|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: question_id |
|
dtype: int64 |
|
- name: question |
|
dtype: string |
|
- name: answers |
|
sequence: string |
|
- name: data_split |
|
dtype: string |
|
- name: ocr_results |
|
struct: |
|
- name: page |
|
dtype: int64 |
|
- name: clockwise_orientation |
|
dtype: float64 |
|
- name: width |
|
dtype: int64 |
|
- name: height |
|
dtype: int64 |
|
- name: unit |
|
dtype: string |
|
- name: lines |
|
list: |
|
- name: bounding_box |
|
sequence: int64 |
|
- name: text |
|
dtype: string |
|
- name: words |
|
list: |
|
- name: bounding_box |
|
sequence: int64 |
|
- name: text |
|
dtype: string |
|
- name: confidence |
|
dtype: string |
|
- name: other_metadata |
|
struct: |
|
- name: ucsf_document_id |
|
dtype: string |
|
- name: ucsf_document_page_no |
|
dtype: string |
|
- name: doc_id |
|
dtype: int64 |
|
- name: image |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_examples: 39463 |
|
- name: validation |
|
num_examples: 5349 |
|
- name: test |
|
num_examples: 5188 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
license: mit |
|
task_categories: |
|
- question-answering |
|
language: |
|
- en |
|
pretty_name: d |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# Dataset Card for DocVQA Dataset |
|
|
|
## Dataset Description |
|
|
|
- **Point of Contact from curators:** [Minesh Mathew](mailto:[email protected]), [Dimosthenis Karatzas]([email protected]), [C. V. Jawahar]([email protected]) |
|
- **Point of Contact Hugging Face:** [Pablo Montalvo](mailto:[email protected]) |
|
|
|
### Dataset Summary |
|
|
|
DocVQA dataset is a document dataset introduced in Mathew et al. (2021) consisting of 50,000 questions defined on 12,000+ document images. |
|
|
|
### Usage |
|
|
|
This dataset can be used with current releases of Hugging Face `datasets` library. |
|
Here is an example using a custom collator to bundle batches in a trainable way on the `train` split |
|
|
|
```python |
|
|
|
from datasets import load_dataset |
|
|
|
|
|
|
|
docvqa_dataset = load_dataset("pixparse/docvqa-single-page", split="train" |
|
) |
|
|
|
collator_class = Collator() |
|
loader = DataLoader(docvqa_dataset, batch_size=8, collate_fn=collator_class.collate_fn) |
|
``` |
|
|
|
The loader can then be iterated on normally and yields image + question and answer samples. |
|
|
|
### Data Splits |
|
|
|
|
|
#### Train |
|
* 10194 images, 39463 questions and answers. |
|
|
|
### Validation |
|
|
|
* 1286 images, 5349 questions and answers. |
|
|
|
### Test |
|
|
|
* 1,287 images, 5,188 questions. |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
Pablo Montalvo, Ross Wightman |
|
|
|
### Licensing Information |
|
|
|
MIT |
|
|
|
### Citation Information |
|
|
|
Mathew, Minesh, Dimosthenis Karatzas, and C. V. Jawahar. "Docvqa: A dataset for vqa on document images." Proceedings of the IEEE/CVF winter conference on applications of computer vision. 20 |