url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
clear GS G h
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ G : βˆ‘' (n : β„•), f n z = g GS : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => f b z) g < Ξ΅ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ G : βˆ‘' (n : β„•), f n z = g GS : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => f b z) g < Ξ΅ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
set A := N βˆͺ M \ N
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 A : Finset β„• := N βˆͺ M \ N ⊒ dist g (N.sum fun n => f n z) < e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
have AM : M βŠ† A := subset_union_sdiff _ _
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 A : Finset β„• := N βˆͺ M \ N ⊒ dist g (N.sum fun n => f n z) < e
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A ⊒ dist g (N.sum fun n => f n z) < e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 A : Finset β„• := N βˆͺ M \ N ⊒ dist g (N.sum fun n => f n z) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
simp at HM
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A ⊒ dist g (N.sum fun n => f n z) < e
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : βˆ€ (n : Finset β„•), M βŠ† n β†’ dist (n.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• HM : βˆ€ n β‰₯ M, dist (n.sum fun b => f b z) g < e / 4 A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A ⊒ dist g (N.sum fun n => f n z) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
specialize HM A AM
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : βˆ€ (n : Finset β„•), M βŠ† n β†’ dist (n.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist (A.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : βˆ€ (n : Finset β„•), M βŠ† n β†’ dist (n.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
rw [dist_comm] at HM
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist (A.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ dist g (N.sum fun n => f n z) < e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist (A.sum fun b => f b z) g < e / 4 ⊒ dist g (N.sum fun n => f n z) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
calc dist g (N.sum fun n ↦ f n z) _ ≀ dist g (A.sum fun n ↦ f n z) + dist (A.sum fun n ↦ f n z) (N.sum fun n ↦ f n z) := by bound _ ≀ e / 4 + dist (A.sum fun n ↦ f n z) (N.sum fun n ↦ f n z) := by linarith _ = e / 4 + dist ((N.sum fun n ↦ f n z) + (M \ N).sum fun n ↦ f n z) (N.sum fun n ↦ f n z) := by rw [Finset.sum_union Finset.disjoint_sdiff] _ = e / 4 + abs (((N.sum fun n ↦ f n z) + (M \ N).sum fun n ↦ f n z) - N.sum fun n ↦ f n z) := by rw [Complex.dist_eq] _ = e / 4 + abs ((M \ N).sum fun n ↦ f n z) := by ring_nf _ ≀ e / 4 + (M \ N).sum fun n ↦ abs (f n z) := by linarith [finset_complex_abs_sum_le (M \ N) fun n ↦ f n z] _ ≀ e / 4 + e / 4 := by linarith [hm (M \ N) z (sdiff_late M Nm) zs] _ = e / 2 := by ring _ < e := by linarith
case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ dist g (N.sum fun n => f n z) < e
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ dist g (N.sum fun n => f n z) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
linarith
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 ⊒ e / 4 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 ⊒ e / 4 > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
rw [← G]
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ G : βˆ‘' (n : β„•), f n z = g S : Summable fun n => f n z ⊒ HasSum (fun n => f n z) g
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ G : βˆ‘' (n : β„•), f n z = g S : Summable fun n => f n z ⊒ HasSum (fun n => f n z) (βˆ‘' (n : β„•), f n z)
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ G : βˆ‘' (n : β„•), f n z = g S : Summable fun n => f n z ⊒ HasSum (fun n => f n z) g TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
exact Summable.hasSum S
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ G : βˆ‘' (n : β„•), f n z = g S : Summable fun n => f n z ⊒ HasSum (fun n => f n z) (βˆ‘' (n : β„•), f n z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ G : βˆ‘' (n : β„•), f n z = g S : Summable fun n => f n z ⊒ HasSum (fun n => f n z) (βˆ‘' (n : β„•), f n z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
linarith
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ G : βˆ‘' (n : β„•), f n z = g GS : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => f b z) g < Ξ΅ ⊒ e / 4 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ h : UniformVanishing f s e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ G : βˆ‘' (n : β„•), f n z = g GS : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => f b z) g < Ξ΅ ⊒ e / 4 > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
bound
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ dist g (N.sum fun n => f n z) ≀ dist g (A.sum fun n => f n z) + dist (A.sum fun n => f n z) (N.sum fun n => f n z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ dist g (N.sum fun n => f n z) ≀ dist g (A.sum fun n => f n z) + dist (A.sum fun n => f n z) (N.sum fun n => f n z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
linarith
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ dist g (A.sum fun n => f n z) + dist (A.sum fun n => f n z) (N.sum fun n => f n z) ≀ e / 4 + dist (A.sum fun n => f n z) (N.sum fun n => f n z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ dist g (A.sum fun n => f n z) + dist (A.sum fun n => f n z) (N.sum fun n => f n z) ≀ e / 4 + dist (A.sum fun n => f n z) (N.sum fun n => f n z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
rw [Finset.sum_union Finset.disjoint_sdiff]
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 4 + dist (A.sum fun n => f n z) (N.sum fun n => f n z) = e / 4 + dist ((N.sum fun n => f n z) + (M \ N).sum fun n => f n z) (N.sum fun n => f n z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 4 + dist (A.sum fun n => f n z) (N.sum fun n => f n z) = e / 4 + dist ((N.sum fun n => f n z) + (M \ N).sum fun n => f n z) (N.sum fun n => f n z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
rw [Complex.dist_eq]
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 4 + dist ((N.sum fun n => f n z) + (M \ N).sum fun n => f n z) (N.sum fun n => f n z) = e / 4 + Complex.abs (((N.sum fun n => f n z) + (M \ N).sum fun n => f n z) - N.sum fun n => f n z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 4 + dist ((N.sum fun n => f n z) + (M \ N).sum fun n => f n z) (N.sum fun n => f n z) = e / 4 + Complex.abs (((N.sum fun n => f n z) + (M \ N).sum fun n => f n z) - N.sum fun n => f n z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
ring_nf
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 4 + Complex.abs (((N.sum fun n => f n z) + (M \ N).sum fun n => f n z) - N.sum fun n => f n z) = e / 4 + Complex.abs ((M \ N).sum fun n => f n z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 4 + Complex.abs (((N.sum fun n => f n z) + (M \ N).sum fun n => f n z) - N.sum fun n => f n z) = e / 4 + Complex.abs ((M \ N).sum fun n => f n z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
linarith [finset_complex_abs_sum_le (M \ N) fun n ↦ f n z]
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 4 + Complex.abs ((M \ N).sum fun n => f n z) ≀ e / 4 + (M \ N).sum fun n => Complex.abs (f n z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 4 + Complex.abs ((M \ N).sum fun n => f n z) ≀ e / 4 + (M \ N).sum fun n => Complex.abs (f n z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
linarith [hm (M \ N) z (sdiff_late M Nm) zs]
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ (e / 4 + (M \ N).sum fun n => Complex.abs (f n z)) ≀ e / 4 + e / 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ (e / 4 + (M \ N).sum fun n => Complex.abs (f n z)) ≀ e / 4 + e / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
ring
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 4 + e / 4 = e / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 4 + e / 4 = e / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
uniformVanishing_to_tendsto_uniformly_on
[70, 1]
[103, 25]
linarith
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 2 < e
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ e : ℝ ep : e > 0 m : β„• hm : βˆ€ (N : Finset β„•) (z : β„‚), Late N m β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e / 4 N : Finset β„• Nm : N β‰₯ Finset.range m z : β„‚ zs : z ∈ s g : β„‚ M : Finset β„• A : Finset β„• := N βˆͺ M \ N AM : M βŠ† A HM : dist g (A.sum fun b => f b z) < e / 4 ⊒ e / 2 < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
CNonpos.degenerate
[106, 1]
[110, 85]
intro n z zs
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n n : β„• z : β„‚ zs : z ∈ s ⊒ f n z = 0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
CNonpos.degenerate
[106, 1]
[110, 85]
specialize hf n z zs
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n n : β„• z : β„‚ zs : z ∈ s ⊒ f n z = 0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a n : β„• z : β„‚ zs : z ∈ s hf : Complex.abs (f n z) ≀ c * a ^ n ⊒ f n z = 0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n n : β„• z : β„‚ zs : z ∈ s ⊒ f n z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
CNonpos.degenerate
[106, 1]
[110, 85]
have ca : c * a ^ n ≀ 0 := mul_nonpos_iff.mpr (Or.inr ⟨c0, by bound⟩)
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a n : β„• z : β„‚ zs : z ∈ s hf : Complex.abs (f n z) ≀ c * a ^ n ⊒ f n z = 0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a n : β„• z : β„‚ zs : z ∈ s hf : Complex.abs (f n z) ≀ c * a ^ n ca : c * a ^ n ≀ 0 ⊒ f n z = 0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a n : β„• z : β„‚ zs : z ∈ s hf : Complex.abs (f n z) ≀ c * a ^ n ⊒ f n z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
CNonpos.degenerate
[106, 1]
[110, 85]
exact Complex.abs.eq_zero.mp (le_antisymm (le_trans hf ca) (Complex.abs.nonneg _))
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a n : β„• z : β„‚ zs : z ∈ s hf : Complex.abs (f n z) ≀ c * a ^ n ca : c * a ^ n ≀ 0 ⊒ f n z = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a n : β„• z : β„‚ zs : z ∈ s hf : Complex.abs (f n z) ≀ c * a ^ n ca : c * a ^ n ≀ 0 ⊒ f n z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
CNonpos.degenerate
[106, 1]
[110, 85]
bound
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a n : β„• z : β„‚ zs : z ∈ s hf : Complex.abs (f n z) ≀ c * a ^ n ⊒ 0 ≀ a ^ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ c0 : c ≀ 0 a0 : 0 ≀ a n : β„• z : β„‚ zs : z ∈ s hf : Complex.abs (f n z) ≀ c * a ^ n ⊒ 0 ≀ a ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
by_cases c0 : c ≀ 0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ HasUniformSum f (tsumOn f) s
case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 ⊒ HasUniformSum f (tsumOn f) s case neg f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : Β¬c ≀ 0 ⊒ HasUniformSum f (tsumOn f) s
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ HasUniformSum f (tsumOn f) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
have fz := CNonpos.degenerate c0 a0 hf
case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 ⊒ HasUniformSum f (tsumOn f) s
case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 ⊒ HasUniformSum f (tsumOn f) s
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 ⊒ HasUniformSum f (tsumOn f) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
rw [HasUniformSum, Metric.tendstoUniformlyOn_iff]
case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 ⊒ HasUniformSum f (tsumOn f) s
case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 ⊒ βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : Finset β„•) in atTop, βˆ€ x ∈ s, dist (tsumOn f x) (n.sum fun n => f n x) < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 ⊒ HasUniformSum f (tsumOn f) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
intro e ep
case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 ⊒ βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : Finset β„•) in atTop, βˆ€ x ∈ s, dist (tsumOn f x) (n.sum fun n => f n x) < Ξ΅
case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 ⊒ βˆ€αΆ  (n : Finset β„•) in atTop, βˆ€ x ∈ s, dist (tsumOn f x) (n.sum fun n => f n x) < e
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 ⊒ βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : Finset β„•) in atTop, βˆ€ x ∈ s, dist (tsumOn f x) (n.sum fun n => f n x) < Ξ΅ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
apply Filter.eventually_of_forall
case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 ⊒ βˆ€αΆ  (n : Finset β„•) in atTop, βˆ€ x ∈ s, dist (tsumOn f x) (n.sum fun n => f n x) < e
case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 ⊒ βˆ€ (x : Finset β„•), βˆ€ x_1 ∈ s, dist (tsumOn f x_1) (x.sum fun n => f n x_1) < e
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 ⊒ βˆ€αΆ  (n : Finset β„•) in atTop, βˆ€ x ∈ s, dist (tsumOn f x) (n.sum fun n => f n x) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
intro n z zs
case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 ⊒ βˆ€ (x : Finset β„•), βˆ€ x_1 ∈ s, dist (tsumOn f x_1) (x.sum fun n => f n x_1) < e
case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ dist (tsumOn f z) (n.sum fun n => f n z) < e
Please generate a tactic in lean4 to solve the state. STATE: case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 ⊒ βˆ€ (x : Finset β„•), βˆ€ x_1 ∈ s, dist (tsumOn f x_1) (x.sum fun n => f n x_1) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
rw [tsumOn]
case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ dist (tsumOn f z) (n.sum fun n => f n z) < e
case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ dist (βˆ‘' (n : β„•), f n z) (n.sum fun n => f n z) < e
Please generate a tactic in lean4 to solve the state. STATE: case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ dist (tsumOn f z) (n.sum fun n => f n z) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
simp_rw [fz _ z zs]
case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ dist (βˆ‘' (n : β„•), f n z) (n.sum fun n => f n z) < e
case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ dist (βˆ‘' (n : β„•), 0) (n.sum fun n => 0) < e
Please generate a tactic in lean4 to solve the state. STATE: case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ dist (βˆ‘' (n : β„•), f n z) (n.sum fun n => f n z) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
simp only [tsum_zero, Finset.sum_const_zero, dist_zero_left, Complex.norm_eq_abs, AbsoluteValue.map_zero]
case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ dist (βˆ‘' (n : β„•), 0) (n.sum fun n => 0) < e
case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ 0 < e
Please generate a tactic in lean4 to solve the state. STATE: case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ dist (βˆ‘' (n : β„•), 0) (n.sum fun n => 0) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
assumption
case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ 0 < e
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos.hp f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : c ≀ 0 fz : βˆ€ (n : β„•), βˆ€ z ∈ s, f n z = 0 e : ℝ ep : e > 0 n : Finset β„• z : β„‚ zs : z ∈ s ⊒ 0 < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
simp only [not_le] at c0
case neg f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : Β¬c ≀ 0 ⊒ HasUniformSum f (tsumOn f) s
case neg f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c ⊒ HasUniformSum f (tsumOn f) s
Please generate a tactic in lean4 to solve the state. STATE: case neg f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : Β¬c ≀ 0 ⊒ HasUniformSum f (tsumOn f) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
apply uniformVanishing_to_tendsto_uniformly_on
case neg f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c ⊒ HasUniformSum f (tsumOn f) s
case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c ⊒ UniformVanishing f s
Please generate a tactic in lean4 to solve the state. STATE: case neg f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c ⊒ HasUniformSum f (tsumOn f) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
intro e ep
case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c ⊒ UniformVanishing f s
case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e
Please generate a tactic in lean4 to solve the state. STATE: case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c ⊒ UniformVanishing f s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
set t := (1 - ↑a) / ↑c * (e / 2)
case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e
case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e
Please generate a tactic in lean4 to solve the state. STATE: case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
have tp : t > 0 := by bound
case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e
case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e
Please generate a tactic in lean4 to solve the state. STATE: case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
rcases exists_pow_lt_of_lt_one tp a1 with ⟨n, nt⟩
case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e
case neg.h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e
Please generate a tactic in lean4 to solve the state. STATE: case neg.h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
use n
case neg.h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t ⊒ βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e
Please generate a tactic in lean4 to solve the state. STATE: case neg.h.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t ⊒ βˆƒ n, βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
intro N z NL zs
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t ⊒ βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s ⊒ (N.sum fun n => Complex.abs (f n z)) < e
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t ⊒ βˆ€ (N : Finset β„•) (z : β„‚), Late N n β†’ z ∈ s β†’ (N.sum fun n => Complex.abs (f n z)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
have a1p : 1 - (a : ℝ) > 0 := by linarith
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s ⊒ (N.sum fun n => Complex.abs (f n z)) < e
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ (N.sum fun n => Complex.abs (f n z)) < e
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s ⊒ (N.sum fun n => Complex.abs (f n z)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
calc (N.sum fun n ↦ abs (f n z)) _ ≀ N.sum fun n ↦ c * a ^ n := Finset.sum_le_sum fun n _ ↦ hf n z zs _ = c * N.sum fun n ↦ a ^ n := (Finset.mul_sum _ _ _).symm _ ≀ c * (a ^ n * (1 - a)⁻¹) := by bound [late_geometric_bound NL a0 a1] _ = a ^ n * (c * (1 - a)⁻¹) := by ring _ ≀ t * (c * (1 - a)⁻¹) := by bound _ = (1 - a) / c * (e / 2) * (c * (1 - a)⁻¹) := rfl _ = (1 - a) * (1 - a)⁻¹ * (c / c) * (e / 2) := by ring _ = 1 * 1 * (e / 2) := by rw [mul_inv_cancel a1p.ne', div_self c0.ne'] _ = e / 2 := by ring _ < e := by linarith
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ (N.sum fun n => Complex.abs (f n z)) < e
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ (N.sum fun n => Complex.abs (f n z)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
bound
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) ⊒ t > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) ⊒ t > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
linarith
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s ⊒ 1 - a > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s ⊒ 1 - a > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
bound [late_geometric_bound NL a0 a1]
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ (c * N.sum fun n => a ^ n) ≀ c * (a ^ n * (1 - a)⁻¹)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ (c * N.sum fun n => a ^ n) ≀ c * (a ^ n * (1 - a)⁻¹) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
ring
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ c * (a ^ n * (1 - a)⁻¹) = a ^ n * (c * (1 - a)⁻¹)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ c * (a ^ n * (1 - a)⁻¹) = a ^ n * (c * (1 - a)⁻¹) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
bound
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ a ^ n * (c * (1 - a)⁻¹) ≀ t * (c * (1 - a)⁻¹)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ a ^ n * (c * (1 - a)⁻¹) ≀ t * (c * (1 - a)⁻¹) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
ring
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ (1 - a) / c * (e / 2) * (c * (1 - a)⁻¹) = (1 - a) * (1 - a)⁻¹ * (c / c) * (e / 2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ (1 - a) / c * (e / 2) * (c * (1 - a)⁻¹) = (1 - a) * (1 - a)⁻¹ * (c / c) * (e / 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
rw [mul_inv_cancel a1p.ne', div_self c0.ne']
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ (1 - a) * (1 - a)⁻¹ * (c / c) * (e / 2) = 1 * 1 * (e / 2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ (1 - a) * (1 - a)⁻¹ * (c / c) * (e / 2) = 1 * 1 * (e / 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
ring
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ 1 * 1 * (e / 2) = e / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ 1 * 1 * (e / 2) = e / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_uniformly_on
[113, 1]
[142, 27]
linarith
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ e / 2 < e
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n c0 : 0 < c e : ℝ ep : e > 0 t : ℝ := (1 - a) / c * (e / 2) tp : t > 0 n : β„• nt : a ^ n < t N : Finset β„• z : β„‚ NL : Late N n zs : z ∈ s a1p : 1 - a > 0 ⊒ e / 2 < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_at
[145, 1]
[154, 36]
set s : Set β„‚ := {0}
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n ⊒ Summable f
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} ⊒ Summable f
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n ⊒ Summable f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_at
[145, 1]
[154, 36]
set g : β„• β†’ β„‚ β†’ β„‚ := fun n _ ↦ f n
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} ⊒ Summable f
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n ⊒ Summable f
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} ⊒ Summable f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_at
[145, 1]
[154, 36]
have hg : βˆ€ n z, z ∈ s β†’ abs (g n z) ≀ c * a ^ n := fun n z _ ↦ hf n
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n ⊒ Summable f
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n ⊒ Summable f
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n ⊒ Summable f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_at
[145, 1]
[154, 36]
have u := fast_series_converge_uniformly_on a0 a1 hg
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n ⊒ Summable f
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : HasUniformSum (fun n z => g n z) (tsumOn fun n z => g n z) s ⊒ Summable f
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n ⊒ Summable f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_at
[145, 1]
[154, 36]
rw [HasUniformSum] at u
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : HasUniformSum (fun n z => g n z) (tsumOn fun n z => g n z) s ⊒ Summable f
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : TendstoUniformlyOn (fun N z => N.sum fun n => g n z) (tsumOn fun n z => g n z) atTop s ⊒ Summable f
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : HasUniformSum (fun n z => g n z) (tsumOn fun n z => g n z) s ⊒ Summable f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_at
[145, 1]
[154, 36]
rw [tendstoUniformlyOn_singleton_iff_tendsto] at u
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : TendstoUniformlyOn (fun N z => N.sum fun n => g n z) (tsumOn fun n z => g n z) atTop s ⊒ Summable f
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : Filter.Tendsto (fun n => n.sum fun n => g n 0) atTop (𝓝 (tsumOn (fun n z => g n z) 0)) ⊒ Summable f
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : TendstoUniformlyOn (fun N z => N.sum fun n => g n z) (tsumOn fun n z => g n z) atTop s ⊒ Summable f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_at
[145, 1]
[154, 36]
apply HasSum.summable
f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : Filter.Tendsto (fun n => n.sum fun n => g n 0) atTop (𝓝 (tsumOn (fun n z => g n z) 0)) ⊒ Summable f
case h f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : Filter.Tendsto (fun n => n.sum fun n => g n 0) atTop (𝓝 (tsumOn (fun n z => g n z) 0)) ⊒ HasSum f ?a case a f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : Filter.Tendsto (fun n => n.sum fun n => g n 0) atTop (𝓝 (tsumOn (fun n z => g n z) 0)) ⊒ β„‚
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : Filter.Tendsto (fun n => n.sum fun n => g n 0) atTop (𝓝 (tsumOn (fun n z => g n z) 0)) ⊒ Summable f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge_at
[145, 1]
[154, 36]
assumption
case h f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : Filter.Tendsto (fun n => n.sum fun n => g n 0) atTop (𝓝 (tsumOn (fun n z => g n z) 0)) ⊒ HasSum f ?a case a f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : Filter.Tendsto (fun n => n.sum fun n => g n 0) atTop (𝓝 (tsumOn (fun n z => g n z) 0)) ⊒ β„‚
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : Filter.Tendsto (fun n => n.sum fun n => g n 0) atTop (𝓝 (tsumOn (fun n z => g n z) 0)) ⊒ HasSum f ?a case a f : β„• β†’ β„‚ c a : ℝ a0 : 0 ≀ a a1 : a < 1 hf : βˆ€ (n : β„•), Complex.abs (f n) ≀ c * a ^ n s : Set β„‚ := {0} g : β„• β†’ β„‚ β†’ β„‚ := fun n x => f n hg : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (g n z) ≀ c * a ^ n u : Filter.Tendsto (fun n => n.sum fun n => g n 0) atTop (𝓝 (tsumOn (fun n z => g n z) 0)) ⊒ β„‚ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge
[157, 1]
[163, 87]
use tsumOn f
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ βˆƒ g, AnalyticOn β„‚ g s ∧ HasSumOn f g s
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ AnalyticOn β„‚ (tsumOn f) s ∧ HasSumOn f (tsumOn f) s
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ βˆƒ g, AnalyticOn β„‚ g s ∧ HasSumOn f g s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge
[157, 1]
[163, 87]
constructor
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ AnalyticOn β„‚ (tsumOn f) s ∧ HasSumOn f (tsumOn f) s
case h.left f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ AnalyticOn β„‚ (tsumOn f) s case h.right f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ HasSumOn f (tsumOn f) s
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ AnalyticOn β„‚ (tsumOn f) s ∧ HasSumOn f (tsumOn f) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge
[157, 1]
[163, 87]
exact uniform_analytic_lim o (fun N ↦ N.analyticOn_sum fun _ _ ↦ h _) (fast_series_converge_uniformly_on a0 a1 hf)
case h.left f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ AnalyticOn β„‚ (tsumOn f) s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.left f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ AnalyticOn β„‚ (tsumOn f) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
fast_series_converge
[157, 1]
[163, 87]
exact fun z zs ↦ Summable.hasSum (fast_series_converge_at a0 a1 fun n ↦ hf n z zs)
case h.right f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ HasSumOn f (tsumOn f) s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.right f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z) ≀ c * a ^ n ⊒ HasSumOn f (tsumOn f) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons
[166, 1]
[174, 32]
rw [HasSum] at h ⊒
X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : HasSum f g ⊒ HasSum (Stream'.cons a f) (a + g)
X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : HasSum f g ⊒ HasSum (Stream'.cons a f) (a + g) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons
[166, 1]
[174, 32]
have ha := Filter.Tendsto.comp (Continuous.tendsto (continuous_add_left a) g) h
X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g))
X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons
[166, 1]
[174, 32]
have s : ((fun z ↦ a + z) ∘ fun N : Finset β„• ↦ N.sum f) = (fun N : Finset β„• ↦ N.sum (Stream'.cons a f)) ∘ push := by apply funext; intro N; simp; exact push_sum
X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g))
X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) s : ((fun z => a + z) ∘ fun N => N.sum f) = (fun N => N.sum (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons
[166, 1]
[174, 32]
rw [s] at ha
X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) s : ((fun z => a + z) ∘ fun N => N.sum f) = (fun N => N.sum (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g))
X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun N => N.sum (Stream'.cons a f)) ∘ push) atTop (𝓝 (a + g)) s : ((fun z => a + z) ∘ fun N => N.sum f) = (fun N => N.sum (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) s : ((fun z => a + z) ∘ fun N => N.sum f) = (fun N => N.sum (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons
[166, 1]
[174, 32]
exact tendsto_comp_push.mp ha
X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun N => N.sum (Stream'.cons a f)) ∘ push) atTop (𝓝 (a + g)) s : ((fun z => a + z) ∘ fun N => N.sum f) = (fun N => N.sum (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g))
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun N => N.sum (Stream'.cons a f)) ∘ push) atTop (𝓝 (a + g)) s : ((fun z => a + z) ∘ fun N => N.sum f) = (fun N => N.sum (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.sum fun b => Stream'.cons a f b) atTop (𝓝 (a + g)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons
[166, 1]
[174, 32]
apply funext
X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) ⊒ ((fun z => a + z) ∘ fun N => N.sum f) = (fun N => N.sum (Stream'.cons a f)) ∘ push
case h X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) ⊒ βˆ€ (x : Finset β„•), ((fun z => a + z) ∘ fun N => N.sum f) x = ((fun N => N.sum (Stream'.cons a f)) ∘ push) x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) ⊒ ((fun z => a + z) ∘ fun N => N.sum f) = (fun N => N.sum (Stream'.cons a f)) ∘ push TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons
[166, 1]
[174, 32]
intro N
case h X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) ⊒ βˆ€ (x : Finset β„•), ((fun z => a + z) ∘ fun N => N.sum f) x = ((fun N => N.sum (Stream'.cons a f)) ∘ push) x
case h X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) N : Finset β„• ⊒ ((fun z => a + z) ∘ fun N => N.sum f) N = ((fun N => N.sum (Stream'.cons a f)) ∘ push) N
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) ⊒ βˆ€ (x : Finset β„•), ((fun z => a + z) ∘ fun N => N.sum f) x = ((fun N => N.sum (Stream'.cons a f)) ∘ push) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons
[166, 1]
[174, 32]
simp
case h X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) N : Finset β„• ⊒ ((fun z => a + z) ∘ fun N => N.sum f) N = ((fun N => N.sum (Stream'.cons a f)) ∘ push) N
case h X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) N : Finset β„• ⊒ a + N.sum f = (push N).sum (Stream'.cons a f)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) N : Finset β„• ⊒ ((fun z => a + z) ∘ fun N => N.sum f) N = ((fun N => N.sum (Stream'.cons a f)) ∘ push) N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons
[166, 1]
[174, 32]
exact push_sum
case h X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) N : Finset β„• ⊒ a + N.sum f = (push N).sum (Stream'.cons a f)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝ : NormedAddCommGroup X a g : X f : β„• β†’ X h : Filter.Tendsto (fun s => s.sum fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a + b) ∘ fun s => s.sum fun b => f b) atTop (𝓝 (a + g)) N : Finset β„• ⊒ a + N.sum f = (push N).sum (Stream'.cons a f) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons'
[176, 1]
[179, 87]
rcases h with ⟨g, h⟩
a : β„‚ f : β„• β†’ β„‚ h : Summable f ⊒ tsum (Stream'.cons a f) = a + tsum f
case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasSum f g ⊒ tsum (Stream'.cons a f) = a + tsum f
Please generate a tactic in lean4 to solve the state. STATE: a : β„‚ f : β„• β†’ β„‚ h : Summable f ⊒ tsum (Stream'.cons a f) = a + tsum f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons'
[176, 1]
[179, 87]
rw [HasSum.tsum_eq h]
case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasSum f g ⊒ tsum (Stream'.cons a f) = a + tsum f
case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasSum f g ⊒ tsum (Stream'.cons a f) = a + g
Please generate a tactic in lean4 to solve the state. STATE: case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasSum f g ⊒ tsum (Stream'.cons a f) = a + tsum f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons'
[176, 1]
[179, 87]
rw [HasSum.tsum_eq _]
case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasSum f g ⊒ tsum (Stream'.cons a f) = a + g
a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasSum f g ⊒ HasSum (fun b => Stream'.cons a f b) (a + g)
Please generate a tactic in lean4 to solve the state. STATE: case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasSum f g ⊒ tsum (Stream'.cons a f) = a + g TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_cons'
[176, 1]
[179, 87]
exact sum_cons h
a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasSum f g ⊒ HasSum (fun b => Stream'.cons a f b) (a + g)
no goals
Please generate a tactic in lean4 to solve the state. STATE: a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasSum f g ⊒ HasSum (fun b => Stream'.cons a f b) (a + g) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
have c := sum_cons (a := -f 0) h
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g ⊒ HasSum (fun n => f (n + 1)) (g - f 0)
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : HasSum (Stream'.cons (-f 0) f) (-f 0 + g) ⊒ HasSum (fun n => f (n + 1)) (g - f 0)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g ⊒ HasSum (fun n => f (n + 1)) (g - f 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
rw [HasSum]
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : HasSum (Stream'.cons (-f 0) f) (-f 0 + g) ⊒ HasSum (fun n => f (n + 1)) (g - f 0)
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : HasSum (Stream'.cons (-f 0) f) (-f 0 + g) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : HasSum (Stream'.cons (-f 0) f) (-f 0 + g) ⊒ HasSum (fun n => f (n + 1)) (g - f 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
rw [neg_add_eq_sub, HasSum, ← tendsto_comp_push, ← tendsto_comp_push] at c
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : HasSum (Stream'.cons (-f 0) f) (-f 0 + g) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0))
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (((fun s => s.sum fun b => Stream'.cons (-f 0) f b) ∘ push) ∘ push) atTop (𝓝 (g - f 0)) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : HasSum (Stream'.cons (-f 0) f) (-f 0 + g) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
have s : ((fun N : Finset β„• ↦ N.sum fun n ↦ (Stream'.cons (-f 0) f) n) ∘ push) ∘ push = fun N : Finset β„• ↦ N.sum fun n ↦ f (n + 1) := by clear c h g; apply funext; intro N; simp nth_rw 2 [← Stream'.eta f] simp only [←push_sum, Stream'.head, Stream'.tail, Stream'.get] abel
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (((fun s => s.sum fun b => Stream'.cons (-f 0) f b) ∘ push) ∘ push) atTop (𝓝 (g - f 0)) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0))
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (((fun s => s.sum fun b => Stream'.cons (-f 0) f b) ∘ push) ∘ push) atTop (𝓝 (g - f 0)) s : ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (((fun s => s.sum fun b => Stream'.cons (-f 0) f b) ∘ push) ∘ push) atTop (𝓝 (g - f 0)) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
rw [s] at c
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (((fun s => s.sum fun b => Stream'.cons (-f 0) f b) ∘ push) ∘ push) atTop (𝓝 (g - f 0)) s : ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0))
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (fun N => N.sum fun n => f (n + 1)) atTop (𝓝 (g - f 0)) s : ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (((fun s => s.sum fun b => Stream'.cons (-f 0) f b) ∘ push) ∘ push) atTop (𝓝 (g - f 0)) s : ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
assumption
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (fun N => N.sum fun n => f (n + 1)) atTop (𝓝 (g - f 0)) s : ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0))
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (fun N => N.sum fun n => f (n + 1)) atTop (𝓝 (g - f 0)) s : ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.sum fun b => f (b + 1)) atTop (𝓝 (g - f 0)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
clear c h g
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (((fun s => s.sum fun b => Stream'.cons (-f 0) f b) ∘ push) ∘ push) atTop (𝓝 (g - f 0)) ⊒ ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1)
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X ⊒ ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X g : X h : HasSum f g c : Filter.Tendsto (((fun s => s.sum fun b => Stream'.cons (-f 0) f b) ∘ push) ∘ push) atTop (𝓝 (g - f 0)) ⊒ ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
apply funext
X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X ⊒ ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1)
case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X ⊒ βˆ€ (x : Finset β„•), (((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push) x = x.sum fun n => f (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X ⊒ ((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push = fun N => N.sum fun n => f (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
intro N
case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X ⊒ βˆ€ (x : Finset β„•), (((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push) x = x.sum fun n => f (n + 1)
case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ (((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push) N = N.sum fun n => f (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X ⊒ βˆ€ (x : Finset β„•), (((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push) x = x.sum fun n => f (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
simp
case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ (((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push) N = N.sum fun n => f (n + 1)
case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ ((push (push N)).sum fun n => Stream'.cons (-f 0) f n) = N.sum fun n => f (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ (((fun N => N.sum fun n => Stream'.cons (-f 0) f n) ∘ push) ∘ push) N = N.sum fun n => f (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
nth_rw 2 [← Stream'.eta f]
case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ ((push (push N)).sum fun n => Stream'.cons (-f 0) f n) = N.sum fun n => f (n + 1)
case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ ((push (push N)).sum fun n => Stream'.cons (-f 0) (Stream'.cons (Stream'.head f) (Stream'.tail f)) n) = N.sum fun n => f (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ ((push (push N)).sum fun n => Stream'.cons (-f 0) f n) = N.sum fun n => f (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
simp only [←push_sum, Stream'.head, Stream'.tail, Stream'.get]
case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ ((push (push N)).sum fun n => Stream'.cons (-f 0) (Stream'.cons (Stream'.head f) (Stream'.tail f)) n) = N.sum fun n => f (n + 1)
case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ -f 0 + (f 0 + N.sum fun x => f (x + 1)) = N.sum fun x => f (x + 1)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ ((push (push N)).sum fun n => Stream'.cons (-f 0) (Stream'.cons (Stream'.head f) (Stream'.tail f)) n) = N.sum fun n => f (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Series.lean
sum_drop
[181, 1]
[193, 26]
abel
case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ -f 0 + (f 0 + N.sum fun x => f (x + 1)) = N.sum fun x => f (x + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝ : NormedAddCommGroup X f : β„• β†’ X N : Finset β„• ⊒ -f 0 + (f 0 + N.sum fun x => f (x + 1)) = N.sum fun x => f (x + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_mono
[21, 1]
[23, 73]
positivity
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 1 < x xy : x ≀ y ⊒ 0 < x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 1 < x xy : x ≀ y ⊒ 0 < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_neg_log_strict_anti
[25, 1]
[30, 76]
have lx := neg_pos.mpr (Real.log_neg x0 x1)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 ⊒ (-y.log).log < (-x.log).log ↔ x < y
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ⊒ (-y.log).log < (-x.log).log ↔ x < y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 ⊒ (-y.log).log < (-x.log).log ↔ x < y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_neg_log_strict_anti
[25, 1]
[30, 76]
have ly := neg_pos.mpr (Real.log_neg y0 y1)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ⊒ (-y.log).log < (-x.log).log ↔ x < y
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ly : 0 < -y.log ⊒ (-y.log).log < (-x.log).log ↔ x < y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ⊒ (-y.log).log < (-x.log).log ↔ x < y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_neg_log_strict_anti
[25, 1]
[30, 76]
rw [Real.log_lt_log_iff ly lx, neg_lt_neg_iff, Real.log_lt_log_iff x0 y0]
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ly : 0 < -y.log ⊒ (-y.log).log < (-x.log).log ↔ x < y
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ly : 0 < -y.log ⊒ (-y.log).log < (-x.log).log ↔ x < y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
rw [Real.le_log_iff_exp_le (by linarith)]
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ log 2 * x ≀ (1 + x).log
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ (log 2 * x).exp ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ log 2 * x ≀ (1 + x).log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
have x0' : 0 ≀ 1 - x := by linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ (log 2 * x).exp ≀ 1 + x
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x ⊒ (log 2 * x).exp ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ (log 2 * x).exp ≀ 1 + x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
have h := convexOn_exp.2 (mem_univ 0) (mem_univ (log 2)) x0' x0 (by abel)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x ⊒ (log 2 * x).exp ≀ 1 + x
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : ((1 - x) β€’ 0 + x β€’ log 2).exp ≀ (1 - x) β€’ exp 0 + x β€’ (log 2).exp ⊒ (log 2 * x).exp ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x ⊒ (log 2 * x).exp ≀ 1 + x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
simp only [smul_eq_mul, mul_zero, zero_add, Real.exp_zero, mul_one, Real.exp_log zero_lt_two] at h
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : ((1 - x) β€’ 0 + x β€’ log 2).exp ≀ (1 - x) β€’ exp 0 + x β€’ (log 2).exp ⊒ (log 2 * x).exp ≀ 1 + x
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : (x * log 2).exp ≀ 1 - x + x * 2 ⊒ (log 2 * x).exp ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : ((1 - x) β€’ 0 + x β€’ log 2).exp ≀ (1 - x) β€’ exp 0 + x β€’ (log 2).exp ⊒ (log 2 * x).exp ≀ 1 + x TACTIC: