url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_analytic_c
[643, 1]
[652, 75]
refine (s.ga _ ?_).comp ?_
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ AnalyticAt β„‚ (fun c => g2 f d (c, (f c)^[n] z)) c
case refine_1.refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ (c, (f c)^[n] z) ∈ t case refine_1.refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ AnalyticAt β„‚ (fun c => (c, (f c)^[n] z)) c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ AnalyticAt β„‚ (fun c => g2 f d (c, (f c)^[n] z)) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_analytic_c
[643, 1]
[652, 75]
exact (s.ts m).mapsTo n m
case refine_1.refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ (c, (f c)^[n] z) ∈ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ (c, (f c)^[n] z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_analytic_c
[643, 1]
[652, 75]
apply (analyticAt_id _ _).prod (iterates_analytic_c s n m)
case refine_1.refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ AnalyticAt β„‚ (fun c => (c, (f c)^[n] z)) c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t e : (fun c => g (f c) d ((f c)^[n] z)) = fun c => g2 f d (c, (f c)^[n] z) ⊒ AnalyticAt β„‚ (fun c => (c, (f c)^[n] z)) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_analytic_c
[643, 1]
[652, 75]
refine mem_slitPlane_of_near_one ?_
case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ g (f c) d ((f c)^[n] z) ∈ Complex.slitPlane
case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ Complex.abs (g (f c) d ((f c)^[n] z) - 1) < 1
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ g (f c) d ((f c)^[n] z) ∈ Complex.slitPlane TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_analytic_c
[643, 1]
[652, 75]
exact lt_of_le_of_lt ((s.ts m).gs ((s.ts m).mapsTo n m)) (by norm_num)
case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ Complex.abs (g (f c) d ((f c)^[n] z) - 1) < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ Complex.abs (g (f c) d ((f c)^[n] z) - 1) < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_analytic_c
[643, 1]
[652, 75]
norm_num
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ 1 / 4 < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ n : β„• m : (c, z) ∈ t ⊒ 1 / 4 < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic_c
[655, 1]
[663, 42]
have c12 : (1 / 2 : ℝ) ≀ 1 / 2 := by norm_num
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic_c
[655, 1]
[663, 42]
have a0 : 0 ≀ (1 / 2 : ℝ) := by norm_num
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic_c
[655, 1]
[663, 42]
set t' := {c | (c, z) ∈ t}
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic_c
[655, 1]
[663, 42]
have o' : IsOpen t' := s.o.preimage (by continuity)
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} o' : IsOpen t' ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic_c
[655, 1]
[663, 42]
refine (fast_products_converge' o' c12 a0 (by linarith) ?_ fun n c m ↦ term_converges (s.ts m) n m).2.1 _ m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} o' : IsOpen t' ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} o' : IsOpen t' ⊒ βˆ€ (n : β„•), AnalyticOn β„‚ (fun c => term (f (c, z).1) d n z) t'
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} o' : IsOpen t' ⊒ AnalyticAt β„‚ (fun c => ∏' (n : β„•), term (f c) d n z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic_c
[655, 1]
[663, 42]
exact fun n c m ↦ term_analytic_c s n m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} o' : IsOpen t' ⊒ βˆ€ (n : β„•), AnalyticOn β„‚ (fun c => term (f (c, z).1) d n z) t'
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} o' : IsOpen t' ⊒ βˆ€ (n : β„•), AnalyticOn β„‚ (fun c => term (f (c, z).1) d n z) t' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic_c
[655, 1]
[663, 42]
norm_num
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ 1 / 2 ≀ 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ 1 / 2 ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic_c
[655, 1]
[663, 42]
norm_num
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 ⊒ 0 ≀ 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 ⊒ 0 ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic_c
[655, 1]
[663, 42]
continuity
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} ⊒ Continuous fun c => (c, z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} ⊒ Continuous fun c => (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic_c
[655, 1]
[663, 42]
linarith
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} o' : IsOpen t' ⊒ 1 / 2 < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t c12 : 1 / 2 ≀ 1 / 2 a0 : 0 ≀ 1 / 2 t' : Set β„‚ := {c | (c, z) ∈ t} o' : IsOpen t' ⊒ 1 / 2 < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic
[666, 1]
[670, 68]
refine Pair.hartogs s.o ?_ ?_
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t ⊒ AnalyticOn β„‚ (fun p => ∏' (n : β„•), term (f p.1) d n p.2) t
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t ⊒ βˆ€ (c0 c1 : β„‚), (c0, c1) ∈ t β†’ AnalyticAt β„‚ (fun z0 => ∏' (n : β„•), term (f (z0, c1).1) d n (z0, c1).2) c0 case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t ⊒ βˆ€ (c0 c1 : β„‚), (c0, c1) ∈ t β†’ AnalyticAt β„‚ (fun z1 => ∏' (n : β„•), term (f (c0, z1).1) d n (c0, z1).2) c1
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t ⊒ AnalyticOn β„‚ (fun p => ∏' (n : β„•), term (f p.1) d n p.2) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic
[666, 1]
[670, 68]
intro c z m
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t ⊒ βˆ€ (c0 c1 : β„‚), (c0, c1) ∈ t β†’ AnalyticAt β„‚ (fun z0 => ∏' (n : β„•), term (f (z0, c1).1) d n (z0, c1).2) c0
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z0 => ∏' (n : β„•), term (f (z0, z).1) d n (z0, z).2) c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t ⊒ βˆ€ (c0 c1 : β„‚), (c0, c1) ∈ t β†’ AnalyticAt β„‚ (fun z0 => ∏' (n : β„•), term (f (z0, c1).1) d n (z0, c1).2) c0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic
[666, 1]
[670, 68]
simp only
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z0 => ∏' (n : β„•), term (f (z0, z).1) d n (z0, z).2) c
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z0 => ∏' (n : β„•), term (f z0) d n z) c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z0 => ∏' (n : β„•), term (f (z0, z).1) d n (z0, z).2) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic
[666, 1]
[670, 68]
exact term_prod_analytic_c s m
case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z0 => ∏' (n : β„•), term (f z0) d n z) c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z0 => ∏' (n : β„•), term (f z0) d n z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic
[666, 1]
[670, 68]
intro c z m
case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t ⊒ βˆ€ (c0 c1 : β„‚), (c0, c1) ∈ t β†’ AnalyticAt β„‚ (fun z1 => ∏' (n : β„•), term (f (c0, z1).1) d n (c0, z1).2) c1
case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z1 => ∏' (n : β„•), term (f (c, z1).1) d n (c, z1).2) z
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t ⊒ βˆ€ (c0 c1 : β„‚), (c0, c1) ∈ t β†’ AnalyticAt β„‚ (fun z1 => ∏' (n : β„•), term (f (c0, z1).1) d n (c0, z1).2) c1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic
[666, 1]
[670, 68]
simp only
case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z1 => ∏' (n : β„•), term (f (c, z1).1) d n (c, z1).2) z
case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z1 => ∏' (n : β„•), term (f c) d n z1) z
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z1 => ∏' (n : β„•), term (f (c, z1).1) d n (c, z1).2) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
term_prod_analytic
[666, 1]
[670, 68]
exact term_prod_analytic_z (s.ts m) _ m
case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z1 => ∏' (n : β„•), term (f c) d n z1) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c z : β„‚ m : (c, z) ∈ t ⊒ AnalyticAt β„‚ (fun z1 => ∏' (n : β„•), term (f c) d n z1) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
have df : βˆ€ e z, (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z := by intro e z m; apply HasDerivAt.deriv have fg : f e = fun z ↦ z ^ d * g (f e) d z := by funext; rw [(s.ts m).fg] nth_rw 1 [fg] apply HasDerivAt.mul; apply hasDerivAt_pow rw [hasDerivAt_deriv_iff]; exact ((s.ts m).ga _ m).differentiableAt
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u ⊒ βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), deriv (f p.1) p.2 = 0 ↔ p.2 = 0
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ⊒ βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), deriv (f p.1) p.2 = 0 ↔ p.2 = 0
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u ⊒ βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), deriv (f p.1) p.2 = 0 ↔ p.2 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
apply small.mp
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), deriv (f p.1) p.2 = 0 ↔ p.2 = 0
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€αΆ  (x : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0)
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), deriv (f p.1) p.2 = 0 ↔ p.2 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
apply (s.o.eventually_mem (s.s m).t0).mp
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€αΆ  (x : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0)
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€αΆ  (x : β„‚ Γ— β„‚) in 𝓝 (c, 0), x ∈ t β†’ Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0)
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€αΆ  (x : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
apply Filter.eventually_of_forall
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€αΆ  (x : β„‚ Γ— β„‚) in 𝓝 (c, 0), x ∈ t β†’ Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0)
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€ x ∈ t, Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0)
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€αΆ  (x : β„‚ Γ— β„‚) in 𝓝 (c, 0), x ∈ t β†’ Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
clear small
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€ x ∈ t, Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0)
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ⊒ βˆ€ x ∈ t, Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0)
Please generate a tactic in lean4 to solve the state. STATE: case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z small : βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) ⊒ βˆ€ x ∈ t, Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
intro ⟨e, w⟩ m' small
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ⊒ βˆ€ x ∈ t, Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0)
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs ((e, w).2 * deriv (g (f (e, w).1) d) (e, w).2) < Complex.abs (↑d * g (f (e, w).1) d (e, w).2) ⊒ deriv (f (e, w).1) (e, w).2 = 0 ↔ (e, w).2 = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ⊒ βˆ€ x ∈ t, Complex.abs (x.2 * deriv (g (f x.1) d) x.2) < Complex.abs (↑d * g (f x.1) d x.2) β†’ (deriv (f x.1) x.2 = 0 ↔ x.2 = 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
simp only [df _ _ m'] at small ⊒
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs ((e, w).2 * deriv (g (f (e, w).1) d) (e, w).2) < Complex.abs (↑d * g (f (e, w).1) d (e, w).2) ⊒ deriv (f (e, w).1) (e, w).2 = 0 ↔ (e, w).2 = 0
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs (w * deriv (g (f e) d) w) < Complex.abs (↑d * g (f e) d w) ⊒ ↑d * w ^ (d - 1) * g (f e) d w + w ^ d * deriv (g (f e) d) w = 0 ↔ w = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs ((e, w).2 * deriv (g (f (e, w).1) d) (e, w).2) < Complex.abs (↑d * g (f (e, w).1) d (e, w).2) ⊒ deriv (f (e, w).1) (e, w).2 = 0 ↔ (e, w).2 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
nth_rw 4 [← Nat.sub_add_cancel (Nat.succ_le_of_lt (s.s m).dp)]
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs (w * deriv (g (f e) d) w) < Complex.abs (↑d * g (f e) d w) ⊒ ↑d * w ^ (d - 1) * g (f e) d w + w ^ d * deriv (g (f e) d) w = 0 ↔ w = 0
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs (w * deriv (g (f e) d) w) < Complex.abs (↑d * g (f e) d w) ⊒ ↑d * w ^ (d - 1) * g (f e) d w + w ^ (d - Nat.succ 0 + Nat.succ 0) * deriv (g (f e) d) w = 0 ↔ w = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs (w * deriv (g (f e) d) w) < Complex.abs (↑d * g (f e) d w) ⊒ ↑d * w ^ (d - 1) * g (f e) d w + w ^ d * deriv (g (f e) d) w = 0 ↔ w = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
simp only [pow_add, pow_one, mul_comm _ (w ^ (d - 1)), mul_assoc (w ^ (d - 1)) _ _, ← left_distrib, mul_eq_zero, pow_eq_zero_iff (Nat.sub_pos_of_lt (s.s m).d2).ne']
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs (w * deriv (g (f e) d) w) < Complex.abs (↑d * g (f e) d w) ⊒ ↑d * w ^ (d - 1) * g (f e) d w + w ^ (d - Nat.succ 0 + Nat.succ 0) * deriv (g (f e) d) w = 0 ↔ w = 0
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs (w * deriv (g (f e) d) w) < Complex.abs (↑d * g (f e) d w) ⊒ w = 0 ∨ ↑d * g (f e) d w + w * deriv (g (f e) d) w = 0 ↔ w = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs (w * deriv (g (f e) d) w) < Complex.abs (↑d * g (f e) d w) ⊒ ↑d * w ^ (d - 1) * g (f e) d w + w ^ (d - Nat.succ 0 + Nat.succ 0) * deriv (g (f e) d) w = 0 ↔ w = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
exact or_iff_left (add_ne_zero_of_abs_lt small)
case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs (w * deriv (g (f e) d) w) < Complex.abs (↑d * g (f e) d w) ⊒ w = 0 ∨ ↑d * g (f e) d w + w * deriv (g (f e) d) w = 0 ↔ w = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hp f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z e w : β„‚ m' : (e, w) ∈ t small : Complex.abs (w * deriv (g (f e) d) w) < Complex.abs (↑d * g (f e) d w) ⊒ w = 0 ∨ ↑d * g (f e) d w + w * deriv (g (f e) d) w = 0 ↔ w = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
intro e z m
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u ⊒ βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t ⊒ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u ⊒ βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
apply HasDerivAt.deriv
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t ⊒ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t ⊒ HasDerivAt (f e) (↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z) z
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t ⊒ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
have fg : f e = fun z ↦ z ^ d * g (f e) d z := by funext; rw [(s.ts m).fg]
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t ⊒ HasDerivAt (f e) (↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z) z
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (f e) (↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z) z
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t ⊒ HasDerivAt (f e) (↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
nth_rw 1 [fg]
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (f e) (↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z) z
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun z => z ^ d * g (f e) d z) (↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z) z
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (f e) (↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
apply HasDerivAt.mul
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun z => z ^ d * g (f e) d z) (↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z) z
case h.hc f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun y => y ^ d) (↑d * z ^ (d - 1)) z case h.hd f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun y => g (f e) d y) (deriv (g (f e) d) z) z
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun z => z ^ d * g (f e) d z) (↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
apply hasDerivAt_pow
case h.hc f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun y => y ^ d) (↑d * z ^ (d - 1)) z case h.hd f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun y => g (f e) d y) (deriv (g (f e) d) z) z
case h.hd f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun y => g (f e) d y) (deriv (g (f e) d) z) z
Please generate a tactic in lean4 to solve the state. STATE: case h.hc f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun y => y ^ d) (↑d * z ^ (d - 1)) z case h.hd f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun y => g (f e) d y) (deriv (g (f e) d) z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
rw [hasDerivAt_deriv_iff]
case h.hd f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun y => g (f e) d y) (deriv (g (f e) d) z) z
case h.hd f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ DifferentiableAt β„‚ (fun y => g (f e) d y) z
Please generate a tactic in lean4 to solve the state. STATE: case h.hd f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ HasDerivAt (fun y => g (f e) d y) (deriv (g (f e) d) z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
exact ((s.ts m).ga _ m).differentiableAt
case h.hd f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ DifferentiableAt β„‚ (fun y => g (f e) d y) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.hd f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t fg : f e = fun z => z ^ d * g (f e) d z ⊒ DifferentiableAt β„‚ (fun y => g (f e) d y) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
funext
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t ⊒ f e = fun z => z ^ d * g (f e) d z
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t x✝ : β„‚ ⊒ f e x✝ = x✝ ^ d * g (f e) d x✝
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t ⊒ f e = fun z => z ^ d * g (f e) d z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
rw [(s.ts m).fg]
case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t x✝ : β„‚ ⊒ f e x✝ = x✝ ^ d * g (f e) d x✝
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m✝ : c ∈ u e z : β„‚ m : (e, z) ∈ t x✝ : β„‚ ⊒ f e x✝ = x✝ ^ d * g (f e) d x✝ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
have ga : AnalyticAt β„‚ (uncurry fun c z ↦ g (f c) d z) (c, 0) := s.ga _ (s.s m).t0
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ⊒ βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2)
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2)
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ⊒ βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
apply ContinuousAt.eventually_lt
f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2)
case hf f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ ContinuousAt (fun x => Complex.abs (x.2 * deriv (g (f x.1) d) x.2)) (c, 0) case hg f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ ContinuousAt (fun x => Complex.abs (↑d * g (f x.1) d x.2)) (c, 0) case hfg f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ Complex.abs ((c, 0).2 * deriv (g (f (c, 0).1) d) (c, 0).2) < Complex.abs (↑d * g (f (c, 0).1) d (c, 0).2)
Please generate a tactic in lean4 to solve the state. STATE: f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ βˆ€αΆ  (p : β„‚ Γ— β„‚) in 𝓝 (c, 0), Complex.abs (p.2 * deriv (g (f p.1) d) p.2) < Complex.abs (↑d * g (f p.1) d p.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
exact Complex.continuous_abs.continuousAt.comp (continuousAt_snd.mul ga.deriv2.continuousAt)
case hf f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ ContinuousAt (fun x => Complex.abs (x.2 * deriv (g (f x.1) d) x.2)) (c, 0)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ ContinuousAt (fun x => Complex.abs (x.2 * deriv (g (f x.1) d) x.2)) (c, 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
exact Complex.continuous_abs.continuousAt.comp (continuousAt_const.mul ga.continuousAt)
case hg f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ ContinuousAt (fun x => Complex.abs (↑d * g (f x.1) d x.2)) (c, 0)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hg f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ ContinuousAt (fun x => Complex.abs (↑d * g (f x.1) d x.2)) (c, 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
simp only [g0, MulZeroClass.zero_mul, Complex.abs.map_zero, Complex.abs.map_mul, Complex.abs_natCast, Complex.abs.map_one, mul_one, Nat.cast_pos]
case hfg f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ Complex.abs ((c, 0).2 * deriv (g (f (c, 0).1) d) (c, 0).2) < Complex.abs (↑d * g (f (c, 0).1) d (c, 0).2)
case hfg f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ 0 < d
Please generate a tactic in lean4 to solve the state. STATE: case hfg f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ Complex.abs ((c, 0).2 * deriv (g (f (c, 0).1) d) (c, 0).2) < Complex.abs (↑d * g (f (c, 0).1) d (c, 0).2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNear.lean
df_ne_zero
[683, 1]
[708, 50]
exact (s.s m).dp
case hfg f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ 0 < d
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hfg f : β„‚ β†’ β„‚ β†’ β„‚ d : β„• u : Set β„‚ t : Set (β„‚ Γ— β„‚) s : SuperNearC f d u t c : β„‚ m : c ∈ u df : βˆ€ (e z : β„‚), (e, z) ∈ t β†’ deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z ga : AnalyticAt β„‚ (uncurry fun c z => g (f c) d z) (c, 0) ⊒ 0 < d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
realCircleMap_eq_circleMap
[35, 1]
[39, 66]
simp only [realCircleMap, circleMap, Complex.equivRealProd_apply, Complex.add_re, Complex.mul_re, Complex.ofReal_re, Complex.exp_ofReal_mul_I_re, Complex.ofReal_im, Complex.exp_ofReal_mul_I_im, zero_mul, sub_zero, Complex.add_im, Complex.mul_im, add_zero]
c : β„‚ x : ℝ Γ— ℝ ⊒ realCircleMap c x = Complex.equivRealProd (circleMap c x.1 x.2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ x : ℝ Γ— ℝ ⊒ realCircleMap c x = Complex.equivRealProd (circleMap c x.1 x.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
realCircleMap.fderiv
[50, 1]
[54, 73]
simp_rw [realCircleMap]
c : β„‚ x : ℝ Γ— ℝ ⊒ HasFDerivAt (fun x => realCircleMap c x) (rcmDeriv x) x
c : β„‚ x : ℝ Γ— ℝ ⊒ HasFDerivAt (fun x => (c.re + x.1 * x.2.cos, c.im + x.1 * x.2.sin)) (rcmDeriv x) x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ x : ℝ Γ— ℝ ⊒ HasFDerivAt (fun x => realCircleMap c x) (rcmDeriv x) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
realCircleMap.fderiv
[50, 1]
[54, 73]
apply_rules [hasFDerivAt_const, hasFDerivAt_fst, hasFDerivAt_snd, HasFDerivAt.cos, HasFDerivAt.sin, HasFDerivAt.add, HasFDerivAt.mul, HasFDerivAt.prod]
c : β„‚ x : ℝ Γ— ℝ ⊒ HasFDerivAt (fun x => (c.re + x.1 * x.2.cos, c.im + x.1 * x.2.sin)) (rcmDeriv x) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ x : ℝ Γ— ℝ ⊒ HasFDerivAt (fun x => (c.re + x.1 * x.2.cos, c.im + x.1 * x.2.sin)) (rcmDeriv x) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm00
[59, 1]
[60, 53]
simp [rcmMatrix, rcmDeriv, toMatrix_apply, d1, d2]
x : ℝ Γ— ℝ ⊒ rcmMatrix x 0 0 = x.2.cos
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ Γ— ℝ ⊒ rcmMatrix x 0 0 = x.2.cos TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm01
[61, 1]
[62, 53]
simp [rcmMatrix, rcmDeriv, toMatrix_apply, d1, d2]
x : ℝ Γ— ℝ ⊒ rcmMatrix x 0 1 = -x.1 * x.2.sin
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ Γ— ℝ ⊒ rcmMatrix x 0 1 = -x.1 * x.2.sin TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm10
[63, 1]
[64, 53]
simp [rcmMatrix, rcmDeriv, toMatrix_apply, d1, d2]
x : ℝ Γ— ℝ ⊒ rcmMatrix x 1 0 = x.2.sin
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ Γ— ℝ ⊒ rcmMatrix x 1 0 = x.2.sin TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm11
[65, 1]
[66, 53]
simp [rcmMatrix, rcmDeriv, toMatrix_apply, d1, d2]
x : ℝ Γ— ℝ ⊒ rcmMatrix x 1 1 = x.1 * x.2.cos
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ Γ— ℝ ⊒ rcmMatrix x 1 1 = x.1 * x.2.cos TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcmDeriv.det
[68, 1]
[74, 62]
rw [ContinuousLinearMap.det, ← LinearMap.det_toMatrix (Basis.finTwoProd ℝ), ←rcmMatrix]
x : ℝ Γ— ℝ ⊒ (rcmDeriv x).det = x.1
x : ℝ Γ— ℝ ⊒ (rcmMatrix x).det = x.1
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ Γ— ℝ ⊒ (rcmDeriv x).det = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcmDeriv.det
[68, 1]
[74, 62]
rw [Matrix.det_fin_two, rcm00, rcm01, rcm10, rcm11]
x : ℝ Γ— ℝ ⊒ (rcmMatrix x).det = x.1
x : ℝ Γ— ℝ ⊒ x.2.cos * (x.1 * x.2.cos) - -x.1 * x.2.sin * x.2.sin = x.1
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ Γ— ℝ ⊒ (rcmMatrix x).det = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcmDeriv.det
[68, 1]
[74, 62]
ring_nf
x : ℝ Γ— ℝ ⊒ x.2.cos * (x.1 * x.2.cos) - -x.1 * x.2.sin * x.2.sin = x.1
x : ℝ Γ— ℝ ⊒ x.2.cos ^ 2 * x.1 + x.1 * x.2.sin ^ 2 = x.1
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ Γ— ℝ ⊒ x.2.cos * (x.1 * x.2.cos) - -x.1 * x.2.sin * x.2.sin = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcmDeriv.det
[68, 1]
[74, 62]
calc cos x.2 ^ 2 * x.1 + x.1 * sin x.2 ^ 2 _ = x.1 * (cos x.2 ^ 2 + sin x.2 ^ 2) := by ring _ = x.1 := by simp only [Real.cos_sq_add_sin_sq, mul_one]
x : ℝ Γ— ℝ ⊒ x.2.cos ^ 2 * x.1 + x.1 * x.2.sin ^ 2 = x.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ Γ— ℝ ⊒ x.2.cos ^ 2 * x.1 + x.1 * x.2.sin ^ 2 = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcmDeriv.det
[68, 1]
[74, 62]
ring
x : ℝ Γ— ℝ ⊒ x.2.cos ^ 2 * x.1 + x.1 * x.2.sin ^ 2 = x.1 * (x.2.cos ^ 2 + x.2.sin ^ 2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ Γ— ℝ ⊒ x.2.cos ^ 2 * x.1 + x.1 * x.2.sin ^ 2 = x.1 * (x.2.cos ^ 2 + x.2.sin ^ 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcmDeriv.det
[68, 1]
[74, 62]
simp only [Real.cos_sq_add_sin_sq, mul_one]
x : ℝ Γ— ℝ ⊒ x.1 * (x.2.cos ^ 2 + x.2.sin ^ 2) = x.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ Γ— ℝ ⊒ x.1 * (x.2.cos ^ 2 + x.2.sin ^ 2) = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Metric.sphere_eq_empty
[80, 1]
[87, 69]
constructor
S : Type inst✝ : RCLike S c : S r : ℝ ⊒ sphere c r = βˆ… ↔ r < 0
case mp S : Type inst✝ : RCLike S c : S r : ℝ ⊒ sphere c r = βˆ… β†’ r < 0 case mpr S : Type inst✝ : RCLike S c : S r : ℝ ⊒ r < 0 β†’ sphere c r = βˆ…
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝ : RCLike S c : S r : ℝ ⊒ sphere c r = βˆ… ↔ r < 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Metric.sphere_eq_empty
[80, 1]
[87, 69]
intro rp
case mp S : Type inst✝ : RCLike S c : S r : ℝ ⊒ sphere c r = βˆ… β†’ r < 0
case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : sphere c r = βˆ… ⊒ r < 0
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝ : RCLike S c : S r : ℝ ⊒ sphere c r = βˆ… β†’ r < 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Metric.sphere_eq_empty
[80, 1]
[87, 69]
contrapose rp
case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : sphere c r = βˆ… ⊒ r < 0
case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : Β¬r < 0 ⊒ Β¬sphere c r = βˆ…
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : sphere c r = βˆ… ⊒ r < 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Metric.sphere_eq_empty
[80, 1]
[87, 69]
simp at rp
case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : Β¬r < 0 ⊒ Β¬sphere c r = βˆ…
case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : 0 ≀ r ⊒ Β¬sphere c r = βˆ…
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : Β¬r < 0 ⊒ Β¬sphere c r = βˆ… TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Metric.sphere_eq_empty
[80, 1]
[87, 69]
refine Nonempty.ne_empty ⟨c + r, ?_⟩
case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : 0 ≀ r ⊒ Β¬sphere c r = βˆ…
case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : 0 ≀ r ⊒ c + ↑r ∈ sphere c r
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : 0 ≀ r ⊒ Β¬sphere c r = βˆ… TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Metric.sphere_eq_empty
[80, 1]
[87, 69]
simpa only [mem_sphere_iff_norm, add_sub_cancel_left, RCLike.norm_ofReal, abs_eq_self]
case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : 0 ≀ r ⊒ c + ↑r ∈ sphere c r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝ : RCLike S c : S r : ℝ rp : 0 ≀ r ⊒ c + ↑r ∈ sphere c r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Metric.sphere_eq_empty
[80, 1]
[87, 69]
intro n
case mpr S : Type inst✝ : RCLike S c : S r : ℝ ⊒ r < 0 β†’ sphere c r = βˆ…
case mpr S : Type inst✝ : RCLike S c : S r : ℝ n : r < 0 ⊒ sphere c r = βˆ…
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝ : RCLike S c : S r : ℝ ⊒ r < 0 β†’ sphere c r = βˆ… TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Metric.sphere_eq_empty
[80, 1]
[87, 69]
contrapose n
case mpr S : Type inst✝ : RCLike S c : S r : ℝ n : r < 0 ⊒ sphere c r = βˆ…
case mpr S : Type inst✝ : RCLike S c : S r : ℝ n : Β¬sphere c r = βˆ… ⊒ Β¬r < 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝ : RCLike S c : S r : ℝ n : r < 0 ⊒ sphere c r = βˆ… TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Metric.sphere_eq_empty
[80, 1]
[87, 69]
rw [← not_nonempty_iff_eq_empty] at n
case mpr S : Type inst✝ : RCLike S c : S r : ℝ n : Β¬sphere c r = βˆ… ⊒ Β¬r < 0
case mpr S : Type inst✝ : RCLike S c : S r : ℝ n : ¬¬(sphere c r).Nonempty ⊒ Β¬r < 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝ : RCLike S c : S r : ℝ n : Β¬sphere c r = βˆ… ⊒ Β¬r < 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Metric.sphere_eq_empty
[80, 1]
[87, 69]
simpa only [not_lt, NormedSpace.sphere_nonempty, not_le] using n
case mpr S : Type inst✝ : RCLike S c : S r : ℝ n : ¬¬(sphere c r).Nonempty ⊒ Β¬r < 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝ : RCLike S c : S r : ℝ n : ¬¬(sphere c r).Nonempty ⊒ Β¬r < 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
by_cases rp : r < 0
c z : β„‚ r : ℝ zs : z ∈ sphere c r ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t
case pos c z : β„‚ r : ℝ zs : z ∈ sphere c r rp : r < 0 ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t case neg c z : β„‚ r : ℝ zs : z ∈ sphere c r rp : Β¬r < 0 ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t
Please generate a tactic in lean4 to solve the state. STATE: c z : β„‚ r : ℝ zs : z ∈ sphere c r ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
simp only [not_lt] at rp
case neg c z : β„‚ r : ℝ zs : z ∈ sphere c r rp : Β¬r < 0 ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t
case neg c z : β„‚ r : ℝ zs : z ∈ sphere c r rp : 0 ≀ r ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t
Please generate a tactic in lean4 to solve the state. STATE: case neg c z : β„‚ r : ℝ zs : z ∈ sphere c r rp : Β¬r < 0 ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
rw [←abs_of_nonneg rp, ← range_circleMap, mem_range] at zs
case neg c z : β„‚ r : ℝ zs : z ∈ sphere c r rp : 0 ≀ r ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t
case neg c z : β„‚ r : ℝ zs : βˆƒ y, circleMap c r y = z rp : 0 ≀ r ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t
Please generate a tactic in lean4 to solve the state. STATE: case neg c z : β„‚ r : ℝ zs : z ∈ sphere c r rp : 0 ≀ r ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
rcases zs with ⟨t, ht⟩
case neg c z : β„‚ r : ℝ zs : βˆƒ y, circleMap c r y = z rp : 0 ≀ r ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t
case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t
Please generate a tactic in lean4 to solve the state. STATE: case neg c z : β„‚ r : ℝ zs : βˆƒ y, circleMap c r y = z rp : 0 ≀ r ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
generalize ha : 2 * Ο€ = a
case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t
case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ⊒ βˆƒ t ∈ Ioc 0 a, z = circleMap c r t
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
have ap : a > 0 := by rw [←ha]; bound
case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ⊒ βˆƒ t ∈ Ioc 0 a, z = circleMap c r t
case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 ⊒ βˆƒ t ∈ Ioc 0 a, z = circleMap c r t
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ⊒ βˆƒ t ∈ Ioc 0 a, z = circleMap c r t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
generalize hs : t + a - a * ⌈t / aβŒ‰ = s
case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 ⊒ βˆƒ t ∈ Ioc 0 a, z = circleMap c r t
case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ βˆƒ t ∈ Ioc 0 a, z = circleMap c r t
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 ⊒ βˆƒ t ∈ Ioc 0 a, z = circleMap c r t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
use s
case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ βˆƒ t ∈ Ioc 0 a, z = circleMap c r t
case h c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ s ∈ Ioc 0 a ∧ z = circleMap c r s
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ βˆƒ t ∈ Ioc 0 a, z = circleMap c r t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
constructor
case h c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ s ∈ Ioc 0 a ∧ z = circleMap c r s
case h.left c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ s ∈ Ioc 0 a case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ z = circleMap c r s
Please generate a tactic in lean4 to solve the state. STATE: case h c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ s ∈ Ioc 0 a ∧ z = circleMap c r s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
simp only [Metric.sphere_eq_empty.mpr rp, mem_empty_iff_false] at zs
case pos c z : β„‚ r : ℝ zs : z ∈ sphere c r rp : r < 0 ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos c z : β„‚ r : ℝ zs : z ∈ sphere c r rp : r < 0 ⊒ βˆƒ t ∈ Ioc 0 (2 * Ο€), z = circleMap c r t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
rw [←ha]
c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ⊒ a > 0
c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ⊒ 2 * Ο€ > 0
Please generate a tactic in lean4 to solve the state. STATE: c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ⊒ a > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
bound
c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ⊒ 2 * Ο€ > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ⊒ 2 * Ο€ > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
simp only [mem_Ioc, sub_pos, tsub_le_iff_right, ← hs]
case h.left c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ s ∈ Ioc 0 a
case h.left c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a * β†‘βŒˆt / aβŒ‰ < t + a ∧ t + a ≀ a + a * β†‘βŒˆt / aβŒ‰
Please generate a tactic in lean4 to solve the state. STATE: case h.left c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ s ∈ Ioc 0 a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
constructor
case h.left c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a * β†‘βŒˆt / aβŒ‰ < t + a ∧ t + a ≀ a + a * β†‘βŒˆt / aβŒ‰
case h.left.left c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a * β†‘βŒˆt / aβŒ‰ < t + a case h.left.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ t + a ≀ a + a * β†‘βŒˆt / aβŒ‰
Please generate a tactic in lean4 to solve the state. STATE: case h.left c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a * β†‘βŒˆt / aβŒ‰ < t + a ∧ t + a ≀ a + a * β†‘βŒˆt / aβŒ‰ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
calc a * ⌈t / aβŒ‰ _ < a * (t / a + 1) := by bound _ = a / a * t + a := by ring _ = t + a := by field_simp [ap.ne']
case h.left.left c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a * β†‘βŒˆt / aβŒ‰ < t + a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.left.left c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a * β†‘βŒˆt / aβŒ‰ < t + a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
bound
c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a * β†‘βŒˆt / aβŒ‰ < a * (t / a + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a * β†‘βŒˆt / aβŒ‰ < a * (t / a + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
ring
c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a * (t / a + 1) = a / a * t + a
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a * (t / a + 1) = a / a * t + a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
field_simp [ap.ne']
c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a / a * t + a = t + a
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a / a * t + a = t + a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
calc a + a * ⌈t / aβŒ‰ _ β‰₯ a + a * (t / a) := by bound _ = a / a * t + a := by ring _ = t + a := by field_simp [ap.ne']
case h.left.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ t + a ≀ a + a * β†‘βŒˆt / aβŒ‰
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.left.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ t + a ≀ a + a * β†‘βŒˆt / aβŒ‰ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
bound
c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a + a * β†‘βŒˆt / aβŒ‰ β‰₯ a + a * (t / a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a + a * β†‘βŒˆt / aβŒ‰ β‰₯ a + a * (t / a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
ring
c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a + a * (t / a) = a / a * t + a
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ a + a * (t / a) = a / a * t + a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
simp only [←ht, circleMap, Complex.ofReal_sub, Complex.ofReal_add, Complex.ofReal_mul, Complex.ofReal_intCast, add_right_inj, mul_eq_mul_left_iff, Complex.ofReal_eq_zero, ← hs]
case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ z = circleMap c r s
case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ (↑t * I).exp = ((↑t + ↑a - ↑a * β†‘βŒˆt / aβŒ‰) * I).exp ∨ r = 0
Please generate a tactic in lean4 to solve the state. STATE: case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ z = circleMap c r s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
rw [mul_sub_right_distrib, right_distrib, Complex.exp_sub, Complex.exp_add]
case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ (↑t * I).exp = ((↑t + ↑a - ↑a * β†‘βŒˆt / aβŒ‰) * I).exp ∨ r = 0
case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ (↑t * I).exp = (↑t * I).exp * (↑a * I).exp / (↑a * β†‘βŒˆt / aβŒ‰ * I).exp ∨ r = 0
Please generate a tactic in lean4 to solve the state. STATE: case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ (↑t * I).exp = ((↑t + ↑a - ↑a * β†‘βŒˆt / aβŒ‰) * I).exp ∨ r = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
rw [mul_comm _ (⌈_βŒ‰:β„‚), mul_assoc, Complex.exp_int_mul, ← ha]
case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ (↑t * I).exp = (↑t * I).exp * (↑a * I).exp / (↑a * β†‘βŒˆt / aβŒ‰ * I).exp ∨ r = 0
case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ (↑t * I).exp = (↑t * I).exp * (↑(2 * Ο€) * I).exp / (↑(2 * Ο€) * I).exp ^ ⌈t / (2 * Ο€)βŒ‰ ∨ r = 0
Please generate a tactic in lean4 to solve the state. STATE: case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ (↑t * I).exp = (↑t * I).exp * (↑a * I).exp / (↑a * β†‘βŒˆt / aβŒ‰ * I).exp ∨ r = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
circleMap_Ioc
[90, 1]
[116, 34]
simp only [Complex.ofReal_mul, Complex.ofReal_ofNat, Complex.exp_two_pi_mul_I, mul_one, one_zpow, div_one, true_or]
case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ (↑t * I).exp = (↑t * I).exp * (↑(2 * Ο€) * I).exp / (↑(2 * Ο€) * I).exp ^ ⌈t / (2 * Ο€)βŒ‰ ∨ r = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.right c z : β„‚ r : ℝ rp : 0 ≀ r t : ℝ ht : circleMap c r t = z a : ℝ ha : 2 * Ο€ = a ap : a > 0 s : ℝ hs : t + a - a * β†‘βŒˆt / aβŒ‰ = s ⊒ (↑t * I).exp = (↑t * I).exp * (↑(2 * Ο€) * I).exp / (↑(2 * Ο€) * I).exp ^ ⌈t / (2 * Ο€)βŒ‰ ∨ r = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square.rp
[124, 1]
[127, 26]
simp only [square, gt_iff_lt, not_lt, ge_iff_le, zero_lt_two, mul_pos_iff_of_pos_left, mem_prod, mem_Ioc, and_imp]
r0 r1 : ℝ x : ℝ Γ— ℝ r0p : 0 ≀ r0 ⊒ x ∈ square r0 r1 β†’ 0 < x.1
r0 r1 : ℝ x : ℝ Γ— ℝ r0p : 0 ≀ r0 ⊒ r0 < x.1 β†’ x.1 ≀ r1 β†’ 0 < x.2 β†’ x.2 ≀ 2 * Ο€ β†’ 0 < x.1
Please generate a tactic in lean4 to solve the state. STATE: r0 r1 : ℝ x : ℝ Γ— ℝ r0p : 0 ≀ r0 ⊒ x ∈ square r0 r1 β†’ 0 < x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square.rp
[124, 1]
[127, 26]
intro h _ _ _
r0 r1 : ℝ x : ℝ Γ— ℝ r0p : 0 ≀ r0 ⊒ r0 < x.1 β†’ x.1 ≀ r1 β†’ 0 < x.2 β†’ x.2 ≀ 2 * Ο€ β†’ 0 < x.1
r0 r1 : ℝ x : ℝ Γ— ℝ r0p : 0 ≀ r0 h : r0 < x.1 a✝² : x.1 ≀ r1 a✝¹ : 0 < x.2 a✝ : x.2 ≀ 2 * Ο€ ⊒ 0 < x.1
Please generate a tactic in lean4 to solve the state. STATE: r0 r1 : ℝ x : ℝ Γ— ℝ r0p : 0 ≀ r0 ⊒ r0 < x.1 β†’ x.1 ≀ r1 β†’ 0 < x.2 β†’ x.2 ≀ 2 * Ο€ β†’ 0 < x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square.rp
[124, 1]
[127, 26]
linarith
r0 r1 : ℝ x : ℝ Γ— ℝ r0p : 0 ≀ r0 h : r0 < x.1 a✝² : x.1 ≀ r1 a✝¹ : 0 < x.2 a✝ : x.2 ≀ 2 * Ο€ ⊒ 0 < x.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: r0 r1 : ℝ x : ℝ Γ— ℝ r0p : 0 ≀ r0 h : r0 < x.1 a✝² : x.1 ≀ r1 a✝¹ : 0 < x.2 a✝ : x.2 ≀ 2 * Ο€ ⊒ 0 < x.1 TACTIC: