url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.fg
[96, 1]
[99, 49]
simp only [g, z0, if_false]
case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d z : β„‚ z0 : Β¬z = 0 ⊒ f z = z ^ d * g f d z
case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d z : β„‚ z0 : Β¬z = 0 ⊒ f z = z ^ d * (f z / z ^ d)
Please generate a tactic in lean4 to solve the state. STATE: case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d z : β„‚ z0 : Β¬z = 0 ⊒ f z = z ^ d * g f d z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.fg
[96, 1]
[99, 49]
field_simp [z0]
case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d z : β„‚ z0 : Β¬z = 0 ⊒ f z = z ^ d * (f z / z ^ d)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d z : β„‚ z0 : Β¬z = 0 ⊒ f z = z ^ d * (f z / z ^ d) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rcases fa.exists_ball_analyticOn with ⟨r, rp, fa⟩
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d c : β„‚ fa : AnalyticAt β„‚ f c ⊒ AnalyticAt β„‚ (g f d) c
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r fa : AnalyticOn β„‚ f (ball c r) ⊒ AnalyticAt β„‚ (g f d) c
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d c : β„‚ fa : AnalyticAt β„‚ f c ⊒ AnalyticAt β„‚ (g f d) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
have o : IsOpen (ball c r) := isOpen_ball
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r fa : AnalyticOn β„‚ f (ball c r) ⊒ AnalyticAt β„‚ (g f d) c
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r fa : AnalyticOn β„‚ f (ball c r) o : IsOpen (ball c r) ⊒ AnalyticAt β„‚ (g f d) c
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r fa : AnalyticOn β„‚ f (ball c r) ⊒ AnalyticAt β„‚ (g f d) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
generalize ht : ball c r = t
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r fa : AnalyticOn β„‚ f (ball c r) o : IsOpen (ball c r) ⊒ AnalyticAt β„‚ (g f d) c
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r fa : AnalyticOn β„‚ f (ball c r) o : IsOpen (ball c r) t : Set β„‚ ht : ball c r = t ⊒ AnalyticAt β„‚ (g f d) c
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r fa : AnalyticOn β„‚ f (ball c r) o : IsOpen (ball c r) ⊒ AnalyticAt β„‚ (g f d) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rw [ht] at fa o
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r fa : AnalyticOn β„‚ f (ball c r) o : IsOpen (ball c r) t : Set β„‚ ht : ball c r = t ⊒ AnalyticAt β„‚ (g f d) c
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ⊒ AnalyticAt β„‚ (g f d) c
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r fa : AnalyticOn β„‚ f (ball c r) o : IsOpen (ball c r) t : Set β„‚ ht : ball c r = t ⊒ AnalyticAt β„‚ (g f d) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
suffices h : AnalyticOn β„‚ (g f d) t by rw [← ht] at h; exact h _ (mem_ball_self rp)
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ⊒ AnalyticAt β„‚ (g f d) c
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ⊒ AnalyticOn β„‚ (g f d) t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ⊒ AnalyticAt β„‚ (g f d) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
have ga : DifferentiableOn β„‚ (g f d) (t \ {0}) := by have e : βˆ€ z : β„‚, z ∈ t \ {0} β†’ g f d z = f z / z ^ d := by intro z zs; simp only [Set.mem_diff, Set.mem_singleton_iff] at zs simp only [g, zs.2, if_false] rw [differentiableOn_congr e] apply DifferentiableOn.div (fa.mono (Set.diff_subset _ _)).differentiableOn exact (Differentiable.pow differentiable_id _).differentiableOn intro z zs; exact pow_ne_zero _ (Set.mem_diff_singleton.mp zs).2
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ⊒ AnalyticOn β„‚ (g f d) t
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) ⊒ AnalyticOn β„‚ (g f d) t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ⊒ AnalyticOn β„‚ (g f d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rw [analyticOn_iff_differentiableOn o]
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) ⊒ AnalyticOn β„‚ (g f d) t
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) ⊒ DifferentiableOn β„‚ (g f d) t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) ⊒ AnalyticOn β„‚ (g f d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
by_cases t0 : (0 : β„‚) βˆ‰ t
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) ⊒ DifferentiableOn β„‚ (g f d) t
case pos f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 βˆ‰ t ⊒ DifferentiableOn β„‚ (g f d) t case neg f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : Β¬0 βˆ‰ t ⊒ DifferentiableOn β„‚ (g f d) t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) ⊒ DifferentiableOn β„‚ (g f d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
simp only [Set.not_not_mem] at t0
case neg f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : Β¬0 βˆ‰ t ⊒ DifferentiableOn β„‚ (g f d) t
case neg f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t ⊒ DifferentiableOn β„‚ (g f d) t
Please generate a tactic in lean4 to solve the state. STATE: case neg f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : Β¬0 βˆ‰ t ⊒ DifferentiableOn β„‚ (g f d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
exact (Complex.differentiableOn_compl_singleton_and_continuousAt_iff (o.mem_nhds t0)).mp ⟨ga, gc⟩
case neg f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t gc : ContinuousAt (g f d) 0 ⊒ DifferentiableOn β„‚ (g f d) t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t gc : ContinuousAt (g f d) 0 ⊒ DifferentiableOn β„‚ (g f d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rw [← ht] at h
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t h : AnalyticOn β„‚ (g f d) t ⊒ AnalyticAt β„‚ (g f d) c
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t h : AnalyticOn β„‚ (g f d) (ball c r) ⊒ AnalyticAt β„‚ (g f d) c
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t h : AnalyticOn β„‚ (g f d) t ⊒ AnalyticAt β„‚ (g f d) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
exact h _ (mem_ball_self rp)
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t h : AnalyticOn β„‚ (g f d) (ball c r) ⊒ AnalyticAt β„‚ (g f d) c
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t h : AnalyticOn β„‚ (g f d) (ball c r) ⊒ AnalyticAt β„‚ (g f d) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
have e : βˆ€ z : β„‚, z ∈ t \ {0} β†’ g f d z = f z / z ^ d := by intro z zs; simp only [Set.mem_diff, Set.mem_singleton_iff] at zs simp only [g, zs.2, if_false]
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ⊒ DifferentiableOn β„‚ (g f d) (t \ {0})
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ DifferentiableOn β„‚ (g f d) (t \ {0})
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ⊒ DifferentiableOn β„‚ (g f d) (t \ {0}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rw [differentiableOn_congr e]
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ DifferentiableOn β„‚ (g f d) (t \ {0})
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ DifferentiableOn β„‚ (fun x => f x / x ^ d) (t \ {0})
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ DifferentiableOn β„‚ (g f d) (t \ {0}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
apply DifferentiableOn.div (fa.mono (Set.diff_subset _ _)).differentiableOn
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ DifferentiableOn β„‚ (fun x => f x / x ^ d) (t \ {0})
case hd f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ DifferentiableOn β„‚ (fun x => x ^ d) (t \ {0}) case hx f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ βˆ€ x ∈ t \ {0}, x ^ d β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ DifferentiableOn β„‚ (fun x => f x / x ^ d) (t \ {0}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
exact (Differentiable.pow differentiable_id _).differentiableOn
case hd f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ DifferentiableOn β„‚ (fun x => x ^ d) (t \ {0}) case hx f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ βˆ€ x ∈ t \ {0}, x ^ d β‰  0
case hx f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ βˆ€ x ∈ t \ {0}, x ^ d β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case hd f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ DifferentiableOn β„‚ (fun x => x ^ d) (t \ {0}) case hx f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ βˆ€ x ∈ t \ {0}, x ^ d β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
intro z zs
case hx f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ βˆ€ x ∈ t \ {0}, x ^ d β‰  0
case hx f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d z : β„‚ zs : z ∈ t \ {0} ⊒ z ^ d β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case hx f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d ⊒ βˆ€ x ∈ t \ {0}, x ^ d β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
exact pow_ne_zero _ (Set.mem_diff_singleton.mp zs).2
case hx f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d z : β„‚ zs : z ∈ t \ {0} ⊒ z ^ d β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hx f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t e : βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d z : β„‚ zs : z ∈ t \ {0} ⊒ z ^ d β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
intro z zs
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ⊒ βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t z : β„‚ zs : z ∈ t \ {0} ⊒ g f d z = f z / z ^ d
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ⊒ βˆ€ z ∈ t \ {0}, g f d z = f z / z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
simp only [Set.mem_diff, Set.mem_singleton_iff] at zs
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t z : β„‚ zs : z ∈ t \ {0} ⊒ g f d z = f z / z ^ d
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t z : β„‚ zs : z ∈ t ∧ Β¬z = 0 ⊒ g f d z = f z / z ^ d
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t z : β„‚ zs : z ∈ t \ {0} ⊒ g f d z = f z / z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
simp only [g, zs.2, if_false]
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t z : β„‚ zs : z ∈ t ∧ Β¬z = 0 ⊒ g f d z = f z / z ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t z : β„‚ zs : z ∈ t ∧ Β¬z = 0 ⊒ g f d z = f z / z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rw [Set.diff_singleton_eq_self t0] at ga
case pos f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 βˆ‰ t ⊒ DifferentiableOn β„‚ (g f d) t
case pos f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) t t0 : 0 βˆ‰ t ⊒ DifferentiableOn β„‚ (g f d) t
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 βˆ‰ t ⊒ DifferentiableOn β„‚ (g f d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
exact ga
case pos f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) t t0 : 0 βˆ‰ t ⊒ DifferentiableOn β„‚ (g f d) t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) t t0 : 0 βˆ‰ t ⊒ DifferentiableOn β„‚ (g f d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rw [Metric.continuousAt_iff]
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t ⊒ ContinuousAt (g f d) 0
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t ⊒ βˆ€ Ξ΅ > 0, βˆƒ Ξ΄ > 0, βˆ€ {x : β„‚}, dist x 0 < Ξ΄ β†’ dist (g f d x) (g f d 0) < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t ⊒ ContinuousAt (g f d) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
intro e ep
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t ⊒ βˆ€ Ξ΅ > 0, βˆƒ Ξ΄ > 0, βˆ€ {x : β„‚}, dist x 0 < Ξ΄ β†’ dist (g f d x) (g f d 0) < Ξ΅
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t e : ℝ ep : e > 0 ⊒ βˆƒ Ξ΄ > 0, βˆ€ {x : β„‚}, dist x 0 < Ξ΄ β†’ dist (g f d x) (g f d 0) < e
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t ⊒ βˆ€ Ξ΅ > 0, βˆƒ Ξ΄ > 0, βˆ€ {x : β„‚}, dist x 0 < Ξ΄ β†’ dist (g f d x) (g f d 0) < Ξ΅ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rcases Metric.eventually_nhds_iff.mp (Asymptotics.isBigOWith_iff.mp (s.approx.forall_isBigOWith (by linarith : e / 2 > 0))) with ⟨t, tp, h⟩
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t e : ℝ ep : e > 0 ⊒ βˆƒ Ξ΄ > 0, βˆ€ {x : β„‚}, dist x 0 < Ξ΄ β†’ dist (g f d x) (g f d 0) < e
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 h : βˆ€ ⦃y : ℂ⦄, dist y 0 < t β†’ β€–f y - y ^ dβ€– ≀ e / 2 * β€–y ^ dβ€– ⊒ βˆƒ Ξ΄ > 0, βˆ€ {x : β„‚}, dist x 0 < Ξ΄ β†’ dist (g f d x) (g f d 0) < e
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t e : ℝ ep : e > 0 ⊒ βˆƒ Ξ΄ > 0, βˆ€ {x : β„‚}, dist x 0 < Ξ΄ β†’ dist (g f d x) (g f d 0) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
use t, tp
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 h : βˆ€ ⦃y : ℂ⦄, dist y 0 < t β†’ β€–f y - y ^ dβ€– ≀ e / 2 * β€–y ^ dβ€– ⊒ βˆƒ Ξ΄ > 0, βˆ€ {x : β„‚}, dist x 0 < Ξ΄ β†’ dist (g f d x) (g f d 0) < e
case right f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 h : βˆ€ ⦃y : ℂ⦄, dist y 0 < t β†’ β€–f y - y ^ dβ€– ≀ e / 2 * β€–y ^ dβ€– ⊒ βˆ€ {x : β„‚}, dist x 0 < t β†’ dist (g f d x) (g f d 0) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 h : βˆ€ ⦃y : ℂ⦄, dist y 0 < t β†’ β€–f y - y ^ dβ€– ≀ e / 2 * β€–y ^ dβ€– ⊒ βˆƒ Ξ΄ > 0, βˆ€ {x : β„‚}, dist x 0 < Ξ΄ β†’ dist (g f d x) (g f d 0) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
intro z zs
case right f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 h : βˆ€ ⦃y : ℂ⦄, dist y 0 < t β†’ β€–f y - y ^ dβ€– ≀ e / 2 * β€–y ^ dβ€– ⊒ βˆ€ {x : β„‚}, dist x 0 < t β†’ dist (g f d x) (g f d 0) < e
case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 h : βˆ€ ⦃y : ℂ⦄, dist y 0 < t β†’ β€–f y - y ^ dβ€– ≀ e / 2 * β€–y ^ dβ€– z : β„‚ zs : dist z 0 < t ⊒ dist (g f d z) (g f d 0) < e
Please generate a tactic in lean4 to solve the state. STATE: case right f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 h : βˆ€ ⦃y : ℂ⦄, dist y 0 < t β†’ β€–f y - y ^ dβ€– ≀ e / 2 * β€–y ^ dβ€– ⊒ βˆ€ {x : β„‚}, dist x 0 < t β†’ dist (g f d x) (g f d 0) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
specialize h zs
case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 h : βˆ€ ⦃y : ℂ⦄, dist y 0 < t β†’ β€–f y - y ^ dβ€– ≀ e / 2 * β€–y ^ dβ€– z : β„‚ zs : dist z 0 < t ⊒ dist (g f d z) (g f d 0) < e
case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : β€–f z - z ^ dβ€– ≀ e / 2 * β€–z ^ dβ€– ⊒ dist (g f d z) (g f d 0) < e
Please generate a tactic in lean4 to solve the state. STATE: case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 h : βˆ€ ⦃y : ℂ⦄, dist y 0 < t β†’ β€–f y - y ^ dβ€– ≀ e / 2 * β€–y ^ dβ€– z : β„‚ zs : dist z 0 < t ⊒ dist (g f d z) (g f d 0) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
simp only [Complex.norm_eq_abs] at h
case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : β€–f z - z ^ dβ€– ≀ e / 2 * β€–z ^ dβ€– ⊒ dist (g f d z) (g f d 0) < e
case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) ⊒ dist (g f d z) (g f d 0) < e
Please generate a tactic in lean4 to solve the state. STATE: case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : β€–f z - z ^ dβ€– ≀ e / 2 * β€–z ^ dβ€– ⊒ dist (g f d z) (g f d 0) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
simp only [g, Complex.dist_eq]
case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) ⊒ dist (g f d z) (g f d 0) < e
case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) ⊒ Complex.abs ((if z = 0 then 1 else f z / z ^ d) - if True then 1 else f 0 / 0 ^ d) < e
Please generate a tactic in lean4 to solve the state. STATE: case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) ⊒ dist (g f d z) (g f d 0) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
by_cases z0 : z = 0
case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) ⊒ Complex.abs ((if z = 0 then 1 else f z / z ^ d) - if True then 1 else f 0 / 0 ^ d) < e
case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : z = 0 ⊒ Complex.abs ((if z = 0 then 1 else f z / z ^ d) - if True then 1 else f 0 / 0 ^ d) < e case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs ((if z = 0 then 1 else f z / z ^ d) - if True then 1 else f 0 / 0 ^ d) < e
Please generate a tactic in lean4 to solve the state. STATE: case right f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) ⊒ Complex.abs ((if z = 0 then 1 else f z / z ^ d) - if True then 1 else f 0 / 0 ^ d) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
simp only [z0, if_false, eq_self_iff_true, if_true]
case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs ((if z = 0 then 1 else f z / z ^ d) - if True then 1 else f 0 / 0 ^ d) < e
case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs (f z / z ^ d - 1) < e
Please generate a tactic in lean4 to solve the state. STATE: case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs ((if z = 0 then 1 else f z / z ^ d) - if True then 1 else f 0 / 0 ^ d) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
calc abs (f z / z ^ d - 1) = abs (f z * (z ^ d)⁻¹ - 1) := by rw [div_eq_mul_inv] _ = abs ((f z - z ^ d) * (z ^ d)⁻¹) := by rw [mul_sub_right_distrib, mul_inv_cancel (pow_ne_zero d z0)] _ = abs (f z - z ^ d) * (abs (z ^ d))⁻¹ := by rw [Complex.abs.map_mul, map_invβ‚€] _ ≀ e / 2 * abs (z ^ d) * (abs (z ^ d))⁻¹ := by bound _ = e / 2 * (abs (z ^ d) * (abs (z ^ d))⁻¹) := by ring _ ≀ e / 2 * 1 := by bound _ = e / 2 := by ring _ < e := half_lt_self ep
case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs (f z / z ^ d - 1) < e
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs (f z / z ^ d - 1) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
linarith
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t e : ℝ ep : e > 0 ⊒ e / 2 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t✝ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t : Set β„‚ o : IsOpen t fa : AnalyticOn β„‚ f t ht : ball c r = t ga : DifferentiableOn β„‚ (g f d) (t \ {0}) t0 : 0 ∈ t e : ℝ ep : e > 0 ⊒ e / 2 > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
simp only [z0, sub_self, AbsoluteValue.map_zero]
case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : z = 0 ⊒ Complex.abs ((if z = 0 then 1 else f z / z ^ d) - if True then 1 else f 0 / 0 ^ d) < e
case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : z = 0 ⊒ 0 < e
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : z = 0 ⊒ Complex.abs ((if z = 0 then 1 else f z / z ^ d) - if True then 1 else f 0 / 0 ^ d) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
exact ep
case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : z = 0 ⊒ 0 < e
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : z = 0 ⊒ 0 < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rw [div_eq_mul_inv]
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs (f z / z ^ d - 1) = Complex.abs (f z * (z ^ d)⁻¹ - 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs (f z / z ^ d - 1) = Complex.abs (f z * (z ^ d)⁻¹ - 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rw [mul_sub_right_distrib, mul_inv_cancel (pow_ne_zero d z0)]
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs (f z * (z ^ d)⁻¹ - 1) = Complex.abs ((f z - z ^ d) * (z ^ d)⁻¹)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs (f z * (z ^ d)⁻¹ - 1) = Complex.abs ((f z - z ^ d) * (z ^ d)⁻¹) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
rw [Complex.abs.map_mul, map_invβ‚€]
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs ((f z - z ^ d) * (z ^ d)⁻¹) = Complex.abs (f z - z ^ d) * (Complex.abs (z ^ d))⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs ((f z - z ^ d) * (z ^ d)⁻¹) = Complex.abs (f z - z ^ d) * (Complex.abs (z ^ d))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
bound
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs (f z - z ^ d) * (Complex.abs (z ^ d))⁻¹ ≀ e / 2 * Complex.abs (z ^ d) * (Complex.abs (z ^ d))⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ Complex.abs (f z - z ^ d) * (Complex.abs (z ^ d))⁻¹ ≀ e / 2 * Complex.abs (z ^ d) * (Complex.abs (z ^ d))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
ring
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ e / 2 * Complex.abs (z ^ d) * (Complex.abs (z ^ d))⁻¹ = e / 2 * (Complex.abs (z ^ d) * (Complex.abs (z ^ d))⁻¹)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ e / 2 * Complex.abs (z ^ d) * (Complex.abs (z ^ d))⁻¹ = e / 2 * (Complex.abs (z ^ d) * (Complex.abs (z ^ d))⁻¹) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
bound
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ e / 2 * (Complex.abs (z ^ d) * (Complex.abs (z ^ d))⁻¹) ≀ e / 2 * 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ e / 2 * (Complex.abs (z ^ d) * (Complex.abs (z ^ d))⁻¹) ≀ e / 2 * 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.ga_of_fa
[102, 1]
[140, 100]
ring
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ e / 2 * 1 = e / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t✝¹ : Set β„‚ s : SuperAt f d c : β„‚ fa✝ : AnalyticAt β„‚ f c r : ℝ rp : 0 < r t✝ : Set β„‚ o : IsOpen t✝ fa : AnalyticOn β„‚ f t✝ ht : ball c r = t✝ ga : DifferentiableOn β„‚ (g f d) (t✝ \ {0}) t0 : 0 ∈ t✝ e : ℝ ep : e > 0 t : ℝ tp : t > 0 z : β„‚ zs : dist z 0 < t h : Complex.abs (f z - z ^ d) ≀ e / 2 * Complex.abs (z ^ d) z0 : Β¬z = 0 ⊒ e / 2 * 1 = e / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
intro z z0 zs
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 ⊒ βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ z0 : z β‰  0 zs : z ∈ ball 0 r ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 ⊒ βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
simp only [mem_ball_zero_iff, Complex.norm_eq_abs, lt_min_iff] at zs
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ z0 : z β‰  0 zs : z ∈ ball 0 r ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ z0 : z β‰  0 zs : Complex.abs z < r ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ z0 : z β‰  0 zs : z ∈ ball 0 r ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
specialize gs zs
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ z0 : z β‰  0 zs : Complex.abs z < r ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) z : β„‚ z0 : z β‰  0 zs : Complex.abs z < r gs : Complex.abs (g f d z - 1) < 1 / 4 ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ z0 : z β‰  0 zs : Complex.abs z < r ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
simp only [g, z0, if_false, eq_self_iff_true, if_true] at gs
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) z : β„‚ z0 : z β‰  0 zs : Complex.abs z < r gs : Complex.abs (g f d z - 1) < 1 / 4 ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) z : β„‚ z0 : z β‰  0 zs : Complex.abs z < r gs : Complex.abs (f z / z ^ d - 1) < 1 / 4 ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) z : β„‚ z0 : z β‰  0 zs : Complex.abs z < r gs : Complex.abs (g f d z - 1) < 1 / 4 ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
exact gs.le
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) z : β„‚ z0 : z β‰  0 zs : Complex.abs z < r gs : Complex.abs (f z / z ^ d - 1) < 1 / 4 ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) z : β„‚ z0 : z β‰  0 zs : Complex.abs z < r gs : Complex.abs (f z / z ^ d - 1) < 1 / 4 ⊒ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
intro z zs
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 ⊒ βˆ€ {z : β„‚}, z ∈ ball 0 r β†’ Complex.abs z ≀ 1 / 2
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z : β„‚ zs : z ∈ ball 0 r ⊒ Complex.abs z ≀ 1 / 2
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 ⊒ βˆ€ {z : β„‚}, z ∈ ball 0 r β†’ Complex.abs z ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
simp only [mem_ball_zero_iff, Complex.norm_eq_abs] at zs
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z : β„‚ zs : z ∈ ball 0 r ⊒ Complex.abs z ≀ 1 / 2
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z : β„‚ zs : Complex.abs z < r ⊒ Complex.abs z ≀ 1 / 2
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z : β„‚ zs : z ∈ ball 0 r ⊒ Complex.abs z ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
exact le_trans zs.le r2
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z : β„‚ zs : Complex.abs z < r ⊒ Complex.abs z ≀ 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z : β„‚ zs : Complex.abs z < r ⊒ Complex.abs z ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
intro z zs
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 ⊒ MapsTo f (ball 0 r) (ball 0 r)
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z : β„‚ zs : z ∈ ball 0 r ⊒ f z ∈ ball 0 r
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 ⊒ MapsTo f (ball 0 r) (ball 0 r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
simp only [mem_ball_zero_iff, Complex.norm_eq_abs] at zs gs ⊒
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z : β„‚ zs : z ∈ ball 0 r ⊒ f z ∈ ball 0 r
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 ⊒ Complex.abs (f z) < r
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 gs : βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ ball 0 r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z : β„‚ zs : z ∈ ball 0 r ⊒ f z ∈ ball 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
by_cases z0 : z = 0
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 ⊒ Complex.abs (f z) < r
case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : z = 0 ⊒ Complex.abs (f z) < r case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ Complex.abs (f z) < r
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 ⊒ Complex.abs (f z) < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
calc abs (f z) _ = abs (f z / z ^ d * z ^ d) := by rw [div_mul_cancelβ‚€ _ (pow_ne_zero d z0)] _ = abs (f z / z ^ d - 1 + 1) * abs z ^ d := by simp only [AbsoluteValue.map_mul, Complex.abs_pow, sub_add_cancel] _ ≀ (abs (f z / z ^ d - 1) + abs (1 : β„‚)) * r ^ d := by bound _ ≀ (1 / 4 + abs (1 : β„‚)) * r ^ d := by bound [gs z0 zs] _ ≀ 5 / 4 * r ^ (d - 1) * r := by rw [mul_assoc, ← pow_succ, Nat.sub_add_cancel (le_trans one_le_two s.d2)]; norm_num _ ≀ 5 / 4 * (1 / 2 : ℝ) ^ (d - 1) * r := by bound _ ≀ 5 / 4 * (1 / 2 : ℝ) ^ (2 - 1) * r := by bound _ = 5 / 8 * r := by norm_num _ < r := by linarith
case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ Complex.abs (f z) < r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ Complex.abs (f z) < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
simp only [z0, s.f0, rp, AbsoluteValue.map_zero]
case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : z = 0 ⊒ Complex.abs (f z) < r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : z = 0 ⊒ Complex.abs (f z) < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
rw [div_mul_cancelβ‚€ _ (pow_ne_zero d z0)]
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ Complex.abs (f z) = Complex.abs (f z / z ^ d * z ^ d)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ Complex.abs (f z) = Complex.abs (f z / z ^ d * z ^ d) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
simp only [AbsoluteValue.map_mul, Complex.abs_pow, sub_add_cancel]
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ Complex.abs (f z / z ^ d * z ^ d) = Complex.abs (f z / z ^ d - 1 + 1) * Complex.abs z ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ Complex.abs (f z / z ^ d * z ^ d) = Complex.abs (f z / z ^ d - 1 + 1) * Complex.abs z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
bound
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ Complex.abs (f z / z ^ d - 1 + 1) * Complex.abs z ^ d ≀ (Complex.abs (f z / z ^ d - 1) + Complex.abs 1) * r ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ Complex.abs (f z / z ^ d - 1 + 1) * Complex.abs z ^ d ≀ (Complex.abs (f z / z ^ d - 1) + Complex.abs 1) * r ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
bound [gs z0 zs]
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ (Complex.abs (f z / z ^ d - 1) + Complex.abs 1) * r ^ d ≀ (1 / 4 + Complex.abs 1) * r ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ (Complex.abs (f z / z ^ d - 1) + Complex.abs 1) * r ^ d ≀ (1 / 4 + Complex.abs 1) * r ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
rw [mul_assoc, ← pow_succ, Nat.sub_add_cancel (le_trans one_le_two s.d2)]
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ (1 / 4 + Complex.abs 1) * r ^ d ≀ 5 / 4 * r ^ (d - 1) * r
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ (1 / 4 + Complex.abs 1) * r ^ d ≀ 5 / 4 * r ^ d
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ (1 / 4 + Complex.abs 1) * r ^ d ≀ 5 / 4 * r ^ (d - 1) * r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
norm_num
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ (1 / 4 + Complex.abs 1) * r ^ d ≀ 5 / 4 * r ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ (1 / 4 + Complex.abs 1) * r ^ d ≀ 5 / 4 * r ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
bound
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ 5 / 4 * r ^ (d - 1) * r ≀ 5 / 4 * (1 / 2) ^ (d - 1) * r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ 5 / 4 * r ^ (d - 1) * r ≀ 5 / 4 * (1 / 2) ^ (d - 1) * r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
bound
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ 5 / 4 * (1 / 2) ^ (d - 1) * r ≀ 5 / 4 * (1 / 2) ^ (2 - 1) * r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ 5 / 4 * (1 / 2) ^ (d - 1) * r ≀ 5 / 4 * (1 / 2) ^ (2 - 1) * r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
norm_num
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ 5 / 4 * (1 / 2) ^ (2 - 1) * r = 5 / 8 * r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ 5 / 4 * (1 / 2) ^ (2 - 1) * r = 5 / 8 * r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.super_on_ball
[148, 1]
[179, 31]
linarith
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ 5 / 8 * r < r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperAt f d r : ℝ rp : 0 < r r2 : r ≀ 1 / 2 fa : AnalyticOn β„‚ f (ball 0 r) gs✝ : βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g f d z - 1) < 1 / 4 z : β„‚ zs : Complex.abs z < r gs : βˆ€ {z : β„‚}, z β‰  0 β†’ Complex.abs z < r β†’ Complex.abs (f z / z ^ d - 1) ≀ 1 / 4 z0 : Β¬z = 0 ⊒ 5 / 8 * r < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
rcases s.fa0.exists_ball_analyticOn with ⟨r0, r0p, fa⟩
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d ⊒ βˆƒ t, SuperNear f d t
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) ⊒ βˆƒ t, SuperNear f d t
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d ⊒ βˆƒ t, SuperNear f d t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
rcases Metric.continuousAt_iff.mp (s.ga_of_fa (fa 0 (mem_ball_self r0p))).continuousAt (1 / 4) (by norm_num) with ⟨r1, r1p, gs⟩
case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) ⊒ βˆƒ t, SuperNear f d t
case intro.intro.intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 ⊒ βˆƒ t, SuperNear f d t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) ⊒ βˆƒ t, SuperNear f d t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
set r := min r0 (min r1 (1 / 2))
case intro.intro.intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 ⊒ βˆƒ t, SuperNear f d t
case intro.intro.intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) ⊒ βˆƒ t, SuperNear f d t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 ⊒ βˆƒ t, SuperNear f d t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
use ball 0 r
case intro.intro.intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) ⊒ βˆƒ t, SuperNear f d t
case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) ⊒ SuperNear f d (ball 0 r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) ⊒ βˆƒ t, SuperNear f d t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
have rp : 0 < r := by bound
case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) ⊒ SuperNear f d (ball 0 r)
case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r ⊒ SuperNear f d (ball 0 r)
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) ⊒ SuperNear f d (ball 0 r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
have r2 : r ≀ 1 / 2 := le_trans (min_le_right _ _) (min_le_right _ _)
case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r ⊒ SuperNear f d (ball 0 r)
case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r r2 : r ≀ 1 / 2 ⊒ SuperNear f d (ball 0 r)
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r ⊒ SuperNear f d (ball 0 r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
have rr1 : r ≀ r1 := le_trans (min_le_right r0 _) (min_le_left r1 _)
case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r r2 : r ≀ 1 / 2 ⊒ SuperNear f d (ball 0 r)
case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r r2 : r ≀ 1 / 2 rr1 : r ≀ r1 ⊒ SuperNear f d (ball 0 r)
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r r2 : r ≀ 1 / 2 ⊒ SuperNear f d (ball 0 r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
simp only [g0, dist_zero_right, Complex.norm_eq_abs, Complex.dist_eq, sub_zero] at gs
case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r r2 : r ≀ 1 / 2 rr1 : r ≀ r1 ⊒ SuperNear f d (ball 0 r)
case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r r2 : r ≀ 1 / 2 rr1 : r ≀ r1 gs : βˆ€ {x : β„‚}, Complex.abs x < r1 β†’ Complex.abs (g f d x - 1) < 1 / 4 ⊒ SuperNear f d (ball 0 r)
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r r2 : r ≀ 1 / 2 rr1 : r ≀ r1 ⊒ SuperNear f d (ball 0 r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
exact s.super_on_ball rp r2 (fa.mono (Metric.ball_subset_ball (min_le_left r0 _))) (fun {z} zr ↦ gs (lt_of_lt_of_le zr rr1))
case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r r2 : r ≀ 1 / 2 rr1 : r ≀ r1 gs : βˆ€ {x : β„‚}, Complex.abs x < r1 β†’ Complex.abs (g f d x - 1) < 1 / 4 ⊒ SuperNear f d (ball 0 r)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 r : ℝ := min r0 (min r1 (1 / 2)) rp : 0 < r r2 : r ≀ 1 / 2 rr1 : r ≀ r1 gs : βˆ€ {x : β„‚}, Complex.abs x < r1 β†’ Complex.abs (g f d x - 1) < 1 / 4 ⊒ SuperNear f d (ball 0 r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
norm_num
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) ⊒ 1 / 4 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) ⊒ 1 / 4 > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAt.superNear
[183, 1]
[195, 32]
bound
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) ⊒ 0 < r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperAt f d r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ f (ball 0 r0) r1 : ℝ r1p : r1 > 0 gs : βˆ€ {x : β„‚}, dist x 0 < r1 β†’ dist (g f d x) (g f d 0) < 1 / 4 r : ℝ := min r0 (min r1 (1 / 2)) ⊒ 0 < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNear.gs
[198, 1]
[202, 45]
by_cases z0 : z = 0
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t ⊒ Complex.abs (g f d z - 1) ≀ 1 / 4
case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : z = 0 ⊒ Complex.abs (g f d z - 1) ≀ 1 / 4 case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : Β¬z = 0 ⊒ Complex.abs (g f d z - 1) ≀ 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t ⊒ Complex.abs (g f d z - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNear.gs
[198, 1]
[202, 45]
simp only [z0, g0, sub_self, AbsoluteValue.map_zero, one_div, inv_nonneg, zero_le_bit0, zero_le_one]
case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : z = 0 ⊒ Complex.abs (g f d z - 1) ≀ 1 / 4
case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : z = 0 ⊒ 0 ≀ 4
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : z = 0 ⊒ Complex.abs (g f d z - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNear.gs
[198, 1]
[202, 45]
norm_num
case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : z = 0 ⊒ 0 ≀ 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : z = 0 ⊒ 0 ≀ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNear.gs
[198, 1]
[202, 45]
simp only [g, z0, if_false, s.gs' z0 zt]
case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : Β¬z = 0 ⊒ Complex.abs (g f d z - 1) ≀ 1 / 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : Β¬z = 0 ⊒ Complex.abs (g f d z - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNear.g_ne_zero
[205, 1]
[206, 85]
have h := s.gs zt
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t ⊒ g f d z β‰  0
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : Complex.abs (g f d z - 1) ≀ 1 / 4 ⊒ g f d z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t ⊒ g f d z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNear.g_ne_zero
[205, 1]
[206, 85]
contrapose h
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : Complex.abs (g f d z - 1) ≀ 1 / 4 ⊒ g f d z β‰  0
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : Β¬g f d z β‰  0 ⊒ Β¬Complex.abs (g f d z - 1) ≀ 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : Complex.abs (g f d z - 1) ≀ 1 / 4 ⊒ g f d z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNear.g_ne_zero
[205, 1]
[206, 85]
simp only [not_not] at h
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : Β¬g f d z β‰  0 ⊒ Β¬Complex.abs (g f d z - 1) ≀ 1 / 4
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : g f d z = 0 ⊒ Β¬Complex.abs (g f d z - 1) ≀ 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : Β¬g f d z β‰  0 ⊒ Β¬Complex.abs (g f d z - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNear.g_ne_zero
[205, 1]
[206, 85]
simp only [h]
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : g f d z = 0 ⊒ Β¬Complex.abs (g f d z - 1) ≀ 1 / 4
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : g f d z = 0 ⊒ Β¬Complex.abs (0 - 1) ≀ 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : g f d z = 0 ⊒ Β¬Complex.abs (g f d z - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNear.g_ne_zero
[205, 1]
[206, 85]
norm_num
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : g f d z = 0 ⊒ Β¬Complex.abs (0 - 1) ≀ 1 / 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t h : g f d z = 0 ⊒ Β¬Complex.abs (0 - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNear.f_ne_zero
[209, 1]
[210, 87]
simp only [s.fg, mul_ne_zero (pow_ne_zero _ z0) (s.g_ne_zero zt), Ne, not_false_iff]
f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : z β‰  0 ⊒ f z β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z✝ : β„‚ t : Set β„‚ s : SuperNear f d t z : β„‚ zt : z ∈ t z0 : z β‰  0 ⊒ f z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_eqn
[245, 1]
[248, 68]
intro n
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ βˆ€ (n : β„•), term f d n (f z) = term f d (n + 1) z ^ d
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t n : β„• ⊒ term f d n (f z) = term f d (n + 1) z ^ d
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ βˆ€ (n : β„•), term f d n (f z) = term f d (n + 1) z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_eqn
[245, 1]
[248, 68]
simp only [term, ← Function.iterate_succ_apply, pow_mul_nat, div_mul, pow_succ' _ (n + 1), mul_div_cancel_leftβ‚€ _ s.dz, Nat.succ_eq_add_one, Nat.cast_mul]
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t n : β„• ⊒ term f d n (f z) = term f d (n + 1) z ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t n : β„• ⊒ term f d n (f z) = term f d (n + 1) z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_base
[255, 1]
[260, 50]
rw [term]
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = (z * term f d 0 z) ^ d
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = (z * g f d (f^[0] z) ^ (1 / ↑(d ^ (0 + 1)))) ^ d
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = (z * term f d 0 z) ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_base
[255, 1]
[260, 50]
simp only [Function.iterate_zero, id, pow_one, one_div]
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = (z * g f d (f^[0] z) ^ (1 / ↑(d ^ (0 + 1)))) ^ d
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = (z * g f d z ^ (↑(d ^ (0 + 1)))⁻¹) ^ d
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = (z * g f d (f^[0] z) ^ (1 / ↑(d ^ (0 + 1)))) ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_base
[255, 1]
[260, 50]
rw [mul_pow, pow_mul_nat, zero_add, pow_one, inv_mul_cancel _]
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = (z * g f d z ^ (↑(d ^ (0 + 1)))⁻¹) ^ d
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = z ^ d * g f d z ^ 1 f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ ↑d β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = (z * g f d z ^ (↑(d ^ (0 + 1)))⁻¹) ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_base
[255, 1]
[260, 50]
rw [s.fg]
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = z ^ d * g f d z ^ 1
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ z ^ d * g f d z = z ^ d * g f d z ^ 1
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ f z = z ^ d * g f d z ^ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_base
[255, 1]
[260, 50]
simp only [Complex.cpow_one]
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ z ^ d * g f d z = z ^ d * g f d z ^ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ z ^ d * g f d z = z ^ d * g f d z ^ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_base
[255, 1]
[260, 50]
simp only [Ne, Nat.cast_eq_zero]
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ ↑d β‰  0
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ Β¬d = 0
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ ↑d β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_base
[255, 1]
[260, 50]
exact (gt_of_ge_of_gt s.d2 (by norm_num)).ne'
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ Β¬d = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ Β¬d = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_base
[255, 1]
[260, 50]
norm_num
f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ 2 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ d : β„• z : β„‚ t : Set β„‚ s : SuperNear f d t ⊒ 2 > 0 TACTIC: