url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
intro p m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u ⊒ AnalyticOn β„‚ (uncurry f) tu
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u p : β„‚ Γ— β„‚ m : p ∈ tu ⊒ AnalyticAt β„‚ (uncurry f) p
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u ⊒ AnalyticOn β„‚ (uncurry f) tu TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
rcases Set.mem_iUnion.mp m with ⟨i, m⟩
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u p : β„‚ Γ— β„‚ m : p ∈ tu ⊒ AnalyticAt β„‚ (uncurry f) p
case intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u p : β„‚ Γ— β„‚ m✝ : p ∈ tu i : I m : p ∈ t i ⊒ AnalyticAt β„‚ (uncurry f) p
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u p : β„‚ Γ— β„‚ m : p ∈ tu ⊒ AnalyticAt β„‚ (uncurry f) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
exact (s i).fa _ m
case intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u p : β„‚ Γ— β„‚ m✝ : p ∈ tu i : I m : p ∈ t i ⊒ AnalyticAt β„‚ (uncurry f) p
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u p : β„‚ Γ— β„‚ m✝ : p ∈ tu i : I m : p ∈ t i ⊒ AnalyticAt β„‚ (uncurry f) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
intro c m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u ⊒ βˆ€ {c : β„‚}, c ∈ ⋃ i, u i β†’ SuperNear (f c) d {z | (c, z) ∈ tu}
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m : c ∈ ⋃ i, u i ⊒ SuperNear (f c) d {z | (c, z) ∈ tu}
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u ⊒ βˆ€ {c : β„‚}, c ∈ ⋃ i, u i β†’ SuperNear (f c) d {z | (c, z) ∈ tu} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
rcases Set.mem_iUnion.mp m with ⟨i, m⟩
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m : c ∈ ⋃ i, u i ⊒ SuperNear (f c) d {z | (c, z) ∈ tu}
case intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i ⊒ SuperNear (f c) d {z | (c, z) ∈ tu}
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m : c ∈ ⋃ i, u i ⊒ SuperNear (f c) d {z | (c, z) ∈ tu} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
have s := (s i).s m
case intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i ⊒ SuperNear (f c) d {z | (c, z) ∈ tu}
case intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ SuperNear (f c) d {z | (c, z) ∈ tu}
Please generate a tactic in lean4 to solve the state. STATE: case intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i ⊒ SuperNear (f c) d {z | (c, z) ∈ tu} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
exact { d2 := s.d2 fa0 := s.fa0 fd := s.fd fc := s.fc o := o.snd_preimage c t0 := Set.subset_iUnion _ i s.t0 t2 := by intro z m; rcases sm m with ⟨u, m, _, s⟩; exact s.t2 m fa := by intro z m; rcases sm m with ⟨u, m, _, s⟩; exact s.fa _ m ft := by intro z m; rcases sm m with ⟨u, m, us, s⟩; exact us (s.ft m) gs' := by intro z z0 m; rcases sm m with ⟨u, m, _, s⟩; exact s.gs' z0 m }
case intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ SuperNear (f c) d {z | (c, z) ∈ tu}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ SuperNear (f c) d {z | (c, z) ∈ tu} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
intro z m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ βˆ€ {z : β„‚}, z ∈ {z | (c, z) ∈ tu} β†’ Complex.abs z ≀ 1 / 2
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m : z ∈ {z | (c, z) ∈ tu} ⊒ Complex.abs z ≀ 1 / 2
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ βˆ€ {z : β„‚}, z ∈ {z | (c, z) ∈ tu} β†’ Complex.abs z ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
rcases sm m with ⟨u, m, _, s⟩
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m : z ∈ {z | (c, z) ∈ tu} ⊒ Complex.abs z ≀ 1 / 2
case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u left✝ : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ Complex.abs z ≀ 1 / 2
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m : z ∈ {z | (c, z) ∈ tu} ⊒ Complex.abs z ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
exact s.t2 m
case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u left✝ : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ Complex.abs z ≀ 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u left✝ : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ Complex.abs z ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
intro z m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ AnalyticOn β„‚ (f c) {z | (c, z) ∈ tu}
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m : z ∈ {z | (c, z) ∈ tu} ⊒ AnalyticAt β„‚ (f c) z
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ AnalyticOn β„‚ (f c) {z | (c, z) ∈ tu} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
rcases sm m with ⟨u, m, _, s⟩
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m : z ∈ {z | (c, z) ∈ tu} ⊒ AnalyticAt β„‚ (f c) z
case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u left✝ : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ AnalyticAt β„‚ (f c) z
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m : z ∈ {z | (c, z) ∈ tu} ⊒ AnalyticAt β„‚ (f c) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
exact s.fa _ m
case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u left✝ : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ AnalyticAt β„‚ (f c) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u left✝ : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ AnalyticAt β„‚ (f c) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
intro z m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ MapsTo (f c) {z | (c, z) ∈ tu} {z | (c, z) ∈ tu}
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m : z ∈ {z | (c, z) ∈ tu} ⊒ f c z ∈ {z | (c, z) ∈ tu}
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ MapsTo (f c) {z | (c, z) ∈ tu} {z | (c, z) ∈ tu} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
rcases sm m with ⟨u, m, us, s⟩
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m : z ∈ {z | (c, z) ∈ tu} ⊒ f c z ∈ {z | (c, z) ∈ tu}
case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u us : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ f c z ∈ {z | (c, z) ∈ tu}
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m : z ∈ {z | (c, z) ∈ tu} ⊒ f c z ∈ {z | (c, z) ∈ tu} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
exact us (s.ft m)
case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u us : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ f c z ∈ {z | (c, z) ∈ tu}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u us : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ f c z ∈ {z | (c, z) ∈ tu} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
intro z z0 m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ {z | (c, z) ∈ tu} β†’ Complex.abs (f c z / z ^ d - 1) ≀ 1 / 4
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ z0 : z β‰  0 m : z ∈ {z | (c, z) ∈ tu} ⊒ Complex.abs (f c z / z ^ d - 1) ≀ 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝ : c ∈ ⋃ i, u i i : I m : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} ⊒ βˆ€ {z : β„‚}, z β‰  0 β†’ z ∈ {z | (c, z) ∈ tu} β†’ Complex.abs (f c z / z ^ d - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
rcases sm m with ⟨u, m, _, s⟩
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ z0 : z β‰  0 m : z ∈ {z | (c, z) ∈ tu} ⊒ Complex.abs (f c z / z ^ d - 1) ≀ 1 / 4
case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ z0 : z β‰  0 m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u left✝ : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ Complex.abs (f c z / z ^ d - 1) ≀ 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝ : βˆ€ (i : I), SuperNearC f d (u i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝¹ : c ∈ ⋃ i, u i i : I m✝ : c ∈ u i s : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ z0 : z β‰  0 m : z ∈ {z | (c, z) ∈ tu} ⊒ Complex.abs (f c z / z ^ d - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperNearC.union
[544, 1]
[573, 88]
exact s.gs' z0 m
case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ z0 : z β‰  0 m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u left✝ : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ Complex.abs (f c z / z ^ d - 1) ≀ 1 / 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u✝¹ : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) I : Type u✝ : I β†’ Set β„‚ t : I β†’ Set (β„‚ Γ— β„‚) s✝¹ : βˆ€ (i : I), SuperNearC f d (u✝ i) (t i) tu : Set (β„‚ Γ— β„‚) := ⋃ i, t i o : IsOpen tu sm : βˆ€ {c z : β„‚}, (c, z) ∈ tu β†’ βˆƒ u, z ∈ u ∧ u βŠ† {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u c : β„‚ m✝² : c ∈ ⋃ i, u✝ i i : I m✝¹ : c ∈ u✝ i s✝ : SuperNear (f c) d {z | (c, z) ∈ t i} z : β„‚ z0 : z β‰  0 m✝ : z ∈ {z | (c, z) ∈ tu} u : Set β„‚ m : z ∈ u left✝ : u βŠ† {z | (c, z) ∈ tu} s : SuperNear (f c) d u ⊒ Complex.abs (f c z / z ^ d - 1) ≀ 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
set r := fun c : u ↦ choose (h _ c.mem)
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) ⊒ βˆƒ t βŠ† w, SuperNearC f d u t
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― ⊒ βˆƒ t βŠ† w, SuperNearC f d u t
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) ⊒ βˆƒ t βŠ† w, SuperNearC f d u t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
set v := fun c : u ↦ ball (c : β„‚) (r c)
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― ⊒ βˆƒ t βŠ† w, SuperNearC f d u t
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) ⊒ βˆƒ t βŠ† w, SuperNearC f d u t
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― ⊒ βˆƒ t βŠ† w, SuperNearC f d u t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
set t := fun c : u ↦ ball ((c : β„‚), (0 : β„‚)) (r c)
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) ⊒ βˆƒ t βŠ† w, SuperNearC f d u t
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) ⊒ βˆƒ t βŠ† w, SuperNearC f d u t
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) ⊒ βˆƒ t βŠ† w, SuperNearC f d u t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
use⋃ c : u, t c
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) ⊒ βˆƒ t βŠ† w, SuperNearC f d u t
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c)
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) ⊒ βˆƒ t βŠ† w, SuperNearC f d u t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have tw : (⋃ c : u, t c) βŠ† w := by apply Set.iUnion_subset; intro i; rcases choose_spec (h _ i.mem) with ⟨_, _, rw, _⟩; exact rw
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c)
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c)
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have si : βˆ€ c : u, SuperNearC f d (v c) (t c) := by intro i; rcases choose_spec (h _ i.mem) with ⟨_, _, _, s⟩; exact s
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c)
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w si : βˆ€ (c : ↑u), SuperNearC f d (v c) (t c) ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c)
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have s := SuperNearC.union si
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w si : βˆ€ (c : ↑u), SuperNearC f d (v c) (t c) ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c)
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w si : βˆ€ (c : ↑u), SuperNearC f d (v c) (t c) s : SuperNearC f d (⋃ i, v i) (⋃ i, t i) ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c)
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w si : βˆ€ (c : ↑u), SuperNearC f d (v c) (t c) ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rw [← e] at s
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w si : βˆ€ (c : ↑u), SuperNearC f d (v c) (t c) s : SuperNearC f d (⋃ i, v i) (⋃ i, t i) ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c)
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w si : βˆ€ (c : ↑u), SuperNearC f d (v c) (t c) s : SuperNearC f d u (⋃ i, t i) ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c)
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w si : βˆ€ (c : ↑u), SuperNearC f d (v c) (t c) s : SuperNearC f d (⋃ i, v i) (⋃ i, t i) ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
exact ⟨tw, s⟩
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w si : βˆ€ (c : ↑u), SuperNearC f d (v c) (t c) s : SuperNearC f d u (⋃ i, t i) ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w si : βˆ€ (c : ↑u), SuperNearC f d (v c) (t c) s : SuperNearC f d u (⋃ i, t i) ⊒ ⋃ c, t c βŠ† w ∧ SuperNearC f d u (⋃ c, t c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro c m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w ⊒ βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w ⊒ βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rcases(s.fa m).exists_ball_analyticOn with ⟨r0, r0p, fa⟩
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rcases Metric.isOpen_iff.mp s.o c m with ⟨r1, r1p, rc⟩
case intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
set r2 := min r0 r1
case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u r2 : ℝ := min r0 r1 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have fa := fa.mono (Metric.ball_subset_ball (min_le_left r0 r1))
case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u r2 : ℝ := min r0 r1 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u r2 : ℝ := min r0 r1 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have rc : ball c r2 βŠ† u := le_trans (Metric.ball_subset_ball (by bound)) rc
case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have ga := s.ga_of_fa isOpen_ball fa (by intro p m; simp only [← ball_prod_same, Set.mem_prod] at m; exact rc m.1)
case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rcases Metric.isOpen_iff.mp wo (c, 0) (wc c m) with ⟨r3, r3p, rw⟩
case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rcases Metric.continuousAt_iff.mp (ga (c, 0) (mem_ball_self (by bound))).continuousAt (1 / 4) (by norm_num) with ⟨r4, r4p, gs⟩
case intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
set r := min (min r2 r3) (min r4 (1 / 2))
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have rp : 0 < r := by bound
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have rh : r ≀ 1 / 2 := le_trans (min_le_right _ _) (min_le_right _ _)
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have rr4 : r ≀ r4 := le_trans (min_le_right _ _) (min_le_left r4 _)
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have rc : ball c r βŠ† u := le_trans (Metric.ball_subset_ball (by bound)) rc
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
have rw : ball (c, 0) r βŠ† w := _root_.trans (Metric.ball_subset_ball (le_trans (min_le_left _ _) (min_le_right _ _))) rw
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
use r, rp, rc, rw
case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r)
case right f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w ⊒ SuperNearC f d (ball c r) (ball (c, 0) r)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w ⊒ βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
bound
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) ⊒ r2 ≀ r1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) ⊒ r2 ≀ r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro p m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ⊒ βˆ€ {p : β„‚ Γ— β„‚}, p ∈ ball (c, 0) (min r0 r1) β†’ p.1 ∈ u
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u p : β„‚ Γ— β„‚ m : p ∈ ball (c, 0) (min r0 r1) ⊒ p.1 ∈ u
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ⊒ βˆ€ {p : β„‚ Γ— β„‚}, p ∈ ball (c, 0) (min r0 r1) β†’ p.1 ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
simp only [← ball_prod_same, Set.mem_prod] at m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u p : β„‚ Γ— β„‚ m : p ∈ ball (c, 0) (min r0 r1) ⊒ p.1 ∈ u
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u p : β„‚ Γ— β„‚ m : p.1 ∈ ball c (min r0 r1) ∧ p.2 ∈ ball 0 (min r0 r1) ⊒ p.1 ∈ u
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u p : β„‚ Γ— β„‚ m : p ∈ ball (c, 0) (min r0 r1) ⊒ p.1 ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
exact rc m.1
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u p : β„‚ Γ— β„‚ m : p.1 ∈ ball c (min r0 r1) ∧ p.2 ∈ ball 0 (min r0 r1) ⊒ p.1 ∈ u
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u p : β„‚ Γ— β„‚ m : p.1 ∈ ball c (min r0 r1) ∧ p.2 ∈ ball 0 (min r0 r1) ⊒ p.1 ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
bound
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w ⊒ 0 < min r0 r1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w ⊒ 0 < min r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
norm_num
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w ⊒ 1 / 4 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w ⊒ 1 / 4 > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
bound
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) ⊒ 0 < r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) ⊒ 0 < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
bound
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 ⊒ r ≀ r2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 ⊒ r ≀ r2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro p m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w ⊒ βˆ€ {p : β„‚ Γ— β„‚}, p ∈ ball (c, 0) r β†’ p.1 ∈ ball c r
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w p : β„‚ Γ— β„‚ m : p ∈ ball (c, 0) r ⊒ p.1 ∈ ball c r
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w ⊒ βˆ€ {p : β„‚ Γ— β„‚}, p ∈ ball (c, 0) r β†’ p.1 ∈ ball c r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
simp only [← ball_prod_same, Set.mem_prod] at m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w p : β„‚ Γ— β„‚ m : p ∈ ball (c, 0) r ⊒ p.1 ∈ ball c r
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w p : β„‚ Γ— β„‚ m : p.1 ∈ ball c r ∧ p.2 ∈ ball 0 r ⊒ p.1 ∈ ball c r
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w p : β„‚ Γ— β„‚ m : p ∈ ball (c, 0) r ⊒ p.1 ∈ ball c r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
exact Metric.ball_subset_ball (by linarith) m.1
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w p : β„‚ Γ— β„‚ m : p.1 ∈ ball c r ∧ p.2 ∈ ball 0 r ⊒ p.1 ∈ ball c r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w p : β„‚ Γ— β„‚ m : p.1 ∈ ball c r ∧ p.2 ∈ ball 0 r ⊒ p.1 ∈ ball c r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
linarith
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w p : β„‚ Γ— β„‚ m : p.1 ∈ ball c r ∧ p.2 ∈ ball 0 r ⊒ r ≀ r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w p : β„‚ Γ— β„‚ m : p.1 ∈ ball c r ∧ p.2 ∈ ball 0 r ⊒ r ≀ r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro c' m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w ⊒ βˆ€ {c_1 : β„‚}, c_1 ∈ ball c r β†’ SuperNear (f c_1) d {z | (c_1, z) ∈ ball (c, 0) r}
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ SuperNear (f c') d {z | (c', z) ∈ ball (c, 0) r}
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w ⊒ βˆ€ {c_1 : β„‚}, c_1 ∈ ball c r β†’ SuperNear (f c_1) d {z | (c_1, z) ∈ ball (c, 0) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
simp only [← ball_prod_same, Set.mem_prod, m, true_and_iff]
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ SuperNear (f c') d {z | (c', z) ∈ ball (c, 0) r}
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ SuperNear (f c') d {z | z ∈ ball 0 r}
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ SuperNear (f c') d {z | (c', z) ∈ ball (c, 0) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
apply (s.s (rc m)).super_on_ball rp rh
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ SuperNear (f c') d {z | z ∈ ball 0 r}
case fa f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ AnalyticOn β„‚ (f c') (ball 0 r) case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g (f c') d z - 1) < 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ SuperNear (f c') d {z | z ∈ ball 0 r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
apply fa.compβ‚‚ analyticOn_const (analyticOn_id _)
case fa f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ AnalyticOn β„‚ (f c') (ball 0 r)
case fa f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ βˆ€ x ∈ ball 0 r, (c', x) ∈ ball (c, 0) (min r0 r1)
Please generate a tactic in lean4 to solve the state. STATE: case fa f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ AnalyticOn β„‚ (f c') (ball 0 r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro z zm
case fa f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ βˆ€ x ∈ ball 0 r, (c', x) ∈ ball (c, 0) (min r0 r1)
case fa f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ (c', z) ∈ ball (c, 0) (min r0 r1)
Please generate a tactic in lean4 to solve the state. STATE: case fa f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ βˆ€ x ∈ ball 0 r, (c', x) ∈ ball (c, 0) (min r0 r1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
apply Metric.ball_subset_ball (by bound : r ≀ r2)
case fa f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ (c', z) ∈ ball (c, 0) (min r0 r1)
case fa.a f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ (c', z) ∈ ball (c, 0) r
Please generate a tactic in lean4 to solve the state. STATE: case fa f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ (c', z) ∈ ball (c, 0) (min r0 r1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
simp only [← ball_prod_same, Set.mem_prod, m, true_and_iff]
case fa.a f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ (c', z) ∈ ball (c, 0) r
case fa.a f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ z ∈ ball 0 r
Please generate a tactic in lean4 to solve the state. STATE: case fa.a f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ (c', z) ∈ ball (c, 0) r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
exact zm
case fa.a f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ z ∈ ball 0 r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case fa.a f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ z ∈ ball 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
bound
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ r ≀ r2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r z : β„‚ zm : z ∈ ball 0 r ⊒ r ≀ r2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
simp only [Complex.dist_eq, Prod.dist_eq, sub_zero, max_lt_iff, and_imp, g2, g0] at gs
case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g (f c') d z - 1) < 1 / 4
case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r gs : βˆ€ {x : β„‚ Γ— β„‚}, Complex.abs (x.1 - c) < r4 β†’ Complex.abs x.2 < r4 β†’ Complex.abs (g (f x.1) d x.2 - 1) < 1 / 4 ⊒ βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g (f c') d z - 1) < 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 gs : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, 0) < r4 β†’ dist (g2 f d x) (g2 f d (c, 0)) < 1 / 4 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r ⊒ βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g (f c') d z - 1) < 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
simp only [Metric.mem_ball, Complex.dist_eq] at m
case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r gs : βˆ€ {x : β„‚ Γ— β„‚}, Complex.abs (x.1 - c) < r4 β†’ Complex.abs x.2 < r4 β†’ Complex.abs (g (f x.1) d x.2 - 1) < 1 / 4 ⊒ βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g (f c') d z - 1) < 1 / 4
case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ gs : βˆ€ {x : β„‚ Γ— β„‚}, Complex.abs (x.1 - c) < r4 β†’ Complex.abs x.2 < r4 β†’ Complex.abs (g (f x.1) d x.2 - 1) < 1 / 4 m : Complex.abs (c' - c) < r ⊒ βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g (f c') d z - 1) < 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ m : c' ∈ ball c r gs : βˆ€ {x : β„‚ Γ— β„‚}, Complex.abs (x.1 - c) < r4 β†’ Complex.abs x.2 < r4 β†’ Complex.abs (g (f x.1) d x.2 - 1) < 1 / 4 ⊒ βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g (f c') d z - 1) < 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro z zr
case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ gs : βˆ€ {x : β„‚ Γ— β„‚}, Complex.abs (x.1 - c) < r4 β†’ Complex.abs x.2 < r4 β†’ Complex.abs (g (f x.1) d x.2 - 1) < 1 / 4 m : Complex.abs (c' - c) < r ⊒ βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g (f c') d z - 1) < 1 / 4
case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ gs : βˆ€ {x : β„‚ Γ— β„‚}, Complex.abs (x.1 - c) < r4 β†’ Complex.abs x.2 < r4 β†’ Complex.abs (g (f x.1) d x.2 - 1) < 1 / 4 m : Complex.abs (c' - c) < r z : β„‚ zr : Complex.abs z < r ⊒ Complex.abs (g (f c') d z - 1) < 1 / 4
Please generate a tactic in lean4 to solve the state. STATE: case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ gs : βˆ€ {x : β„‚ Γ— β„‚}, Complex.abs (x.1 - c) < r4 β†’ Complex.abs x.2 < r4 β†’ Complex.abs (g (f x.1) d x.2 - 1) < 1 / 4 m : Complex.abs (c' - c) < r ⊒ βˆ€ {z : β„‚}, Complex.abs z < r β†’ Complex.abs (g (f c') d z - 1) < 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
exact @gs ⟨c', z⟩ (lt_of_lt_of_le m rr4) (lt_of_lt_of_le zr rr4)
case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ gs : βˆ€ {x : β„‚ Γ— β„‚}, Complex.abs (x.1 - c) < r4 β†’ Complex.abs x.2 < r4 β†’ Complex.abs (g (f x.1) d x.2 - 1) < 1 / 4 m : Complex.abs (c' - c) < r z : β„‚ zr : Complex.abs z < r ⊒ Complex.abs (g (f c') d z - 1) < 1 / 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: case gs f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w c : β„‚ m✝ : c ∈ u r0 : ℝ r0p : 0 < r0 fa✝ : AnalyticOn β„‚ (uncurry f) (ball (c, 0) r0) r1 : ℝ r1p : r1 > 0 rc✝¹ : ball c r1 βŠ† u r2 : ℝ := min r0 r1 fa : AnalyticOn β„‚ (uncurry f) (ball (c, 0) (min r0 r1)) rc✝ : ball c r2 βŠ† u ga : AnalyticOn β„‚ (g2 f d) (ball (c, 0) (min r0 r1)) r3 : ℝ r3p : r3 > 0 rw✝ : ball (c, 0) r3 βŠ† w r4 : ℝ r4p : r4 > 0 r : ℝ := min (min r2 r3) (min r4 (1 / 2)) rp : 0 < r rh : r ≀ 1 / 2 rr4 : r ≀ r4 rc : ball c r βŠ† u rw : ball (c, 0) r βŠ† w c' : β„‚ gs : βˆ€ {x : β„‚ Γ— β„‚}, Complex.abs (x.1 - c) < r4 β†’ Complex.abs x.2 < r4 β†’ Complex.abs (g (f x.1) d x.2 - 1) < 1 / 4 m : Complex.abs (c' - c) < r z : β„‚ zr : Complex.abs z < r ⊒ Complex.abs (g (f c') d z - 1) < 1 / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
apply Set.ext
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) ⊒ u = ⋃ c, v c
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) ⊒ βˆ€ (x : β„‚), x ∈ u ↔ x ∈ ⋃ c, v c
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) ⊒ u = ⋃ c, v c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro c
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) ⊒ βˆ€ (x : β„‚), x ∈ u ↔ x ∈ ⋃ c, v c
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ c ∈ u ↔ c ∈ ⋃ c, v c
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) ⊒ βˆ€ (x : β„‚), x ∈ u ↔ x ∈ ⋃ c, v c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rw [Set.mem_iUnion]
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ c ∈ u ↔ c ∈ ⋃ c, v c
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ c ∈ u ↔ βˆƒ i, c ∈ v i
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ c ∈ u ↔ c ∈ ⋃ c, v c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
constructor
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ c ∈ u ↔ βˆƒ i, c ∈ v i
case h.mp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ c ∈ u β†’ βˆƒ i, c ∈ v i case h.mpr f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ (βˆƒ i, c ∈ v i) β†’ c ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ c ∈ u ↔ βˆƒ i, c ∈ v i TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro m
case h.mp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ c ∈ u β†’ βˆƒ i, c ∈ v i
case h.mp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : c ∈ u ⊒ βˆƒ i, c ∈ v i
Please generate a tactic in lean4 to solve the state. STATE: case h.mp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ c ∈ u β†’ βˆƒ i, c ∈ v i TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
use⟨c, m⟩
case h.mp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : c ∈ u ⊒ βˆƒ i, c ∈ v i
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : c ∈ u ⊒ c ∈ v ⟨c, m⟩
Please generate a tactic in lean4 to solve the state. STATE: case h.mp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : c ∈ u ⊒ βˆƒ i, c ∈ v i TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rcases choose_spec (h c m) with ⟨rp, _, _⟩
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : c ∈ u ⊒ c ∈ v ⟨c, m⟩
case h.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : c ∈ u rp : choose β‹― > 0 left✝ : ball c (choose β‹―) βŠ† u right✝ : ball (c, 0) (choose β‹―) βŠ† w ∧ SuperNearC f d (ball c (choose β‹―)) (ball (c, 0) (choose β‹―)) ⊒ c ∈ v ⟨c, m⟩
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : c ∈ u ⊒ c ∈ v ⟨c, m⟩ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
exact mem_ball_self rp
case h.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : c ∈ u rp : choose β‹― > 0 left✝ : ball c (choose β‹―) βŠ† u right✝ : ball (c, 0) (choose β‹―) βŠ† w ∧ SuperNearC f d (ball c (choose β‹―)) (ball (c, 0) (choose β‹―)) ⊒ c ∈ v ⟨c, m⟩
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : c ∈ u rp : choose β‹― > 0 left✝ : ball c (choose β‹―) βŠ† u right✝ : ball (c, 0) (choose β‹―) βŠ† w ∧ SuperNearC f d (ball c (choose β‹―)) (ball (c, 0) (choose β‹―)) ⊒ c ∈ v ⟨c, m⟩ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro m
case h.mpr f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ (βˆƒ i, c ∈ v i) β†’ c ∈ u
case h.mpr f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : βˆƒ i, c ∈ v i ⊒ c ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ ⊒ (βˆƒ i, c ∈ v i) β†’ c ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rcases m with ⟨i, m⟩
case h.mpr f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : βˆƒ i, c ∈ v i ⊒ c ∈ u
case h.mpr.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ i : ↑u m : c ∈ v i ⊒ c ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ m : βˆƒ i, c ∈ v i ⊒ c ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rcases choose_spec (h _ i.mem) with ⟨_, us, _⟩
case h.mpr.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ i : ↑u m : c ∈ v i ⊒ c ∈ u
case h.mpr.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ i : ↑u m : c ∈ v i left✝ : choose β‹― > 0 us : ball (↑i) (choose β‹―) βŠ† u right✝ : ball (↑i, 0) (choose β‹―) βŠ† w ∧ SuperNearC f d (ball (↑i) (choose β‹―)) (ball (↑i, 0) (choose β‹―)) ⊒ c ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ i : ↑u m : c ∈ v i ⊒ c ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
exact us m
case h.mpr.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ i : ↑u m : c ∈ v i left✝ : choose β‹― > 0 us : ball (↑i) (choose β‹―) βŠ† u right✝ : ball (↑i, 0) (choose β‹―) βŠ† w ∧ SuperNearC f d (ball (↑i) (choose β‹―)) (ball (↑i, 0) (choose β‹―)) ⊒ c ∈ u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) c : β„‚ i : ↑u m : c ∈ v i left✝ : choose β‹― > 0 us : ball (↑i) (choose β‹―) βŠ† u right✝ : ball (↑i, 0) (choose β‹―) βŠ† w ∧ SuperNearC f d (ball (↑i) (choose β‹―)) (ball (↑i, 0) (choose β‹―)) ⊒ c ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
apply Set.iUnion_subset
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c ⊒ ⋃ c, t c βŠ† w
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c ⊒ βˆ€ (i : ↑u), t i βŠ† w
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c ⊒ ⋃ c, t c βŠ† w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro i
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c ⊒ βˆ€ (i : ↑u), t i βŠ† w
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c i : ↑u ⊒ t i βŠ† w
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c ⊒ βˆ€ (i : ↑u), t i βŠ† w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rcases choose_spec (h _ i.mem) with ⟨_, _, rw, _⟩
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c i : ↑u ⊒ t i βŠ† w
case h.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c i : ↑u left✝¹ : choose β‹― > 0 left✝ : ball (↑i) (choose β‹―) βŠ† u rw : ball (↑i, 0) (choose β‹―) βŠ† w right✝ : SuperNearC f d (ball (↑i) (choose β‹―)) (ball (↑i, 0) (choose β‹―)) ⊒ t i βŠ† w
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c i : ↑u ⊒ t i βŠ† w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
exact rw
case h.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c i : ↑u left✝¹ : choose β‹― > 0 left✝ : ball (↑i) (choose β‹―) βŠ† u rw : ball (↑i, 0) (choose β‹―) βŠ† w right✝ : SuperNearC f d (ball (↑i) (choose β‹―)) (ball (↑i, 0) (choose β‹―)) ⊒ t i βŠ† w
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c i : ↑u left✝¹ : choose β‹― > 0 left✝ : ball (↑i) (choose β‹―) βŠ† u rw : ball (↑i, 0) (choose β‹―) βŠ† w right✝ : SuperNearC f d (ball (↑i) (choose β‹―)) (ball (↑i, 0) (choose β‹―)) ⊒ t i βŠ† w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
intro i
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w ⊒ βˆ€ (c : ↑u), SuperNearC f d (v c) (t c)
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w i : ↑u ⊒ SuperNearC f d (v i) (t i)
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w ⊒ βˆ€ (c : ↑u), SuperNearC f d (v c) (t c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
rcases choose_spec (h _ i.mem) with ⟨_, _, _, s⟩
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w i : ↑u ⊒ SuperNearC f d (v i) (t i)
case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w i : ↑u left✝² : choose β‹― > 0 left✝¹ : ball (↑i) (choose β‹―) βŠ† u left✝ : ball (↑i, 0) (choose β‹―) βŠ† w s : SuperNearC f d (ball (↑i) (choose β‹―)) (ball (↑i, 0) (choose β‹―)) ⊒ SuperNearC f d (v i) (t i)
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w i : ↑u ⊒ SuperNearC f d (v i) (t i) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC'
[576, 1]
[630, 16]
exact s
case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w i : ↑u left✝² : choose β‹― > 0 left✝¹ : ball (↑i) (choose β‹―) βŠ† u left✝ : ball (↑i, 0) (choose β‹―) βŠ† w s : SuperNearC f d (ball (↑i) (choose β‹―)) (ball (↑i, 0) (choose β‹―)) ⊒ SuperNearC f d (v i) (t i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u w : Set (β„‚ Γ— β„‚) wo : IsOpen w wc : βˆ€ c ∈ u, (c, 0) ∈ w h : βˆ€ c ∈ u, βˆƒ r > 0, ball c r βŠ† u ∧ ball (c, 0) r βŠ† w ∧ SuperNearC f d (ball c r) (ball (c, 0) r) r : ↑u β†’ ℝ := fun c => choose β‹― v : ↑u β†’ Set β„‚ := fun c => ball (↑c) (r c) t : ↑u β†’ Set (β„‚ Γ— β„‚) := fun c => ball (↑c, 0) (r c) e : u = ⋃ c, v c tw : ⋃ c, t c βŠ† w i : ↑u left✝² : choose β‹― > 0 left✝¹ : ball (↑i) (choose β‹―) βŠ† u left✝ : ball (↑i, 0) (choose β‹―) βŠ† w s : SuperNearC f d (ball (↑i) (choose β‹―)) (ball (↑i, 0) (choose β‹―)) ⊒ SuperNearC f d (v i) (t i) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC
[633, 1]
[634, 89]
rcases s.superNearC' isOpen_univ fun _ _ ↦ Set.mem_univ _ with ⟨t, _, s⟩
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u ⊒ βˆƒ t, SuperNearC f d u t
case intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u t : Set (β„‚ Γ— β„‚) left✝ : t βŠ† univ s : SuperNearC f d u t ⊒ βˆƒ t, SuperNearC f d u t
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperAtC f d u ⊒ βˆƒ t, SuperNearC f d u t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
SuperAtC.superNearC
[633, 1]
[634, 89]
exact ⟨t, s⟩
case intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u t : Set (β„‚ Γ— β„‚) left✝ : t βŠ† univ s : SuperNearC f d u t ⊒ βˆƒ t, SuperNearC f d u t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t✝ : Set (β„‚ Γ— β„‚) s✝ : SuperAtC f d u t : Set (β„‚ Γ— β„‚) left✝ : t βŠ† univ s : SuperNearC f d u t ⊒ βˆƒ t, SuperNearC f d u t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
iterates_analytic_c
[636, 1]
[641, 30]
induction' n with n nh
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => (f c)^[n] z) c
case zero f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => (f c)^[0] z) c case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ AnalyticAt β„‚ (fun c => (f c)^[n + 1] z) c
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => (f c)^[n] z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
iterates_analytic_c
[636, 1]
[641, 30]
simp only [Function.iterate_zero, id]
case zero f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => (f c)^[0] z) c
case zero f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => z) c
Please generate a tactic in lean4 to solve the state. STATE: case zero f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => (f c)^[0] z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
iterates_analytic_c
[636, 1]
[641, 30]
exact analyticAt_const
case zero f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => z) c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case zero f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
iterates_analytic_c
[636, 1]
[641, 30]
simp_rw [Function.iterate_succ']
case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ AnalyticAt β„‚ (fun c => (f c)^[n + 1] z) c
case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ AnalyticAt β„‚ (fun c => (f c ∘ (f c)^[n]) z) c
Please generate a tactic in lean4 to solve the state. STATE: case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ AnalyticAt β„‚ (fun c => (f c)^[n + 1] z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
iterates_analytic_c
[636, 1]
[641, 30]
simp only [Function.comp_apply]
case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ AnalyticAt β„‚ (fun c => (f c ∘ (f c)^[n]) z) c
case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ AnalyticAt β„‚ (fun c => f c ((f c)^[n] z)) c
Please generate a tactic in lean4 to solve the state. STATE: case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ AnalyticAt β„‚ (fun c => (f c ∘ (f c)^[n]) z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
iterates_analytic_c
[636, 1]
[641, 30]
refine (s.fa _ ?_).comp ((analyticAt_id _ _).prod nh)
case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ AnalyticAt β„‚ (fun c => f c ((f c)^[n] z)) c
case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ (id c, (f c)^[n] z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ AnalyticAt β„‚ (fun c => f c ((f c)^[n] z)) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
iterates_analytic_c
[636, 1]
[641, 30]
exact (s.ts m).mapsTo n m
case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ (id c, (f c)^[n] z) ∈ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t n : β„• nh : AnalyticAt β„‚ (fun c => (f c)^[n] z) c ⊒ (id c, (f c)^[n] z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_analytic_c
[643, 1]
[652, 75]
refine AnalyticAt.cpow ?_ analyticAt_const ?_
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => term (f c) d n z) c
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => g (f c) d ((f c)^[n] z)) c case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ g (f c) d ((f c)^[n] z) ∈ Complex.slitPlane
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => term (f c) d n z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_analytic_c
[643, 1]
[652, 75]
have e : (fun c ↦ g (f c) d ((f c)^[n] z)) = fun c ↦ g2 f d (c, (f c)^[n] z) := rfl
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => g (f c) d ((f c)^[n] z)) c
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ AnalyticAt β„‚ (fun c => g (f c) d ((f c)^[n] z)) c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => g (f c) d ((f c)^[n] z)) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_analytic_c
[643, 1]
[652, 75]
rw [e]
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ AnalyticAt β„‚ (fun c => g (f c) d ((f c)^[n] z)) c
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ AnalyticAt β„‚ (fun c => g2 f d (c, (f c)^[n] z)) c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ AnalyticAt β„‚ (fun c => g (f c) d ((f c)^[n] z)) c TACTIC: