url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
use(h _ (qt (m n (le_refl _)))).1, fun k nk ↦ (h _ (qt (m k nk))).2
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : ∀ (k : ℕ), n ≤ k → s.potential c ((f c)^[k] z) < q ⊢ (c, (f c)^[n] z) ∈ s.near ∧ ∀ (k : ℕ), n ≤ k → mfderiv I I (s.bottcherNear c) ((f c)^[k] z) ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : ∀ (k : ℕ), n ≤ k → s.potential c ((f c)^[k] z) < q ⊢ (c, (f c)^[n] z) ∈ s.near ∧ ∀ (k : ℕ), n ≤ k → mfderiv I I (s.bottcherNear c) ((f c)^[k] z) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
apply (mfderiv_ne_zero_eventually (s.bottcherNear_holomorphic _ (s.mem_near c)).along_snd (s.bottcherNear_mfderiv_ne_zero c)).mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s ⊢ ∀ᶠ (z : S) in 𝓝 a, (c, z) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) z ≠ 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s ⊢ ∀ᶠ (x : S) in 𝓝 a, mfderiv I I (fun y => s.bottcherNear c y) x ≠ 0 → (c, x) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) x ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s ⊢ ∀ᶠ (z : S) in 𝓝 a, (c, z) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) z ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
apply ((s.isOpen_near.snd_preimage c).eventually_mem (s.mem_near c)).mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s ⊢ ∀ᶠ (x : S) in 𝓝 a, mfderiv I I (fun y => s.bottcherNear c y) x ≠ 0 → (c, x) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) x ≠ 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s ⊢ ∀ᶠ (x : S) in 𝓝 a, x ∈ {b | (c, b) ∈ s.near} → mfderiv I I (fun y => s.bottcherNear c y) x ≠ 0 → (c, x) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) x ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s ⊢ ∀ᶠ (x : S) in 𝓝 a, mfderiv I I (fun y => s.bottcherNear c y) x ≠ 0 → (c, x) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) x ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
refine eventually_of_forall fun z m nc ↦ ?_
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s ⊢ ∀ᶠ (x : S) in 𝓝 a, x ∈ {b | (c, b) ∈ s.near} → mfderiv I I (fun y => s.bottcherNear c y) x ≠ 0 → (c, x) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) x ≠ 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s z : S m : z ∈ {b | (c, b) ∈ s.near} nc : mfderiv I I (fun y => s.bottcherNear c y) z ≠ 0 ⊢ (c, z) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) z ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s ⊢ ∀ᶠ (x : S) in 𝓝 a, x ∈ {b | (c, b) ∈ s.near} → mfderiv I I (fun y => s.bottcherNear c y) x ≠ 0 → (c, x) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) x ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
use m, nc
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s z : S m : z ∈ {b | (c, b) ∈ s.near} nc : mfderiv I I (fun y => s.bottcherNear c y) z ≠ 0 ⊢ (c, z) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) z ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s z : S m : z ∈ {b | (c, b) ∈ s.near} nc : mfderiv I I (fun y => s.bottcherNear c y) z ≠ 0 ⊢ (c, z) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) z ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
intro k nk
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p ⊢ ∀ (k : ℕ), n ≤ k → s.potential c ((f c)^[k] z) < q
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k ⊢ s.potential c ((f c)^[k] z) < q
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p ⊢ ∀ (k : ℕ), n ≤ k → s.potential c ((f c)^[k] z) < q TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
refine lt_of_le_of_lt ?_ pq
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k ⊢ s.potential c ((f c)^[k] z) < q
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k ⊢ s.potential c ((f c)^[k] z) ≤ p ^ n
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k ⊢ s.potential c ((f c)^[k] z) < q TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
simp only [s.potential_eqn_iter]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k ⊢ s.potential c ((f c)^[k] z) ≤ p ^ n
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k ⊢ s.potential c z ^ d ^ k ≤ p ^ n
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k ⊢ s.potential c ((f c)^[k] z) ≤ p ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
have dn := (Nat.lt_pow_self s.d1 k).le
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k ⊢ s.potential c z ^ d ^ k ≤ p ^ n
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k dn : k ≤ d ^ k ⊢ s.potential c z ^ d ^ k ≤ p ^ n
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k ⊢ s.potential c z ^ d ^ k ≤ p ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
apply _root_.trans (pow_le_pow_of_le_one s.potential_nonneg s.potential_le_one dn)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k dn : k ≤ d ^ k ⊢ s.potential c z ^ d ^ k ≤ p ^ n
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k dn : k ≤ d ^ k ⊢ s.potential c z ^ k ≤ p ^ n
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k dn : k ≤ d ^ k ⊢ s.potential c z ^ d ^ k ≤ p ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
refine _root_.trans (pow_le_pow_left s.potential_nonneg m _) ?_
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k dn : k ≤ d ^ k ⊢ s.potential c z ^ k ≤ p ^ n
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k dn : k ≤ d ^ k ⊢ p ^ k ≤ p ^ n
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k dn : k ≤ d ^ k ⊢ s.potential c z ^ k ≤ p ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.has_nice_n
[477, 1]
[495, 70]
exact pow_le_pow_of_le_one (_root_.trans s.potential_nonneg m) p1.le nk
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k dn : k ≤ d ^ k ⊢ p ^ k ≤ p ^ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s t : Set S h : ∀ y ∈ t, (c, y) ∈ s.near ∧ mfderiv I I (s.bottcherNear c) y ≠ 0 q : ℝ qp : 0 < q qt : {z | s.potential c z < q} ⊆ t n : ℕ pq : p ^ n < q z : S m : s.potential c z ≤ p k : ℕ nk : n ≤ k dn : k ≤ d ^ k ⊢ p ^ k ≤ p ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.nice_np
[501, 1]
[505, 42]
have q : p < 1 ∧ OnePreimage s := ⟨p1, op⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s ⊢ s.IsNiceN c p (s.np c p)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s q : p < 1 ∧ OnePreimage s ⊢ s.IsNiceN c p (s.np c p)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s ⊢ s.IsNiceN c p (s.np c p) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.nice_np
[501, 1]
[505, 42]
simp only [Super.np, q, true_and_iff, dif_pos]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s q : p < 1 ∧ OnePreimage s ⊢ s.IsNiceN c p (s.np c p)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s q : p < 1 ∧ OnePreimage s ⊢ s.IsNiceN c p (Nat.find ⋯)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s q : p < 1 ∧ OnePreimage s ⊢ s.IsNiceN c p (s.np c p) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.nice_np
[501, 1]
[505, 42]
exact Nat.find_spec (s.has_nice_n c p1)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s q : p < 1 ∧ OnePreimage s ⊢ s.IsNiceN c p (Nat.find ⋯)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : ℝ p1 : p < 1 op : OnePreimage s q : p < 1 ∧ OnePreimage s ⊢ s.IsNiceN c p (Nat.find ⋯) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.np_zero
[507, 1]
[508, 100]
simp only [Super.np, zero_lt_one, op, true_and_iff, dif_pos, Nat.find_eq_zero, Super.isNice_zero]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ op : OnePreimage s ⊢ s.np c 0 = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ op : OnePreimage s ⊢ s.np c 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.np_mono
[510, 1]
[515, 87]
have p01 : p0 < 1 := lt_of_le_of_lt le p11
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s ⊢ s.np c p0 ≤ s.np c p1
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 ⊢ s.np c p0 ≤ s.np c p1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s ⊢ s.np c p0 ≤ s.np c p1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.np_mono
[510, 1]
[515, 87]
have e : s.np c p0 = Nat.find (s.has_nice_n c p01) := by simp only [Super.np, p01, op, true_and_iff, dif_pos]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 ⊢ s.np c p0 ≤ s.np c p1
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 e : s.np c p0 = Nat.find ⋯ ⊢ s.np c p0 ≤ s.np c p1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 ⊢ s.np c p0 ≤ s.np c p1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.np_mono
[510, 1]
[515, 87]
rw [e]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 e : s.np c p0 = Nat.find ⋯ ⊢ s.np c p0 ≤ s.np c p1
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 e : s.np c p0 = Nat.find ⋯ ⊢ Nat.find ⋯ ≤ s.np c p1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 e : s.np c p0 = Nat.find ⋯ ⊢ s.np c p0 ≤ s.np c p1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.np_mono
[510, 1]
[515, 87]
apply Nat.find_min'
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 e : s.np c p0 = Nat.find ⋯ ⊢ Nat.find ⋯ ≤ s.np c p1
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 e : s.np c p0 = Nat.find ⋯ ⊢ s.IsNiceN c p0 (s.np c p1)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 e : s.np c p0 = Nat.find ⋯ ⊢ Nat.find ⋯ ≤ s.np c p1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.np_mono
[510, 1]
[515, 87]
exact fun z zp ↦ s.nice_np c p11 _ (_root_.trans zp le)
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 e : s.np c p0 = Nat.find ⋯ ⊢ s.IsNiceN c p0 (s.np c p1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 e : s.np c p0 = Nat.find ⋯ ⊢ s.IsNiceN c p0 (s.np c p1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.np_mono
[510, 1]
[515, 87]
simp only [Super.np, p01, op, true_and_iff, dif_pos]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 ⊢ s.np c p0 = Nat.find ⋯
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p0 p1 : ℝ le : p0 ≤ p1 p11 : p1 < 1 op : OnePreimage s p01 : p0 < 1 ⊢ s.np c p0 = Nat.find ⋯ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have c0 : 0 < abs c := lt_trans (by norm_num) c16
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have z0 : 0 < abs z := lt_of_lt_of_le c0 cz
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
set s := superF d
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
set t := closedBall (0 : ℂ) (abs c)⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
suffices e : EqOn (fun z : ℂ ↦ s.bottcher c (z : 𝕊)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t by have z0' : z ≠ 0 := Complex.abs.ne_zero_iff.mp z0.ne' convert @e z⁻¹ _; rw [inv_coe (inv_ne_zero z0'), inv_inv] simp only [mem_closedBall, Complex.dist_eq, sub_zero, map_inv₀, inv_le_inv z0 c0, cz, t]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have a0 : HolomorphicOn I I (fun z : ℂ ↦ s.bottcher c (z : 𝕊)⁻¹) t := by intro z m refine (s.bottcher_holomorphicOn _ ?_).along_snd.comp (holomorphic_inv.comp holomorphic_coe _) simp only [mem_closedBall, Complex.dist_eq, sub_zero, t] at m by_cases z0 : z = 0; simp only [z0, coe_zero, inv_zero']; exact s.post_a c rw [inv_coe z0]; refine postcritical_large (by linarith) ?_ rwa [map_inv₀, le_inv c0]; exact Complex.abs.pos z0
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t := by intro z m; apply AnalyticAt.holomorphicAt apply bottcherNear_analytic_z (superNearF d c) simp only [mem_setOf, mem_closedBall, Complex.dist_eq, sub_zero, t] at m ⊢ refine lt_of_le_of_lt m ?_ refine inv_lt_inv_of_lt (lt_of_lt_of_le (by norm_num) (le_max_left _ _)) ?_ exact max_lt c16 (half_lt_self (lt_trans (by norm_num) c16))
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine (a0.eq_of_locally_eq a1 (convex_closedBall _ _).isPreconnected ?_).self_of_nhdsSet
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ ∃ x ∈ t, (𝓝 x).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
use 0, mem_closedBall_self (by bound)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ ∃ x ∈ t, (𝓝 x).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ ∃ x ∈ t, (𝓝 x).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have e : ∀ᶠ z in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (z : 𝕊)⁻¹ := by simp only [Super.bottcherNear, extChartAt_inf_apply, inv_inv, toComplex_coe, RiemannSphere.inv_inf, toComplex_zero, sub_zero, Super.fl, eq_self_iff_true, Filter.eventually_true]
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
Please generate a tactic in lean4 to solve the state. STATE: case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine Filter.EventuallyEq.trans ?_ (Filter.EventuallyEq.symm e)
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have i : Tendsto (fun z : ℂ ↦ (z : 𝕊)⁻¹) (𝓝 0) (𝓝 ∞) := by have h : ContinuousAt (fun z : ℂ ↦ (z : 𝕊)⁻¹) 0 := (RiemannSphere.continuous_inv.comp continuous_coe).continuousAt simp only [ContinuousAt, coe_zero, inv_zero'] at h; exact h
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ i : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
exact i.eventually (s.bottcher_eq_bottcherNear c)
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ i : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ i : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
norm_num
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ 0 < 16
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ 0 < 16 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have z0' : z ≠ 0 := Complex.abs.ne_zero_iff.mp z0.ne'
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
convert @e z⁻¹ _
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
case h.e'_2.h.e'_13 c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ ↑z = (↑z⁻¹)⁻¹ c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
rw [inv_coe (inv_ne_zero z0'), inv_inv]
case h.e'_2.h.e'_13 c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ ↑z = (↑z⁻¹)⁻¹ c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.h.e'_13 c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ ↑z = (↑z⁻¹)⁻¹ c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [mem_closedBall, Complex.dist_eq, sub_zero, map_inv₀, inv_le_inv z0 c0, cz, t]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
intro z m
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (fun z => s.bottcher c (↑z)⁻¹) z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine (s.bottcher_holomorphicOn _ ?_).along_snd.comp (holomorphic_inv.comp holomorphic_coe _)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (fun z => s.bottcher c (↑z)⁻¹) z
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ (c, (↑z)⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (fun z => s.bottcher c (↑z)⁻¹) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [mem_closedBall, Complex.dist_eq, sub_zero, t] at m
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ (c, (↑z)⁻¹) ∈ s.post
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (c, (↑z)⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ (c, (↑z)⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
by_cases z0 : z = 0
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (c, (↑z)⁻¹) ∈ s.post
case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (c, (↑z)⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [z0, coe_zero, inv_zero']
case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, ∞) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
exact s.post_a c
case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, ∞) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, ∞) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
rw [inv_coe z0]
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, ↑z⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine postcritical_large (by linarith) ?_
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, ↑z⁻¹) ∈ s.post
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ Complex.abs (c, ↑z⁻¹).1 ≤ Complex.abs z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, ↑z⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
rwa [map_inv₀, le_inv c0]
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ Complex.abs (c, ↑z⁻¹).1 ≤ Complex.abs z⁻¹
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ 0 < Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ Complex.abs (c, ↑z⁻¹).1 ≤ Complex.abs z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
exact Complex.abs.pos z0
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ 0 < Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ 0 < Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ 4 ≤ Complex.abs (c, ↑z⁻¹).1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ 4 ≤ Complex.abs (c, ↑z⁻¹).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
intro z m
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t ⊢ HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (bottcherNear (fl (f d) ∞ c) d) z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t ⊢ HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
apply AnalyticAt.holomorphicAt
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (bottcherNear (fl (f d) ∞ c) d) z
case fa c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ AnalyticAt ℂ (bottcherNear (fl (f d) ∞ c) d) z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (bottcherNear (fl (f d) ∞ c) d) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
apply bottcherNear_analytic_z (superNearF d c)
case fa c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ AnalyticAt ℂ (bottcherNear (fl (f d) ∞ c) d) z
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ z ∈ {z | Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹}
Please generate a tactic in lean4 to solve the state. STATE: case fa c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ AnalyticAt ℂ (bottcherNear (fl (f d) ∞ c) d) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [mem_setOf, mem_closedBall, Complex.dist_eq, sub_zero, t] at m ⊢
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ z ∈ {z | Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹}
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ z ∈ {z | Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine lt_of_le_of_lt m ?_
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (Complex.abs c)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine inv_lt_inv_of_lt (lt_of_lt_of_le (by norm_num) (le_max_left _ _)) ?_
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (Complex.abs c)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ max 16 (Complex.abs c / 2) < Complex.abs c
Please generate a tactic in lean4 to solve the state. STATE: case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (Complex.abs c)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
exact max_lt c16 (half_lt_self (lt_trans (by norm_num) c16))
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ max 16 (Complex.abs c / 2) < Complex.abs c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ max 16 (Complex.abs c / 2) < Complex.abs c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
norm_num
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ 0 < 16
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ 0 < 16 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
bound
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ 0 ≤ (Complex.abs c)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ 0 ≤ (Complex.abs c)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [Super.bottcherNear, extChartAt_inf_apply, inv_inv, toComplex_coe, RiemannSphere.inv_inf, toComplex_zero, sub_zero, Super.fl, eq_self_iff_true, Filter.eventually_true]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have h : ContinuousAt (fun z : ℂ ↦ (z : 𝕊)⁻¹) 0 := (RiemannSphere.continuous_inv.comp continuous_coe).continuousAt
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : ContinuousAt (fun z => (↑z)⁻¹) 0 ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [ContinuousAt, coe_zero, inv_zero'] at h
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : ContinuousAt (fun z => (↑z)⁻¹) 0 ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : ContinuousAt (fun z => (↑z)⁻¹) 0 ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
exact h
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
inv_mem_t
[82, 1]
[86, 83]
simp only [mem_setOf, map_inv₀]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ z⁻¹ ∈ {z | Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹}
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ (Complex.abs z)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ z⁻¹ ∈ {z | Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
inv_mem_t
[82, 1]
[86, 83]
refine inv_lt_inv_of_lt (lt_of_lt_of_le (by norm_num) (le_max_left _ _)) ?_
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ (Complex.abs z)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ max 16 (Complex.abs c / 2) < Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ (Complex.abs z)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
inv_mem_t
[82, 1]
[86, 83]
exact lt_of_lt_of_le (max_lt c16 (half_lt_self (lt_trans (by norm_num) c16))) cz
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ max 16 (Complex.abs c / 2) < Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ max 16 (Complex.abs c / 2) < Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
inv_mem_t
[82, 1]
[86, 83]
norm_num
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ 0 < 16
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ 0 < 16 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
set s := superF d
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
have z0 : abs z ≠ 0 := (lt_of_lt_of_le (lt_trans (by norm_num) c16) cz).ne'
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
have i8 : (abs z)⁻¹ ≤ 1 / 8 := by rw [one_div]; apply inv_le_inv_of_le; norm_num exact le_trans (by norm_num) (le_trans c16.le cz)
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
have i1 : (abs z)⁻¹ ≤ 1 := le_trans i8 (by norm_num)
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
simp only [term]
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
have wc := iterates_converge (superNearF d c) n (inv_mem_t c16 cz)
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
generalize hw : (fl (f d) ∞ c)^[n] z⁻¹ = w
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
rw [hw] at wc
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * Complex.abs z⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
replace wc : abs w ≤ (abs z)⁻¹ := by rw [map_inv₀] at wc exact le_trans wc (mul_le_of_le_one_left (inv_nonneg.mpr (Complex.abs.nonneg _)) (by bound))
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * Complex.abs z⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * Complex.abs z⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
have cw : abs (c * w ^ d) ≤ (abs z)⁻¹ := by simp only [Complex.abs.map_mul, Complex.abs.map_pow] calc abs c * abs w ^ d _ ≤ abs z * (abs z)⁻¹ ^ d := by bound _ ≤ abs z * (abs z)⁻¹ ^ 2 := by bound _ = (abs z)⁻¹ := by rw [pow_two]; field_simp [z0]
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
have cw2 : abs (c * w ^ d) ≤ 1 / 2 := le_trans cw (le_trans i8 (by norm_num))
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
simp only [gl_f, gl]
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ Complex.abs ((1 + c * w ^ d)⁻¹ ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
rw [Complex.inv_cpow, ← Complex.cpow_neg]
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ Complex.abs ((1 + c * w ^ d)⁻¹ ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ Complex.abs ((1 + c * w ^ d) ^ (-(1 / ↑(d ^ (n + 1)))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ case hx c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ (1 + c * w ^ d).arg ≠ Real.pi
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ Complex.abs ((1 + c * w ^ d)⁻¹ ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
swap
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ Complex.abs ((1 + c * w ^ d) ^ (-(1 / ↑(d ^ (n + 1)))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ case hx c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ (1 + c * w ^ d).arg ≠ Real.pi
case hx c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ (1 + c * w ^ d).arg ≠ Real.pi c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ Complex.abs ((1 + c * w ^ d) ^ (-(1 / ↑(d ^ (n + 1)))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ Complex.abs ((1 + c * w ^ d) ^ (-(1 / ↑(d ^ (n + 1)))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ case hx c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ (1 + c * w ^ d).arg ≠ Real.pi TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
norm_num
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d ⊢ 0 < 16
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d ⊢ 0 < 16 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
rw [one_div]
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ (Complex.abs z)⁻¹ ≤ 1 / 8
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ (Complex.abs z)⁻¹ ≤ 8⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ (Complex.abs z)⁻¹ ≤ 1 / 8 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
apply inv_le_inv_of_le
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ (Complex.abs z)⁻¹ ≤ 8⁻¹
case ha c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 0 < 8 case h c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 8 ≤ Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ (Complex.abs z)⁻¹ ≤ 8⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
norm_num
case ha c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 0 < 8 case h c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 8 ≤ Complex.abs z
case h c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 8 ≤ Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: case ha c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 0 < 8 case h c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 8 ≤ Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
exact le_trans (by norm_num) (le_trans c16.le cz)
case h c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 8 ≤ Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 8 ≤ Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
norm_num
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 8 ≤ 16
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ 8 ≤ 16 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
norm_num
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 ⊢ 1 / 8 ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 ⊢ 1 / 8 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
rw [map_inv₀] at wc
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * Complex.abs z⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs w ≤ (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * (Complex.abs z)⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs w ≤ (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * Complex.abs z⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs w ≤ (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
exact le_trans wc (mul_le_of_le_one_left (inv_nonneg.mpr (Complex.abs.nonneg _)) (by bound))
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * (Complex.abs z)⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs w ≤ (Complex.abs z)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * (Complex.abs z)⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs w ≤ (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
bound
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * (Complex.abs z)⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ (5 / 8) ^ n ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * (Complex.abs z)⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ (5 / 8) ^ n ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
simp only [Complex.abs.map_mul, Complex.abs.map_pow]
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs c * Complex.abs w ^ d ≤ (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
calc abs c * abs w ^ d _ ≤ abs z * (abs z)⁻¹ ^ d := by bound _ ≤ abs z * (abs z)⁻¹ ^ 2 := by bound _ = (abs z)⁻¹ := by rw [pow_two]; field_simp [z0]
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs c * Complex.abs w ^ d ≤ (Complex.abs z)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs c * Complex.abs w ^ d ≤ (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
bound
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs c * Complex.abs w ^ d ≤ Complex.abs z * (Complex.abs z)⁻¹ ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs c * Complex.abs w ^ d ≤ Complex.abs z * (Complex.abs z)⁻¹ ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
bound
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs z * (Complex.abs z)⁻¹ ^ d ≤ Complex.abs z * (Complex.abs z)⁻¹ ^ 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs z * (Complex.abs z)⁻¹ ^ d ≤ Complex.abs z * (Complex.abs z)⁻¹ ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
rw [pow_two]
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs z * (Complex.abs z)⁻¹ ^ 2 = (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs z * ((Complex.abs z)⁻¹ * (Complex.abs z)⁻¹) = (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs z * (Complex.abs z)⁻¹ ^ 2 = (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
field_simp [z0]
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs z * ((Complex.abs z)⁻¹ * (Complex.abs z)⁻¹) = (Complex.abs z)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs z * ((Complex.abs z)⁻¹ * (Complex.abs z)⁻¹) = (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
norm_num
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ ⊢ 1 / 8 ≤ 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ ⊢ 1 / 8 ≤ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
refine (lt_of_le_of_lt (le_abs_self _) (lt_of_le_of_lt ?_ (half_lt_self Real.pi_pos))).ne
case hx c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ (1 + c * w ^ d).arg ≠ Real.pi
case hx c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ |(1 + c * w ^ d).arg| ≤ Real.pi / 2
Please generate a tactic in lean4 to solve the state. STATE: case hx c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ cw : Complex.abs (c * w ^ d) ≤ (Complex.abs z)⁻¹ cw2 : Complex.abs (c * w ^ d) ≤ 1 / 2 ⊢ (1 + c * w ^ d).arg ≠ Real.pi TACTIC: