url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
by_cases yt : y ∈ t
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s ⊢ y ∈ f u
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∈ t ⊢ y ∈ f u case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s ⊢ y ∈ f u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [mem_union, mem_setOf, eventually_nhdsWithin_iff, ← hf]
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∈ t ⊢ y ∈ f u case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∈ t ⊢ y ∈ u ∨ y ∈ s ∧ y ∈ t ∧ ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∈ t ⊢ y ∈ f u case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
right
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∈ t ⊢ y ∈ u ∨ y ∈ s ∧ y ∈ t ∧ ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u
case pos.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∈ t ⊢ y ∈ s ∧ y ∈ t ∧ ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∈ t ⊢ y ∈ u ∨ y ∈ s ∧ y ∈ t ∧ ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
use m, yt, n
case pos.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∈ t ⊢ y ∈ s ∧ y ∈ t ∧ ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u
Please generate a tactic in lean4 to solve the state. STATE: case pos.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∈ t ⊢ y ∈ s ∧ y ∈ t ∧ ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact mono _ (n.self_of_nhds yt)
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m✝ : x ∈ f u xu : x ∉ u xt : x ∈ t n✝ : x ∈ s ∧ ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ u y : X n : ∀ᶠ (x : X) in 𝓝 y, x ∈ tᶜ → x ∈ u m : y ∈ s yt : y ∉ t ⊢ y ∈ f u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
rw [← hf]
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xu : x ∈ u ⊢ ∀ᶠ (y : X) in 𝓝 x, y ∈ f u
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xu : x ∈ u ⊢ ∀ᶠ (y : X) in 𝓝 x, y ∈ (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) u
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xu : x ∈ u ⊢ ∀ᶠ (y : X) in 𝓝 x, y ∈ f u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact (o.eventually_mem xu).mp (eventually_of_forall fun q m ↦ subset_union_left _ _ m)
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xu : x ∈ u ⊢ ∀ᶠ (y : X) in 𝓝 x, y ∈ (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xu : x ∈ u ⊢ ∀ᶠ (y : X) in 𝓝 x, y ∈ (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
contrapose xu
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xu : x ∉ u xt : x ∉ t ⊢ ∀ᶠ (y : X) in 𝓝 x, y ∈ f u
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xt : x ∉ t xu : ¬∀ᶠ (y : X) in 𝓝 x, y ∈ f u ⊢ ¬x ∉ u
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xu : x ∉ u xt : x ∉ t ⊢ ∀ᶠ (y : X) in 𝓝 x, y ∈ f u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
clear xu
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xt : x ∉ t xu : ¬∀ᶠ (y : X) in 𝓝 x, y ∈ f u ⊢ ¬x ∉ u
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xt : x ∉ t ⊢ ¬x ∉ u
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xt : x ∉ t xu : ¬∀ᶠ (y : X) in 𝓝 x, y ∈ f u ⊢ ¬x ∉ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [mem_union, mem_setOf, xt, false_and_iff, and_false_iff, or_false_iff, ← hf] at m
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xt : x ∉ t ⊢ ¬x ∉ u
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X xt : x ∉ t m : x ∈ u ⊢ ¬x ∉ u
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X m : x ∈ f u xt : x ∉ t ⊢ ¬x ∉ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [not_not]
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X xt : x ∉ t m : x ∈ u ⊢ ¬x ∉ u
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X xt : x ∉ t m : x ∈ u ⊢ x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X xt : x ∉ t m : x ∈ u ⊢ ¬x ∉ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact m
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X xt : x ∉ t m : x ∈ u ⊢ x ∈ u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u u : Set X o : IsOpen u x : X xt : x ∉ t m : x ∈ u ⊢ x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
intro x u c m xt cn cu
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) ⊢ ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ x ∈ f u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) ⊢ ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
rw [← hf]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ x ∈ f u
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ x ∈ (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ x ∈ f u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
right
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ x ∈ (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) u
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ x ∈ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ x ∈ (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
use m, xt
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ x ∈ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ x ∈ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [Filter.eventually_iff, setOf_mem_eq]
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ u ∈ 𝓝[tᶜ] x
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact Filter.mem_of_superset cn cu
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ u ∈ 𝓝[tᶜ] x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) x : X u c : Set X m : x ∈ s xt : x ∈ t cn : c ∈ 𝓝[tᶜ] x cu : c ⊆ u ⊢ u ∈ 𝓝[tᶜ] x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
intro x m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u ⊢ s ⊆ f u ∪ f v
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s ⊢ x ∈ f u ∪ f v
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u ⊢ s ⊆ f u ∪ f v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
by_cases xt : x ∉ t
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s ⊢ x ∈ f u ∪ f v
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∉ t ⊢ x ∈ f u ∪ f v case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : ¬x ∉ t ⊢ x ∈ f u ∪ f v
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s ⊢ x ∈ f u ∪ f v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact union_subset_union (mono _) (mono _) (suv (mem_diff_of_mem m xt))
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∉ t ⊢ x ∈ f u ∪ f v case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : ¬x ∉ t ⊢ x ∈ f u ∪ f v
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : ¬x ∉ t ⊢ x ∈ f u ∪ f v
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∉ t ⊢ x ∈ f u ∪ f v case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : ¬x ∉ t ⊢ x ∈ f u ∪ f v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [not_not] at xt
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : ¬x ∉ t ⊢ x ∈ f u ∪ f v
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t ⊢ x ∈ f u ∪ f v
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : ¬x ∉ t ⊢ x ∈ f u ∪ f v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
rcases ts.loc x s xt (so.mem_nhds m) with ⟨c, cst, cn, cp⟩
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t ⊢ x ∈ f u ∪ f v
case neg.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c ⊢ x ∈ f u ∪ f v
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t ⊢ x ∈ f u ∪ f v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
have d := inter_subset_inter_left (u ∩ v) cst
case neg.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c ⊢ x ∈ f u ∪ f v
case neg.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) ⊆ s \ t ∩ (u ∩ v) ⊢ x ∈ f u ∪ f v
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c ⊢ x ∈ f u ∪ f v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
rw [duv, subset_empty_iff] at d
case neg.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) ⊆ s \ t ∩ (u ∩ v) ⊢ x ∈ f u ∪ f v
case neg.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ ⊢ x ∈ f u ∪ f v
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) ⊆ s \ t ∩ (u ∩ v) ⊢ x ∈ f u ∪ f v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
cases' isPreconnected_iff_subset_of_disjoint.mp cp u v uo vo (_root_.trans cst suv) d with cu cv
case neg.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ ⊢ x ∈ f u ∪ f v
case neg.intro.intro.intro.inl X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ cu : c ⊆ u ⊢ x ∈ f u ∪ f v case neg.intro.intro.intro.inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ cv : c ⊆ v ⊢ x ∈ f u ∪ f v
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ ⊢ x ∈ f u ∪ f v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact subset_union_left _ _ (mem m xt cn cu)
case neg.intro.intro.intro.inl X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ cu : c ⊆ u ⊢ x ∈ f u ∪ f v case neg.intro.intro.intro.inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ cv : c ⊆ v ⊢ x ∈ f u ∪ f v
case neg.intro.intro.intro.inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ cv : c ⊆ v ⊢ x ∈ f u ∪ f v
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro.intro.inl X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ cu : c ⊆ u ⊢ x ∈ f u ∪ f v case neg.intro.intro.intro.inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ cv : c ⊆ v ⊢ x ∈ f u ∪ f v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact subset_union_right _ _ (mem m xt cn cv)
case neg.intro.intro.intro.inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ cv : c ⊆ v ⊢ x ∈ f u ∪ f v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro.intro.inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u x : X m : x ∈ s xt : x ∈ t c : Set X cst : c ⊆ s \ t cn : c ∈ 𝓝[tᶜ] x cp : IsPreconnected c d : c ∩ (u ∩ v) = ∅ cv : c ⊆ v ⊢ x ∈ f u ∪ f v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
intro u x m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v ⊢ ∀ {u : Set X}, f u \ t ⊆ u
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v u : Set X x : X m : x ∈ f u \ t ⊢ x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v ⊢ ∀ {u : Set X}, f u \ t ⊆ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [mem_diff, mem_union, mem_setOf, ← hf] at m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v u : Set X x : X m : x ∈ f u \ t ⊢ x ∈ u
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v u : Set X x : X m : (x ∈ u ∨ x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u) ∧ x ∉ t ⊢ x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v u : Set X x : X m : x ∈ f u \ t ⊢ x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [m.2, false_and_iff, and_false_iff, or_false_iff, not_false_iff, and_true_iff] at m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v u : Set X x : X m : (x ∈ u ∨ x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u) ∧ x ∉ t ⊢ x ∈ u
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v u : Set X x : X m : x ∈ u ⊢ x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v u : Set X x : X m : (x ∈ u ∨ x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u) ∧ x ∉ t ⊢ x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v u : Set X x : X m : x ∈ u ⊢ x ∈ u
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v u : Set X x : X m : x ∈ u ⊢ x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
intro x u o m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u ⊢ ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ f u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u ⊢ ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [mem_union, mem_setOf, ← hf] at m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ f u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ u ∨ x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ f u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
cases' m with xu m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ u ∨ x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
case inl X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u xu : x ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u case inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ u ∨ x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact (o.eventually_mem xu).filter_mono nhdsWithin_le_nhds
case inl X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u xu : x ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u case inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
case inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u xu : x ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u case inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact m.2.2
case inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u✝ v : Set X uo : IsOpen u✝ vo : IsOpen v suv : s \ t ⊆ u✝ ∪ v duv : s \ t ∩ (u✝ ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u✝ ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u x : X u : Set X o : IsOpen u m : x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
contrapose duv
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ s ∩ (f u ∩ f v) = ∅
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u duv : ¬s ∩ (f u ∩ f v) = ∅ ⊢ ¬s \ t ∩ (u ∩ v) = ∅
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v duv : s \ t ∩ (u ∩ v) = ∅ f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u ⊢ s ∩ (f u ∩ f v) = ∅ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [← ne_eq, ← nonempty_iff_ne_empty] at duv ⊢
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u duv : ¬s ∩ (f u ∩ f v) = ∅ ⊢ ¬s \ t ∩ (u ∩ v) = ∅
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u duv : (s ∩ (f u ∩ f v)).Nonempty ⊢ (s \ t ∩ (u ∩ v)).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u duv : ¬s ∩ (f u ∩ f v) = ∅ ⊢ ¬s \ t ∩ (u ∩ v) = ∅ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
rcases duv with ⟨x, m⟩
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u duv : (s ∩ (f u ∩ f v)).Nonempty ⊢ (s \ t ∩ (u ∩ v)).Nonempty
case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∩ (f u ∩ f v) ⊢ (s \ t ∩ (u ∩ v)).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u duv : (s ∩ (f u ∩ f v)).Nonempty ⊢ (s \ t ∩ (u ∩ v)).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [mem_inter_iff] at m
case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∩ (f u ∩ f v) ⊢ (s \ t ∩ (u ∩ v)).Nonempty
case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v ⊢ (s \ t ∩ (u ∩ v)).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∩ (f u ∩ f v) ⊢ (s \ t ∩ (u ∩ v)).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
have b := ((so.eventually_mem m.1).filter_mono nhdsWithin_le_nhds).and ((fnon uo m.2.1).and (fnon vo m.2.2))
case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v ⊢ (s \ t ∩ (u ∩ v)).Nonempty
case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝[tᶜ] x, x ∈ s ∧ x ∈ u ∧ x ∈ v ⊢ (s \ t ∩ (u ∩ v)).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v ⊢ (s \ t ∩ (u ∩ v)).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [eventually_nhdsWithin_iff] at b
case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝[tᶜ] x, x ∈ s ∧ x ∈ u ∧ x ∈ v ⊢ (s \ t ∩ (u ∩ v)).Nonempty
case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v ⊢ (s \ t ∩ (u ∩ v)).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝[tᶜ] x, x ∈ s ∧ x ∈ u ∧ x ∈ v ⊢ (s \ t ∩ (u ∩ v)).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
rcases eventually_nhds_iff.mp b with ⟨n, h, no, xn⟩
case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v ⊢ (s \ t ∩ (u ∩ v)).Nonempty
case intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n ⊢ (s \ t ∩ (u ∩ v)).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v ⊢ (s \ t ∩ (u ∩ v)).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
rcases ts.dense.exists_mem_open no ⟨_, xn⟩ with ⟨y, yt, yn⟩
case intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n ⊢ (s \ t ∩ (u ∩ v)).Nonempty
case intro.intro.intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n ⊢ (s \ t ∩ (u ∩ v)).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n ⊢ (s \ t ∩ (u ∩ v)).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
use y
case intro.intro.intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n ⊢ (s \ t ∩ (u ∩ v)).Nonempty
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n ⊢ y ∈ s \ t ∩ (u ∩ v)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n ⊢ (s \ t ∩ (u ∩ v)).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
simp only [mem_inter_iff, mem_diff, ← mem_compl_iff]
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n ⊢ y ∈ s \ t ∩ (u ∩ v)
