url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_at_zero | [393, 1] | [395, 67] | induction' n with n h | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
n : β
β’ f^[n] 0 = 0 | case zero
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
β’ f^[0] 0 = 0
case succ
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
n : β
h : f^[n] 0 = 0
β’ f^[n + 1] 0 = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
n : β
β’ f^[n] 0 = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_at_zero | [393, 1] | [395, 67] | simp only [Function.iterate_zero, id] | case zero
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
β’ f^[0] 0 = 0
case succ
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
n : β
h : f^[n] 0 = 0
β’ f^[n + 1] 0 = 0 | case succ
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
n : β
h : f^[n] 0 = 0
β’ f^[n + 1] 0 = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case zero
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
β’ f^[0] 0 = 0
case succ
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
n : β
h : f^[n] 0 = 0
β’ f^[n + 1] 0 = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_at_zero | [393, 1] | [395, 67] | simp only [Function.iterate_succ', Function.comp_apply, h, s.f0] | case succ
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
n : β
h : f^[n] 0 = 0
β’ f^[n + 1] 0 = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case succ
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
n : β
h : f^[n] 0 = 0
β’ f^[n + 1] 0 = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | term_at_zero | [398, 1] | [399, 61] | simp only [term, iterates_at_zero s, g0, Complex.one_cpow] | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
n : β
β’ term f d n 0 = 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
n : β
β’ term f d n 0 = 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | term_prod_at_zero | [402, 1] | [403, 47] | simp_rw [tprodOn, term_at_zero s, tprod_one] | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
β’ tprodOn (term f d) 0 = 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
β’ tprodOn (term f d) 0 = 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_monic | [406, 1] | [410, 43] | have dz : HasDerivAt (fun z : β β¦ z) 1 0 := hasDerivAt_id 0 | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
β’ HasDerivAt (bottcherNear f d) 1 0 | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
β’ HasDerivAt (bottcherNear f d) 1 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
β’ HasDerivAt (bottcherNear f d) 1 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_monic | [406, 1] | [410, 43] | have db := HasDerivAt.mul dz (term_prod_analytic_z s 0 s.t0).differentiableAt.hasDerivAt | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
β’ HasDerivAt (bottcherNear f d) 1 0 | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
db : HasDerivAt (fun y => y * tprodOn (term f d) y) (1 * tprodOn (term f d) 0 + 0 * deriv (tprodOn (term f d)) 0) 0
β’ HasDerivAt (bottcherNear f d) 1 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
β’ HasDerivAt (bottcherNear f d) 1 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_monic | [406, 1] | [410, 43] | simp only [one_mul, MulZeroClass.zero_mul, add_zero] at db | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
db : HasDerivAt (fun y => y * tprodOn (term f d) y) (1 * tprodOn (term f d) 0 + 0 * deriv (tprodOn (term f d)) 0) 0
β’ HasDerivAt (bottcherNear f d) 1 0 | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
db : HasDerivAt (fun y => y * tprodOn (term f d) y) (tprodOn (term f d) 0) 0
β’ HasDerivAt (bottcherNear f d) 1 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
db : HasDerivAt (fun y => y * tprodOn (term f d) y) (1 * tprodOn (term f d) 0 + 0 * deriv (tprodOn (term f d)) 0) 0
β’ HasDerivAt (bottcherNear f d) 1 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_monic | [406, 1] | [410, 43] | rw [term_prod_at_zero s] at db | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
db : HasDerivAt (fun y => y * tprodOn (term f d) y) (tprodOn (term f d) 0) 0
β’ HasDerivAt (bottcherNear f d) 1 0 | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
db : HasDerivAt (fun y => y * tprodOn (term f d) y) 1 0
β’ HasDerivAt (bottcherNear f d) 1 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
db : HasDerivAt (fun y => y * tprodOn (term f d) y) (tprodOn (term f d) 0) 0
β’ HasDerivAt (bottcherNear f d) 1 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_monic | [406, 1] | [410, 43] | exact db | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
db : HasDerivAt (fun y => y * tprodOn (term f d) y) 1 0
β’ HasDerivAt (bottcherNear f d) 1 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
dz : HasDerivAt (fun z => z) 1 0
db : HasDerivAt (fun y => y * tprodOn (term f d) y) 1 0
β’ HasDerivAt (bottcherNear f d) 1 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_zero | [413, 1] | [414, 50] | simp only [bottcherNear, MulZeroClass.zero_mul] | f : β β β
d : β
z : β
t : Set β
β’ bottcherNear f d 0 = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
β’ bottcherNear f d 0 = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | by_cases z0 : z = 0 | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Tendsto (fun n => f^[n] z) atTop (π 0) | case pos
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : z = 0
β’ Tendsto (fun n => f^[n] z) atTop (π 0)
case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
β’ Tendsto (fun n => f^[n] z) atTop (π 0) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Tendsto (fun n => f^[n] z) atTop (π 0)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | simp only [z0, iterates_at_zero s, tendsto_const_nhds] | case pos
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : z = 0
β’ Tendsto (fun n => f^[n] z) atTop (π 0)
case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
β’ Tendsto (fun n => f^[n] z) atTop (π 0) | case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
β’ Tendsto (fun n => f^[n] z) atTop (π 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : z = 0
β’ Tendsto (fun n => f^[n] z) atTop (π 0)
case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
β’ Tendsto (fun n => f^[n] z) atTop (π 0)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | rw [Metric.tendsto_atTop] | case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
β’ Tendsto (fun n => f^[n] z) atTop (π 0) | case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
β’ β Ξ΅ > 0, β N, β n β₯ N, dist (f^[n] z) 0 < Ξ΅ | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
β’ Tendsto (fun n => f^[n] z) atTop (π 0)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | intro e ep | case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
β’ β Ξ΅ > 0, β N, β n β₯ N, dist (f^[n] z) 0 < Ξ΅ | case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
β’ β N, β n β₯ N, dist (f^[n] z) 0 < e | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
β’ β Ξ΅ > 0, β N, β n β₯ N, dist (f^[n] z) 0 < Ξ΅
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | simp only [Complex.dist_eq, sub_zero] | case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
β’ β N, β n β₯ N, dist (f^[n] z) 0 < e | case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
β’ β N, β n β₯ N, dist (f^[n] z) 0 < e
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | have xp : e / abs z > 0 := div_pos ep (Complex.abs.pos z0) | case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e | case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | rcases exists_pow_lt_of_lt_one xp (by norm_num : (5 / 8 : β) < 1) with β¨N, Nbβ© | case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e | case neg.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N < e / Complex.abs z
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | simp only [lt_div_iff (Complex.abs.pos z0)] at Nb | case neg.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N < e / Complex.abs z
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e | case neg.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N < e / Complex.abs z
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | use N | case neg.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e | case h
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
β’ β n β₯ N, Complex.abs (f^[n] z) < e | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
β’ β N, β n β₯ N, Complex.abs (f^[n] z) < e
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | intro n nN | case h
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
β’ β n β₯ N, Complex.abs (f^[n] z) < e | case h
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
n : β
nN : n β₯ N
β’ Complex.abs (f^[n] z) < e | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
β’ β n β₯ N, Complex.abs (f^[n] z) < e
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | refine lt_of_le_of_lt (iterates_converge s n zt) (lt_of_le_of_lt ?_ Nb) | case h
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
n : β
nN : n β₯ N
β’ Complex.abs (f^[n] z) < e | case h
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
n : β
nN : n β₯ N
β’ (5 / 8) ^ n * Complex.abs z β€ (5 / 8) ^ N * Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
n : β
nN : n β₯ N
β’ Complex.abs (f^[n] z) < e
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | bound | case h
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
n : β
nN : n β₯ N
β’ (5 / 8) ^ n * Complex.abs z β€ (5 / 8) ^ N * Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
N : β
Nb : (5 / 8) ^ N * Complex.abs z < e
n : β
nN : n β₯ N
β’ (5 / 8) ^ n * Complex.abs z β€ (5 / 8) ^ N * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | iterates_tendsto | [425, 1] | [435, 8] | norm_num | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
β’ 5 / 8 < 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
z0 : Β¬z = 0
e : β
ep : e > 0
xp : e / Complex.abs z > 0
β’ 5 / 8 < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_lt_one | [438, 1] | [448, 88] | rcases Metric.continuousAt_iff.mp (bottcherNear_analytic_z s _ s.t0).continuousAt 1 zero_lt_one
with β¨r, rp, rsβ© | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs (bottcherNear f d z) < 1 | case intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, dist x 0 < r β dist (bottcherNear f d x) (bottcherNear f d 0) < 1
β’ Complex.abs (bottcherNear f d z) < 1 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs (bottcherNear f d z) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_lt_one | [438, 1] | [448, 88] | simp only [Complex.dist_eq, sub_zero, bottcherNear_zero] at rs | case intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, dist x 0 < r β dist (bottcherNear f d x) (bottcherNear f d 0) < 1
β’ Complex.abs (bottcherNear f d z) < 1 | case intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
β’ Complex.abs (bottcherNear f d z) < 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, dist x 0 < r β dist (bottcherNear f d x) (bottcherNear f d 0) < 1
β’ Complex.abs (bottcherNear f d z) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_lt_one | [438, 1] | [448, 88] | have b' : βαΆ n in atTop, abs (bottcherNear f d (f^[n] z)) < 1 := by
refine (Metric.tendsto_nhds.mp (iterates_tendsto s zt) r rp).mp
(Filter.eventually_of_forall fun n h β¦ ?_)
rw [Complex.dist_eq, sub_zero] at h; exact rs h | case intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
β’ Complex.abs (bottcherNear f d z) < 1 | case intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
β’ Complex.abs (bottcherNear f d z) < 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
β’ Complex.abs (bottcherNear f d z) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_lt_one | [438, 1] | [448, 88] | rcases b'.exists with β¨n, bβ© | case intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
β’ Complex.abs (bottcherNear f d z) < 1 | case intro.intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
n : β
b : Complex.abs (bottcherNear f d (f^[n] z)) < 1
β’ Complex.abs (bottcherNear f d z) < 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
β’ Complex.abs (bottcherNear f d z) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_lt_one | [438, 1] | [448, 88] | contrapose b | case intro.intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
n : β
b : Complex.abs (bottcherNear f d (f^[n] z)) < 1
β’ Complex.abs (bottcherNear f d z) < 1 | case intro.intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
n : β
b : Β¬Complex.abs (bottcherNear f d z) < 1
β’ Β¬Complex.abs (bottcherNear f d (f^[n] z)) < 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
n : β
b : Complex.abs (bottcherNear f d (f^[n] z)) < 1
β’ Complex.abs (bottcherNear f d z) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_lt_one | [438, 1] | [448, 88] | simp only [not_lt] at b β’ | case intro.intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
n : β
b : Β¬Complex.abs (bottcherNear f d z) < 1
β’ Β¬Complex.abs (bottcherNear f d (f^[n] z)) < 1 | case intro.intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
n : β
b : 1 β€ Complex.abs (bottcherNear f d z)
β’ 1 β€ Complex.abs (bottcherNear f d (f^[n] z)) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
n : β
b : Β¬Complex.abs (bottcherNear f d z) < 1
β’ Β¬Complex.abs (bottcherNear f d (f^[n] z)) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_lt_one | [438, 1] | [448, 88] | simp only [bottcherNear_eqn_iter s zt n, Complex.abs.map_pow, one_le_pow_of_one_le b] | case intro.intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
n : β
b : 1 β€ Complex.abs (bottcherNear f d z)
β’ 1 β€ Complex.abs (bottcherNear f d (f^[n] z)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
b' : βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
n : β
b : 1 β€ Complex.abs (bottcherNear f d z)
β’ 1 β€ Complex.abs (bottcherNear f d (f^[n] z))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_lt_one | [438, 1] | [448, 88] | refine (Metric.tendsto_nhds.mp (iterates_tendsto s zt) r rp).mp
(Filter.eventually_of_forall fun n h β¦ ?_) | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
β’ βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1 | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
n : β
h : dist (f^[n] z) 0 < r
β’ Complex.abs (bottcherNear f d (f^[n] z)) < 1 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
β’ βαΆ (n : β) in atTop, Complex.abs (bottcherNear f d (f^[n] z)) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_lt_one | [438, 1] | [448, 88] | rw [Complex.dist_eq, sub_zero] at h | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
n : β
h : dist (f^[n] z) 0 < r
β’ Complex.abs (bottcherNear f d (f^[n] z)) < 1 | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
n : β
h : Complex.abs (f^[n] z) < r
β’ Complex.abs (bottcherNear f d (f^[n] z)) < 1 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
n : β
h : dist (f^[n] z) 0 < r
β’ Complex.abs (bottcherNear f d (f^[n] z)) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_lt_one | [438, 1] | [448, 88] | exact rs h | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
n : β
h : Complex.abs (f^[n] z) < r
β’ Complex.abs (bottcherNear f d (f^[n] z)) < 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
r : β
rp : r > 0
rs : β {x : β}, Complex.abs x < r β Complex.abs (bottcherNear f d x) < 1
n : β
h : Complex.abs (f^[n] z) < r
β’ Complex.abs (bottcherNear f d (f^[n] z)) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | simp only [bottcherNear, Complex.abs.map_mul] | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs (bottcherNear f d z) β€ 3 * Complex.abs z | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs z * Complex.abs (β' (n : β), term f d n z) β€ 3 * Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs (bottcherNear f d z) β€ 3 * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | rw [mul_comm] | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs z * Complex.abs (β' (n : β), term f d n z) β€ 3 * Complex.abs z | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs (β' (n : β), term f d n z) * Complex.abs z β€ 3 * Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs z * Complex.abs (β' (n : β), term f d n z) β€ 3 * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | refine mul_le_mul_of_nonneg_right ?_ (Complex.abs.nonneg _) | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs (β' (n : β), term f d n z) * Complex.abs z β€ 3 * Complex.abs z | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs (β' (n : β), term f d n z) β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs (β' (n : β), term f d n z) * Complex.abs z β€ 3 * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | rcases term_prod_exists s _ zt with β¨p, hβ© | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs (β' (n : β), term f d n z) β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : HasProd (fun n => term f d n z) p
β’ Complex.abs (β' (n : β), term f d n z) β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
β’ Complex.abs (β' (n : β), term f d n z) β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | rw [h.tprod_eq] | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : HasProd (fun n => term f d n z) p
β’ Complex.abs (β' (n : β), term f d n z) β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : HasProd (fun n => term f d n z) p
β’ Complex.abs p β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : HasProd (fun n => term f d n z) p
β’ Complex.abs (β' (n : β), term f d n z) β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | simp only [HasProd] at h | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : HasProd (fun n => term f d n z) p
β’ Complex.abs p β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : Tendsto (fun s => s.prod fun x => term f d x z) atTop (π p)
β’ Complex.abs p β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : HasProd (fun n => term f d n z) p
β’ Complex.abs p β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | apply le_of_tendsto' (Filter.Tendsto.comp Complex.continuous_abs.continuousAt h) | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : Tendsto (fun s => s.prod fun x => term f d x z) atTop (π p)
β’ Complex.abs p β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : Tendsto (fun s => s.prod fun x => term f d x z) atTop (π p)
β’ β (c : Finset β), (βComplex.abs β fun s => s.prod fun x => term f d x z) c β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : Tendsto (fun s => s.prod fun x => term f d x z) atTop (π p)
β’ Complex.abs p β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | intro A | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : Tendsto (fun s => s.prod fun x => term f d x z) atTop (π p)
β’ β (c : Finset β), (βComplex.abs β fun s => s.prod fun x => term f d x z) c β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : Tendsto (fun s => s.prod fun x => term f d x z) atTop (π p)
A : Finset β
β’ (βComplex.abs β fun s => s.prod fun x => term f d x z) A β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : Tendsto (fun s => s.prod fun x => term f d x z) atTop (π p)
β’ β (c : Finset β), (βComplex.abs β fun s => s.prod fun x => term f d x z) c β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | clear h | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : Tendsto (fun s => s.prod fun x => term f d x z) atTop (π p)
A : Finset β
β’ (βComplex.abs β fun s => s.prod fun x => term f d x z) A β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
β’ (βComplex.abs β fun s => s.prod fun x => term f d x z) A β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
h : Tendsto (fun s => s.prod fun x => term f d x z) atTop (π p)
A : Finset β
β’ (βComplex.abs β fun s => s.prod fun x => term f d x z) A β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | simp only [Function.comp, Complex.abs.map_prod] | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
β’ (βComplex.abs β fun s => s.prod fun x => term f d x z) A β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
β’ (βComplex.abs β fun s => s.prod fun x => term f d x z) A β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | have tb : β n, abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2 : β) ^ n := by
intro n
calc abs (term f d n z)
_ = abs (1 + (term f d n z - 1)) := by ring_nf
_ β€ Complex.abs 1 + abs (term f d n z - 1) := by bound
_ = 1 + abs (term f d n z - 1) := by norm_num
_ β€ 1 + 1 / 2 * (1 / 2 : β) ^ n := by bound [term_converges s n zt] | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | have p : β n : β, 0 < (1 : β) + 1 / 2 * (1 / 2 : β) ^ n := fun _ β¦ add_pos (by bound) (by bound) | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | have lb : β n : β, Real.log ((1 : β) + 1 / 2 * (1 / 2 : β) ^ n) β€ 1 / 2 * (1 / 2 : β) ^ n :=
fun n β¦ le_trans (Real.log_le_sub_one_of_pos (p n)) (le_of_eq (by ring)) | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | refine le_trans (Finset.prod_le_prod (fun _ _ β¦ Complex.abs.nonneg _) fun n _ β¦ tb n) ?_ | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => 1 + 1 / 2 * (1 / 2) ^ i) β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => Complex.abs (term f d i z)) β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | rw [β Real.exp_log (Finset.prod_pos fun n _ β¦ p n), Real.log_prod _ _ fun n _ β¦ (p n).ne'] | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => 1 + 1 / 2 * (1 / 2) ^ i) β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.sum fun i => (1 + 1 / 2 * (1 / 2) ^ i).log).exp β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.prod fun i => 1 + 1 / 2 * (1 / 2) ^ i) β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | refine le_trans (Real.exp_le_exp.mpr (Finset.sum_le_sum fun n _ β¦ lb n)) ?_ | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.sum fun i => (1 + 1 / 2 * (1 / 2) ^ i).log).exp β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i).exp β€ 3 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.sum fun i => (1 + 1 / 2 * (1 / 2) ^ i).log).exp β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | refine le_trans (Real.exp_le_exp.mpr ?_) Real.exp_one_lt_3.le | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i).exp β€ 3 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i) β€ 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i).exp β€ 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | have geom := partial_scaled_geometric_bound (1 / 2) A one_half_pos.le one_half_lt_one | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i) β€ 1 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
geom : (A.sum fun n => β(1 / 2) * (1 / 2) ^ n) β€ β(1 / 2) * (1 - 1 / 2)β»ΒΉ
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i) β€ 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i) β€ 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | simp only [NNReal.coe_div, NNReal.coe_one, NNReal.coe_two] at geom | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
geom : (A.sum fun n => β(1 / 2) * (1 / 2) ^ n) β€ β(1 / 2) * (1 - 1 / 2)β»ΒΉ
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i) β€ 1 | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
geom : (A.sum fun x => 1 / 2 * (1 / 2) ^ x) β€ 1 / 2 * (1 - 1 / 2)β»ΒΉ
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i) β€ 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
geom : (A.sum fun n => β(1 / 2) * (1 / 2) ^ n) β€ β(1 / 2) * (1 - 1 / 2)β»ΒΉ
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i) β€ 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | exact le_trans geom (by norm_num) | case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
geom : (A.sum fun x => 1 / 2 * (1 / 2) ^ x) β€ 1 / 2 * (1 - 1 / 2)β»ΒΉ
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i) β€ 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
geom : (A.sum fun x => 1 / 2 * (1 / 2) ^ x) β€ 1 / 2 * (1 - 1 / 2)β»ΒΉ
β’ (A.sum fun i => 1 / 2 * (1 / 2) ^ i) β€ 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | intro n | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
β’ β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
β’ β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | calc abs (term f d n z)
_ = abs (1 + (term f d n z - 1)) := by ring_nf
_ β€ Complex.abs 1 + abs (term f d n z - 1) := by bound
_ = 1 + abs (term f d n z - 1) := by norm_num
_ β€ 1 + 1 / 2 * (1 / 2 : β) ^ n := by bound [term_converges s n zt] | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | ring_nf | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ Complex.abs (term f d n z) = Complex.abs (1 + (term f d n z - 1)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ Complex.abs (term f d n z) = Complex.abs (1 + (term f d n z - 1))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | bound | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ Complex.abs (1 + (term f d n z - 1)) β€ Complex.abs 1 + Complex.abs (term f d n z - 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ Complex.abs (1 + (term f d n z - 1)) β€ Complex.abs 1 + Complex.abs (term f d n z - 1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | norm_num | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ Complex.abs 1 + Complex.abs (term f d n z - 1) = 1 + Complex.abs (term f d n z - 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ Complex.abs 1 + Complex.abs (term f d n z - 1) = 1 + Complex.abs (term f d n z - 1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | bound [term_converges s n zt] | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ 1 + Complex.abs (term f d n z - 1) β€ 1 + 1 / 2 * (1 / 2) ^ n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
n : β
β’ 1 + Complex.abs (term f d n z - 1) β€ 1 + 1 / 2 * (1 / 2) ^ n
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | bound | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
xβ : β
β’ 0 < 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
xβ : β
β’ 0 < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | bound | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
xβ : β
β’ 0 < 1 / 2 * (1 / 2) ^ xβ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
p : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
xβ : β
β’ 0 < 1 / 2 * (1 / 2) ^ xβ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | ring | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
n : β
β’ 1 + 1 / 2 * (1 / 2) ^ n - 1 = 1 / 2 * (1 / 2) ^ n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
n : β
β’ 1 + 1 / 2 * (1 / 2) ^ n - 1 = 1 / 2 * (1 / 2) ^ n
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | bottcherNear_le | [451, 1] | [474, 36] | norm_num | f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
geom : (A.sum fun x => 1 / 2 * (1 / 2) ^ x) β€ 1 / 2 * (1 - 1 / 2)β»ΒΉ
β’ 1 / 2 * (1 - 1 / 2)β»ΒΉ β€ 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
d : β
z : β
t : Set β
s : SuperNear f d t
zt : z β t
pβ : β
A : Finset β
tb : β (n : β), Complex.abs (term f d n z) β€ 1 + 1 / 2 * (1 / 2) ^ n
p : β (n : β), 0 < 1 + 1 / 2 * (1 / 2) ^ n
lb : β (n : β), (1 + 1 / 2 * (1 / 2) ^ n).log β€ 1 / 2 * (1 / 2) ^ n
geom : (A.sum fun x => 1 / 2 * (1 / 2) ^ x) β€ 1 / 2 * (1 - 1 / 2)β»ΒΉ
β’ 1 / 2 * (1 - 1 / 2)β»ΒΉ β€ 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.ou | [505, 1] | [509, 36] | have e : u = Prod.fst '' t := by
ext c; simp only [Set.mem_image, Prod.exists, exists_and_right, exists_eq_right]
exact β¨fun m β¦ β¨0, (s.s m).t0β©, fun h β¦ Exists.elim h fun z m β¦ s.tc mβ© | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
β’ IsOpen u | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
e : u = Prod.fst '' t
β’ IsOpen u | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
β’ IsOpen u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.ou | [505, 1] | [509, 36] | rw [e] | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
e : u = Prod.fst '' t
β’ IsOpen u | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
e : u = Prod.fst '' t
β’ IsOpen (Prod.fst '' t) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
e : u = Prod.fst '' t
β’ IsOpen u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.ou | [505, 1] | [509, 36] | exact isOpenMap_fst _ s.o | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
e : u = Prod.fst '' t
β’ IsOpen (Prod.fst '' t) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
e : u = Prod.fst '' t
β’ IsOpen (Prod.fst '' t)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.ou | [505, 1] | [509, 36] | ext c | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
β’ u = Prod.fst '' t | case h
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
c : β
β’ c β u β c β Prod.fst '' t | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
β’ u = Prod.fst '' t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.ou | [505, 1] | [509, 36] | simp only [Set.mem_image, Prod.exists, exists_and_right, exists_eq_right] | case h
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
c : β
β’ c β u β c β Prod.fst '' t | case h
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
c : β
β’ c β u β β x, (c, x) β t | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
c : β
β’ c β u β c β Prod.fst '' t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.ou | [505, 1] | [509, 36] | exact β¨fun m β¦ β¨0, (s.s m).t0β©, fun h β¦ Exists.elim h fun z m β¦ s.tc mβ© | case h
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
c : β
β’ c β u β β x, (c, x) β t | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
c : β
β’ c β u β β x, (c, x) β t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.superAtC | [512, 1] | [521, 42] | intro c m | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
β’ β {c : β}, c β u β SuperAt (f c) d | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
c : β
m : c β u
β’ SuperAt (f c) d | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
β’ β {c : β}, c β u β SuperAt (f c) d
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.superAtC | [512, 1] | [521, 42] | have s := s.s m | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
c : β
m : c β u
β’ SuperAt (f c) d | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
sβ : SuperNearC f d u t
c : β
m : c β u
s : SuperNear (f c) d {z | (c, z) β t}
β’ SuperAt (f c) d | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
s : SuperNearC f d u t
c : β
m : c β u
β’ SuperAt (f c) d
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.superAtC | [512, 1] | [521, 42] | exact
{ d2 := s.d2
fa0 := s.fa0
fd := s.fd
fc := s.fc } | f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
sβ : SuperNearC f d u t
c : β
m : c β u
s : SuperNear (f c) d {z | (c, z) β t}
β’ SuperAt (f c) d | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
u : Set β
t : Set (β Γ β)
sβ : SuperNearC f d u t
c : β
m : c β u
s : SuperNear (f c) d {z | (c, z) β t}
β’ SuperAt (f c) d
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | refine Pair.hartogs o ?_ ?_ | f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
β’ AnalyticOn β (g2 f d) t | case refine_1
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
β’ β (c0 c1 : β), (c0, c1) β t β AnalyticAt β (fun z0 => g2 f d (z0, c1)) c0
case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
β’ β (c0 c1 : β), (c0, c1) β t β AnalyticAt β (fun z1 => g2 f d (c0, z1)) c1 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
β’ AnalyticOn β (g2 f d) t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | intro c z m | case refine_1
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
β’ β (c0 c1 : β), (c0, c1) β t β AnalyticAt β (fun z0 => g2 f d (z0, c1)) c0 | case refine_1
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (fun z0 => g2 f d (z0, z)) c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
β’ β (c0 c1 : β), (c0, c1) β t β AnalyticAt β (fun z0 => g2 f d (z0, c1)) c0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | simp only [g2, g] | case refine_1
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (fun z0 => g2 f d (z0, z)) c | case refine_1
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (fun z0 => if z = 0 then 1 else f z0 z / z ^ d) c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (fun z0 => g2 f d (z0, z)) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | by_cases zero : z = 0 | case refine_1
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (fun z0 => if z = 0 then 1 else f z0 z / z ^ d) c | case pos
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : z = 0
β’ AnalyticAt β (fun z0 => if z = 0 then 1 else f z0 z / z ^ d) c
case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ AnalyticAt β (fun z0 => if z = 0 then 1 else f z0 z / z ^ d) c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (fun z0 => if z = 0 then 1 else f z0 z / z ^ d) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | simp only [zero, eq_self_iff_true, if_true] | case pos
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : z = 0
β’ AnalyticAt β (fun z0 => if z = 0 then 1 else f z0 z / z ^ d) c | case pos
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : z = 0
β’ AnalyticAt β (fun z0 => 1) c | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : z = 0
β’ AnalyticAt β (fun z0 => if z = 0 then 1 else f z0 z / z ^ d) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | exact analyticAt_const | case pos
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : z = 0
β’ AnalyticAt β (fun z0 => 1) c | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : z = 0
β’ AnalyticAt β (fun z0 => 1) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | simp only [zero, if_false] | case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ AnalyticAt β (fun z0 => if z = 0 then 1 else f z0 z / z ^ d) c | case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ AnalyticAt β (fun z0 => f z0 z / z ^ d) c | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ AnalyticAt β (fun z0 => if z = 0 then 1 else f z0 z / z ^ d) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | refine AnalyticAt.div ?_ analyticAt_const (pow_ne_zero _ zero) | case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ AnalyticAt β (fun z0 => f z0 z / z ^ d) c | case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ AnalyticAt β (fun z0 => f z0 z) c | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ AnalyticAt β (fun z0 => f z0 z / z ^ d) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | refine (fa _ ?_).compβ (analyticAt_id _ _) analyticAt_const | case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ AnalyticAt β (fun z0 => f z0 z) c | case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ (c, z) β t | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ AnalyticAt β (fun z0 => f z0 z) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | exact m | case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ (c, z) β t | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
zero : Β¬z = 0
β’ (c, z) β t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | intro c z m | case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
β’ β (c0 c1 : β), (c0, c1) β t β AnalyticAt β (fun z1 => g2 f d (c0, z1)) c1 | case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (fun z1 => g2 f d (c, z1)) z | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
β’ β (c0 c1 : β), (c0, c1) β t β AnalyticAt β (fun z1 => g2 f d (c0, z1)) c1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | apply (s.s (tc m)).ga_of_fa | case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (fun z1 => g2 f d (c, z1)) z | case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (f (c, z).1) z | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (fun z1 => g2 f d (c, z1)) z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | refine (fa _ ?_).compβ analyticAt_const (analyticAt_id _ _) | case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (f (c, z).1) z | case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ (c, id z) β t | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ AnalyticAt β (f (c, z).1) z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperAtC.ga_of_fa | [527, 1] | [537, 73] | exact m | case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ (c, id z) β t | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
f : β β β β β
d : β
u : Set β
tβ : Set (β Γ β)
s : SuperAtC f d u
t : Set (β Γ β)
o : IsOpen t
fa : AnalyticOn β (uncurry f) t
tc : β {p : β Γ β}, p β t β p.1 β u
c z : β
m : (c, z) β t
β’ (c, id z) β t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | set tu := β i, t i | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
β’ SuperNearC f d (β i, u i) (β i, t i) | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
β’ SuperNearC f d (β i, u i) tu | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
β’ SuperNearC f d (β i, u i) (β i, t i)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | have o : IsOpen tu := isOpen_iUnion fun i β¦ (s i).o | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
β’ SuperNearC f d (β i, u i) tu | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
β’ SuperNearC f d (β i, u i) tu | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
β’ SuperNearC f d (β i, u i) tu
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | exact
{ o
tc := by
intro p m; rcases Set.mem_iUnion.mp m with β¨i, mβ©
exact Set.subset_iUnion _ i ((s i).tc m)
fa := by intro p m; rcases Set.mem_iUnion.mp m with β¨i, mβ©; exact (s i).fa _ m
s := by
intro c m; rcases Set.mem_iUnion.mp m with β¨i, mβ©; have s := (s i).s m
exact
{ d2 := s.d2
fa0 := s.fa0
fd := s.fd
fc := s.fc
o := o.snd_preimage c
t0 := Set.subset_iUnion _ i s.t0
t2 := by intro z m; rcases sm m with β¨u, m, _, sβ©; exact s.t2 m
fa := by intro z m; rcases sm m with β¨u, m, _, sβ©; exact s.fa _ m
ft := by intro z m; rcases sm m with β¨u, m, us, sβ©; exact us (s.ft m)
gs' := by intro z z0 m; rcases sm m with β¨u, m, _, sβ©; exact s.gs' z0 m } } | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
sm : β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
β’ SuperNearC f d (β i, u i) tu | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
sm : β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
β’ SuperNearC f d (β i, u i) tu
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | intro c z m | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
β’ β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
m : (c, z) β tu
β’ β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
β’ β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | rcases Set.mem_iUnion.mp m with β¨i, mβ© | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
m : (c, z) β tu
β’ β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u | case intro
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
m : (c, z) β tu
β’ β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | use{z | (c, z) β t i} | case intro
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u | case h
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ z β {z | (c, z) β t i} β§ {z | (c, z) β t i} β {z | (c, z) β tu} β§ SuperNear (f c) d {z | (c, z) β t i} | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | simp only [Set.mem_setOf_eq, m, Set.mem_iUnion, Set.setOf_subset_setOf, true_and, tu] | case h
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ z β {z | (c, z) β t i} β§ {z | (c, z) β t i} β {z | (c, z) β tu} β§ SuperNear (f c) d {z | (c, z) β t i} | case h
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ (β (a : β), (c, a) β t i β β i, (c, a) β t i) β§ SuperNear (f c) d {z | (c, z) β t i} | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ z β {z | (c, z) β t i} β§ {z | (c, z) β t i} β {z | (c, z) β tu} β§ SuperNear (f c) d {z | (c, z) β t i}
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | constructor | case h
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ (β (a : β), (c, a) β t i β β i, (c, a) β t i) β§ SuperNear (f c) d {z | (c, z) β t i} | case h.left
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ β (a : β), (c, a) β t i β β i, (c, a) β t i
case h.right
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ SuperNear (f c) d {z | (c, z) β t i} | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ (β (a : β), (c, a) β t i β β i, (c, a) β t i) β§ SuperNear (f c) d {z | (c, z) β t i}
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | exact fun z m β¦ β¨i, mβ© | case h.left
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ β (a : β), (c, a) β t i β β i, (c, a) β t i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.left
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ β (a : β), (c, a) β t i β β i, (c, a) β t i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | exact (s i).s ((s i).tc m) | case h.right
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ SuperNear (f c) d {z | (c, z) β t i} | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.right
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
c z : β
mβ : (c, z) β tu
i : I
m : (c, z) β t i
β’ SuperNear (f c) d {z | (c, z) β t i}
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | intro p m | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
sm : β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
β’ β {p : β Γ β}, p β tu β p.1 β β i, u i | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
sm : β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
p : β Γ β
m : p β tu
β’ p.1 β β i, u i | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
sm : β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
β’ β {p : β Γ β}, p β tu β p.1 β β i, u i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | rcases Set.mem_iUnion.mp m with β¨i, mβ© | f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
sm : β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
p : β Γ β
m : p β tu
β’ p.1 β β i, u i | case intro
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
sm : β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
p : β Γ β
mβ : p β tu
i : I
m : p β t i
β’ p.1 β β i, u i | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
sm : β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
p : β Γ β
m : p β tu
β’ p.1 β β i, u i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/BottcherNear.lean | SuperNearC.union | [544, 1] | [573, 88] | exact Set.subset_iUnion _ i ((s i).tc m) | case intro
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
sm : β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
p : β Γ β
mβ : p β tu
i : I
m : p β t i
β’ p.1 β β i, u i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β β β
d : β
uβ : Set β
tβ : Set (β Γ β)
I : Type
u : I β Set β
t : I β Set (β Γ β)
s : β (i : I), SuperNearC f d (u i) (t i)
tu : Set (β Γ β) := β i, t i
o : IsOpen tu
sm : β {c z : β}, (c, z) β tu β β u, z β u β§ u β {z | (c, z) β tu} β§ SuperNear (f c) d u
p : β Γ β
mβ : p β tu
i : I
m : p β t i
β’ p.1 β β i, u i
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.