url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Measurable.square
[129, 1]
[130, 54]
apply_rules [MeasurableSet.prod, measurableSet_Ioc]
r0 r1 : ℝ ⊒ MeasurableSet (_root_.square r0 r1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: r0 r1 : ℝ ⊒ MeasurableSet (_root_.square r0 r1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
rw [← MeasurableEquiv.image_eq_preimage]
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 ⊒ ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 ⊒ ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
have e : realCircleMap c = fun x : ℝ Γ— ℝ ↦ Complex.measurableEquivRealProd (circleMap c x.1 x.2) := by funext simp only [realCircleMap_eq_circleMap, Complex.measurableEquivRealProd, Complex.equivRealProd_apply, Homeomorph.toMeasurableEquiv_coe, ContinuousLinearEquiv.coe_toHomeomorph, Complex.equivRealProdCLM_apply]
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
have im := image_comp Complex.measurableEquivRealProd (fun x : ℝ Γ— ℝ ↦ circleMap c x.1 x.2) (square r0 r1)
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1 ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1 im : (⇑Complex.measurableEquivRealProd ∘ fun x => circleMap c x.1 x.2) '' square r0 r1 = ⇑Complex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1) ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1 ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
simp only [Function.comp] at im
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1 im : (⇑Complex.measurableEquivRealProd ∘ fun x => circleMap c x.1 x.2) '' square r0 r1 = ⇑Complex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1) ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1 im : (fun a => Complex.measurableEquivRealProd (circleMap c a.1 a.2)) '' square r0 r1 = ⇑Complex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1) ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1 im : (⇑Complex.measurableEquivRealProd ∘ fun x => circleMap c x.1 x.2) '' square r0 r1 = ⇑Complex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1) ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
simp only [e, im, i]
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1 im : (fun a => Complex.measurableEquivRealProd (circleMap c a.1 a.2)) '' square r0 r1 = ⇑Complex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1) ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1 im : (fun a => Complex.measurableEquivRealProd (circleMap c a.1 a.2)) '' square r0 r1 = ⇑Complex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1) ⊒ ⇑Complex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
funext
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 ⊒ realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x✝ : ℝ Γ— ℝ ⊒ realCircleMap c x✝ = Complex.measurableEquivRealProd (circleMap c x✝.1 x✝.2)
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 ⊒ realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
simp only [realCircleMap_eq_circleMap, Complex.measurableEquivRealProd, Complex.equivRealProd_apply, Homeomorph.toMeasurableEquiv_coe, ContinuousLinearEquiv.coe_toHomeomorph, Complex.equivRealProdCLM_apply]
case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x✝ : ℝ Γ— ℝ ⊒ realCircleMap c x✝ = Complex.measurableEquivRealProd (circleMap c x✝.1 x✝.2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x✝ : ℝ Γ— ℝ ⊒ realCircleMap c x✝ = Complex.measurableEquivRealProd (circleMap c x✝.1 x✝.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
ext z
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) ⊒ (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1
case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ z ∈ (fun x => circleMap c x.1 x.2) '' square r0 r1 ↔ z ∈ annulus_oc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) ⊒ (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
rw [mem_image]
case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ z ∈ (fun x => circleMap c x.1 x.2) '' square r0 r1 ↔ z ∈ annulus_oc c r0 r1
case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ (βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z) ↔ z ∈ annulus_oc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ z ∈ (fun x => circleMap c x.1 x.2) '' square r0 r1 ↔ z ∈ annulus_oc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
constructor
case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ (βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z) ↔ z ∈ annulus_oc c r0 r1
case h.mp c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ (βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z) β†’ z ∈ annulus_oc c r0 r1 case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ z ∈ annulus_oc c r0 r1 β†’ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
Please generate a tactic in lean4 to solve the state. STATE: case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ (βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z) ↔ z ∈ annulus_oc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
intro gp
case h.mp c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ (βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z) β†’ z ∈ annulus_oc c r0 r1
case h.mp c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ gp : βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z ⊒ z ∈ annulus_oc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: case h.mp c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ (βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z) β†’ z ∈ annulus_oc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
rcases gp with ⟨⟨s, t⟩, ss, tz⟩
case h.mp c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ gp : βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z ⊒ z ∈ annulus_oc c r0 r1
case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ ss : (s, t) ∈ square r0 r1 tz : circleMap c (s, t).1 (s, t).2 = z ⊒ z ∈ annulus_oc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: case h.mp c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ gp : βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z ⊒ z ∈ annulus_oc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
simp only at tz
case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ ss : (s, t) ∈ square r0 r1 tz : circleMap c (s, t).1 (s, t).2 = z ⊒ z ∈ annulus_oc c r0 r1
case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ ss : (s, t) ∈ square r0 r1 tz : circleMap c s t = z ⊒ z ∈ annulus_oc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ ss : (s, t) ∈ square r0 r1 tz : circleMap c (s, t).1 (s, t).2 = z ⊒ z ∈ annulus_oc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
simp only [square, prod_mk_mem_set_prod_eq, mem_Ioc] at ss
case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ ss : (s, t) ∈ square r0 r1 tz : circleMap c s t = z ⊒ z ∈ annulus_oc c r0 r1
case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ ⊒ z ∈ annulus_oc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ ss : (s, t) ∈ square r0 r1 tz : circleMap c s t = z ⊒ z ∈ annulus_oc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
rw [← tz]
case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ ⊒ z ∈ annulus_oc c r0 r1
case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ ⊒ circleMap c s t ∈ annulus_oc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ ⊒ z ∈ annulus_oc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
have s0 : 0 < s := by linarith
case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ ⊒ circleMap c s t ∈ annulus_oc c r0 r1
case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ s0 : 0 < s ⊒ circleMap c s t ∈ annulus_oc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ ⊒ circleMap c s t ∈ annulus_oc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
simp only [circleMap, add_comm c, annulus_oc, mem_diff, Metric.mem_closedBall, dist_add_self_left, norm_mul, Complex.norm_eq_abs, Complex.abs_ofReal, Complex.abs_exp_ofReal_mul_I, mul_one, not_le, abs_of_pos s0, ss.1, true_and]
case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ s0 : 0 < s ⊒ circleMap c s t ∈ annulus_oc c r0 r1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro.mk.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ s0 : 0 < s ⊒ circleMap c s t ∈ annulus_oc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
linarith
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ ⊒ 0 < s
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ s t : ℝ tz : circleMap c s t = z ss : (r0 < s ∧ s ≀ r1) ∧ 0 < t ∧ t ≀ 2 * Ο€ ⊒ 0 < s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
intro zr
case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ z ∈ annulus_oc c r0 r1 β†’ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : z ∈ annulus_oc c r0 r1 ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ ⊒ z ∈ annulus_oc c r0 r1 β†’ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
simp only [mem_diff, Metric.mem_closedBall, mem_singleton_iff, annulus_oc, not_le] at zr
case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : z ∈ annulus_oc c r0 r1 ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist z c ≀ r1 ∧ r0 < dist z c ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : z ∈ annulus_oc c r0 r1 ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
rw [dist_comm] at zr
case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist z c ≀ r1 ∧ r0 < dist z c ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist z c ≀ r1 ∧ r0 < dist z c ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
have zz : z ∈ sphere c (dist c z) := by simp only [Complex.dist_eq, mem_sphere_iff_norm, Complex.norm_eq_abs, Complex.abs.map_sub]
case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z zz : z ∈ sphere c (dist c z) ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
rcases circleMap_Ioc zz with ⟨t, ts, tz⟩
case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z zz : z ∈ sphere c (dist c z) ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
case h.mpr.intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z zz : z ∈ sphere c (dist c z) t : ℝ ts : t ∈ Ioc 0 (2 * Ο€) tz : z = circleMap c (dist c z) t ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z zz : z ∈ sphere c (dist c z) ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
use (dist c z, t)
case h.mpr.intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z zz : z ∈ sphere c (dist c z) t : ℝ ts : t ∈ Ioc 0 (2 * Ο€) tz : z = circleMap c (dist c z) t ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z
case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z zz : z ∈ sphere c (dist c z) t : ℝ ts : t ∈ Ioc 0 (2 * Ο€) tz : z = circleMap c (dist c z) t ⊒ (dist c z, t) ∈ square r0 r1 ∧ circleMap c (dist c z, t).1 (dist c z, t).2 = z
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr.intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z zz : z ∈ sphere c (dist c z) t : ℝ ts : t ∈ Ioc 0 (2 * Ο€) tz : z = circleMap c (dist c z) t ⊒ βˆƒ x ∈ square r0 r1, circleMap c x.1 x.2 = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
simpa only [square, gt_iff_lt, not_lt, ge_iff_le, zero_lt_two, mul_pos_iff_of_pos_left, mem_prod, mem_Ioc, dist_pos, ne_eq, not_false_eq_true, zr, and_self, true_and, tz.symm, and_true] using ts
case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z zz : z ∈ sphere c (dist c z) t : ℝ ts : t ∈ Ioc 0 (2 * Ο€) tz : z = circleMap c (dist c z) t ⊒ (dist c z, t) ∈ square r0 r1 ∧ circleMap c (dist c z, t).1 (dist c z, t).2 = z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z zz : z ∈ sphere c (dist c z) t : ℝ ts : t ∈ Ioc 0 (2 * Ο€) tz : z = circleMap c (dist c z) t ⊒ (dist c z, t) ∈ square r0 r1 ∧ circleMap c (dist c z, t).1 (dist c z, t).2 = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
square_eq
[139, 1]
[175, 23]
simp only [Complex.dist_eq, mem_sphere_iff_norm, Complex.norm_eq_abs, Complex.abs.map_sub]
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z ⊒ z ∈ sphere c (dist c z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) z : β„‚ zr : dist c z ≀ r1 ∧ r0 < dist c z ⊒ z ∈ sphere c (dist c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
exp_of_im
[178, 1]
[179, 71]
simp [Complex.ext_iff, Complex.cos_ofReal_re, Complex.sin_ofReal_re]
t : ℝ ⊒ (↑t * I).exp = ↑t.cos + ↑t.sin * I
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ ⊒ (↑t * I).exp = ↑t.cos + ↑t.sin * I TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Complex.cos_eq_cos
[181, 1]
[181, 78]
simp
t : ℝ ⊒ (↑t).cos = ↑t.cos
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ ⊒ (↑t).cos = ↑t.cos TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Complex.sin_eq_sin
[183, 1]
[183, 78]
simp
t : ℝ ⊒ (↑t).sin = ↑t.sin
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ ⊒ (↑t).sin = ↑t.sin TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
generalize hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n
t : ℝ ⊒ βˆƒ n, (↑t * I).exp.arg = t - 2 * Ο€ * ↑n
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ βˆƒ n, (↑t * I).exp.arg = t - 2 * Ο€ * ↑n
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ ⊒ βˆƒ n, (↑t * I).exp.arg = t - 2 * Ο€ * ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
exists n
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ βˆƒ n, (↑t * I).exp.arg = t - 2 * Ο€ * ↑n
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ (↑t * I).exp.arg = t - 2 * Ο€ * ↑n
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ βˆƒ n, (↑t * I).exp.arg = t - 2 * Ο€ * ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
have en : exp (2 * Ο€ * n * I) = 1 := by rw [mul_comm _ (n:β„‚), mul_assoc, Complex.exp_int_mul] simp only [Complex.exp_two_pi_mul_I, one_zpow]
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ (↑t * I).exp.arg = t - 2 * Ο€ * ↑n
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 ⊒ (↑t * I).exp.arg = t - 2 * Ο€ * ↑n
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ (↑t * I).exp.arg = t - 2 * Ο€ * ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
have e : exp (t * I) = exp (↑(t - 2 * Ο€ * n) * I) := by simp [mul_sub_right_distrib, Complex.exp_sub, en]
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 ⊒ (↑t * I).exp.arg = t - 2 * Ο€ * ↑n
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ (↑t * I).exp.arg = t - 2 * Ο€ * ↑n
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 ⊒ (↑t * I).exp.arg = t - 2 * Ο€ * ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
rw [e, exp_of_im, ← Complex.cos_eq_cos, ← Complex.sin_eq_sin, Complex.arg_cos_add_sin_mul_I ts]
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ts : t - 2 * Ο€ * ↑n ∈ Ioc (-Ο€) Ο€ ⊒ (↑t * I).exp.arg = t - 2 * Ο€ * ↑n
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ts : t - 2 * Ο€ * ↑n ∈ Ioc (-Ο€) Ο€ ⊒ (↑t * I).exp.arg = t - 2 * Ο€ * ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
rw [mul_comm _ (n:β„‚), mul_assoc, Complex.exp_int_mul]
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ (2 * ↑π * ↑n * I).exp = 1
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ (2 * ↑π * I).exp ^ n = 1
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ (2 * ↑π * ↑n * I).exp = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
simp only [Complex.exp_two_pi_mul_I, one_zpow]
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ (2 * ↑π * I).exp ^ n = 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n ⊒ (2 * ↑π * I).exp ^ n = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
simp [mul_sub_right_distrib, Complex.exp_sub, en]
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 ⊒ (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 ⊒ (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
simp only [mem_Ioc, neg_lt_sub_iff_lt_add, tsub_le_iff_right]
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ t - 2 * Ο€ * ↑n ∈ Ioc (-Ο€) Ο€
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ 2 * Ο€ * ↑n < Ο€ + t ∧ t ≀ Ο€ + 2 * Ο€ * ↑n
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ t - 2 * Ο€ * ↑n ∈ Ioc (-Ο€) Ο€ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
constructor
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ 2 * Ο€ * ↑n < Ο€ + t ∧ t ≀ Ο€ + 2 * Ο€ * ↑n
case left t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ 2 * Ο€ * ↑n < Ο€ + t case right t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ t ≀ Ο€ + 2 * Ο€ * ↑n
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ 2 * Ο€ * ↑n < Ο€ + t ∧ t ≀ Ο€ + 2 * Ο€ * ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
have h : ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 := by rw [← hn]; exact Int.ceil_lt_add_one _
case left t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ 2 * Ο€ * ↑n < Ο€ + t
case left t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 ⊒ 2 * Ο€ * ↑n < Ο€ + t
Please generate a tactic in lean4 to solve the state. STATE: case left t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ 2 * Ο€ * ↑n < Ο€ + t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
calc 2 * Ο€ * ↑n _ < 2 * Ο€ * (t * (2 * Ο€)⁻¹ - 1 / 2 + 1) := by bound _ = Ο€ + 2 * Ο€ * (2 * Ο€)⁻¹ * t := by ring _ = Ο€ + t := by field_simp [Real.two_pi_pos.ne']
case left t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 ⊒ 2 * Ο€ * ↑n < Ο€ + t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case left t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 ⊒ 2 * Ο€ * ↑n < Ο€ + t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
rw [← hn]
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ β†‘βŒˆt / (2 * Ο€) - 1 / 2βŒ‰ < t * (2 * Ο€)⁻¹ - 1 / 2 + 1
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
exact Int.ceil_lt_add_one _
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ β†‘βŒˆt / (2 * Ο€) - 1 / 2βŒ‰ < t * (2 * Ο€)⁻¹ - 1 / 2 + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ β†‘βŒˆt / (2 * Ο€) - 1 / 2βŒ‰ < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
bound
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 ⊒ 2 * Ο€ * ↑n < 2 * Ο€ * (t * (2 * Ο€)⁻¹ - 1 / 2 + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 ⊒ 2 * Ο€ * ↑n < 2 * Ο€ * (t * (2 * Ο€)⁻¹ - 1 / 2 + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
ring
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 ⊒ 2 * Ο€ * (t * (2 * Ο€)⁻¹ - 1 / 2 + 1) = Ο€ + 2 * Ο€ * (2 * Ο€)⁻¹ * t
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 ⊒ 2 * Ο€ * (t * (2 * Ο€)⁻¹ - 1 / 2 + 1) = Ο€ + 2 * Ο€ * (2 * Ο€)⁻¹ * t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
field_simp [Real.two_pi_pos.ne']
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 ⊒ Ο€ + 2 * Ο€ * (2 * Ο€)⁻¹ * t = Ο€ + t
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n < t * (2 * Ο€)⁻¹ - 1 / 2 + 1 ⊒ Ο€ + 2 * Ο€ * (2 * Ο€)⁻¹ * t = Ο€ + t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
have h : ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 := by rw [← hn]; exact Int.le_ceil _
case right t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ t ≀ Ο€ + 2 * Ο€ * ↑n
case right t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 ⊒ t ≀ Ο€ + 2 * Ο€ * ↑n
Please generate a tactic in lean4 to solve the state. STATE: case right t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ t ≀ Ο€ + 2 * Ο€ * ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
calc Ο€ + 2 * Ο€ * ↑n _ β‰₯ Ο€ + 2 * Ο€ * (t * (2 * Ο€)⁻¹ - 1 / 2) := by bound _ = 2 * Ο€ * (2 * Ο€)⁻¹ * t := by ring _ = t := by field_simp [Real.two_pi_pos.ne']
case right t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 ⊒ t ≀ Ο€ + 2 * Ο€ * ↑n
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 ⊒ t ≀ Ο€ + 2 * Ο€ * ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
rw [← hn]
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ β†‘βŒˆt / (2 * Ο€) - 1 / 2βŒ‰ β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
exact Int.le_ceil _
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ β†‘βŒˆt / (2 * Ο€) - 1 / 2βŒ‰ β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp ⊒ β†‘βŒˆt / (2 * Ο€) - 1 / 2βŒ‰ β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
bound
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 ⊒ Ο€ + 2 * Ο€ * ↑n β‰₯ Ο€ + 2 * Ο€ * (t * (2 * Ο€)⁻¹ - 1 / 2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 ⊒ Ο€ + 2 * Ο€ * ↑n β‰₯ Ο€ + 2 * Ο€ * (t * (2 * Ο€)⁻¹ - 1 / 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
ring
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 ⊒ Ο€ + 2 * Ο€ * (t * (2 * Ο€)⁻¹ - 1 / 2) = 2 * Ο€ * (2 * Ο€)⁻¹ * t
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 ⊒ Ο€ + 2 * Ο€ * (t * (2 * Ο€)⁻¹ - 1 / 2) = 2 * Ο€ * (2 * Ο€)⁻¹ * t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
field_simp [Real.two_pi_pos.ne']
t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 ⊒ 2 * Ο€ * (2 * Ο€)⁻¹ * t = t
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : β„€ hn : ⌈t / (2 * Ο€) - 1 / 2βŒ‰ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * Ο€ * ↑n) * I).exp h : ↑n β‰₯ t * (2 * Ο€)⁻¹ - 1 / 2 ⊒ 2 * Ο€ * (2 * Ο€)⁻¹ * t = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
intro x xs y ys e
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 ⊒ InjOn (realCircleMap c) (square r0 r1)
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x : ℝ Γ— ℝ xs : x ∈ square r0 r1 y : ℝ Γ— ℝ ys : y ∈ square r0 r1 e : realCircleMap c x = realCircleMap c y ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 ⊒ InjOn (realCircleMap c) (square r0 r1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp [square] at xs ys
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x : ℝ Γ— ℝ xs : x ∈ square r0 r1 y : ℝ Γ— ℝ ys : y ∈ square r0 r1 e : realCircleMap c x = realCircleMap c y ⊒ x = y
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ e : realCircleMap c x = realCircleMap c y xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x : ℝ Γ— ℝ xs : x ∈ square r0 r1 y : ℝ Γ— ℝ ys : y ∈ square r0 r1 e : realCircleMap c x = realCircleMap c y ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp_rw [realCircleMap_eq_circleMap, Equiv.apply_eq_iff_eq] at e
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ e : realCircleMap c x = realCircleMap c y xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ ⊒ x = y
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : circleMap c x.1 x.2 = circleMap c y.1 y.2 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ e : realCircleMap c x = realCircleMap c y xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp_rw [circleMap] at e
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : circleMap c x.1 x.2 = circleMap c y.1 y.2 ⊒ x = y
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : c + ↑x.1 * (↑x.2 * I).exp = c + ↑y.1 * (↑y.2 * I).exp ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : circleMap c x.1 x.2 = circleMap c y.1 y.2 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp at e
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : c + ↑x.1 * (↑x.2 * I).exp = c + ↑y.1 * (↑y.2 * I).exp ⊒ x = y
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : c + ↑x.1 * (↑x.2 * I).exp = c + ↑y.1 * (↑y.2 * I).exp ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have re : abs (↑x.1 * exp (x.2 * I)) = abs (↑y.1 * exp (y.2 * I)) := by rw [e]
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp ⊒ x = y
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have x0 : 0 < x.1 := by linarith
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) ⊒ x = y
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have y0 : 0 < y.1 := by linarith
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 ⊒ x = y
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 y0 : 0 < y.1 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp only [map_mul, Complex.abs_ofReal, abs_of_pos x0, Complex.abs_exp_ofReal_mul_I, mul_one, abs_of_pos y0] at re
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 y0 : 0 < y.1 ⊒ x = y
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 y0 : 0 < y.1 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have ae : arg (↑x.1 * exp (x.2 * I)) = arg (↑y.1 * exp (y.2 * I)) := by rw [e]
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ⊒ x = y
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp [Complex.arg_real_mul _ x0, Complex.arg_real_mul _ y0] at ae
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg ⊒ x = y
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rcases arg_exp_of_im x.2 with ⟨nx, hx⟩
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg ⊒ x = y
case intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : β„€ hx : (↑x.2 * I).exp.arg = x.2 - 2 * Ο€ * ↑nx ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rcases arg_exp_of_im y.2 with ⟨ny, h⟩
case intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : β„€ hx : (↑x.2 * I).exp.arg = x.2 - 2 * Ο€ * ↑nx ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : β„€ hx : (↑x.2 * I).exp.arg = x.2 - 2 * Ο€ * ↑nx ny : β„€ h : (↑y.2 * I).exp.arg = y.2 - 2 * Ο€ * ↑ny ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : β„€ hx : (↑x.2 * I).exp.arg = x.2 - 2 * Ο€ * ↑nx ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [← ae, hx] at h
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : β„€ hx : (↑x.2 * I).exp.arg = x.2 - 2 * Ο€ * ↑nx ny : β„€ h : (↑y.2 * I).exp.arg = y.2 - 2 * Ο€ * ↑ny ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : β„€ hx : (↑x.2 * I).exp.arg = x.2 - 2 * Ο€ * ↑nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : β„€ hx : (↑x.2 * I).exp.arg = x.2 - 2 * Ο€ * ↑nx ny : β„€ h : (↑y.2 * I).exp.arg = y.2 - 2 * Ο€ * ↑ny ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
clear e ae hx
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : β„€ hx : (↑x.2 * I).exp.arg = x.2 - 2 * Ο€ * ↑nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : β„€ hx : (↑x.2 * I).exp.arg = x.2 - 2 * Ο€ * ↑nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have n0 : 2 * Ο€ * (nx - ny) < 2 * Ο€ * 1 := by linarith
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have n1 : 2 * Ο€ * -1 < 2 * Ο€ * (nx - ny) := by linarith
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have hn : (nx : ℝ) - ny = ↑(nx - ny) := by simp only [Int.cast_sub]
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have hn1 : (-1 : ℝ) = ↑(-1 : β„€) := by norm_num
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have h1 : (1 : ℝ) = ↑(1 : β„€) := by norm_num
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [mul_lt_mul_left Real.two_pi_pos, hn] at n0 n1
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : ↑(nx - ny) < 1 n1 : -1 < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [hn1] at n1
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : ↑(nx - ny) < 1 n1 : -1 < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : ↑(nx - ny) < 1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : ↑(nx - ny) < 1 n1 : -1 < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [h1] at n0
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : ↑(nx - ny) < 1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : ↑(nx - ny) < ↑1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : ↑(nx - ny) < 1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [Int.cast_lt] at n0 n1
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : ↑(nx - ny) < ↑1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : ↑(nx - ny) < ↑1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have n : nx = ny := by linarith
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [n] at h
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have i : x.2 = y.2 := by linarith
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have g : (x.1, x.2) = (y.1, y.2) := by rw [re, i]
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : (x.1, x.2) = (y.1, y.2) ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp only [Prod.mk.eta] at g
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : (x.1, x.2) = (y.1, y.2) ⊒ x = y
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : x = y ⊒ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : (x.1, x.2) = (y.1, y.2) ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
exact g
case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : x = y ⊒ x = y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : x = y ⊒ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [e]
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp ⊒ Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp ⊒ Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) ⊒ 0 < x.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) ⊒ 0 < x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 ⊒ 0 < y.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 ⊒ 0 < y.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [e]
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ⊒ (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ⊒ (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny ⊒ 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny ⊒ 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 ⊒ 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 ⊒ 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp only [Int.cast_sub]
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) ⊒ ↑nx - ↑ny = ↑(nx - ny)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) ⊒ ↑nx - ↑ny = ↑(nx - ny) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
norm_num
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) ⊒ -1 = ↑(-1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) ⊒ -1 = ↑(-1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
norm_num
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) ⊒ 1 = ↑1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : 2 * Ο€ * (↑nx - ↑ny) < 2 * Ο€ * 1 n1 : 2 * Ο€ * -1 < 2 * Ο€ * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) ⊒ 1 = ↑1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ nx = ny
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑nx = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊒ nx = ny TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊒ x.2 = y.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊒ x.2 = y.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [re, i]
c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 ⊒ (x.1, x.2) = (y.1, y.2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r0 r1 : ℝ r0p : 0 ≀ r0 x y : ℝ Γ— ℝ xs : (r0 < x.1 ∧ x.1 ≀ r1) ∧ 0 < x.2 ∧ x.2 ≀ 2 * Ο€ ys : (r0 < y.1 ∧ y.1 ≀ r1) ∧ 0 < y.2 ∧ y.2 ≀ 2 * Ο€ x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : β„€ h : x.2 - 2 * Ο€ * ↑ny = y.2 - 2 * Ο€ * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 ⊒ (x.1, x.2) = (y.1, y.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
measurable_symm_equiv_inverse
[239, 1]
[245, 55]
simp only [Complex.equivRealProd_apply]
z : β„‚ ⊒ Complex.measurableEquivRealProd.symm (Complex.equivRealProd z) = z
z : β„‚ ⊒ Complex.measurableEquivRealProd.symm (z.re, z.im) = z
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ ⊒ Complex.measurableEquivRealProd.symm (Complex.equivRealProd z) = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
measurable_symm_equiv_inverse
[239, 1]
[245, 55]
rw [Complex.measurableEquivRealProd, Homeomorph.toMeasurableEquiv_symm_coe]
z : β„‚ ⊒ Complex.measurableEquivRealProd.symm (z.re, z.im) = z
z : β„‚ ⊒ Complex.equivRealProdCLM.toHomeomorph.symm (z.re, z.im) = z
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ ⊒ Complex.measurableEquivRealProd.symm (z.re, z.im) = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
measurable_symm_equiv_inverse
[239, 1]
[245, 55]
simp only [ContinuousLinearEquiv.symm_toHomeomorph, ContinuousLinearEquiv.coe_toHomeomorph]
z : β„‚ ⊒ Complex.equivRealProdCLM.toHomeomorph.symm (z.re, z.im) = z
z : β„‚ ⊒ Complex.equivRealProdCLM.symm (z.re, z.im) = z
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ ⊒ Complex.equivRealProdCLM.toHomeomorph.symm (z.re, z.im) = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
measurable_symm_equiv_inverse
[239, 1]
[245, 55]
apply Complex.ext
z : β„‚ ⊒ Complex.equivRealProdCLM.symm (z.re, z.im) = z
case a z : β„‚ ⊒ (Complex.equivRealProdCLM.symm (z.re, z.im)).re = z.re case a z : β„‚ ⊒ (Complex.equivRealProdCLM.symm (z.re, z.im)).im = z.im
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ ⊒ Complex.equivRealProdCLM.symm (z.re, z.im) = z TACTIC: