Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
Molbap's picture
Molbap HF staff
Create README.md
8fc9981 verified
|
raw
history blame
2.92 kB
metadata
dataset_info:
  features:
    - name: image
      dtype: image
    - name: question_id
      dtype: int64
    - name: question
      dtype: string
    - name: answers
      sequence: string
    - name: data_split
      dtype: string
    - name: ocr_results
      struct:
        - name: page
          dtype: int64
        - name: clockwise_orientation
          dtype: float64
        - name: width
          dtype: int64
        - name: height
          dtype: int64
        - name: unit
          dtype: string
        - name: lines
          list:
            - name: bounding_box
              sequence: int64
            - name: text
              dtype: string
            - name: words
              list:
                - name: bounding_box
                  sequence: int64
                - name: text
                  dtype: string
                - name: confidence
                  dtype: string
    - name: other_metadata
      struct:
        - name: ucsf_document_id
          dtype: string
        - name: ucsf_document_page_no
          dtype: string
        - name: doc_id
          dtype: int64
        - name: image
          dtype: string
  splits:
    - name: train
      num_examples: 39463
    - name: validation
      num_examples: 5349
    - name: test
      num_examples: 5188
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*
license: mit
task_categories:
  - question-answering
language:
  - en
pretty_name: d
size_categories:
  - 10K<n<100K

Dataset Card for DocVQA Dataset

Dataset Description

Dataset Summary

DocVQA dataset is a document dataset introduced in Mathew et al. (2021) consisting of 50,000 questions defined on 12,000+ document images.

Usage

This dataset can be used with current releases of Hugging Face datasets library. Here is an example using a custom collator to bundle batches in a trainable way on the train split


from datasets import load_dataset



docvqa_dataset = load_dataset("pixparse/docvqa-single-page", split="train"
)

collator_class = Collator()
loader = DataLoader(docvqa_dataset, batch_size=8, collate_fn=collator_class.collate_fn)

The loader can then be iterated on normally and yields image + question and answer samples.

Data Splits

Train

  • 10194 images, 39463 questions and answers.

Validation

  • 1286 images, 5349 questions and answers.

Test

  • 1,287 images, 5,188 questions.

Additional Information

Dataset Curators

Pablo Montalvo, Ross Wightman

Licensing Information

MIT

Citation Information

Mathew, Minesh, Dimosthenis Karatzas, and C. V. Jawahar. "Docvqa: A dataset for vqa on document images." Proceedings of the IEEE/CVF winter conference on applications of computer vision. 20