.get(url) self.__check_response(response) data = json.loads(response.text) return data # def __gen_title(self, convo_id, message_id): # """ # Generate title for conversation # """ # url = BASE_URL + f"backend-api/conversation/gen_title/{convo_id}" # response = self.session.post( # url, # data=json.dumps( # {"message_id": message_id, "model": "text-davinci-002-render"}, # ), # ) # self.__check_response(response) def change_title(self, convo_id, title): """ Change title of conversation :param id: UUID of conversation :param title: String """ url = BASE_URL + f"backend-api/conversation/{convo_id}" response = self.session.patch(url, data=f'{{"title": "{title}"}}') self.__check_response(response) def delete_conversation(self, convo_id): """ Delete conversation :param id: UUID of conversation """ url = BASE_URL + f"backend-api/conversation/{convo_id}" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) def clear_conversations(self): """ Delete all conversations """ url = BASE_URL + "backend-api/conversations" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) def __map_conversations(self): conversations = self.get_conversations() histories = [self.get_msg_history(x["id"]) for x in conversations] for x, y in zip(conversations, histories): self.conversation_mapping[x["id"]] = y["current_node"] def reset_chat(self) -> None: """ Reset the conversation ID and parent ID. :return: None """ self.conversation_id = None self.parent_id = str(uuid.uuid4()) def rollback_conversation(self, num=1) -> None: """ Rollback the conversation. :param num: The number of messages to rollback :return: None """ for _ in range(num): self.conversation_id = self.conversation_id_prev_queue.pop() self.parent_id = self.parent_id_prev_queue.pop() def get_input(prompt): """ Multiline input function. """ # Display the prompt print(prompt, end="") # Initialize an empty list to store the input lines lines = [] # Read lines of input until the user enters an empty line while True: line = input() if line == "": break lines.append(line) # Join the lines, separated by newlines, and store the result user_input = "\n".join(lines) # Return the input return user_input def configure(): """ Looks for a config file in the following locations: """ config_files = ["config.json"] xdg_config_home = getenv("XDG_CONFIG_HOME") if xdg_config_home: config_files.append(f"{xdg_config_home}/revChatGPT/config.json") user_home = getenv("HOME") if user_home: config_files.append(f"{user_home}/.config/revChatGPT/config.json") config_file = next((f for f in config_files if exists(f)), None) if config_file: with open(config_file, encoding="utf-8") as f: config = json.load(f) else: print("No config file found.") raise Exception("No config file found.") return config def main(config): """ Main function for the chatGPT program. """ print("Logging in...") chatbot = Chatbot(config) while True: prompt = get_input("\nYou:\n") if prompt.startswith("!"): if prompt == "!help": print( """ !help - Show this message !reset - Forget the current conversation !config - Show the current configuration !rollback x - Rollback the conversation (x being the number of messages to rollback) !exit - Exit this program """, ) continue elif prompt == "!reset": chatbot.reset_chat() print("Chat session successfully reset.") continue elif prompt == "!config": print(json.dumps(chatbot.config, indent=4)) continue elif prompt.startswith("!rollback"): # Default to 1 rollback if no number is specified try: rollback = int(prompt.split(" ")[1]) except IndexError: rollback = 1 chatbot.rollback_conversation(rollback) print(f"Rolled back {rollback} messages.") continue elif prompt.startswith("!setconversation"): try: chatbot.config["conversation"] = prompt.split(" ")[1] print("Conversation has been changed") except IndexError: print("Please include conversation UUID in command") continue elif prompt == "!exit": break print("Chatbot: ") for data in chatbot.ask( prompt, conversation_id=chatbot.config.get("conversation"), parent_id=chatbot.config.get("parent_id"), ): print(data["message"], end="") sys.stdout.flush() print() # print(message["message"]) if __name__ == "__main__": print( """ ChatGPT - A command-line interface to OpenAI's ChatGPT (https://chat.openai.com/chat) Repo: github.com/acheong08/ChatGPT """, ) print("Type '!help' to show a full list of commands") print("Press enter twice to submit your question.\n") main(configure())
[ "text", "\nYou:\n", "content_type" ]
2024-01-10
dlt-hub/dlt-pipeline-pdf-invoice-tracking
invoice_tracking_pipeline~invoice_tracking.py
import dlt import os from typing import Dict, List from google_drive_connector import download_pdf_from_google_drive, get_pdf_uris from langchain.document_loaders import UnstructuredPDFLoader from langchain.indexes import VectorstoreIndexCreator # Add your own folder id (from Google Drive URL) (or use config.toml) folder_id=None def safely_query_index(index, query): try: return index.query(query).strip() except Exception: return [] def process_one_pdf_to_structured(path_to_pdf:str) -> Dict: loader = UnstructuredPDFLoader(path_to_pdf) index = VectorstoreIndexCreator().from_loaders([loader]) return { "file_name": path_to_pdf.split("/")[-1], "recipient_company_name": safely_query_index(index, "Who is the recipient of the invoice? Just return the name"), "invoice_amount": safely_query_index(index, "What is the total amount of the invoice? Just return the amount as decimal number, no currency or text"), "invoice_date": safely_query_index(index, "What is the date of the invoice? Just return the date"), "invoice_number": safely_query_index(index, "What is the invoice number? Just return the number"), "service_description": safely_query_index(index, "What is the description of the service that this invoice is for? Just return the description"), } def process_all_pdfs_to_structured(path_to_pdfs:str)->List[Dict]: for file in os.listdir(path_to_pdfs): if file.endswith(".pdf"): yield process_one_pdf_to_structured(os.path.join(path_to_pdfs,file)) return [] def download_and_process_one_pdf(file_id, file_name, local_folder_to_store_pdfs:str="./data/invoices", delete_after_extraction=True): download_pdf_from_google_drive(file_id, file_name, local_folder_to_store_pdfs) structured_data = process_one_pdf_to_structured(os.path.join(local_folder_to_store_pdfs, file_name)) if delete_after_extraction: os.remove(os.path.join(local_folder_to_store_pdfs, file_name)) yield structured_data @dlt.source def invoice_tracking_source(drive_folder_id=dlt.config.value, delete_after_extraction=True): return invoice_tracking_resources(drive_folder_id, delete_after_extraction) @dlt.resource(write_disposition="append") def invoice_tracking_resources(drive_folder_id, delete_after_extraction): uris = get_pdf_uris(drive_folder_id) for file_name, file_id in uris.items(): yield download_and_process_one_pdf(file_id, file_name, delete_after_extraction=delete_after_extraction) if __name__ == "__main__": pipeline = dlt.pipeline(pipeline_name="invoice_tracking", destination="duckdb", dataset_name="invoice_tracking_data") # print(list(invoice_tracking_source())) load_info = pipeline.run(invoice_tracking_source()) print(load_info)
[]
2024-01-10
danny-avila/LibreGPT
models~index_model.py
import functools import os import random import tempfile import traceback import asyncio from collections import defaultdict import aiohttp import discord import aiofiles import openai import tiktoken from functools import partial from typing import List, Optional from pathlib import Path from datetime import date from discord import InteractionResponse, Interaction from discord.ext import pages from langchain import OpenAI from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAIChat from langchain.memory import ConversationBufferMemory from llama_index.callbacks import CallbackManager, TokenCountingHandler from llama_index.node_parser import SimpleNodeParser from llama_index.schema import NodeRelationship from llama_index.indices.query.query_transform import StepDecomposeQueryTransform from llama_index.langchain_helpers.agents import ( IndexToolConfig, LlamaToolkit, create_llama_chat_agent, ) from llama_index.prompts.chat_prompts import CHAT_REFINE_PROMPT from llama_index.readers import YoutubeTranscriptReader from llama_index.readers.schema.base import Document from llama_index.langchain_helpers.text_splitter import TokenTextSplitter from llama_index.retrievers import VectorIndexRetriever, TreeSelectLeafRetriever from llama_index.query_engine import RetrieverQueryEngine, MultiStepQueryEngine from llama_index import ( GPTVectorStoreIndex, SimpleDirectoryReader, QuestionAnswerPrompt, BeautifulSoupWebReader, GPTTreeIndex, GoogleDocsReader, MockLLMPredictor, OpenAIEmbedding, GithubRepositoryReader, MockEmbedding, download_loader, LLMPredictor, ServiceContext, StorageContext, load_index_from_storage, get_response_synthesizer, ) from llama_index.schema import TextNode from llama_index.storage.docstore.types import RefDocInfo from llama_index.readers.web import DEFAULT_WEBSITE_EXTRACTOR from llama_index.composability import ComposableGraph from models.embed_statics_model import EmbedStatics from models.openai_model import Models from models.check_model import UrlCheck from services.environment_service import EnvService SHORT_TO_LONG_CACHE = {} MAX_DEEP_COMPOSE_PRICE = EnvService.get_max_deep_compose_price() EpubReader = download_loader("EpubReader") MarkdownReader = download_loader("MarkdownReader") RemoteReader = download_loader("RemoteReader") RemoteDepthReader = download_loader("RemoteDepthReader") embedding_model = OpenAIEmbedding() token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("text-davinci-003").encode, verbose=False, ) node_parser = SimpleNodeParser.from_defaults( text_splitter=TokenTextSplitter(chunk_size=256, chunk_overlap=20) ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( embed_model=embedding_model, callback_manager=callback_manager, node_parser=node_parser, ) def get_and_query( user_id, index_storage, query, response_mode, nodes, child_branch_factor, service_context, multistep, ): index: [GPTVectorStoreIndex, GPTTreeIndex] = index_storage[ user_id ].get_index_or_throw() if isinstance(index, GPTTreeIndex): retriever = TreeSelectLeafRetriever( index=index, child_branch_factor=child_branch_factor, service_context=service_context, ) else: retriever = VectorIndexRetriever( index=index, similarity_top_k=nodes, service_context=service_context ) response_synthesizer = get_response_synthesizer( response_mode=response_mode, use_async=True, refine_template=CHAT_REFINE_PROMPT, service_context=service_context, ) query_engine = RetrieverQueryEngine( retriever=retriever, response_synthesizer=response_synthesizer ) multistep_query_engine = MultiStepQueryEngine( query_engine=query_engine, query_transform=StepDecomposeQueryTransform(multistep), index_summary="Provides information about everything you need to know about this topic, use this to answer the question.", ) if multistep: response = multistep_query_engine.query(query) else: response = query_engine.query(query) return response class IndexData: def __init__(self): self.queryable_index = None self.individual_indexes = [] # A safety check for the future def get_index_or_throw(self): if not self.queryable(): raise Exception( "An index access was attempted before an index was created. This is a programmer error, please report this to the maintainers." ) return self.queryable_index def queryable(self): return self.queryable_index is not None def has_indexes(self, user_id): try: return ( len(os.listdir(EnvService.find_shared_file(f"indexes/{user_id}"))) > 0 ) except Exception: return False def has_search_indexes(self, user_id): try: return ( len( os.listdir(EnvService.find_shared_file(f"indexes/{user_id}_search")) ) > 0 ) except Exception: return False def add_index(self, index, user_id, file_name): self.individual_indexes.append(index) self.queryable_index = index # Create a folder called "indexes/{USER_ID}" if it doesn't exist already Path(f"{EnvService.save_path()}/indexes/{user_id}").mkdir( parents=True, exist_ok=True ) # Save the index to file under the user id file = f"{date.today().month}_{date.today().day}_{file_name}" # If file is > 93 in length, cut it off to 93 if len(file) > 93: file = file[:93] index.storage_context.persist( persist_dir=EnvService.save_path() / "indexes" / f"{str(user_id)}" / f"{file}" ) def reset_indexes(self, user_id): self.individual_indexes = [] self.queryable_index = None # Delete the user indexes try: # First, clear all the files inside it for file in os.listdir(EnvService.find_shared_file(f"indexes/{user_id}")): try: os.remove(EnvService.find_shared_file(f"indexes/{user_id}/{file}")) except: traceback.print_exc() for file in os.listdir( EnvService.find_shared_file(f"indexes/{user_id}_search") ): try: os.remove( EnvService.find_shared_file(f"indexes/{user_id}_search/{file}") ) except: traceback.print_exc() except Exception: traceback.print_exc() class Index_handler: embedding_model = OpenAIEmbedding() token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("text-davinci-003").encode, verbose=False, ) node_parser = SimpleNodeParser.from_defaults( text_splitter=TokenTextSplitter(chunk_size=1024, chunk_overlap=20) ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( embed_model=embedding_model, callback_manager=callback_manager, node_parser=node_parser, ) def __init__(self, bot, usage_service): self.bot = bot self.openai_key = os.getenv("OPENAI_TOKEN") self.index_storage = defaultdict(IndexData) self.loop = asyncio.get_running_loop() self.usage_service = usage_service self.qaprompt = QuestionAnswerPrompt( "Context information is below. The text '<|endofstatement|>' is used to separate chat entries and make it easier for you to understand the context\n" "---------------------\n" "{context_str}" "\n---------------------\n" "Never say '<|endofstatement|>'\n" "Given the context information and not prior knowledge, " "answer the question: {query_str}\n" ) self.EMBED_CUTOFF = 2000 self.index_chat_chains = {} async def rename_index(self, ctx, original_path, rename_path): """Command handler to rename a user index""" index_file = EnvService.find_shared_file(original_path) if not index_file: return False # Rename the file at f"indexes/{ctx.user.id}/{user_index}" to f"indexes/{ctx.user.id}/{new_name}" using Pathlib try: Path(original_path).rename(rename_path) return True except Exception as e: traceback.print_exc() return False async def get_is_in_index_chat(self, ctx): return ctx.channel.id in self.index_chat_chains async def execute_index_chat_message(self, ctx, message): if ctx.channel.id not in self.index_chat_chains: return None if message.lower() in ["stop", "end", "quit", "exit"]: await ctx.reply("Ending chat session.") self.index_chat_chains.pop(ctx.channel.id) # close the thread thread = await self.bot.fetch_channel(ctx.channel.id) await thread.edit(name="Closed-GPT") await thread.edit(archived=True) return "Ended chat session." agent_output = await self.loop.run_in_executor( None, partial(self.index_chat_chains[ctx.channel.id].run, message) ) return agent_output async def start_index_chat(self, ctx, search, user, model): if search: index_file = EnvService.find_shared_file( f"indexes/{ctx.user.id}_search/{search}" ) elif user: index_file = EnvService.find_shared_file(f"indexes/{ctx.user.id}/{user}") assert index_file is not None preparation_message = await ctx.channel.send( embed=EmbedStatics.get_index_chat_preparation_message() ) index = await self.loop.run_in_executor( None, partial(self.index_load_file, index_file) ) summary_response = await self.loop.run_in_executor( None, partial( index.as_query_engine().query, "What is a summary of this document?" ), ) query_engine = index.as_query_engine(similarity_top_k=3) tool_config = IndexToolConfig( query_engine=query_engine, name=f"Vector Index", description=f"useful for when you want to answer queries about the external data you're connected to. The data you're connected to is: {summary_response}", tool_kwargs={"return_direct": True}, ) toolkit = LlamaToolkit( index_configs=[tool_config], ) memory = ConversationBufferMemory(memory_key="chat_history") llm = ChatOpenAI(model=model, temperature=0) agent_chain = create_llama_chat_agent(toolkit, llm, memory=memory, verbose=True) embed_title = f"{ctx.user.name}'s data-connected conversation with GPT" # Get only the last part after the last / of the index_file try: index_file_name = str(index_file).split("/")[-1] except: index_file_name = index_file message_embed = discord.Embed( title=embed_title, description=f"The agent is connected to the data index named {index_file_name}\nModel: {model}", color=0x00995B, ) message_embed.set_thumbnail(url="https://i.imgur.com/7V6apMT.png") message_embed.set_footer( text="Data Chat", icon_url="https://i.imgur.com/7V6apMT.png" ) message_thread = await ctx.send(embed=message_embed) thread = await message_thread.create_thread( name=ctx.user.name + "'s data-connected conversation with GPT", auto_archive_duration=60, ) await ctx.respond("Conversation started.") try: await preparation_message.delete() except: pass self.index_chat_chains[thread.id] = agent_chain async def paginate_embed(self, response_text): """Given a response text make embed pages and return a list of the pages.""" response_text = [ response_text[i : i + self.EMBED_CUTOFF] for i in range(0, len(response_text), self.EMBED_CUTOFF) ] pages = [] first = False # Send each chunk as a message for count, chunk in enumerate(response_text, start=1): if not first: page = discord.Embed( title=f"Index Query Results", description=chunk, ) first = True else: page = discord.Embed( title=f"Page {count}", description=chunk, ) pages.append(page) return pages def index_file( self, file_path, service_context, suffix=None ) -> GPTVectorStoreIndex: if suffix and suffix == ".md": loader = MarkdownReader() document = loader.load_data(file_path) elif suffix and suffix == ".epub": epub_loader = EpubReader() document = epub_loader.load_data(file_path) else: document = SimpleDirectoryReader(input_files=[file_path]).load_data() index = GPTVectorStoreIndex.from_documents( document, service_context=service_context, use_async=True ) return index def index_gdoc(self, doc_id, service_context) -> GPTVectorStoreIndex: document = GoogleDocsReader().load_data(doc_id) index = GPTVectorStoreIndex.from_documents( document, service_context=service_context, use_async=True ) return index def index_youtube_transcript(self, link, service_context): try: documents = YoutubeTranscriptReader().load_data(ytlinks=[link]) except Exception as e: raise ValueError(f"The youtube transcript couldn't be loaded: {e}") index = GPTVectorStoreIndex.from_documents( documents, service_context=service_context, use_async=True, ) return index def index_github_repository(self, link, service_context): # Extract the "owner" and the "repo" name from the github link. owner = link.split("/")[3] repo = link.split("/")[4] try: documents = GithubRepositoryReader(owner=owner, repo=repo).load_data( branch="main" ) except KeyError: documents = GithubRepositoryReader(owner=owner, repo=repo).load_data( branch="master" ) index = GPTVectorStoreIndex.from_documents( documents, service_context=service_context, use_async=True, ) return index def index_load_file(self, file_path) -> [GPTVectorStoreIndex, ComposableGraph]: storage_context = StorageContext.from_defaults(persist_dir=file_path) index = load_index_from_storage(storage_context) return index def index_discord(self, document, service_context) -> GPTVectorStoreIndex: index = GPTVectorStoreIndex.from_documents( document, service_context=service_context, use_async=True, ) return index async def index_pdf(self, url) -> list[Document]: # Download the PDF at the url and save it to a tempfile async with aiohttp.ClientSession() as session: async with session.get(url) as response: if response.status == 200: data = await response.read() f = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) f.write(data) f.close() else: return "An error occurred while downloading the PDF." # Get the file path of this tempfile.NamedTemporaryFile # Save this temp file to an actual file that we can put into something else to read it documents = SimpleDirectoryReader(input_files=[f.name]).load_data() # Delete the temporary file return documents async def index_webpage(self, url, service_context) -> GPTVectorStoreIndex: # First try to connect to the URL to see if we can even reach it. try: async with aiohttp.ClientSession() as session: async with session.get(url, timeout=5) as response: # Add another entry to links from all_links if the link is not already in it to compensate for the failed request if response.status not in [200, 203, 202, 204]: raise ValueError( "Invalid URL or could not connect to the provided URL." ) else: # Detect if the link is a PDF, if it is, we load it differently if response.headers["Content-Type"] == "application/pdf": documents = await self.index_pdf(url) index = await self.loop.run_in_executor( None, functools.partial( GPTVectorStoreIndex.from_documents, documents=documents, service_context=service_context, use_async=True, ), ) return index except: traceback.print_exc() raise ValueError("Could not load webpage") documents = BeautifulSoupWebReader( website_extractor=DEFAULT_WEBSITE_EXTRACTOR ).load_data(urls=[url]) # index = GPTVectorStoreIndex(documents, embed_model=embed_model, use_async=True) index = await self.loop.run_in_executor( None, functools.partial( GPTVectorStoreIndex.from_documents, documents=documents, service_context=service_context, use_async=True, ), ) return index def reset_indexes(self, user_id): self.index_storage[user_id].reset_indexes(user_id) async def set_file_index( self, ctx: discord.ApplicationContext, file: discord.Attachment, user_api_key ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] type_to_suffix_mappings = { "text/plain": ".txt", "text/csv": ".csv", "application/pdf": ".pdf", "application/json": ".json", "image/png": ".png", "image/": ".jpg", "ms-powerpoint": ".ppt", "presentationml.presentation": ".pptx", "ms-excel": ".xls", "spreadsheetml.sheet": ".xlsx", "msword": ".doc", "wordprocessingml.document": ".docx", "audio/": ".mp3", "video/": ".mp4", "epub": ".epub", "markdown": ".md", "html": ".html", } # For when content type doesnt get picked up by discord. secondary_mappings = { ".epub": ".epub", } try: # First, initially set the suffix to the suffix of the attachment suffix = None if file.content_type: # Apply the suffix mappings to the file for key, value in type_to_suffix_mappings.items(): if key in file.content_type: suffix = value break if not suffix: await ctx.send("This file type is not supported.") return else: for key, value in secondary_mappings.items(): if key in file.filename: suffix = value break if not suffix: await ctx.send( "Could not determine the file type of the attachment, attempting a dirty index.." ) return # Send indexing message response = await ctx.respond( embed=EmbedStatics.build_index_progress_embed() ) async with aiofiles.tempfile.TemporaryDirectory() as temp_path: async with aiofiles.tempfile.NamedTemporaryFile( suffix=suffix, dir=temp_path, delete=False ) as temp_file: await file.save(temp_file.name) index = await self.loop.run_in_executor( None, partial( self.index_file, Path(temp_file.name), service_context, suffix, ), ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) try: price = await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) except: traceback.print_exc() price = "Unknown" file_name = file.filename self.index_storage[ctx.user.id].add_index(index, ctx.user.id, file_name) await response.edit( embed=EmbedStatics.get_index_set_success_embed(str(price)) ) except Exception as e: await ctx.channel.send( embed=EmbedStatics.get_index_set_failure_embed(str(e)) ) traceback.print_exc() async def set_link_index_recurse( self, ctx: discord.ApplicationContext, link: str, depth, user_api_key ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] response = await ctx.respond(embed=EmbedStatics.build_index_progress_embed()) try: # Pre-emptively connect and get the content-type of the response try: async with aiohttp.ClientSession() as session: async with session.get(link, timeout=2) as _response: print(_response.status) if _response.status == 200: content_type = _response.headers.get("content-type") else: await response.edit( embed=EmbedStatics.get_index_set_failure_embed( "Invalid URL or could not connect to the provided URL." ) ) return except Exception as e: traceback.print_exc() await response.edit( embed=EmbedStatics.get_index_set_failure_embed( "Invalid URL or could not connect to the provided URL. " + str(e) ) ) return # Check if the link contains youtube in it loader = RemoteDepthReader(depth=depth) documents = await self.loop.run_in_executor( None, partial(loader.load_data, [link]) ) index = await self.loop.run_in_executor( None, functools.partial( GPTVectorStoreIndex, documents=documents, service_context=service_context, use_async=True, ), ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) try: price = await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) except: traceback.print_exc() price = "Unknown" # Make the url look nice, remove https, useless stuff, random characters file_name = ( link.replace("https://", "") .replace("http://", "") .replace("www.", "") .replace("/", "_") .replace("?", "_") .replace("&", "_") .replace("=", "_") .replace("-", "_") .replace(".", "_") ) self.index_storage[ctx.user.id].add_index(index, ctx.user.id, file_name) except ValueError as e: await response.edit(embed=EmbedStatics.get_index_set_failure_embed(str(e))) traceback.print_exc() return except Exception as e: await response.edit(embed=EmbedStatics.get_index_set_failure_embed(str(e))) traceback.print_exc() return await response.edit(embed=EmbedStatics.get_index_set_success_embed(price)) async def set_link_index( self, ctx: discord.ApplicationContext, link: str, user_api_key ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] response = await ctx.respond(embed=EmbedStatics.build_index_progress_embed()) try: # Pre-emptively connect and get the content-type of the response try: async with aiohttp.ClientSession() as session: async with session.get(link, timeout=2) as _response: print(_response.status) if _response.status == 200: content_type = _response.headers.get("content-type") else: await response.edit( embed=EmbedStatics.get_index_set_failure_embed( "Invalid URL or could not connect to the provided URL." ) ) return except Exception as e: traceback.print_exc() await response.edit( embed=EmbedStatics.get_index_set_failure_embed( "Invalid URL or could not connect to the provided URL. " + str(e) ) ) return # Check if the link contains youtube in it if await UrlCheck.check_youtube_link(link): index = await self.loop.run_in_executor( None, partial(self.index_youtube_transcript, link, service_context) ) elif "github" in link: index = await self.loop.run_in_executor( None, partial(self.index_github_repository, link, service_context) ) else: index = await self.index_webpage(link, service_context) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) try: price = await self.usage_service.get_price( token_counter.embedding_token_counts, "embedding" ) except: traceback.print_exc() price = "Unknown" # Make the url look nice, remove https, useless stuff, random characters file_name = ( link.replace("https://", "") .replace("http://", "") .replace("www.", "") .replace("/", "_") .replace("?", "_") .replace("&", "_") .replace("=", "_") .replace("-", "_") .replace(".", "_") ) self.index_storage[ctx.user.id].add_index(index, ctx.user.id, file_name) except ValueError as e: await response.edit(embed=EmbedStatics.get_index_set_failure_embed(str(e))) traceback.print_exc() return except Exception as e: await response.edit(embed=EmbedStatics.get_index_set_failure_embed(str(e))) traceback.print_exc() return await response.edit(embed=EmbedStatics.get_index_set_success_embed(price)) async def set_discord_index( self, ctx: discord.ApplicationContext, channel: discord.TextChannel, user_api_key, message_limit: int = 2500, ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] try: document = await self.load_data( channel_ids=[channel.id], limit=message_limit, oldest_first=False ) index = await self.loop.run_in_executor( None, partial(self.index_discord, document, service_context) ) try: price = await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) except Exception: traceback.print_exc() price = "Unknown" await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) self.index_storage[ctx.user.id].add_index(index, ctx.user.id, channel.name) await ctx.respond(embed=EmbedStatics.get_index_set_success_embed(price)) except Exception as e: await ctx.respond(embed=EmbedStatics.get_index_set_failure_embed(str(e))) traceback.print_exc() async def load_index( self, ctx: discord.ApplicationContext, index, server, search, user_api_key ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] try: if server: index_file = EnvService.find_shared_file( f"indexes/{ctx.guild.id}/{index}" ) elif search: index_file = EnvService.find_shared_file( f"indexes/{ctx.user.id}_search/{index}" ) else: index_file = EnvService.find_shared_file( f"indexes/{ctx.user.id}/{index}" ) index = await self.loop.run_in_executor( None, partial(self.index_load_file, index_file) ) self.index_storage[ctx.user.id].queryable_index = index await ctx.respond(embed=EmbedStatics.get_index_load_success_embed()) except Exception as e: traceback.print_exc() await ctx.respond(embed=EmbedStatics.get_index_load_failure_embed(str(e))) async def index_to_docs( self, old_index, chunk_size: int = 4000, chunk_overlap: int = 200 ) -> List[Document]: documents = [] docstore = old_index.docstore ref_docs = old_index.ref_doc_info for document in ref_docs.values(): text = "" for node in document.node_ids: node = docstore.get_node(node) text += f"{node.text} " text_splitter = TokenTextSplitter( separator=" ", chunk_size=chunk_size, chunk_overlap=chunk_overlap ) text_chunks = text_splitter.split_text(text) for chunk_text in text_chunks: new_doc = Document(text=chunk_text, extra_info=document.metadata) documents.append(new_doc) return documents async def compose_indexes(self, user_id, indexes, name, deep_compose): # Load all the indexes first index_objects = [] for _index in indexes: try: index_file = EnvService.find_shared_file(f"indexes/{user_id}/{_index}") except ValueError: index_file = EnvService.find_shared_file( f"indexes/{user_id}_search/{_index}" ) index = await self.loop.run_in_executor( None, partial(self.index_load_file, index_file) ) index_objects.append(index) llm_predictor = LLMPredictor( llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") ) # For each index object, add its documents to a GPTTreeIndex if deep_compose: documents = [] for _index in index_objects: documents.extend(await self.index_to_docs(_index, 256, 20)) embedding_model = OpenAIEmbedding() llm_predictor_mock = MockLLMPredictor() embedding_model_mock = MockEmbedding(1536) token_counter_mock = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("text-davinci-003").encode, verbose=False, ) callback_manager_mock = CallbackManager([token_counter_mock]) service_context_mock = ServiceContext.from_defaults( llm_predictor=llm_predictor_mock, embed_model=embedding_model_mock, callback_manager=callback_manager_mock, ) # Run the mock call first await self.loop.run_in_executor( None, partial( GPTTreeIndex.from_documents, documents=documents, service_context=service_context_mock, ), ) total_usage_price = await self.usage_service.get_price( token_counter_mock.total_llm_token_count, "turbo", # TODO Enable again when tree indexes are fixed ) + await self.usage_service.get_price( token_counter_mock.total_embedding_token_count, "embedding" ) print("The total composition price is: ", total_usage_price) if total_usage_price > MAX_DEEP_COMPOSE_PRICE: raise ValueError( "Doing this deep search would be prohibitively expensive. Please try a narrower search scope." ) tree_index = await self.loop.run_in_executor( None, partial( GPTTreeIndex.from_documents, documents=documents, service_context=self.service_context, use_async=True, ), ) await self.usage_service.update_usage( self.token_counter.total_llm_token_count, "turbo" ) await self.usage_service.update_usage( self.token_counter.total_embedding_token_count, "embedding" ) # Now we have a list of tree indexes, we can compose them if not name: name = f"{date.today().month}_{date.today().day}_composed_deep_index" # Save the composed index tree_index.storage_context.persist( persist_dir=EnvService.save_path() / "indexes" / str(user_id) / name ) self.index_storage[user_id].queryable_index = tree_index return total_usage_price else: documents = [] for _index in index_objects: documents.extend(await self.index_to_docs(_index)) simple_index = await self.loop.run_in_executor( None, partial( GPTVectorStoreIndex.from_documents, documents=documents, service_context=service_context, use_async=True, ), ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) if not name: name = f"{date.today().month}_{date.today().day}_composed_index" # Save the composed index simple_index.storage_context.persist( persist_dir=EnvService.save_path() / "indexes" / str(user_id) / name ) self.index_storage[user_id].queryable_index = simple_index try: price = await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) except: price = "Unknown" return price async def backup_discord( self, ctx: discord.ApplicationContext, user_api_key, message_limit ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] try: channel_ids: List[int] = [] for c in ctx.guild.text_channels: channel_ids.append(c.id) document = await self.load_data( channel_ids=channel_ids, limit=message_limit, oldest_first=False ) index = await self.loop.run_in_executor( None, partial(self.index_discord, document, service_context) ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) try: price = await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) except Exception: traceback.print_exc() price = "Unknown" Path(EnvService.save_path() / "indexes" / str(ctx.guild.id)).mkdir( parents=True, exist_ok=True ) index.storage_context.persist( persist_dir=EnvService.save_path() / "indexes" / str(ctx.guild.id) / f"{ctx.guild.name.replace(' ', '-')}_{date.today().month}_{date.today().day}" ) await ctx.respond(embed=EmbedStatics.get_index_set_success_embed(price)) except Exception as e: await ctx.respond(embed=EmbedStatics.get_index_set_failure_embed((str(e)))) traceback.print_exc() async def query( self, ctx: discord.ApplicationContext, query: str, response_mode, nodes, user_api_key, child_branch_factor, model, multistep, ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0, model_name=model)) ctx_response = await ctx.respond( embed=EmbedStatics.build_index_query_progress_embed(query) ) try: token_counter.reset_counts() response = await self.loop.run_in_executor( None, partial( get_and_query, ctx.user.id, self.index_storage, query, response_mode, nodes, child_branch_factor, service_context=service_context, multistep=llm_predictor if multistep else None, ), ) print("The last token usage was ", token_counter.total_llm_token_count) await self.usage_service.update_usage( token_counter.total_llm_token_count, await self.usage_service.get_cost_name(model), ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) try: total_price = round( await self.usage_service.get_price( token_counter.total_llm_token_count, await self.usage_service.get_cost_name(model), ) + await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ), 6, ) except: total_price = "Unknown" query_response_message = f"**Query:**\n\n`{query.strip()}`\n\n**Query response:**\n\n{response.response.strip()}" query_response_message = query_response_message.replace( "<|endofstatement|>", "" ) embed_pages = await self.paginate_embed(query_response_message) paginator = pages.Paginator( pages=embed_pages, timeout=None, author_check=False, ) await ctx_response.edit( embed=EmbedStatics.build_index_query_success_embed(query, total_price) ) await paginator.respond(ctx.interaction) except Exception: traceback.print_exc() await ctx_response.edit( embed=EmbedStatics.get_index_query_failure_embed( "Failed to send query. You may not have an index set, load an index with /index load" ) ) # Extracted functions from DiscordReader async def read_channel( self, channel_id: int, limit: Optional[int], oldest_first: bool ) -> str: """Async read channel.""" messages: List[discord.Message] = [] try: channel = self.bot.get_channel(channel_id) print(f"Added {channel.name} from {channel.guild.name}") # only work for text channels for now if not isinstance(channel, discord.TextChannel): raise ValueError( f"Channel {channel_id} is not a text channel. " "Only text channels are supported for now." ) # thread_dict maps thread_id to thread thread_dict = {} for thread in channel.threads: thread_dict[thread.id] = thread async for msg in channel.history(limit=limit, oldest_first=oldest_first): if msg.author.bot: pass else: messages.append(msg) if msg.id in thread_dict: thread = thread_dict[msg.id] async for thread_msg in thread.history( limit=limit, oldest_first=oldest_first ): messages.append(thread_msg) except Exception as e: print("Encountered error: " + str(e)) channel = self.bot.get_channel(channel_id) msg_txt_list = [ f"user:{m.author.display_name}, content:{m.content}" for m in messages ] return ("<|endofstatement|>\n\n".join(msg_txt_list), channel.name) async def load_data( self, channel_ids: List[int], limit: Optional[int] = None, oldest_first: bool = True, ) -> List[Document]: """Load data from the input directory. Args: channel_ids (List[int]): List of channel ids to read. limit (Optional[int]): Maximum number of messages to read. oldest_first (bool): Whether to read oldest messages first. Defaults to `True`. Returns: List[Document]: List of documents. """ results: List[Document] = [] for channel_id in channel_ids: if not isinstance(channel_id, int): raise ValueError( f"Channel id {channel_id} must be an integer, " f"not {type(channel_id)}." ) (channel_content, channel_name) = await self.read_channel( channel_id, limit=limit, oldest_first=oldest_first ) results.append( Document( text=channel_content, extra_info={"channel_name": channel_name} ) ) return results async def compose(self, ctx: discord.ApplicationContext, name, user_api_key): # Send the ComposeModal if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] if not self.index_storage[ctx.user.id].has_indexes(ctx.user.id): await ctx.respond( embed=EmbedStatics.get_index_compose_failure_embed( "You must have at least one index to compose." ) ) return await ctx.respond( "Select the index(es) to compose. You can compose multiple indexes together, you can also Deep Compose a single index.", view=ComposeModal(self, ctx.user.id, name), ephemeral=True, ) class ComposeModal(discord.ui.View): def __init__(self, index_cog, user_id, name=None, deep=None) -> None: super().__init__() # Get the argument named "user_key_db" and save it as USER_KEY_DB self.index_cog = index_cog self.user_id = user_id self.deep = deep # Get all the indexes for the user self.indexes = [ file for file in os.listdir( EnvService.find_shared_file(f"indexes/{str(user_id)}/") ) ] if index_cog.index_storage[user_id].has_search_indexes(user_id): self.indexes.extend( [ file for file in os.listdir( EnvService.find_shared_file(f"indexes/{str(user_id)}_search/") ) ] ) print("Found the indexes, they are ", self.indexes) # Map everything into the short to long cache for index in self.indexes: if len(index) > 93: index_name = index[:93] + "-" + str(random.randint(0000, 9999)) SHORT_TO_LONG_CACHE[index_name] = index else: SHORT_TO_LONG_CACHE[index[:99]] = index # Reverse the SHORT_TO_LONG_CACHE index LONG_TO_SHORT_CACHE = {v: k for k, v in SHORT_TO_LONG_CACHE.items()} # A text entry field for the name of the composed index self.name = name # A discord UI select menu with all the indexes. Limited to 25 entries. For the label field in the SelectOption, # cut it off at 100 characters to prevent the message from being too long self.index_select = discord.ui.Select( placeholder="Select index(es) to compose", options=[ discord.SelectOption( label=LONG_TO_SHORT_CACHE[index], value=LONG_TO_SHORT_CACHE[index] ) for index in self.indexes ][0:25], max_values=len(self.indexes) if len(self.indexes) < 25 else 25, min_values=1, ) # Add the select menu to the modal self.add_item(self.index_select) # If we have more than 25 entries, add more Select fields as neccessary self.extra_index_selects = [] if len(self.indexes) > 25: for i in range(25, len(self.indexes), 25): self.extra_index_selects.append( discord.ui.Select( placeholder="Select index(es) to compose", options=[ discord.SelectOption( label=LONG_TO_SHORT_CACHE[index], value=LONG_TO_SHORT_CACHE[index], ) for index in self.indexes ][i : i + 25], max_values=len(self.indexes[i : i + 25]), min_values=1, ) ) self.add_item(self.extra_index_selects[-1]) # Add an input field for "Deep", a "yes" or "no" option, default no self.deep_select = discord.ui.Select( placeholder="Deep Compose", options=[ discord.SelectOption(label="Yes", value="yes"), discord.SelectOption(label="No", value="no"), ], max_values=1, min_values=1, ) self.add_item(self.deep_select) # Add a button to the modal called "Compose" self.add_item( discord.ui.Button( label="Compose", style=discord.ButtonStyle.green, custom_id="compose" ) ) # The callback for the button async def interaction_check(self, interaction: discord.Interaction) -> bool: # Check that the interaction was for custom_id "compose" if interaction.data["custom_id"] == "compose": # Check that the user selected at least one index # The total list of indexes is the union of the values of all the select menus indexes = self.index_select.values + [ select.values[0] for select in self.extra_index_selects ] # Remap them from the SHORT_TO_LONG_CACHE indexes = [SHORT_TO_LONG_CACHE[index] for index in indexes] if len(indexes) < 1: await interaction.response.send_message( embed=EmbedStatics.get_index_compose_failure_embed( "You must select at least 1 index" ), ephemeral=True, ) else: composing_message = await interaction.response.send_message( embed=EmbedStatics.get_index_compose_progress_embed(), ephemeral=True, ) # Compose the indexes try: price = await self.index_cog.compose_indexes( self.user_id, indexes, self.name, False if not self.deep_select.values or self.deep_select.values[0] == "no" else True, ) except ValueError as e: await interaction.followup.send( str(e), ephemeral=True, delete_after=180 ) return False except Exception as e: traceback.print_exc() await interaction.followup.send( embed=EmbedStatics.get_index_compose_failure_embed( "An error occurred while composing the indexes: " + str(e) ), ephemeral=True, delete_after=180, ) return False await interaction.followup.send( embed=EmbedStatics.get_index_compose_success_embed(price), ephemeral=True, delete_after=180, ) # Try to direct message the user that their composed index is ready try: await self.index_cog.bot.get_user(self.user_id).send( f"Your composed index is ready! You can load it with /index load now in the server." ) except discord.Forbidden: pass try: composing_message: Interaction await composing_message.delete_original_response() except: traceback.print_exc() else: await interaction.response.defer(ephemeral=True)
[]
2024-01-10
nitesh-jaswal/chatgpt-template-maker
py~api~services~__chatgpt_client.py
from __future__ import annotations import logging from api.settings import OpenAIAuthSettings, OpenAIAPISettings from api.exceptions import OpenAIClientAuthException, OpenAIAPIException , OpenAIErrorKind from api.models.openai_models import Role, Prompt, PromptBuffer from api.models.openai_models import OpenAIChatResponse, OpenAIChatRequest, FinishReason from typing import Dict, List, cast from .__baseclient import BaseClient DEFAULT_SYSTEM_PROMPT = Prompt( role=Role.SYSTEM, content="Please answer in less than 200 words the response to the following query" ) def _get_logger() -> logging.Logger: logger = logging.getLogger() logging.basicConfig(level=logging.DEBUG) return logger class ChatGPTClient: auth: OpenAIAuthSettings | None = None def __init__(self, api_settings: OpenAIAPISettings, logger: logging.Logger | None = None): self.logger = logger if logger else _get_logger() self.system_prompt = DEFAULT_SYSTEM_PROMPT if api_settings.system_prompt is None else api_settings.system_prompt self._buffer: PromptBuffer = PromptBuffer(api_settings.max_prompts) self.api_settings = api_settings self._client = self.__create_client() def __create_client(self): if self.auth is None: raise OpenAIClientAuthException("Client auth settings not available. Please verify") return BaseClient(self.auth.api_key.get_secret_value(), self.auth.organization) def buffer_length(self) -> int: return len(self._buffer) # TODO: Change interface to List[str; Also tokenizer] def add_messages(self, messages: List[Prompt]) -> ChatGPTClient: self._buffer.extend(messages) return self def send_messages(self) -> Prompt: """`None` or `raises OpenAIAPIException(ErrorKind.Enum)`""" request = OpenAIChatRequest( model="gpt-3.5-turbo", messages=self._buffer.to_list(), max_tokens=10, logit_bias={"50256": -100}, user="asodioasijd" ) # type: ignore raw: OpenAIChatResponse = self._client.send(request) if len(raw.choices) < 1: raise OpenAIAPIException(OpenAIErrorKind.EMPTY, "No chat responses were received") last_choice = raw.choices[-1] if last_choice.message.role != Role.ASSISTANT: raise OpenAIAPIException(OpenAIErrorKind.INTERNAL_ERROR, f"Incorrect role in chat response. Expected `Assistant` role, received `{last_choice.message.role}`") match last_choice: case _: return last_choice.message @property def buffer_list(self) -> List[Prompt]: return cast(List[Prompt], self._buffer[:] )
[ "Please answer in less than 200 words the response to the following query" ]
2024-01-10
nitesh-jaswal/chatgpt-template-maker
py~api~services~__baseclient.py
import openai import json from typing import Dict from api.models.openai_models import OpenAIChatRequest, OpenAIChatResponse from api.models.openai_models.__response import Usage class BaseClient: def __init__(self, api_key: str, organization: str): openai.organization = organization openai.api_key = api_key def send(self, request: OpenAIChatRequest) -> OpenAIChatResponse: request_dict: Dict[str, str] = json.loads(request.json()) print(request_dict) response = openai.ChatCompletion.create(**request_dict) return OpenAIChatResponse.parse_obj(response)
[]
2024-01-10
LuckCow/ModularIntellect
src~agents~knowledgebase_query_agent.py
import pickle import os from langchain import OpenAI, LLMChain, FAISS from langchain.callbacks import StdOutCallbackHandler from langchain.callbacks.manager import CallbackManager from langchain.chains import ChatVectorDBChain from langchain.chains.question_answering import load_qa_chain from langchain.document_loaders import DirectoryLoader, TextLoader from langchain.embeddings import OpenAIEmbeddings from langchain.llms import BaseLLM from langchain.text_splitter import RecursiveCharacterTextSplitter from src.components.itask import ITask from src.services.chainlang_agent_service import BaseChainLangAgent from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT, QA_PROMPT) from src.visualization.vector_search import visualize_vector_search from src.web.socketio_callbackmanager import SocketIOCallbackHandler def ingest_docs(knowledge_path: str, storage_path: str): """Get documents from repository.""" loader = DirectoryLoader(knowledge_path, loader_cls=TextLoader, loader_kwargs={"encoding": "utf-8"}, recursive=True, silent_errors=True) raw_documents = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, ) documents = text_splitter.split_documents(raw_documents) embeddings = OpenAIEmbeddings(allowed_special=["<|endoftext|>"]) vectorstore = FAISS.from_documents(documents, embeddings) # Save vectorstore with open(storage_path, "wb") as f: pickle.dump(vectorstore, f) return vectorstore class SimpleKnowledgeBaseQueryAgent(BaseChainLangAgent): """Agent that queries a knowledge base.""" def __init__(self, llm: BaseLLM, knowledge_path: str, storage_path: str="vectorstore.pkl", socketio=None): # set llm (from dependency injection) self.llm = llm # check if storage_path exists if not os.path.exists(storage_path): print("Ingesting knowledge to create vectorstore") self.vectorstore = ingest_docs(knowledge_path, storage_path) else: with open(storage_path, "rb") as f: self.vectorstore = pickle.load(f) self.socketio = socketio # initialize chat history self.chat_history = [] super().__init__() def _get_chain(self): """Create a ChatVectorDBChain for question/answering.""" # Construct a ChatVectorDBChain with a streaming llm for combine docs # and a separate, non-streaming llm for question generation manager = CallbackManager([]) manager.set_handler(StdOutCallbackHandler()) if self.socketio: manager.add_handler(SocketIOCallbackHandler(self.socketio, 'ChatVectorDBChain')) question_generator = LLMChain( llm=self.llm, prompt=CONDENSE_QUESTION_PROMPT, callback_manager=manager, verbose=True ) doc_chain = load_qa_chain( self.llm, chain_type="stuff", prompt=QA_PROMPT, callback_manager=manager, verbose=True ) qa = ChatVectorDBChain( vectorstore=self.vectorstore, combine_docs_chain=doc_chain, question_generator=question_generator, ) return qa def execute(self, task: ITask): #visualize_vector_search(self.vectorstore, task) result = self._chain({"question": task, "chat_history": self.chat_history}) self.chat_history.append((task, result["answer"])) return result['answer']
[]
2024-01-10
LuckCow/ModularIntellect
src~memory~neo4j_docstore.py
from typing import Dict, Union from langchain.docstore.base import AddableMixin, Docstore from langchain.docstore.document import Document from neo4j import GraphDatabase class Neo4jDocstore(Docstore, AddableMixin): """Langchain Docstore implementation for a Neo4j database.""" def __init__(self, uri, auth): """Initialize with Neo4j driver.""" self.uri = uri self.auth = auth self.driver = None self._connect() def _connect(self): """Connect to the Neo4j database.""" self.driver = GraphDatabase.driver(self.uri, auth=self.auth) def add(self, texts: Dict[str, Document]) -> None: """Add texts to Neo4j database.""" documents = {} notes = {} interactions = {} for doc_id, doc in texts.items(): if doc.metadata.get("node_type"): doc_type = doc.metadata.pop("node_type") else: doc_type = "document" # classify the node type if doc_type == "document": documents[doc_id] = doc elif doc_type == "note": notes[doc_id] = doc elif doc_type == "interaction": interactions[doc_id] = doc if documents: self._add_documents(documents) if notes: self._add_notes(notes) if interactions: self._add_interactions(interactions) def _add_notes(self, texts: Dict[str, Document]): with self.driver.session() as session: for doc_id, doc in texts.items(): references = doc.metadata.get("references", []) query = """ MERGE (n:Note {id: $doc_id}) ON CREATE SET n += $properties WITH n UNWIND $references AS ref_id MATCH (ref_node) WHERE ID(ref_node) = toInteger(ref_id) MERGE (n)-[:REFERENCES]->(ref_node) """ properties = {k: v for k, v in doc.metadata.items() if k != "references"} properties["text"] = doc.page_content session.run(query, doc_id=doc_id, properties=properties, references=references) def _add_interactions(self, texts: Dict[str, Document]): with self.driver.session() as session: for doc_id, doc in texts.items(): conversation_id = doc.metadata.get("conversation_id", None) query = """ MERGE (i:Interaction {id: $doc_id}) ON CREATE SET i += $properties WITH i MERGE (c:Conversation {id: $conversation_id}) MERGE (i)-[:PART_OF]->(c) """ properties = {k: v for k, v in doc.metadata.items() if k != "conversation_id"} properties["text"] = doc.page_content session.run(query, doc_id=doc_id, properties=properties, conversation_id=conversation_id) def _add_documents(self, texts: Dict[str, Document]): # Group texts by source, add order and previous chunk metadata for neo4j formatting docsrc_to_chunks = {} prev_docsrc = None prev_chunk_id = None chunk_order = 0 for doc_id, doc in texts.items(): chunk = {"id": doc_id} doc_src = doc.metadata.get("source", "unspecified source") chunk_props = {"text": doc.page_content} chunk_props.update(doc.metadata) # Reset counter and chunk pointer on new source if prev_docsrc != doc_src: prev_chunk_id = None chunk_order = 0 # Add order and previous chunk metadata chunk_props["order"] = chunk_order chunk["prev_id"] = prev_chunk_id chunk['properties'] = chunk_props docsrc_to_chunks.setdefault(doc_src, []).append(chunk) # Update previous data prev_docsrc = doc_src chunk_order += 1 prev_chunk_id = chunk["id"] with self.driver.session() as session: for doc_src, chunks in docsrc_to_chunks.items(): chunks_query = ("MERGE (d:Document {doc_title: $doc_title})\n" "WITH d\n" "UNWIND $chunks AS chunk\n" "MERGE (c:Chunk {id: chunk.id})\n" "ON CREATE SET c += chunk.properties\n" "MERGE (d)<-[:PART_OF]-(c)\n" "WITH c, chunk\n" "MATCH (prev:Chunk {id: chunk.prev_id})\n" "MERGE (prev)-[:CONTINUES]->(c)\n") session.run(chunks_query, chunks=chunks, doc_title=doc_src) def search(self, search_id: str) -> Union[str, Document]: """ Search for a document in Neo4j database and include connections in metadata connections are returned in the `connections` field of the metadata and have the following format: [ { "type": "CONTINUES", "connected_id": "UUID8324908", "direction": "out" }, ... ] """ with self.driver.session() as session: query = """ MATCH (i) WHERE i.id = $id OPTIONAL MATCH (i)-[r_out]->(connected_out) OPTIONAL MATCH (i)<-[r_in]-(connected_in) RETURN i.text AS text, collect({type: type(r_out), connected_id: connected_out.id, direction: "out"}) as outgoing_connections, collect({type: type(r_in), connected_id: connected_in.id, direction: "in"}) as incoming_connections """ result = session.run(query, id=search_id) record = result.single() if record: # Omit Part-Of connections connections = [conn for conn in record["outgoing_connections"] + record["incoming_connections"] if conn['type'] != "PART_OF"] metadata = {"id": search_id, "connections": connections} return Document(page_content=record["text"], metadata=metadata) else: raise ValueError(f"ID not found: {search_id}") # print('Error: ID not found.: ', search_id) # return Document(page_content="Error not found: " + search_id, metadata={"id": search_id}) def __getstate__(self): state = self.__dict__.copy() del state['driver'] return state def __setstate__(self, state): self.__dict__.update(state) # After unpickling, the connection needs to be reestablished self._connect()
[]
2024-01-10
LuckCow/ModularIntellect
src~utils~mapping_directory_loader.py
"""Loading logic for loading documents from a directory.""" import logging from pathlib import Path from typing import List, Type, Union from langchain.docstore.document import Document from langchain.document_loaders import PyPDFLoader from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.html_bs import BSHTMLLoader from langchain.document_loaders.text import TextLoader from langchain.document_loaders.unstructured import UnstructuredFileLoader FILE_LOADER_TYPE = Union[ Type[UnstructuredFileLoader], Type[TextLoader], Type[BSHTMLLoader] ] logger = logging.getLogger(__name__) def _is_visible(p: Path) -> bool: parts = p.parts for _p in parts: if _p.startswith("."): return False return True class MappingDirectoryLoader(BaseLoader): """Loading logic for loading documents from a directory.""" def __init__( self, path: str, glob: str = "**/[!.]*", silent_errors: bool = False, load_hidden: bool = False, loader_mapping=None, # function taking in file extension and returning loader class and kwargs recursive: bool = False, ): """Initialize with path to directory and how to glob over it.""" # loader mapping maps file extensions to loader classes and loader kwargs if loader_mapping is None: # TODO: expand mapping to include more document loaders # from https://python.langchain.com/en/latest/modules/indexes/document_loaders.html def loader_mapping(ext: str): if ext in (".txt", ".py"): return TextLoader, {"encoding": "utf-8"} elif ext in (".html", '.htm'): return BSHTMLLoader, {} elif ext == ".pdf": return PyPDFLoader, {} else: return TextLoader, {"encoding": "utf-8"} self.path = path self.glob = glob self.load_hidden = load_hidden self.loader_mapping = loader_mapping self.silent_errors = silent_errors self.recursive = recursive def load(self) -> List[Document]: """Load documents.""" p = Path(self.path) docs = [] items = p.rglob(self.glob) if self.recursive else p.glob(self.glob) for i in items: if i.is_file(): if _is_visible(i.relative_to(p)) or self.load_hidden: try: loader_cls, loader_kwargs = self.loader_mapping(i.suffix) sub_docs = loader_cls(str(i), **loader_kwargs).load() docs.extend(sub_docs) except Exception as e: if self.silent_errors: logger.warning(e) else: raise e return docs
[]
2024-01-10
LuckCow/ModularIntellect
src~agents~alignment_auditor.py
from langchain import LLMChain, PromptTemplate from langchain.callbacks import CallbackManager, StdOutCallbackHandler from langchain.llms import BaseLLM from src.components.itask import ITask from src.services.chainlang_agent_service import BaseChainLangAgent class AlignmentAuditingAgent(BaseChainLangAgent): """Breaks a complex task into subtasks that can be assigned to another agent""" # Task Creation Prompt PROMPT = """You are a responsible agent who is overseeing the work of other agents.""" def __init__(self, llm: BaseLLM): self.llm = llm self.prompt = PromptTemplate(input_variable=["alignment_goal", "tasks"], template=self.PROMPT) super().__init__() def _get_chain(self): """Create a ChatVectorDBChain for question/answering.""" # Construct a ChatVectorDBChain with a streaming llm for combine docs # and a separate, non-streaming llm for question generation manager = CallbackManager([]) manager.set_handler(StdOutCallbackHandler()) question_generator = LLMChain( llm=self.llm, prompt=self.prompt, callback_manager=manager, verbose=True ) return question_generator def execute(self, task: ITask): self._chain.predict({"objective": task, "agent_list": self.AGENT_LIST, "past_tasks": ""}) # Example: """Please systematically break down this objective into a list of subtasks that can be completed by a single specialized agent. Each agent can solve a particular type of problem as specified in its description. Each task consists of a task_description and a task_justification. The task_description is a short description of the task that explains what the agent should do to complete the task. The task_justification explains how completing the task will contribute to the overall objective. Note that there are 2 special case agents for tasks that do not fit into the other categories. The output should be a list of tasks in the format: [task_number]. [assigned_agent] | [task_description] | [task_justification] Task Agents (Name - Description): RESEARCHER - Given a topic or question, this agent will search the internet for relevant information and store it for future reference. CALCULATOR - Given a math question, this agent will calculate the exact result. PROGRAMMER - Given a programming task, this agent will write the code to complete it. WRITER - Given a general and simple task, this agent will write out the solution to it using results from previous tasks and memory. Special Case Agents: TASK_DECOMPOSER - Given a task that is too complicated for a single agent to complete, this agent will break it down into simpler subtasks that can be processed. IMPOSSIBLE_TASK - Given a task that cannot be solved by any of the other agents, assign this task to this agent and it will explain why it is impossible. The objective is: Find the weight and diameter of the planet Jupiter in terms of the weight and length of a 2003 Honda Accord. Justification of Objective: I want to give a relatable idea of scale for a presentation I am giving. Subtasks to Complete:""" # Result: """ RESEARCHER | Find the weight and dimensions of a 2003 Honda Accord | This information will serve as a reference for comparison with Jupiter's weight and diameter. RESEARCHER | Find the weight and diameter of the planet Jupiter | This information will be used to compare with the weight and dimensions of a 2003 Honda Accord. CALCULATOR | Convert Jupiter's weight and diameter into terms of 2003 Honda Accord's weight and length | This will allow for a relatable comparison of Jupiter's weight and diameter. WRITER | Write a concise explanation of the comparison between Jupiter's weight and diameter and the weight and length of a 2003 Honda Accord | This explanation will help the user convey a relatable idea of scale for their presentation."""
[ "You are a responsible agent who is overseeing the work of other agents." ]
2024-01-10
LuckCow/ModularIntellect
src~visualization~vector_search.py
import numpy as np from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import VectorStore from sklearn.manifold import TSNE import plotly.express as px import pandas as pd import plotly.subplots as sp from sklearn.decomposition import PCA import re def visualize_vector_search(vectorstore: VectorStore, query: str, embeddings=None): """ Visualize the vector search with PCA and t-SNE. :param vectorstore: LangChain VectorStore :param query: unembedded str query :param embeddings: Embedding system (defaults to OpenAI) :return: None (opens browser window with visualization using plotly) """ # visualize search results # embed task vector if embeddings is None: embeddings = OpenAIEmbeddings() embedded_query = embeddings.embed_query(query) # document contents (escape chars that break plotly) doc_contents = [d.page_content[:100] for d in vectorstore.docstore._dict.values()] + [query] chars_to_remove = "<>/'\"`" # Not sure which chars exactly break it pattern = "[" + re.escape(chars_to_remove) + "]" doc_contents = [re.sub(pattern, '', s) for s in doc_contents] visualize_faiss_index_with_query(vectorstore.index, embedded_query, doc_contents, k=4) def visualize_faiss_index_with_query(index, query_vector, doc_texts, k=4): """ Visualize the vector search with PCA and t-SNE. :param index: FAISS index :param query_vector: embedded vector to search for :param doc_texts: list of document texts for hover text (must be in same order as index) :param k: number of closest vectors to show :return: None (opens browser window with visualization using plotly) """ # Search for the k closest vectors to the query vector distances, indices = index.search(np.array([query_vector]), k) # Retrieve all the vectors from the FAISS index retrieved_vectors = index.reconstruct_n(0, index.ntotal) # Apply PCA to reduce dimensionality to 2D pca = PCA(n_components=2) all_data_pca = pca.fit_transform(np.vstack([retrieved_vectors, query_vector])) # Apply t-SNE to reduce dimensionality to 2D tsne = TSNE(n_components=2, random_state=42) all_data_tsne = tsne.fit_transform(np.vstack([retrieved_vectors, query_vector])) # Create a DataFrame for the PCA and t-SNE data and assign labels and add text descriptions data_pca_df = pd.DataFrame(all_data_pca, columns=['PCA 1', 'PCA 2']) data_tsne_df = pd.DataFrame(all_data_tsne, columns=['t-SNE 1', 't-SNE 2']) data_pca_df['label'] = data_tsne_df['label'] = 'Other' data_pca_df.loc[indices[0], 'label'] = data_tsne_df.loc[indices[0], 'label'] = 'Close' data_pca_df.loc[data_pca_df.index[-1], 'label'] = data_tsne_df.loc[data_tsne_df.index[-1], 'label'] = 'Query' data_pca_df['doc_text'] = data_tsne_df['doc_text'] = doc_texts # Create subplots fig = sp.make_subplots(rows=1, cols=2, subplot_titles=('PCA', 't-SNE')) # Create PCA scatter plot and add to subplot pca_scatter = px.scatter(data_frame=data_pca_df, x='PCA 1', y='PCA 2', color='label', color_discrete_sequence=['blue', 'magenta', 'red'], hover_data={'doc_text': True, 'label': False, 'PCA 1': False, 'PCA 2': False}, ) for trace in pca_scatter.data: fig.add_trace(trace, row=1, col=1) # Create t-SNE scatter plot and add to subplot tsne_scatter = px.scatter(data_frame=data_tsne_df, x='t-SNE 1', y='t-SNE 2', color='label', color_discrete_sequence=['blue', 'magenta', 'red'], hover_data={'doc_text': True, 'label': False, 't-SNE 1': False, 't-SNE 2': False}, ) for trace in tsne_scatter.data: fig.add_trace(trace, row=1, col=2) pca_scatter.update_traces( marker=dict(size=[5 for i in range(len(data_pca_df))], opacity=[0.5 for i in range(len(data_pca_df))]), selector=dict(type='scattergl')) tsne_scatter.update_traces( marker=dict(size=[5 for i in range(len(data_tsne_df))], opacity=[0.5 for i in range(len(data_tsne_df))]), selector=dict(type='scattergl')) # Update the layout and show the plot fig.update_layout(title='Dimensionality Reduction Visualization of Vectors from a FAISS Index with Query Vector') fig.show() if __name__ == '__main__': import faiss # Generate 100-dimensional random vectors n_vectors = 500 dim = 1882 data = np.random.rand(n_vectors, dim).astype('float32') # Create a FAISS index index = faiss.IndexFlatL2(dim) index.add(data) # Generate a random query vector query_vector = np.random.rand(dim).astype('float32') # Create hover-over labels for the vectors doc_texts = [f'Document #{i} Contents' for i in range(n_vectors)] + ['Query Contents'] # Visualize the FAISS index with the query vector visualize_faiss_index_with_query(index, query_vector, doc_texts)
[]
2024-01-10
LuckCow/ModularIntellect
src~agents~task_decomposition_agent.py
from langchain import LLMChain, PromptTemplate from langchain.callbacks import CallbackManager, StdOutCallbackHandler from langchain.llms import BaseLLM from src.components.itask import ITask from src.services.chainlang_agent_service import BaseChainLangAgent class TaskDecompositionAgent(BaseChainLangAgent): """Breaks a complex task into subtasks that can be assigned to another agent""" # Task Creation Prompt PROMPT = """Please systematically break down this objective into a list of subtasks that can be completed by a single specialized agent. Each agent can solve a particular type of problem as specified in its description. Each task consists of a task_description and a task_justification. The task_description is a short description of the task that explains what the agent should do to complete the task. The task_justification explains how completing the task will contribute to the overall objective. The output should be a list of tasks in the format: [task_number]. [assigned_agent] | [task_description] | [task_justification] Specialized Agents (Name - Description): {agent_list} {past_tasks} The objective is: {objective} Subtasks to Complete:""" # Agent List: list of agents that can complete tasks and descriptions of how they accomplish it AGENT_LIST = """RESEARCHER - Given a topic or question, this agent will search the internet for relevant information and store it for future reference. CALCULATOR - Given a math question, this agent will calculate the exact result. PROGRAMMER - Given a programming task, this agent will write the code to complete it. WRITER - Given a general and simple task, this agent will write out the solution to it using results from previous tasks and memory. Special Case Agents: TASK_DECOMPOSER - Given a task that is too complicated for a single agent to complete, this agent will break it down into simpler subtasks that can be processed. IMPOSSIBLE_TASK - Given a task that cannot be solved by any of the other agents, assign this task to this agent and it will explain why it is impossible.""" # TODO: maybe add example for few shot learning def __init__(self, llm: BaseLLM): self.llm = llm self.prompt = PromptTemplate(input_variable=["objective", "agent_list", "past_tasks"], template=self.PROMPT) super().__init__() def _get_chain(self): """Create a ChatVectorDBChain for question/answering.""" # Construct a ChatVectorDBChain with a streaming llm for combine docs # and a separate, non-streaming llm for question generation manager = CallbackManager([]) manager.set_handler(StdOutCallbackHandler()) question_generator = LLMChain( llm=self.llm, prompt=self.prompt, callback_manager=manager, verbose=True ) return question_generator def execute(self, task: ITask): self._chain.predict({"objective": task, "agent_list": self.AGENT_LIST, "past_tasks": ""}) # Example: """Please systematically break down this objective into a list of subtasks that can be completed by a single specialized agent. Each agent can solve a particular type of problem as specified in its description. Each task consists of a task_description and a task_justification. The task_description is a short description of the task that explains what the agent should do to complete the task. The task_justification explains how completing the task will contribute to the overall objective. Note that there are 2 special case agents for tasks that do not fit into the other categories. The output should be a list of tasks in the format: [task_number]. [assigned_agent] | [task_description] | [task_justification] Task Agents (Name - Description): RESEARCHER - Given a topic or question, this agent will search the internet for relevant information and store it for future reference. CALCULATOR - Given a math question, this agent will calculate the exact result. PROGRAMMER - Given a programming task, this agent will write the code to complete it. WRITER - Given a general and simple task, this agent will write out the solution to it using results from previous tasks and memory. Special Case Agents: TASK_DECOMPOSER - Given a task that is too complicated for a single agent to complete, this agent will break it down into simpler subtasks that can be processed. IMPOSSIBLE_TASK - Given a task that cannot be solved by any of the other agents, assign this task to this agent and it will explain why it is impossible. The objective is: Find the weight and diameter of the planet Jupiter in terms of the weight and length of a 2003 Honda Accord. Justification of Objective: I want to give a relatable idea of scale for a presentation I am giving. Subtasks to Complete:""" # Result: """ RESEARCHER | Find the weight and dimensions of a 2003 Honda Accord | This information will serve as a reference for comparison with Jupiter's weight and diameter. RESEARCHER | Find the weight and diameter of the planet Jupiter | This information will be used to compare with the weight and dimensions of a 2003 Honda Accord. CALCULATOR | Convert Jupiter's weight and diameter into terms of 2003 Honda Accord's weight and length | This will allow for a relatable comparison of Jupiter's weight and diameter. WRITER | Write a concise explanation of the comparison between Jupiter's weight and diameter and the weight and length of a 2003 Honda Accord | This explanation will help the user convey a relatable idea of scale for their presentation.""" # multistep prompt test """Answer the following questions as best you can, show your work throughout a step by step process. Use the following format: Question: the input question you must answer Thought: list out all of the possible next steps to take Action: choose the action that will most quickly lead to the goal Observation: the result of the action ... (this Thought/Action/Observation can repeat N times) Thought: The problem is now solved Final Answer: the final state has been reached and the question is answered Begin! Remember to take as many steps as needed to get to the final answer. Question: {input} If you are given a 5 gallon bucket and a 3 gallon bucket, both with no volume markings, and an infinite supply of water, how would you get exactly 2 gallons in one of the buckets? """
[ "Please systematically break down this objective into a list of subtasks that can be completed by a single \nspecialized agent. Each agent can solve a particular type of problem as specified in its description. Each task consists of a \ntask_description and a task_justification. The task_description is a short description of the task that explains what\nthe agent should do to complete the task. The task_justification explains how completing the task will contribute to\nthe overall objective.\nThe output should be a list of tasks in the format: [task_number]. [assigned_agent] | [task_description] | [task_justification]\nSpecialized Agents (Name - Description): \n{agent_list}\n{past_tasks}\nThe objective is: {objective}\nSubtasks to Complete:" ]
2024-01-10
LuckCow/ModularIntellect
src~web~socketio_callbackmanager.py
import logging from typing import Any, Dict, List, Union from abc import ABC, abstractmethod from threading import Event from flask import jsonify from flask_socketio import SocketIO from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import LLMResult, AgentAction, AgentFinish from src.web.chain_state import ChainState logger = logging.getLogger(__name__) class SocketIOCallbackHandler(BaseCallbackHandler): def __init__(self, socketio: SocketIO, room: str): self.socketio = socketio self.room = room self.chain_state = ChainState() def chain_execution_state(self): #print('chain_execution_state: ', self.chain_state.chain_blocks) return jsonify( chainBlocks=[{ 'title': block.title, 'inputs': block.inputs, 'outputs': block.outputs } for block in self.chain_state.chain_blocks], currentBlockIndex=self.chain_state.current_block_index, ) def on_chain_start(self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) -> Any: logging.info('on_chain_start: serialized: %s, inputs: %s', serialized, inputs) self.chain_state.add_chain_block('Chain Title Placeholder', inputs) self.socketio.emit('chain_start', {'serialized': serialized, 'inputs': inputs})#, room=self.room) # Create a socket event listener for input updates @self.socketio.on("input_update") def handle_input_update(data): blockIndex = data["blockIndex"] key = data["key"] value = data["value"] # Janky pass by reference inputs[key] = value # Create an Event to wait for user confirmation chain_start_confirm_event = Event() # Create callback function to continue execution @self.socketio.on('chain_start_confirm') def chain_start_confirm_callback(): logging.info('chain_start_confirm_callback') chain_start_confirm_event.set() # Wait for the event to be set by the frontend's confirmation chain_start_confirm_event.wait() # Remove the event listener to avoid memory leaks #self.socketio.off('chain_start_confirm', chain_start_confirm_callback, room=self.room) def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> Any: logging.info('on_chain_end: outputs: %s', outputs) self.chain_state.set_chain_block_outputs(outputs) self.socketio.emit('chain_end', {'outputs': outputs})#, room=self.room) def on_llm_start(self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) -> Any: self.socketio.emit('llm_start', {'serialized': serialized, 'prompts': prompts}, room=self.room) def on_llm_new_token(self, token: str, **kwargs: Any) -> Any: self.socketio.emit('llm_new_token', {'token': token}, room=self.room) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any: self.socketio.emit('llm_end', {'response': response.json()}, room=self.room) def on_llm_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any: self.socketio.emit('llm_error', {'error': str(error)}, room=self.room) def on_chain_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any: self.socketio.emit('chain_error', {'error': str(error)}, room=self.room) def on_tool_start(self, serialized: Dict[str, Any], input_str: str, **kwargs: Any) -> Any: self.socketio.emit('tool_start', {'serialized': serialized, 'input_str': input_str}, room=self.room) def on_tool_end(self, output: str, **kwargs: Any) -> Any: self.socketio.emit('tool_end', {'output': output}, room=self.room) def on_tool_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any: self.socketio.emit('tool_error', {'error': str(error)}, room=self.room) def on_text(self, text: str, **kwargs: Any) -> Any: self.socketio.emit('text', {'text': text}, room=self.room) def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: self.socketio.emit('agent_action', {'action': action.log}, room=self.room) def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any: self.socketio.emit('agent_finish', {'finish': finish.log}, room=self.room)
[]
2024-01-10
LuckCow/ModularIntellect
src~agents~graphdb_traversal_chain.py
""" GraphDBTraversalChain allows an LLM to explore context chunks and their connections in a graph database, extract relevant information, and continue exploring the graph database for additional information. This helps the LLM to process and summarize the information obtained from the database and also determine whether further exploration is needed. """ import re from langchain import PromptTemplate from langchain.schema import Document, SystemMessage from langchain.chains import LLMChain from langchain.chains.base import Chain from typing import Dict, List from langchain.vectorstores import VectorStore from pydantic import PrivateAttr # gives instructions for how to use memory system mem_system_message = """Act as a researcher trying to answer a question about a topic. You have access to a knowledge base of documents broken down into context chunks that are connected to eachother. Information will be presented to you with a small number of chunks at a time. Each chunk of information may or may not be relevant to the question. Additionally, each context chunk also has connection references to other chunks that are not immediately presented, but can be accessed by requesting to lookup the chunk referenced by the connection. For each chunk that you are presented with, list out the chunk number, then evaluate whether or not the chunk is relevant to the question. If the chunk is relevant, provide a summary of the relevant information in the chunk, otherwise, just put 'None' Then, give the best answer you can with the information that you have so far. Finally, reflect on that answer and decide if it can be improved by looking up additional information from the connections. If so, list out any of the connections that you think would help improve the answer. For example, if you are presented a chunk that seems like it is about to have important information to answer the question, but stops and has a connection that "CONTINUES TO" another chunk, you can respond by saying: "LOOKUP CONTEXT CHUNK #<chunk id>". For example, your answer should follow this format: "Chunk Review: Chunk #<chunk id> - Relevant - <summary of relevance information in chunk> Chunk #<chunk id> - Not Relevant - None Chunk #<chunk id> - Relevant - <summary of relevance information in chunk> Answer so far: <answer> Further exploration chunk connection lookups: CONTINUES TO Context Chunk #<chunk id> CONTINUES TO Context Chunk #<chunk id> " """ # Presents context information mem_query_template = PromptTemplate.from_template("""The question is: QUESTION: {question} Here is the information gathered so far: WORKING SUMMARY: {working_summary} Below are the relevant context chunks that have been looked up so far: CONTEXT CHUNKS: {context_chunks}""") class GraphDBTraversalChain(Chain): """ give llm context chunks and their connections within a graph db and ask the llm to pick out relevant information and continue to explore the graph db for more information Attributes: llm_chain: LLMChain used to query LLM graph_vector_store: VectorStore instance that is used to retrieve context chunks based on the input. max_depth: The maximum depth to traverse in the graph database (default is 3). starting_chunks: The number of initial context chunks to provide to the LLM (default is 4). """ llm_chain: LLMChain = None graph_vector_store: VectorStore max_depth: int = 3 starting_chunks: int = 4 _document_map_id_to_num: Dict[str, str] = PrivateAttr() _document_map_num_to_id: Dict[str, str] = PrivateAttr() @property def input_keys(self) -> List[str]: return ['input'] @property def output_keys(self) -> List[str]: return ['output'] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._document_map_id_to_num = {} # maps db id to local context number self._document_map_num_to_id = {} # maps local context number to db id def explain_document_graph(self, documents: list[Document]) -> str: """ Create a plain text description of a documents from graph database and their connections to feed context to llm Output format: Document Chunk#<num> Content: <all of the content of the document here> Connections: CONTINUES to Document Chunk #<num> CONTINUES FROM Document Chunk #<num> """ description = [] for document in documents: # Document ID and content description.append(f"Context Chunk #{self.map_id_to_number(document.metadata['id'])}") description.append(f"Content: {document.page_content}") # Document connections description.append("Connections:") connections = document.metadata.get('connections', []) for connection in connections: if 'type' in connection and 'connected_id' in connection and 'direction' in connection: direction = "TO" if connection['direction'] == "out" else "FROM" conn_num = self.map_id_to_number(connection['connected_id']) description.append(f" {connection['type']} {direction} Document Chunk #{conn_num}") description.append("\n") return "\n".join(description) def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: # Look up relevant context chunks from vector store context_docs = self.graph_vector_store.search(inputs['input'], search_type='similarity', k=self.starting_chunks) # Create a mapping from db id to local context number for doc in context_docs: self.add_to_document_map(doc) working_summary = "None" depth = 0 while True: output = self.llm_chain({'question': inputs['input'], 'working_summary': working_summary, 'context_chunks': self.explain_document_graph(context_docs)}) # Parse output to get working summary output.update(_parse_output(output['response'])) working_summary = output['working_summary'] # Stop calling once no additional exploration calls are made or the max depth is reached depth += 1 if depth >= self.max_depth or not output['requested_connections']: break # Look up the requested connections context_docs = [] for connection in output['requested_connections']: # dereference local context number to db id connection_id = self.map_num_to_id(connection['num']) doc = self.graph_vector_store.docstore.search(connection_id) self.add_to_document_map(doc) context_docs.append(doc) return {'output': output} def add_to_document_map(self, doc): # add document self._add_to_document_map(doc.metadata['id']) # add connections for connection in doc.metadata.get('connections', []): self._add_to_document_map(connection['connected_id']) def _add_to_document_map(self, doc_id): # check if document is already in the map if doc_id in self._document_map_id_to_num: return doc_num = str(len(self._document_map_id_to_num) + 1) self._document_map_id_to_num[doc_id] = doc_num self._document_map_num_to_id[doc_num] = doc_id def map_id_to_number(self, doc_id): return self._document_map_id_to_num[doc_id] def map_num_to_id(self, num): return self._document_map_num_to_id[num] def _parse_output(output): """ Parse the output of the llm chain to get the working summary, requested connections, and reviewed chunks returns chunks analysis, working summary and list of context chunks that were looked up """ # Sections within the output that we want to parse markers = ['Chunk Review:', 'Answer so far:', 'Further exploration chunk connection lookups:'] # Escape the markers for regex use markers = [re.escape(marker) for marker in markers] # Create a pattern that matches the markers pattern = '|'.join(markers) # Split the output using the pattern parts = re.split(pattern, output) # Skip the first part, because it's before the first marker _, chunk_review, summary, connections = parts # strip whitespace summary = summary.strip() # Parse the chunk review section chunk_data = [] for m in re.finditer(r'Chunk #(\d+) - (Relevant|Not Relevant) - (.*)', chunk_review): chunk_data.append({'num': m.group(1), 'relevant': True if m.group(2) == 'Relevant' else False, 'summary': m.group(3)}) # Parse the connections section connection_data = [] for m in re.finditer(r'(\w+) TO Context Chunk #(\d+)', connections): connection_data.append({'num': m.group(2), 'connection_type': m.group(1)}) return {'reviewed_chunks': chunk_data, 'working_summary': summary, 'requested_connections': connection_data} if __name__ == '__main__': from langchain.callbacks import StdOutCallbackHandler from langchain.chat_models import ChatOpenAI from src.agents.chat_chain import ChatChain from src.memory.triple_modal_memory import TripleModalMemory import os from dotenv import load_dotenv # Set up the cache import langchain from langchain.cache import SQLiteCache langchain.llm_cache = SQLiteCache(database_path=".langchain.db") # initialize the memory load_dotenv() uri = os.getenv("NEO4J_URI") user = os.getenv("NEO4J_USER") password = os.getenv("NEO4J_PASSWORD") mem = TripleModalMemory(uri, user, password) # Create memory from docks or load from file if it exists ingested = os.path.exists('../data/triple_modal_memory.faiss') if not ingested: knowledge_path = r'C:\Users\colli\Documents\AIPapers' mem.ingest_docs(knowledge_path) mem.save() print("Memory initialized and saved.") else: mem.load() print("Memory loaded.") handler = StdOutCallbackHandler() llm = ChatOpenAI( model_name="gpt-4", # "gpt-3.5-turbo" temperature=0, verbose=True ) chain = ChatChain(llm=llm, prompt=mem_query_template, callbacks=[handler], system_message=mem_system_message) knowledge_base_query_agent = GraphDBTraversalChain(llm_chain=chain, graph_vector_store=mem.vector_store) # Example Research questions: # What are different methods of providing language models with additional context to better answer questions? # How can semantic search be used in conjunction with large language models in order to better answer questions? # What are some techniques for achieving better general intelligence in language models? def main_loop(): try: while True: question = input("Enter a question: ") print(knowledge_base_query_agent.run(question)) except KeyboardInterrupt: print("Shutdown: Saving...") mem.save() print("Shutdown: Complete") else: print("Completed all tasks.") """ Example:------------------------------------------------- What are the known uses of Glowing Moon Berries? Context Chunk #1 Content: 'Glowing Moon Berries are a rare type of berry found only on the moon Zaphiron in the Pegasus galaxy. These luminescent berries shine brightly in the moon's perennial twilight, giving them their distinctive name.' Connections: CONTINUES TO Context Chunk #3 CONTINUES FROM Context Chunk #4 Context Chunk #2 Content: 'Glowing Moon Berries have a bitter, almost electric taste and little nutrition value. They are not considered edible by most species, and have been largely ignored until some interesting uses were discovered recently.' Connections: CONTINUES TO Context Chunk #5 CONTINUES FROM Context Chunk #6 Context Chunk #7 Content: 'Nebula Nectar is an extraordinary substance, harvested from the heart of the Orion Nebula. Nebula Nectar resembles Glowing Moon Berries in some ways which is interesting given how far apart the two galaxies are.' Connections: CONTINUES TO Context Chunk #8 CONTINUES FROM Context Chunk #9 ---- Document #5 Content: 'Glowing Moon Berries are known for their unique properties. They are used primarily as a power source for the nano-tech machinery on Zaphiron due to their unusually high energy output.' Connections: CONTINUES to Document #12 CONTINUES FROM Document #2 Document #3 Content: 'In 2225, during the maiden voyage of the interstellar exploration ship 'Star Wanderer', the crew made a surprising discovery on Zaphiron, an obscure moon in the Pegasus galaxy. Amidst the constant twilight of the moon's surface, they found clusters of luminescent berries, later named 'Glowing Moon Berries', their radiance illuminating the alien landscape with an ethereal glow.' Connections: CONTINUES to Document #15 CONTINUES FROM Document #1 Document #15 Content: 'Later in 2225, as the Star Wanderer's crew continued their exploration of Zaphiron, they uncovered ancient ruins of a long-lost civilization, revealing intricate carvings that eerily mirrored constellations observed from Earth. This discovery deepened the mystery of Zaphiron, hinting at a potential connection between this distant moon and our home planet' Connections: CONTINUES to Document #16 CONTINUES FROM Document #15 Document #12 Content: 'Remarkably, when juiced and refined, the berries can power the nano-tech machines for months on a single serving, outperforming any other known energy source. Furthermore, the energy they emit is clean and sustainable, making Glowing Moon Berries a crucial component in the maintenance of the delicate ecological balance on Zaphiron.' Connections: CONTINUES to Document #17 CONTINUES FROM Document #5 """
[ "The question is: \nQUESTION: {question}\n\nHere is the information gathered so far:\nWORKING SUMMARY: {working_summary}\n\nBelow are the relevant context chunks that have been looked up so far:\nCONTEXT CHUNKS:\n{context_chunks}" ]
2024-01-10
LuckCow/ModularIntellect
src~agents~chat_chain.py
"""Chain that carries on a conversation and calls an LLM.""" from typing import Dict, List, Any, Optional from pydantic import Extra, Field from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chat_models import ChatOpenAI from langchain.chat_models.base import BaseChatModel from langchain.memory import ChatMessageHistory from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseChatMessageHistory from langchain.schema import SystemMessage class ChatChain(LLMChain): """ Chain to have a conversation and maintain conversation history for Chat type models Example: .. code-block:: python chat_chain = ChatChain(prompt=PromptTemplate(input_variables=["foo"], template="Say {foo}") """ prompt: BasePromptTemplate system_message: str = None history: BaseChatMessageHistory = Field(default_factory=ChatMessageHistory) llm: BaseChatModel = Field(default_factory=ChatOpenAI) output_key: str = "response" #: :meta private: def __init__(self, **kwargs): super().__init__(**kwargs) # initialize system message if self.system_message: self.history.add_message(SystemMessage(content=self.system_message)) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Use this since so some prompt vars come from history.""" return self.prompt.input_variables @property def output_keys(self) -> List[str]: """Will always return text key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: # format human message prompt_value = self.prompt.format(**inputs) # add to history self.history.add_user_message(prompt_value) # Call chat llm response = self.llm( self.history.messages, callbacks=run_manager.get_child() if run_manager else None ) # add response to history self.history.add_ai_message(response.content) # log results to run manager if run_manager: run_manager.on_text(f"history: {self.history.messages[:-2]}\nprompt: {prompt_value}\nresponse: {response.content}") return {self.output_key: response.content} @property def _chain_type(self) -> str: return "ChatChain" if __name__ == '__main__': # Test usage from dotenv import load_dotenv from langchain import PromptTemplate from langchain.callbacks import StdOutCallbackHandler from langchain.memory import ChatMessageHistory from langchain.schema import SystemMessage load_dotenv() chat = ChatOpenAI( model_name="gpt-3.5-turbo", temperature=0, verbose=True ) system_message = """I would like you to recite the colors of the rainbow to the user. The list of colors, in order, should be: "red", "orange", "yellow", "green", "blue", "indigo", "violet". However, please note that the user may not always ask for all seven colors at once. Instead, they may ask for a specific number of colors. When this happens, your task is to recite the requested number of colors from the list, starting from "red" and proceeding in order. If the user asks for more colors at a later point, you should continue from where you last stopped. For example, if the user first requests three colors, you should say "red", "orange", "yellow". If the user then asks for two more colors, you should continue with "green", "blue". You should remember the last color you recited and continue the sequence from there each time the user requests more colors. However, once you recite "violet", if the user requests more colors, you should start back from "red". The user has requested 0 colors so the next one will be red.""" prompt = PromptTemplate.from_template("""Give me the next {number} colors""") llmchain = ChatChain(llm=chat, prompt=prompt, callbacks=[StdOutCallbackHandler()], system_message=system_message, verbose=True) response = llmchain.run(number=3) print(response) # memory.buffer.append(prompt.format_messages(number=2)) response = llmchain.run(number=2) print(response)
[ "orange", "Give me the next {number} colors", "green", "indigo" ]
2024-01-10
LuckCow/ModularIntellect
src~memory~triple_modal_memory.py
from typing import Dict, List, Any import time from langchain.schema import BaseMemory from langchain import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from src.memory.neo4j_docstore import Neo4jDocstore from langchain.embeddings import OpenAIEmbeddings from neo4j import GraphDatabase import faiss from src.utils.mapping_directory_loader import MappingDirectoryLoader class TripleModalMemory: """Provides interface for storing and retrieving data from the Neo4j+FAISS database.""" def __init__(self, uri, user, password): # TODO: load in existing documents into the faiss index, enforcing them to be in sync # or save the faiss index to disk (but then we need to either save every time something happens or risk corruption # setup the docstore and vector store neo4j_docstore = Neo4jDocstore(uri, auth=(user, password)) embedding = OpenAIEmbeddings() index = faiss.IndexFlatL2(1536) faiss_vector_store = FAISS(embedding.embed_query, index, docstore=neo4j_docstore, index_to_docstore_id={}) self.vector_store = faiss_vector_store # setup the memory interface class TripleModalAgentMemory(BaseMemory): """Langchain Memory class for chain interactions to be persisted into the Neo4j database.""" memory_key: str = "history" def clear(self): # Clear the Neo4j graph with driver.session() as session: query = "MATCH (n) DETACH DELETE n" session.run(query) @property def memory_variables(self) -> List[str]: return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: text = inputs[list(inputs.keys())[0]] similar_interactions = self._retrieve_similar_interactions(text) # interactions_text = "\n".join( # [f"{item['i.text']} ({item['i.timestamp']})" for item in similar_interactions]) return {self.memory_key: similar_interactions} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: input = inputs[list(inputs.keys())[0]] output = outputs[list(outputs.keys())[0]] timestamp = inputs.get("timestamp", None) # You can include an optional timestamp in the inputs if timestamp is None: import datetime timestamp = datetime.datetime.utcnow().isoformat() # TODO: identify and pass interaction identifiers interaction_id = '1' faiss_vector_store.add_texts([input, output], metadatas=[{'timestamp': timestamp, 'source': 'user', 'node_type': 'interaction', 'conversation_id': interaction_id}, {'timestamp': timestamp, 'source': 'agent', 'node_type': 'interaction', 'conversation_id': interaction_id}]) def _store_interaction(self, text, timestamp, parent_id=None): # Add the input to the FAISS index faiss_vector_store.add_texts([text], metadatas=[{'timestamp': timestamp}]) # TODO: parent? def _retrieve_similar_interactions(self, text, k=5): # Search the FAISS index for similar interactions return faiss_vector_store.similarity_search(text, k) self.memory = TripleModalAgentMemory() def store_task(self, task: str, timestamp: str): """Store a task in the memory.""" self.vector_store.add_texts([task], metadatas=[{'timestamp': timestamp, 'node_type': 'task'}]) def store_notes(self, notes: str, sources, timestamp: str): """Store notes that come from existing memory.""" self.vector_store.add_texts([notes], metadatas=[{'timestamp': timestamp, 'sources': sources, # TODO: setup sources 'node_type': 'notes'}]) def ingest_docs(self, path: str, chunk_size=1000, chunk_overlap=200): """Read, split and store code and other files from within the repository/folder.""" loader = MappingDirectoryLoader(path, recursive=True, silent_errors=False) raw_documents = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap, ) documents = text_splitter.split_documents(raw_documents) for d in documents: d.metadata["chunk_size"] = chunk_size d.metadata["chunk_overlap"] = chunk_overlap d.metadata["node_type"] = "document" # Add documents to vector store in chunks with wait time to avoid getting rate limited # by the OpenAI API (20 requests per minute) for i in range(0, len(documents), 20): self.vector_store.add_documents(documents[i:i+20]) print(f"Added documents {i} to {i+20}/{len(documents)} to vector store") time.sleep(60) #self.vector_store.add_documents(documents) def save(self): self.vector_store.save_local('../data', 'triple_modal_memory') def load(self): embedding = OpenAIEmbeddings() self.vector_store = FAISS.load_local('../data', embedding, 'triple_modal_memory') def verify(self): print(self.vector_store.index.ntotal) def search(self, query, k): return self.vector_store.similarity_search(query, k) def test_ingest_save(mem): knowledge_path = r'C:\Users\colli\PycharmProjects\ModularIntellect\data\test_knowledgebase' # storage_path = '../data/langchain.pkl' mem.ingest_docs(knowledge_path) mem.save() if __name__ == '__main__': import os from dotenv import load_dotenv load_dotenv() uri = os.getenv("NEO4J_URI") user = os.getenv("NEO4J_USER") password = os.getenv("NEO4J_PASSWORD") mem = TripleModalMemory(uri, user, password) #test_ingest_save(mem) mem.load() mem.verify() print(mem.vector_store.similarity_search("What are the implementations of BaseChainLangAgent?", 3)) # import datetime # timestamp = datetime.datetime.utcnow().isoformat() # #faiss_vector_store.add_texts(['Start of document ', 'middle of document', 'end of document'], metadatas=[{'timestamp': timestamp}, {'timestamp': timestamp}, {'timestamp': timestamp}]) # # mem.save_context({"text": "The fictional nation of Jietao has 4 major cities: Niuy, Bietao, Cholkja, and Fosst"}, {}) # mem.save_context({"text": "Leeroy is a blacksmith that lives in Niuy"}, {}) # mem.save_context({"text": "Jaon is a mason that lives in Cholkja"}, {}) # # print(mem.retrieve_similar_interactions("What nation does Leeroy live in?", 3)) #driver.close()
[]
2024-01-10
LuckCow/ModularIntellect
src~experiments~code_base_summary_ingest.py
""" Prompt chaining and vectorstore example using LangChain - load all code from a code base and answer questions about it as a chatbot. Based on chat-langchain (https://github.com/hwchase17/chat-langchain/) """ import pickle import os import logging from langchain.callbacks import CallbackManager, StdOutCallbackHandler from langchain.chains import ChatVectorDBChain from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT, QA_PROMPT) from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI from langchain.vectorstores.base import VectorStore from langchain.embeddings import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores.faiss import FAISS from src.utils.mapping_directory_loader import MappingDirectoryLoader logger = logging.getLogger(__name__) def ingest_docs(path: str): """Read, split and store code and other files from within the repository/folder.""" loader = MappingDirectoryLoader(path, recursive=True, silent_errors=True) raw_documents = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, ) documents = text_splitter.split_documents(raw_documents) embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(documents, embeddings) # Save vectorstore with open("vectorstore.pkl", "wb") as f: pickle.dump(vectorstore, f) def get_chain( vectorstore: VectorStore, ) -> ChatVectorDBChain: """Create a ChatVectorDBChain for question/answering.""" # callback manager for logging manager = CallbackManager([StdOutCallbackHandler()]) # LLM interface (needs os.environ["OPENAI_API_KEY"] set) question_gen_llm = OpenAI( temperature=0, verbose=True, ) # Creates standalone question from chat history context question_generator = LLMChain( llm=question_gen_llm, prompt=CONDENSE_QUESTION_PROMPT, callback_manager=manager, verbose=True ) # Asks final question doc_chain = load_qa_chain( question_gen_llm, chain_type="stuff", prompt=QA_PROMPT, callback_manager=manager, verbose=True ) # Chains together QuestionGenerator->MemoryLookup->QuestionAnswering qa = ChatVectorDBChain( vectorstore=vectorstore, combine_docs_chain=doc_chain, question_generator=question_generator, ) return qa if __name__ == "__main__": # vector-store docs (only necessary on first run) (delete vectorstore.pkl if you change the path) if not os.path.exists("vectorstore.pkl"): logger.info("No pickle file found, ingesting docs...") ingest_docs(r"C:\Users\colli\PycharmProjects\langchain-master") else: logger.info("Using existing pickle file.") # Load Up vectorstore with open("vectorstore.pkl", "rb") as f: vectorstore = pickle.load(f) qa_chain = get_chain(vectorstore) # Chat loop chat_history = [] while True: question = input("Question: ") result = qa_chain({"question": question, "chat_history": chat_history}) chat_history.append((question, result["answer"])) print(result['answer'])
[]
2024-01-10
aofenghanyue/EntryGuidance
guidance~multiMissileGuideInstance.py
# -*- coding: utf-8 -*- # EditTime : 2021-09-29 20:22 # Author : Of yue # File : multiMissileGuideInstance.py # Intro : from typing import List import numpy as np import multiset as glbs from numpy import sin, cos, tan, arccos, arctan from entity.missile import Missile from guidance.MultiGuide import MultiMissileGuidance from database.Constant import earth as e from database.Atmosphere import atmosphereISA as ATM from utils.common import coords_trans as ct from utils.common import heading_angle, limit_num from custom.EntryCorridor import cav_corridor from utils.interpolate import Interp1 from utils.common import inv_alpha from core.MultiMissileSim import MultiMissileSim from scipy import integrate, optimize import copy class MultiMisGuideInstance(MultiMissileGuidance): def __init__(self): super(MultiMisGuideInstance, self).__init__() # 各导弹起飞前准备时间 self.start_time: list = [] self.control_param_list = [] # 要从制导参数直接导入到控制参数的值名称 self.guide_phase: dict = { "descent_phase1": self.descent_phase1, "descent_phase2": self.descent_phase2, "steady_glide_phase": self.steady_glide_phase, "bias_explicit_guidance": self.bias_explicit_guidance } def init_custom(self, mis: List[Missile], tar: List[Missile] = [], meta={}): self.control_param_list = getattr(glbs, 'CONTROL_PARAM_LIST', ["L", "D", "m", "attack_angle", "bank_angle"]) for index, (m, t) in enumerate(zip(mis, tar)): m.guide.update( { # 飞行模式, # default: 默认为正常制导 # online: 在线弹道仿真 "guide_flag": "default", "alpha_max": m.p.alpha_max, "alpha_sg": m.p.max_L2D_alpha, "alpha_2": np.deg2rad(6), "E2": -5.55e7, "Rs": cav_corridor.average_h_e + e.Re, "VTAEM": glbs.StatusParams[index]["MissileEndStatus"]["velocity"], "HTAEM": glbs.StatusParams[index]["MissileEndStatus"]["height"], "STAEM": glbs.StatusParams[index]["MissileEndStatus"]["s"], "ETAEM": e.E(glbs.StatusParams[index]["MissileEndStatus"]["velocity"], glbs.StatusParams[index]["MissileEndStatus"]["height"]), "psiTAEM": glbs.StatusParams[index]["MissileEndStatus"]["heading_angle"], "TTAEM": glbs.StatusParams[index]["MissileEndStatus"]["t"], "guide_phase": "descent_phase1", "err_tol": getattr(glbs, 'ERR_TOL', 1e-2), "kgamma": getattr(glbs, 'K_GAMMA', 3), # 下降段攻角反馈系数 "k_PN": getattr(glbs, 'K_PN', 3), # 显式制导段比例导引系数 'k_sigma': getattr(glbs, 'K_SIGMA', -50), # 最大倾侧角中的系数 'k_gamma_sgp': getattr(glbs, 'K_GAMMA_SGP', 3), # 滑翔段TDCT反馈系数 'k_sigma_beg': getattr(glbs, 'K_SIGMA_BEG', 0.5 / 1e5), # 显式制导反馈系数 } ) m.guide["EBR"] = [(m.E + m.guide["E2"]) / 2, m.guide["E2"], m.guide["ETAEM"] + 2e6] m.guide["BR_flag"] = [False, False, False] m.guide["update_EBR_flag"] = [False, False, False] m.guide["BR_times"] = 0 m.guide["L2Dbsl_TAEM"] = cav_corridor.L2D_E(m.guide["ETAEM"]) # 初始倾侧角符号 great_circle_heading = heading_angle(m.status.longitude, m.status.latitude, t.status.longitude, t.status.latitude) m.guide["sgn_ini"] = 1 if great_circle_heading[0] > m.status.heading_angle else -1 # 设定末端航向角 m.guide["psiTAEM"] = great_circle_heading[1] print(f"导弹{m.guide['index']}初始零偏航向角:{np.rad2deg(great_circle_heading[0])}\n" f"预期末端航向角{np.rad2deg(great_circle_heading[1])}") # 其它所有参数设置完后,导弹发射时间初始化 self.before_online_sim(mis, tar, meta) for index, (m, t) in enumerate(zip(mis, tar)): # 导弹发射时间 m.guide["launch_time"] = self.start_time[index] def before_online_sim(self, mis: List[Missile], tar: List[Missile] = [], meta={}): # 离线仿真阶段,设置导弹的参考弹道与发射时间 print('设置初始发射时间') self.start_time = [0] def is_launched(self, mis: Missile, tar: Missile = None, meta={}): # 判断各导弹是否发射 if mis.launched: return True elif meta["t"] >= mis.guide["launch_time"]: mis.launched = True return mis.launched def guide(self, mis: Missile, tar: Missile = None, meta={}): # 决定积分精度 mis.guide["step_len"] = self.step_len_gen(mis) # 解析来自导弹的数据 self.parse_param(mis, tar, meta) # 制导 self.guide_phase[mis.guide["guide_phase"]](mis, tar, meta) # 后续处理,将制导数据传入控制方程 self.guide2equation(mis, tar, meta) def step_len_gen(self, mis: Missile): # TODO 根据飞行状态判断积分精度 return 0.1 def parse_param(self, mis, tar, meta={}): S = mis.p.reference_area h = mis.status.height v = mis.status.velocity E = mis.E Ma = mis.ma t = mis.status.t gamma = mis.status.path_angle psi = mis.status.heading_angle CL_plan, CD_plan = mis.aero.CLCD(Ma, self.attack_angle_plan(mis, E)) rho = ATM.rho(h) q_inf = rho * v ** 2 * S / 2 CL, CD = mis.control.get('CL', CL_plan), mis.control.get('CD', CD_plan) L, D = CL * q_inf, CD * q_inf great_circle_heading = heading_angle(mis.status.longitude, mis.status.latitude, tar.status.longitude, tar.status.latitude) ref_psi = great_circle_heading[0] delta_psi = mis.status.heading_angle - ref_psi if delta_psi > np.pi: delta_psi = delta_psi - 2 * np.pi elif delta_psi < -np.pi: delta_psi = delta_psi + 2 * np.pi sgo = self.s_go(mis, tar, meta) q = mis.p.k_Q * np.sqrt(rho) * pow(v, 3.15) mis.guide.update({ 'm': mis.p.m, 'S': S, 'E': E, 'Ma': Ma, 'v': v, 'h': h, 'CL': CL, 'CD': CD, 'q_inf': q_inf, 'L': L, 'D': D, 'great_circle_heading': great_circle_heading, 'delta_psi': delta_psi, 's_go': sgo, 'ref_psi': ref_psi, 'q': q, 'psi': psi, 'gamma': gamma, 't': t }) def before_phase(self, mis: Missile, tar: Missile = None, meta={}): self.update_kh(mis, tar, meta) if not mis.guide["guide_phase"] == 'bias_explicit_guidance': if mis.guide["E"] >= mis.guide["EBR"][2] + 1e6: # 第三次反转前更新升阻比参数 self.update_L12D(mis, tar, meta) else: mis.guide["L12D_param"][1] = mis.guide["L12D_const"] self.update_path_angle_sgp(mis, tar, meta) if mis.guide["guide_phase"] == "steady_glide_phase": self.update_EBR(mis, tar, meta) self.BR(mis, tar, meta) def descent_phase1(self, mis: Missile, tar: Missile = None, meta={}): mis.guide["attack_angle"] = mis.guide["alpha_max"] mis.guide["bank_angle"] = 0 if mis.status.t > 10 and mis.guide["dy"][4] > 0: print(f'导弹{mis.guide["index"]}下降段第一段结束, t = {meta["t"]}') mis.guide["guide_phase"] = "descent_phase2" mis.guide["E_steady_glide_start"] = mis.guide["E"] self.before_phase(mis, tar, meta) mis.guide["dgamma0"] = mis.guide["gamma_sg"] - mis.status.path_angle def descent_phase2(self, mis: Missile, tar: Missile = None, meta={}): self.before_phase(mis, tar, meta) delta_gamma = mis.guide["gamma_sg"] - mis.status.path_angle mis.guide["attack_angle"] = delta_gamma / mis.guide["dgamma0"] * mis.guide["alpha_max"] + ( mis.guide["dgamma0"] - delta_gamma) / mis.guide["dgamma0"] * ( self.attack_angle_plan(mis, mis.guide["E"]) + mis.guide[ "kgamma"] * delta_gamma) mis.guide["bank_angle"] = 0 if np.abs(delta_gamma) < mis.guide["err_tol"]: print(f'下降段第二段结束, t = {meta["t"]}') mis.guide["guide_phase"] = "steady_glide_phase" def steady_glide_phase(self, mis: Missile, tar: Missile = None, meta={}): self.before_phase(mis, tar, meta) alpha_bsl = self.attack_angle_plan(mis, mis.guide["E"]) sigma_bsl = self.sigma_bsl(mis, tar, meta) gamma_sg = mis.guide["gamma_sg"] sigma_max = self.sigma_max(mis, tar, meta) alpha_cmd, sigma_cmd = self.TDCT(mis, alpha_bsl, sigma_bsl, gamma_sg - mis.status.path_angle) sigma_cmd = limit_num(sigma_cmd, abs_limit=sigma_max) mis.guide["attack_angle"] = alpha_cmd mis.guide["bank_angle"] = sigma_cmd if mis.guide["E"] < mis.guide["EBR"][2]: mis.guide["sgo_beg"] = mis.guide["s_go"] mis.guide["guide_phase"] = 'bias_explicit_guidance' print(f'平稳滑翔段结束, t = {meta["t"]}') def bias_explicit_guidance(self, mis: Missile, tar: Missile = None, meta={}): """ :param mis: :param tar: :param meta: :return: """ alpha, sigma = self.sigma_alpha_beg(mis, tar, meta) sigma_max = self.sigma_max(mis, tar, meta) sigma = limit_num(sigma, abs_limit=sigma_max) alpha = limit_num(alpha, abs_limit=mis.guide["alpha_max"]) mis.guide["attack_angle"] = alpha mis.guide["bank_angle"] = sigma def update_kh(self, mis: Missile, tar: Missile, meta={}): Rs = mis.guide["Rs"] m_phi = mis.status.latitude t_phi = tar.status.latitude E = mis.guide["E"] ET = mis.guide["ETAEM"] V = mis.guide["v"] VT = mis.guide["VTAEM"] H = mis.guide["h"] HT = mis.guide["HTAEM"] L2DT = mis.guide["L2Dbsl_TAEM"] ha = mis.guide["great_circle_heading"] w = e.omega_e L2D = mis.guide["CL"] / mis.guide["CD"] * cos(mis.control["bank_angle"]) hz1 = -2 * Rs * w * V * cos(m_phi) * sin(ha[0]) - \ Rs * w ** 2 * (e.Re + H) * cos(m_phi) * \ (cos(m_phi) - L2D * sin(m_phi) * cos(ha[0])) hz1_t = -2 * Rs * w * VT * cos(t_phi) * sin(ha[1]) - \ Rs * w ** 2 * (e.Re + HT) * cos(t_phi) * \ (cos(t_phi) - L2DT * sin(t_phi) * cos(ha[1])) kh1 = (hz1_t * E - hz1 * ET) / (E - ET), \ (hz1 - hz1_t) / (E - ET) hz2 = w ** 2 * Rs * (e.Re + H) * L2D * sin(m_phi) * cos(m_phi) * cos(ha[0]) hz2_t = w ** 2 * Rs * (e.Re + HT) * L2DT * sin(t_phi) * cos(t_phi) * cos(ha[1]) kh2 = (hz2_t * E - hz2 * ET) / (E - ET), \ (hz2 - hz2_t) / (E - ET) kh3 = -2 * w * Rs * (VT * E - ET * V) * (sin(t_phi) * E - sin(m_phi) * ET) / (E - ET) ** 2, \ -2 * w * Rs * (VT * sin(m_phi) + V * sin(t_phi)) * (E + ET) / (E - ET) ** 2 \ + 4 * w * Rs * (VT * sin(t_phi) * E + V * sin(m_phi) * ET) / (E - ET) ** 2, \ -2 * w * Rs * (V - VT) * (sin(m_phi) - sin(t_phi)) / (E - ET) ** 2 hz4 = -2 * Rs * w * V * cos(m_phi) * sin(ha[0]) - \ Rs * w ** 2 * (e.Re + H) * cos(m_phi) ** 2 hz4_t = -2 * Rs * w * VT * cos(t_phi) * sin(ha[1]) - \ Rs * w ** 2 * (e.Re + HT) * cos(t_phi) ** 2 kh4 = (hz4_t * E - hz4 * ET) / (E - ET), \ (hz4 - hz4_t) / (E - ET) mis.guide["kh"] = [ kh1, kh2, kh3, kh4 ] def update_path_angle_sgp(self, mis: Missile, tar: Missile, meta={}): rho = ATM.rho(mis.guide["h"]) drho_dh = -0.00015 * rho v = mis.guide["v"] S = mis.guide["S"] m = mis.guide["m"] Rh = mis.guide["h"] + e.Re sigma_bsl = self.sigma_bsl(mis, tar, meta) alpha_bsl = self.alpha_bsl(mis, tar, meta) CL_bsl, CD_bsl = mis.aero.CLCD(mis.ma, alpha_bsl) D_bsl = CD_bsl * mis.guide["q_inf"] dCL_dE = cav_corridor.interp_dCL_dE(mis.guide["E"]) d1 = rho * v ** 2 * S * cos(sigma_bsl) / 2 / m * dCL_dE + 2 / Rh + CL_bsl * rho * S * cos(sigma_bsl) / m d2 = -CL_bsl * v ** 2 * S * cos(sigma_bsl) * drho_dh / 2 / e.g0 / m + 2 / Rh + CL_bsl * rho * S * cos( sigma_bsl) / m + v ** 2 / Rh ** 2 / e.g0 mis.guide["gamma_sg"] = -D_bsl / m / e.g0 * d1 / d2 def alpha_bsl(self, mis: Missile, tar: Missile = None, meta={}): return self.attack_angle_plan(mis, mis.guide['E']) def sigma_bsl(self, mis: Missile, tar: Missile = None, meta={}): if mis.guide["guide_phase"] == 'descent_phase1' or mis.guide["guide_phase"] == 'descent_phase2': return 0 if mis.guide["guide_phase"] == 'steady_glide_phase': return self.sigma_bsl_sgp(mis, tar, meta) if mis.guide["guide_phase"] == 'bias_explicit_guidance': return self.sigma_bsl_beg(mis, tar, meta) def sigma_bsl_sgp(self, mis: Missile, tar: Missile = None, meta={}): L1_L = self.L12D(mis) / (mis.guide["CL"] / mis.guide["CD"]) # assert 1 >= L1_L >= -1, '超出射程范围' if 1 < L1_L or L1_L < -1: return 0 res = mis.guide["sgn_ini"] * arccos(L1_L) return mis.guide["sgn_ini"] * (-1) ** mis.guide["BR_times"] * res def sigma_bsl_beg(self, mis: Missile, tar: Missile = None, meta={}): # TODO 显式制导倾侧角 return 0 def alpha_beg(self, mis: Missile, tar: Missile = None, meta={}): # TODO 显式制导攻角 return 0 def sigma_alpha_beg(self, mis: Missile, tar: Missile = None, meta={}): """ 在线仿真时/显式制导 倾侧角与攻角参数 :param mis: :param tar: :param meta: :return: """ V = mis.guide["v"] gamma = mis.guide["gamma"] h = mis.guide["h"] phi = mis.status.latitude psi = mis.guide["psi"] psi_end = mis.guide["psiTAEM"] delta_psi_end = 0 if not psi_end else psi_end - psi delta_psi = mis.guide["delta_psi"] delta_h = mis.guide["HTAEM"] - h s_go = mis.guide["s_go"] s_go2 = s_go - mis.guide["STAEM"] s_LOS = np.linalg.norm([s_go2, delta_h]) gamma_LOS = np.arctan2(delta_h, s_go2) a_tol = e.g0 - V ** 2 / (e.Re + h) - e.omega_e ** 2 * (e.Re + h) * cos(phi) ** 2 - 2 * V * e.omega_e * cos( phi) * sin(psi) aL1 = -mis.guide["k_PN"] * V ** 2 * sin(gamma - gamma_LOS) / s_LOS + a_tol aL2_orig = aL1 * tan(self.sigma_bsl_sgp(mis)) aL2 = (-12 * V ** 2 * sin(delta_psi) / s_LOS - 6 * V ** 2 * sin(delta_psi_end) / s_LOS) *(mis.guide["sgo_beg"]-s_go)/mis.guide["sgo_beg"] \ + aL2_orig*s_go2/mis.guide["sgo_beg"] mis.guide["a_tol"] = a_tol mis.guide["aL2_orig"] = aL2_orig mis.guide["aL1"] = aL1 mis.guide["aL2"] = aL2 if mis.guide["guide_flag"] == "online": # 反解攻角 CL = mis.guide["m"] * np.linalg.norm([aL1, aL2]) / mis.guide["q_inf"] mis.guide["CL_beg"] = CL alpha_sim = mis.aero.inverse_alpha(CL, mis.guide["Ma"]) sigma_sim = arctan(aL2 / aL1) return alpha_sim, sigma_sim else: # sigma = arctan(aL2 / a_tol) sigma = arctan(aL2 / aL1) # 这里还是采用与参考飞行距离的误差来反馈 if mis.guide["refs"]: k_sgo = 0.2 * s_go / mis.guide["sgo_beg"] E_min = mis.guide["refs"].get('ETAEM_ref', -np.inf) E_max = mis.guide["refs"].get('E_sim0', np.inf) fs_go_ref = mis.guide["refs"].get('f_sgo_ref', None) ft_ref = mis.guide["refs"].get('f_t_ref', None) fl2d_ref = mis.guide["refs"].get('f_L12D_ref', None) E_interp = limit_num(mis.guide["E"], interval_limit=[E_min,E_max],mode='interval') sgo_ref = fs_go_ref(E_interp) if fs_go_ref else s_go t_ref = ft_ref(E_interp) if ft_ref else mis.guide["t"] L12D_ref = fl2d_ref(E_interp) if fl2d_ref else self.L12D(mis, mis.guide["E"]) s_go_ref2 = sgo_ref - k_sgo * mis.guide["v"] * (mis.guide["t"] - t_ref) L12D_beg = L12D_ref + mis.guide["k_sigma_beg"] * (s_go - s_go_ref2) # # 调试 # L12D_beg = L12D_ref else: L12D_beg = self.L12D(mis, mis.guide["E"]) mis.guide["ref_sgo"] = sgo_ref mis.guide["ref_t"] = t_ref mis.guide["ref_L12D"] = L12D_ref mis.guide["L12D_beg"] = L12D_beg alpha = inv_alpha(mis.guide["Ma"], L12D_beg / cos(sigma), mis.aero) return alpha, sigma def sigma_max(self, mis: Missile, tar: Missile = None, meta={}): if not glbs.CONSIDER_SIGMA_MAX: return np.inf dHmindE = cav_corridor.dHmindE_E(mis.guide["E"]) D = mis.control.get('D', mis.guide['D']) dHdE = -mis.guide["m"] * sin(mis.status.path_angle) / D Hmin = cav_corridor.interp_Hmin_E(mis.guide["E"]) L1 = mis.guide["m"] * (e.g0 - mis.guide["v"] ** 2 / (e.Re + Hmin) - e.omega_e ** 2 * (e.Re + Hmin) * cos(mis.status.latitude) ** 2 - 2 * mis.guide["v"] * e.omega_e * cos(mis.status.latitude) * sin(mis.status.heading_angle)) Lmax = mis.guide["CL"] * 0.5 * ATM.rho(Hmin) * mis.guide["v"] ** 2 * mis.guide["S"] if L1 > Lmax: L1 = Lmax sigma_max = arccos(L1 / Lmax) + mis.guide["k_sigma"] * (dHmindE - dHdE) mis.guide["sigma_max_L1"] = L1 mis.guide["sigma_max_Lmax"] = Lmax mis.guide["sigma_max_dHmindE"] = float(dHmindE) mis.guide["sigma_max_dHdE"] = dHdE mis.guide["sigma_max"] = sigma_max return sigma_max def TDCT(self, mis: Missile, alpha_bsl, sigma_bsl, delta_gamma): """ 弹道阻尼抑制振荡 :param alpha_bsl: 攻角预指令 :param sigma_bsl: 倾侧角预指令 :param delta_gamma: 平稳滑翔弹道倾角 - 当前弹道倾角 :return: 攻角指令,倾侧角指令 """ alpha_cmd = alpha_bsl + cos(sigma_bsl) * mis.guide["k_gamma_sgp"] * delta_gamma sigma_cmd = sigma_bsl - sin(sigma_bsl) * mis.guide["k_gamma_sgp"] * delta_gamma / mis.guide["alpha_sg"] return alpha_cmd, sigma_cmd def update_EBR(self, mis: Missile, tar: Missile = None, meta={}): if not mis.guide["update_EBR_flag"][0]: mis.guide["update_EBR_flag"][0] = True self.update_EBR1(mis, tar, meta) elif not mis.guide["update_EBR_flag"][1] and mis.guide["E"] < mis.guide["EBR"][0]: mis.guide["update_EBR_flag"][1] = True self.update_EBR2(mis, tar, meta) elif not mis.guide["update_EBR_flag"][2] and mis.guide["E"] < mis.guide["EBR"][1]: mis.guide["update_EBR_flag"][2] = True self.update_EBR3(mis, tar, meta) def BR(self, mis: Missile, tar: Missile = None, meta={}): if mis.guide["E"] < mis.guide["EBR"][0] and not mis.guide["BR_flag"][0]: mis.guide["BR_flag"][0] = True mis.guide["BR_times"] = 1 elif mis.guide["E"] < mis.guide["EBR"][1] and not mis.guide["BR_flag"][1]: mis.guide["BR_flag"][1] = True mis.guide["BR_times"] = 2 elif mis.guide["E"] < mis.guide["EBR"][2] and not mis.guide["BR_flag"][2]: mis.guide["BR_flag"][2] = True mis.guide["BR_times"] = 3 def update_EBR1(self, mis: Missile, tar: Missile = None, meta={}): """ 更新EBR1,EBR2 :param mis: :param tar: :param meta: :return: """ print("开始更新第一次、第二次反转点") res = optimize.root( lambda x: self.update_EBR1_fun(mis, x), [mis.guide["EBR"][0], mis.guide["EBR"][1]], jac=lambda x: self.update_EBR1_jac(mis, x), method='lm', tol=1e-2 ) print(res.message) def update_EBR2(self, mis: Missile, tar: Missile = None, meta={}): """ 更新EBR2,EBR3 :param mis: :param tar: :param meta: :return: """ print("开始更新第二次、第三次反转点") res = optimize.root( lambda x: self.update_EBR2_fun(mis, x), [mis.guide["EBR"][1], mis.guide["EBR"][2]], jac=lambda x: self.update_EBR2_jac(mis, x), method='lm', tol=1e-2 ) print(res.message) def update_EBR3(self, mis: Missile, tar: Missile = None, meta={}): """ 更新最后一个反转点及参考升阻比 :param mis: :param tar: :param meta: :return: """ print(f"开始更新第三次反转点、参考升阻比, E = {mis.guide['E']}") # # 方法一 # VT = mis.guide["VTAEM"] # TT = mis.guide["TTAEM"] # mis.guide["L12D_const"] = mis.guide["L12D_param"][1] # iter_obj0 = np.array([mis.guide["L12D_const"], mis.guide["EBR"][2]]) # meta["iter_params"] = iter_obj0 # res = self.simulation_online(mis, tar, meta) # vf = res["V"] # tf = res["t"] # G0 = np.array([vf - VT, 0 if not TT else (tf - TT)]) # iter_obj1 = np.array([mis.guide["L12D_const"], mis.guide["EBR"][2] - 1e3 * (vf - VT)]) # # for _ in range(glbs.MAX_EBR2_ITER): # meta["iter_params"] = iter_obj1 # res = self.simulation_online(mis, tar, meta) # vf = res["V"] # tf = res["t"] # G1 = np.array([vf - VT, 0 if not TT else (tf - TT)]) # p = iter_obj1 - iter_obj0 # q = np.array([-p[1], p[0]]) # q = 0.1 * q / np.linalg.norm(q) # iter_obj2 = iter_obj1 + q # meta["iter_params"] = iter_obj2 # res = self.simulation_online(mis, tar, meta) # vf = res["V"] # tf = res["t"] # G2 = np.array([vf - VT, 0 if not TT else (tf - TT)]) # theta_p = np.arctan2(p[1], p[0]) # theta_q = np.arctan2(q[1], q[0]) # inv_temp = np.array([(G1 - G0) / np.linalg.norm(p), (G2 - G1) * 10]).T # inv_jac = np.array([[cos(theta_p), cos(theta_q)], # [sin(theta_p), sin(theta_q)]]).dot(np.linalg.inv(inv_temp)) # iter_obj0 = iter_obj1 # temp1 = inv_jac.dot(G1.reshape(2, 1)) # iter_obj1 = iter_obj1 - temp1.reshape(2)*0.1 # if abs(G1[0]) < 10 and abs(G1[1]) < 10: # break # 第二种方法 VT = mis.guide["VTAEM"] TT = mis.guide["TTAEM"] mis.guide["L12D_const"] = mis.guide["L12D_param"][1] iter_obj0 = np.array([mis.guide["L12D_const"], mis.guide["EBR"][2]]) meta["iter_params"] = iter_obj0 res = self.simulation_online(mis, tar, meta) vf = res["V"] tf = res["t"] G0 = np.array([vf - VT, 0 if not TT else (tf - TT)]) delta_EBR = -1e3 * (vf - VT) iter_obj1 = np.array([mis.guide["L12D_const"], mis.guide["EBR"][2] +delta_EBR]) meta["iter_params"] = iter_obj1 res = self.simulation_online(mis, tar, meta) vf = res["V"] tf = res["t"] G1 = np.array([vf - VT, 0 if not TT else (tf - TT)]) iter_obj2 = iter_obj0 + np.array([0.1, 0]) meta["iter_params"] = iter_obj2 res = self.simulation_online(mis, tar, meta) vf = res["V"] tf = res["t"] G2 = np.array([vf - VT, 0 if not TT else (tf - TT)]) p = (G1-G0)/(delta_EBR/1E6) q = (G2-G0)*10 B = np.array([-p[0]*G0[0] - p[1]*G0[1], -q[0]*G0[0] - q[1]*G0[1]]) temp2 = p[0]*q[0]+p[1]*q[1] A = np.array([[1E4+p[0]**2+p[1]**2, temp2], [temp2, 1E4+q[0]**2]+q[1]**2]) var = np.linalg.solve(A, B) var = var*np.array([1,1E6]) + iter_obj0 meta["iter_params"] = var res = self.simulation_online(mis, tar, meta) temp_result = res["total_data"] mis.guide["L12D_const"] = var[0] mis.guide["EBR"][2] = var[1] mis.guide["refs"] = { "E_sim0":res["E_sim0"], "ETAEM_ref": res["E_sim1"], "f_sgo_ref": res["interp_sgo_ref"], "f_L12D_ref": res["interp_L12D_ref"], "f_t_ref": res["interp_t_ref"] } def update_EBR1_fun(self, mis: Missile, x): """ 用于牛顿迭代的方程组 """ coef = [1, 1e3] mis.guide["EBR"][0] = x[0] mis.guide["EBR"][1] = x[1] E = mis.guide["E"] ETAEM = mis.guide["ETAEM"] xc, dpsi = self.xC_dpsi(mis, ETAEM, E) return [coef[0] * xc, coef[1] * (dpsi - 0)] def update_EBR1_jac(self, mis: Missile, x): """ 牛顿迭代雅可比矩阵 :param mis: :param x: :return: """ coef = [1, 1e3] pxc1, pdpsi1 = self.dxc_dpsi1(mis, mis.guide["E"]) pxc2, pdpsi2 = self.dxc_dpsi2(mis, mis.guide["E"]) return np.array([[pxc1, pxc2], [coef[1] * pdpsi1, coef[1] * pdpsi2]]) def update_EBR2_fun(self, mis: Missile, x): """ 用于牛顿迭代的方程组 """ coef = [1, 1e3] mis.guide["EBR"][1] = x[0] mis.guide["EBR"][2] = x[1] E = mis.guide["E"] ETAEM = mis.guide["ETAEM"] xc, dpsi = self.xC_dpsi(mis, ETAEM, E) return [coef[0] * xc, coef[1] * (dpsi - 0)] def update_EBR2_jac(self, mis: Missile, x): """ 牛顿迭代雅可比矩阵 :param mis: :param x: :return: """ coef = [1, 1e3] pxc2, pdpsi2 = self.dxc_dpsi2(mis, mis.guide["E"]) pxc3, pdpsi3 = self.dxc_dpsi3(mis, mis.guide["E"]) return np.array([[pxc2, pxc3], [coef[1] * pdpsi2, coef[1] * pdpsi3]]) def update_L12D(self, mis: Missile, tar: Missile, meta={}): # TODO 除去重复代码 E0 = mis.guide["E_steady_glide_start"] E1 = mis.guide["E2"] E2 = mis.guide["ETAEM"] L2DTAEM = mis.guide["L2Dbsl_TAEM"] c1 = [0, 1 / (E0 - E1), -E1 / (E0 - E1)] c2 = [0, 1 / (E1 - E0), E0 / (E0 - E1)] c3 = [1 / (E1 - E2) ** 2, -2E1 / (E1 - E2) ** 2, E1 ** 2 / (E1 - E2) ** 2] c4 = [0, 0, 1] c4_c3 = [-1 / (E1 - E2) ** 2, 2E1 / (E1 - E2) ** 2, 1 - E1 ** 2 / (E1 - E2) ** 2] # 这里终端能量取ETAEM # TODO 补齐时间误差引起的升阻比 if mis.guide["E"] > E1: L12D11 = ((mis.guide["s_go"] - mis.guide["STAEM"])/cos(mis.guide["delta_psi"]) - L2DTAEM * self.x_D(mis, E2, E1, c=c3)) \ / (self.x_D(mis, E1, mis.guide["E"], c=[0, 0, 1]) + self.x_D(mis, E2, E1, c=c4_c3)) else: L12D11 = ((mis.guide["s_go"] - mis.guide["STAEM"])/cos(mis.guide["delta_psi"]) - L2DTAEM * self.x_D(mis, E2, mis.guide["E"], c=c3)) \ / self.x_D(mis, E2, mis.guide["E"], c=c4_c3) L12D21 = L12D11 L12D12 = 0 L12D22 = 0 L2DE = L12D11 + L12D12 L2D_alpha = L12D21 + L12D22 mis.guide["L12D_param"] = [L2DE, L2D_alpha] def L12D(self, mis: Missile, E=None): if not E: E = mis.guide["E"] E0 = mis.guide["E_steady_glide_start"] E1 = mis.guide["E2"] E2 = mis.guide["ETAEM"] params = mis.guide["L12D_param"] L2DTAEM = mis.guide["L2Dbsl_TAEM"] L2DE = params[0] L2D_alpha = params[1] if E >= E1: return (E - E1) / (E0 - E1) * L2DE + (E0 - E) / (E0 - E1) * L2D_alpha else: return ((E1 - E) / (E1 - E2)) ** 2 * (L2DTAEM - L2D_alpha) + L2D_alpha def L22D(self, mis: Missile, E=None): if not E: E = mis.guide["E"] return abs(np.sqrt(cav_corridor.L2D_E(E) ** 2 - self.L12D(mis, E) ** 2)) def x_D(self, mis, E_end, E_start, c=None): """ 射程解析解 :param mis: :param E_end: :param E_start: :param c: 升阻比形式决定的系数(a2,a1,a0) :return: """ if E_start < E_end: return 0 if c is None: # 如果不输入c的值,则认为是输出总射程,要乘上升阻比 E0 = mis.guide["E_steady_glide_start"] E1 = mis.guide["E2"] E2 = mis.guide["ETAEM"] params = mis.guide["L12D_param"] L2DTAEM = mis.guide["L2Dbsl_TAEM"] L2DE = params[0] L2D_alpha = params[1] c1 = [0, 1 / (E0 - E1), -E1 / (E0 - E1)] c2 = [0, 1 / (E1 - E0), E0 / (E0 - E1)] c3 = [1 / (E1 - E2) ** 2, -2E1 / (E1 - E2) ** 2, E1 ** 2 / (E1 - E2) ** 2] c4 = [0, 0, 1] if E_end >= E1: return L2DE * self.x_D(mis, E_end, E_start, c=c1) + L2D_alpha * self.x_D(mis, E_end, E_start, c=c2) elif E_start <= E1: return (L2DTAEM - L2D_alpha) * self.x_D(mis, E_end, E_start, c=c3) + L2D_alpha * self.x_D(mis, E_end, E_start, c=c4) else: return L2DE * self.x_D(mis, E1, E_start, c=c1) + L2D_alpha * self.x_D(mis, E1, E_start, c=c2) \ + (L2DTAEM - L2D_alpha) * self.x_D(mis, E_end, E1, c=c3) \ + L2D_alpha * self.x_D(mis, E_end, E1, c=c4) # 如果输入c,则要计算各子段的射程(不乘升阻比) a2, a1, a0 = c[0], c[1], c[2] kh1 = mis.guide["kh"][0] kh4 = mis.guide["kh"][3] Rs = mis.guide["Rs"] temp1 = a1 - e.mu / 2 / Rs * a2 temp2 = (e.mu / 2 / Rs) ** 2 * a2 - e.mu / 2 / Rs * a1 + a0 temp3 = np.log((2 * E_end + e.mu / Rs) / (2 * E_start + e.mu / Rs)) temp4 = 1 / (2 * E_end + e.mu / Rs) - 1 / (2 * E_start + e.mu / Rs) fx1 = e.Re * a2 / 4 * (E_end ** 2 - E_start ** 2) + e.Re / 2 * temp1 * ( E_end - E_start) + e.Re / 2 * temp2 * temp3 fx2 = e.Re / 2 * (a2 * (E_end - E_start) / 2 + (a1 - e.mu / Rs * a2) / 2 * temp3 - temp2 * temp4) fx3 = e.Re / 8 * a2 * temp3 - e.Re / 4 * (a1 - e.mu / Rs * a2) * temp4 - e.Re / 4 * temp2 * ( 1 / (2 * E_end + e.mu / Rs) ** 2 - 1 / (2 * E_start + e.mu / Rs) ** 2) res = (1 + kh1[1] / 2 + kh1[1] * kh4[1] / 4) * fx1 + \ (kh1[0] * (1 + kh4[1] / 2) - kh1[1] / 2 * (e.mu / Rs - kh4[0]) - e.mu / 2 / Rs * kh1[1] * kh4[1]) * fx2 + \ (kh1[0] - e.mu / 2 / Rs * kh1[1]) * (kh4[0] - e.mu / 2 / Rs * kh4[1]) * fx3 return res def h_m(self, mis: Missile, E=None): if not E: E = mis.guide["E"] return 2 * E + e.mu / mis.guide["Rs"] def xC_dpsi(self, mis, E_end=None, E_start=None): if not E_end: E_end = mis.guide["ETAEM"] if not E_start: E_start = mis.guide["E"] EBR = mis.guide["EBR"] delta_psi = mis.guide["delta_psi"] integ_xc = integrate.quad( lambda x: sin(self.x_D(mis, E_end, x) / e.Re) * self.f2(mis, x), E_start, E_end ) integ_dpsi = integrate.quad( lambda x: cos(self.x_D(mis, E_end, x) / e.Re) * self.f2(mis, x), E_start, E_end ) # 判断是第几次反转后 if E_start > EBR[0]: F1, G1 = self.FG(mis, EBR[0], E_start) F2, G2 = self.FG(mis, EBR[1], EBR[0]) elif E_start >= EBR[1]: F1, G1 = 0, 0 F2, G2 = self.FG(mis, EBR[1], E_start) else: raise "在第二次反转后不采用解析解更新反转点" F3, G3 = self.FG(mis, EBR[2], EBR[1]) F4, G4 = self.FG(mis, E_end, EBR[2]) xc = e.Re * (delta_psi * sin(self.x_D(mis, E_end, E_start) / e.Re) - integ_xc[0] - mis.guide["sgn_ini"] * (F1 - F2 + F3 - F4)) dpsi = delta_psi * cos(self.x_D(mis, E_end, E_start) / e.Re) - integ_dpsi[0] \ - mis.guide["sgn_ini"] * (G1 - G2 + G3 - G4) return xc, dpsi def dxc_dpsi1(self, mis: Missile, E): xd = self.x_D(mis, mis.guide["ETAEM"], mis.guide["EBR"][0]) f4 = self.f4(mis, mis.guide["EBR"][0]) pxc = -2 * mis.guide["sgn_ini"] * e.Re * sin(xd / e.Re) * f4 pdpsi = -2 * mis.guide["sgn_ini"] * cos(xd / e.Re) * f4 return pxc, pdpsi def dxc_dpsi2(self, mis: Missile, E): xd = self.x_D(mis, mis.guide["ETAEM"], mis.guide["EBR"][1]) f4 = self.f4(mis, mis.guide["EBR"][1]) pxc = 2 * mis.guide["sgn_ini"] * e.Re * sin(xd / e.Re) * f4 pdpsi = 2 * mis.guide["sgn_ini"] * cos(xd / e.Re) * f4 return pxc, pdpsi def dxc_dpsi3(self, mis: Missile, E): xd = self.x_D(mis, mis.guide["ETAEM"], mis.guide["EBR"][2]) f4 = self.f4(mis, mis.guide["EBR"][2]) pxc = -2 * mis.guide["sgn_ini"] * e.Re * sin(xd / e.Re) * f4 pdpsi = -2 * mis.guide["sgn_ini"] * cos(xd / e.Re) * f4 return pxc, pdpsi def f2(self, mis: Missile, E): kh3 = mis.guide["kh"][2] kh4 = mis.guide["kh"][3] Rs = mis.guide["Rs"] L12D = self.L12D(mis, E) return -(L12D * (kh3[0] + kh3[1] * E + kh3[2] * E ** 2)) / ( (2 * E + 2 * e.mu / Rs) * (2 * E + e.mu / Rs) ) * (1 + (kh4[0] + kh4[1] * E) / (2 * E + e.mu / Rs)) def f4(self, mis: Missile, E): if not E: E = mis.guide["E"] Rs = mis.guide["Rs"] L22D = self.L22D(mis, E) kh2 = mis.guide["kh"][1] kh4 = mis.guide["kh"][3] h2 = kh2[0] + kh2[1] * E h4 = kh4[0] + kh4[1] * E return -L22D / (2 * E + 2 * e.mu / Rs) * ( 1 + h2 / (2 * E + e.mu / Rs) + (h2 * h4) / (2 * E + e.mu / Rs) ** 2 ) def FG(self, mis: Missile, E_end, E_start, E_xD=None): if not E_xD: E_xD = mis.guide["ETAEM"] F = integrate.quad(lambda x: sin(self.x_D(mis, E_xD, x) / e.Re) * self.f4(mis, x), E_start, E_end, epsabs=1e-7) G = integrate.quad(lambda x: cos(self.x_D(mis, E_xD, x) / e.Re) * self.f4(mis, x), E_start, E_end, epsabs=1e-7) return F[0], G[0] def simulation_online(self, mis: Missile, tar: Missile = None, meta={}): sim: MultiMissileSim = copy.deepcopy(meta["simulation"]) sim.is_main = False index = mis.guide["index"] for m in sim.mis: m.guide["guide_flag"] = "online" if not m.guide["index"] == index: m.guide["end_guide"] = True else: m.guide["L12D_const"] = meta["iter_params"][0] m.guide["EBR"][2] = meta["iter_params"][1] sim.simulation() result = sim.db[index].data misT = sim.mis[index] s_go = result['s_go'] E_node = result['E'] interp_sgo_ref = Interp1(E_node, s_go).pre L12D = result["L12D"] interp_L12D_ref = Interp1(E_node, L12D).pre t_list = result["t"] interp_t_ref = Interp1(E_node, t_list).pre V = misT.guide["v"] t = misT.status.t return { "E_sim0":mis.guide["E"], "E_sim1":misT.guide["E"], "V": V, "t": t, "interp_sgo_ref": interp_sgo_ref, "interp_L12D_ref": interp_L12D_ref, "interp_t_ref": interp_t_ref, "total_data": result } def guide2equation(self, mis: Missile, tar: Missile = None, meta={}): for item in self.control_param_list: mis.control[item] = mis.guide[item] mis.control['CL'], mis.control['CD'] = mis.aero.CLCD(mis.ma, mis.guide["attack_angle"]) mis.control['L'] = mis.control['CL'] * mis.guide['q_inf'] mis.control['D'] = mis.control['CD'] * mis.guide['q_inf'] mis.guide["L12D"] = mis.control['CL'] / mis.control['CD'] * cos(mis.guide["bank_angle"]) mis.guide["L12D_E"] = mis.guide.get('L12D_param', [None, None])[0] mis.guide["L12D_alpha"] = mis.guide.get('L12D_param', [None, None])[1] def attack_angle_plan(self, mis, E=None): if not E: E = mis.guide["E"] a1 = mis.guide["alpha_sg"] a2 = mis.guide["alpha_2"] E2 = mis.guide["E2"] E_TAEM = mis.guide["ETAEM"] return [a1, ((E2 - E) / (E2 - E_TAEM)) ** 2 * (a2 - a1) + a1][E < E2] def s_go(self, mis: Missile, tar: Missile = None, meta={}): x_mis = ct.coordinate_transformation(0, lamb=mis.status.longitude, phi=mis.status.latitude) x_tar = ct.coordinate_transformation(0, lamb=tar.status.longitude, phi=tar.status.latitude) return e.Re * arccos(x_mis.dot(x_tar)) def mis_end_guide(self, mis: Missile, tar: Missile, meta={}): if mis.guide.get('s_go', np.inf) < mis.guide["STAEM"]: mis.guide["end_guide"] = True if mis.guide.get('E', np.inf) < (mis.guide["ETAEM"] - 5E5) and mis.guide["guide_flag"] == 'online': mis.guide["end_guide"] = True # if mis.status.t > 1000: # mis.guide["end_guide"] = True
[]
2024-01-10
aofenghanyue/EntryGuidance
simulation.py
import settings as glbs from entity.missile import Missile from guidance.guide import Guidance from store.dataSave import DataSave from utils.integral import Integral class TrajectorySimulation: def __init__(self): # 最大迭代次数 self.max_iter = getattr(glbs, "MAXITER", 0) # 当前迭代次数 self.iter = 0 # 当前积分步长 self.h = 0 # 全局时间 self.t = getattr(glbs, "t0", 0) # 导弹与其对应目标 self.mis: Missile = Missile() self.tar: Missile = Missile() # 制导模块 self.guide: Guidance = Guidance() self.guide_params_list = getattr(glbs, "ParamsToGuide", []) self.guide_params: dict = {} # 积分模块 self.integral = Integral() # 数据存储模块 可以是列表,对应不同的导弹与目标 self.db = DataSave() self.db_save_dict: dict = {} # 每次存储值的临时字典 self.init() def init(self, mis=Missile(), tar=Missile(), guide=Guidance(), integ=Integral(), db=DataSave()): """ 初始化导弹,目标,制导模式,积分,存储模块等信息 :return: """ pass def step_len(self) -> float: """ 计算每一步的积分步长 :return: 当前步积分步长 """ pass def simulation(self): self._before_simulation() while self.next(): self._after_one_step() self._after_simulation() def next(self): """ 一个循环 :return: """ if self._is_continue(): self.h = self.step_len() if self.one_step_guide(): # 此处应该先保存上一步的状态值,再改变状态 self.after_guide() # 积分且更新状态 self.one_step_integral() # 包含了self.one_step_update_status() return True return False def one_step_guide(self): """ 1.产生控制指令 :return: True代表单步制导执行成功 False代表制导结束 """ # 产生制导相关参数 self.gen_guide_params() # 产生制导指令 if self.guide.one_step_guide(self.mis, self.tar, self.guide_params): return True else: return False def one_step_integral(self): """ 2.各个体单步积分 :return: """ self.one_step_integral_object(self.mis) self.one_step_integral_object(self.tar) def one_step_integral_object(self, obj: Missile): if obj.launched: # 如果导弹已发射则更新状态 x, y0 = obj.status.x, obj.status.y y_next, dy = self.integral.next_step(obj.equation.equation, x, y0, self.h, obj.control, need_dy=True) x_next = x + self.h if dy is not None: obj.guide["dy"] = dy # 3.各个体更新状态 status_update_data = {k: v for k, v in zip(obj.status.integral_key, y_next)} status_update_data.update({obj.status.independent_key: x_next}) obj.status.change_stat(status_update_data) def gen_guide_params(self): """ 产生要传入制导模块的参数 :return: None """ for param in self.guide_params_list: if param == "self": self.guide_params["simulation"] = self else: self.guide_params[param] = getattr(self, param, None) def save_data(self) -> None: """ 存储数据 :return: None """ self.db_save_dict = {"global_t": self.t} # 默认只存储时间、导弹状态和控制量 self.db_save_dict.update(self.mis.status.status_dict()) self.db_save_dict.update(self.mis.control) self.db.update(self.db_save_dict) def _is_continue(self) -> bool: """判断是否继续仿真""" if self.iter > self.max_iter: return False if not self.is_continue(): return False return True def is_continue(self): return True def after_guide(self): """ 制导指令计算完成后进行 可存储导弹及其控制指令 :return: """ self.save_data() def _after_one_step(self): """每个积分循环完成后需要进行的操作 可以存储数据等,但一般存储数据在制导完成之后进行""" # 迭代次数+1 self.iter += 1 # 时间前进h self.t += self.h self.after_one_step() def after_one_step(self): pass def _before_simulation(self): print("仿真开始") self.before_simulation() def before_simulation(self): pass def _after_simulation(self): """仿真结束后需要做的事情 例如将结果输出为图像""" print("仿真结束") self.after_simulation() pass def after_simulation(self): pass def from_mis_guide(self, param_list: list): return {param: self.mis.guide.get(param, None) for param in param_list}
[]
2024-01-10
aofenghanyue/EntryGuidance
customGuidance.py
import numpy as np import settings as glbs from numpy import sin, cos, tan, arccos, arctan from entity.missile import Missile from guidance.guide import Guidance from database.Constant import earth as e from database.Atmosphere import atmosphereISA as ATM from utils.common import coords_trans as ct from utils.common import heading_angle, limit_num from custom.EntryCorridor import cav_corridor from utils.interpolate import Interp1 from simulation import TrajectorySimulation from scipy import integrate, optimize import copy # 计算制导参数 class CustomGuidance(Guidance): def __init__(self): super(CustomGuidance, self).__init__() # 制导模式 self.guide_mode = 0 self.guide_phase: dict = { "descent_phase1": self.descent_phase1, "descent_phase2": self.descent_phase2, "steady_glide_phase": self.steady_glide_phase, "altitude_adjustment_phase": self.altitude_adjustment_phase } # 参数初始化 self.alpha_max = 0 # 导弹最大攻角 self.alpha_sgp = 0 # 平稳滑翔攻角 self.alpha_2 = np.deg2rad(6) self.V_TAEM = 0 # 终端速度 self.E_TAEM = 0 # 终端能量 self.H_TAEM = 0 # 终端高度 self.E_alpha = -5.55e7 self.S_TAEM = 0 # 终端距离 self.EBR1 = 0 # 首次倾侧角翻转能量 self.EBR2 = 0 # 二次倾侧角翻转能量 self.sgn = 1 # 初始倾侧角方向 self.kgamma = 0 # 下降段攻角反馈系数 self.err_tol = 0 # 进入平稳滑翔段时弹道倾角与平稳滑翔弹道倾角的容忍误差 self.EBR1_update_flag = [False, False, False] # 三次更新EBR1 self.EBR2_update_flag = [False, False] # 两次更新EBR2 self.bank_reverse_flag = [False, False] # 两次倾侧角反转 self.glide_E0 = 0 # 初次进入滑翔段的能量 self.bank_reverse_time = 0 # 倾侧角反转次数,实际上用不到,因为只反转两次,可以在sigma_bsl中用两种情况表示 self.k_gamma_sgp = 0 # 滑翔段TDCT反馈系数 self.k_gamma_aap = 0 # 姿态调整段倾侧角反馈系数 self.control_param_list = [] # 要从制导参数直接导入到控制参数的值名称 self.k_sigma = 0 # 最大倾侧角中的系数 self.k_alpha = 0 # AAP中攻角对于飞行距离偏差的反馈系数 self.allow_update_param = True # 是否允许更新EBR2与alpha2,如果是在线制导,则设为False self.accurate_mode = 0 # 仿真精度 def init(self, missile: Missile, target: Missile = None, meta={}): print('正在初始化参数') self.alpha_max = missile.p.alpha_max self.alpha_sgp = missile.p.max_L2D_alpha self.V_TAEM = glbs.MissileEndStatus["velocity"] self.H_TAEM = glbs.MissileEndStatus["height"] self.E_TAEM = e.E(self.V_TAEM, self.H_TAEM) self.S_TAEM = glbs.MissileEndStatus["s"] self.guide_mode = "descent_phase1" self.EBR1 = (missile.E + self.E_alpha) / 2 self.EBR2 = self.E_alpha self.err_tol = getattr(glbs, 'ERR_TOL', 1e-2) self.kgamma = getattr(glbs, 'K_GAMMA', 3) self.k_gamma_sgp = getattr(glbs, 'K_GAMMA_SGP', 3) self.k_gamma_aap = getattr(glbs, 'K_GAMMA_AAP', 3) self.k_sigma = getattr(glbs, 'K_SIGMA', -50) self.k_alpha = getattr(glbs, 'K_ALPHA', 5 * np.pi / 1.8e7) self.control_param_list = getattr(glbs, 'CONTROL_PARAM_LIST', ["L", "D", "m", "attack_angle", "bank_angle"]) # 初始方向角偏大则倾侧角为负 great_circle_heading = heading_angle(missile.status.longitude, missile.status.latitude, target.status.longitude, target.status.latitude) self.sgn = 1 if great_circle_heading[0] > missile.status.heading_angle else -1 # 只需要计算一次的制导参数初始化 missile.guide["L2Dbsl_TAEM"] = cav_corridor.L2D_E(self.E_TAEM) def guide(self, mis: Missile, tar: Missile = None, meta={}): self.parse_param(mis, tar, meta) self.integral_accurate(mis, tar, meta) self.guide_phase[self.guide_mode](mis, tar, meta) self.guide2control(mis, tar, meta) # 调试时控制程序停止: # if self.guide_mode == "steady_glide_phase": # self.end_guide(flag=True) # if meta["t"] >= 1000: # self.end_guide(flag=True) def parse_param(self, mis, tar, meta={}): """ 解析导弹及目标参数 :param mis: 导弹 :param tar: 目标 :return: """ S = mis.p.reference_area h = mis.status.height v = mis.status.velocity psi = mis.status.heading_angle E = mis.E Ma = mis.ma CL_plan, CD_plan = mis.aero.CLCD(Ma, self.attack_angle_plan(E)) rho = ATM.rho(h) q_inf = rho * v ** 2 * S / 2 # 真实升阻系数按照上一步来取,如果是第一次,则取参考值 CL, CD = mis.control.get('CL', CL_plan), mis.control.get('CD', CD_plan) L, D = CL * q_inf, CD * q_inf great_circle_heading = heading_angle(mis.status.longitude, mis.status.latitude, tar.status.longitude, tar.status.latitude) ref_psi = great_circle_heading[0] delta_psi = psi - ref_psi if delta_psi > np.pi: delta_psi = delta_psi - 2 * np.pi elif delta_psi < -np.pi: delta_psi = delta_psi + 2 * np.pi sgo = self.s_go(mis, tar, meta) q = mis.p.k_Q * np.sqrt(rho) * pow(v, 3.15) mis.guide.update({ 'm': mis.p.m, 'S': S, 'E': E, 'Ma': Ma, 'v': v, 'h': h, 'CL': CL, 'CD': CD, 'q_inf': q_inf, 'L': L, 'D': D, 'great_circle_heading': great_circle_heading, 'delta_psi': delta_psi, 's_go': sgo, 'ref_psi': ref_psi, 'q': q, }) def integral_accurate(self, mis: Missile, tar: Missile = None, meta={}): self.accurate_mode = 0 d_EBR1 = mis.guide["E"] - self.EBR1 d_EBR2 = mis.guide["E"] - self.EBR2 d_s_go = mis.guide["s_go"] - self.S_TAEM if self.guide_mode == 'descent_phase1' or self.guide_mode == 'descent_phase2': self.accurate_mode = 1 if 0 < d_EBR1 < 1e5: self.accurate_mode = 1 if 0 < d_EBR2 < 1e5: if d_EBR2 < 1e3: self.accurate_mode = 3 elif d_EBR2 < 1e4: self.accurate_mode = 2 else: self.accurate_mode = 1 if 0 < d_s_go < 1e4: if d_s_go < 2e3: self.accurate_mode = 3 elif d_s_go < 5e3: self.accurate_mode = 2 else: self.accurate_mode = 1 def attack_angle_plan(self, E): a1 = self.alpha_sgp a2 = self.alpha_2 return [a1, ((self.E_alpha - E) / (self.E_alpha - self.E_TAEM)) ** 2 * (a2 - a1) + a1][E < self.E_alpha] def descent_phase1(self, mis: Missile, tar: Missile = None, meta={}): """ mode: descent_phase1 初始下降段,当\dot{\gamma}<0时,输出最大攻角 next_mode: 当dot gamma = 0 (第一次>0)时,记录倾角偏差值,进入descent_phase2 :return: None """ # 导弹第一次制导即启动 mis.launched = True mis.guide["attack_angle"] = self.alpha_max mis.guide["bank_angle"] = 0 if mis.status.t > 10 and mis.guide["dy"][4] > 0: print(f'下降段第一段结束, t = {meta["t"]}') self.guide_mode = "descent_phase2" self.before_phase(mis, tar, meta) mis.guide["dgamma0"] = mis.guide["gamma_sg"] - mis.status.path_angle def descent_phase2(self, mis: Missile, tar: Missile = None, meta={}): """ 下降段的第二段,用来调整攻角,平稳过渡到滑翔段 :param mis: :param tar: :param meta: next_mode: steady_glide_phase. 当弹道倾角与平稳滑翔弹道倾角小于setting中的err_tol时进入下一阶段 :return: """ self.before_phase(mis, tar, meta) delta_gamma = mis.guide["gamma_sg"] - mis.status.path_angle mis.guide["attack_angle"] = delta_gamma / mis.guide["dgamma0"] * self.alpha_max + ( mis.guide["dgamma0"] - delta_gamma) / mis.guide["dgamma0"] * ( self.attack_angle_plan(mis.guide["E"]) + self.kgamma * delta_gamma) mis.guide["bank_angle"] = 0 if np.abs(delta_gamma) < self.err_tol: print(f'下降段第二段结束, t = {meta["t"]}') self.guide_mode = "steady_glide_phase" self.glide_E0 = mis.guide["E"] def steady_glide_phase(self, mis: Missile, tar: Missile = None, meta={}): """ 平稳滑翔段 :param mis: :param tar: :param meta: next_mode: altitude_adjustment_phase. 当第二次反转倾侧角后进入下一段. :return: """ self.before_phase(mis, tar, meta) alpha_bsl = self.attack_angle_plan(mis.guide["E"]) sigma_bsl = self.sigma_bsl(mis, tar, meta) gamma_sg = mis.guide["gamma_sg"] sigma_max = self.sigma_max(mis, tar, meta) alpha_cmd, sigma_cmd = self.TDCT(alpha_bsl, sigma_bsl, gamma_sg - mis.status.path_angle) sigma_cmd = limit_num(sigma_cmd, abs_limit=sigma_max) mis.guide["attack_angle"] = alpha_cmd mis.guide["bank_angle"] = sigma_cmd if mis.guide["E"] < self.EBR2: mis.guide["sgo_EBR2"] = mis.guide["s_go"] self.guide_mode = "altitude_adjustment_phase" print(f'平稳滑翔段结束, t = {meta["t"]}') def altitude_adjustment_phase(self, mis: Missile, tar: Missile = None, meta={}): self.before_phase(mis, tar, meta) alpha_bsl = self.attack_angle_plan(mis.guide["E"]) sigma_bsl = self.sigma_bsl(mis, tar, meta) f_sgo_ref = mis.guide.get('f_sgo_ref', None) sgo_ref = f_sgo_ref(mis.guide["E"]) if f_sgo_ref else mis.guide["s_go"] mis.guide["sgo_ref"] = sgo_ref delta_gamma = mis.guide["gamma_sg"] - mis.status.path_angle alpha_cmd = alpha_bsl + self.k_alpha * (mis.guide["s_go"] - sgo_ref) sigma_cmd = sigma_bsl - sin(sigma_bsl) * self.k_gamma_aap * delta_gamma / self.alpha_sgp mis.guide["attack_angle"] = alpha_cmd mis.guide["bank_angle"] = sigma_cmd def before_phase(self, mis: Missile, tar: Missile = None, meta={}): self.update_kh(mis, tar, meta) if not self.guide_mode == 'altitude_adjustment_phase': self.update_L1D(mis, tar, meta) self.update_path_angle_sgp(mis, tar, meta) if self.guide_mode == 'steady_glide_phase': if self.need_update_EBR1(mis, tar, meta): self.update_EBR1(mis, tar, meta) if self.need_update_EBR2(mis, tar, meta): self.update_EBR2_alpha2(mis, tar, meta) self.bank_reverse(mis, tar, meta) def need_update_EBR1(self, mis: Missile, tar: Missile = None, meta={}): if not self.EBR1_update_flag[0]: if self.guide_mode == 'steady_glide_phase': self.EBR1_update_flag[0] = True return True elif not self.EBR1_update_flag[1]: if mis.guide["E"] < (self.EBR1 + self.glide_E0) / 2: self.EBR1_update_flag[1] = True return True elif not self.EBR1_update_flag[2]: dEdt = mis.control["D"] * mis.guide["v"] / mis.guide["m"] delta_t = 100 if mis.guide["E"] < (self.EBR1 + dEdt * delta_t): self.EBR1_update_flag[2] = True return True return False def need_update_EBR2(self, mis: Missile, tar: Missile = None, meta={}): if not self.allow_update_param: return False if not self.EBR2_update_flag[0]: if self.bank_reverse_flag[0]: self.EBR2_update_flag[0] = True return True elif not self.EBR2_update_flag[1]: dEdt = mis.control["D"] * mis.guide["v"] / mis.guide["m"] delta_t = 120 if mis.guide["E"] < (self.EBR2 + dEdt * delta_t): self.EBR2_update_flag[1] = True return True return False def update_EBR2_alpha2(self, mis: Missile, tar: Missile = None, meta={}): print(f'\n在线更新alpha2: t = {meta["t"]}') self.update_alpha2(mis, tar, meta) print('在线更新alpha2完毕\n') print(f'\n在线更新EBR2: t = {meta["t"]}') # 只更新一次EBR2 # if self.EBR2_update_flag[1] == False: # self.update_EBR2(mis, tar, meta) self.update_EBR2(mis, tar, meta) print('在线更新EBR2完毕\n') # if not self.EBR2_update_flag[1]: # print('\n在线更新EBR2:') # self.update_EBR2(mis, tar, meta) # print('在线更新EBR2完毕\n') # print('\n在线更新alpha2:') # self.update_alpha2(mis, tar, meta) # print('在线更新alpha2完毕\n') # else: # print('\n在线更新alpha2:') # self.update_alpha2(mis, tar, meta) # print('在线更新alpha2完毕\n') # print('\n在线更新EBR2:') # self.update_EBR2(mis, tar, meta) # print('在线更新EBR2完毕\n') def update_alpha2(self, mis: Missile, tar: Missile = None, meta={}): sim = copy.deepcopy(meta["simulation"]) f_stat = self.simulation_online(sim) VT = self.V_TAEM m = mis.guide['m'] alpha_bslf = f_stat['alpha_bsl'] alpha2f = f_stat['alpha2'] CLf = f_stat['CL'] Hf = f_stat['h'] vf = f_stat['v'] phif = f_stat['phi'] psif = f_stat['psi'] CL_alpha = mis.aero.CL_alpha(vf / ATM.a(Hf)) q_Sf = f_stat['q_S'] q_S_T = 0.5 * ATM.rho(self.H_TAEM) * VT ** 2 * mis.p.reference_area self.alpha_2 = alpha_bslf + CLf * (q_Sf - q_S_T) / (CL_alpha * q_S_T) \ + m * (vf ** 2 - VT ** 2) / (CL_alpha * q_S_T * (e.Re + Hf)) \ + 2 * m * (vf - VT) * e.omega_e * cos(phif) * sin(psif) / (CL_alpha * q_S_T) def update_EBR2(self, mis: Missile, tar: Missile = None, meta={}): sim_old = copy.deepcopy(meta["simulation"]) sim_result_old = self.simulation_online(sim_old) vf_old = sim_result_old['v'] interp_sgo_ref = sim_result_old['interp_sgo_ref'] EBR2_old, EBR2_new = self.EBR2, self.EBR2 - 1e3 * (vf_old - self.V_TAEM) for _ in range(glbs.MAX_EBR2_ITER): sim_new = copy.deepcopy(meta["simulation"]) sim_new.guide.EBR2 = EBR2_new sim_result = self.simulation_online(sim_new) vf_new = sim_result['v'] interp_sgo_ref = sim_result['interp_sgo_ref'] EBR2_update = EBR2_new - (vf_new - self.V_TAEM) * (EBR2_new - EBR2_old) / (vf_new - vf_old) EBR2_old, vf_old = EBR2_new, vf_new EBR2_new = EBR2_update if np.abs(vf_new - self.V_TAEM) < 1: break self.EBR2 = EBR2_new # 保存参考距离 # if not self.EBR2_update_flag[1]: mis.guide['f_sgo_ref'] = interp_sgo_ref def simulation_online(self, sim: TrajectorySimulation): # 使用现有状态进行弹道仿真,传回最终状态及参考飞行距离 sim.guide.allow_update_param = False sim.is_online = True sim.guide.k_alpha = 0 sim.simulation() result = sim.db.data # CL, q_inf, v, h, phi, psi, alpha E = sim.mis.E alpha_bsl = sim.guide.attack_angle_plan(E) alpha2 = sim.guide.alpha_2 q_S = sim.mis.guide['q_inf'] # 这里统一不除以S v = sim.mis.guide["v"] h = sim.mis.guide["h"] CL = sim.mis.guide["CL"] phi = sim.mis.status.latitude psi = sim.mis.status.heading_angle s_go = result['s_go'] E_node = result['E'] interp_sgo_ref = Interp1(E_node, s_go).pre res = { 'alpha_bsl': alpha_bsl, 'alpha2': alpha2, 'q_S': q_S, 'v': v, 'h': h, 'CL': CL, 'phi': phi, 'psi': psi, 'interp_sgo_ref': interp_sgo_ref } return res def bank_reverse(self, mis: Missile, tar: Missile = None, meta={}): if not self.bank_reverse_flag[0]: if mis.guide["E"] < self.EBR1: self.bank_reverse_flag[0] = True self.bank_reverse_time = self.bank_reverse_time + 1 print(f'第一次倾侧角反转, t = {meta["t"]}') elif not self.bank_reverse_flag[1]: if mis.guide["E"] < self.EBR2: self.bank_reverse_flag[1] = True self.bank_reverse_time = self.bank_reverse_time + 1 print(f'第二次倾侧角反转, t = {meta["t"]}') def TDCT(self, alpha_bsl, sigma_bsl, delta_gamma): """ 弹道阻尼抑制振荡 :param alpha_bsl: 攻角预指令 :param sigma_bsl: 倾侧角预指令 :param delta_gamma: 平稳滑翔弹道倾角 - 当前弹道倾角 :return: 攻角指令,倾侧角指令 """ alpha_cmd = alpha_bsl + cos(sigma_bsl) * self.k_gamma_sgp * delta_gamma sigma_cmd = sigma_bsl - sin(sigma_bsl) * self.k_gamma_sgp * delta_gamma / self.alpha_sgp return alpha_cmd, sigma_cmd def sigma_max(self, mis: Missile, tar: Missile = None, meta={}): if not glbs.CONSIDER_SIGMA_MAX: return np.inf dHmindE = cav_corridor.dHmindE_E(mis.guide["E"]) D = mis.control.get('D', mis.guide['D']) dHdE = -mis.guide["m"] * sin(mis.status.path_angle) / D Hmin = cav_corridor.interp_Hmin_E(mis.guide["E"]) L1 = mis.guide["m"] * (e.g0 - mis.guide["v"] ** 2 / (e.Re + Hmin) - e.omega_e ** 2 * (e.Re + Hmin) * cos(mis.status.latitude) ** 2 - 2 * mis.guide["v"] * e.omega_e * cos(mis.status.latitude) * sin(mis.status.heading_angle)) Lmax = mis.guide["CL"] * 0.5 * ATM.rho(Hmin) * mis.guide["v"] ** 2 * mis.guide["S"] if L1 > Lmax: L1 = Lmax sigma_max = arccos(L1 / Lmax) + self.k_sigma * (dHmindE - dHdE) mis.guide["sigma_max_L1"] = L1 mis.guide["sigma_max_Lmax"] = Lmax mis.guide["sigma_max_dHmindE"] = float(dHmindE) mis.guide["sigma_max_dHdE"] = dHdE mis.guide["sigma_max"] = sigma_max return sigma_max # return np.inf def update_path_angle_sgp(self, mis: Missile, tar: Missile = None, meta={}): """ 更新平稳滑翔所需的弹道倾角 :param mis: :return: """ rho = ATM.rho(mis.guide["h"]) drho_dh = -0.00015 * rho v = mis.guide["v"] S = mis.guide["S"] m = mis.guide["m"] Rh = mis.guide["h"] + e.Re sigma_bsl = self.sigma_bsl(mis, tar, meta) alpha_bsl = self.attack_angle_plan(mis.guide['E']) # CL_bsl = cav_corridor.interp_CL_E(mis.guide["E"]) # D_bsl = cav_corridor.interp_CD_E(mis.guide["E"]) * mis.guide["q_inf"] # 使用参考攻角与当前马赫数计算参考升阻系数 CL_bsl, CD_bsl = mis.aero.CLCD(mis.ma, alpha_bsl) D_bsl = CD_bsl * mis.guide["q_inf"] dCL_dE = cav_corridor.interp_dCL_dE(mis.guide["E"]) d1 = rho * v ** 2 * S * cos(sigma_bsl) / 2 / m * dCL_dE + 2 / Rh + CL_bsl * rho * S * cos(sigma_bsl) / m d2 = -CL_bsl * v ** 2 * S * cos(sigma_bsl) * drho_dh / 2 / e.g0 / m + 2 / Rh + CL_bsl * rho * S * cos( sigma_bsl) / m + v ** 2 / Rh ** 2 / e.g0 mis.guide["gamma_sg"] = -D_bsl / m / e.g0 * d1 / d2 def alpha_bsl(self, mis: Missile, tar: Missile = None, meta={}): return self.attack_angle_plan(mis.guide['E']) def sigma_bsl(self, mis: Missile, tar: Missile = None, meta={}): if self.guide_mode == 'descent_phase1' or self.guide_mode == 'descent_phase2': return 0 if self.guide_mode == 'steady_glide_phase': return self.sigma_bsl_sgp(mis, tar, meta) if self.guide_mode == 'altitude_adjustment_phase': return self.sigma_bsl_aap(mis, tar, meta) def sigma_bsl_sgp(self, mis: Missile, tar: Missile = None, meta={}): L1_L = self.L1D(mis) / (mis.guide["CL"] / mis.guide["CD"]) assert 1 >= L1_L >= -1, '超出射程范围' res = self.sgn * arccos(L1_L) if mis.guide["E"] > self.EBR1: return res else: return -res def sigma_bsl_aap(self, mis: Missile, tar: Missile = None, meta={}): gamma = mis.status.path_angle phi = mis.status.latitude psi = mis.status.heading_angle H = e.Re + mis.guide["h"] v = mis.guide["v"] delta_psi = mis.guide['delta_psi'] s_go = mis.guide["s_go"] s_go_EBR2 = mis.guide["sgo_EBR2"] d_psi_LOS = mis.guide["v"] * cos(gamma) * sin(delta_psi) / s_go k_PN = 4 - 2 * s_go / s_go_EBR2 delta_L1_m = e.omega_e ** 2 * H * cos(phi) ** 2 + 2 * v * e.omega_e * cos(phi) * sin(psi) delta_L2_m = -e.omega_e ** 2 * H * sin(phi) * cos(phi) * sin(psi) + 2 * v * e.omega_e * sin(phi) aL1 = e.g0 - v ** 2 / H - delta_L1_m aL2 = k_PN * d_psi_LOS * v * cos(gamma) - delta_L2_m mis.guide["sigma_aap_aL2"] = aL2 mis.guide["sigma_aap_deltaL2m"] = delta_L2_m return -arctan(aL2 / aL1) def L1D(self, mis: Missile, E=None): if not E: E = mis.guide["E"] if E >= self.E_alpha: return mis.guide["L1D1"] else: return ((self.E_alpha - E) / (self.E_alpha - self.E_TAEM)) ** 2 * ( mis.guide["L1D2"] - mis.guide["L1D1"]) + mis.guide["L1D1"] def update_L1D(self, mis: Missile, tar: Missile = None, meta={}): # 1. 计算L1/D2 L1D2 = self.L1D2(mis) mis.guide["L1D2"] = L1D2 # 2. 计算L1/D1 kxD1, kxD2 = self.kxD(mis, tar, meta) mis.guide["L1D1"] = (mis.guide["s_go"] - self.S_TAEM - kxD1 * L1D2) / (-kxD1 + kxD2) def update_EBR1(self, mis: Missile, tar: Missile = None, meta={}): print(f'更新EBR1,t={meta["t"]}') optimize.newton(lambda x: self.tempxCf(mis, x), self.EBR1, fprime=lambda x: self.tempdxCf(mis, x), tol=1e3) def tempxCf(self, mis, EBR1): self.EBR1 = EBR1 return self.xCf(mis) def tempdxCf(self, mis, EBR1): return self.dxCf(mis) def xCf(self, mis: Missile): Rs = e.Re + cav_corridor.average_h_e E = mis.guide["E"] kh3 = mis.guide["kh3"] h3 = lambda x: (kh3[0] + kh3[1] * x + kh3[2] * x ** 2) / self.h_m(mis, x) delta_psi = mis.guide['delta_psi'] integ = integrate.quad( lambda x: sin(self.xD(mis, self.E_TAEM, x) / e.Re) * self.L1D(mis, x) * h3(x) / (2 * x + 2 * e.mu / Rs) , E, self.E_TAEM) res = e.Re * delta_psi * sin(self.xD(mis, self.E_TAEM, E) / e.Re) + e.Re * integ[0] - self.sgn * e.Re * ( self.F(mis, self.EBR1, E) - self.F(mis, self.EBR2, self.EBR1) + self.F(mis, self.E_TAEM, self.EBR2)) return res def dxCf(self, mis: Missile): return -2 * self.sgn * e.Re * sin(self.xD(mis, self.E_TAEM, self.EBR1) / e.Re) * self.f2(mis, self.EBR1) def F(self, mis: Missile, x2, x1): res = integrate.quad(lambda x: sin(self.xD(mis, self.E_TAEM, x) / e.Re) * self.f2(mis, x), x1, x2) return res[0] def L2D(self, mis: Missile, E=None): if not E: E = mis.guide["E"] return abs(np.sqrt(cav_corridor.L2D_E(E) ** 2 - self.L1D(mis, E) ** 2)) def f2(self, mis: Missile, E=None): if not E: E = mis.guide["E"] return self.L2D(mis, E) * (1 + (mis.guide["kh2"][0] + mis.guide["kh2"][1] * E) / self.h_m(mis, E)) / ( 2 * E + 2 * e.mu / (cav_corridor.average_h_e + e.Re)) def xD(self, mis: Missile, E_end, E_start): """ 射程估计 :param mis: :param E_end, E_start: E_end < E_start :return: """ # assert 后面的元组不能加括号,否则恒为True assert E_start >= E_end, '起始能量应该大于终止能量' L1D1 = mis.guide["L1D1"] kh1 = mis.guide["kh1"] Rs = e.Re + cav_corridor.average_h_e temp1 = np.log((2 * E_end + e.mu / Rs) / (2 * E_start + e.mu / Rs)) temp2 = 1 / (2 * E_end + e.mu / Rs) - 1 / (2 * E_start + e.mu / Rs) if self.E_alpha <= E_end: res = e.Re * L1D1 / 2 * (1 + kh1[1] / 2) * temp1 - e.Re * L1D1 / 2 * ( kh1[0] - e.mu * kh1[1] / 2 / Rs) * temp2 elif self.E_alpha >= E_start: L1D2 = mis.guide["L1D2"] a0 = (L1D2 - L1D1) * self.E_alpha ** 2 / (self.E_alpha - self.E_TAEM) ** 2 + L1D1 a1 = -2 * (L1D2 - L1D1) * self.E_alpha / (self.E_alpha - self.E_TAEM) ** 2 a2 = (L1D2 - L1D1) / (self.E_alpha - self.E_TAEM) ** 2 res = (1 + kh1[1] / 2) * e.Re * a2 / 4 * (E_end ** 2 - E_start ** 2) + e.Re / 2 * ( (1 + kh1[1] / 2) * a1 + (-1 - kh1[1] + Rs * kh1[0] / e.mu) * e.mu * a2 / 2 / Rs) * (E_end - E_start) \ + e.Re / 2 * ((1 + kh1[1] / 2) * a0 + (-1 - kh1[1] + Rs * kh1[0] / e.mu) * e.mu * a1 / 2 / Rs) * temp1 \ + e.Re / 2 * (e.mu ** 2 * (2 + 3 * kh1[1]) - 4 * e.mu * Rs * kh1[0]) / (8 * Rs ** 2) * a2 * temp1 \ - e.Re / 2 * (kh1[0] - e.mu * kh1[1] / 2 / Rs) * ( a0 - e.mu * a1 / 2 / Rs + e.mu ** 2 / 4 / Rs ** 2 * a2) * temp2 else: res = self.xD(mis, self.E_alpha, E_start) + self.xD(mis, E_end, self.E_alpha) return res def kxD(self, mis: Missile, tar: Missile, meta={}): Re = e.Re kh1 = mis.guide["kh1"] Rs = cav_corridor.average_h_e + Re Ea, Et = self.E_alpha, self.E_TAEM kxd1 = -Re / 4 * (1 + kh1[1] / 2) * (Ea + Et) / (Ea - Et) \ + Re / 2 / (Ea - Et) * (2 * Ea + e.mu / 2 / Rs + (Ea + e.mu / 2 / Rs) * kh1[1] - kh1[0] / 2) \ + np.log((2 * Et + e.mu / Rs) / (2 * Ea + e.mu / Rs)) * Re * (2 * Ea * Rs + e.mu) / 2 / (Ea - Et) ** 2 * \ ((2 * Ea * Rs + e.mu) / 4 / Rs ** 2 - kh1[0] / 2 / Rs + (2 * Ea * Rs + 3 * e.mu) / 8 / Rs ** 2 * kh1[1]) \ - Re * (2 * Ea * Rs + e.mu) ** 2 / 8 / Rs ** 2 / (Ea - Et) ** 2 * \ (kh1[0] - e.mu * kh1[1] / 2 / Rs) * (1 / (2 * Et + e.mu / Rs) - 1 / (2 * Ea + e.mu / Rs)) log_ = (2 * Et + e.mu / Rs) / (2 * mis.guide["E"] + e.mu / Rs) kxd2 = Re / 2 * (1 + kh1[1] / 2) * np.log(log_) \ - Re / 2 * (kh1[0] - e.mu * kh1[1] / 2 / Rs) * \ (1 / (2 * Et + e.mu / Rs) - 1 / (2 * mis.guide["E"] + e.mu / Rs)) return kxd1, kxd2 def update_kh(self, mis: Missile, tar: Missile, meta={}): Rs = cav_corridor.average_h_e + e.Re m_phi = mis.status.latitude t_phi = tar.status.latitude E = mis.guide["E"] ET = self.E_TAEM ha = mis.guide["great_circle_heading"] # 以L/D * cos(σ)代表上一步的纵向升阻比 hz1 = -2 * Rs * e.omega_e * mis.guide["v"] * cos(m_phi) * sin(ha[0]) - \ Rs * e.omega_e ** 2 * (e.Re + mis.guide["h"]) * cos(m_phi) * \ (cos(m_phi) - mis.guide["CL"] / mis.guide["CD"] * cos(mis.control["bank_angle"]) * sin( m_phi) * cos(ha[0])) hz1_t = -2 * Rs * e.omega_e * self.V_TAEM * cos(t_phi) * sin(ha[1]) - \ Rs * e.omega_e ** 2 * (e.Re + self.H_TAEM) * cos(t_phi) * \ (cos(t_phi) - mis.guide["L2Dbsl_TAEM"] * sin( t_phi) * cos(ha[1])) kh1 = (hz1_t * E - hz1 * ET) / (E - ET), \ (hz1 - hz1_t) / (E - ET) hz2 = e.omega_e ** 2 * Rs * (e.Re + mis.guide["h"]) * mis.guide["CL"] / mis.guide["CD"] * cos( mis.control["bank_angle"]) * sin(m_phi) * cos(m_phi) * cos(ha[0]) hz2_t = e.omega_e ** 2 * Rs * (e.Re + self.H_TAEM) * mis.guide["L2Dbsl_TAEM"] * sin(t_phi) * cos( t_phi) * cos(ha[1]) kh2 = (hz2_t * E - hz2 * ET) / (E - ET), \ (hz2 - hz2_t) / (E - ET) kh3 = -2 * e.omega_e * Rs * (self.V_TAEM * E - ET * mis.guide["v"]) * (sin(t_phi) * E - sin(m_phi) * ET) / ( E - ET) ** 2, \ -2 * e.omega_e * Rs * (self.V_TAEM * sin(m_phi) + mis.guide["v"] * sin(t_phi)) * (E + ET) / (E - ET) ** 2 \ + 4 * e.omega_e * Rs * (self.V_TAEM * sin(t_phi) * E + mis.guide["v"] * sin(m_phi) * ET) / (E - ET) ** 2, \ -2 * e.omega_e * Rs * (mis.guide["v"] - self.V_TAEM) * (sin(m_phi) - sin(t_phi)) / (E - ET) ** 2 mis.guide["kh1"] = kh1 mis.guide["kh2"] = kh2 mis.guide["kh3"] = kh3 def h_m(self, mis: Missile, E=None): if not E: E = mis.guide["E"] Rs = e.Re + cav_corridor.average_h_e return 2 * E + e.mu / Rs def L1D2(self, mis: Missile): # k_L/D * L/D_bsl_TAEM 取k_L/D=1 return mis.guide["L2Dbsl_TAEM"] def s_go(self, mis: Missile, tar: Missile = None, meta={}): x_mis = ct.coordinate_transformation(0, lamb=mis.status.longitude, phi=mis.status.latitude) x_tar = ct.coordinate_transformation(0, lamb=tar.status.longitude, phi=tar.status.latitude) return e.Re * arccos(x_mis.dot(x_tar)) def guide2control(self, mis: Missile, tar: Missile = None, meta={}): for item in self.control_param_list: mis.control[item] = mis.guide[item] mis.control['CL'], mis.control['CD'] = mis.aero.CLCD(mis.ma, mis.guide["attack_angle"]) mis.control['L'] = mis.control['CL'] * mis.guide['q_inf'] mis.control['D'] = mis.control['CD'] * mis.guide['q_inf'] def end_guide(self, mis: Missile = Missile(), tar: Missile = Missile(), meta={}, flag=False): if self.end_flag: return True if mis.guide.get('s_go', np.inf) < self.S_TAEM: self.end_flag = True if mis.guide.get('E', np.inf) < (self.E_TAEM - 5E5) and not self.allow_update_param: self.end_flag = True if flag: self.end_flag = flag return self.end_flag
[]
2024-01-10
aofenghanyue/EntryGuidance
customSimulation.py
import numpy as np import settings as glbs from entity.missile import Missile from guidance.guide import Guidance from simulation import TrajectorySimulation from store.dataSave import DataSave from utils.integral import Integral class CustomSimulation(TrajectorySimulation): def __init__(self): super(CustomSimulation, self).__init__() def init(self, mis=Missile(), tar=Missile(), guide=Guidance(), integ=Integral(), db=DataSave()): self.mis = mis self.tar = tar self.guide = guide self.integral = integ self.db = db # 初始化导弹及目标状态 self.mis.status.change_stat(glbs.MissileInitStatus) self.tar.status.change_stat(glbs.TargetInitStatus) # 初始化制导模型 self.guide.init(self.mis, self.tar) self.is_online = False def step_len(self) -> float: if self.guide.accurate_mode: return pow(0.1, self.guide.accurate_mode) return 1 def save_data(self) -> None: self.db_save_dict = {"global_t": self.t, "E": self.mis.guide["E"]} self.db_save_dict.update(self.mis.status.status_dict()) self.db_save_dict.update(self.mis.control) self.db_save_dict.update(self.from_mis_guide(getattr(glbs, 'GUIDE_SAVE_PARAM', []))) self.db.update(self.db_save_dict) def is_continue(self): return True def after_simulation(self): if self.is_online: return status = { '经度': np.rad2deg(self.mis.status.longitude), '纬度': np.rad2deg(self.mis.status.latitude), '时间': self.mis.status.t, '速度': self.mis.status.velocity, '高度': self.mis.status.height, 'Δψ': self.mis.guide["delta_psi"] } print('导弹结束状态:') for k in status.keys(): print(f'{k}: {status[k]}\n')
[]
2024-01-10
aofenghanyue/EntryGuidance
core~MultiMissileSim.py
# -*- coding: utf-8 -*- # EditTime : 2021-09-27 19:13 # Author : Of yue # File : MultiMissileSim.py # Intro : from itertools import chain from typing import List from entity.missile import Missile from guidance.MultiGuide import MultiMissileGuidance from store.dataSave import DataSave from utils.integral import Integral import multiset as glbs class MultiMissileSim: def __init__(self): # 最大迭代次数 self.max_iter = getattr(glbs, "MAXITER", 0) # 当前迭代次数 self.iter = 0 # 最小积分步长 self.min_h = getattr(glbs, "MIN_H", 1E-4) # 全局时间 self.t = getattr(glbs, "t0", 0) # 参与仿真的导弹 self.mis: List[Missile] = [] self.tar: List[Missile] = [] # 制导模块 self.guide: MultiMissileGuidance = MultiMissileGuidance() self.guide_params_list = getattr(glbs, "ParamsToGuide", []) # 积分模块 self.integral = Integral() # 数据存储模块 self.db: List[DataSave] = [] self.db_save_dict: dict = {} # 每次存储值的临时字典 self.init() # 其它 # 是否为在线临时仿真 self.is_main = True def init(self, mis=[], tar=[], guide=MultiMissileGuidance(), integ=Integral(), db=[]): """ 初始化导弹,目标,制导模式,积分,存储模块等信息,需重载 :param mis: List[Missile] :param tar: List[Missile] :param guide: Guidance :param integ: Integral :param db: List[DataSave] :return: """ pass def step_len(self): """ 计算每一步的积分步长,需重载 :return: """ return self.min_h def simulation(self): self._before_simulation() while self.next(): self._after_one_step() self._after_simulation() def next(self): """ 单次仿真循环,当停止制导后自动结束 :return: """ if self._is_continue(): if self.one_step_guide(): # 此处应该先保存上一步的状态值,再改变状态 self.after_guide() # 积分且更新状态 self.one_step_integral() # 包含了self.one_step_update_status() return True return False def one_step_guide(self): """ 1.产生控制指令 :return: True代表单步制导执行成功 False代表制导结束 """ # 产生传入制导模块的相关参数 # 产生制导指令, 如果制导指令成功生成,则继续仿真 return self.guide.one_step_guide(self.mis, self.tar, self.guide_params()) def one_step_integral(self): """ 2.各个体单步积分 :return: """ for m in chain(self.mis, self.tar): self.one_step_integral_object(m) def one_step_integral_object(self, obj: Missile): # 如果时间累计大于步长,则制导一次 if not obj.guide["guide_process"]: return False if obj.guide["end_guide"]: return False if obj.launched: # 如果导弹已发射则更新状态 x, y0 = obj.status.x, obj.status.y temp_step_len = obj.guide.get("step_len", self.step_len()) y_next, dy = self.integral.next_step(obj.equation.equation, x, y0, temp_step_len, obj.control, need_dy=True) x_next = x + temp_step_len if dy is not None: obj.guide["dy"] = dy # 3.各个体更新状态 status_update_data = {k: v for k, v in zip(obj.status.integral_key, y_next)} status_update_data.update({obj.status.independent_key: x_next}) obj.status.change_stat(status_update_data) def guide_params(self): """ 产生要传入制导模块的参数 :return: None """ temp_guide_params = {} for param in self.guide_params_list: if param == "self": temp_guide_params["simulation"] = self else: temp_guide_params[param] = getattr(self, param, None) return temp_guide_params def save_data(self) -> None: """ 存储数据 :return: None """ for index, (mis, db) in enumerate(zip(self.mis, self.db)): # 如果此仿真周期进行了制导,则保存数据 if mis.guide["guide_process"] and not mis.guide["end_guide"]: db_save_dict = {"global_t": self.t} # 默认只存储时间、导弹状态和控制量 db_save_dict.update(mis.status.status_dict()) db_save_dict.update(mis.control) db.update(db_save_dict) def _is_continue(self) -> bool: """判断是否继续仿真""" if self.iter > self.max_iter: return False if not self.is_continue(): return False return True def is_continue(self): return True def after_guide(self): """ 制导指令计算完成后进行 可存储导弹及其控制指令 :return: """ self.save_data() def _after_one_step(self): """每个积分循环完成后需要进行的操作 可以存储数据等,但一般存储数据在制导完成之后进行""" # 迭代次数+1 self.iter += 1 # 时间前进h self.t += self.min_h self.after_one_step() def after_one_step(self): pass def _before_simulation(self): print("仿真开始") self.before_simulation() def before_simulation(self): pass def _after_simulation(self): """仿真结束后需要做的事情 例如将结果输出为图像""" print("仿真结束") self.after_simulation() pass def after_simulation(self): pass def from_mis_guide(self, mis: Missile, param_list: list): return {param: mis.guide.get(param, None) for param in param_list}
[]
2024-01-10
aofenghanyue/EntryGuidance
core~multiMissileSimInstance.py
# -*- coding: utf-8 -*- # EditTime : 2021-09-29 20:09 # Author : Of yue # File : multiMissileSimInstance.py # Intro : import numpy as np import multiset as glbs from entity.missile import Missile from guidance.MultiGuide import MultiMissileGuidance from core.MultiMissileSim import MultiMissileSim from store.dataSave import DataSave from utils.integral import Integral class MultiMisSimInstance(MultiMissileSim): def __init__(self): super(MultiMisSimInstance, self).__init__() def init(self, mis=[], tar=[], guide=MultiMissileGuidance(), integ=Integral(), db=[]): self.mis = mis self.tar = tar self.guide = guide self.integral = integ self.db = [db for _ in mis] # 初始化导弹及目标状态 for m, t, status in zip(self.mis, self.tar, glbs.StatusParams): m.status.change_stat(status["MissileInitStatus"]) t.status.change_stat(status["TargetInitStatus"]) # 初始化制导模型 self.guide.init(self.mis, self.tar, self.guide_params()) def save_data(self) -> None: for index, (mis, db) in enumerate(zip(self.mis, self.db)): # 如果此仿真周期进行了制导,则保存数据 if mis.guide["guide_process"] and not mis.guide["end_guide"]: db_save_dict = {"global_t": self.t, "E": mis.guide["E"]} db_save_dict.update(mis.status.status_dict()) db_save_dict.update(mis.control) db_save_dict.update(self.from_mis_guide(mis, getattr(glbs, 'GUIDE_SAVE_PARAM', []))) db.update(db_save_dict)
[]
2024-01-10
aofenghanyue/EntryGuidance
multi_main.py
# -*- coding: utf-8 -*- # EditTime : 2021-10-27 9:27 # Author : Of yue # File : multi_main.py # Intro : import pandas import settings as glbs from guidance.multiMissileGuideInstance import MultiMisGuideInstance from core.multiMissileSimInstance import MultiMisSimInstance from database.vehicleParams import CAVHParams from dynamics.aerodynamic import AerodynamicCAVH from dynamics.motionEquation import ME6D from entity.missile import Missile from store.dataSave import DataSave from store.status import ME6DStatus, MissileStatus from utils.integral import RungeKutta4 mis = [Missile(motion_equation=ME6D(), aerodynamic=AerodynamicCAVH(), params=CAVHParams(), status=ME6DStatus())] # 2. 创建目标对象 tar = [Missile(status=MissileStatus())] # 3. 创建制导模块 guide = MultiMisGuideInstance() # 4. 创建积分模块 integral = RungeKutta4() # 5. 创建数据存储模块 database = DataSave() """创建仿真模型""" simulation = MultiMisSimInstance() simulation.init(mis=mis, tar=tar, guide=guide, integ=integral, db=database) """开始仿真""" simulation.simulation() result = simulation.db[0].data pass
[]
2024-01-10
lingwsh/ben_tech_python
whisper~whisper_api.py
import openai import time start_time = time.time() api_key = "Input your API key here" openai.api_key = api_key # Better use your local absolute path file_path = "/data/test.m4a" file = open(file_path, "rb") prompt = "Write your prompt here" # response_format: default is json. text, srt, verbose_json, or vtt are also supported. # API link: # https://platform.openai.com/docs/api-reference/audio/create # language: default is autodetect. # Supported languages: # https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes transcription = openai.Audio.transcribe("whisper-1", file, prompt=prompt, response_format="srt", language="zh") # Better use your local absolute path and set the output file name output_path = "/output/test.srt" # Error fix file path: venv/lib/python3.9/site-packages/openai/api_requestor.py with open(output_path, "w") as f: f.write(str(transcription)) end_time = time.time() time_spent = round(end_time - start_time, 2) print("Time spent:", time_spent, "seconds")
[ "Write your prompt here" ]
2024-01-10
lingwsh/ben_tech_python
whisper~video_srt.py
import moviepy.editor as mp import openai import time import os # Extract audio from video to srt path = "/ben_tech/12_python_string/output/python_string-YouTube_4k.mp4" prompt = "使用ChatGPT基于GPT4 讲解Python String" api_key = "Put your key in here" # Get file name without extension filename = path.split("/")[-1].split(".")[0] print(filename) my_clip = mp.VideoFileClip(path) output_name = "/data/{}.mp3".format(filename) # Check the path file exists if not os.path.exists(output_name): my_clip.audio.write_audiofile(output_name) # Use OpenAI API to transcribe audio to text start_time = time.time() openai.api_key = api_key # Better use your local absolute path file_path = output_name file = open(file_path, "rb") # response_format: default is json. text, srt, verbose_json, or vtt are also supported. # API link: # https://platform.openai.com/docs/api-reference/audio/create # language: default is autodetect. # Supported languages: # https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes print("Start transcribing...") transcription = openai.Audio.transcribe("whisper-1", file, prompt=prompt, response_format="srt", language="zh") # Better use your local absolute path and set the output file name output_path = "/output/{}.srt".format(filename) with open(output_path, "w") as f: f.write(str(transcription)) end_time = time.time() time_spent = round(end_time - start_time, 2) print("Time spent:", time_spent, "seconds")
[ "使用ChatGPT基于GPT4 讲解Python String" ]
2024-01-10
markling1979/langchain-doc-summary
all-in-one~pages~2_URL_Summary.py
import validators, streamlit as st from langchain.chat_models import ChatOpenAI from langchain.document_loaders import UnstructuredURLLoader from langchain.chains.summarize import load_summarize_chain from langchain.prompts import PromptTemplate # Set API keys from session state openai_api_key = st.session_state.openai_api_key # Streamlit app st.subheader('URL Summary') url = st.text_input("Enter Source URL") # If 'Summarize' button is clicked if st.button("Summarize"): # Validate inputs if not openai_api_key: st.error("Please provide the missing API keys in Settings.") elif not url: st.error("Please provide the URL.") elif not validators.url(url): st.error("Please enter a valid URL.") else: try: with st.spinner("Please wait..."): # Load URL data loader = UnstructuredURLLoader(urls=[url]) data = loader.load() # Initialize the ChatOpenAI module, load and run the summarize chain llm = ChatOpenAI(temperature=0, model='gpt-3.5-turbo', openai_api_key=openai_api_key) prompt_template = """Write a summary of the following in 200-250 words: {text} """ prompt = PromptTemplate(template=prompt_template, input_variables=["text"]) chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt) summary = chain.run(data) st.success(summary) except Exception as e: st.exception(f"Exception: {e}")
[ "Write a summary of the following in 200-250 words:\n \n {text}\n\n " ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
utils~templates_prompts.py
from langchain.prompts import PromptTemplate, FewShotPromptTemplate from utils.parsers import * PAST_MISTAKES =''' Below I have mentioned common mistakes made by you while using the tools. {mistakes} !! PLEASE GO THROUGH THEM CAREFULLY AND AVOID MAKING SIMILAR MISTAKES. Note that the context of above mistakes are different AND INDEPENDENT FROM CURRENT USER QUERY. DO NOT TAKE CONTEXT FROM ABOVE QUERIES. ''' PREFIX = """ Below are the tools in your tool-kit along with their description to help you decide on tool choice. """ #____________________________________________________________________________________________________________ FORMAT_INSTRUCTIONS = """ ALERT !!! - The Thought-Action-Observation repeats until we feel that agent has completely answered the user query. - Each time this process repeates, you need to write some reason in Thought of choosing a particular tool. Use the following format: Question: the input question you must answer Thought : The reason of picking the tool in process of answering user query. Action : the Tool to take , should be one of [{tool_names}] Action Input: - Your selected tool will need get its arguments filled by another agent. This agent does not have access to the query or the current output chain. - PRECISELY TELL THIS AGENT HOW YOU WANT IT TO FILL THE ARGUMENTS, in natural language, give emphasis to the argument name and its value. - IF you feel that this tool should needs output of other tools, you can infer their output stored in format $$PREV[i], where i is the index of the output you want to use. ... (this Thought/Action/Action Input must ONLY OCCUR ONCE) Note that it is possible that the query has been successfully answered and no further tool calls are required In this case return: Thought: Task has been completed Action: NONE Action Input: Task complete """ # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== # MISTAKE_SELECTION = ''' # Below you are provided with one of the past mistakes made by another AI agent on some other user query : # {mistake} # Below you are provided with the current user query : # CURRENT_USER_QUERY : {input} # Check diligently if the current user query is similar to the past query, in terms of the vulnerability of the AI agent to make the same mistake. # If there are some chances of making the same or similar mistake on the current user query, return 1 else return 0. # ANSWER : # ''' MISTAKE_SELECTION = ''' As a person learns to perform a task correctly by acknowledging his mistakes, similarly an AI agent can also learn to perform a task correctly by acknowledging its mistakes. Below is the user query AI agent is trying to solve: USER_QUERY : {input} Below is one of the past mistake made by AI agent on some other user query: MISTAKE : {mistake} - You need to check if the above mistake is relevant to the current user query or not. - Whether the AI agent should use this mistake as experience while solving the current user query or not. FORMAT_INSTRUCTIONS : - Return 1 if the above mistake is relevant to the current user query, else return 0. - Stick to the above information provided, decide importance of mistake judiciously, don't pollute the information. ANSWER : ''' # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== TOOL_INPUT_PROMPT = ''' The user query is as follows: User_Query : {query} The intermediate steps taken till now to solve the above query are as follows: {intermediate_steps} Below is the next tool that needs to be used as next tool in intermediate steps: {tool_name} The short description of the tool, to help you reason out, is as follows: {tool_description} You are expected to create a sub-task for the above tool from the given user_query, tool_description and the intermediate steps taken till now. While creating the sub-task for above tool, adhere to tool description. Don't query tool for tasks which are not mentioned in tool description. FORMAT INSTRUCTIONS : {format_instructions} ''' # =================================================================================================================================================================================================== EXAMPLES = [ { 'query': "Find all high priority issues related to part 'FEAT-123' created by user 'DEVU-123', prioritize them, and add them to the current sprint" , 'intermediate_steps': '''[ {{"tool_name": "works_list", "arguments": [{{"argument_name": "issue.priority", "argument_value": "high"}}, {{"argument_name": "applies_to_part", "argument_value": "FEAT-123"}}, {{"argument_name": "created_by", "argument_value": "DEVU-123"}}]}}, {{"tool_name": "prioritize_objects", "arguments": [{{"argument_name": "objects", "argument_value": "$$PREV[0]"}}]}}, {{"tool_name": "get_sprint_id", "arguments": []}}, ]''', 'tool_name': 'add_work_items_to_sprint', 'tool_description': "Adds the given work items to the sprint. This tool needs to know the list of work_id and the sprint_id to which the work items should be added.", 'tool_input': "Add work items $$PREV[1] to sprint_id $$PREV[2]" } ] EXAMPLE_FORMATTER_TEMPLATE = """ query: {query}\n intermediate steps : {intermediate_steps}\n tool_name: {tool_name} tool_description: {tool_description} tool_input: {tool_input}\n\n """ EXAMPLE_PROMPT = PromptTemplate( input_variables=["query", "intermediate_steps" , "tool_name" , "tool_description", "tool_input"], template=EXAMPLE_FORMATTER_TEMPLATE, ) # =================================================================================================================================================================================================== sub_task_prompt = FewShotPromptTemplate( examples=EXAMPLES, # prompt template used to format each individual example example_prompt=EXAMPLE_PROMPT, # prompt template string to put before the examples, assigning roles and rules. prefix="Here are some few shots of how to create sub-task for a given tool based query, intermediate_steps and tool_description:\n", # prompt template string to put after the examples. suffix=TOOL_INPUT_PROMPT, # input variable to use in the suffix template input_variables=["query" , "intermediate_steps" , "tool_name" , "tool_description"], example_separator="\n", partial_variables= {'format_instructions' : sub_task_parser.get_format_instructions()} ) # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== MISSED_TOOL_TEMPLATE = ''' There is an AI agent which is picking up tools under ReAct framework to solve user queries. It misses picking up correct tool, being unable to reason out its usage for the given query. I provide you some few shots how to reason out the mistake highlight of a tool based on the user query and tool description: Example_Query : "Prioritize my p0 issues" Tools missed: Incorrect tool uses: Example_MISTAKE : "The tool 'who_am_i' is useful as there is a keyword 'my' which hints towards the user currently logged in. So, this tool can get the user id of the user currently logged in." Example_Query : "Summarize high severity tickets from the customer UltimateCustomer" Tools missed: Incorrect tool uses: Example_MISTAKE :"We need to find the id of the object, so we must use the tool 'search_object_by_name' tool which searches for the object id based on the name of the object." Example_Query : "What are my all issues in the triage stage under part FEAT-123? Summarize them" Tools missed: Incorrect tool uses: Example_MISTAKE :"We need to find the id of the object, so we must use the tool 'search_object_by_name' tool which searches for the object id based on the name of the object." - You need to provide an eye-catchy insight of why that tool should not be missed for the given query based on the user query and tool description. - You insight will help the agent to learn from its mistakes. Don't be super-specific to user query, keep the tool description in consideration. - Keep your insight within 20 words and at least 9 words. Present answer in a paragraph. USER_QUERY : {query} Tools missed : {tools_missed} Incorrect tool uses : {incorrect_tool_uses} Agent_MISTAKE : ''' missed_tool_prompt = PromptTemplate(template=MISSED_TOOL_TEMPLATE, input_variables=['agent_scratchpad','query' ,'correct_tool_name' , 'tool_description']) # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== TOOLS_PROMPT_EXAMPLES = ''' Your task is to extract the argument value from user query based on argument description and argument type. The datatype is {arg_dtype} The argument description is: {arg_description} The above mentioned arguments have their values present in the query. You need to extract the argument value from the query. Don't pollute the information, stick to information provided in the user query. Your query is: {user_query} FORMAT INSTRUCTIONS ---> - Don't return anything else other than the argument value. - Ensure that the argument value is in correct data type before returning. - If the argument value is not explicitly present in the query, then return "NONE". ALERT !!! - If the Query contains specific keywords like $$PREV[i], where i is the index of the output you want to use, then it is a symbolic representation of the output and is NOT THE ACTUAL OUTPUT - use $$PREV[i] as whole and don't pass invalid representation like "$$PREV" OR "$$PREV[]" or i ANSWER : ''' #____________________________________________________________________________________________________________ ARG_FILTER_PROMPT = ''' I want to use a tool which has a lots of arguments. I want to filter out only those arguments which can surely be extracted from the user query. Below I provide the arguments that the tool can take along with their description: {arg_description} {format_instructions} Below I provide the query, which needs to be referenced whiele deciding which arguments to filter out: QUERY : {query} ALERT !!! - Don't create any new argument from user query, make sure that filtered argument have correct name. - If the Query contains specific keywords like $$PREV[i], then take it as a whole. - Stick to information provided in the user query and description of arguments. - Don't pollute the argument filtering with any assumptions. - Make sure that there are no parsing errors. ''' #____________________________________________________________________________________________________________ LOGICAL_TEMPLATE = ''' You need to return a code block executing the above user query in the python. Below I provide an example code block in python so that you know the desired output format: Example 1: ``` ### Query: Calculate the difference in count between P1 and P2 issues def count_difference(p1_issues, p2_issues): return len(p1_issues) - len(p2_issues) count_difference("$$PREV[0]", "$$PREV[1]") ``` Example 2: ``` ### Query: Extract the first five tasks from the list of all tasks. def first_five_tasks(tasks): return tasks[:5] first_five_tasks("$$PREV[0]") ``` (note that there were other tool calls before this as well that were ommitted) You may devise any function of your own using a combination of sum, variables, loops, if-else statements etc. - Make sure that the code is in correct syntax before returning. - Don't return anything else other than the code block. - Simply return the code block, nothing else to be returned You have the following user query: {query} ''' # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== CRITIQUE_TEMPLATE = ''' Below you are provided the tools available in toolkit and their description : {tools} FORMAT INSTRUCTIONS : {format_instructions} Here are a few examples of sample outputs: QUERY_EXAMPLE : What is the use of life? OUTPUT : {{"answer" : 0 , "reason" : "The available tools are not useful to answer the query."}} QUERY_EXAMPLE : "List all work items similar to TKT-420 and add the top 2 highest priority items to the current sprint OUTPUT : {{"answer" : 1 , "reason" : "We can use get_similar_items, prioritize_objects, get_sprint_id, add_work_items_to_sprint to solve query."}} QUERY_EXAMPLE : Search for youtube videos of user id DEVU-67 OUTPUT : {{"answer" : 0 ,'reason' : "no tool is present to search for youtube videos"}} QUERY_EXAMPLE : "Create a excel file of work items in the current sprint OUTPUT : {{"answer" : 0 , "reason" : "no tool is present to create excel file"}} Give a similar answer, reason pair for the below query. If answer is 1, tell me what all tools you would use QUERY : {query} ALERT !! - Make sure that there are no parsing errors. ''' critique_prompt = PromptTemplate(template=CRITIQUE_TEMPLATE, input_variables=['query' ,'tools'], partial_variables={'format_instructions' : critique_parser.get_format_instructions()}) # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== # =================================================================================================================================================================================================== # You are also provided the dataypes of arguments present in the user query: # {function_signature} # ["red" , ""$$PREV[0]"]
[ "We can use get_similar_items, prioritize_objects, get_sprint_id, add_work_items_to_sprint to solve query.", "\n", "Prioritize my p0 issues", "tool_description", "\n\nYour task is to extract the argument value from user query based on argument description and argument type.\n\nThe datatype is {arg_dtype}\n\nThe argument description is:\n{arg_description}\n\nThe above mentioned arguments have their values present in the query. You need to extract the argument value from the query.\nDon't pollute the information, stick to information provided in the user query.\n\nYour query is:\n{user_query}\n\nFORMAT INSTRUCTIONS --->\n - Don't return anything else other than the argument value.\n - Ensure that the argument value is in correct data type before returning.\n - If the argument value is not explicitly present in the query, then return \"NONE\".\n\nALERT !!!\n- If the Query contains specific keywords like $$PREV[i], where i is the index of the output you want to use, \n then it is a symbolic representation of the output and is NOT THE ACTUAL OUTPUT\n- use $$PREV[i] as whole and don't pass invalid representation like \"$$PREV\" OR \"$$PREV[]\" or i\n\nANSWER :\n", "answer", "What are my all issues in the triage stage under part FEAT-123? Summarize them", "no tool is present to create excel file", "Here are some few shots of how to create sub-task for a given tool based query, intermediate_steps and tool_description:\n", "agent_scratchpad", "format_instructions", "correct_tool_name", "reason", "\nI want to use a tool which has a lots of arguments. I want to filter out only those arguments which can surely be extracted from the user query.\n\nBelow I provide the arguments that the tool can take along with their description:\n{arg_description}\n\n{format_instructions}\n\nBelow I provide the query, which needs to be referenced whiele deciding which arguments to filter out:\nQUERY : {query}\n\nALERT !!!\n- Don't create any new argument from user query, make sure that filtered argument have correct name.\n- If the Query contains specific keywords like $$PREV[i], then take it as a whole.\n- Stick to information provided in the user query and description of arguments.\n- Don't pollute the argument filtering with any assumptions.\n- Make sure that there are no parsing errors.\n", "\nYou need to return a code block executing the above user query in the python.\n\nBelow I provide an example code block in python so that you know the desired output format:\nExample 1:\n```\n### Query: Calculate the difference in count between P1 and P2 issues\n\ndef count_difference(p1_issues, p2_issues):\n return len(p1_issues) - len(p2_issues)\ncount_difference(\"$$PREV[0]\", \"$$PREV[1]\")\n```\n\nExample 2:\n```\n### Query: Extract the first five tasks from the list of all tasks.\n\ndef first_five_tasks(tasks):\n return tasks[:5]\n\nfirst_five_tasks(\"$$PREV[0]\")\n```\n(note that there were other tool calls before this as well that were ommitted)\n\nYou may devise any function of your own using a combination of sum, variables, loops, if-else statements etc.\n\n- Make sure that the code is in correct syntax before returning.\n- Don't return anything else other than the code block. \n- Simply return the code block, nothing else to be returned\n\nYou have the following user query:\n{query}\n", "We need to find the id of the object, so we must use the tool 'search_object_by_name' tool which searches for the object id based on the name of the object.", "The tool 'who_am_i' is useful as there is a keyword 'my' which hints towards the user currently logged in. So, this tool can get the user id of the user currently logged in.", "intermediate_steps", "\nThere is an AI agent which is picking up tools under ReAct framework to solve user queries.\nIt misses picking up correct tool, being unable to reason out its usage for the given query.\n\nI provide you some few shots how to reason out the mistake highlight of a tool based on the user query and tool description:\n\nExample_Query : \"Prioritize my p0 issues\"\nTools missed: \nIncorrect tool uses:\nExample_MISTAKE : \"The tool 'who_am_i' is useful as there is a keyword 'my' which hints towards the user currently logged in. So, this tool can get the user id of the user currently logged in.\" \n\nExample_Query : \"Summarize high severity tickets from the customer UltimateCustomer\"\nTools missed:\nIncorrect tool uses:\nExample_MISTAKE :\"We need to find the id of the object, so we must use the tool 'search_object_by_name' tool which searches for the object id based on the name of the object.\"\n\n\nExample_Query : \"What are my all issues in the triage stage under part FEAT-123? Summarize them\"\nTools missed:\nIncorrect tool uses:\nExample_MISTAKE :\"We need to find the id of the object, so we must use the tool 'search_object_by_name' tool which searches for the object id based on the name of the object.\"\n\n- You need to provide an eye-catchy insight of why that tool should not be missed for the given query based on the user query and tool description. \n- You insight will help the agent to learn from its mistakes. Don't be super-specific to user query, keep the tool description in consideration. \n- Keep your insight within 20 words and at least 9 words. Present answer in a paragraph.\n\nUSER_QUERY : {query}\nTools missed : {tools_missed}\nIncorrect tool uses : {incorrect_tool_uses}\nAgent_MISTAKE : \n", "no tool is present to search for youtube videos", "\n\nBelow you are provided the tools available in toolkit and their description :\n{tools}\n\nFORMAT INSTRUCTIONS :\n{format_instructions}\n\nHere are a few examples of sample outputs:\n\nQUERY_EXAMPLE : What is the use of life?\nOUTPUT : {{\"answer\" : 0 , \"reason\" : \"The available tools are not useful to answer the query.\"}}\n\nQUERY_EXAMPLE : \"List all work items similar to TKT-420 and add the top 2 highest priority items to the current sprint\nOUTPUT : {{\"answer\" : 1 , \"reason\" : \"We can use get_similar_items, prioritize_objects, get_sprint_id, add_work_items_to_sprint to solve query.\"}}\n\n\nQUERY_EXAMPLE : Search for youtube videos of user id DEVU-67\nOUTPUT : {{\"answer\" : 0 ,'reason' : \"no tool is present to search for youtube videos\"}}\n\n\nQUERY_EXAMPLE : \"Create a excel file of work items in the current sprint\nOUTPUT : {{\"answer\" : 0 , \"reason\" : \"no tool is present to create excel file\"}}\n\nGive a similar answer, reason pair for the below query. If answer is 1, tell me what all tools you would use\n\nQUERY : {query}\n\nALERT !!\n- Make sure that there are no parsing errors.\n\n", "Summarize high severity tickets from the customer UltimateCustomer", "tool_name", "The available tools are not useful to answer the query.", "\nquery: {query}\n\nintermediate steps : {intermediate_steps}\n\ntool_name: {tool_name}\ntool_description: {tool_description}\n\ntool_input: {tool_input}\n\n\n", "tool_input", "\nThe user query is as follows:\n User_Query : {query}\n\nThe intermediate steps taken till now to solve the above query are as follows:\n{intermediate_steps}\n\nBelow is the next tool that needs to be used as next tool in intermediate steps: {tool_name}\n\nThe short description of the tool, to help you reason out, is as follows:\n{tool_description}\n\nYou are expected to create a sub-task for the above tool from the given user_query, tool_description and the intermediate steps taken till now.\n\nWhile creating the sub-task for above tool, adhere to tool description. \nDon't query tool for tasks which are not mentioned in tool description.\n\nFORMAT INSTRUCTIONS :\n{format_instructions}\n" ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
utils~add_tool.py
tool_name = input("Tool Name") tool_desc = input("Tool description") arg_names = [] arg_descs = [] arg_types = [] while True: arg_name = input("Argument name (type 'exit' if done): ").strip() if arg_name.lower() == "exit": break arg_desc = input("Argument description: ").strip() arg_type = input("Argument type: ").strip() arg_names.append(arg_name) arg_descs.append(arg_desc) arg_types.append(arg_type) tool_arg_dict = dict(zip(arg_names, arg_types)) tool_arg_descript_dict = dict(zip(arg_names, arg_descs)) NEW_TOOL_CLASS = """ from langchain.tools import BaseTool from typing import Optional, Type, List, Any from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from tools.argument_mapping.get_args import fill_signature from backend_llm.utils import llm class {tool_name}(BaseTool): name = {tool_name} description = '''This tool is useful for {tool_description}: The arguments: ''' + ", ".join({tool_arguments}) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> Any: signature = {tool_arg_dict} arg_description = {tool_arg_descript_dict} column_args = fill_signature(query,function_signatures= signature , arg_description=arg_description,tool_name=self.name) li = [] for key, value in column_args.items(): x = {{ 'argument_name': 'key', 'argument_value': 'value', }} li.append(x) return li async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: "Use the tool asynchronously." raise NotImplementedError("custom_search does not support async") """.format(tool_name=tool_name, tool_description=tool_desc, tool_arguments=arg_names, tool_arg_dict=tool_arg_dict, tool_arg_descript_dict=tool_arg_descript_dict) with open('tools/{tool_name}.py'.format(tool_name=tool_name),"w") as f: f.write(NEW_TOOL_CLASS) f.close()
[]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
tools~get_similar_work_items.py
from langchain.tools import BaseTool from typing import Optional, List, Any from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from utils.llm_utility import llm from utils.get_args import fill_signature class GetSimilarWorkItems(BaseTool): name = "get_similar_work_items" description = ''' USAGE : - Use this tool when you want to get work_items similar to the current work_item. - This tool returns a list of similar work_items for the given work_id. ''' bag_of_words = set(["similar","similar items", "similar work_items", "similar work"]) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> Any: print('\ninside get_similar_work_items tool...') signature = { 'work_id': str, } arg_description = { 'work_id': 'The ID of the work item for which you want to find similar items', } li = [] for key, value in signature.items(): arg_dtype = { 'argument_name': key, 'argument_value': value, } arg_descr = { 'argument_name': key, 'argument_value': arg_description[key], } x = fill_signature(query = query, arg_name = key , arg_dtype = arg_dtype , arg_descr = arg_descr, tool_name = self.name) if x is not None: li.append({ 'argument_name': key, 'argument_value': x, }) print('Extracted arguments are : ',li) return li async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("custom_search does not support async")
[ "\n \n USAGE :\n - Use this tool when you want to get work_items similar to the current work_item.\n - This tool returns a list of similar work_items for the given work_id. \n " ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
memory~memory.py
from queue import Queue from langchain.docstore.document import Document from langchain.vectorstores.chroma import Chroma from utils.llm_utility import * class Memory(): def __init__(self,vector_db, k=3) -> None: self.queue = Queue(maxsize=10) # current List to be added to Long Term Memory self.k = k self.vector_db = vector_db def stage(self, docs:Document): self.queue.put(docs) print("\033[91m {}\033[00m" .format('Document Staged in Memory...')) def push(self): print(f"Pushing {self.queue.qsize()} Documents...") while not self.queue.empty(): self.vector_db.add_documents([self.queue.get()]) def pull(self, query:str,filter = None): if filter == None: results = self.vector_db.similarity_search(query, k=self.k , search_type='similarity') else: results = self.vector_db.similarity_search(query, k=self.k , search_type='similarity',filter = filter) return results def clear(self): ''' Clears all items from the queue. ''' self.queue = Queue(maxsize=10) V_db = Chroma(embedding_function = embedding_func, persist_directory= 'database/agent_mistakes_db' , relevance_score_fn='similarity_search_with_score') mistake_memory:Memory = Memory(k=3,vector_db=V_db)
[]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
tools~get_sprint_id.py
from langchain.tools import BaseTool from typing import Optional, List, Any from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from utils.llm_utility import llm from utils.get_args import fill_signature class GetSprintId(BaseTool): name = "get_sprint_id" description = ''' USAGE : - This tool is used when we want to know the id of current sprint. - Think of using it when user query contains keywords like "sprint" ''' bag_of_words = set(["current sprint", "current sprint id", "sprint", "sprint id"]) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> Any: print('\ninside get_sprint_id tool...') # signature = {} # arg_description = {} # column_args = fill_signature(query,function_signatures= signature ,arg_description=arg_description, tool_name = self.name) li = [] # for key, value in column_args.items(): # x = { # 'argument_name': key, # 'argument_value': value, # } # li.append(x) return li async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("custom_search does not support async")
[ "\n USAGE :\n - This tool is used when we want to know the id of current sprint.\n - Think of using it when user query contains keywords like \"sprint\"\n " ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
tools~add_work_items_to_sprint.py
from langchain.tools import BaseTool from typing import Optional, Type, List from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from utils.get_args import fill_signature from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from utils.llm_utility import llm class AddWorkItemsToSprint(BaseTool): name = "add_work_items_to_sprint" description = ''' USAGE : - Adds or assigns the given work items to the sprint. - Need to fill the following arguments available for tool usage --> - "sprint_id" : the id of current sprint - "work_ids" : list of work-items to add to sprint ''' bag_of_words = set(["add work items to sprint", "add work items", "add to sprint", " add", "assign", "assigning"]) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) : print('\ninside add_work_items_to_sprint tool ...') signature = {'work_ids': List[str], 'sprint_id': str , } arg_description = { 'work_ids': 'A list of work item IDs to be added to the sprint', 'sprint_id': 'The ID of the sprint to which the work items should be added', } li = [] for key, value in signature.items(): arg_dtype = { 'argument_name': key, 'argument_value': value, } arg_descr = { 'argument_name': key, 'argument_value': arg_description[key], } x = fill_signature(query = query, arg_name = key , arg_dtype = arg_dtype , arg_descr = arg_descr, tool_name = self.name) if x is not None: li.append({ 'argument_name': key, 'argument_value': x, }) print('Extracted arguments are : ',li) return li async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("custom_search does not support async")
[ "\n USAGE :\n - Adds or assigns the given work items to the sprint. \n - Need to fill the following arguments available for tool usage -->\n - \"sprint_id\" : the id of current sprint\n - \"work_ids\" : list of work-items to add to sprint\n\n " ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
utils~parsers.py
from langchain.output_parsers import StructuredOutputParser, ResponseSchema critique_response_schemas = [ ResponseSchema(name="answer", description="Return 1 if user query can be answered by the available tools based on tool description, else return 0."), ResponseSchema(name="reason", description="Reason why available tools can/ cannot answer the user query based on tool descriptions.") ] critique_parser = StructuredOutputParser.from_response_schemas(critique_response_schemas) #_______________________________________________________________________________________________________________________________________________________________ sub_task_response_schemas = [ ResponseSchema(name="tool_input", description="The next consecutive sub-task in intermediate steps for the above tool based on above user_query and tool description"), ResponseSchema(name="reason", description="Reason why the tool should be chosen as next consecutive tool in intermediate steps based on tool_description and user_query, at max 20 words and atleast 15 words") ] sub_task_parser = StructuredOutputParser.from_response_schemas(sub_task_response_schemas) #_______________________________________________________________________________________________________________________________________________________________ arg_filter_response_schemas = [ ResponseSchema(name="Arguments", description="The list of filtered arguments whose value is available in the user query"), ] arg_filter_parser = StructuredOutputParser.from_response_schemas(arg_filter_response_schemas)
[]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
tools~logic_tool.py
from langchain.tools import BaseTool from typing import Optional, List, Any from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) import sys, os sys.path.append(os.getcwd()) from utils.llm_utility import llm from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from utils.templates_prompts import LOGICAL_TEMPLATE import ast generate_code_prompt = PromptTemplate(template=LOGICAL_TEMPLATE, input_variables=['query' , 'language']) generate_code = LLMChain(llm = llm , prompt=generate_code_prompt) class LogicalTool(BaseTool): name = "logic_tool" description = ''' - Use this tool, for various logical operations like conditional statements, while loops, addition, subtraction, iterate over lists etc. - The input to this tool is symbolic and the output is a pseudocode to execute the task on input. - By symbolic, it means that it is in '$$PREV[i]' format, so, llm can't perform logic on it. ''' def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> Any: print('\ninside logic_tool tool...') code = generate_code.run({'query' : query , 'language' : 'python'}) print("\033[97m {}\033[00m" .format('Generated Code : \n{i}'.format(i=code))) li = [] li.append({ 'code' : code, }) return li async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("custom_search does not support async")
[ "language", "\n - Use this tool, for various logical operations like conditional statements, while loops, addition, subtraction, iterate over lists etc. \n - The input to this tool is symbolic and the output is a pseudocode to execute the task on input.\n - By symbolic, it means that it is in '$$PREV[i]' format, so, llm can't perform logic on it.\n " ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
agent~mistakes_selection.py
from langchain.prompts import PromptTemplate from utils.llm_utility import llm from langchain.chains import LLMChain from typing import List, Union from langchain.docstore.document import Document import ast import sys, os sys.path.append(os.getcwd()) from utils.templates_prompts import MISTAKE_SELECTION from memory.memory import mistake_memory prompt = PromptTemplate(template=MISTAKE_SELECTION, input_variables=["input", "mistake"]) chain = LLMChain(llm=llm, prompt=prompt) def choose_mistake(mistake, tool_task): return chain.run({'input':tool_task, 'mistake': mistake}) def analyse(user_query, wrong_tool_name, tool_task): final_mistakes = [] if tool_task == None: return final_mistakes print("\033[91m {}\033[00m" .format('analyse (mistake_selection)')) print("\033[91m {}\033[00m" .format('\tPulling mistakes from agent memory... (mistake_selection)')) filter = { 'wrong_tool': wrong_tool_name, } # mistakes = mistake_memory.pull(query=user_query, filter=filter) if user_query != '' else '' mistakes = mistake_memory.pull(query=tool_task, filter=filter) if user_query != '' else '' mistaken_tool_set = set() if isinstance(mistakes , str) or mistakes == []: return 'No mistakes found relevant to this query' i=0 for mistake in mistakes: mistaken_tool = mistake.metadata['correct_tool'] if not mistaken_tool in mistaken_tool_set : mistaken_tool_set.add(mistaken_tool) ans = choose_mistake(mistake.metadata['learning'] , tool_task=mistake.page_content) if '1' in ans: i+=1 print("\033[91m {}\033[00m" .format('\tchosen_mistakes : {i} (mistake_selection)'.format(i=i))) # print("\033[93m {}\033[00m" .format(prompt.template.format(input=user_query , mistake=mistake.page_content))) final_mistakes.append(mistake) return final_mistakes # for mistake in mistakes: # # mistaken_tool = mistake.metadata['correct_tool'] # # if not mistaken_tool in mistaken_tool_set: # # mistaken_tool_set.add(mistaken_tool) # # ans = choose_mistake(user_query=user_query , mistake=mistake.metadata['learning']) # # if ans == 1: # # i+=1 # # print("\033[91m {}\033[00m" .format('\tchosen_mistakes : {i} (mistake_selection)'.format(i=i))) # # print("\033[93m {}\033[00m" .format(prompt.template.format(input=user_query , mistake=mistake.page_content))) # final_mistakes.append(mistake) # print("Final Mistakes = ", final_mistakes) # return final_mistakes
[ "input" ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
train_analysis~train.py
import pandas as pd import sys, os sys.path.append(os.getcwd()) from agent_executor.agent_executer import agent_executor from langchain.docstore.document import Document from icecream import ic from langchain.callbacks import get_openai_callback from utils.chains import * from memory.memory import mistake_memory data = pd.read_csv('DATA_DEVREV_72_tt_splitted/reducd_combined_train.csv' ).iloc[:1,:] # print(data) # query = 'List all high severity tickets coming in from slack from customer abc123 and generate a summary of them.' # ground_json = ''' # [ # { # "tool_name": "search_object_by_name", # "arguments": [ # { # "argument_name": "query", # "argument_value": "Cust123" # } # ] # }, # { # "tool_name": "works_list", # "arguments": [ # { # "argument_name": "ticket.rev_org", # "argument_value": "$$PREV[0]" # }, # { # "argument_name": "ticket.severity", # "argument_value": ["high"] # }, # { # "argument_name": "ticket.source_channel", # "argument_value": ["slack"] # }, # { # "argument_name": "type", # "argument_value": ["ticket"] # } # ] # }, # { # "tool_name": "summarize_objects", # "arguments": [ # { # "argument_name": "objects", # "argument_value": "$$PREV[1]" # } # ] # } # ] # ''' # data = [(query , ground_json)] # print(data.shape) #___________________________________________________________________________________________ agent_executor.train() def build_experience(x): thoughts_action = '\n'.join(x['intermediate_thoughts']) y = create_tool_experience_chain.run({"query": x['query'] , "agent_scratchpad" : thoughts_action , "correct_tool_name": x['correct_tool'] ,"tool_description": x['correct_tool_description'], }) # print("TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT") # print(create_tool_experience_chain.prompt) return y.strip('\n').strip() #___________________________________________________________________________________________ ct = 0 for i in range(len(data)): print("\033[1;32m {}\033[00m" .format('QUERY COUNT : {i}'.format(i=i))) query, ground_json = data.iloc[i,0], data.iloc[i,1] # query, ground_json = data[0][0] , data[0][1] print("\033[1;32m {}\033[00m" .format('QUERY : ') , "\033[93m {}\033[00m" .format(query)) print("\033[1;32m {}\033[00m" .format('Ground JSON :') , "\033[93m {}\033[00m" .format(ground_json)) agent_executor.get_tool_lists(ground_json) with get_openai_callback() as cb: x = agent_executor(inputs={"input": query}) thought_execution_chain , checkpoints = agent_executor.thought_execution_chain , agent_executor.checkpoints for tool_index, value in checkpoints.items(): x = { "query":query, "correct_tool" :value['correct_tool'] , "wrong_tool" : value['wrong_tool'] , "wrong_tool_description" : value['wrong_tool_description'] , "correct_tool_description" :value['correct_tool_description'] , "intermediate_thoughts" : thought_execution_chain[:tool_index], "tool_thought": value['thought'] } human_eval = 'n' # human_eval = input("Do you want to correct the reasoning? (y/n) :") if human_eval.lower() == 'n': experience = build_experience(x) else : experience = input("This has been the mistake summary : \n\t{x}. \nPlease write the correct reasoning :".format(x=x)) # learning = '- MISTAKE_HIGHLIGHT : {b}\n'.format(b = experience) learning = '- MISTAKE_HIGHLIGHT : {b}\n'.format(b = experience) metadata = { # 'query': x['query'], 'correct_tool': x['correct_tool'], 'wrong_tool': x['wrong_tool'], 'learning': learning } print('metadata : ' , metadata) print('tool_thought : ' , x['tool_thought']) doc = Document(page_content=x['tool_thought'] , metadata=metadata) mistake_memory.stage(doc) print("\033[96m {}\033[00m" .format(agent_executor.return_schema)) user_decision = 'y' # user_decision = input('Do you want to save the experience? (y/n) : ') if user_decision.lower() == 'y': ct+= mistake_memory.queue.qsize() mistake_memory.push() else: mistake_memory.clear() print("\033[91m {}\033[00m" .format('skipping experience saving...')) print("\033[91m {}\033[00m" .format('---------------- QUERY_COST : $ {cost}---------------- MISTAKES LEARNED : {ct}-------------------- QUERY TOKENS : {tokens}-----------------'.format(cost = round(cb.total_cost, 5) , ct = ct, tokens = cb.total_tokens)))
[]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
memory~tool_memory.py
import sys, os sys.path.append(os.getcwd()) from memory.memory import Memory from utils.llm_utility import * from langchain.vectorstores.chroma import Chroma from langchain.docstore.document import Document from evaluator import * #__________________________________________________________________________________________________________________________ tool_database = Chroma(embedding_function = embedding_func, persist_directory= 'database/tool_mistake_db' , relevance_score_fn='similarity_search_with_score') tool_mistake_memory = Memory(k=2, vector_db=tool_database) #__________________________________________________________________________________________________________________________ def build_tool_experience(correct_tool, llm_tool): # try: response, analogy, correct_arguments = validate(correct_tool, llm_tool) # except: # response, analogy, correct_arguments = self.true_tools[self.tool_count] == output.tool, " ", " " if response is not True: print("\033[91m {}\033[00m" .format('Tool Arguments are not correct... (tool_memory)')) print("\033[91m {}\033[00m" .format('Staging tool experience in Memory... (tool_memory)')) experience = analogy metadata = { 'tool_name': llm_tool[0]['tool_name'] } doc = Document(page_content=experience , metadata=metadata) tool_mistake_memory.stage(doc) return response, correct_arguments def retrieve_tool_experience(tool_name:str, user_query:str): if(tool_mistake_memory.queue.empty() == False): tool_mistake_memory.push() filter = { 'tool_name':tool_name, } print("\033[91m {}\033[00m" .format('\nPulling argument mistakes from tool memory... (tool_memory)')) tool_mistakes = tool_mistake_memory.pull(query=user_query,filter=filter) if user_query != '' else '' return tool_mistakes
[]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
tools~prioritize_objects.py
from langchain.tools import BaseTool from typing import Optional, List, Any from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from utils.llm_utility import llm from utils.get_args import fill_signature class Prioritize(BaseTool): name = "prioritize_objects" description = ''' - Use this tool when asked to prioritize the objects. ''' bag_of_words = set(["prioritize", "priority", "prioritize objects", "prioritization"]) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> Any: print('\ninside Prioritize_objects tool...') signature = { 'objects': List[str], } arg_description = { 'objects': 'the list of objects to be prioritized', } li = [] for key, value in signature.items(): arg_dtype = { 'argument_name': key, 'argument_value': value, } arg_descr = { 'argument_name': key, 'argument_value': arg_description[key], } query = query.strip('\n').strip() ans = query ## $$PREV[*] is a special keyword that means "use the previous value of this argument" if len(query) != 9: ans = fill_signature(query = query, arg_name = key , arg_dtype = arg_dtype , arg_descr = arg_descr, tool_name = self.name) if ans.strip('\n').strip() != 'NONE': li.append({ 'argument_name': key, 'argument_value': ans, }) print('Extracted arguments are : ',li) return li async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("custom_search does not support async")
[ "\n - Use this tool when asked to prioritize the objects. \n " ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
utils~chains.py
from utils.templates_prompts import * from langchain.chains import LLMChain from utils.llm_utility import * llm_critique = LLMChain(llm = small_llm , prompt=critique_prompt) sub_task_chain = LLMChain(prompt=sub_task_prompt , llm=llm) create_tool_experience_chain = LLMChain(llm=small_llm, prompt=missed_tool_prompt)
[]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
train_analysis~predict.py
import pandas as pd import sys, os sys.path.append(os.getcwd()) from agent_executor.agent_executer import agent_executor from langchain.docstore.document import Document from langchain.callbacks import get_openai_callback import time import json data = pd.read_csv('DATA_DEVREV_72_tt_splitted/test_DATA_multi_class_3.csv').iloc[:10,: ] path = 'prediction_data/test_DATA_multi_class_3.csv' if not os.path.exists(path): prediction_df = pd.DataFrame(columns=['query' , 'groundJson' , 'predicted_json' , 'latency (in seconds)' , 'queryCost' , 'queryTokens']) prediction_df.to_csv(path, index=False) prediction_df = pd.read_csv(path) agent_executor.eval() ct = 0 for i in range(len(data)): print("\033[1;32m {}\033[00m" .format('QUERY COUNT : {i}'.format(i=i))) query, ground_json = data.iloc[i , 0] , data.iloc[i , 1] print("\033[1;32m {}\033[00m" .format('QUERY : ') , "\033[93m {}\033[00m" .format(query)) print("\033[1;32m {}\033[00m" .format('Ground JSON :') , "\033[93m {}\033[00m" .format(ground_json)) with get_openai_callback() as cb: start = time.time() x = agent_executor(inputs={"input": query}) try: predict_json = json.dumps(agent_executor.return_schema) print(type(predict_json)) latency = time.time() - start query_cost = cb.total_cost query_tokens = cb.total_tokens prediction_df.loc[len(prediction_df)] = [query , ground_json , predict_json , round(latency,2) , round(query_cost,5) , query_tokens] except: print("Skipping query ....") print("\033[91m {}\033[00m".format('---------------- QUERY_COST : $ {cost}---------------- QUERY TOKENS : {tokens}-----------------'.format(cost = round(cb.total_cost, 5) , tokens = cb.total_tokens))) prediction_df.to_csv(path, index=False) import pandas as pd # df1 = pd.read_csv('prediction_data/test_DATA_multi_class_1.csv') # df2 = pd.read_csv('prediction_data/test_DATA_multi_class_2.csv') # df3 = pd.read_csv('prediction_data/test_DATA_multi_class_3.csv') # df4 = pd.read_csv('prediction_data/test_DATA_single.csv') # df = pd.concat([df1, df2, df3, df4], axis = 0) # print(df.shape) # df.to_csv('prediction_data/FINAL_CSV.csv')
[]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
utils~get_args.py
import sys , os sys.path.append(os.getcwd()) from typing import List, Union, Any, Dict from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from utils.llm_utility import llm, small_llm from memory.tool_memory import retrieve_tool_experience from utils.templates_prompts import TOOLS_PROMPT_EXAMPLES, ARG_FILTER_PROMPT import re, ast from utils.tool_output_parser import parser from icecream import ic from utils.parsers import arg_filter_parser from langchain.output_parsers import StructuredOutputParser, ResponseSchema from langchain.output_parsers import OutputFixingParser from langchain.output_parsers import RetryWithErrorOutputParser #------------------------------------------------------------------------------------------------------------------------------------------------- # response_schemas = [ # ResponseSchema(name="argument name", description="the name of the argument"), # ResponseSchema(name="argument value", description="The value of the argument extracted from the query. Don't write anything else here.") # ] # output_parser = StructuredOutputParser.from_response_schemas(response_schemas) arg_extraction_prompt = PromptTemplate(template=TOOLS_PROMPT_EXAMPLES , input_variables=['arg_description','arg_dtype' ,'user_query'] , # ,'memory_examples' # partial_variables= {"format_instructions" : output_parser.get_format_instructions()} ) signature_chain = LLMChain(llm = small_llm, prompt = arg_extraction_prompt , verbose=False) arg_filter_prompt = PromptTemplate(template=ARG_FILTER_PROMPT, input_variables=['query', 'arg_description'], partial_variables={"format_instructions": arg_filter_parser.get_format_instructions()} ) arg_filter_chain = LLMChain(llm = small_llm, prompt = arg_filter_prompt , verbose=False) # new_parser = OutputFixingParser.from_llm(parser=output_parser, llm=llm) #------------------------------------------------------------------------------------------------------------------------------------------------- def fill_signature(query:str, arg_name:str , arg_dtype: dict , arg_descr :dict, tool_name:str)->Dict[str,Any] : if(len(query.strip('\n').strip().split()) == 1): return query extracted_args = signature_chain.run({'arg_description':arg_descr,'arg_dtype':arg_dtype, 'user_query':query}) extracted_args = extracted_args.strip('\n').strip(' ') extracted_args = re.sub(r'""', '"',extracted_args) if arg_dtype['argument_value'] == List[str]: if extracted_args[0] != '[': extracted_args = '['+extracted_args+']' if arg_dtype['argument_value'] == str: if extracted_args[0]=='[': extracted_args= extracted_args[1:-1] return extracted_args.strip('\n').strip(' ') #------------------------------------------------------------------------------------------------------------------------------------------------- def filter_arguments(query:str, arg_name , arg_descr :dict)->List[str] : argument_input = '\n'.join(['{name} : {descr}'.format(name = arg , descr = arg_descr[arg]) for arg in arg_name]) response = arg_filter_chain.run({'query':query, 'arg_description':argument_input}) x = None try : output = arg_filter_parser.parse(response) print(output) x = output['Arguments'] except Exception as e: new_parser = OutputFixingParser.from_llm(parser=arg_filter_parser, llm=llm) output = new_parser.parse(response) print(output) x = output['Arguments'] final_args = [] if type(x) is str: x = x.split(',') for arg in x: arg = arg.strip().strip('\n') if arg in arg_name: final_args.append(arg) return final_args
[ "user_query", "arg_description", "format_instructions" ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
tools~who_am_i.py
from langchain.tools import BaseTool from typing import Optional, List, Any from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from utils.llm_utility import llm from utils.get_args import fill_signature class WhoAmI(BaseTool): name = "who_am_i" description = ''' - Use this tool when person uses personal pronouns like "my", "mine" ,"I" , "his" , "her", "him" in the query - This tool returns the user_id of the person being referred in query with personal pronoun. - The user_id can then be used by other tools like works_list ''' bag_of_words = set(["my", "me", "mine", " i ", "myself", "who am i", "whoami"]) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> Any: print('\ninside who_am_i tool...') return list() async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("custom_search does not support async")
[ "\n - Use this tool when person uses personal pronouns like \"my\", \"mine\" ,\"I\" , \"his\" , \"her\", \"him\" in the query \n - This tool returns the user_id of the person being referred in query with personal pronoun.\n - The user_id can then be used by other tools like works_list\n \n " ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
utils~llm_utility.py
from langchain.llms.openai import OpenAI import yaml from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) # read local .env file from langchain.callbacks import StdOutCallbackHandler, WandbCallbackHandler from datetime import datetime from langchain.embeddings import OpenAIEmbeddings from chromadb.api.types import Documents, Embeddings # session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S") # wandb_callback = WandbCallbackHandler( # job_type="inference", # project="langchain_callback_demo", # group=f"minimal_{session_group}", # name="llm", # tags=["test"], # ) # callbacks = [StdOutCallbackHandler(), wandb_callback] #_________________________________________________________________________________________ # small_llm = OpenAI(temperature=0.0 ,frequency_penalty = 0.1 ,n = 5 ,max_tokens=1000, model="gpt-3.5-turbo-instruct") from langchain.chat_models import ChatOpenAI llm = ChatOpenAI(temperature=0, model = 'gpt-4-1106-preview') small_llm = ChatOpenAI(temperature=0, model = 'gpt-4-1106-preview') # llm = OpenAI(temperature=0.00 ,frequency_penalty = 0.1 ,n = 5 ,max_tokens=1000, model="gpt-3.5-turbo-instruct") embedding_func = OpenAIEmbeddings() #_________________________________________________________________________________________ def load_config(CONFIG_PATH): with open(CONFIG_PATH, 'r') as f: config = yaml.safe_load(f) return config # config = load_config('backendPython/config.yaml') #_________________________________________________________________________________________
[]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
tools~work_list.py
from langchain.tools import BaseTool from typing import Optional, Type, List, Any, Tuple from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from utils.get_args import * from utils.llm_utility import llm from langchain.output_parsers import StructuredOutputParser, ResponseSchema class WorkList(BaseTool): name = "works_list" description = ''' - This tool can search and return the relevant work-items on the basis of various search filters. - Below are the arguments present which can be used to filter the work-items . - Whenever the query contains below arguments as keywords, give this tool a try. Following are the possible arguments with their description that the tool can take --> - 'applies_to_part': for accessing work items applicable to a particular part of the project. - 'created_by': for accessing the work items created by a particular person. - 'issue.priority': For accessing work_items with issues of a particular priority. Can be either of types --> "p0" , "p1" , "p2". - 'issue.rev_orgs': For accessing the work-items with issues of provided rev_orgs. - 'limit' : Limitig the maximum no. of work itmes to return back, DEFAULT : "all" - 'owned_by': Accessing the work items owned by a particular user id - 'stage.name': Accessing work items belonging to a particular stage - 'ticket.needs_response': Accessing work_items with tickets that needs response or not, must be either True or False, - 'ticket.rev_org': Accessing work_items with ticket belonging to a particular rev_org - 'ticket.severity': Accessing work items on the basis of ticket severity. MUST BE ONE OF --> 'blocker' , 'high' , 'medium' , 'low', - 'ticket.source_channel': Accessing the work-items with tickets belonging to the provided source channel - 'type': Accessing work-items on the basis of type, MUST BE one of --> 'issues', 'ticket' , 'task' ''' def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> Any: print('\ninside work_list tool...') filtered_signature , filtered_arg_description = self._filtered_arguments(query) li = [] for key, value in filtered_signature.items(): arg_dtype = { 'argument_name': key, 'argument_value': value, } arg_descr = { 'argument_name': key, 'argument_value': filtered_arg_description[key], } x = fill_signature(query = query, arg_name = key , arg_dtype = arg_dtype , arg_descr = arg_descr, tool_name = self.name) if 'NONE' in x: continue # if filtered_signature[key] == List[str]: # print('ooooooooooooooooooooo') # if x[0] != '[': # x = '[' + x + ']' # if x.strip('\n').strip() != 'NONE': li.append({ 'argument_name': key, 'argument_value': x, }) print('Extracted arguments are : ',li) return li #____________________________________________________________________________________________________________________________________ def _filtered_arguments(self, query: str) -> Tuple[dict, dict]: """Returns the filtered arguments and their descriptions.""" signature = { 'applies_to_part' : List[str] , 'created_by': List[str] , 'issue.rev_orgs': List[str] , 'owned_by': List[str] , 'ticket.needs_response': bool , 'ticket.rev_org': List[str] , 'ticket.source_channel': str , } arg_description = { 'applies_to_part': 'for accessing work items applicable to a particular part of the project.', 'created_by': 'for accessing the work items created by a particular person.', 'issue.priority':' For accessing work_items with issues of a particular priority. Can be either of types --> "p0" , "p1" , "p2".' , 'issue.rev_orgs': 'For accessing the work-items with issues of provided rev_orgs.', 'limit' : 'Limiting the maximum no. of work items to return back, DEFAULT : "all" ', 'owned_by': 'Accessing the work items owned by a particular user id', 'stage.name':' Accessing work items belonging to a particular stage', 'ticket.needs_response': 'Accessing work_items with tickets that needs response or not, must be either "True" or "False"', 'ticket.rev_org':' Accessing work_items with ticket belonging to a particular rev_org', 'ticket.severity': "Accessing work items on the basis of ticket severity. MUST BE ONE OF --> 'blocker' , 'high' , 'medium' , 'low'," , 'ticket.source_channel':' Accessing the work-items with tickets belonging to the provided source channel', 'type': "Accessing work-items on the basis of type, MUST BE one of --> 'issues', 'ticket' , 'task'" } filtered_signature = {} filtered_arg_description = {} query = query.lower().strip() arguments = arg_description.keys() if 'p0'in query or 'p1'in query or 'p2'in query: filtered_signature['issue.priority'] = str filtered_arg_description['issue.priority'] = arg_description['issue.priority'] if 'all' in query or 'limit..\b' in query: filtered_signature['limit'] = int filtered_arg_description['limit'] = arg_description['limit'] if 'issues' in query or 'ticket' in query or 'task' in query: filtered_signature['type'] = List[str] filtered_arg_description['type'] = arg_description['type'] if 'blocker' in query or 'high' in query or 'medium' in query or 'low' in query: filtered_signature['ticket.severity'] = List[str] filtered_arg_description['ticket.severity'] = arg_description['ticket.severity'] if 'stage' in query: filtered_signature['stage.name'] = List[str] filtered_arg_description['stage.name'] = arg_description['stage.name'] if 'channel' in query.lower(): filtered_signature['ticket.source_channel'] = str filtered_arg_description['ticket.source_channel'] = arg_description['ticket.source_channel'] x = set(filtered_signature.keys()) x.add('issue.priority') x.add('limit') x.add('ticket.source_channel') x.add('type') x.add('ticket.severity') x.add('stage.name') remaining_arguments = set(arguments) - x remaining_arguments = filter_arguments(query, remaining_arguments, arg_description) for arg in remaining_arguments: filtered_signature[arg] = signature[arg] filtered_arg_description[arg] = arg_description[arg] print(filtered_arg_description) return filtered_signature, filtered_arg_description #____________________________________________________________________________________________________________________________________ async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("custom_search does not support async")
[ "\n - This tool can search and return the relevant work-items on the basis of various search filters.\n - Below are the arguments present which can be used to filter the work-items .\n - Whenever the query contains below arguments as keywords, give this tool a try.\n \n Following are the possible arguments with their description that the tool can take -->\n - 'applies_to_part': for accessing work items applicable to a particular part of the project.\n - 'created_by': for accessing the work items created by a particular person.\n - 'issue.priority': For accessing work_items with issues of a particular priority. Can be either of types --> \"p0\" , \"p1\" , \"p2\".\n - 'issue.rev_orgs': For accessing the work-items with issues of provided rev_orgs.\n - 'limit' : Limitig the maximum no. of work itmes to return back, DEFAULT : \"all\" \n - 'owned_by': Accessing the work items owned by a particular user id\n - 'stage.name': Accessing work items belonging to a particular stage\n - 'ticket.needs_response': Accessing work_items with tickets that needs response or not, must be either True or False,\n - 'ticket.rev_org': Accessing work_items with ticket belonging to a particular rev_org\n - 'ticket.severity': Accessing work items on the basis of ticket severity. MUST BE ONE OF --> 'blocker' , 'high' , 'medium' , 'low',\n - 'ticket.source_channel': Accessing the work-items with tickets belonging to the provided source channel\n - 'type': Accessing work-items on the basis of type, MUST BE one of --> 'issues', 'ticket' , 'task'\n " ]
2024-01-10
Sar2580P/Dev-Rev-Inter-IIT
agent~tool_collection.py
from langchain.tools import BaseTool from typing import Optional, List, Any import sys , os sys.path.append(os.getcwd()) from tools.work_list import WorkList from tools.summarize_objects import Summarize from tools.add_work_items_to_sprint import AddWorkItemsToSprint from tools.create_actionable_tasks_from_text import CreateActionableTasksFromText from tools.get_similar_work_items import GetSimilarWorkItems from tools.get_sprint_id import GetSprintId from tools.prioritize_objects import Prioritize from tools.search_object_by_name import SearchObjectByName from tools.who_am_i import WhoAmI from utils.llm_utility import llm from tools.logic_tool import LogicalTool import icecream as ic task_tools = [ WhoAmI(), SearchObjectByName(), GetSprintId(), AddWorkItemsToSprint(), GetSimilarWorkItems(), WorkList() , Summarize() , # LogicalTool(), CreateActionableTasksFromText(), Prioritize(), ] def get_relevant_tools(query: str ) -> List[BaseTool]: """Returns the list of relevant tools for the query.""" relevant_tools = [] for tool in task_tools: if not hasattr(tool, "bag_of_words"): relevant_tools.append(tool) continue # if tool.name == 'search_object_by_name': # relevant_tools.append(tool) # continue tool_bag_of_words = tool.bag_of_words for word in tool_bag_of_words: if word in query.lower().strip(): relevant_tools.append(tool) break return relevant_tools # x = get_relevant_tools("Summarize all tickets needing a response in the 'support' rev organization.") # print(x)
[]
2024-01-10
LLNL/AutoCog
autocog~lm~__init__.py
from .llama import Llama from .openai import OpenAI from .transformers import TfLM
[]
2024-01-10
LLNL/AutoCog
share~mmlu-exams~utility.py
import os import sys import json import time import tqdm import random import asyncio import itertools from autocog import CogArch from autocog.lm import OpenAI, TfLM, Llama mcq_checkers = { 'select' : lambda r,d,i: int(r["answer"]) == i+1, 'repeat' : lambda r,d,i: r["answer"] == d['choices'][i] } def mmlu_create_arch(library_path, patterns): arch = CogArch() scorers = {} for (tag,(pattern,mode,kwargs)) in patterns.items(): arch.load(tag=tag, filepath=f'{library_path}/{pattern}-{mode}.sta', **kwargs) scorers.update({ tag : mcq_checkers[mode] }) return (arch, scorers) def mmlu_register_openai(arch, length, **kwargs): arch.orchestrator.LMs.update({ k : OpenAI(max_tokens=l, **kwargs) for (k,l) in length.items() }) def mmlu_register_tflm(arch, length, model_path='gpt2-medium', device='auto', **kwargs): model_kwargs = TfLM.create(model_path=model_path, device=device) arch.orchestrator.LMs.update({ k : TfLM(completion_kwargs={ 'max_new_tokens' : l }, **model_kwargs, **kwargs) for (k,l) in length.items() }) def mmlu_register_llama_cpp(arch, length, model_path='/workspace/models/llama/7B/ggml-model-q4_0.bin', n_ctx=2048, **kwargs): model_kwargs = Llama.create(model_path=model_path, n_ctx=n_ctx) arch.orchestrator.LMs.update({ k : Llama(completion_kwargs={ 'max_tokens' : l }, **model_kwargs, **kwargs) for (k,l) in length.items() }) def mmlu_register_local(arch, model, length, size=None, quant=None, use_path_length_normalization=False, model_basedir='/workspace/models', **kwargs): text_length = '-'.join([ str(l) for (k,l) in sorted(length.items(), key=lambda x: x[0]) ]) if quant is None: mmlu_register = mmlu_register_tflm if size is None: label = f'{model}-{text_length}' model_path = model else: label = f'{model}-{size}-{text_length}' model_path = f'{model_basedir}/{model}/{size}' assert os.path.exists(model_path), f"model_path={model_path}" else: mmlu_register = mmlu_register_llama_cpp if size is None: label = f'{model}-{quant}-{text_length}' model_path = f'{model_basedir}/{model}/ggml-model-{quant}.bin' else: label = f'{model}-{size}-{quant}-{text_length}' model_path = f'{model_basedir}/{model}/{size}/ggml-model-{quant}.bin' assert os.path.exists(model_path), f"model_path={model_path}" label = label.replace('/','_') if use_path_length_normalization: label += '-norm' mmlu_register(arch, model_path=model_path, use_path_length_normalization=use_path_length_normalization, length={ 'text' : 0, 'thought' : length['thought'], 'justification' : length['justification']}, **kwargs) return label def mmlu_data(dataset_path=None): if os.path.exists('mmlu-data.json'): return json.load(open('mmlu-data.json')) if dataset_path is None: dataset_path = './mmlu-data' if not os.path.exists(dataset_path): raise NotImplementedError("Download MMLU dataset") raise NotImplementedError("Extract MMLU dataset to single JSON") def mmlu_list(data): modes = list(set([ d['mode'] for d in data ])) print(f"By modes: ({len(modes)})") for mode in modes: mmlu_subset = [ d for d in data if d['mode'] == mode ] print(f" - {mode}: {len(mmlu_subset)}") topics = list(set([ d['topic'] for d in data ])) print(f"By topics: ({len(topics)})") for topic in topics: mmlu_subset = [ d for d in data if d['topic'] == topic ] print(f" - {topic}: {len(mmlu_subset)}") for mode in modes: mmlu_subsubset = [ d for d in mmlu_subset if d['mode'] == mode ] if len(mmlu_subsubset) > 0: print(f" - {mode}: {len(mmlu_subsubset)}") def mmlu_subset(dataset, topic=None, mode=None, limit=None, shuffle=True): data = [] for d in dataset: on_topic = topic is None or ( isinstance(topic,str) and d['topic'] == topic ) or ( isinstance(topic,list) and d['topic'] in topic ) on_mode = mode is None or ( isinstance(mode, str) and d['mode' ] == mode ) or ( isinstance(mode, list) and d['mode' ] in mode ) if on_topic and on_mode: data.append(d) if shuffle: random.shuffle(data) if limit is not None: data = data[:limit] return data def mmlu_exec(arch, scorers, dataset, max_retry=3): versions = scorers.keys() results = { v : [] for v in versions } workload = list(itertools.product(versions,dataset)) random.shuffle(workload) for (version,data) in tqdm.tqdm(workload): idx = ord(data["answer"])-ord('A') res = None cnt = 0 while res is None and cnt < max_retry: try: res = asyncio.run(arch(version, question=data['question'], choices=data['choices'])) res = (data, res, scorers[version](res,data,idx)) except Exception as e: cnt += 1 print(f"EXCEPTION[{cnt}]: {e}") time.sleep(1.) res = None results[version].append(res) return results
[]
2024-01-10
LLNL/AutoCog
autocog~utility~args2arch.py
import os import sys import json import argparse from ..config import version from ..architecture.base import CognitiveArchitecture from ..architecture.orchestrator import Serial, Async from ..architecture.utility import PromptTee from ..lm import OpenAI, TfLM, Llama LMs = { 'OpenAI' : OpenAI, 'TfLM' : TfLM, 'LLaMa' : Llama } def argparser(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--version', action='version', version=f'AutoCog {version}') # TODO `autocog.version:str=read('VERSION')` parser.add_argument('--orch', help="""Type of orchestrator: `serial` or `async`.""", default='serial') parser.add_argument('--lm', action='append', help="""Inlined JSON or path to a JSON file: `{ "text" : { "cls" : "OpenAI", ... } }` see TODO for details.""") parser.add_argument('--program', action='append', help="""Inlined JSON or path to a JSON file: `{ "writer" : { "filepath" : "./library/writer/simple.sta", ... } }` see TODO for details.""") parser.add_argument('--tool', action='append', help="""Inlined JSON or path to a JSON file: `{ "search" : { "cls" : "SerpApi", ... } }` see TODO for details.""") parser.add_argument('--prefix', help="""String to identify this instance of AutoCog (used when displaying and saving the prompts)""", default='autocog') parser.add_argument('--tee', help="""Filepath or `stdout` or `stderr`. If present, prompts will be append to that file as they are executed.""") parser.add_argument('--fmt', help="""Format string used to save individual prompts to files. If present but empty (or `default`), `{p}/{c}/{t}-{i}.txt` is used. `p` is the prefix. `c` is the sequence id of the call. `t` is the prompt name. `i` is the prompt sequence id. WARNING! This will change as the schema is obsolete!""") parser.add_argument('--serve', help="""Whether to launch the flask server.""", action='store_true') parser.add_argument('--host', help="""Host for flask server.""", default='localhost') parser.add_argument('--port', help="""Port for flask server.""", default='5000') parser.add_argument('--debug', help="""Whether to run the flask server in debug mode.""", action='store_true') parser.add_argument('--command', action='append', help="""Inlined JSON or path to a JSON file: `{ 'callee' : 'writer', ... }` see TODO for details.""") parser.add_argument('--opath', help="""Directory where results are stored.""", default=os.getcwd()) return parser def parse_json(arg): if os.path.exists(arg): return json.load(open(arg)) else: return json.loads(arg) def parse_lm(cls:str, **kwargs): global LMs if cls in LMs: cls = LMs[cls] else: raise Exception(f"Unknown LM class: {cls} (should be one of {','.join(LMs.keys())})") model_kwargs = kwargs['model'] if 'model' in kwargs else {} model_kwargs = cls.create(**model_kwargs) if 'config' in kwargs: model_kwargs.update({ "completion_kwargs" : kwargs['config'] }) return cls(**model_kwargs) def parse_lms(lms): return { fmt : parse_lm(**lm) for (fmt,lm) in lms.items() } def parseargs(argv): parser = argparser() args = parser.parse_args(argv) pipe_kwargs = { 'prefix' : args.prefix } if args.tee is not None: if args.tee == 'stdout': pipe_kwargs.update({ 'tee' : sys.stdout }) elif args.tee == 'stderr': pipe_kwargs.update({ 'tee' : sys.stderr }) else: pipe_kwargs.update({ 'tee' : open(args.tee,'w') }) if args.fmt is not None: if args.fmt == '' or args.fmt == 'default': pipe_kwargs.update({ 'fmt' : '{p}/{c}/{t}-{i}.txt' }) else: pipe_kwargs.update({ 'fmt' : args.fmt }) if args.orch == 'serial': Orch = Serial elif args.orch == 'async': Orch = Async else: raise Exception(f"Unknown Orchestrator: {args.orch}") arch = CognitiveArchitecture(Orch=Orch, pipe=PromptTee(**pipe_kwargs)) if args.lm is not None: for lm in args.lm: arch.orchestrator.LMs.update(parse_lms(parse_json(lm))) programs = {} if args.program is not None: for prog in args.program: programs.update(parse_json(prog)) for (tag,program) in programs.items(): arch.load(tag=tag, **program) tools = {} if args.tool is not None: for tool in args.tool: tools.update(parse_json(tool)) for (tag,tool) in tools.items(): raise NotImplementedError() return { 'arch' : arch, 'serve' : args.serve, 'opath' : args.opath, 'host' : args.host, 'port' : int(args.port), 'debug' : args.debug, 'commands' : None if args.command is None else [ parse_json(cmd) for cmd in args.command ] }
[]
2024-01-10
g-emarco/llm-agnets
utils~callbacks.py
from typing import Dict, Any, List, Optional from uuid import UUID from langchain.callbacks.base import BaseCallbackHandler class LLMInstrumentationHandler(BaseCallbackHandler): def on_agent_action(self, action: str, **kwargs) -> None: print(f"My custom handler, action: {action}") def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> Any: print( f"My custom handler, prompts: {prompts}," f" \n {kwargs=} \n {serialized=}" )
[]
2024-01-10
g-emarco/llm-agnets
agents~get_agents.py
from langchain.llms import VertexAI from tools.tools import get_google_search, scrape_linkedin_profile from langchain.agents import initialize_agent, Tool, AgentExecutor from langchain.agents import AgentType from langchain.agents.agent_toolkits import GmailToolkit gmail_toolkit = GmailToolkit() gmail_tools = [gmail_toolkit.get_tools()[0]] def get_gmail_agent() -> AgentExecutor: llm = VertexAI(temperature=0.5, verbose=True, max_output_tokens=1000) agent = initialize_agent( gmail_tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, ) return agent def get_search_agent() -> AgentExecutor: llm = VertexAI(temperature=0, verbose=True, max_output_tokens=1000) tools_for_agent = [ Tool( name="GoogleSearch", func=get_google_search, description="useful for when you need get a google search result", ), Tool( name="scrape_linkedin_profile", func=scrape_linkedin_profile, description="useful for getting information on a Linkedin profile url", ), ] agent = initialize_agent( tools_for_agent, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, ) return agent
[]
2024-01-10
DavidMChan/ArXiV-Notify
arxivnotify.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # ArXiV Notify script # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. # # Copyright David Chan, 2018 from __future__ import unicode_literals, print_function # HTML Request sending and parsing import urllib from xml.etree import ElementTree import requests # Import time utilities for handling the time values import datetime import dateutil.parser import time # Import the config parser import configparse # Import anthropic for summarization from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT ## Build an ArXiV API Query which will query for the key def build_query(queries, page, num_elements): query = "http://export.arxiv.org/api/query?search_query=" search_element = "" if len(queries) == 0: search_element = '""' for i in range(len(queries)): search_element = search_element + '"{}"'.format(urllib.parse.quote(str(queries[i]))) if i + 1 != len(queries): search_element = search_element + "+OR+" suffix = "&sortBy=lastUpdatedDate&sortOrder=descending&start={}&max_results={}".format(str(page), str(num_elements)) return query + search_element + suffix ## Fetch the articles which are up to date # that is, have been updated in the last day def fetch_queries(queries, query_time): do_continue = True current_page = 0 # Which current page we are on pager_interval = 30 # How many articles to fetch at once fetched_data = [] # Each of the articles, their abstracts, and links while do_continue: # Fetch the next page of articles q = build_query(queries, current_page * pager_interval, pager_interval) query_page = urllib.request.urlopen(q) # Convert to a string and parse query_bytes = query_page.read() query_data = query_bytes.decode("utf8") query_page.close() page_root = ElementTree.fromstring(query_data) articles = page_root.findall("{http://www.w3.org/2005/Atom}entry") oldest_query_time = dateutil.parser.parse( page_root.findtext("{http://www.w3.org/2005/Atom}updated") ) - datetime.timedelta(days=int(query_time)) # Break the loop if no articles found! if not articles: do_continue = False break # We put this sleep in to coform to the ArXiV bot standards time.sleep(3) # Build up the dataset of articles that we fetched for article in articles: link = article.findtext("{http://www.w3.org/2005/Atom}id") title = article.findtext("{http://www.w3.org/2005/Atom}title") abstract = article.findtext("{http://www.w3.org/2005/Atom}summary") date = article.findtext("{http://www.w3.org/2005/Atom}updated") authors = ", ".join([name.text for name in article.iter("{http://www.w3.org/2005/Atom}name")]) datetime_obj = dateutil.parser.parse(date) # If the published articles is too old - we're done looking. if datetime_obj < oldest_query_time: do_continue = False break # Otherwise add the article fetched_data.append((title, link, abstract, datetime_obj, authors)) current_page += 1 return fetched_data def _summarize(queries, topics): """Summarize the queries using anthropic""" # Get the abstracts abstracts = [q[2] for q in queries] titles = [q[0] for q in queries] abstracts_and_titles = "\n\n".join([f"{t}: {a}" for t, a in zip(titles, abstracts)]) prompt = f"""The following are the titles and abstracts of the papers that you have been reading in the last time period. Briefly summarize them (while retaining the necessary detail) as if you were giving a report on the following topics: {topics}. {abstracts_and_titles}""" anthropic = Anthropic(api_key=CFG["CLAUDE_API_KEY"]) completion = anthropic.completions.create( model="claude-2", max_tokens_to_sample=512, prompt=f"{HUMAN_PROMPT} {prompt} {AI_PROMPT}", ) return completion.completion if __name__ == "__main__": ## 1. Parse the Config File CFG = configparse.parse("arxivnotify.cfg") # Check to see if any confiuration values are missing if "KEYWORD" not in CFG: raise ValueError( "No keywords in the configuration file! Add one or more keywords using the 'KEYWORD' field in the config file" ) if type(CFG["KEYWORD"]) is not list: # If there is only one keyword, make it into a list CFG["KEYWORD"] = [CFG["KEYWORD"]] if "HISTORY_DAYS" not in CFG: print("WARNING: No history length set in the configuration. Setting to default of 1 day.") CFG["HISTORY_DAYS"] = "1" if "MAILGUN_ROOT" not in CFG: raise ValueError( "No mailgun root specified! Specity the mailgun root using the 'MAILGUN_ROOT' field in the config file" ) if "MAILGUN_API_KEY" not in CFG: raise ValueError( "No mailgun API key specified! Specity the mailgun root using the 'MAILGUN_API_KEY' field in the config file" ) if "MAILGUN_FROM" not in CFG: raise ValueError( "No 'From Email' specified! Specity the 'From Email' using the 'MAILGUN_FROM' field in the config file" ) if "MAILGUN_TO" not in CFG: raise ValueError( "No destination emails specified! Specity one or more destination emails using the 'MAILGUN_TO' field in the config file" ) if type(CFG["MAILGUN_TO"]) is not list: # If there is only one destination meail, make it into a list CFG["MAILGUN_TO"] = [CFG["MAILGUN_TO"]] ## 2. Build the HTML email by quering ArXiV all_results = [] try: num_articles = 0 html_output = "" for keyword in CFG["KEYWORD"]: print("Parsing Keyword: {}".format(keyword)) queries = fetch_queries([keyword], CFG["HISTORY_DAYS"]) all_results.extend(queries) html_output += "<h3>" + keyword + "</h3>\n" html_output += "<ul>\n" for q in queries: num_articles += 1 html_output += "<li>\n" html_output += '\t<b><u><a href="{}">{}</a></u></b>'.format(q[1], q[0]) html_output += "<br>\n" html_output += "<i>{}</i>".format(q[4]) html_output += "<br>\n" html_output += "{}\n".format(str(q[3])) # html_output += "<br>\n" # html_output += "{}\n".format(q[2]) html_output += "</li>\n" html_output += "<br>\n" html_output += "</ul>\n" mail_subject = "ArXiVAI Bot Email - {} - {} New Articles".format( datetime.date.today().strftime("%B %d, %Y"), num_articles ) except Exception: raise RuntimeError( "There was an error fetching data from the ArXiV server! Check to make sure you are connected to the internet!" ) ## Add the summary: summary = _summarize(all_results, CFG["KEYWORD"]) html_output = f"""<h2> ArXiVAI Bot Email - {datetime.date.today().strftime("%B %d, %Y")}</h2> <h2> Your Research Summary </h2> {summary} {html_output} """ ## 3. Send the Emails RETURN_VAL = None try: for email in CFG["MAILGUN_TO"]: RETURN_VAL = requests.post( CFG["MAILGUN_ROOT"] + "/messages", auth=("api", CFG["MAILGUN_API_KEY"]), data={ "from": CFG["MAILGUN_FROM"], "to": email, "subject": mail_subject, # "text": html_output, "html": html_output, }, ) if RETURN_VAL.status_code != 200: raise RuntimeError("Mail Error: ", RETURN_VAL.text) except: raise RuntimeError( "Arxiv notifier bot wasn't able to send an email! Check your mailgun API key and Root. HTML ERROR: {} {}".format( RETURN_VAL.status_code, RETURN_VAL.text ) )
[ "The following are the titles and abstracts of the papers that you have been reading in the last time period. Briefly summarize them (while retaining the necessary detail) as if you were giving a report on the following topics: PLACEHOLDER.\n PLACEHOLDER", "PLACEHOLDER PLACEHOLDER PLACEHOLDER" ]
2024-01-10
Omar-Eses/mcq_with_AI
logic.py
# essential imports in program from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain # take user input -> add it to prompt -> chain -> pass to model (chatgpt) -> return model -> show it on streamlit # create quiz prompt def generate_questions(quiz_topic="programming in python", num_of_questions=1): llm = OpenAI() # prompt to involve the user in the model prompt_template = PromptTemplate( input_variables=["quiz_topic", "num_of_questions"], template=""" you are an expert making multiple choice questions in the following topic: {quiz_topic}. create a multiple choice quiz that consists of {num_of_questions} questions, each question should have four options one of them is correct and you should send it to me. the correct answer should be marked with ^ format it in the known multiple choice quiz template; example: Q1. what is the most famous programming language in the world? a. javascript b. Java c. C++ d. Python Q2. what is the most famous language of the following? a. arabic b. english c. german d. russian - Answers: <Answer1>: a <Answer2>: b """ ) # Chaining the prompt so that it can be used to generate questions questions_chain = LLMChain(llm=llm, prompt=prompt_template, output_key="question_format") response = questions_chain({'quiz_topic': quiz_topic, 'num_of_questions': num_of_questions}) # # Parse the response to get questions and answers # parser = StrOutputParser() # parsed_response = parser(response) # # # Extract questions and answers # questions = [item['content'] for item in parsed_response['output']['content']] # answers = [item['answer'] for item in parsed_response['output']['content']] return response if __name__ == "__main__": print(generate_questions("muscle hypertrophy", 2))
[ "quiz_topic", "num_of_questions", "\n you are an expert making multiple choice questions in the following topic: {quiz_topic}.\n create a multiple choice quiz that consists of {num_of_questions} questions,\n each question should have four options one of them is correct and you should send it to me.\n the correct answer should be marked with ^\n format it in the known multiple choice quiz template; example:\n Q1. what is the most famous programming language in the world?\n a. javascript\n b. Java\n c. C++\n d. Python\n Q2. what is the most famous language of the following?\n a. arabic\n b. english\n c. german\n d. russian\n - Answers:\n <Answer1>: a\n <Answer2>: b\n " ]
2024-01-10
andy3278/CopyMyDesk
raw-data-to-openai.py
import pandas as pd from datetime import datetime import os from dotenv import load_dotenv, find_dotenv import openai # read csv file df = pd.read_csv('./data/youtube-desk-setup-raw-data.csv') print(df.shape) # do some data cleaning df['transcript_text'] = df['transcript_text'].str.replace('\n', ' ') df['transcript_text'] = df['transcript_text'].str.replace('\t', ' ') df['transcript_text'] = df['transcript_text'].str.replace('[Music]', '') df['transcript_text'] = df['transcript_text'].str.replace('[Applause]', '') # remove rows with less than 100 words df['word_count'] = df['transcript_text'].apply(lambda x: len(x.split())) df = df[df['word_count'] > 500] # remove rows published before 2023 df['release_date'] = df['release_date'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')) df = df[df['release_date'] >= datetime(2023, 1, 1)] print(df.shape) df.to_csv('./data/cleaned-youtube-desk-setup.csv', index=False) # openai api load_dotenv(find_dotenv()) openai.api_key = os.environ.get("OPENAI_API_KEY") def openai_api(text:str) -> str: # openai api response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "system", "content": """You will be provided with Desk setup youtube video transcripts, and your task is to extract what items are mentioned in video: 1. you must only extract items mentioned in the video 2. you must find 3 main items in the video, computer, mouse and keyboard, if its not found in video, say \"NA\" 3. if other desk items is mentioned also put them in the output, monitor, lights, desk, charger, computer dock etc. 4. if same category have multiple items put them in a string with comma separated. 5. your output format should be in json\n\n here is one example of respond: ``` {"computer": "14 inch MacBook Pro", "mouse": "Logitech MX Master 3s", "keyboard": "Logitech MX mechanical mini", "monitor": "Apple Studio display, BenQ PD 3220u", "lights": "Elgato key light air", "desk": "Ikea countertop, Alex drawers, Carly kitchen countertop", "charger": "CalDigit TS4 Thunderbolt Hub", "computer dock": "Book Arc by 12 South", "neon sign": "custom neon sign by Illusion Neon", "acoustic panels": "gig Acoustics panels", "desk chair": "Autonomous Ergo chair plus", "scanner": "Fujitsu scanner", "charging stand": "Pataka charging stand", "pen": "Grovemade pen", "sticky notes": "sticky notes", "webcam": "Opal C1", "microphone": "Shure MV7", "audio interface": "Apollo twin X", "speakers": "Yamaha HS5", "headphones": "Rode NTH100s", "mic arm": "Rode PSA1 Plus", "controller": "Tour Box Elite", "light control": "Elgato Stream Deck Plus", "tablet": "iPad Pro", "tablet arm": "Cooks you desk arm", "monitor mount": "BenQ monitor mount", "travel charger": "ESR travel charger", "desk mat": "Grovemade felt mat", "smart home device": "Amazon Alexa Show", "security cameras": "UV security cameras", "Mac Mini": "Mac Mini Pro"} ``` """ }, { "role":"user", "content": text } ], temperature=0, max_tokens=1024, top_p=1, frequency_penalty=0, presence_penalty=0 ) return response.choices[0]['message']['content'] # since openai api have rate limit of 3 request per minute, we will sleep 20s for each request import time # for index, row in df.iterrows(): # if index % 3 == 0: # time.sleep(20) # df.loc[index, 'items'] = openai_api(row['transcript_text']) #df['items'] = df['transcript_text'].apply(openai_api) # save results to csv #df.to_csv('youtube-desk-setup.csv', index=False) import requests hf_api_key = os.environ.get("HF_API_KEY") API_URL = "https://api-inference.huggingface.co/models/distilbert-base-cased-distilled-squad" headers = {"Authorization": f"Bearer {hf_api_key}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() # for index, row in df.iterrows(): # ans = {"answer": "NA"} # try: # ans = query({ # "inputs": { # "question": "What is Operating System used? Windows, MacOS or Linux?", # "context": row['transcript_text'] # } # }) # except: # pass # df.loc[index, 'OS'] = ans['answer'] # print(f"row : {index} done") # print(ans) # if index >= 300: # break #print(df['OS'].value_counts()) #df.to_csv('./data/after-LLM-data.csv', index=False) # output = query({ # "inputs": { # "question": "What is my name?", # "context": "My name is Clara and I live in Berkeley." # }, # })
[ "You will be provided with Desk setup youtube video transcripts, and your task is to extract what items are mentioned in video: \n 1. you must only extract items mentioned in the video \n 2. you must find 3 main items in the video, computer, mouse and keyboard, if its not found in video, say \"NA\" \n 3. if other desk items is mentioned also put them in the output, monitor, lights, desk, charger, computer dock etc.\n 4. if same category have multiple items put them in a string with comma separated.\n 5. your output format should be in json\n\n\n here is one example of respond:\n ```\n {\"computer\": \"14 inch MacBook Pro\", \"mouse\": \"Logitech MX Master 3s\", \"keyboard\": \"Logitech MX mechanical mini\", \"monitor\": \"Apple Studio display, BenQ PD 3220u\", \"lights\": \"Elgato key light air\", \"desk\": \"Ikea countertop, Alex drawers, Carly kitchen countertop\", \"charger\": \"CalDigit TS4 Thunderbolt Hub\", \"computer dock\": \"Book Arc by 12 South\", \"neon sign\": \"custom neon sign by Illusion Neon\", \"acoustic panels\": \"gig Acoustics panels\", \"desk chair\": \"Autonomous Ergo chair plus\", \"scanner\": \"Fujitsu scanner\", \"charging stand\": \"Pataka charging stand\", \"pen\": \"Grovemade pen\", \"sticky notes\": \"sticky notes\", \"webcam\": \"Opal C1\", \"microphone\": \"Shure MV7\", \"audio interface\": \"Apollo twin X\", \"speakers\": \"Yamaha HS5\", \"headphones\": \"Rode NTH100s\", \"mic arm\": \"Rode PSA1 Plus\", \"controller\": \"Tour Box Elite\", \"light control\": \"Elgato Stream Deck Plus\", \"tablet\": \"iPad Pro\", \"tablet arm\": \"Cooks you desk arm\", \"monitor mount\": \"BenQ monitor mount\", \"travel charger\": \"ESR travel charger\", \"desk mat\": \"Grovemade felt mat\", \"smart home device\": \"Amazon Alexa Show\", \"security cameras\": \"UV security cameras\", \"Mac Mini\": \"Mac Mini Pro\"}\n ```\n " ]
2024-01-10
andy3278/CopyMyDesk
Youtube-data-api-v3.py
import pandas as pd from datetime import datetime import os from googleapiclient.discovery import build from dotenv import load_dotenv, find_dotenv from youtube_transcript_api import YouTubeTranscriptApi import openai # load secret from env load_dotenv(find_dotenv()) openai.api_key = os.environ.get("OPENAI_API_KEY") youtube_key = os.environ.get('YOUTUBE_KEY') api_key = youtube_key youtube = build('youtube', 'v3', developerKey=api_key) # Replace 'your_keyword' with the keyword you want to search max_results = 1000 serach_keyword = 'Desk setup 2023' video_id = [] title = [] channel = [] release_date = [] request = youtube.search().list( part='snippet', maxResults=max_results, q=serach_keyword, publishedAfter='2023-01-01T00:00:00Z', # get only result after 2023 relevanceLanguage = 'en', type = 'video' ) # for item in response['items']: # print('Video ID: ', item['id']['videoId']) # print('Title: ', item['snippet']['title']) # print('Channel: ', item['snippet']['channelTitle']) # print('---------------------------') # storage results in a dataframe # use for loop to get 50 reuslts each time for _ in range(max_results // 50): response = request.execute() next_page_token = response.get('nextPageToken') request = youtube.search().list( part='snippet', maxResults=max_results, q=serach_keyword, publishedAfter='2023-01-01T00:00:00Z', # get only result after 2023 relevanceLanguage = 'en', type = 'video', pageToken = next_page_token ) # append result in lists for item in response['items']: if item['id']['videoId'] not in video_id: video_id.append(item['id']['videoId']) title.append(item['snippet']['title']) channel.append(item['snippet']['channelTitle']) release_date.append(item['snippet']['publishedAt']) # create dataframe df = pd.DataFrame({'video_id': video_id, 'title':title, 'channel':channel, 'release_date':release_date}) # fotmat the release date date_formatter = lambda x: datetime.strptime(x, '%Y-%m-%dT%H:%M:%SZ').strftime('%Y-%m-%d %H:%M:%S') df['release_date'] = df['release_date'].apply(date_formatter) print(df.shape) # get video transcript def get_transcripts(video_ids:str) -> list: count = 0 transcripts = [] for video_id in video_ids: print(f'Getting transcript for video {count}') count += 1 try: transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en']) transcripts.append(transcript) except: transcripts.append(None) return transcripts # get transcript for each video_id in df df['transcript'] = get_transcripts(df['video_id']) # clean transcript column # if transcript is None, drop the row df = df.dropna(subset=['transcript']) print(df.shape) # remove depulicate video id df['video_id'].drop_duplicates(inplace=True) print(df.shape) # get transcript text df['transcript_text'] = df['transcript'].apply(lambda x: ' '.join([item['text'] for item in x])) # drop transcript column df = df.drop('transcript', axis=1) # pass transcript text to openai api and get desk items from transcript # save df to csv first df.to_csv('./data/youtube-desk-setup-raw-data.csv', index=False)
[]
2024-01-10
SocialGouv/llama-index-test
build_retrieval.py
from llama_index.response.notebook_utils import display_response from llama_index.query_engine import SubQuestionQueryEngine, RouterQueryEngine from typing import Callable, Optional import shutil from llama_index import VectorStoreIndex, StorageContext, load_index_from_storage from llama_index.storage.docstore import SimpleDocumentStore from llama_index.tools import QueryEngineTool, ToolMetadata from llama_index.retrievers import AutoMergingRetriever from llama_index.query_engine import RetrieverQueryEngine from llama_index.chat_engine import SimpleChatEngine import openai import os import sys from llama_index import SimpleDirectoryReader, Document from llama_docs_bot.markdown_docs_reader import MarkdownDocsReader from llama_index.schema import MetadataMode from llama_index.node_parser import HierarchicalNodeParser, SimpleNodeParser, get_leaf_nodes from llama_index.llms import OpenAI from llama_index import ServiceContext, set_global_service_context from llama_index import QueryBundle from llama_index.utils import globals_helper import logging logger = logging.getLogger() logging.basicConfig(level=logging.DEBUG) if 'OPENAI_API_KEY' not in os.environ: raise Exception("OPENAI_API_KEY environment variable not set") openai.api_key = os.environ['OPENAI_API_KEY'] def load_service_context(model="gpt-3.5-turbo-16k", max_tokens=512, temperature=0.1): # Use local embeddings + gpt-3.5-turbo-16k service_context = ServiceContext.from_defaults( llm=OpenAI(model, max_tokens=max_tokens, temperature=temperature), # embed_model="local:BAAI/bge-base-en" ) return service_context def load_markdown_docs(filepath, hierarchical=True): """Load markdown docs from a directory, excluding all other file types.""" loader = SimpleDirectoryReader( input_dir=filepath, required_exts=[".md"], file_extractor={".md": MarkdownDocsReader()}, recursive=True ) documents = loader.load_data() if hierarchical: # combine all documents into one documents = [ Document(text="\n\n".join( document.get_content(metadata_mode=MetadataMode.ALL) for document in documents ) ) ] # chunk into 3 levels # majority means 2/3 are retrieved before using the parent large_chunk_size = 1536 node_parser = HierarchicalNodeParser.from_defaults( chunk_sizes=[ large_chunk_size, large_chunk_size // 3, ] ) nodes = node_parser.get_nodes_from_documents(documents) return nodes, get_leaf_nodes(nodes) else: node_parser = SimpleNodeParser.from_defaults() nodes = node_parser.get_nodes_from_documents(documents) return nodes def get_query_engine_tool(directory, description, hierarchical=True, postprocessors=None): try: storage_context = StorageContext.from_defaults( persist_dir=f"./data_{os.path.basename(directory)}" ) index = load_index_from_storage(storage_context) if hierarchical: retriever = AutoMergingRetriever( index.as_retriever(similarity_top_k=6), storage_context=storage_context ) else: retriever = index.as_retriever(similarity_top_k=12) except: if hierarchical: nodes, leaf_nodes = load_markdown_docs( directory, hierarchical=hierarchical) docstore = SimpleDocumentStore() docstore.add_documents(nodes) storage_context = StorageContext.from_defaults(docstore=docstore) index = VectorStoreIndex( leaf_nodes, storage_context=storage_context) index.storage_context.persist( persist_dir=f"./data_{os.path.basename(directory)}") retriever = AutoMergingRetriever( index.as_retriever(similarity_top_k=12), storage_context=storage_context ) else: nodes = load_markdown_docs(directory, hierarchical=hierarchical) index = VectorStoreIndex(nodes) index.storage_context.persist( persist_dir=f"./data_{os.path.basename(directory)}") retriever = index.as_retriever(similarity_top_k=12) query_engine = RetrieverQueryEngine.from_args( retriever, node_postprocessors=postprocessors or [], ) return QueryEngineTool(query_engine=query_engine, metadata=ToolMetadata(name=directory, description=description)) class LimitRetrievedNodesLength: def __init__(self, limit: int = 3000, tokenizer: Optional[Callable] = None): self._tokenizer = tokenizer or globals_helper.tokenizer self.limit = limit def postprocess_nodes(self, nodes, query_bundle): included_nodes = [] current_length = 0 for node in nodes: current_length += len(self._tokenizer( node.node.get_content(metadata_mode=MetadataMode.LLM))) if current_length > self.limit: break included_nodes.append(node) return included_nodes def build_final_query_engine(service_context): # Here we define the directories we want to index, as well as a description for each # NOTE: these descriptions are hand-written based on my understanding. We could have also # used an LLM to write these, maybe a future experiment. docs_directories = { # "./docs/community": "Useful for information on community integrations with other libraries, vector dbs, and frameworks.", # "./docs/core_modules/agent_modules": "Useful for information on data agents and tools for data agents.", # "./docs/core_modules/data_modules": "Useful for information on data, storage, indexing, and data processing modules.", # "./docs/core_modules/model_modules": "Useful for information on LLMs, embedding models, and prompts.", # "./docs/core_modules/query_modules": "Useful for information on various query engines and retrievers, and anything related to querying data.", # "./docs/core_modules/supporting_modules": "Useful for information on supporting modules, like callbacks, evaluators, and other supporting modules.", # "./docs/getting_started": "Useful for information on getting started with LlamaIndex.", # "./docs/development": "Useful for information on contributing to LlamaIndex development.", "./content/standup-fabrique": "Pour consulter l'actualité et les chiffres d'une startup.", "./content/support-sre-fabrique": "Pour les questions techniques et développement et déploiement." } # Build query engine tools query_engine_tools = [ get_query_engine_tool( directory, description, hierarchical=True, postprocessors=[LimitRetrievedNodesLength(limit=3000)] ) for directory, description in docs_directories.items() ] # build top-level router -- this will route to multiple sub-indexes and aggregate results # query_engine = SubQuestionQueryEngine.from_defaults( # query_engine_tools=query_engine_tools, # service_context=service_context, # verbose=False # ) query_engine = RouterQueryEngine.from_defaults( query_engine_tools=query_engine_tools, service_context=service_context, select_multi=True ) return query_engine if __name__ == "__main__": service_context = load_service_context() set_global_service_context(service_context) query_engine = build_final_query_engine(service_context) response = query_engine.query("Quelle lib utiliser pour accéder à ma base de données ?") display_response(response)
[ "Pour consulter l'actualité et les chiffres d'une startup.", "Pour les questions techniques et développement et déploiement." ]
2024-01-10
Anticiparte/chatbot-pdf
app_fixed.py
import streamlit as st from PyPDF2 import PdfReader from dotenv import load_dotenv from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub import glob def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(raw_text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) chunks = text_splitter.split_text(raw_text) return chunks def get_vector_store(text_chunks): # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") embeddings = OpenAIEmbeddings() vector_store = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vector_store def get_conversation_chain(vector_store): llm = ChatOpenAI(temperature=0.75) # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", # model_kwargs={"temperature": 0.25, "max_length": 512}) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vector_store.as_retriever(), memory=memory ) return conversation_chain def handle_user_input(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() if "conversation" not in st.session_state: st.session_state.conversation = None st.set_page_config( page_title="Chatea con nuestro experto f", page_icon=":books:") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chatea con nuestro experto :books:") user_question = st.text_input( "Haz una pregunta acerca de nuestra base de conocimiento en los documentos") if user_question: handle_user_input(user_question) st.write(user_template.replace( "{{MSG}}", "Hola Robot"), unsafe_allow_html=True) st.write(bot_template.replace( "{{MSG}}", "Hola Humano"), unsafe_allow_html=True) with st.sidebar: st.subheader("Los documentos") pdf_docs = glob.glob('./reglamentos/*.pdf') if st.button("Proceso"): with st.spinner("Procesando, paciencia por favor"): # get pdf text: raw_text = get_pdf_text(pdf_docs) st.write(raw_text) # get the text chunks text_chunks = get_text_chunks(raw_text) st.write(text_chunks) # create vector database / vector store vector_store = get_vector_store(text_chunks) # create conversation chain # conversation = get_conversation_chain(vector_store) st.session_state.conversation = get_conversation_chain( vector_store) if __name__ == '__main__': main()
[]
2024-01-10
RosettaTechnologies/AnkiBrain
ChatAI~ChatAIWithDocuments.py
import json import os from os import path from typing import Tuple, List from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from langchain.document_loaders import TextLoader, PyPDFLoader, Docx2txtLoader, UnstructuredPowerPointLoader, \ UnstructuredHTMLLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.memory import ConversationBufferMemory from langchain.schema import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from ChatInterface import ChatInterface def get_file_extension(file_name: str) -> str: return path.splitext(file_name)[1] def rewrite_json_file(new_data: dict, f): """ Helper function to rewrite json root object to .json file. :param new_data: :param f: :return: """ f.seek(0) json.dump(new_data, f) f.truncate() user_data_dir = path.join( path.abspath(path.dirname(__file__)), '..', 'user_files' ) default_documents_dir = path.join(user_data_dir, 'documents') db_dir = path.join(user_data_dir, 'db') if not path.isdir(db_dir): os.mkdir(db_dir) documents_json_path = path.join(user_data_dir, 'documents.json') # Not inside the documents dir. persist_dir = path.join(db_dir, 'chroma-persist') settings_path = path.join(user_data_dir, 'settings.json') class ChatAIWithDocuments(ChatInterface): def __init__(self, documents_dir_path: str = default_documents_dir, persist_directory=persist_dir): if not path.isdir(persist_dir): os.mkdir(persist_dir) self.documents_dir_path = documents_dir_path self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100, length_function=len) temperature = 0 model_name = 'gpt-3.5-turbo' with open(settings_path, 'r') as f: data = json.load(f) temperature = data['temperature'] model_name = data['llmModel'] self.llm = ChatOpenAI(temperature=temperature, model_name=model_name) self.vectorstore = Chroma(embedding_function=HuggingFaceEmbeddings(), persist_directory=persist_directory) self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) self.qa = ConversationalRetrievalChain.from_llm( self.llm, self.vectorstore.as_retriever(), memory=self.memory, return_source_documents=True ) if not path.isfile(settings_path): with open(settings_path, 'w') as f: json.dump({}, f) with open(settings_path, 'r+') as f: settings = json.load(f) if 'documents_saved' not in settings: settings['documents_saved'] = [] rewrite_json_file(settings, f) # self.scan_documents_folder() def clear_memory(self): self.memory.clear() def scan_documents_folder(self): """ Looks through user documents to find any new docs. Will then add these new docs to the vectorstore. We apparently cannot delete specific documents from the vectorstore as an unfortunate limitation of the underlying Chroma database. :return: """ with open(settings_path, 'r+') as f: """ Save all file paths found in user_files/documents. For all the files that have been found: if the file name and path is not already saved in documents.json, save it to documents.json. Also, will persist it to vectorstore. """ data = json.load(f) for dirName, subdirList, fileNames in os.walk(self.documents_dir_path): for fileName in fileNames: full_path = path.join(dirName, fileName) if full_path not in data['documents_saved']: data['documents_saved'].append(full_path) self.add_document_from_path(full_path) # Write changes to file using helper fn. rewrite_json_file(data, f) def add_document(self, document: Document): self.add_documents([document]) def add_documents(self, documents: List[Document]): self.vectorstore.add_documents(documents) self.vectorstore.persist() def split_document(self, docpath: str): # Set up the loader based on file type. ext = get_file_extension(docpath) loader = None documents: List[Document] = [] if ext == '.txt': loader = TextLoader(docpath, encoding='utf-8') documents = loader.load() documents = self.text_splitter.split_documents(documents) elif ext == '.pdf': loader = PyPDFLoader(docpath) documents = loader.load() documents = self.text_splitter.split_documents(documents) elif ext == '.docx': loader = Docx2txtLoader(docpath) documents = loader.load() documents = self.text_splitter.split_documents(documents) elif ext == '.pptx': loader = UnstructuredPowerPointLoader(docpath) documents = loader.load() documents = self.text_splitter.split_documents(documents) elif ext == '.html': loader = UnstructuredHTMLLoader(docpath) documents = loader.load() documents = self.text_splitter.split_documents(documents) else: raise Exception( 'Document type not supported at this time.\n' 'Please import a document with a supported extension.\n' ) return documents def add_document_from_path(self, docpath: str): """ Takes in a path to a file, applies the splitter to create document(s), then adds the document(s) to the vectorstore. :param docpath: :return: """ docs = self.split_document(docpath) self.add_documents(docs) def clear_documents(self): self.vectorstore.delete_collection() self.vectorstore.persist() def human_message(self, query: str) -> Tuple[str, list[dict[str, str]]]: result = self.qa({'question': query}) answer = result['answer'] source_documents: List[Document] = result['source_documents'] source_documents_output: List[dict[str, str]] = [] for doc in source_documents: source_documents_output.append({ 'page_content': doc.page_content, 'source': doc.metadata['source'] }) return answer, source_documents_output
[]
2024-01-10
RosettaTechnologies/AnkiBrain
ChatAI~ChatInterface.py
from abc import ABC, abstractmethod from typing import Tuple, Optional, List, TypedDict from langchain.schema import Document def extract_json_array(s): start = s.find('[') end = s.rfind(']') + 1 # +1 to include the bracket itself if start != -1 and end != -1: return s[start:end] else: return None class BadOutputGenerateCardsException(Exception): def __init__(self, data): super().__init__() self.data = data class ChatInterface(ABC): @abstractmethod def clear_memory(self): pass @abstractmethod def human_message(self, query: str) -> Tuple[str, Optional[List[Document]]]: pass def single_query_resets_memory(self, query: str): self.clear_memory() response, _ = self.human_message(query) self.clear_memory() return response class ExplainTopicOptions(TypedDict): level_of_detail: str level_of_expertise: str def explain_topic(self, topic: str, options: ExplainTopicOptions = None) -> str: if options is None: options = {'custom_prompt': '', 'level_of_detail': 'EXTREME', 'level_of_expertise': 'EXPERT', 'language': 'English'} custom_prompt = options['custom_prompt'] level_of_detail = options['level_of_detail'] level_of_expertise = options['level_of_expertise'] language = options['language'] query = f''' Explain X using the following parameters: X = {topic} LEVEL OF DETAIL = {level_of_detail} LEVEL OF EXPERTISE = {level_of_expertise} LANGUAGE = {language} {'When finished, make sure your response is in ' + language + ' only.' if language is not 'English' else ''} {custom_prompt} ''' explanation = self.single_query_resets_memory(query) return explanation class GenerateCardsOptions(TypedDict): type: str def generate_cards(self, text: str, options: GenerateCardsOptions = None) -> str: if options is None: options = {'type': 'basic', 'language': 'English'} custom_prompt = options['custom_prompt'] card_type = options['type'] language = options['language'] query = '' if card_type == 'basic': query = f''' Please read the {language} text below in quotes: "{text}" From the text above, I want you to create flash cards in {language}. Output in JSON format, using the following as a strict template for the format. [ {{ "front": "This is an example of the front of a card generated by ChatGPT to query the material. You can be creative about the best way to ask a question.", "back": "This is the back of the card that is the answer to the front." }}, {{ "front": "This is the front of another card.", "back": "This is the back of another card." }} ] {"The example given above is in English, but remember to translate the final cards into " + language + ". The front text and the back text should be in " + language + "!. The names of the JSON fields themselves ('front' and 'back') should remain in English." if language is not 'English' else '' } {custom_prompt} Do not output any other text besides JSON. Begin output now as the template above. ''' elif card_type == 'cloze': query = f''' Please read the {language} text below in quotes. "{text}" From the text above, I want you to create flash cards in {language}. These are special cards where you omit key words or phrases. You can use asterisks *like this* to indicate that a word or phrase should be hidden for whoever is studying the card. You can create multiple deletions (omissions) per card. Please decide to hide key words or phrases depending on how important they are to the context. If a word or phrase is very important, you should definitely hide it using *this notation*! Output in JSON format, using the following as a strict template for your response format: [ {{ "text": "This is an example of a *flash card* made by you." }}, {{ "text": "This is the *second* flash *card*, this time containing *three deletions*." }}, {{ "text": "Please omit key *words* or *an entire phrase* using asterisks." }} ] I want each card to be relatively small - that means your "text" field should not be more than one sentence. You MUST have at least ONE deletion per flash card using *this notation*. {'The example given above is in English, but remember to translate the final cards into ' + language + "! The name of the JSON field itself ('text') should remain in English." if language is not 'English' else '' } {custom_prompt} Always produce cards that have at least one *deletion* using the *asterisk notation* as I have shown you. Hiding words or phrases using asterisks is critical to the flash card learning process. Do not output any other text besides JSON. Begin output now following the template above. ''' else: raise Exception('Invalid card type') cards_raw_str = self.single_query_resets_memory(query).strip() cards_raw_str = extract_json_array(cards_raw_str) # ??? return cards_raw_str # try: # cards = json.loads(cards_json_str) # for card in cards: # card['tags'] = [] # card['type'] = card_type # return cards # except Exception as e: # raise BadOutputGenerateCardsException({'message': 'Malformed JSON output', 'json': cards_json_str})
[ "custom_prompt" ]
2024-01-10
RosettaTechnologies/AnkiBrain
ChatAI~ChatAIWithoutDocuments.py
import json from os import path from typing import Tuple from langchain import ConversationChain from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from ChatInterface import ChatInterface user_data_dir = path.join( path.abspath(path.dirname(__file__)), '..', 'user_files' ) settings_path = path.join(user_data_dir, 'settings.json') class ChatAIWithoutDocuments(ChatInterface): def __init__(self, verbose=False): temperature = 0 model_name = 'gpt-3.5-turbo' with open(settings_path, 'r') as f: data = json.load(f) temperature = data['temperature'] model_name = data['llmModel'] self.llm = ChatOpenAI(temperature=temperature, model_name=model_name) self.memory = ConversationBufferMemory() self.conversationChain = ConversationChain(llm=self.llm, memory=self.memory, verbose=verbose) def human_message(self, query: str) -> Tuple[str, None]: return self.conversationChain.predict(input=query), None def clear_memory(self): self.memory.clear()
[]
2024-01-10
RosettaTechnologies/AnkiBrain
AnkiBrain.py
import asyncio import json import platform import signal import threading from anki.hooks import addHook from aqt import mw, gui_hooks from aqt.qt import * from aqt.utils import showInfo from dotenv import set_key, load_dotenv from ChatAIModuleAdapter import ChatAIModuleAdapter from ExplainTalkButtons import ExplainTalkButtons from InterprocessCommand import InterprocessCommand as IC from OpenAIAPIKeyDialog import OpenAIAPIKeyDialog from PostUpdateDialog import PostUpdateDialog from SidePanel import SidePanel from UserModeDialog import show_user_mode_dialog from card_injection import handle_card_will_show from changelog import ChangelogDialog from project_paths import dotenv_path from util import run_win_install, run_macos_install, run_linux_install, UserMode class GUIThreadSignaler(QObject): """ Required class for calling UI updates from the non-UI thread. """ resetUISignal = pyqtSignal() openFileBrowserSignal = pyqtSignal(int) # takes commandId so we can resolve the request showNoAPIKeyDialogSignal = pyqtSignal() sendToJSFromAsyncThreadSignal = pyqtSignal(dict) def __init__(self): super().__init__() self.resetUISignal.connect(self.reset_ui) self.openFileBrowserSignal.connect(self.open_file_browser) self.showNoAPIKeyDialogSignal.connect(self.show_no_API_key_dialog) self.sendToJSFromAsyncThreadSignal.connect(self.send_to_js_from_async_thread) def send_to_js_from_async_thread(self, json_dict: dict): mw.ankiBrain.sidePanel.webview.send_to_js(json_dict) def show_no_API_key_dialog(self): showInfo('AnkiBrain has loaded. There is no API key detected, please set one before using the app.') def reset_ui(self): mw.reset() def open_file_browser(self, commandId): print(f'Opening file browser with commandId {commandId}') dialog = QFileDialog() full_paths, _ = dialog.getOpenFileNames() # No files selected (empty array). if not full_paths: mw.ankiBrain.reactBridge.trigger(IC.DID_CLOSE_DOCUMENT_BROWSER_NO_SELECTIONS, commandId=commandId) return documents = [] for path in full_paths: file_name_with_extension = os.path.basename(path) file_name, extension = os.path.splitext(file_name_with_extension) documents.append({ 'file_name_with_extension': os.path.basename(path), 'file_name': file_name, 'extension': extension, 'path': path, 'size': os.path.getsize(path) }) print(f'Selected documents: {json.dumps(documents)}') # user_mode = mw.settingsManager.get_user_mode() # if user_mode == UserMode.SERVER: mw.ankiBrain.reactBridge.send_cmd( IC.DID_SELECT_DOCUMENTS, data={'documents': documents}, commandId=commandId ) # elif user_mode == UserMode.LOCAL: # mw.ankiBrain.reactBridge.trigger(IC.ADD_DOCUMENTS, documents=documents) class AnkiBrain: def __init__(self, user_mode: UserMode = UserMode.LOCAL): self.user_mode = user_mode self.loop = None self.sidePanel = SidePanel("AnkiBrain", mw) self.sidePanel.webview.page().loadFinished.connect(self.on_webengine_load_finished) self.webview_loaded = False self.explainTalkButtons = None self.selectedText = '' self.chatAI = ChatAIModuleAdapter() # Requires async starting by calling .start self.chatReady = False self.openai_api_key_dialog = OpenAIAPIKeyDialog() self.openai_api_key_dialog.hide() # Should go last because this object takes self and can call items. # Therefore, risk of things not completing setup. from ReactBridge import ReactBridge self.reactBridge = ReactBridge(self) self.guiThreadSignaler = GUIThreadSignaler() self.setup_ui() def __del__(self): self.sidePanel.deleteLater() asyncio.run(self.chatAI.stop()) def setup_ui(self): mw.addDockWidget(Qt.DockWidgetArea.RightDockWidgetArea, self.sidePanel) self.sidePanel.resize(500, mw.height()) # Set up api key dialog. self.openai_api_key_dialog.on_key_save(self.handle_openai_api_key_save) # Hook for injecting custom javascript into Anki cards. addHook("prepareQA", handle_card_will_show) # Hook for Anki's card webview JS function `pycmd` gui_hooks.webview_did_receive_js_message.append(self.handle_anki_card_webview_pycmd) add_ankibrain_menu_item('Show/Hide AnkiBrain', self.toggle_panel) add_ankibrain_menu_item('Switch User Mode...', show_user_mode_dialog) if self.user_mode == UserMode.LOCAL: add_ankibrain_menu_item('Restart AI...', self.restart_async_members_from_sync) add_ankibrain_menu_item('Set OpenAI API Key...', self.show_openai_api_key_dialog) add_ankibrain_menu_item('Reinstall...', reinstall) # Check if AnkiBrain has been updated. has_updated = mw.settingsManager.has_ankibrain_updated() if has_updated: # If updated, need to have the user reinstall python dependencies. # Show PostUpdateDialog. mw.updateDialog = PostUpdateDialog(mw) mw.updateDialog.show() add_ankibrain_menu_item('Show Changelog', show_changelog) self.main() def on_webengine_load_finished(self): print('Webview finished loading.') self.webview_loaded = True async def load_user_settings(self): settings = mw.settingsManager.settings print('Sending DID_LOAD_USER_FILES') self.reactBridge.send_cmd(IC.DID_LOAD_SETTINGS, settings) async def _start_async_members(self): """ Start up all async members here. :return: """ # Make sure webview is loaded. while not self.webview_loaded: print('Webview is not loaded yet, sleeping async...') await asyncio.sleep(0.1) if self.user_mode == UserMode.LOCAL: self.reactBridge.send_cmd(IC.SET_WEBAPP_LOADING_TEXT, {'text': 'Starting AI Engine...'}) print('Starting AnkiBrain...') await self.chatAI.start() self.chatReady = True print('AnkiBrain ChatAI loaded. App is ready.') self.reactBridge.send_cmd(IC.SET_WEBAPP_LOADING_TEXT, {'text': 'Loading your settings...'}) await self.load_user_settings() self.reactBridge.send_cmd(IC.DID_FINISH_STARTUP) # Check for key in .env file in user_files if self.user_mode == UserMode.LOCAL: load_dotenv(dotenv_path, override=True) if os.getenv('OPENAI_API_KEY') is None or os.getenv('OPENAI_API_KEY') == '': print('No API key detected') self.guiThreadSignaler.showNoAPIKeyDialogSignal.emit() else: print(f'Detected API Key: {os.getenv("OPENAI_API_KEY")}') async def _stop_async_members(self): """ Stop all async members here. :return: """ if self.user_mode == UserMode.LOCAL: print('Stopping AnkiBrain...') await self.chatAI.stop() self.chatReady = False async def restart_async_members(self): print('Restarting AnkiBrain...') print('Setting web app loading: True') self.reactBridge.set_webapp_loading(True) await self._stop_async_members() await self._start_async_members() print('Setting web app loading: False') self.reactBridge.set_webapp_loading(False) self.reactBridge.send_cmd(IC.STOP_LOADERS) def restart_async_members_from_sync(self): """ Restart AnkiBrain from a synchronous thread. This dispatches a task in the async event loop that runs AnkiBrain. This is a synchronous function but is a non-blocking operation. :return: """ asyncio.run_coroutine_threadsafe(self.restart_async_members(), mw.ankiBrain.loop) async def ask_dummy(self, query: str): output = await self.chatAI.ask_dummy(query) return output def handle_openai_api_key_save(self, key): self.openai_api_key_dialog.hide() set_key(dotenv_path, 'OPENAI_API_KEY', key) os.environ['OPENAI_API_KEY'] = key self.restart_async_members_from_sync() def _handle_process_signal(self, signal, frame): try: self.chatAI.scriptManager.terminate_sync() except Exception as e: print(str(e)) exit(0) def main(self): """ Runs AnkiBrain's async members in an asyncio event loop in a separate thread to not block Anki's UI. :return: """ # Set up signal handling in main thread. signal.signal(signal.SIGINT, self._handle_process_signal) signal.signal(signal.SIGTERM, self._handle_process_signal) def start_async_loop(_loop): asyncio.set_event_loop(_loop) _loop.run_forever() loop = asyncio.new_event_loop() self.loop = loop t = threading.Thread(target=start_async_loop, args=(loop,)) t.daemon = True t.start() try: asyncio.run_coroutine_threadsafe(self._start_async_members(), loop) except Exception as e: print(e) def stop_main(self): asyncio.run_coroutine_threadsafe(self._stop_async_members(), self.loop) # Cancel all tasks on the loop for task in asyncio.all_tasks(self.loop): task.cancel() # Stop the loop mw.ankiBrain.loop.call_soon_threadsafe(self.loop.stop) def toggle_panel(self): if self.sidePanel.isVisible(): self.sidePanel.hide() mw.settingsManager.edit('showSidePanel', False) else: self.sidePanel.show() mw.settingsManager.edit('showSidePanel', True) def show_openai_api_key_dialog(self): self.openai_api_key_dialog.show() def handle_anki_card_webview_pycmd(self, handled, cmd, context): try: data = json.loads(cmd) if data['cmd'] == 'selectedText': print('detected text selection') self.handle_text_selected(text=data['text'], position=data['position']) return True, None elif data['cmd'] == 'mousedown': print('detected mousedown') self.handle_mousedown() return True, None else: return handled except Exception as e: print(e) return handled def handle_text_selected(self, text='', position=None): if self.explainTalkButtons is not None: self.explainTalkButtons.destroy() self.selectedText = text self.explainTalkButtons = ExplainTalkButtons(mw, position) self.explainTalkButtons.on_explain_button_click(self.handle_explain_text_pressed) self.explainTalkButtons.on_talk_button_click(self.handle_talk_text_pressed) # Basically detecting highlight release. def handle_mousedown(self): if self.explainTalkButtons is not None: self.explainTalkButtons.destroy() self.selectedText = '' def handle_explain_text_pressed(self): self.sidePanel.webview.send_to_js({ 'cmd': 'explainSelectedText', 'text': self.selectedText }) self.explainTalkButtons.destroy() self.selectedText = '' def handle_talk_text_pressed(self): self.sidePanel.webview.send_to_js({ 'cmd': 'talkSelectedText', 'text': self.selectedText }) self.explainTalkButtons.destroy() self.selectedText = '' def reinstall(): system = platform.system() if system == 'Windows': run_win_install() elif system == 'Darwin': run_macos_install() elif system == 'Linux': run_linux_install() showInfo('Terminal updater has been launched. Restart Anki after install is completed.') def show_changelog(): mw.changelog = ChangelogDialog(mw) mw.changelog.show() def add_ankibrain_menu_item(name: str, fn): action = mw.ankibrain_menu.addAction(name) qconnect(action.triggered, fn) # Keep track of added actions for removal later if needed. mw.menu_actions.append(action) def remove_ankibrain_menu_actions(): for action in mw.menu_actions: print(f'Removing menu action: {str(action)}') mw.form.menubar.removeAction(action)
[]
2024-01-10
harshalbhatia/osh
osh~models~curie.py
import os import openai from dotenv import load_dotenv load_dotenv() openai.api_type = os.getenv("OPENAI_API_TYPE") openai.api_key = os.getenv("OPENAI_API_KEY") openai.api_base = os.getenv("OPENAI_API_BASE") openai.api_version = os.getenv("OPENAI_API_VERSION") OPENAI_API_DEPLOYMENT_ID = os.getenv("OPENAI_API_DEPLOYMENT_ID") def predict(data: dict): response = openai.Completion.create( engine="vchar-curie", prompt=f"""You are a helpful assistant that helps users of Unix systems (linux/mac and the like) with their terminal execution issues. The user will provide input/error info and you're supposed to reply with suggestions to help them fix the problem. It could be alternate commands, missing flags, and the like. If you're not sure, suggest the user to read more about a particular term. Please suggest a correct command if you have one and then a brief explanation.n\nDetails: MaxTokens = 150+{"; ".join(list(map(lambda i: ": ".join(i), data.items())))} \n\nExplanation: """, temperature=0.7, max_tokens=250, top_p=1, frequency_penalty=0, presence_penalty=0, best_of=1, stop=None) return response["choices"][0]["text"]
[ "; ", ": " ]
2024-01-10
harshalbhatia/osh
osh~models~turbo.py
import os import openai from dotenv import load_dotenv load_dotenv() openai.api_type = os.getenv("OPENAI_API_TYPE") openai.api_key = os.getenv("OPENAI_API_KEY") openai.api_base = os.getenv("OPENAI_API_BASE") openai.api_version = os.getenv("OPENAI_API_VERSION") OPENAI_API_DEPLOYMENT_ID = os.getenv("OPENAI_API_DEPLOYMENT_ID") def predict(data: dict): response = openai.ChatCompletion.create( deployment_id=OPENAI_API_DEPLOYMENT_ID, messages=[ { "role": "system", "content": "You are a helpful assistant that helps users of Unix systems (linux/mac and the like) with their terminal execution issues. The user will provide input/error info and you're supposed to reply with suggestions to help them fix the problem. It could be alternate commands, missing flags, and the like. If you're not sure, suggest the user to read more about a particular term. Please suggest a correct command if you have one and then a brief explanation." }, { "role": "user", # TODO: escaping logic and add "" "content": ";".join(list(map(lambda i: ": ".join(i), data.items()))) }, ], temperature=0 ) return response['choices'][0]['message']['content']
[ ": ", "You are a helpful assistant that helps users of Unix systems (linux/mac and the like) with their terminal execution issues. The user will provide input/error info and you're supposed to reply with suggestions to help them fix the problem. It could be alternate commands, missing flags, and the like. If you're not sure, suggest the user to read more about a particular term. Please suggest a correct command if you have one and then a brief explanation." ]
2024-01-10
gitgithan/uplimit
podcast_backend.py
import modal def download_whisper(): # Load the Whisper model import os import whisper print ("Download the Whisper model") # Perform download only once and save to Container storage whisper._download(whisper._MODELS["medium"], '/content/podcast/', False) stub = modal.Stub("corise-podcast-project") corise_image = modal.Image.debian_slim().pip_install("feedparser", "https://github.com/openai/whisper/archive/9f70a352f9f8630ab3aa0d06af5cb9532bd8c21d.tar.gz", "requests", "ffmpeg", "openai", "tiktoken", "wikipedia", "ffmpeg-python").apt_install("ffmpeg").run_function(download_whisper) @stub.function(image=corise_image, gpu="any", timeout=600) def get_transcribe_podcast(rss_url, local_path): print ("Starting Podcast Transcription Function") print ("Feed URL: ", rss_url) print ("Local Path:", local_path) # Read from the RSS Feed URL import feedparser intelligence_feed = feedparser.parse(rss_url) podcast_title = intelligence_feed['feed']['title'] episode_title = intelligence_feed.entries[712]['title'] episode_image = intelligence_feed['feed']['image'].href for item in intelligence_feed.entries[0].links: if (item['type'] == 'audio/mpeg'): episode_url = item.href episode_name = "podcast_episode.mp3" print ("RSS URL read and episode URL: ", episode_url) # Download the podcast episode by parsing the RSS feed from pathlib import Path p = Path(local_path) p.mkdir(exist_ok=True) print ("Downloading the podcast episode") import requests with requests.get(episode_url, stream=True) as r: r.raise_for_status() episode_path = p.joinpath(episode_name) with open(episode_path, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) print ("Podcast Episode downloaded") # Load the Whisper model import os import whisper # Load model from saved location print ("Load the Whisper model") model = whisper.load_model('medium', device='cuda', download_root='/content/podcast/') # Perform the transcription print ("Starting podcast transcription") result = model.transcribe(local_path + episode_name) # Return the transcribed text print ("Podcast transcription completed, returning results...") output = {} output['podcast_title'] = podcast_title output['episode_title'] = episode_title output['episode_image'] = episode_image output['episode_transcript'] = result['text'] return output @stub.function(image=corise_image, secret=modal.Secret.from_name("my-openai-secret")) def get_podcast_summary(podcast_transcript): import openai instructPrompt = """ Summarize the podcast in bullet points on the topics discussed and references to people, places, books, websites. """ request = instructPrompt + podcast_transcript chatOutput = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": request} ] ) podcastSummary = chatOutput.choices[0].message.content return podcastSummary @stub.function(image=corise_image, secret=modal.Secret.from_name("my-openai-secret")) def get_podcast_guest(podcast_transcript): import openai import wikipedia import json podcastGuest = '' return podcastGuest @stub.function(image=corise_image, secret=modal.Secret.from_name("my-openai-secret")) def get_podcast_highlights(podcast_transcript): import openai podcastHighlights = '' return podcastHighlights @stub.function(image=corise_image, secret=modal.Secret.from_name("my-openai-secret"), timeout=1200) def process_podcast(url, path): output = {} podcast_details = get_transcribe_podcast.call(url, path) podcast_summary = get_podcast_summary.call(podcast_details['episode_transcript']) podcast_guest = get_podcast_guest.call(podcast_details['episode_transcript']) podcast_highlights = get_podcast_highlights.call(podcast_details['episode_transcript']) output['podcast_details'] = podcast_details output['podcast_summary'] = podcast_summary output['podcast_guest'] = podcast_guest output['podcast_highlights'] = podcast_highlights return output @stub.local_entrypoint() def test_method(url, path): output = {} podcast_details = get_transcribe_podcast.call(url, path) print ("Podcast Summary: ", get_podcast_summary.call(podcast_details['episode_transcript'])) print ("Podcast Guest Information: ", get_podcast_guest.call(podcast_details['episode_transcript'])) print ("Podcast Highlights: ", get_podcast_highlights.call(podcast_details['episode_transcript']))
[ "You are a helpful assistant.", "\n Summarize the podcast in bullet points on the topics discussed and references to people, places, books, websites.\n ", "\n Summarize the podcast in bullet points on the topics discussed and references to people, places, books, websites.\n PLACEHOLDER" ]
2024-01-10
tencent-ailab/TPolicies
tpolicies~layers.py
"""layers extension in the style of tf.layers/slim.layers""" from collections import namedtuple from functools import partial import tensorflow as tf from tensorflow.contrib.framework import add_arg_scope import tensorflow.contrib.layers as tfc_layers from tensorflow.contrib.layers.python.layers import utils as lutils from tensorflow.contrib.layers import xavier_initializer import tpolicies.ops as tp_ops from tpolicies import ops as tp_ops from tpolicies.ops import INF, cat_sample_from_logits, ortho_init from tpolicies.ops import one_step_lstm_op from tpolicies.utils.distributions import CategoricalPdType, BernoulliPdType from tpolicies.utils.distributions import MaskSeqCategoricalPdType from tpolicies.utils.distributions import DiagGaussianPdType @add_arg_scope def identity_layer(inputs, outputs_collections=None, scope=None): """Identity layer. Args: inputs: A Tensor outputs_collections: scope: Returns: A outputs `Tensor`. """ with tf.variable_scope(scope, default_name='identity_layer') as sc: outputs = tf.identity(inputs) return lutils.collect_named_outputs(outputs_collections, sc.name, outputs) @add_arg_scope def glu(inputs, context, output_size, outputs_collections=None, scope=None): """Gated Linear Units. The impl follows the GLU described in the Supplementary Material of AlphaStar Nature paper. Args: inputs: (bs, M), the input `Tensor` context: (bs, N), the context `Tensor` output_size: int, output size outputs_collections: scope: Returns: An output `Tensor`. """ inputs_shape = inputs.get_shape().as_list() assert len(inputs_shape) == 2 inputs_size = inputs_shape[1] with tf.variable_scope(scope, default_name='glu') as sc: # NOTE(pengsun): activation_fn must be None gate = tf.nn.sigmoid( tfc_layers.fully_connected(context, inputs_size, activation_fn=None) ) gated_inputs = tf.math.multiply(gate, inputs) # elementwise times # NOTE(pengsun): activation_fn must be None outputs = tfc_layers.fully_connected(gated_inputs, output_size, activation_fn=None) return lutils.collect_named_outputs(outputs_collections, sc.name, outputs) # sparse embedding stuff @add_arg_scope def linear_embed(inputs, vocab_size, enc_size, inverse_embed=False, outputs_collections=None, weights_initializer=ortho_init(scale=1.0), weights_regularizer=None, scope=None): """Linear embedding layer, simply tf.nn.embedding_lookup or inverse embedding. In the case of linear embedding, the inputs is a Tensor of index (discrete to dense embedding) when inverse_embed=True; For inverse embedding, the inputs is a Tensor (dense to ense embedding) when inverse_embed=False. Args: inputs: when inverse_embed=False, (bs, d1, ...), each is an index in range(vocab_size); when inverse_embed=True, (bs, enc_size) vocab_size: enc_size: inverse_embed: True: a "enc_size -> vocab_size" query; False: a "vocab_size -> enc_size" embedding weights_initializer: weights_regularizer: scope: Returns: An outputs `Tensor`. """ with tf.variable_scope(scope, default_name='linear_embed') as sc: weights = tf.get_variable('weights', (vocab_size, enc_size), initializer=weights_initializer, regularizer=weights_regularizer) if not inverse_embed: assert inputs.dtype in [tf.int32, tf.int64], 'inputs must be index' outputs = tf.nn.embedding_lookup(weights, inputs) outputs_alias = sc.name else: assert inputs.dtype in [tf.float16, tf.float32, tf.float64], ( 'inputs must be a dense tensor') outputs = tf.matmul(inputs, weights, transpose_b=True) outputs_alias = sc.name + '_inverse' return lutils.collect_named_outputs(outputs_collections, outputs_alias, outputs) # normalization stuff @add_arg_scope def ln(inputs, epsilon=1e-8, begin_norm_axis=-1, activation_fn=None, enable_openai_impl=False, scope=None): """Applies layer normalization. See https://arxiv.org/abs/1607.06450. CAUTION: presume the last dim (shape[-1]) being the feature dim!! TODO(pengsun): doc from where this impl is borrowed Args: inputs: A tensor with 2 or more dimensions, where the first dimension has `batch_size`. epsilon: A floating number. A very small number for preventing ZeroDivision Error. begin_norm_axis: beginning dim activation_fn: activation function. None means no activation. enable_openai_impl: scope: Optional scope for `variable_scope`. Returns: A tensor with the same shape and data dtype as `inputs`. """ with tf.variable_scope(scope, default_name="ln"): inputs_shape = inputs.get_shape() params_shape = inputs_shape[-1:] inputs_rank = inputs_shape.ndims if begin_norm_axis < 0: begin_norm_axis = inputs_rank + begin_norm_axis if begin_norm_axis >= inputs_rank: raise ValueError('begin_norm_axis (%d) must be < rank(inputs) (%d)' % (begin_norm_axis, inputs_rank)) norm_axes = list(range(begin_norm_axis, inputs_rank)) mean, variance = tf.nn.moments(inputs, norm_axes, keep_dims=True) beta = tf.get_variable("beta", params_shape, initializer=tf.zeros_initializer()) gamma = tf.get_variable("gamma", params_shape, initializer=tf.ones_initializer()) if enable_openai_impl: normalized = (inputs - mean) / tf.sqrt(variance + epsilon) outputs = normalized * gamma + beta else: normalized = (inputs - mean) / ((variance + epsilon) ** (.5)) outputs = gamma * normalized + beta if activation_fn is not None: outputs = activation_fn(outputs) return outputs @add_arg_scope def inst_ln(inputs, epsilon=1e-8, enable_openai_impl=False, activation_fn=None, scope=None): """Applies Instance normalization. See https://arxiv.org/pdf/1607.08022.pdf. CAUTION: presume the last dim (shape[-1]) being the feature dim!! Args: inputs: A tensor with 2 or more dimensions, where the first dimension has `batch_size`. epsilon: A floating number. A very small number for preventing ZeroDivision Error. activation_fn: activation function. None means no activation. enable_openai_impl: scope: Optional scope for `variable_scope`. Returns: A tensor with the same shape and data dtype as `inputs`. """ with tf.variable_scope(scope, default_name="inst_ln"): inputs_shape = inputs.get_shape() params_shape = inputs_shape[-1:] inputs_rank = inputs_shape.ndims norm_axes = list(range(1, inputs_rank - 1)) mean, variance = tf.nn.moments(inputs, norm_axes, keep_dims=True) beta = tf.get_variable("beta", params_shape, initializer=tf.zeros_initializer()) gamma = tf.get_variable("gamma", params_shape, initializer=tf.ones_initializer()) if enable_openai_impl: normalized = (inputs - mean) / tf.sqrt(variance + epsilon) outputs = normalized * gamma + beta else: normalized = (inputs - mean) / ((variance + epsilon) ** (.5)) outputs = gamma * normalized + beta if activation_fn is not None: outputs = activation_fn(outputs) return outputs # dense-/res- net stuff @add_arg_scope def dense_sum_blocks(inputs, n, enc_dim, layer_norm: bool = True, outputs_collections=None, scope=None): """Dense-sum blocks with fully connected layers. Args: inputs: n: Number of blocks. Each blocks has exactly one fully connected layer. enc_dim: output encoding dim. layer_norm: Whether to use layer norm outputs_collections: scope: Returns: An outputs `Tensor`. """ with tf.variable_scope(scope, default_name='densesum_blks') as sc: embed = inputs pre_embeds_sum = None for i in range(n): embed = tfc_layers.fully_connected(embed, enc_dim) if i == 0: pre_embeds_sum = embed else: pre_embeds_sum += embed embed = pre_embeds_sum if layer_norm: embed = ln(embed, epsilon=1e-8, scope='ln_'+str(i)) return lutils.collect_named_outputs(outputs_collections, sc.name, embed) @add_arg_scope def dense_sum_conv_blocks(inputs, n, ch_dim, k_size, mode: str = '2d', layer_norm: bool = True, outputs_collections=None, scope=None): """Dense-sum blocks with 1D or 2D convolutional layers. Args: inputs: n: Number of blocks. Each blocks has exactly one fully connected layer. ch_dim: output channel dim. k_size: int or tuple, kernel size mode: str, '1d' or '2d' layer_norm: Whether to use layer norm outputs_collections: scope: Returns: An outputs `Tensor`. """ with tf.variable_scope( scope, default_name='densesum_conv{}_blks'.format(mode)) as sc: embed = inputs pre_embeds_sum = None if mode == '2d': conv_layer = tfc_layers.conv2d kernel_size = [k_size, k_size] elif mode == '1d': conv_layer = tfc_layers.conv1d kernel_size = k_size else: raise ValueError('Unknown mode {}.'.format(mode)) for i in range(n): embed = conv_layer(embed, ch_dim, kernel_size) if i == 0: pre_embeds_sum = embed else: pre_embeds_sum += embed embed = pre_embeds_sum if layer_norm: embed = ln(embed, epsilon=1e-8, scope='ln_'+str(i)) return lutils.collect_named_outputs(outputs_collections, sc.name, embed) @add_arg_scope def res_sum_blocks(inputs, n_blk: int, n_skip: int, enc_dim: int, layer_norm: bool = False, relu_input: bool = False, outputs_collections=None, scope=None): """Residual sum blocks with fully connected layers. The res blocks are more usual with conv layers, some refs are: ref1: https://github.com/deepmind/scalable_agent/blob/master/experiment.py#L152-L173 ref2: https://github.com/google-research/tf-slim/blob/master/tf_slim/nets/resnet_v1.py#L107-L126 Our impl here is similar to [ref2], where we add a "shortcut connection" with the "residual connection" whose enc_dim are the same. [ref1] uses an extra layer to enforce the same end_dim and then takes the sum. Args: inputs: a Tensor, (batch_size, inputs_dim) n_blk: int, how many block n_skip: int, how many conv layers to skip inside a block enc_dim: int, output encoding dim layer_norm: Whether to use layer norm relu_input: Whether to relu the inputs outputs_collections: str, outputs collections scope: scope or scope Returns: A Tensor, the outputs, (batch_size, enc_dim) """ embed = inputs with tf.variable_scope(scope, default_name='res_sum_blks') as sc: for i in range(n_blk): blk_inputs_dim = embed.shape[-1].value # last dim as feature dim # shortcut connection shortcut_scope = 'blk{}_shortcut'.format(i) if blk_inputs_dim == enc_dim: shortcut = identity_layer(embed, scope=shortcut_scope) else: shortcut = tfc_layers.fully_connected(embed, enc_dim, activation_fn=None, scope=shortcut_scope) # residual connection if relu_input: embed = tf.nn.relu(embed) for j in range(n_skip-1): embed = tfc_layers.fully_connected(embed, enc_dim, activation_fn=tf.nn.relu, scope='blk{}_fc{}'.format(i, j)) embed = tfc_layers.fully_connected(embed, enc_dim, activation_fn=None, scope='blk{}_fc{}'.format( i, n_skip - 1) ) # shortcut + residual combined = shortcut + embed if layer_norm: combined = ln(combined, epsilon=1e-8, scope='ln_'+str(i)) embed = tf.nn.relu(combined) return lutils.collect_named_outputs(outputs_collections, sc.original_name_scope, embed) @add_arg_scope def res_sum_blocks_v2(inputs, n_blk: int, n_skip: int, enc_dim: int, layer_norm: bool = False, outputs_collections=None, scope=None): """Residual sum blocks with fully connected layers, v2. Our impl is much like: https://github.com/google-research/tf-slim/blob/8f0215e924996d7287392241bc8d8b1133d0c5ca/tf_slim/nets/resnet_v2.py#L102-L131 and the cited papers therein. In our impl, the basic block looks: when n_skip = 1, - relu - weight - then input adds to output. when n_skip = 2, - relu - weight - relu - weight - then input adds to output, etc. An optional layer_norm can be inserted *BEFORE* relu. NOTE: add a leading layer WITHOUT activation and normalization to enforce the channel size, see: https://github.com/google-research/tf-slim/blob/8f0215e924996d7287392241bc8d8b1133d0c5ca/tf_slim/nets/resnet_v2.py#L213-L215 NOTE: add normalization + relu to the outputs when used as last layer, see: https://github.com/google-research/tf-slim/blob/8f0215e924996d7287392241bc8d8b1133d0c5ca/tf_slim/nets/resnet_v2.py#L221-L223 Args: inputs: a Tensor, (batch_size, inputs_dim) n_blk: int, how many blocks n_skip: int, how many weight layers to skip inside a block (i.e., how many weight layers in the residual branch) enc_dim: int, output encoding dim layer_norm: Whether to use layer norm outputs_collections: str, outputs collections scope: scope or scope Returns: A Tensor, the outputs, (batch_size, enc_dim) """ embed = inputs with tf.variable_scope(scope, default_name='res_sum_blks_v2') as sc: for i in range(n_blk): blk_inputs_dim = embed.shape[-1].value # last dim as feature dim # shortcut connection (simply checking the channel dim) shortcut = identity_layer(embed, scope='blk{}_shortcut'.format(i)) assert blk_inputs_dim == enc_dim, """ input dim {} must == enc dim {}. Otherwise, use a preceding layer WITHOUT activation to enforce this. """.format(blk_inputs_dim, enc_dim) # residual connection for j in range(n_skip): if layer_norm: embed = ln(embed, epsilon=1e-8, scope='ln_blk{}_fc{}'.format(i, j)) embed = tf.nn.relu(embed) embed = tfc_layers.fully_connected( embed, enc_dim, activation_fn=None, biases_initializer=None if layer_norm else tf.zeros_initializer(), scope='blk{}_fc{}'.format(i, j) ) # combine: shortcut + residual embed = shortcut + embed return lutils.collect_named_outputs(outputs_collections, sc.original_name_scope, embed) @add_arg_scope def res_sum_conv_blocks(inputs, n_blk: int, n_skip: int, ch_dim: int, k_size: int, mode: str = '2d', layer_norm: bool = False, outputs_collections=None, scope=None): """Residual sum blocks with 1D or 2D convolutional layer. ref1: https://github.com/deepmind/scalable_agent/blob/master/experiment.py#L152-L173 ref2: https://github.com/google-research/tf-slim/blob/master/tf_slim/nets/resnet_v1.py#L107-L126 Our impl here is similar to [ref2], where we add a "shortcut connection" with the "residual connection" whose ch_dim are the same. [ref1] uses an extra layer to enforce the same ch_dim and then takes the sum. Args: inputs: a Tensor, NHWC format (batch_size, H, W, inputs_dim) n_blk: int, how many blocks n_skip: int, how many conv layers to skip inside a block ch_dim: int, channel dim k_size: int, kerner size for 1D or 2D conv mode: str, '2d' or '3d' layer_norm: Whether to use layer norm outputs_collections: str, outputs collection scope: scope or scope Returns: A Tensor, the outputs, (batch_size, H, W, ch_dim) """ embed = inputs # Note the tfc_layers.convXd padding defaults to SAME if mode == '2d': conv_layer = tfc_layers.conv2d shortcut_k_size = [1, 1] k_size = [k_size, k_size] elif mode == '1d': conv_layer = tfc_layers.conv1d shortcut_k_size = 1 k_size = k_size else: raise ValueError('Unknown mode {}'.format(mode)) with tf.variable_scope(scope, default_name='res_conv{}_blks'.format(mode)) as sc: for i in range(n_blk): blk_inputs_dim = embed.shape[-1].value # last dim as channel dim # shortcut connection shortcut_scope = 'blk{}_shortcut'.format(i) if blk_inputs_dim == ch_dim: shortcut = identity_layer(embed, scope=shortcut_scope) else: shortcut = conv_layer(embed, ch_dim, shortcut_k_size, activation_fn=None, scope=shortcut_scope) # residual connection for j in range(n_skip-1): embed = conv_layer(embed, ch_dim, k_size, activation_fn=tf.nn.relu, scope='blk{}_conv{}'.format(i, j)) embed = conv_layer(embed, ch_dim, k_size, activation_fn=None, scope='blk{}_conv{}'.format(i, n_skip - 1)) # shortcut + residual combined = shortcut + embed if layer_norm: combined = ln(combined, epsilon=1e-8, scope='ln_'+str(i)) embed = tf.nn.relu(combined) return lutils.collect_named_outputs(outputs_collections, sc.original_name_scope, embed) @add_arg_scope def res_sum_bottleneck_blocks(inputs, n_blk: int, n_skip: int, ch_dim: int, bottleneck_ch_dim: int, k_size: int, mode: str = '2d', layer_norm: bool = False, layer_norm_type='inst_ln', outputs_collections=None, scope=None): """Residual sum blocks with 1D or 2D convolutional bottleneck layer. ref1: https://github.com/deepmind/scalable_agent/blob/master/experiment.py#L152-L173 ref2: https://github.com/google-research/tf-slim/blob/master/tf_slim/nets/resnet_v1.py#L107-L126 Our impl here is similar to [ref2], where we add a "shortcut connection" with the "residual connection" whose ch_dim are the same. [ref1] uses an extra layer to enforce the same ch_dim and then takes the sum. Args: inputs: a Tensor, NHWC format (batch_size, H, W, inputs_dim) n_blk: int, how many bottlenecks n_skip: int, how many conv layers to skip inside a bottlenecks ch_dim: int, channel dim bottleneck_ch_dim: int, bottleneck channel dim, usually < ch_dim k_size: int, kerner size for 1D or 2D conv mode: str, '2d' or '3d' layer_norm: Whether to use layer norm layer_norm_type: str, yype of layer norm outputs_collections: str, outputs collection scope: scope or scope Returns: A Tensor, the outputs, (batch_size, H, W, ch_dim) """ embed = inputs # Note the tfc_layers.convXd padding defaults to SAME if mode == '2d': conv_layer = tfc_layers.conv2d one_size = [1, 1] k_size = [k_size, k_size] elif mode == '1d': conv_layer = tfc_layers.conv1d one_size = 1 k_size = k_size else: raise ValueError('Unknown mode {}'.format(mode)) with tf.variable_scope(scope, default_name='res_conv{}_blks'.format(mode)) as sc: for i in range(n_blk): blk_inputs_dim = embed.shape[-1].value # last dim as channel dim # shortcut connection shortcut_scope = 'blk{}_shortcut'.format(i) if blk_inputs_dim == ch_dim: shortcut = identity_layer(embed, scope=shortcut_scope) else: shortcut = conv_layer(embed, ch_dim, one_size, activation_fn=None, scope=shortcut_scope) # residual connection embed = conv_layer(embed, bottleneck_ch_dim, one_size, activation_fn=tf.nn.relu, scope='blk{}_conv{}'.format(i, 0)) for j in range(n_skip): embed = conv_layer(embed, bottleneck_ch_dim, k_size, activation_fn=tf.nn.relu, scope='blk{}_conv{}'.format(i, j+1)) embed = conv_layer(embed, ch_dim, one_size, activation_fn=None, scope='blk{}_conv{}'.format(i, n_skip + 1)) # shortcut + residual combined = shortcut + embed if layer_norm: if layer_norm_type == 'ln': combined = ln(combined, begin_norm_axis=1, epsilon=1e-8, scope='ln_'+str(i)) elif layer_norm_type == 'inst_ln': combined = inst_ln(combined, epsilon=1e-8, scope='inst_ln' + str(i)) else: raise KeyError('Unknown layer_norm_type {}'.format(layer_norm_type)) embed = tf.nn.relu(combined) return lutils.collect_named_outputs(outputs_collections, sc.original_name_scope, embed) def res_sum_bottleneck_blocks_v2(inputs, n_blk: int, n_skip: int, ch_dim: int, bottleneck_ch_dim: int, k_size: int, mode: str = '2d', layer_norm_type='inst_ln', outputs_collections=None, scope=None): """Residual sum blocks with 1D or 2D convolutional bottleneck layer, v2. Our impl is much like: https://github.com/google-research/tf-slim/blob/8f0215e924996d7287392241bc8d8b1133d0c5ca/tf_slim/nets/resnet_v2.py#L102-L131 which is the so-called "pre-activation res block". See also the cited papers therein. In our impl, the basic block looks: when n_skip = 1 - relu - weight - then input adds to output. when n_skip = 2 - relu - weight - relu - weight - then input adds to output, etc. *EACH* weight layer should be understood as a bottleneck structure that expands to a narrow-wide-wide three-conv-layer, i.e., - weight - means - 1x1conv_narrow - kxkconv_narrow - 1x1conv_wide An optional layer_norm can be inserted *BEFORE* relu. NOTE: add a leading layer WITHOUT activation and normalization to enforce the channel size, see: https://github.com/google-research/tf-slim/blob/8f0215e924996d7287392241bc8d8b1133d0c5ca/tf_slim/nets/resnet_v2.py#L213-L215 NOTE: add normalization + relu to the outputs when used as last layer, see: https://github.com/google-research/tf-slim/blob/8f0215e924996d7287392241bc8d8b1133d0c5ca/tf_slim/nets/resnet_v2.py#L221-L223 Args: inputs: a Tensor, NHWC format (batch_size, H, W, inputs_dim) n_blk: int, how many blocks n_skip: int, how many weight layers to skip inside a block (i.e., how many weight layers in the residual branch) ch_dim: int, channel dim bottleneck_ch_dim: int, bottleneck channel dim, usually < ch_dim k_size: int, kernel size for 1D or 2D conv mode: str, '2d' or '3d' layer_norm_type: str, type of layer norm. None means no layer norm. outputs_collections: str, outputs collection scope: scope or scope Returns: A Tensor, the outputs, (batch_size, H, W, ch_dim) """ embed = inputs # Note the tfc_layers.convXd padding defaults to SAME if mode == '2d': conv_layer = tfc_layers.conv2d k_size_one = [1, 1] k_size = [k_size, k_size] elif mode == '1d': conv_layer = tfc_layers.conv1d k_size_one = 1 k_size = k_size else: raise ValueError('Unknown mode {}'.format(mode)) with tf.variable_scope( scope, default_name='res_sum_bottleneck{}_blks_v2'.format(mode)) as sc: for i in range(n_blk): blk_inputs_dim = embed.shape[-1].value # last dim as channel dim # shortcut connection (simply checking the channel dim) shortcut = identity_layer(embed, scope='blk{}_shortcut'.format(i)) assert blk_inputs_dim == ch_dim, """ input dim {} must == ch dim {}. Otherwise, use a preceding layer WITHOUT activation to enforce this. """.format(blk_inputs_dim, ch_dim) # residual connection for j in range(n_skip): # (bs, H, W, C) if layer_norm_type is not None: # NOTE(pengsun): a single layer_norm should suffice here if layer_norm_type == 'ln': embed = ln(embed, begin_norm_axis=1, epsilon=1e-8, scope='ln_blk{}_{}'.format(i, j)) elif layer_norm_type == 'inst_ln': embed = inst_ln(embed, epsilon=1e-8, scope='inst_ln_blk{}_{}'.format(i, j)) else: raise KeyError('Unknown layer_norm_type {}'.format(layer_norm_type)) embed = tf.nn.relu(embed) # (bs, H, W, C) embed = conv_layer(embed, bottleneck_ch_dim, k_size_one, activation_fn=tf.nn.relu, scope='blk{}_conv{}_0'.format(i, j)) # (bs, H, W, BC) embed = conv_layer(embed, bottleneck_ch_dim, k_size, activation_fn=tf.nn.relu, scope='blk{}_conv{}_1'.format(i, j)) # (bs H, W, BC) embed = conv_layer( embed, ch_dim, k_size_one, activation_fn=None, biases_initializer=(None if layer_norm_type else tf.zeros_initializer()), scope='blk{}_conv{}_2'.format(i, j) ) # (bs, H, W, C) # combine: shortcut + residual embed = shortcut + embed return lutils.collect_named_outputs(outputs_collections, sc.original_name_scope, embed) def res_sum_bottleneck_blocks_v3(inputs, n_blk: int, n_skip: int, ch_dim: int, bottleneck_ch_dim: int, k_size: int, mode: str = '2d', layer_norm_type='inst_ln', outputs_collections=None, scope=None): """Residual sum blocks with 1D or 2D convolutional bottleneck layer, v3. Our impl is much like: https://github.com/google-research/tf-slim/blob/8f0215e924996d7287392241bc8d8b1133d0c5ca/tf_slim/nets/resnet_v2.py#L102-L131 which is the so-called "pre-activation res block". See also the cited papers therein. In our impl, the basic block looks: when n_skip = 1 - relu - weight - then input adds to output. when n_skip = 2 - relu - weight - relu - weight - then input adds to output, etc. *EACH* weight layer should be understood as a bottleneck structure that expands to a narrow-wide-wide three-conv-layer, i.e., - weight - means - 1x1conv_narrow - kxkconv_narrow - 1x1conv_wide An optional layer_norm can be inserted *BEFORE* relu. NOTE: add a leading layer WITHOUT activation and normalization to enforce the channel size, see: https://github.com/google-research/tf-slim/blob/8f0215e924996d7287392241bc8d8b1133d0c5ca/tf_slim/nets/resnet_v2.py#L213-L215 NOTE: add normalization + relu to the outputs when used as last layer, see: https://github.com/google-research/tf-slim/blob/8f0215e924996d7287392241bc8d8b1133d0c5ca/tf_slim/nets/resnet_v2.py#L221-L223 NOTE: normalization after EACH bottleneck conv weight, different from v2 Args: inputs: a Tensor, NHWC format (batch_size, H, W, inputs_dim) n_blk: int, how many blocks n_skip: int, how many weight layers to skip inside a block (i.e., how many weight layers in the residual branch) ch_dim: int, channel dim bottleneck_ch_dim: int, bottleneck channel dim, usually < ch_dim k_size: int, kernel size for 1D or 2D conv mode: str, '2d' or '3d' layer_norm_type: str, type of layer norm. None means no layer norm. outputs_collections: str, outputs collection scope: scope or scope Returns: A Tensor, the outputs, (batch_size, H, W, ch_dim) """ embed = inputs # Note the tfc_layers.convXd padding defaults to SAME if mode == '2d': conv_layer = tfc_layers.conv2d k_size_one = [1, 1] k_size = [k_size, k_size] elif mode == '1d': conv_layer = tfc_layers.conv1d k_size_one = 1 k_size = k_size else: raise ValueError('Unknown mode {}'.format(mode)) with tf.variable_scope( scope, default_name='res_sum_bottleneck{}_blks_v3'.format(mode)) as sc: for i in range(n_blk): blk_inputs_dim = embed.shape[-1].value # last dim as channel dim # shortcut connection (simply checking the channel dim) shortcut = identity_layer(embed, scope='blk{}_shortcut'.format(i)) assert blk_inputs_dim == ch_dim, """ input dim {} must == ch dim {}. Otherwise, use a preceding layer WITHOUT activation to enforce this. """.format(blk_inputs_dim, ch_dim) # residual connection conv_norm = None if layer_norm_type is not None: # TODO(pengsun): refactor the code, combine with pre-act norm stuff if layer_norm_type == 'ln': conv_norm = ln elif layer_norm_type == 'inst_ln': conv_norm = inst_ln else: raise KeyError('Unknown layer_norm_type {}'.format(layer_norm_type)) for j in range(n_skip): # (bs, H, W, C) if layer_norm_type is not None: # pre-activation normalization if any if layer_norm_type == 'ln': embed = ln(embed, begin_norm_axis=1, epsilon=1e-8, scope='ln_blk{}_{}'.format(i, j)) elif layer_norm_type == 'inst_ln': embed = inst_ln(embed, epsilon=1e-8, scope='inst_ln_blk{}_{}'.format(i, j)) else: raise KeyError('Unknown layer_norm_type {}'.format(layer_norm_type)) embed = tf.nn.relu(embed) # (bs, H, W, C) embed = conv_layer(embed, bottleneck_ch_dim, k_size_one, activation_fn=tf.nn.relu, normalizer_fn=conv_norm, scope='blk{}_conv{}_0'.format(i, j)) # (bs, H, W, BC) embed = conv_layer(embed, bottleneck_ch_dim, k_size, activation_fn=tf.nn.relu, normalizer_fn=conv_norm, scope='blk{}_conv{}_1'.format(i, j)) # (bs H, W, BC) embed = conv_layer( embed, ch_dim, k_size_one, activation_fn=None, normalizer_fn=None, biases_initializer=(None if layer_norm_type else tf.zeros_initializer()), scope='blk{}_conv{}_2'.format(i, j) ) # (bs, H, W, C) # combine: shortcut + residual embed = shortcut + embed return lutils.collect_named_outputs(outputs_collections, sc.original_name_scope, embed) # transformer stuff def trans_mask(inputs, queries=None, keys=None, mtype=None): """Masks paddings on keys or queries to inputs. TODO: doc where it is from e.g., >> queries = tf.constant([[[1.], [2.], [0.]]], tf.float32) # (1, 3, 1) >> keys = tf.constant([[[4.], [0.]]], tf.float32) # (1, 2, 1) >> inputs = tf.constant([[[4., 0.], [8., 0.], [0., 0.]]], tf.float32) >> mask(inputs, queries, keys, "key") array([[[ 4.0000000e+00, -4.2949673e+09], [ 8.0000000e+00, -4.2949673e+09], [ 0.0000000e+00, -4.2949673e+09]]], dtype=float32) >> inputs = tf.constant([[[1., 0.], [1., 0.], [1., 0.]]], tf.float32) >> mask(inputs, queries, keys, "query") array([[[1., 0.], [1., 0.], [0., 0.]]], dtype=float32) Args: inputs: 3d tensor. (N, T_q, T_k) queries: 3d tensor. (N, T_q, d) keys: 3d tensor. (N, T_k, d) mtype: str Returns: A `Tensor` representing the output mask. """ padding_num = -2 ** 32 + 1 if mtype in ("k", "key", "keys"): # Generate masks masks = tf.sign(tf.reduce_sum(tf.abs(keys), axis=-1)) # (N, T_k) masks = tf.expand_dims(masks, 1) # (N, 1, T_k) masks = tf.tile(masks, [1, tf.shape(queries)[1], 1]) # (N, T_q, T_k) # Apply masks to inputs paddings = tf.ones_like(inputs) * padding_num outputs = tf.where(tf.equal(masks, 0), paddings, inputs) # (N, T_q, T_k) elif mtype in ("q", "query", "queries"): # Generate masks masks = tf.sign(tf.reduce_sum(tf.abs(queries), axis=-1)) # (N, T_q) masks = tf.expand_dims(masks, -1) # (N, T_q, 1) masks = tf.tile(masks, [1, 1, tf.shape(keys)[1]]) # (N, T_q, T_k) # Apply masks to inputs outputs = inputs * masks elif mtype in ("f", "future", "right"): diag_vals = tf.ones_like(inputs[0, :, :]) # (T_q, T_k) tril = tf.linalg.LinearOperatorLowerTriangular( diag_vals).to_dense() # (T_q, T_k) masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(inputs)[0], 1, 1]) # (N, T_q, T_k) paddings = tf.ones_like(masks) * padding_num outputs = tf.where(tf.equal(masks, 0), paddings, inputs) else: print("Check if you entered mtype correctly!") raise ValueError('wtf mtype {}?'.format(mtype)) return outputs def scaled_dot_product_attention(Q, K, V, causality=False, dropout_rate=0., training=True, pointer=False, scope=None): """ Scaled dot product attention, See 3.2.1. TODO: doc where it is from Args:— Q: Packed queries. 3d tensor. [N, T_q, d_k]. K: Packed keys. 3d tensor. [N, T_k, d_k]. V: Packed values. 3d tensor. [N, T_k, d_v]. causality: If True, applies masking for future blinding dropout_rate: A floating point number of [0, 1]. training: boolean for controlling droput scope: Optional scope for `variable_scope`. """ with tf.variable_scope(scope, default_name="scaled_dot_product_attention"): d_k = Q.get_shape().as_list()[-1] # dot product outputs = tf.matmul(Q, tf.transpose(K, [0, 2, 1])) # (N, T_q, T_k) # scale outputs /= d_k ** 0.5 # key masking outputs = trans_mask(outputs, Q, K, mtype="key") # causality or future blinding masking if causality: outputs = trans_mask(outputs, mtype="future") # softmax output_logits = outputs outputs = tf.nn.softmax(outputs) # default axis=-1 if pointer: return output_logits, outputs attention = tf.transpose(outputs, [0, 2, 1]) # only used for tf.summary tf.summary.image("attention", tf.expand_dims(attention[:1], -1)) # query masking outputs = trans_mask(outputs, Q, K, mtype="query") # dropout outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=training) # weighted sum (context vectors) outputs = tf.matmul(outputs, V) # (N, T_q, d_v) return outputs def scaled_dot_product_attention_v2(Q, K, V, matrix_mask, dropout_rate=0.0, scope=None): """ Simplified from scaled_dot_product_attention Args: Q: Packed queries. 3d tensor. [N, T_q, d_k]. K: Packed keys. 3d tensor. [N, T_k, d_k]. V: Packed values. 3d tensor. [N, T_k, d_v]. causality: If True, applies masking for future blinding dropout_rate: A floating point number of [0, 1]. training: boolean for controlling droput scope: Optional scope for `variable_scope`. """ with tf.variable_scope(scope, default_name="scaled_dot_product_attention"): d_k = Q.get_shape().as_list()[-1] # dot product outputs = tf.matmul(Q, tf.transpose(K, [0, 2, 1])) # (N, T_q, T_k) # scale outputs /= d_k ** 0.5 # key masking outputs = trans_mask(outputs, Q, K, mtype="key") # entry_mask outputs = tp_ops.mask_logits(outputs, matrix_mask) # softmax outputs = tf.nn.softmax(outputs) # default axis=-1 # attention = tf.transpose(outputs, [0, 2, 1]) # only used for tf.summary # tf.summary.image("attention", tf.expand_dims(attention[:1], -1)) # query masking outputs = trans_mask(outputs, Q, K, mtype="query") # dropout outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=True) # weighted sum (context vectors) outputs = tf.matmul(outputs, V) # (N, T_q, d_v) return outputs def multihead_attention(queries, keys, values, num_heads=8, dropout_rate=0.0, training=True, causality=False, pointer=False, scope=None): """Applies multihead attention. See 3.2.2 Original Reference: A TensorFlow Implementation of the Transformer: Attention Is All You Need https://github.com/Kyubyong/transformer Kyubyong Park's implementation, a highly starred repository besides google's Args: queries: A 3d tensor with shape of [N, T_q, d_model]. keys: A 3d tensor with shape of [N, T_k, d_model]. values: A 3d tensor with shape of [N, T_k, d_model]. num_heads: An int. Number of heads. dropout_rate: A floating point number. training: Boolean. Controller of mechanism for dropout. causality: Boolean. If true, units that reference the future are masked. scope: Optional scope for `variable_scope`. Returns: A 3d tensor with shape of (N, T_q, C) """ d_model = queries.get_shape().as_list()[-1] with tf.variable_scope(scope, default_name='multihead_attention'): # Linear projections Q = tf.layers.dense(queries, d_model, use_bias=False) # (N, T_q, d_model) K = tf.layers.dense(keys, d_model, use_bias=False) # (N, T_k, d_model) V = tf.layers.dense(values, d_model, use_bias=False) # (N, T_k, d_model) # Split and concat Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h) K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) # Attention if pointer: # do not use multi-head logits, pd = scaled_dot_product_attention(Q, K, V, causality, dropout_rate, training, pointer) return logits, pd else: outputs = scaled_dot_product_attention(Q_, K_, V_, causality, dropout_rate, training, pointer) # Restore shape outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2) # (N, T_q, d_model) # Residual connection outputs += queries # Normalize outputs = ln(outputs) return outputs def multihead_attention_v2(queries, keys, values, entry_mask, num_heads=8, dropout_rate=0.0, scope=None): """Simplified from multihead_attention Args: queries: A 3d tensor with shape of [N, T_q, d_model]. keys: A 3d tensor with shape of [N, T_k, d_model]. values: A 3d tensor with shape of [N, T_k, d_model]. num_heads: An int. Number of heads. dropout_rate: A floating point number. training: Boolean. Controller of mechanism for dropout. causality: Boolean. If true, units that reference the future are masked. scope: Optional scope for `variable_scope`. Returns: A 3d tensor with shape of (N, T_q, C) """ d_model = queries.get_shape().as_list()[-1] with tf.variable_scope(scope, default_name='multihead_attention'): # Linear projections Q = tf.layers.dense(queries, d_model, use_bias=False) # (N, T_q, d_model) K = tf.layers.dense(keys, d_model, use_bias=False) # (N, T_k, d_model) V = tf.layers.dense(values, d_model, use_bias=False) # (N, T_k, d_model) # Split and concat Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h) K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) # Duplicate mask matrix_mask = tf.tile(tf.expand_dims(entry_mask, axis=1), [1, entry_mask.shape[-1], 1]) matrix_mask = tf.math.logical_and( matrix_mask, tf.tile(tf.expand_dims(entry_mask, axis=-1), [1, 1, entry_mask.shape[-1]]) ) matrix_mask = tf.tile(matrix_mask, [num_heads, 1, 1]) outputs = scaled_dot_product_attention_v2(Q_, K_, V_, matrix_mask, dropout_rate) # Restore shape outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2) # (N, T_q, d_model) # Residual connection outputs += queries # Normalize outputs = ln(outputs) return outputs def multihead_attention_v3(queries, keys, values, entry_mask, num_heads=8, enc_dim=128, dropout_rate=0.0, scope=None): """ Identical to AStar Args: queries: A 3d tensor with shape of [N, T_q, d_model]. keys: A 3d tensor with shape of [N, T_k, d_model]. values: A 3d tensor with shape of [N, T_k, d_model]. num_heads: An int. Number of heads. dropout_rate: A floating point number. training: Boolean. Controller of mechanism for dropout. causality: Boolean. If true, units that reference the future are masked. scope: Optional scope for `variable_scope`. Returns: A 3d tensor with shape of (N, T_q, C) """ # d_model = queries.get_shape().as_list()[-1] d_model = enc_dim with tf.variable_scope(scope, default_name='multihead_attention'): # Linear projections Q = tf.layers.dense(queries, d_model, use_bias=False) # (N, T_q, d_model) K = tf.layers.dense(keys, d_model, use_bias=False) # (N, T_k, d_model) V = tf.layers.dense(values, d_model, use_bias=False) # (N, T_k, d_model) # Split and concat Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h) K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) # Duplicate mask matrix_mask = tf.tile(tf.expand_dims(entry_mask, axis=1), [1, entry_mask.shape[-1], 1]) matrix_mask = tf.math.logical_and( matrix_mask, tf.tile(tf.expand_dims(entry_mask, axis=-1), [1, 1, entry_mask.shape[-1]]) ) matrix_mask = tf.tile(matrix_mask, [num_heads, 1, 1]) outputs = scaled_dot_product_attention_v2(Q_, K_, V_, matrix_mask, dropout_rate) # fc to double the number of channels to 256 and # the head results are summed and passed through # a 2-layer MLP with hidden size 1024 and output # size 256 outputs = tfc_layers.fully_connected(outputs, 256) outputs = tf.add_n(tf.split(outputs, num_heads, axis=0)) outputs = tfc_layers.fully_connected(outputs, 1024) outputs = tfc_layers.fully_connected(outputs, 256, activation_fn=None) # # Residual connection # outputs += queries # # Normalize # outputs = ln(outputs) return outputs def self_attention_ffsum(queries, keys, values, entry_mask, num_heads=8, enc_dim=128, dropout_rate=0.0, scope=None): """ Self Attention + Feed Forward using Sum. Simplified from multihead_attention and follows the AStar paper impl. Args: queries: A 3d tensor with shape of [N, T_q, d_model]. keys: A 3d tensor with shape of [N, T_k, d_model]. values: A 3d tensor with shape of [N, T_k, d_model]. num_heads: An int. Number of heads. enc_dim: dropout_rate: A floating point number. training: Boolean. Controller of mechanism for dropout. causality: Boolean. If true, units that reference the future are masked. scope: Optional scope for `variable_scope`. Returns: A 3d tensor with shape of (N, T_q, C) """ # d_model = queries.get_shape().as_list()[-1] d_model = enc_dim with tf.variable_scope(scope, default_name='self_attention_ffsum'): # The Self Attention Block # Linear projections Q = tf.layers.dense(queries, d_model, use_bias=False) # (N, T_q, d_model) K = tf.layers.dense(keys, d_model, use_bias=False) # (N, T_k, d_model) V = tf.layers.dense(values, d_model, use_bias=False) # (N, T_k, d_model) # Split to num_heads Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h) K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h) # Duplicate mask matrix_mask = tf.tile(tf.expand_dims(entry_mask, axis=1), [1, entry_mask.shape[-1], 1]) matrix_mask = tf.math.logical_and( matrix_mask, tf.tile(tf.expand_dims(entry_mask, axis=-1), [1, 1, entry_mask.shape[-1]]) ) matrix_mask = tf.tile(matrix_mask, [num_heads, 1, 1]) # Attention outputs = scaled_dot_product_attention_v2(Q_, K_, V_, matrix_mask, dropout_rate) outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2) # Restore shape: (N, T_q, d_model) outputs += queries # Residual connection outputs = ln(outputs, scope='attention_ln') # normalize # The ff Block, AStar paper goes: # In each layer, each self-attention head uses keys, queries, and values of # size 128, then passes the aggregated values through a Conv1D with kernel # size 1 to double the number of channels (to 256). The head results are # summed and passed through a 2-layer MLP with hidden size 1024 and output # size 256. skip = outputs outputs_split = tf.split(outputs, num_heads, axis=-1) for i in range(num_heads): # Note(pengsun): equivalent to conv1d with kernel size 1 outputs_split[i] = tfc_layers.fully_connected(outputs_split[i], 256) outputs = tf.add_n(outputs_split) outputs = tfc_layers.fully_connected(outputs, 1024) outputs = tfc_layers.fully_connected(outputs, 256, activation_fn=None) outputs += skip # Residual connection outputs = ln(outputs, scope='ff_ln') # normalize return outputs def ff(inputs, num_units, scope=None): """position-wise feed forward net. See 3.3 Args: inputs: A 3d tensor with shape of [N, T, C]. num_units: A list of two integers. scope: Optional scope for `variable_scope`. Returns: A 3d tensor with the same shape and dtype as inputs """ with tf.variable_scope(scope, default_name="positionwise_feedforward"): # Inner layer outputs = tf.layers.dense(inputs, num_units[0], activation=tf.nn.relu) # Outer layer outputs = tf.layers.dense(outputs, num_units[1]) # Residual connection outputs += inputs # Normalize outputs = ln(outputs) return outputs # rnn stuff @add_arg_scope def lstm(inputs_x_seq: list, inputs_terminal_mask_seq: list, inputs_state, nh, forget_bias=1.0, weights_initializer=ortho_init(1.0), biases_initializer=tf.constant_initializer(0.0), weights_regularizer=None, biases_regularizer=None, use_layer_norm=False, scope=None): """ An lstm layer (cell) tailored for RL task. It includes a mask that indicates the terminal time step of an unroll. Borrowed and modified from openai/baselines. Args: inputs_x_seq: list of rollout_len Tensors, each sized (nrollout, dim) inputs_terminal_mask_seq: list of rollout_len Tensors, each sized (nrollout, 1). A mask that indicates whether it is terminal of an unroll. inputs_state: Tensor, (nrollout, 2*nh), initial hidden state of the input rollout nh: int, number of hiddent units. forget_bias: weights_initializer=ortho_init(1.0), biases_initializer=tf.constant_initializer(0.0), scope=None Returns: A list of outputs A Tensor, the updated hidden state """ # shorter names xs, ms, s = inputs_x_seq, inputs_terminal_mask_seq, inputs_state nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope, default_name='lstm'): # weights & biases # Use xavier_initializer for wx per qingwei's verification wx = tf.get_variable("wx", [nin, nh * 4], initializer=xavier_initializer(), regularizer=weights_regularizer) wh = tf.get_variable("wh", [nh, nh * 4], initializer=weights_initializer, regularizer=weights_regularizer) b = tf.get_variable("b", [nh * 4], initializer=biases_initializer, regularizer=biases_regularizer) # normalization function x_nf, h_nf, c_nf = None, None, None if use_layer_norm: with tf.variable_scope('x_ln', reuse=tf.AUTO_REUSE) as sc: x_nf = partial(ln, epsilon=1e-5, enable_openai_impl=True, scope=sc) with tf.variable_scope('h_ln', reuse=tf.AUTO_REUSE) as sc: h_nf = partial(ln, epsilon=1e-5, enable_openai_impl=True, scope=sc) with tf.variable_scope('c_ln', reuse=tf.AUTO_REUSE) as sc: c_nf = partial(ln, epsilon=1e-5, enable_openai_impl=True, scope=sc) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c * (1 - m) h = h * (1 - m) c, h = one_step_lstm_op(c, h, x, wx, wh, b, forget_bias, x_nf, h_nf, c_nf) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s @add_arg_scope def k_lstm(inputs_x_seq: list, inputs_termial_mask_seq: list, inputs_state, nh, k, forget_bias=0.0, weights_initializer=ortho_init(1.0), biases_initializer=tf.constant_initializer(0.0), weights_regularizer=None, biases_regularizer=None, use_layer_norm=False, scope=None): """ An skip-k-step lstm layer (cell) tailored for RL task. It includes a mask that indicates the terminal time step of an unroll. Borrowed and modified from openai/baselines. Args: inputs_x_seq: list of rollout_len Tensors, each sized (nrollout, dim) inputs_terminal_mask_seq: list of rollout_len Tensors, each sized (nrollout, 1). A mask that indicates whether it is terminal of an unroll. inputs_state: Tensor, (nrollout, 2*nh+1), initial hidden state of the input rollout. The last dim stores cyclic step count information in {0, 1, ... , k-1} nh: k: number of steps to skip forget_bias: float, forget bias weights_initializer: defaults to ortho_init(1.0), biases_initializer: defaults to tf.constant_initializer(0.0), scope: Returns A list of outputs. A Tensor, the updated hidden state. """ # shorter names xs, ms, s = inputs_x_seq, inputs_termial_mask_seq, inputs_state nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope, default_name='k_lstm'): # weights & biases wx = tf.get_variable("wx", [nin, nh * 4], initializer=weights_initializer, regularizer=weights_regularizer) wh = tf.get_variable("wh", [nh, nh * 4], initializer=weights_initializer, regularizer=weights_regularizer) b = tf.get_variable("b", [nh * 4], initializer=biases_initializer, regularizer=biases_regularizer) # normalization function x_nf, h_nf, c_nf = None, None, None if use_layer_norm: with tf.variable_scope('x_ln', reuse=tf.AUTO_REUSE) as sc: x_nf = partial(ln, scope=sc) with tf.variable_scope('h_ln', reuse=tf.AUTO_REUSE) as sc: h_nf = partial(ln, scope=sc) with tf.variable_scope('c_ln', reuse=tf.AUTO_REUSE) as sc: c_nf = partial(ln, scope=sc) nh = (s.shape[1].value - 1) // 2 c, h, cyclic_step_count = tf.split(axis=1, value=s, num_or_size_splits=[nh, nh, 1]) for idx, (x, m) in enumerate(zip(xs, ms)): c = c * (1 - m) h = h * (1 - m) c_lstm, h_lstm = one_step_lstm_op(c, h, x, wx, wh, b, forget_bias, x_nf, h_nf, c_nf) mod_mask = tf.equal(cyclic_step_count, 0) mod_mask = tf.cast(mod_mask, tf.float32) c = tf.multiply(mod_mask, c_lstm) + tf.multiply(1 - mod_mask, c) h = tf.multiply(mod_mask, h_lstm) + tf.multiply(1 - mod_mask, h) xs[idx] = h # prepare for the next time step cyclic_step_count = tf.mod(cyclic_step_count + 1, k) s = tf.concat(axis=1, values=[c, h, cyclic_step_count]) return xs, s # Action stuff ActionHead = namedtuple('ActionHead', [ 'flatparam', 'argmax', 'sam', # sampled action 'neglogp', # negative log-likelihood, i.e., -log(p) 'pd', # probabilistic distribution 'ent' # entropy ]) @add_arg_scope def to_action_head(flatparam, pdtype_cls, temperature=1.0, nseq=None, mask=None, labels=None, sample=None, scope=None): """Convert logits to ActionHead. Args: flatparam: (batch_size, pdtype_cls.param_shape()) pdtype_cls: distribution type scope: for tf.variable_scope Returns: A ActionHead class instance. """ if pdtype_cls == DiagGaussianPdType: n_actions = int(flatparam.shape[-1]//2) # logstd -> logstd + 0.5 * log(T) if temperature != 1.0: mean, logstd = tf.split(axis=-1, num_or_size_splits=2, value=flatparam) flatparam = tf.concat( [mean, logstd + 0.5 * tf.log(float(temperature))], axis=-1) else: flatparam /= temperature n_actions = flatparam.shape[-1] if pdtype_cls == CategoricalPdType: pdtype = pdtype_cls(ncat=n_actions) elif pdtype_cls == BernoulliPdType: pdtype = pdtype_cls(size=n_actions) elif pdtype_cls == MaskSeqCategoricalPdType: pdtype = pdtype_cls(nseq=nseq, ncat=n_actions, mask=mask, labels=labels) flatparam = tf.reshape(flatparam, shape=(-1, nseq*n_actions)) elif pdtype_cls == DiagGaussianPdType: pdtype = pdtype_cls(size=n_actions) else: raise NotImplemented('Unknown pdtype_cls {}'.format(pdtype_cls)) with tf.variable_scope(scope, default_name='to_action_head'): head_pd = pdtype.pdfromflat(flatparam) head_argmax = head_pd.mode() # Note(pengsun): we cannot write `head_sam = sample or head_pd.sample()`, # as it is interpreted as `Tensor or Tensor` and raises an error if sample is not None: head_sam = sample else: head_sam = head_pd.sample() head_neglogp = head_pd.neglogp(head_sam) head_entropy = head_pd.entropy() return ActionHead(flatparam, head_argmax, head_sam, head_neglogp, head_pd, head_entropy) @add_arg_scope def discrete_action_head(inputs, n_actions, pdtype_cls, mask=None, enc_dim=None, embed_scope=None, temperature=1.0, scope=None): """Layer that makes an action head. The embedding layer is created or reused by taking the embed_scope. Args: inputs: n_actions: pdtype_cls: mask: enc_dim: embed_scope: scope: Returns: A `Tensor` representing the logits. """ with tf.variable_scope(scope, default_name='discrete_action_head'): head_logits = tfc_layers.fully_connected(inputs, n_actions, activation_fn=None, normalizer_fn=None, scope='logits') if enc_dim is not None and embed_scope is not None: # get the action embedding to do the "offset-add" (invented by lxhan) # TODO(pengsun): double-check the two-layer size, why the n_actions for # the first layer? head_h = tfc_layers.fully_connected(inputs, n_actions, scope='bfc1') # [bs, n_actions] head_h_branch = tfc_layers.fully_connected(head_h, enc_dim, activation_fn=None, normalizer_fn=None, scope='bfc2') # [bs, enc_dim] offset = linear_embed(head_h_branch, vocab_size=n_actions, enc_size=enc_dim, inverse_embed=True, scope=embed_scope) # [bs, n_actions] # do the offset-adding head_logits += offset if mask is not None: head_logits = tp_ops.mask_logits(head_logits, mask) return to_action_head(head_logits, pdtype_cls, temperature=temperature) @add_arg_scope def discrete_action_head_v2(inputs, n_actions, pdtype_cls, context=None, mask=None, temperature=1.0, scope=None): """Layer that makes an action head, v2. Convert the inputs to logits. Can pass in an optional context for GLU, and an optional mask for available actions. Args: inputs: input Tensor n_actions: int, number of actions pdtype_cls: mask: (bs, n_actions), mask for available actions. Default None means "not use" context: (bs, M), context Tensor. For GLU. Default None means "not use" outputs_collections: scope: Returns: A `Tensor` representing the logits. """ with tf.variable_scope(scope, default_name='discrete_action_head_v2'): if context is None: head_logits = tfc_layers.fully_connected(inputs, n_actions, activation_fn=None, normalizer_fn=None, scope='logits') else: head_logits = glu(inputs, context, n_actions, scope='gated_logits') if mask is not None: head_logits = tp_ops.mask_logits(head_logits, mask) return to_action_head(head_logits, pdtype_cls, temperature=temperature) @add_arg_scope def loc_action_head(inputs, pdtype_cls, mask=None, temperature=1.0, logits_mode='1x1', scatter_ind=None, scatter_bs=None, scope=None): """Layer that makes a location action (one-hot of a 2D map) head. Args: inputs: [bs, H, W, C] pdtype_cls: distribtion mask: [bs, H, W] logits_mode: whether to perform scaling up output size x2 scope: Returns: An action head for the flatten logits, [bs, HH*WW]. Cases are: logits_mode == '1x1': HH = H, WW = W logits_mode == '3x3up2': HH = 2*H, WW = 2*W """ with tf.variable_scope(scope, default_name='loc_action_head'): # [bs, H, W, C] if logits_mode == '3x3up2': loc_logits = tfc_layers.conv2d_transpose(inputs, 1, [3, 3], stride=2, activation_fn=None, normalizer_fn=None, scope='3x3up2mapping') elif logits_mode == '1x1': loc_logits = tfc_layers.conv2d(inputs, 1, [1, 1], activation_fn=None, normalizer_fn=None, scope='1x1mapping') else: raise ValueError('Unknown logits_mode {}'.format(logits_mode)) # [bs, HH, WW, 1] loc_logits = tf.squeeze(loc_logits, axis=-1) # [bs, HH, WW] if mask is not None: loc_logits = tp_ops.mask_logits(loc_logits, mask) # [bs, HH, WW] loc_logits_flat = tfc_layers.flatten(loc_logits) if scatter_ind is not None and scatter_bs is not None: loc_logits_flat = tf.scatter_nd( tf.expand_dims(scatter_ind, axis=-1), loc_logits_flat, shape=[scatter_bs] + loc_logits_flat.shape[1:] ) # [bs, H*W] return to_action_head(loc_logits_flat, pdtype_cls, temperature=temperature) def _ptr_decode(y, memory, num_dec_blocks, ff_dim, enc_dim, training=True): with tf.variable_scope("decoder"): dec_logits, dec_pd = [], [] dec = y # Blocks for i in range(num_dec_blocks): with tf.variable_scope("num_blocks_{}".format(i)): if i < num_dec_blocks - 1: # Vanilla attention dec = multihead_attention(queries=dec, keys=memory, values=memory, dropout_rate=0.0, training=training, causality=False, scope="vanilla_attention") # Feed Forward dec = ff(dec, num_units=[ff_dim, enc_dim]) else: # pointer attention dec_logits, dec_pd = multihead_attention( queries=dec, keys=memory, values=memory, dropout_rate=0.0, training=training, causality=False, pointer=True, scope="pointer_attention") return dec_logits, dec_pd @add_arg_scope def ptr_action_head(inputs_query, inputs_ptr_mask, inputs_entity_embed, ptr_out_dim, num_dec_blocks, ff_dim, enc_dim, pdtype_cls, temperature=1.0, scatter_ind=None, scatter_bs=None, scope=None): """ Pointer-Network action head. Args: inputs_query: [bs, some dim] inputs_ptr_mask: [bs, 600] inputs_entity_embed: [bs, some dim] ptr_out_dim: num_dec_blocks: ff_dim: enc_dim: pdtype_cls: scope: Returns: An outputs `Tensor`. """ with tf.variable_scope(scope, default_name='ptr_head'): select_logits, select_prob = _ptr_decode( y=inputs_query, memory=inputs_entity_embed, num_dec_blocks=num_dec_blocks, ff_dim=ff_dim, enc_dim=enc_dim, training=False ) select_logits = tf.reshape(select_logits, [-1, ptr_out_dim]) select_logits = tp_ops.mask_logits(logits=select_logits, mask=inputs_ptr_mask) if scatter_ind is not None and scatter_bs is not None: select_logits = tf.scatter_nd(tf.expand_dims(scatter_ind, axis=-1), select_logits, shape=[scatter_bs] + select_logits.shape[1:]) return to_action_head(select_logits, pdtype_cls, temperature=temperature) @add_arg_scope def ptr_action_head_v2(inputs_query, inputs_ptr_mask, inputs_entity_embed, inputs_func_embed, ptr_out_dim, pdtype_cls, temperature=1.0, scatter_ind=None, scatter_bs=None, scope=None): """ Pointer-Network action head. Args: inputs_query: [bs, some dim] inputs_ptr_mask: [bs, 600] inputs_entity_embed: [bs, some dim] ptr_out_dim: num_dec_blocks: ff_dim: enc_dim: pdtype_cls: scope: Returns: An outputs `Tensor`. """ with tf.variable_scope(scope, default_name='ptr_head'): inputs_query = tfc_layers.fully_connected(inputs_query, 256, activation_fn=None) inputs_query += tf.expand_dims(inputs_func_embed, axis=1) inputs_query = tf.nn.relu(inputs_query) inputs_query = tfc_layers.fully_connected(inputs_query, 32, activation_fn=None) # per AStar projected_keys = tfc_layers.fully_connected(inputs_entity_embed, 32, activation_fn=None) # attentions (= queries * keys) as logits tar_logits = tf.reduce_sum(inputs_query * projected_keys, axis=-1) tar_logits = tp_ops.mask_logits(logits=tar_logits, mask=inputs_ptr_mask) if scatter_ind is not None and scatter_bs is not None: tar_logits = tf.scatter_nd(tf.expand_dims(scatter_ind, axis=-1), tar_logits, shape=[scatter_bs] + tar_logits.shape[1:]) return to_action_head(tar_logits, pdtype_cls, temperature=temperature) @add_arg_scope def multinomial_action_head(inputs, inputs_select_mask, temperature=1.0, scatter_ind=None, scatter_bs=None, scope=None): """Multinominal action head. (i.e., lxhan's make_multi_bi_head) Args: inputs: [bs, some dim] inputs_select_mask: [bs, 600] pdtype_cls: scope: Returns: An outputs `Tensor`. """ n_action_states = 2 # whether the action is executed or not with tf.variable_scope(scope, default_name='multinomial_action_head'): # this code block should not be here # query_h = dense_sum_blocks(inputs=inputs_query, n=4, enc_dim=enc_dim, # scope='q_res_blk') # query_h = tf.expand_dims(query_h, axis=1) # query_h = tf.tile(query_h, multiples=[ # 1, tf.shape(inputs_entity_embed)[1], 1]) # head_h = tf.concat([inputs_entity_embed, query_h], axis=-1) # head_h = dense_sum_blocks(inputs=head_h, n=4, enc_dim=enc_dim, # scope='eq_res_blk') head_logits = tfc_layers.fully_connected(inputs, n_action_states, scope='logits', activation_fn=None, normalizer_fn=None) # modify the logits that unavailable position will be -inf neginf = tf.zeros_like(inputs_select_mask, dtype=tf.float32) - INF offset = tf.where(inputs_select_mask, tf.zeros_like(inputs_select_mask, dtype=tf.float32), neginf) offset = tf.expand_dims(offset, axis=-1) offset = tf.concat([tf.zeros_like(offset), offset], axis=-1) head_logits += offset # hack to flatten ms's logits and reduce_sum neglogp, entropy; # otherwise, should use MultiCategoricalPd, which, however, is # slow by creating multiply CategoricalPd instances ## TODO: hack for backward compatibility, remove this later head_logits = head_logits[:, :, 1] - head_logits[:, :, 0] if scatter_ind is not None and scatter_bs is not None: head_logits = tf.scatter_nd(tf.expand_dims(scatter_ind, axis=-1), head_logits, shape=[scatter_bs] + head_logits.shape[1:]) ms_head = to_action_head(head_logits, BernoulliPdType, temperature=temperature) # ms_head = ActionHead( # logits=tf.reshape(ms_head.logits, [-1, tf.reduce_prod(tf.shape(ms_head.logits)[1:])]), # argmax=ms_head.argmax, # sam=ms_head.sam, # neglogp=tf.reduce_sum(ms_head.neglogp, axis=-1), # pd=ms_head.pd, # ent=tf.reduce_sum(ms_head.ent, axis=-1)) return ms_head @add_arg_scope def sequential_selection_head(inputs, inputs_select_mask, input_keys, input_selections, max_num=64, temperature=1.0, forget_bias=0.0, weights_initializer=ortho_init(1.0), biases_initializer=tf.constant_initializer(0.0), weights_regularizer=None, biases_regularizer=None, use_layer_norm=False, scope=None): """Sequential Selection head using lstm and pointer network. Args: inputs: [bs, some dim], the input embeddings inputs_select_mask: [bs, unit_num], the last item is end_selection input_keys: [bs, unit_num, key_dim] input_selections: outer-fed selection samples, i.e., the labels or ground truths Returns: A head structure. An updated `selected units embedding` with the same shape of the inputs. """ # make pre embedding nbatch, nin = inputs.get_shape().as_list() n_embed = 256 _, unit_num, nh = input_keys.get_shape().as_list() # unit_num serve as the End Of Selection <EOS> token # nh is the dim of key and lstm's hidden state expand_mask = tf.cast(tf.expand_dims(inputs_select_mask, -1), tf.float32) mean_key = (tf.reduce_sum(input_keys * expand_mask, axis=[1]) / (tf.reduce_sum(expand_mask, axis=[1]) + 1e-8)) # make keys with end key end_key = tf.get_variable("end_key", [1, 1, nh], initializer=tf.constant_initializer(0.2), regularizer=None) input_keys = tf.concat([input_keys, tf.tile(end_key, [nbatch, 1, 1])], axis=1) # make mask with terminal state inputs_select_mask = tf.concat( [inputs_select_mask, tf.constant([[True]] * nbatch, tf.bool)], axis=1) with tf.variable_scope(scope, default_name='sequential_selection_head'): with tf.variable_scope(scope, default_name='lstm'): # weights & biases wx = tf.get_variable("wx", [n_embed, nh * 4], initializer=weights_initializer, regularizer=weights_regularizer) wh = tf.get_variable("wh", [nh, nh * 4], initializer=weights_initializer, regularizer=weights_regularizer) b = tf.get_variable("b", [nh * 4], initializer=biases_initializer, regularizer=biases_regularizer) wkey = tf.get_variable("wkey", [nh, nin], initializer=weights_initializer, regularizer=weights_regularizer) with tf.variable_scope('embed', reuse=tf.AUTO_REUSE) as sc_embed: pass # normalization function x_nf, h_nf, c_nf = None, None, None if use_layer_norm: with tf.variable_scope('x_ln', reuse=tf.AUTO_REUSE) as sc: x_nf = partial(ln, epsilon=1e-5, enable_openai_impl=True, scope=sc) with tf.variable_scope('h_ln', reuse=tf.AUTO_REUSE) as sc: h_nf = partial(ln, epsilon=1e-5, enable_openai_impl=True, scope=sc) with tf.variable_scope('c_ln', reuse=tf.AUTO_REUSE) as sc: c_nf = partial(ln, epsilon=1e-5, enable_openai_impl=True, scope=sc) c = tf.constant(0.0, shape=[nbatch, nh], dtype=tf.float32) h = tf.constant(0.0, shape=[nbatch, nh], dtype=tf.float32) samples = [] logits_list = [] outer_fed_selection = input_selections is not None inputs_list = [inputs] select_masks = [] for idx in range(max_num): select_masks.append(inputs_select_mask) s_embed = tfc_layers.fully_connected(inputs, n_embed, scope=sc_embed) c, h = one_step_lstm_op(c, h, s_embed, wx, wh, b, forget_bias, x_nf, h_nf, c_nf) # attentions (= queries * keys) as logits logits = tf.reduce_sum(tf.expand_dims(h, axis=1) * input_keys, axis=-1) masked_logits = tp_ops.mask_logits(logits, inputs_select_mask)/temperature logits_list.append(masked_logits) if outer_fed_selection: sample = input_selections[:, idx] else: # sample from logits sample = cat_sample_from_logits(masked_logits) samples.append(sample) # update the input embedding index = tf.stack([tf.range(nbatch), sample], axis=1) inputs += tf.matmul(tf.gather_nd(input_keys, index) - mean_key, wkey) inputs_list.append(inputs) # update the selection mask inputs_select_mask = tf.tensor_scatter_nd_update(inputs_select_mask, index, [False]*nbatch) # Mask all the units except <EOS> if the selection already ends with tf.xla.experimental.jit_scope(compile_ops=False): end_ind = tf.cast(tf.where(tf.equal(sample, unit_num)), tf.int32) inputs_select_mask = tf.tensor_scatter_update( inputs_select_mask, end_ind, tf.concat([tf.zeros_like(end_ind, dtype=tf.bool)] * unit_num + [tf.ones_like(end_ind, dtype=tf.bool)], axis=1) ) samples = tf.stack(samples, axis=1) select_masks = tf.stack(select_masks, axis=1) # finding the first <EOS> unit mask = tf.not_equal(samples, tf.constant(unit_num, tf.int32)) end_indices = tf.math.minimum( tf.reduce_sum(tf.cast(mask, tf.int32), axis=1), max_num-1) loss_mask = tf.tensor_scatter_nd_update( mask, tf.stack([tf.range(nbatch), end_indices], axis=1), [True]*nbatch) # update the input embedding using the output selected units embed = tf.gather_nd(inputs_list, tf.stack([end_indices, tf.range(nbatch)], axis=1)) logits = tf.stack(logits_list, axis=1) labels = None if outer_fed_selection: x = tf.one_hot(samples, unit_num+1) s = tf.reduce_sum(x, axis=1, keepdims=True) select_labels = tf.concat([s[:, :, :-1], tf.zeros([nbatch, 1, 1])], axis=-1) * tf.cast(select_masks, tf.float32) end_labels = tf.concat([tf.zeros([nbatch, max_num, unit_num]), tf.ones([nbatch, max_num, 1])], axis=-1) labels = tf.where_v2(tf.expand_dims(mask, axis=-1), select_labels, end_labels) labels = labels / tf.reduce_sum(labels, axis=-1, keepdims=True) samples = None head = to_action_head(logits, MaskSeqCategoricalPdType, nseq=max_num, mask=loss_mask, labels=labels, sample=samples) return head, embed @add_arg_scope def sequential_selection_head_v2(inputs, inputs_select_mask, input_keys, input_selections, input_func_embed, max_num=64, temperature=1.0, forget_bias=0.0, weights_initializer=ortho_init(1.0), biases_initializer=tf.constant_initializer(0.0), weights_regularizer=None, biases_regularizer=None, use_layer_norm=False, scope=None): """Sequential Selection head using lstm and pointer network. Args: inputs: [bs, some dim], the input embeddings inputs_select_mask: [bs, unit_num], the last item is end_selection input_keys: [bs, unit_num, key_dim] input_selections: outer-fed selection samples, i.e., the labels or ground truths Returns: A head structure. An updated `selected units embedding` with the same shape of the inputs. """ # make pre embedding nbatch, nin = inputs.get_shape().as_list() n_embed = 256 _, unit_num, nh = input_keys.get_shape().as_list() # unit_num serve as the End Of Selection <EOS> token # nh is the dim of key and lstm's hidden state expand_mask = tf.cast(tf.expand_dims(inputs_select_mask, -1), tf.float32) mean_key = (tf.reduce_sum(input_keys * expand_mask, axis=[1]) / (tf.reduce_sum(expand_mask, axis=[1]) + 1e-8)) # make keys with end key end_key = tf.get_variable("end_key", [1, 1, nh], initializer=tf.constant_initializer(0.2), regularizer=None) input_keys = tf.concat([input_keys, tf.tile(end_key, [nbatch, 1, 1])], axis=1) # make mask with terminal state inputs_select_mask = tf.concat( [inputs_select_mask, tf.constant([[True]] * nbatch, tf.bool)], axis=1) with tf.variable_scope(scope, default_name='sequential_selection_head'): with tf.variable_scope(scope, default_name='lstm'): # weights & biases wx = tf.get_variable("wx", [32, nh * 4], initializer=weights_initializer, regularizer=weights_regularizer) wh = tf.get_variable("wh", [nh, nh * 4], initializer=weights_initializer, regularizer=weights_regularizer) b = tf.get_variable("b", [nh * 4], initializer=biases_initializer, regularizer=biases_regularizer) wkey = tf.get_variable("wkey", [nh, nin], initializer=weights_initializer, regularizer=weights_regularizer) with tf.variable_scope('embed_fc1', reuse=tf.AUTO_REUSE) as sc_embed_fc1: pass with tf.variable_scope('embed_fc2', reuse=tf.AUTO_REUSE) as sc_embed_fc2: pass # normalization function x_nf, h_nf, c_nf = None, None, None if use_layer_norm: with tf.variable_scope('x_ln', reuse=tf.AUTO_REUSE) as sc: x_nf = partial(ln, epsilon=1e-5, enable_openai_impl=True, scope=sc) with tf.variable_scope('h_ln', reuse=tf.AUTO_REUSE) as sc: h_nf = partial(ln, epsilon=1e-5, enable_openai_impl=True, scope=sc) with tf.variable_scope('c_ln', reuse=tf.AUTO_REUSE) as sc: c_nf = partial(ln, epsilon=1e-5, enable_openai_impl=True, scope=sc) c = tf.constant(0.0, shape=[nbatch, nh], dtype=tf.float32) h = tf.constant(0.0, shape=[nbatch, nh], dtype=tf.float32) samples = [] logits_list = [] outer_fed_selection = input_selections is not None inputs_list = [inputs] select_masks = [] for idx in range(max_num): select_masks.append(inputs_select_mask) s_embed = tfc_layers.fully_connected(inputs, n_embed, activation_fn=None, scope=sc_embed_fc1) s_embed += input_func_embed s_embed = tf.nn.relu(s_embed) s_embed = tfc_layers.fully_connected(s_embed, 32, activation_fn=None, scope=sc_embed_fc2) # per AStar c, h = one_step_lstm_op(c, h, s_embed, wx, wh, b, forget_bias, x_nf, h_nf, c_nf) # attentions (= queries * keys) as logits logits = tf.reduce_sum(tf.expand_dims(h, axis=1) * input_keys, axis=-1) masked_logits = tp_ops.mask_logits(logits, inputs_select_mask)/temperature logits_list.append(masked_logits) if outer_fed_selection: sample = input_selections[:, idx] else: # sample from logits sample = cat_sample_from_logits(masked_logits) samples.append(sample) # update the input embedding index = tf.stack([tf.range(nbatch), sample], axis=1) inputs += tf.matmul(tf.gather_nd(input_keys, index) - mean_key, wkey) inputs_list.append(inputs) # update the selection mask inputs_select_mask = tf.tensor_scatter_nd_update(inputs_select_mask, index, [False]*nbatch) # Mask all the units except <EOS> if the selection already ends with tf.xla.experimental.jit_scope(compile_ops=False): end_ind = tf.cast(tf.where(tf.equal(sample, unit_num)), tf.int32) inputs_select_mask = tf.tensor_scatter_update( inputs_select_mask, end_ind, tf.concat([tf.zeros_like(end_ind, dtype=tf.bool)] * unit_num + [tf.ones_like(end_ind, dtype=tf.bool)], axis=1) ) samples = tf.stack(samples, axis=1) select_masks = tf.stack(select_masks, axis=1) # finding the first <EOS> unit mask = tf.not_equal(samples, tf.constant(unit_num, tf.int32)) end_indices = tf.math.minimum( tf.reduce_sum(tf.cast(mask, tf.int32), axis=1), max_num-1) loss_mask = tf.tensor_scatter_nd_update( mask, tf.stack([tf.range(nbatch), end_indices], axis=1), [True]*nbatch) # update the input embedding using the output selected units embed = tf.gather_nd(inputs_list, tf.stack([end_indices, tf.range(nbatch)], axis=1)) logits = tf.stack(logits_list, axis=1) labels = None if outer_fed_selection: x = tf.one_hot(samples, unit_num+1) s = tf.reduce_sum(x, axis=1, keepdims=True) select_labels = tf.concat([s[:, :, :-1], tf.zeros([nbatch, 1, 1])], axis=-1) * tf.cast(select_masks, tf.float32) end_labels = tf.concat([tf.zeros([nbatch, max_num, unit_num]), tf.ones([nbatch, max_num, 1])], axis=-1) labels = tf.where_v2(tf.expand_dims(mask, axis=-1), select_labels, end_labels) labels = labels / tf.reduce_sum(labels, axis=-1, keepdims=True) samples = None head = to_action_head(logits, MaskSeqCategoricalPdType, nseq=max_num, mask=loss_mask, labels=labels, sample=samples) return head, embed @add_arg_scope def dot_prod_attention(values, query, mask): a = tf.stack([tf.reduce_sum(tf.multiply(v, query), axis=-1) for v in values], -1) w = tf.nn.softmax(tp_ops.mask_logits(a, mask)) ws = tf.unstack(w, axis=-1) res = tf.add_n([tf.multiply(v, tf.expand_dims(ww, axis=-1)) for v, ww in zip(values, ws)]) # add_n'n indicates num of values return res @add_arg_scope def lstm_embed_block(inputs_x, inputs_hs, inputs_mask, nc, outputs_collections=None): """ lstm embedding block. Args inputs_x: current state - (nrollout*rollout_len, input_dim) inputs_hs: hidden state - (nrollout*rollout_len, hs_len), NOTE: it's the states at every time steps of the rollout. inputs_mask: hidden state mask - (nrollout*rollout_len,) nc: Returns A Tensor, the lstm embedding outputs - (nrollout*rollout_len, out_idm) A Tensor, the new hidden state - (nrollout, hs_len), NOTE: it's the state at a single time step. """ def consist_seq_dropout(input_seq): assert isinstance(input_seq, list) dropout_mask = tf.nn.dropout(tf.ones(shape=[nc.nrollout, input_seq[0].shape[-1]], dtype=tf.float32), keep_prob=1 - nc.lstm_dropout_rate) return [x * dropout_mask for x in input_seq] with tf.variable_scope('lstm_embed') as sc: # to list sequence and call the lstm cell x_seq = tp_ops.batch_to_seq(inputs_x, nc.nrollout, nc.rollout_len) # add dropout before LSTM cell TODO(pengsun): use tf.layers.dropout? if 1 > nc.lstm_dropout_rate > 0 and not nc.test: x_seq = consist_seq_dropout(x_seq) hsm_seq = tp_ops.batch_to_seq(tp_ops.to_float32(inputs_mask), nc.nrollout, nc.rollout_len) inputs_hs = tf.reshape(inputs_hs, [nc.nrollout, nc.rollout_len, nc.hs_len]) initial_hs = inputs_hs[:, 0, :] if nc.lstm_cell_type == 'lstm': lstm_embed, hs_new = lstm(inputs_x_seq=x_seq, inputs_terminal_mask_seq=hsm_seq, inputs_state=initial_hs, nh=nc.nlstm, forget_bias=nc.forget_bias, use_layer_norm=nc.lstm_layer_norm, scope='lstm') elif nc.lstm_cell_type == 'k_lstm': lstm_embed, hs_new = k_lstm(inputs_x_seq=x_seq, inputs_termial_mask_seq=hsm_seq, inputs_state=initial_hs, nh=nc.nlstm, k=nc.lstm_duration, forget_bias=nc.forget_bias, use_layer_norm=nc.lstm_layer_norm, scope='k_lstm') else: raise NotImplementedError('unknown cell_type {}'.format(nc.lstm_cell_type)) # add dropout after LSTM cell if 1 > nc.lstm_dropout_rate > 0 and not nc.test: lstm_embed = consist_seq_dropout(lstm_embed) lstm_embed = tp_ops.seq_to_batch(lstm_embed) return ( lutils.collect_named_outputs(outputs_collections, sc.name + '_out', lstm_embed), lutils.collect_named_outputs(outputs_collections, sc.name + '_hs', hs_new) )
[]