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n ⊢ (y ∈ s ∧ y ∈ tᶜ) ∧ y ∈ u ∧ y ∈ v
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n ⊢ y ∈ s \ t ∩ (u ∩ v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
specialize h y yn yt
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n ⊢ (y ∈ s ∧ y ∈ tᶜ) ∧ y ∈ u ∧ y ∈ v
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n h : y ∈ s ∧ y ∈ u ∧ y ∈ v ⊢ (y ∈ s ∧ y ∈ tᶜ) ∧ y ∈ u ∧ y ∈ v
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X h : ∀ x ∈ n, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n ⊢ (y ∈ s ∧ y ∈ tᶜ) ∧ y ∈ u ∧ y ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff
[115, 1]
[169, 61]
exact ⟨⟨h.1,yt⟩,h.2.1,h.2.2⟩
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n h : y ∈ s ∧ y ∈ u ∧ y ∈ v ⊢ (y ∈ s ∧ y ∈ tᶜ) ∧ y ∈ u ∧ y ∈ v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s t : Set X sc : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v so : IsOpen s ts : Nonseparating t u v : Set X uo : IsOpen u vo : IsOpen v suv : s \ t ⊆ u ∪ v f : Set X → Set X hf : (fun u => u ∪ {x | x ∈ s ∧ x ∈ t ∧ ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u}) = f mono : ∀ (u : Set X), u ⊆ f u fopen : ∀ {u : Set X}, IsOpen u → IsOpen (f u) mem : ∀ {x : X} {u c : Set X}, x ∈ s → x ∈ t → c ∈ 𝓝[tᶜ] x → c ⊆ u → x ∈ f u cover : s ⊆ f u ∪ f v fdiff : ∀ {u : Set X}, f u \ t ⊆ u fnon : ∀ {x : X} {u : Set X}, IsOpen u → x ∈ f u → ∀ᶠ (y : X) in 𝓝[tᶜ] x, y ∈ u x : X m : x ∈ s ∧ x ∈ f u ∧ x ∈ f v b : ∀ᶠ (x : X) in 𝓝 x, x ∈ tᶜ → x ∈ s ∧ x ∈ u ∧ x ∈ v n : Set X no : IsOpen n xn : x ∈ n y : X yt : y ∈ tᶜ yn : y ∈ n h : y ∈ s ∧ y ∈ u ∧ y ∈ v ⊢ (y ∈ s ∧ y ∈ tᶜ) ∧ y ∈ u ∧ y ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.empty
[172, 1]
[174, 96]
simp only [compl_empty, dense_univ]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S ⊢ Dense ∅ᶜ
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S ⊢ Dense ∅ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.empty
[172, 1]
[174, 96]
simp only [mem_empty_iff_false, IsEmpty.forall_iff, forall_const, imp_true_iff]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S ⊢ ∀ (x : X) (u : Set X), x ∈ ∅ → u ∈ 𝓝 x → ∃ c ⊆ u \ ∅, c ∈ 𝓝[∅ᶜ] x ∧ IsPreconnected c
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S ⊢ ∀ (x : X) (u : Set X), x ∈ ∅ → u ∈ 𝓝 x → ∃ c ⊆ u \ ∅, c ∈ 𝓝[∅ᶜ] x ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
by_cases rp : r ≤ 0
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ ⊢ IsPreconnected (ball a r \ {a})
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ ⊢ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
simp only [Metric.ball_eq_empty.mpr rp, empty_diff]
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected ∅ case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
exact isPreconnected_empty
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected ∅ case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected ∅ case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
simp only [not_le] at rp
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ IsPreconnected (ball a r \ {a})
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
rw [e]
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected (ball a r \ {a})
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected ((fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ)
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
apply IsPreconnected.image
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected ((fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ)
case neg.H X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected (Ioo 0 r ×ˢ univ) case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ)
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected ((fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
exact isPreconnected_Ioo.prod isPreconnected_univ
case neg.H X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected (Ioo 0 r ×ˢ univ) case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ)
case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ)
Please generate a tactic in lean4 to solve the state. STATE: case neg.H X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected (Ioo 0 r ×ˢ univ) case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
apply Continuous.continuousOn
case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ)
case neg.hf.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ Continuous fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp
Please generate a tactic in lean4 to solve the state. STATE: case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
continuity
case neg.hf.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ Continuous fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.hf.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ Continuous fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
apply Set.ext
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ ∀ (x : ℂ), x ∈ ball a r \ {a} ↔ x ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
intro z
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ ∀ (x : ℂ), x ∈ ball a r \ {a} ↔ x ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ z ∈ ball a r \ {a} ↔ z ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ ∀ (x : ℂ), x ∈ ball a r \ {a} ↔ x ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
simp only [mem_diff, mem_ball, Complex.dist_eq, mem_singleton_iff, mem_image, Prod.exists, mem_prod_eq, mem_Ioo, mem_univ, and_true_iff]
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ z ∈ ball a r \ {a} ↔ z ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a ↔ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ z ∈ ball a r \ {a} ↔ z ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
constructor
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a ↔ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a → ∃ a_2 b, (0 < a_2 ∧ a_2 < r) ∧ a + ↑a_2 * (↑b * Complex.I).exp = z case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ (∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z) → Complex.abs (z - a) < r ∧ ¬z = a
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a ↔ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
intro ⟨zr, za⟩
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a → ∃ a_2 b, (0 < a_2 ∧ a_2 < r) ∧ a + ↑a_2 * (↑b * Complex.I).exp = z
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a → ∃ a_2 b, (0 < a_2 ∧ a_2 < r) ∧ a + ↑a_2 * (↑b * Complex.I).exp = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
use abs (z - a), Complex.arg (z - a)
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ (0 < Complex.abs (z - a) ∧ Complex.abs (z - a) < r) ∧ a + ↑(Complex.abs (z - a)) * (↑(z - a).arg * Complex.I).exp = z
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
simp only [AbsoluteValue.pos_iff, Ne, Complex.abs_mul_exp_arg_mul_I, add_sub_cancel, eq_self_iff_true, sub_eq_zero, za, zr, not_false_iff, and_true_iff]
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ (0 < Complex.abs (z - a) ∧ Complex.abs (z - a) < r) ∧ a + ↑(Complex.abs (z - a)) * (↑(z - a).arg * Complex.I).exp = z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ (0 < Complex.abs (z - a) ∧ Complex.abs (z - a) < r) ∧ a + ↑(Complex.abs (z - a)) * (↑(z - a).arg * Complex.I).exp = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
intro ⟨s, t, ⟨s0, sr⟩, e⟩
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ (∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z) → Complex.abs (z - a) < r ∧ ¬z = a
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ Complex.abs (z - a) < r ∧ ¬z = a
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ (∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z) → Complex.abs (z - a) < r ∧ ¬z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
simp only [← e, add_sub_cancel_left, Complex.abs.map_mul, Complex.abs_ofReal, abs_of_pos s0, Complex.abs_exp_ofReal_mul_I, mul_one, sr, true_and_iff, add_right_eq_self, mul_eq_zero, Complex.exp_ne_zero, or_false_iff, Complex.ofReal_eq_zero]
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ Complex.abs (z - a) < r ∧ ¬z = a
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ ¬s = 0
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ Complex.abs (z - a) < r ∧ ¬z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
exact s0.ne'
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ ¬s = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ ¬s = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
rw [dense_iff_inter_open]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ Dense {a}ᶜ
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ ∀ (U : Set ℂ), IsOpen U → U.Nonempty → (U ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ Dense {a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
intro u uo ⟨z, m⟩
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ ∀ (U : Set ℂ), IsOpen U → U.Nonempty → (U ∩ {a}ᶜ).Nonempty
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ ∀ (U : Set ℂ), IsOpen U → U.Nonempty → (U ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
by_cases za : z ≠ a
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : ¬z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
simp only [not_not] at za
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : ¬z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : ¬z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
rw [za] at m
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : a ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
clear za z
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : a ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : a ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
rcases Metric.isOpen_iff.mp uo a m with ⟨r, rp, rs⟩
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty
case neg.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
use a + r / 2
case neg.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ (u ∩ {a}ᶜ).Nonempty
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u ∩ {a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
simp only [mem_inter_iff, mem_compl_iff, mem_singleton_iff, add_right_eq_self, div_eq_zero_iff, Complex.ofReal_eq_zero, bit0_eq_zero, one_ne_zero, or_false_iff, rp.ne', not_false_iff, and_true_iff, false_or, two_ne_zero]
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u ∩ {a}ᶜ
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u ∩ {a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
apply rs
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u
case h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ ball a r
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
simp only [mem_ball, dist_self_add_left, Complex.norm_eq_abs, map_div₀, Complex.abs_ofReal, Complex.abs_two, abs_of_pos rp, half_lt_self rp]
case h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ ball a r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ ball a r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
use z
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ u ∩ {a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
use m
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ u ∩ {a}ᶜ
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ {a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ u ∩ {a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
exact za
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ {a}ᶜ
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ {a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
intro z u m n
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ ∀ (x : ℂ) (u : Set ℂ), x ∈ {a} → u ∈ 𝓝 x → ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] x ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z ∈ {a} n : u ∈ 𝓝 z ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ ∀ (x : ℂ) (u : Set ℂ), x ∈ {a} → u ∈ 𝓝 x → ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] x ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
simp only [mem_singleton_iff] at m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z ∈ {a} n : u ∈ 𝓝 z ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ n : u ∈ 𝓝 z m : z = a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z ∈ {a} n : u ∈ 𝓝 z ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
simp only [m] at n ⊢
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ n : u ∈ 𝓝 z m : z = a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z = a n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ n : u ∈ 𝓝 z m : z = a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
clear m z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z = a n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z = a n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
rcases Metric.mem_nhds_iff.mp n with ⟨r, rp, rs⟩
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
case intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
use ball a r \ {a}
case intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ⊆ u \ {a} ∧ ball a r \ {a} ∈ 𝓝[≠] a ∧ IsPreconnected (ball a r \ {a})
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
refine ⟨diff_subset_diff_left rs, ?_, IsPreconnected.ball_diff_center⟩
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ⊆ u \ {a} ∧ ball a r \ {a} ∈ 𝓝[≠] a ∧ IsPreconnected (ball a r \ {a})
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ∈ 𝓝[≠] a
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ⊆ u \ {a} ∧ ball a r \ {a} ∈ 𝓝[≠] a ∧ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
exact diff_mem_nhdsWithin_compl (Metric.ball_mem_nhds _ rp) _
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ∈ 𝓝[≠] a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ∈ 𝓝[≠] a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
apply Nonseparating.complexManifold
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : S ⊢ Nonseparating {a}
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : S ⊢ ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : S ⊢ Nonseparating {a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
intro z
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : S ⊢ ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : S ⊢ ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
by_cases az : a ∈ (extChartAt I z).source
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a}) case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
convert Complex.nonseparating_singleton (extChartAt I z a)
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a} = {↑(extChartAt I z) a}
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
simp only [eq_singleton_iff_unique_mem, mem_inter_iff, PartialEquiv.map_source _ az, true_and_iff, mem_preimage, mem_singleton_iff, PartialEquiv.left_inv _ az, eq_self_iff_true]
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a} = {↑(extChartAt I z) a}
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ ∀ (x : ℂ), x ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm x = a → x = ↑(extChartAt I z) a
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a} = {↑(extChartAt I z) a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
intro x ⟨m, e⟩
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ ∀ (x : ℂ), x ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm x = a → x = ↑(extChartAt I z) a
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source x : ℂ m : x ∈ (extChartAt I z).target e : ↑(extChartAt I z).symm x = a ⊢ x = ↑(extChartAt I z) a
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ ∀ (x : ℂ), x ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm x = a → x = ↑(extChartAt I z) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
simp only [← e, PartialEquiv.right_inv _ m]
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source x : ℂ m : x ∈ (extChartAt I z).target e : ↑(extChartAt I z).symm x = a ⊢ x = ↑(extChartAt I z) a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source x : ℂ m : x ∈ (extChartAt I z).target e : ↑(extChartAt I z).symm x = a ⊢ x = ↑(extChartAt I z) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
convert Nonseparating.empty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a} = ∅
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a}) TACTIC: